1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstSimplifyFolder.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/CodeGen/AtomicExpand.h" 23 #include "llvm/CodeGen/AtomicExpandUtils.h" 24 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstIterator.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/AtomicOrdering.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Transforms/Utils/LowerAtomic.h" 55 #include <cassert> 56 #include <cstdint> 57 #include <iterator> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "atomic-expand" 62 63 namespace { 64 65 class AtomicExpandImpl { 66 const TargetLowering *TLI = nullptr; 67 const DataLayout *DL = nullptr; 68 69 private: 70 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 71 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 72 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 73 bool tryExpandAtomicLoad(LoadInst *LI); 74 bool expandAtomicLoadToLL(LoadInst *LI); 75 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 76 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 77 bool tryExpandAtomicStore(StoreInst *SI); 78 void expandAtomicStore(StoreInst *SI); 79 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 80 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 81 Value * 82 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, 83 Align AddrAlign, AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 87 AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 89 void expandPartwordAtomicRMW( 90 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 95 96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 97 static Value *insertRMWCmpXchgLoop( 98 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 99 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 100 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 101 CreateCmpXchgInstFun CreateCmpXchg); 102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 bool isIdempotentRMW(AtomicRMWInst *RMWI); 106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 107 108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 109 Value *PointerOperand, Value *ValueOperand, 110 Value *CASExpected, AtomicOrdering Ordering, 111 AtomicOrdering Ordering2, 112 ArrayRef<RTLIB::Libcall> Libcalls); 113 void expandAtomicLoadToLibcall(LoadInst *LI); 114 void expandAtomicStoreToLibcall(StoreInst *LI); 115 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 117 118 friend bool 119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 120 CreateCmpXchgInstFun CreateCmpXchg); 121 122 bool processAtomicInstr(Instruction *I); 123 124 public: 125 bool run(Function &F, const TargetMachine *TM); 126 }; 127 128 class AtomicExpandLegacy : public FunctionPass { 129 public: 130 static char ID; // Pass identification, replacement for typeid 131 132 AtomicExpandLegacy() : FunctionPass(ID) { 133 initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); 134 } 135 136 bool runOnFunction(Function &F) override; 137 }; 138 139 // IRBuilder to be used for replacement atomic instructions. 140 struct ReplacementIRBuilder 141 : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { 142 MDNode *MMRAMD = nullptr; 143 144 // Preserves the DebugLoc from I, and preserves still valid metadata. 145 // Enable StrictFP builder mode when appropriate. 146 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) 147 : IRBuilder(I->getContext(), InstSimplifyFolder(DL), 148 IRBuilderCallbackInserter( 149 [this](Instruction *I) { addMMRAMD(I); })) { 150 SetInsertPoint(I); 151 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections}); 152 if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP)) 153 this->setIsFPConstrained(true); 154 155 MMRAMD = I->getMetadata(LLVMContext::MD_mmra); 156 } 157 158 void addMMRAMD(Instruction *I) { 159 if (canInstructionHaveMMRAs(*I)) 160 I->setMetadata(LLVMContext::MD_mmra, MMRAMD); 161 } 162 }; 163 164 } // end anonymous namespace 165 166 char AtomicExpandLegacy::ID = 0; 167 168 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; 169 170 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, 171 "Expand Atomic instructions", false, false) 172 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 173 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, 174 "Expand Atomic instructions", false, false) 175 176 // Helper functions to retrieve the size of atomic instructions. 177 static unsigned getAtomicOpSize(LoadInst *LI) { 178 const DataLayout &DL = LI->getDataLayout(); 179 return DL.getTypeStoreSize(LI->getType()); 180 } 181 182 static unsigned getAtomicOpSize(StoreInst *SI) { 183 const DataLayout &DL = SI->getDataLayout(); 184 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 185 } 186 187 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 188 const DataLayout &DL = RMWI->getDataLayout(); 189 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 190 } 191 192 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 193 const DataLayout &DL = CASI->getDataLayout(); 194 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 195 } 196 197 // Determine if a particular atomic operation has a supported size, 198 // and is of appropriate alignment, to be passed through for target 199 // lowering. (Versus turning into a __atomic libcall) 200 template <typename Inst> 201 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 202 unsigned Size = getAtomicOpSize(I); 203 Align Alignment = I->getAlign(); 204 return Alignment >= Size && 205 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 206 } 207 208 bool AtomicExpandImpl::processAtomicInstr(Instruction *I) { 209 auto *LI = dyn_cast<LoadInst>(I); 210 auto *SI = dyn_cast<StoreInst>(I); 211 auto *RMWI = dyn_cast<AtomicRMWInst>(I); 212 auto *CASI = dyn_cast<AtomicCmpXchgInst>(I); 213 214 bool MadeChange = false; 215 216 // If the Size/Alignment is not supported, replace with a libcall. 217 if (LI) { 218 if (!LI->isAtomic()) 219 return false; 220 221 if (!atomicSizeSupported(TLI, LI)) { 222 expandAtomicLoadToLibcall(LI); 223 return true; 224 } 225 226 if (TLI->shouldCastAtomicLoadInIR(LI) == 227 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 228 I = LI = convertAtomicLoadToIntegerType(LI); 229 MadeChange = true; 230 } 231 } else if (SI) { 232 if (!SI->isAtomic()) 233 return false; 234 235 if (!atomicSizeSupported(TLI, SI)) { 236 expandAtomicStoreToLibcall(SI); 237 return true; 238 } 239 240 if (TLI->shouldCastAtomicStoreInIR(SI) == 241 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 242 I = SI = convertAtomicStoreToIntegerType(SI); 243 MadeChange = true; 244 } 245 } else if (RMWI) { 246 if (!atomicSizeSupported(TLI, RMWI)) { 247 expandAtomicRMWToLibcall(RMWI); 248 return true; 249 } 250 251 if (TLI->shouldCastAtomicRMWIInIR(RMWI) == 252 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 253 I = RMWI = convertAtomicXchgToIntegerType(RMWI); 254 MadeChange = true; 255 } 256 } else if (CASI) { 257 if (!atomicSizeSupported(TLI, CASI)) { 258 expandAtomicCASToLibcall(CASI); 259 return true; 260 } 261 262 // TODO: when we're ready to make the change at the IR level, we can 263 // extend convertCmpXchgToInteger for floating point too. 264 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 265 // TODO: add a TLI hook to control this so that each target can 266 // convert to lowering the original type one at a time. 267 I = CASI = convertCmpXchgToIntegerType(CASI); 268 MadeChange = true; 269 } 270 } else 271 return false; 272 273 if (TLI->shouldInsertFencesForAtomic(I)) { 274 auto FenceOrdering = AtomicOrdering::Monotonic; 275 if (LI && isAcquireOrStronger(LI->getOrdering())) { 276 FenceOrdering = LI->getOrdering(); 277 LI->setOrdering(AtomicOrdering::Monotonic); 278 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 279 FenceOrdering = SI->getOrdering(); 280 SI->setOrdering(AtomicOrdering::Monotonic); 281 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 282 isAcquireOrStronger(RMWI->getOrdering()))) { 283 FenceOrdering = RMWI->getOrdering(); 284 RMWI->setOrdering(AtomicOrdering::Monotonic); 285 } else if (CASI && 286 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 287 TargetLoweringBase::AtomicExpansionKind::None && 288 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 289 isAcquireOrStronger(CASI->getSuccessOrdering()) || 290 isAcquireOrStronger(CASI->getFailureOrdering()))) { 291 // If a compare and swap is lowered to LL/SC, we can do smarter fence 292 // insertion, with a stronger one on the success path than on the 293 // failure path. As a result, fence insertion is directly done by 294 // expandAtomicCmpXchg in that case. 295 FenceOrdering = CASI->getMergedOrdering(); 296 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 297 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 298 } 299 300 if (FenceOrdering != AtomicOrdering::Monotonic) { 301 MadeChange |= bracketInstWithFences(I, FenceOrdering); 302 } 303 } else if (I->hasAtomicStore() && 304 TLI->shouldInsertTrailingFenceForAtomicStore(I)) { 305 auto FenceOrdering = AtomicOrdering::Monotonic; 306 if (SI) 307 FenceOrdering = SI->getOrdering(); 308 else if (RMWI) 309 FenceOrdering = RMWI->getOrdering(); 310 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) != 311 TargetLoweringBase::AtomicExpansionKind::LLSC) 312 // LLSC is handled in expandAtomicCmpXchg(). 