1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstSimplifyFolder.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/CodeGen/AtomicExpand.h" 23 #include "llvm/CodeGen/AtomicExpandUtils.h" 24 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstIterator.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/AtomicOrdering.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Transforms/Utils/LowerAtomic.h" 55 #include <cassert> 56 #include <cstdint> 57 #include <iterator> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "atomic-expand" 62 63 namespace { 64 65 class AtomicExpandImpl { 66 const TargetLowering *TLI = nullptr; 67 const DataLayout *DL = nullptr; 68 69 private: 70 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 71 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 72 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 73 bool tryExpandAtomicLoad(LoadInst *LI); 74 bool expandAtomicLoadToLL(LoadInst *LI); 75 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 76 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 77 bool tryExpandAtomicStore(StoreInst *SI); 78 void expandAtomicStore(StoreInst *SI); 79 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 80 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 81 Value * 82 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, 83 Align AddrAlign, AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 87 AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 89 void expandPartwordAtomicRMW( 90 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 95 96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 97 static Value *insertRMWCmpXchgLoop( 98 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 99 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 100 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 101 CreateCmpXchgInstFun CreateCmpXchg); 102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 bool isIdempotentRMW(AtomicRMWInst *RMWI); 106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 107 108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 109 Value *PointerOperand, Value *ValueOperand, 110 Value *CASExpected, AtomicOrdering Ordering, 111 AtomicOrdering Ordering2, 112 ArrayRef<RTLIB::Libcall> Libcalls); 113 void expandAtomicLoadToLibcall(LoadInst *LI); 114 void expandAtomicStoreToLibcall(StoreInst *LI); 115 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 117 118 friend bool 119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 120 CreateCmpXchgInstFun CreateCmpXchg); 121 122 bool processAtomicInstr(Instruction *I); 123 124 public: 125 bool run(Function &F, const TargetMachine *TM); 126 }; 127 128 class AtomicExpandLegacy : public FunctionPass { 129 public: 130 static char ID; // Pass identification, replacement for typeid 131 132 AtomicExpandLegacy() : FunctionPass(ID) { 133 initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); 134 } 135 136 bool runOnFunction(Function &F) override; 137 }; 138 139 // IRBuilder to be used for replacement atomic instructions. 140 struct ReplacementIRBuilder 141 : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { 142 MDNode *MMRAMD = nullptr; 143 144 // Preserves the DebugLoc from I, and preserves still valid metadata. 145 // Enable StrictFP builder mode when appropriate. 146 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) 147 : IRBuilder(I->getContext(), InstSimplifyFolder(DL), 148 IRBuilderCallbackInserter( 149 [this](Instruction *I) { addMMRAMD(I); })) { 150 SetInsertPoint(I); 151 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections}); 152 if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP)) 153 this->setIsFPConstrained(true); 154 155 MMRAMD = I->getMetadata(LLVMContext::MD_mmra); 156 } 157 158 void addMMRAMD(Instruction *I) { 159 if (canInstructionHaveMMRAs(*I)) 160 I->setMetadata(LLVMContext::MD_mmra, MMRAMD); 161 } 162 }; 163 164 } // end anonymous namespace 165 166 char AtomicExpandLegacy::ID = 0; 167 168 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; 169 170 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, 171 "Expand Atomic instructions", false, false) 172 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 173 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, 174 "Expand Atomic instructions", false, false) 175 176 // Helper functions to retrieve the size of atomic instructions. 