313 FenceOrdering = CASI->getSuccessOrdering(); 314 315 IRBuilder Builder(I); 316 if (auto TrailingFence = 317 TLI->emitTrailingFence(Builder, I, FenceOrdering)) { 318 TrailingFence->moveAfter(I); 319 MadeChange = true; 320 } 321 } 322 323 if (LI) 324 MadeChange |= tryExpandAtomicLoad(LI); 325 else if (SI) 326 MadeChange |= tryExpandAtomicStore(SI); 327 else if (RMWI) { 328 // There are two different ways of expanding RMW instructions: 329 // - into a load if it is idempotent 330 // - into a Cmpxchg/LL-SC loop otherwise 331 // we try them in that order. 332 333 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 334 MadeChange = true; 335 336 } else { 337 MadeChange |= tryExpandAtomicRMW(RMWI); 338 } 339 } else if (CASI) 340 MadeChange |= tryExpandAtomicCmpXchg(CASI); 341 342 return MadeChange; 343 } 344 345 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { 346 const auto *Subtarget = TM->getSubtargetImpl(F); 347 if (!Subtarget->enableAtomicExpand()) 348 return false; 349 TLI = Subtarget->getTargetLowering(); 350 DL = &F.getDataLayout(); 351 352 bool MadeChange = false; 353 354 SmallVector<Instruction *, 1> AtomicInsts; 355 356 // Changing control-flow while iterating through it is a bad idea, so gather a 357 // list of all atomic instructions before we start. 358 for (Instruction &I : instructions(F)) 359 if (I.isAtomic() && !isa<FenceInst>(&I)) 360 AtomicInsts.push_back(&I); 361 362 for (auto *I : AtomicInsts) { 363 if (processAtomicInstr(I)) 364 MadeChange = true; 365 } 366 367 return MadeChange; 368 } 369 370 bool AtomicExpandLegacy::runOnFunction(Function &F) { 371 372 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 373 if (!TPC) 374 return false; 375 auto *TM = &TPC->getTM<TargetMachine>(); 376 AtomicExpandImpl AE; 377 return AE.run(F, TM); 378 } 379 380 FunctionPass *llvm::createAtomicExpandLegacyPass() { 381 return new AtomicExpandLegacy(); 382 } 383 384 PreservedAnalyses AtomicExpandPass::run(Function &F, 385 FunctionAnalysisManager &AM) { 386 AtomicExpandImpl AE; 387 388 bool Changed = AE.run(F, TM); 389 if (!Changed) 390 return PreservedAnalyses::all(); 391 392 return PreservedAnalyses::none(); 393 } 394 395 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, 396 AtomicOrdering Order) { 397 ReplacementIRBuilder Builder(I, *DL); 398 399 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 400 401 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 402 // We have a guard here because not every atomic operation generates a 403 // trailing fence. 404 if (TrailingFence) 405 TrailingFence->moveAfter(I); 406 407 return (LeadingFence || TrailingFence); 408 } 409 410 /// Get the iX type with the same bitwidth as T. 411 IntegerType * 412 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { 413 EVT VT = TLI->getMemValueType(DL, T); 414 unsigned BitWidth = VT.getStoreSizeInBits(); 415 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 416 return IntegerType::get(T->getContext(), BitWidth); 417 } 418 419 /// Convert an atomic load of a non-integral type to an integer load of the 420 /// equivalent bitwidth. See the function comment on 421 /// convertAtomicStoreToIntegerType for background. 422 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { 423 auto *M = LI->getModule(); 424 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 425 426 ReplacementIRBuilder Builder(LI, *DL); 427 428 Value *Addr = LI->getPointerOperand(); 429 430 auto *NewLI = Builder.CreateLoad(NewTy, Addr); 431 NewLI->setAlignment(LI->getAlign()); 432 NewLI->setVolatile(LI->isVolatile()); 433 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 434 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 435 436 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 437 LI->replaceAllUsesWith(NewVal); 438 LI->eraseFromParent(); 439 return NewLI; 440 } 441 442 AtomicRMWInst * 443 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 444 assert(RMWI->getOperation() == AtomicRMWInst::Xchg); 445 446 auto *M = RMWI->getModule(); 447 Type *NewTy = 448 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 449 450 ReplacementIRBuilder Builder(RMWI, *DL); 451 452 Value *Addr = RMWI->getPointerOperand(); 453 Value *Val = RMWI->getValOperand(); 454 Value *NewVal = Val->getType()->isPointerTy() 455 ? Builder.CreatePtrToInt(Val, NewTy) 456 : Builder.CreateBitCast(Val, NewTy); 457 458 auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal, 459 RMWI->getAlign(), RMWI->getOrdering(), 460 RMWI->getSyncScopeID()); 461 NewRMWI->setVolatile(RMWI->isVolatile()); 462 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 463 464 Value *NewRVal = RMWI->getType()->isPointerTy() 465 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 466 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 467 RMWI->replaceAllUsesWith(NewRVal); 468 RMWI->eraseFromParent(); 469 return NewRMWI; 470 } 471 472 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { 473 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 474 case TargetLoweringBase::AtomicExpansionKind::None: 475 return false; 476 case TargetLoweringBase::AtomicExpansionKind::LLSC: 477 expandAtomicOpToLLSC( 478 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 479 LI->getOrdering(), 480 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); 481 return true; 482 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 483 return expandAtomicLoadToLL(LI); 484 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 485 return expandAtomicLoadToCmpXchg(LI); 486 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 487 LI->setAtomic(AtomicOrdering::NotAtomic); 488 return true; 489 default: 490 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 491 } 492 } 493 494 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { 495 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 496 case TargetLoweringBase::AtomicExpansionKind::None: 497 return false; 498 case TargetLoweringBase::AtomicExpansionKind::Expand: 499 expandAtomicStore(SI); 500 return true; 501 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 502 SI->setAtomic(AtomicOrdering::NotAtomic); 503 return true; 504 default: 505 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 506 } 507 } 508 509 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { 510 ReplacementIRBuilder Builder(LI, *DL); 511 512 // On some architectures, load-linked instructions are atomic for larger 513 // sizes than normal loads. For example, the only 64-bit load guaranteed 514 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 515 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 516 LI->getPointerOperand(), LI->getOrdering()); 517 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 518 519 LI->replaceAllUsesWith(Val); 520 LI->eraseFromParent(); 521 522 return true; 523 } 524 525 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { 526 ReplacementIRBuilder Builder(LI, *DL); 527 AtomicOrdering Order = LI->getOrdering(); 528 if (Order == AtomicOrdering::Unordered) 529 Order = AtomicOrdering::Monotonic; 530 531 Value *Addr = LI->getPointerOperand(); 532 Type *Ty = LI->getType(); 533 Constant *DummyVal = Constant::getNullValue(Ty); 534 535 Value *Pair = Builder.CreateAtomicCmpXchg( 536 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 537 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 538 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 539 540 LI->replaceAllUsesWith(Loaded); 541 LI->eraseFromParent(); 542 543 return true; 544 } 545 546 /// Convert an atomic store of a non-integral type to an integer store of the 547 /// equivalent bitwidth. We used to not support floating point or vector 548 /// atomics in the IR at all. The backends learned to deal with the bitcast 549 /// idiom because that was the only way of expressing the notion of a atomic 550 /// float or vector store. The long term plan is to teach each backend to 551 /// instruction select from the original atomic store, but as a migration 552 /// mechanism, we convert back to the old format which the backends understand. 553 /// Each backend will need individual work to recognize the new format. 554 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { 555 ReplacementIRBuilder Builder(SI, *DL); 556 auto *M = SI->getModule(); 557 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 558 M->getDataLayout()); 559 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 560 561 Value *Addr = SI->getPointerOperand(); 562 563 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr); 564 NewSI->setAlignment(SI->getAlign()); 565 NewSI->setVolatile(SI->isVolatile()); 566 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 567 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 568 SI->eraseFromParent(); 569 return NewSI; 570 } 571 572 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { 573 // This function is only called on atomic stores that are too large to be 574 // atomic if implemented as a native store. So we replace them by an 575 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 576 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 577 // It is the responsibility of the target to only signal expansion via 578 // shouldExpandAtomicRMW in cases where this is required and possible. 