177 static unsigned getAtomicOpSize(LoadInst *LI) { 178 const DataLayout &DL = LI->getDataLayout(); 179 return DL.getTypeStoreSize(LI->getType()); 180 } 181 182 static unsigned getAtomicOpSize(StoreInst *SI) { 183 const DataLayout &DL = SI->getDataLayout(); 184 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 185 } 186 187 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 188 const DataLayout &DL = RMWI->getDataLayout(); 189 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 190 } 191 192 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 193 const DataLayout &DL = CASI->getDataLayout(); 194 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 195 } 196 197 // Determine if a particular atomic operation has a supported size, 198 // and is of appropriate alignment, to be passed through for target 199 // lowering. (Versus turning into a __atomic libcall) 200 template <typename Inst> 201 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 202 unsigned Size = getAtomicOpSize(I); 203 Align Alignment = I->getAlign(); 204 return Alignment >= Size && 205 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 206 } 207 208 bool AtomicExpandImpl::processAtomicInstr(Instruction *I) { 209 auto *LI = dyn_cast<LoadInst>(I); 210 auto *SI = dyn_cast<StoreInst>(I); 211 auto *RMWI = dyn_cast<AtomicRMWInst>(I); 212 auto *CASI = dyn_cast<AtomicCmpXchgInst>(I); 213 214 bool MadeChange = false; 215 216 // If the Size/Alignment is not supported, replace with a libcall. 217 if (LI) { 218 if (!LI->isAtomic()) 219 return false; 220 221 if (!atomicSizeSupported(TLI, LI)) { 222 expandAtomicLoadToLibcall(LI); 223 return true; 224 } 225 226 if (TLI->shouldCastAtomicLoadInIR(LI) == 227 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 228 I = LI = convertAtomicLoadToIntegerType(LI); 229 MadeChange = true; 230 } 231 } else if (SI) { 232 if (!SI->isAtomic()) 233 return false; 234 235 if (!atomicSizeSupported(TLI, SI)) { 236 expandAtomicStoreToLibcall(SI); 237 return true; 238 } 239 240 if (TLI->shouldCastAtomicStoreInIR(SI) == 241 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 242 I = SI = convertAtomicStoreToIntegerType(SI); 243 MadeChange = true; 244 } 245 } else if (RMWI) { 246 if (!atomicSizeSupported(TLI, RMWI)) { 247 expandAtomicRMWToLibcall(RMWI); 248 return true; 249 } 250 251 if (TLI->shouldCastAtomicRMWIInIR(RMWI) == 252 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 253 I = RMWI = convertAtomicXchgToIntegerType(RMWI); 254 MadeChange = true; 255 } 256 } else if (CASI) { 257 if (!atomicSizeSupported(TLI, CASI)) { 258 expandAtomicCASToLibcall(CASI); 259 return true; 260 } 261 262 // TODO: when we're ready to make the change at the IR level, we can 263 // extend convertCmpXchgToInteger for floating point too. 264 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 265 // TODO: add a TLI hook to control this so that each target can 266 // convert to lowering the original type one at a time. 267 I = CASI = convertCmpXchgToIntegerType(CASI); 268 MadeChange = true; 269 } 270 } else 271 return false; 272 273 if (TLI->shouldInsertFencesForAtomic(I)) { 274 auto FenceOrdering = AtomicOrdering::Monotonic; 275 if (LI && isAcquireOrStronger(LI->getOrdering())) { 276 FenceOrdering = LI->getOrdering(); 277 LI->setOrdering(AtomicOrdering::Monotonic); 278 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 279 FenceOrdering = SI->getOrdering(); 280 SI->setOrdering(AtomicOrdering::Monotonic); 281 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 282 isAcquireOrStronger(RMWI->getOrdering()))) { 283 FenceOrdering = RMWI->getOrdering(); 284 RMWI->setOrdering(AtomicOrdering::Monotonic); 285 } else if (CASI && 286 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 287 TargetLoweringBase::AtomicExpansionKind::None && 288 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 289 isAcquireOrStronger(CASI->getSuccessOrdering()) || 290 isAcquireOrStronger(CASI->getFailureOrdering()))) { 291 // If a compare and swap is lowered to LL/SC, we can do smarter fence 292 // insertion, with a stronger one on the success path than on the 293 // failure path. As a result, fence insertion is directly done by 294 // expandAtomicCmpXchg in that case. 295 FenceOrdering = CASI->getMergedOrdering(); 296 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 297 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 298 } 299 300 if (FenceOrdering != AtomicOrdering::Monotonic) { 301 MadeChange |= bracketInstWithFences(I, FenceOrdering); 302 } 303 } else if (I->hasAtomicStore() && 304 TLI->shouldInsertTrailingFenceForAtomicStore(I)) { 305 auto FenceOrdering = AtomicOrdering::Monotonic; 306 if (SI) 307 FenceOrdering = SI->getOrdering(); 308 else if (RMWI) 309 FenceOrdering = RMWI->getOrdering(); 310 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) != 311 TargetLoweringBase::AtomicExpansionKind::LLSC) 312 // LLSC is handled in expandAtomicCmpXchg(). 