579 ReplacementIRBuilder Builder(SI, *DL); 580 AtomicOrdering Ordering = SI->getOrdering(); 581 assert(Ordering != AtomicOrdering::NotAtomic); 582 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered 583 ? AtomicOrdering::Monotonic 584 : Ordering; 585 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 586 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 587 SI->getAlign(), RMWOrdering); 588 SI->eraseFromParent(); 589 590 // Now we have an appropriate swap instruction, lower it as usual. 591 tryExpandAtomicRMW(AI); 592 } 593 594 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, 595 Value *Loaded, Value *NewVal, Align AddrAlign, 596 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 597 Value *&Success, Value *&NewLoaded) { 598 Type *OrigTy = NewVal->getType(); 599 600 // This code can go away when cmpxchg supports FP and vector types. 601 assert(!OrigTy->isPointerTy()); 602 bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); 603 if (NeedBitcast) { 604 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 605 NewVal = Builder.CreateBitCast(NewVal, IntTy); 606 Loaded = Builder.CreateBitCast(Loaded, IntTy); 607 } 608 609 Value *Pair = Builder.CreateAtomicCmpXchg( 610 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 611 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 612 Success = Builder.CreateExtractValue(Pair, 1, "success"); 613 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 614 615 if (NeedBitcast) 616 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 617 } 618 619 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { 620 LLVMContext &Ctx = AI->getModule()->getContext(); 621 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 622 switch (Kind) { 623 case TargetLoweringBase::AtomicExpansionKind::None: 624 return false; 625 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 626 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 627 unsigned ValueSize = getAtomicOpSize(AI); 628 if (ValueSize < MinCASSize) { 629 expandPartwordAtomicRMW(AI, 630 TargetLoweringBase::AtomicExpansionKind::LLSC); 631 } else { 632 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { 633 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 634 AI->getValOperand()); 635 }; 636 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 637 AI->getAlign(), AI->getOrdering(), PerformOp); 638 } 639 return true; 640 } 641 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 642 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 643 unsigned ValueSize = getAtomicOpSize(AI); 644 if (ValueSize < MinCASSize) { 645 expandPartwordAtomicRMW(AI, 646 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 647 } else { 648 SmallVector<StringRef> SSNs; 649 Ctx.getSyncScopeNames(SSNs); 650 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 651 ? "system" 652 : SSNs[AI->getSyncScopeID()]; 653 OptimizationRemarkEmitter ORE(AI->getFunction()); 654 ORE.emit([&]() { 655 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 656 << "A compare and swap loop was generated for an atomic " 657 << AI->getOperationName(AI->getOperation()) << " operation at " 658 << MemScope << " memory scope"; 659 }); 660 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 661 } 662 return true; 663 } 664 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 665 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 666 unsigned ValueSize = getAtomicOpSize(AI); 667 if (ValueSize < MinCASSize) { 668 AtomicRMWInst::BinOp Op = AI->getOperation(); 669 // Widen And/Or/Xor and give the target another chance at expanding it. 670 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 671 Op == AtomicRMWInst::And) { 672 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 673 return true; 674 } 675 } 676 expandAtomicRMWToMaskedIntrinsic(AI); 677 return true; 678 } 679 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 680 TLI->emitBitTestAtomicRMWIntrinsic(AI); 681 return true; 682 } 683 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { 684 TLI->emitCmpArithAtomicRMWIntrinsic(AI); 685 return true; 686 } 687 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 688 return lowerAtomicRMWInst(AI); 689 case TargetLoweringBase::AtomicExpansionKind::Expand: 690 TLI->emitExpandAtomicRMW(AI); 691 return true; 692 default: 693 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 694 } 695 } 696 697 namespace { 698 699 struct PartwordMaskValues { 700 // These three fields are guaranteed to be set by createMaskInstrs. 701 Type *WordType = nullptr; 702 Type *ValueType = nullptr; 703 Type *IntValueType = nullptr; 704 Value *AlignedAddr = nullptr; 705 Align AlignedAddrAlignment; 706 // The remaining fields can be null. 707 Value *ShiftAmt = nullptr; 708 Value *Mask = nullptr; 709 Value *Inv_Mask = nullptr; 710 }; 711 712 LLVM_ATTRIBUTE_UNUSED 713 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 714 auto PrintObj = [&O](auto *V) { 715 if (V) 716 O << *V; 717 else 718 O << "nullptr"; 719 O << '\n'; 720 }; 721 O << "PartwordMaskValues {\n"; 722 O << " WordType: "; 723 PrintObj(PMV.WordType); 724 O << " ValueType: "; 725 PrintObj(PMV.ValueType); 726 O << " AlignedAddr: "; 727 PrintObj(PMV.AlignedAddr); 728 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 729 O << " ShiftAmt: "; 730 PrintObj(PMV.ShiftAmt); 731 O << " Mask: "; 732 PrintObj(PMV.Mask); 733 O << " Inv_Mask: "; 734 PrintObj(PMV.Inv_Mask); 735 O << "}\n"; 736 return O; 737 } 738 739 } // end anonymous namespace 740 741 /// This is a helper function which builds instructions to provide 742 /// values necessary for partword atomic operations. It takes an 743 /// incoming address, Addr, and ValueType, and constructs the address, 744 /// shift-amounts and masks needed to work with a larger value of size 745 /// WordSize. 746 /// 747 /// AlignedAddr: Addr rounded down to a multiple of WordSize 748 /// 749 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 750 /// from AlignAddr for it to have the same value as if 751 /// ValueType was loaded from Addr. 752 /// 753 /// Mask: Value to mask with the value loaded from AlignAddr to 754 /// include only the part that would've been loaded from Addr. 755 /// 756 /// Inv_Mask: The inverse of Mask. 757 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, 758 Instruction *I, Type *ValueType, 759 Value *Addr, Align AddrAlign, 760 unsigned MinWordSize) { 761 PartwordMaskValues PMV; 762 763 Module *M = I->getModule(); 764 LLVMContext &Ctx = M->getContext(); 765 const DataLayout &DL = M->getDataLayout(); 766 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 767 768 PMV.ValueType = PMV.IntValueType = ValueType; 769 if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) 770 PMV.IntValueType = 771 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits()); 772 773 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 774 : ValueType; 775 if (PMV.ValueType == PMV.WordType) { 776 PMV.AlignedAddr = Addr; 777 PMV.AlignedAddrAlignment = AddrAlign; 778 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 779 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 780 return PMV; 781 } 782 783 PMV.AlignedAddrAlignment = Align(MinWordSize); 784 785 assert(ValueSize < MinWordSize); 786 787 PointerType *PtrTy = cast<PointerType>(Addr->getType()); 788 IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace()); 789 Value *PtrLSB; 790 791 if (AddrAlign < MinWordSize) { 792 PMV.AlignedAddr = Builder.CreateIntrinsic( 793 Intrinsic::ptrmask, {PtrTy, IntTy}, 794 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr, 795 "AlignedAddr"); 796 797 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy); 798 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 799 } else { 800 // If the alignment is high enough, the LSB are known 0. 801 PMV.AlignedAddr = Addr; 802 PtrLSB = ConstantInt::getNullValue(IntTy); 803 } 804 805 if (DL.isLittleEndian()) { 806 // turn bytes into bits 807 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 808 } else { 809 // turn bytes into bits, and count from the other side. 810 PMV.ShiftAmt = Builder.CreateShl( 811 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 812 } 813 814 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 815 PMV.Mask = Builder.CreateShl( 816 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 817 "Mask"); 818 819 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 820 821 return PMV; 822 } 823 824 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord, 825 const PartwordMaskValues &PMV) { 826 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 827 if (PMV.WordType == PMV.ValueType) 828 return WideWord; 829 830 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 831 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted"); 832 return Builder.CreateBitCast(Trunc, PMV.ValueType); 833 } 834 835 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, 836 Value *Updated, const PartwordMaskValues &PMV) { 837 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 838 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 839 if (PMV.WordType == PMV.ValueType) 840 return Updated; 841 842 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType); 843 844 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 845 Value *Shift = 846 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 847 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 848 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 849 return Or; 850 } 851 852 /// Emit IR to implement a masked version of a given atomicrmw 853 /// operation. (That is, only the bits under the Mask should be 854 /// affected by the operation) 855 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 856 IRBuilderBase &Builder, Value *Loaded, 857 Value *Shifted_Inc, Value *Inc, 858 const PartwordMaskValues &PMV) { 859 // TODO: update to use 860 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 861 // to merge bits from two values without requiring PMV.Inv_Mask. 862 switch (Op) { 863 case AtomicRMWInst::Xchg: { 864 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 865 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 866 return FinalVal; 867 } 868 case AtomicRMWInst::Or: 869 case AtomicRMWInst::Xor: 870 case AtomicRMWInst::And: 871 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 872 case AtomicRMWInst::Add: 873 case AtomicRMWInst::Sub: 874 case AtomicRMWInst::Nand: { 875 // The other arithmetic ops need to be masked into place. 876 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 877 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 878 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 879 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 880 return FinalVal; 881 } 882 case AtomicRMWInst::Max: 883 case AtomicRMWInst::Min: 884 case AtomicRMWInst::UMax: 885 case AtomicRMWInst::UMin: 886 case AtomicRMWInst::FAdd: 887 case AtomicRMWInst::FSub: 888 case AtomicRMWInst::FMin: 889 case AtomicRMWInst::FMax: 890 case AtomicRMWInst::UIncWrap: 891 case AtomicRMWInst::UDecWrap: { 892 // Finally, other ops will operate on the full value, so truncate down to 893 // the original size, and expand out again after doing the 894 // operation. Bitcasts will be inserted for FP values. 895 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 896 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 897 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 898 return FinalVal; 899 } 900 default: 901 llvm_unreachable("Unknown atomic op"); 902 } 903 } 904 905 /// Expand a sub-word atomicrmw operation into an appropriate 906 /// word-sized operation. 907 /// 908 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 909 /// way as a typical atomicrmw expansion. The only difference here is 910 /// that the operation inside of the loop may operate upon only a 911 /// part of the value. 912 void AtomicExpandImpl::expandPartwordAtomicRMW( 913 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 914 // Widen And/Or/Xor and give the target another chance at expanding it. 915 AtomicRMWInst::BinOp Op = AI->getOperation(); 916 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 917 Op == AtomicRMWInst::And) { 918 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 919 return; 920 } 921 AtomicOrdering MemOpOrder = AI->getOrdering(); 922 SyncScope::ID SSID = AI->getSyncScopeID(); 923 924 ReplacementIRBuilder Builder(AI, *DL); 925 926 PartwordMaskValues PMV = 927 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 928 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 929 930 Value *ValOperand_Shifted = nullptr; 931 if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || 932 Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { 933 Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType); 934 ValOperand_Shifted = 935 Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt, 936 "ValOperand_Shifted"); 937 } 938 939 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { 940 return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted, 941 AI->getValOperand(), PMV); 942 }; 943 944 Value *OldResult; 945 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 946 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 947 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 948 PerformPartwordOp, createCmpXchgInstFun); 949 } else { 950 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 951 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 952 PMV.AlignedAddrAlignment, MemOpOrder, 953 PerformPartwordOp); 954 } 955 956 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 957 AI->replaceAllUsesWith(FinalOldResult); 958 AI->eraseFromParent(); 959 } 960 961 /// Copy metadata that's safe to preserve when widening atomics. 962 static void copyMetadataForAtomic(Instruction &Dest, 963 const Instruction &Source) { 964 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 965 Source.getAllMetadata(MD); 966 LLVMContext &Ctx = Dest.getContext(); 967 MDBuilder MDB(Ctx); 968 969 for (auto [ID, N] : MD) { 970 switch (ID) { 971 case LLVMContext::MD_dbg: 972 case LLVMContext::MD_tbaa: 973 case LLVMContext::MD_tbaa_struct: 974 case LLVMContext::MD_alias_scope: 975 case LLVMContext::MD_noalias: 976 case LLVMContext::MD_access_group: 977 case LLVMContext::MD_mmra: 978 Dest.setMetadata(ID, N); 979 break; 980 default: 981 if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory")) 982 Dest.setMetadata(ID, N); 983 else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory")) 984 Dest.setMetadata(ID, N); 985 986 break; 987 } 988 } 989 } 990 991 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 992 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 993 ReplacementIRBuilder Builder(AI, *DL); 994 AtomicRMWInst::BinOp Op = AI->getOperation(); 995 996 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 997 Op == AtomicRMWInst::And) && 998 "Unable to widen operation"); 999 1000 PartwordMaskValues PMV = 1001 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1002 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1003 1004 Value *ValOperand_Shifted = 1005 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 1006 PMV.ShiftAmt, "ValOperand_Shifted"); 1007 1008 Value *NewOperand; 1009 1010 if (Op == AtomicRMWInst::And) 1011 NewOperand = 1012 Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand"); 1013 else 1014 NewOperand = ValOperand_Shifted; 1015 1016 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( 1017 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment, 1018 AI->getOrdering(), AI->getSyncScopeID()); 1019 1020 copyMetadataForAtomic(*NewAI, *AI); 1021 1022 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 1023 AI->replaceAllUsesWith(FinalOldResult); 1024 AI->eraseFromParent(); 1025 return NewAI; 1026 } 1027 1028 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 1029 // The basic idea here is that we're expanding a cmpxchg of a 1030 // smaller memory size up to a word-sized cmpxchg. To do this, we 1031 // need to add a retry-loop for strong cmpxchg, so that 1032 // modifications to other parts of the word don't cause a spurious 1033 // failure. 1034 1035 // This generates code like the following: 1036 // [[Setup mask values PMV.*]] 1037 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 1038 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 1039 // %InitLoaded = load i32* %addr 1040 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 1041 // br partword.cmpxchg.loop 1042 // partword.cmpxchg.loop: 1043 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 1044 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 1045 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 1046 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 1047 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 1048 // i32 %FullWord_NewVal success_ordering failure_ordering 1049 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 1050 // %Success = extractvalue { i32, i1 } %NewCI, 1 1051 // br i1 %Success, label %partword.cmpxchg.end, 1052 // label %partword.cmpxchg.failure 1053 // partword.cmpxchg.failure: 1054 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 1055 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 1056 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 1057 // label %partword.cmpxchg.end 1058 // partword.cmpxchg.end: 1059 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 1060 // %FinalOldVal = trunc i32 %tmp1 to i8 1061 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 1062 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 1063 1064 Value *Addr = CI->getPointerOperand(); 1065 Value *Cmp = CI->getCompareOperand(); 1066 Value *NewVal = CI->getNewValOperand(); 1067 1068 BasicBlock *BB = CI->getParent(); 1069 Function *F = BB->getParent(); 1070 ReplacementIRBuilder Builder(CI, *DL); 1071 LLVMContext &Ctx = Builder.getContext(); 1072 1073 BasicBlock *EndBB = 1074 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 1075 auto FailureBB = 1076 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 1077 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 1078 1079 // The split call above "helpfully" added a branch at the end of BB 1080 // (to the wrong place). 