313 FenceOrdering = CASI->getSuccessOrdering(); 314 315 IRBuilder Builder(I); 316 if (auto TrailingFence = 317 TLI->emitTrailingFence(Builder, I, FenceOrdering)) { 318 TrailingFence->moveAfter(I); 319 MadeChange = true; 320 } 321 } 322 323 if (LI) 324 MadeChange |= tryExpandAtomicLoad(LI); 325 else if (SI) 326 MadeChange |= tryExpandAtomicStore(SI); 327 else if (RMWI) { 328 // There are two different ways of expanding RMW instructions: 329 // - into a load if it is idempotent 330 // - into a Cmpxchg/LL-SC loop otherwise 331 // we try them in that order. 332 333 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 334 MadeChange = true; 335 336 } else { 337 MadeChange |= tryExpandAtomicRMW(RMWI); 338 } 339 } else if (CASI) 340 MadeChange |= tryExpandAtomicCmpXchg(CASI); 341 342 return MadeChange; 343 } 344 345 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { 346 const auto *Subtarget = TM->getSubtargetImpl(F); 347 if (!Subtarget->enableAtomicExpand()) 348 return false; 349 TLI = Subtarget->getTargetLowering(); 350 DL = &F.getDataLayout(); 351 352 bool MadeChange = false; 353 354 for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) { 355 BasicBlock *BB = &*BBI; 356 357 BasicBlock::reverse_iterator Next; 358 359 for (BasicBlock::reverse_iterator I = BB->rbegin(), E = BB->rend(); I != E; 360 I = Next) { 361 Instruction &Inst = *I; 362 Next = std::next(I); 363 364 if (processAtomicInstr(&Inst)) { 365 MadeChange = true; 366 367 // New blocks may have been inserted. 368 BBE = F.end(); 369 } 370 } 371 } 372 373 return MadeChange; 374 } 375 376 bool AtomicExpandLegacy::runOnFunction(Function &F) { 377 378 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 379 if (!TPC) 380 return false; 381 auto *TM = &TPC->getTM<TargetMachine>(); 382 AtomicExpandImpl AE; 383 return AE.run(F, TM); 384 } 385 386 FunctionPass *llvm::createAtomicExpandLegacyPass() { 387 return new AtomicExpandLegacy(); 388 } 389 390 PreservedAnalyses AtomicExpandPass::run(Function &F, 391 FunctionAnalysisManager &AM) { 392 AtomicExpandImpl AE; 393 394 bool Changed = AE.run(F, TM); 395 if (!Changed) 396 return PreservedAnalyses::all(); 397 398 return PreservedAnalyses::none(); 399 } 400 401 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, 402 AtomicOrdering Order) { 403 ReplacementIRBuilder Builder(I, *DL); 404 405 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 406 407 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 408 // We have a guard here because not every atomic operation generates a 409 // trailing fence. 410 if (TrailingFence) 411 TrailingFence->moveAfter(I); 412 413 return (LeadingFence || TrailingFence); 414 } 415 416 /// Get the iX type with the same bitwidth as T. 417 IntegerType * 418 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { 419 EVT VT = TLI->getMemValueType(DL, T); 420 unsigned BitWidth = VT.getStoreSizeInBits(); 421 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 422 return IntegerType::get(T->getContext(), BitWidth); 423 } 424 425 /// Convert an atomic load of a non-integral type to an integer load of the 426 /// equivalent bitwidth. See the function comment on 427 /// convertAtomicStoreToIntegerType for background. 428 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { 429 auto *M = LI->getModule(); 430 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 431 432 ReplacementIRBuilder Builder(LI, *DL); 433 434 Value *Addr = LI->getPointerOperand(); 435 436 auto *NewLI = Builder.CreateLoad(NewTy, Addr); 437 NewLI->setAlignment(LI->getAlign()); 438 NewLI->setVolatile(LI->isVolatile()); 439 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 440 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 441 442 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 443 LI->replaceAllUsesWith(NewVal); 444 LI->eraseFromParent(); 445 return NewLI; 446 } 447 448 AtomicRMWInst * 449 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 450 assert(RMWI->getOperation() == AtomicRMWInst::Xchg); 451 452 auto *M = RMWI->getModule(); 453 Type *NewTy = 454 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 455 456 ReplacementIRBuilder Builder(RMWI, *DL); 457 458 Value *Addr = RMWI->getPointerOperand(); 459 Value *Val = RMWI->getValOperand(); 460 Value *NewVal = Val->getType()->isPointerTy() 461 ? Builder.CreatePtrToInt(Val, NewTy) 462 : Builder.CreateBitCast(Val, NewTy); 463 464 auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal, 465 RMWI->getAlign(), RMWI->getOrdering(), 466 RMWI->getSyncScopeID()); 467 NewRMWI->setVolatile(RMWI->isVolatile()); 468 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 469 470 Value *NewRVal = RMWI->getType()->isPointerTy() 471 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 472 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 473 RMWI->replaceAllUsesWith(NewRVal); 474 RMWI->eraseFromParent(); 475 return NewRMWI; 476 } 477 478 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { 479 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 480 case TargetLoweringBase::AtomicExpansionKind::None: 481 return false; 482 case TargetLoweringBase::AtomicExpansionKind::LLSC: 483 expandAtomicOpToLLSC( 484 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 485 LI->getOrdering(), 486 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); 487 return true; 488 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 489 return expandAtomicLoadToLL(LI); 490 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 491 return expandAtomicLoadToCmpXchg(LI); 492 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 493 LI->setAtomic(AtomicOrdering::NotAtomic); 494 return true; 495 default: 496 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 497 } 498 } 499 500 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { 501 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 502 case TargetLoweringBase::AtomicExpansionKind::None: 503 return false; 504 case TargetLoweringBase::AtomicExpansionKind::Expand: 505 expandAtomicStore(SI); 506 return true; 507 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 508 SI->setAtomic(AtomicOrdering::NotAtomic); 509 return true; 510 default: 511 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 512 } 513 } 514 515 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { 516 ReplacementIRBuilder Builder(LI, *DL); 517 518 // On some architectures, load-linked instructions are atomic for larger 519 // sizes than normal loads. For example, the only 64-bit load guaranteed 520 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 521 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 522 LI->getPointerOperand(), LI->getOrdering()); 523 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 524 525 LI->replaceAllUsesWith(Val); 526 LI->eraseFromParent(); 527 528 return true; 529 } 530 531 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { 532 ReplacementIRBuilder Builder(LI, *DL); 533 AtomicOrdering Order = LI->getOrdering(); 534 if (Order == AtomicOrdering::Unordered) 535 Order = AtomicOrdering::Monotonic; 536 537 Value *Addr = LI->getPointerOperand(); 538 Type *Ty = LI->getType(); 539 Constant *DummyVal = Constant::getNullValue(Ty); 540 541 Value *Pair = Builder.CreateAtomicCmpXchg( 542 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 543 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 544 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 545 546 LI->replaceAllUsesWith(Loaded); 547 LI->eraseFromParent(); 548 549 return true; 550 } 551 552 /// Convert an atomic store of a non-integral type to an integer store of the 553 /// equivalent bitwidth. We used to not support floating point or vector 554 /// atomics in the IR at all. The backends learned to deal with the bitcast 555 /// idiom because that was the only way of expressing the notion of a atomic 556 /// float or vector store. The long term plan is to teach each backend to 557 /// instruction select from the original atomic store, but as a migration 558 /// mechanism, we convert back to the old format which the backends understand. 