1081 std::prev(BB->end())->eraseFromParent(); 1082 Builder.SetInsertPoint(BB); 1083 1084 PartwordMaskValues PMV = 1085 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1086 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1087 1088 // Shift the incoming values over, into the right location in the word. 1089 Value *NewVal_Shifted = 1090 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 1091 Value *Cmp_Shifted = 1092 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 1093 1094 // Load the entire current word, and mask into place the expected and new 1095 // values 1096 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 1097 InitLoaded->setVolatile(CI->isVolatile()); 1098 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 1099 Builder.CreateBr(LoopBB); 1100 1101 // partword.cmpxchg.loop: 1102 Builder.SetInsertPoint(LoopBB); 1103 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 1104 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 1105 1106 // Mask/Or the expected and new values into place in the loaded word. 1107 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 1108 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 1109 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 1110 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 1111 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 1112 NewCI->setVolatile(CI->isVolatile()); 1113 // When we're building a strong cmpxchg, we need a loop, so you 1114 // might think we could use a weak cmpxchg inside. But, using strong 1115 // allows the below comparison for ShouldContinue, and we're 1116 // expecting the underlying cmpxchg to be a machine instruction, 1117 // which is strong anyways. 1118 NewCI->setWeak(CI->isWeak()); 1119 1120 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1121 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1122 1123 if (CI->isWeak()) 1124 Builder.CreateBr(EndBB); 1125 else 1126 Builder.CreateCondBr(Success, EndBB, FailureBB); 1127 1128 // partword.cmpxchg.failure: 1129 Builder.SetInsertPoint(FailureBB); 1130 // Upon failure, verify that the masked-out part of the loaded value 1131 // has been modified. If it didn't, abort the cmpxchg, since the 1132 // masked-in part must've. 1133 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1134 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1135 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1136 1137 // Add the second value to the phi from above 1138 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1139 1140 // partword.cmpxchg.end: 1141 Builder.SetInsertPoint(CI); 1142 1143 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1144 Value *Res = PoisonValue::get(CI->getType()); 1145 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1146 Res = Builder.CreateInsertValue(Res, Success, 1); 1147 1148 CI->replaceAllUsesWith(Res); 1149 CI->eraseFromParent(); 1150 return true; 1151 } 1152 1153 void AtomicExpandImpl::expandAtomicOpToLLSC( 1154 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1155 AtomicOrdering MemOpOrder, 1156 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1157 ReplacementIRBuilder Builder(I, *DL); 1158 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1159 MemOpOrder, PerformOp); 1160 1161 I->replaceAllUsesWith(Loaded); 1162 I->eraseFromParent(); 1163 } 1164 1165 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1166 ReplacementIRBuilder Builder(AI, *DL); 1167 1168 PartwordMaskValues PMV = 1169 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1170 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1171 1172 // The value operand must be sign-extended for signed min/max so that the 1173 // target's signed comparison instructions can be used. Otherwise, just 1174 // zero-ext. 1175 Instruction::CastOps CastOp = Instruction::ZExt; 1176 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1177 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1178 CastOp = Instruction::SExt; 1179 1180 Value *ValOperand_Shifted = Builder.CreateShl( 1181 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1182 PMV.ShiftAmt, "ValOperand_Shifted"); 1183 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1184 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1185 AI->getOrdering()); 1186 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1187 AI->replaceAllUsesWith(FinalOldResult); 1188 AI->eraseFromParent(); 1189 } 1190 1191 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( 1192 AtomicCmpXchgInst *CI) { 1193 ReplacementIRBuilder Builder(CI, *DL); 1194 1195 PartwordMaskValues PMV = createMaskInstrs( 1196 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1197 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1198 1199 Value *CmpVal_Shifted = Builder.CreateShl( 1200 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1201 "CmpVal_Shifted"); 1202 Value *NewVal_Shifted = Builder.CreateShl( 1203 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1204 "NewVal_Shifted"); 1205 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1206 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1207 CI->getMergedOrdering()); 1208 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1209 Value *Res = PoisonValue::get(CI->getType()); 1210 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1211 Value *Success = Builder.CreateICmpEQ( 1212 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1213 Res = Builder.CreateInsertValue(Res, Success, 1); 1214 1215 CI->replaceAllUsesWith(Res); 1216 CI->eraseFromParent(); 1217 } 1218 1219 Value *AtomicExpandImpl::insertRMWLLSCLoop( 1220 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1221 AtomicOrdering MemOpOrder, 1222 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1223 LLVMContext &Ctx = Builder.getContext(); 1224 BasicBlock *BB = Builder.GetInsertBlock(); 1225 Function *F = BB->getParent(); 1226 1227 assert(AddrAlign >= 1228 F->getDataLayout().getTypeStoreSize(ResultTy) && 1229 "Expected at least natural alignment at this point."); 1230 1231 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1232 // 1233 // The standard expansion we produce is: 1234 // [...] 1235 // atomicrmw.start: 1236 // %loaded = @load.linked(%addr) 1237 // %new = some_op iN %loaded, %incr 1238 // %stored = @store_conditional(%new, %addr) 1239 // %try_again = icmp i32 ne %stored, 0 1240 // br i1 %try_again, label %loop, label %atomicrmw.end 1241 // atomicrmw.end: 1242 // [...] 1243 BasicBlock *ExitBB = 1244 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1245 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1246 1247 // The split call above "helpfully" added a branch at the end of BB (to the 1248 // wrong place). 1249 std::prev(BB->end())->eraseFromParent(); 1250 Builder.SetInsertPoint(BB); 1251 Builder.CreateBr(LoopBB); 1252 1253 // Start the main loop block now that we've taken care of the preliminaries. 1254 Builder.SetInsertPoint(LoopBB); 1255 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1256 1257 Value *NewVal = PerformOp(Builder, Loaded); 1258 1259 Value *StoreSuccess = 1260 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1261 Value *TryAgain = Builder.CreateICmpNE( 1262 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1263 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1264 1265 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1266 return Loaded; 1267 } 1268 1269 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1270 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1271 /// IR. As a migration step, we convert back to what use to be the standard 1272 /// way to represent a pointer cmpxchg so that we can update backends one by 1273 /// one. 1274 AtomicCmpXchgInst * 1275 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1276 auto *M = CI->getModule(); 1277 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1278 M->getDataLayout()); 1279 1280 ReplacementIRBuilder Builder(CI, *DL); 1281 1282 Value *Addr = CI->getPointerOperand(); 1283 1284 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1285 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1286 1287 auto *NewCI = Builder.CreateAtomicCmpXchg( 1288 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1289 CI->getFailureOrdering(), CI->getSyncScopeID()); 1290 NewCI->setVolatile(CI->isVolatile()); 1291 NewCI->setWeak(CI->isWeak()); 1292 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1293 1294 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1295 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1296 1297 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1298 1299 Value *Res = PoisonValue::get(CI->getType()); 1300 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1301 Res = Builder.CreateInsertValue(Res, Succ, 1); 1302 1303 CI->replaceAllUsesWith(Res); 1304 CI->eraseFromParent(); 1305 return NewCI; 1306 } 1307 1308 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1309 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1310 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1311 Value *Addr = CI->getPointerOperand(); 1312 BasicBlock *BB = CI->getParent(); 1313 Function *F = BB->getParent(); 1314 LLVMContext &Ctx = F->getContext(); 1315 // If shouldInsertFencesForAtomic() returns true, then the target does not 1316 // want to deal with memory orders, and emitLeading/TrailingFence should take 1317 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1318 // should preserve the ordering. 1319 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1320 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1321 ? AtomicOrdering::Monotonic 1322 : CI->getMergedOrdering(); 1323 1324 // In implementations which use a barrier to achieve release semantics, we can 1325 // delay emitting this barrier until we know a store is actually going to be 1326 // attempted. The cost of this delay is that we need 2 copies of the block 1327 // emitting the load-linked, affecting code size. 1328 // 1329 // Ideally, this logic would be unconditional except for the minsize check 1330 // since in other cases the extra blocks naturally collapse down to the 1331 // minimal loop. Unfortunately, this puts too much stress on later 1332 // optimisations so we avoid emitting the extra logic in those cases too. 1333 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1334 SuccessOrder != AtomicOrdering::Monotonic && 1335 SuccessOrder != AtomicOrdering::Acquire && 1336 !F->hasMinSize(); 1337 1338 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1339 // do it even on minsize. 1340 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1341 1342 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1343 // 1344 // The full expansion we produce is: 1345 // [...] 1346 // %aligned.addr = ... 1347 // cmpxchg.start: 1348 // %unreleasedload = @load.linked(%aligned.addr) 1349 // %unreleasedload.extract = extract value from %unreleasedload 1350 // %should_store = icmp eq %unreleasedload.extract, %desired 1351 // br i1 %should_store, label %cmpxchg.releasingstore, 1352 // label %cmpxchg.nostore 1353 // cmpxchg.releasingstore: 1354 // fence? 1355 // br label cmpxchg.trystore 1356 // cmpxchg.trystore: 1357 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1358 // [%releasedload, %cmpxchg.releasedload] 1359 // %updated.new = insert %new into %loaded.trystore 1360 // %stored = @store_conditional(%updated.new, %aligned.addr) 1361 // %success = icmp eq i32 %stored, 0 1362 // br i1 %success, label %cmpxchg.success, 1363 // label %cmpxchg.releasedload/%cmpxchg.failure 1364 // cmpxchg.releasedload: 1365 // %releasedload = @load.linked(%aligned.addr) 1366 // %releasedload.extract = extract value from %releasedload 1367 // %should_store = icmp eq %releasedload.extract, %desired 1368 // br i1 %should_store, label %cmpxchg.trystore, 1369 // label %cmpxchg.failure 1370 // cmpxchg.success: 1371 // fence? 1372 // br label %cmpxchg.end 1373 // cmpxchg.nostore: 1374 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1375 // [%releasedload, 1376 // %cmpxchg.releasedload/%cmpxchg.trystore] 1377 // @load_linked_fail_balance()? 1378 // br label %cmpxchg.failure 1379 // cmpxchg.failure: 1380 // fence? 1381 // br label %cmpxchg.end 1382 // cmpxchg.end: 1383 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1384 // [%loaded.trystore, %cmpxchg.trystore] 1385 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1386 // %loaded = extract value from %loaded.exit 1387 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1388 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1389 // [...] 1390 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1391 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1392 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1393 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1394 auto ReleasedLoadBB = 1395 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1396 auto TryStoreBB = 1397 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1398 auto ReleasingStoreBB = 1399 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1400 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1401 1402 ReplacementIRBuilder Builder(CI, *DL); 1403 1404 // The split call above "helpfully" added a branch at the end of BB (to the 1405 // wrong place), but we might want a fence too. It's easiest to just remove 1406 // the branch entirely. 1407 std::prev(BB->end())->eraseFromParent(); 1408 Builder.SetInsertPoint(BB); 1409 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1410 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1411 1412 PartwordMaskValues PMV = 1413 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1414 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1415 Builder.CreateBr(StartBB); 1416 1417 // Start the main loop block now that we've taken care of the preliminaries. 1418 Builder.SetInsertPoint(StartBB); 1419 Value *UnreleasedLoad = 1420 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1421 Value *UnreleasedLoadExtract = 1422 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1423 Value *ShouldStore = Builder.CreateICmpEQ( 1424 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1425 1426 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1427 // jump straight past that fence instruction (if it exists). 1428 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1429 1430 Builder.SetInsertPoint(ReleasingStoreBB); 1431 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1432 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1433 Builder.CreateBr(TryStoreBB); 1434 1435 Builder.SetInsertPoint(TryStoreBB); 1436 PHINode *LoadedTryStore = 1437 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1438 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1439 Value *NewValueInsert = 1440 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1441 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1442 PMV.AlignedAddr, MemOpOrder); 1443 StoreSuccess = Builder.CreateICmpEQ( 1444 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1445 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1446 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1447 CI->isWeak() ? FailureBB : RetryBB); 1448 1449 Builder.SetInsertPoint(ReleasedLoadBB); 1450 Value *SecondLoad; 1451 if (HasReleasedLoadBB) { 1452 SecondLoad = 1453 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1454 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1455 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1456 CI->getCompareOperand(), "should_store"); 1457 1458 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1459 // jump straight past that fence instruction (if it exists). 1460 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1461 // Update PHI node in TryStoreBB. 1462 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1463 } else 1464 Builder.CreateUnreachable(); 1465 1466 // Make sure later instructions don't get reordered with a fence if 1467 // necessary. 1468 Builder.SetInsertPoint(SuccessBB); 1469 if (ShouldInsertFencesForAtomic || 1470 TLI->shouldInsertTrailingFenceForAtomicStore(CI)) 1471 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1472 Builder.CreateBr(ExitBB); 1473 1474 Builder.SetInsertPoint(NoStoreBB); 1475 PHINode *LoadedNoStore = 1476 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1477 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1478 if (HasReleasedLoadBB) 1479 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1480 1481 // In the failing case, where we don't execute the store-conditional, the 1482 // target might want to balance out the load-linked with a dedicated 1483 // instruction (e.g., on ARM, clearing the exclusive monitor). 1484 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1485 Builder.CreateBr(FailureBB); 1486 1487 Builder.SetInsertPoint(FailureBB); 1488 PHINode *LoadedFailure = 1489 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1490 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1491 if (CI->isWeak()) 1492 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1493 if (ShouldInsertFencesForAtomic) 1494 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1495 Builder.CreateBr(ExitBB); 1496 1497 // Finally, we have control-flow based knowledge of whether the cmpxchg 1498 // succeeded or not. We expose this to later passes by converting any 1499 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1500 // PHI. 1501 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1502 PHINode *LoadedExit = 1503 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1504 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1505 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1506 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1507 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1508 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1509 1510 // This is the "exit value" from the cmpxchg expansion. It may be of 1511 // a type wider than the one in the cmpxchg instruction. 1512 Value *LoadedFull = LoadedExit; 1513 1514 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1515 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1516 1517 // Look for any users of the cmpxchg that are just comparing the loaded value 1518 // against the desired one, and replace them with the CFG-derived version. 1519 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1520 for (auto *User : CI->users()) { 1521 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1522 if (!EV) 1523 continue; 1524 1525 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1526 "weird extraction from { iN, i1 }"); 1527 1528 if (EV->getIndices()[0] == 0) 1529 EV->replaceAllUsesWith(Loaded); 1530 else 1531 EV->replaceAllUsesWith(Success); 1532 1533 PrunedInsts.push_back(EV); 1534 } 1535 1536 // We can remove the instructions now we're no longer iterating through them. 1537 for (auto *EV : PrunedInsts) 1538 EV->eraseFromParent(); 1539 1540 if (!CI->use_empty()) { 1541 // Some use of the full struct return that we don't understand has happened, 1542 // so we've got to reconstruct it properly. 1543 Value *Res; 1544 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0); 1545 Res = Builder.CreateInsertValue(Res, Success, 1); 1546 1547 CI->replaceAllUsesWith(Res); 1548 } 1549 1550 CI->eraseFromParent(); 1551 return true; 1552 } 1553 1554 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { 1555 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1556 if (!C) 1557 return false; 1558 1559 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1560 switch (Op) { 1561 case AtomicRMWInst::Add: 1562 case AtomicRMWInst::Sub: 1563 case AtomicRMWInst::Or: 1564 case AtomicRMWInst::Xor: 1565 return C->isZero(); 1566 case AtomicRMWInst::And: 1567 return C->isMinusOne(); 1568 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1569 default: 1570 return false; 1571 } 1572 } 1573 1574 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1575 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1576 tryExpandAtomicLoad(ResultingLoad); 1577 return true; 1578 } 1579 return false; 1580 } 1581 1582 Value *AtomicExpandImpl::insertRMWCmpXchgLoop( 1583 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1584 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1585 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 1586 CreateCmpXchgInstFun CreateCmpXchg) { 1587 LLVMContext &Ctx = Builder.getContext(); 1588 BasicBlock *BB = Builder.GetInsertBlock(); 1589 Function *F = BB->getParent(); 1590 1591 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1592 // 1593 // The standard expansion we produce is: 1594 // [...] 1595 // %init_loaded = load atomic iN* %addr 1596 // br label %loop 1597 // loop: 1598 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1599 // %new = some_op iN %loaded, %incr 1600 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1601 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1602 // %success = extractvalue { iN, i1 } %pair, 1 1603 // br i1 %success, label %atomicrmw.end, label %loop 1604 // atomicrmw.end: 1605 // [...] 1606 BasicBlock *ExitBB = 1607 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1608 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1609 1610 // The split call above "helpfully" added a branch at the end of BB (to the 1611 // wrong place), but we want a load. It's easiest to just remove 1612 // the branch entirely. 1613 std::prev(BB->end())->eraseFromParent(); 1614 Builder.SetInsertPoint(BB); 1615 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1616 Builder.CreateBr(LoopBB); 1617 1618 // Start the main loop block now that we've taken care of the preliminaries. 1619 Builder.SetInsertPoint(LoopBB); 1620 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1621 Loaded->addIncoming(InitLoaded, BB); 1622 1623 Value *NewVal = PerformOp(Builder, Loaded); 1624 1625 Value *NewLoaded = nullptr; 1626 Value *Success = nullptr; 1627 1628 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1629 MemOpOrder == AtomicOrdering::Unordered 1630 ? AtomicOrdering::Monotonic 1631 : MemOpOrder, 1632 SSID, Success, NewLoaded); 1633 assert(Success && NewLoaded); 1634 1635 Loaded->addIncoming(NewLoaded, LoopBB); 1636 1637 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1638 1639 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1640 return NewLoaded; 1641 } 1642 1643 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1644 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1645 unsigned ValueSize = getAtomicOpSize(CI); 1646 1647 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1648 default: 1649 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1650 case TargetLoweringBase::AtomicExpansionKind::None: 1651 if (ValueSize < MinCASSize) 1652 return expandPartwordCmpXchg(CI); 1653 return false; 1654 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1655 return expandAtomicCmpXchg(CI); 1656 } 1657 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1658 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1659 return true; 1660 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1661 return lowerAtomicCmpXchgInst(CI); 1662 } 1663 } 1664 1665 // Note: This function is exposed externally by AtomicExpandUtils.h 1666 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1667 CreateCmpXchgInstFun CreateCmpXchg) { 1668 ReplacementIRBuilder Builder(AI, AI->getDataLayout()); 1669 Builder.setIsFPConstrained( 1670 AI->getFunction()->hasFnAttribute(Attribute::StrictFP)); 1671 1672 // FIXME: If FP exceptions are observable, we should force them off for the 1673 // loop for the FP atomics. 1674 Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( 1675 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1676 AI->getOrdering(), AI->getSyncScopeID(), 1677 [&](IRBuilderBase &Builder, Value *Loaded) { 1678 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1679 AI->getValOperand()); 1680 }, 1681 CreateCmpXchg); 1682 1683 AI->replaceAllUsesWith(Loaded); 1684 AI->eraseFromParent(); 1685 return true; 1686 } 1687 1688 // In order to use one of the sized library calls such as 1689 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1690 // must be one of the potentially-specialized sizes, and the value 1691 // type must actually exist in C on the target (otherwise, the 1692 // function wouldn't actually be defined.) 1693 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1694 const DataLayout &DL) { 1695 // TODO: "LargestSize" is an approximation for "largest type that 1696 // you can express in C". It seems to be the case that int128 is 1697 // supported on all 64-bit platforms, otherwise only up to 64-bit 1698 // integers are supported. If we get this wrong, then we'll try to 1699 // call a sized libcall that doesn't actually exist. There should 1700 // really be some more reliable way in LLVM of determining integer 1701 // sizes which are valid in the target's C ABI... 1702 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1703 return Alignment >= Size && 1704 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1705 Size <= LargestSize; 1706 } 1707 1708 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { 1709 static const RTLIB::Libcall Libcalls[6] = { 1710 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1711 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1712 unsigned Size = getAtomicOpSize(I); 1713 1714 bool expanded = expandAtomicOpToLibcall( 1715 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1716 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1717 if (!expanded) 1718 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1719 } 1720 1721 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { 1722 static const RTLIB::Libcall Libcalls[6] = { 1723 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1724 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1725 unsigned Size = getAtomicOpSize(I); 1726 1727 bool expanded = expandAtomicOpToLibcall( 1728 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1729 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1730 if (!expanded) 1731 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1732 } 1733 1734 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1735 static const RTLIB::Libcall Libcalls[6] = { 1736 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1737 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1738 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1739 unsigned Size = getAtomicOpSize(I); 1740 1741 bool expanded = expandAtomicOpToLibcall( 1742 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1743 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1744 Libcalls); 1745 if (!expanded) 1746 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1747 } 1748 1749 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1750 static const RTLIB::Libcall LibcallsXchg[6] = { 1751 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1752 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1753 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1754 static const RTLIB::Libcall LibcallsAdd[6] = { 1755 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1756 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1757 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1758 static const RTLIB::Libcall LibcallsSub[6] = { 1759 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1760 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1761 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1762 static const RTLIB::Libcall LibcallsAnd[6] = { 1763 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1764 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1765 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1766 static const RTLIB::Libcall LibcallsOr[6] = { 1767 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1768 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1769 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1770 static const RTLIB::Libcall LibcallsXor[6] = { 1771 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1772 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1773 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1774 static const RTLIB::Libcall LibcallsNand[6] = { 1775 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1776 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1777 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1778 1779 switch (Op) { 1780 case AtomicRMWInst::BAD_BINOP: 1781 llvm_unreachable("Should not have BAD_BINOP."); 1782 case AtomicRMWInst::Xchg: 1783 return ArrayRef(LibcallsXchg); 1784 case AtomicRMWInst::Add: 1785 return ArrayRef(LibcallsAdd); 1786 case AtomicRMWInst::Sub: 1787 return ArrayRef(LibcallsSub); 1788 case AtomicRMWInst::And: 1789 return ArrayRef(LibcallsAnd); 1790 case AtomicRMWInst::Or: 1791 return ArrayRef(LibcallsOr); 1792 case AtomicRMWInst::Xor: 1793 return ArrayRef(LibcallsXor); 1794 case AtomicRMWInst::Nand: 1795 return ArrayRef(LibcallsNand); 1796 case AtomicRMWInst::Max: 1797 case AtomicRMWInst::Min: 1798 case AtomicRMWInst::UMax: 1799 case AtomicRMWInst::UMin: 1800 case AtomicRMWInst::FMax: 1801 case AtomicRMWInst::FMin: 1802 case AtomicRMWInst::FAdd: 1803 case AtomicRMWInst::FSub: 1804 case AtomicRMWInst::UIncWrap: 1805 case AtomicRMWInst::UDecWrap: 1806 // No atomic libcalls are available for max/min/umax/umin. 1807 return {}; 1808 } 1809 llvm_unreachable("Unexpected AtomicRMW operation."); 1810 } 1811 1812 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1813 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1814 1815 unsigned Size = getAtomicOpSize(I); 1816 1817 bool Success = false; 1818 if (!Libcalls.empty()) 1819 Success = expandAtomicOpToLibcall( 1820 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1821 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1822 1823 // The expansion failed: either there were no libcalls at all for 1824 // the operation (min/max), or there were only size-specialized 1825 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1826 // CAS libcall, via a CAS loop, instead. 1827 if (!Success) { 1828 expandAtomicRMWToCmpXchg( 1829 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, 1830 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1831 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1832 // Create the CAS instruction normally... 1833 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1834 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1835 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1836 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1837 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1838 1839 // ...and then expand the CAS into a libcall. 1840 expandAtomicCASToLibcall(Pair); 1841 }); 1842 } 1843 } 1844 1845 // A helper routine for the above expandAtomic*ToLibcall functions. 1846 // 1847 // 'Libcalls' contains an array of enum values for the particular 1848 // ATOMIC libcalls to be emitted. All of the other arguments besides 1849 // 'I' are extracted from the Instruction subclass by the 1850 // caller. Depending on the particular call, some will be null. 1851 bool AtomicExpandImpl::expandAtomicOpToLibcall( 1852 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1853 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1854 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1855 assert(Libcalls.size() == 6); 1856 1857 LLVMContext &Ctx = I->getContext(); 1858 Module *M = I->getModule(); 1859 const DataLayout &DL = M->getDataLayout(); 1860 IRBuilder<> Builder(I); 1861 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1862 1863 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1864 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1865 1866 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1867 1868 // TODO: the "order" argument type is "int", not int32. So 1869 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1870 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1871 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1872 Constant *OrderingVal = 1873 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1874 Constant *Ordering2Val = nullptr; 1875 if (CASExpected) { 1876 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1877 Ordering2Val = 1878 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1879 } 1880 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1881 1882 RTLIB::Libcall RTLibType; 1883 if (UseSizedLibcall) { 1884 switch (Size) { 1885 case 1: 1886 RTLibType = Libcalls[1]; 1887 break; 1888 case 2: 1889 RTLibType = Libcalls[2]; 1890 break; 1891 case 4: 1892 RTLibType = Libcalls[3]; 1893 break; 1894 case 8: 1895 RTLibType = Libcalls[4]; 1896 break; 1897 case 16: 1898 RTLibType = Libcalls[5]; 1899 break; 1900 } 1901 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1902 RTLibType = Libcalls[0]; 1903 } else { 1904 // Can't use sized function, and there's no generic for this 1905 // operation, so give up. 1906 return false; 1907 } 1908 1909 if (!TLI->getLibcallName(RTLibType)) { 1910 // This target does not implement the requested atomic libcall so give up. 1911 return false; 1912 } 1913 1914 // Build up the function call. There's two kinds. First, the sized 1915 // variants. These calls are going to be one of the following (with 1916 // N=1,2,4,8,16): 1917 // iN __atomic_load_N(iN *ptr, int ordering) 1918 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1919 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1920 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1921 // int success_order, int failure_order) 1922 // 1923 // Note that these functions can be used for non-integer atomic 1924 // operations, the values just need to be bitcast to integers on the 1925 // way in and out. 1926 // 1927 // And, then, the generic variants. They look like the following: 1928 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1929 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1930 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1931 // int ordering) 1932 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1933 // void *desired, int success_order, 1934 // int failure_order) 1935 // 1936 // The different signatures are built up depending on the 1937 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1938 // variables. 1939 1940 AllocaInst *AllocaCASExpected = nullptr; 1941 AllocaInst *AllocaValue = nullptr; 1942 AllocaInst *AllocaResult = nullptr; 1943 1944 Type *ResultTy; 1945 SmallVector<Value *, 6> Args; 1946 AttributeList Attr; 1947 1948 // 'size' argument. 1949 if (!UseSizedLibcall) { 1950 // Note, getIntPtrType is assumed equivalent to size_t. 1951 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1952 } 1953 1954 // 'ptr' argument. 1955 // note: This assumes all address spaces share a common libfunc 1956 // implementation and that addresses are convertable. For systems without 1957 // that property, we'd need to extend this mechanism to support AS-specific 1958 // families of atomic intrinsics. 1959 Value *PtrVal = PointerOperand; 1960 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx)); 1961 Args.push_back(PtrVal); 1962 1963 // 'expected' argument, if present. 1964 if (CASExpected) { 1965 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1966 AllocaCASExpected->setAlignment(AllocaAlignment); 1967 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64); 1968 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1969 Args.push_back(AllocaCASExpected); 1970 } 1971 1972 // 'val' argument ('desired' for cas), if present. 1973 if (ValueOperand) { 1974 if (UseSizedLibcall) { 1975 Value *IntValue = 1976 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1977 Args.push_back(IntValue); 1978 } else { 1979 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1980 AllocaValue->setAlignment(AllocaAlignment); 1981 Builder.CreateLifetimeStart(AllocaValue, SizeVal64); 1982 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1983 Args.push_back(AllocaValue); 1984 } 1985 } 1986 1987 // 'ret' argument. 1988 if (!CASExpected && HasResult && !UseSizedLibcall) { 1989 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 1990 AllocaResult->setAlignment(AllocaAlignment); 1991 Builder.CreateLifetimeStart(AllocaResult, SizeVal64); 1992 Args.push_back(AllocaResult); 1993 } 1994 1995 // 'ordering' ('success_order' for cas) argument. 1996 Args.push_back(OrderingVal); 1997 1998 // 'failure_order' argument, if present. 1999 if (Ordering2Val) 2000 Args.push_back(Ordering2Val); 2001 2002 // Now, the return type. 2003 if (CASExpected) { 2004 ResultTy = Type::getInt1Ty(Ctx); 2005 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 2006 } else if (HasResult && UseSizedLibcall) 2007 ResultTy = SizedIntTy; 2008 else 2009 ResultTy = Type::getVoidTy(Ctx); 2010 2011 // Done with setting up arguments and return types, create the call: 2012 SmallVector<Type *, 6> ArgTys; 2013 for (Value *Arg : Args) 2014 ArgTys.push_back(Arg->getType()); 2015 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 2016 FunctionCallee LibcallFn = 2017 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 2018 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 2019 Call->setAttributes(Attr); 2020 Value *Result = Call; 2021 2022 // And then, extract the results... 2023 if (ValueOperand && !UseSizedLibcall) 2024 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64); 2025 2026 if (CASExpected) { 2027 // The final result from the CAS is {load of 'expected' alloca, bool result 2028 // from call} 2029 Type *FinalResultTy = I->getType(); 2030 Value *V = PoisonValue::get(FinalResultTy); 2031 Value *ExpectedOut = Builder.CreateAlignedLoad( 2032 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 2033 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64); 2034 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 2035 V = Builder.CreateInsertValue(V, Result, 1); 2036 I->replaceAllUsesWith(V); 2037 } else if (HasResult) { 2038 Value *V; 2039 if (UseSizedLibcall) 2040 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 2041 else { 2042 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 2043 AllocaAlignment); 2044 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64); 2045 } 2046 I->replaceAllUsesWith(V); 2047 } 2048 I->eraseFromParent(); 2049 return true; 2050 } 2051