559 /// Each backend will need individual work to recognize the new format. 560 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { 561 ReplacementIRBuilder Builder(SI, *DL); 562 auto *M = SI->getModule(); 563 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 564 M->getDataLayout()); 565 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 566 567 Value *Addr = SI->getPointerOperand(); 568 569 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr); 570 NewSI->setAlignment(SI->getAlign()); 571 NewSI->setVolatile(SI->isVolatile()); 572 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 573 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 574 SI->eraseFromParent(); 575 return NewSI; 576 } 577 578 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { 579 // This function is only called on atomic stores that are too large to be 580 // atomic if implemented as a native store. So we replace them by an 581 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 582 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 583 // It is the responsibility of the target to only signal expansion via 584 // shouldExpandAtomicRMW in cases where this is required and possible. 585 ReplacementIRBuilder Builder(SI, *DL); 586 AtomicOrdering Ordering = SI->getOrdering(); 587 assert(Ordering != AtomicOrdering::NotAtomic); 588 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered 589 ? AtomicOrdering::Monotonic 590 : Ordering; 591 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 592 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 593 SI->getAlign(), RMWOrdering); 594 SI->eraseFromParent(); 595 596 // Now we have an appropriate swap instruction, lower it as usual. 597 tryExpandAtomicRMW(AI); 598 } 599 600 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, 601 Value *Loaded, Value *NewVal, Align AddrAlign, 602 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 603 Value *&Success, Value *&NewLoaded) { 604 Type *OrigTy = NewVal->getType(); 605 606 // This code can go away when cmpxchg supports FP and vector types. 607 assert(!OrigTy->isPointerTy()); 608 bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); 609 if (NeedBitcast) { 610 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 611 NewVal = Builder.CreateBitCast(NewVal, IntTy); 612 Loaded = Builder.CreateBitCast(Loaded, IntTy); 613 } 614 615 Value *Pair = Builder.CreateAtomicCmpXchg( 616 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 617 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 618 Success = Builder.CreateExtractValue(Pair, 1, "success"); 619 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 620 621 if (NeedBitcast) 622 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 623 } 624 625 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { 626 LLVMContext &Ctx = AI->getModule()->getContext(); 627 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 628 switch (Kind) { 629 case TargetLoweringBase::AtomicExpansionKind::None: 630 return false; 631 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 632 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 633 unsigned ValueSize = getAtomicOpSize(AI); 634 if (ValueSize < MinCASSize) { 635 expandPartwordAtomicRMW(AI, 636 TargetLoweringBase::AtomicExpansionKind::LLSC); 637 } else { 638 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { 639 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 640 AI->getValOperand()); 641 }; 642 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 643 AI->getAlign(), AI->getOrdering(), PerformOp); 644 } 645 return true; 646 } 647 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 648 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 649 unsigned ValueSize = getAtomicOpSize(AI); 650 if (ValueSize < MinCASSize) { 651 expandPartwordAtomicRMW(AI, 652 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 653 } else { 654 SmallVector<StringRef> SSNs; 655 Ctx.getSyncScopeNames(SSNs); 656 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 657 ? "system" 658 : SSNs[AI->getSyncScopeID()]; 659 OptimizationRemarkEmitter ORE(AI->getFunction()); 660 ORE.emit([&]() { 661 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 662 << "A compare and swap loop was generated for an atomic " 663 << AI->getOperationName(AI->getOperation()) << " operation at " 664 << MemScope << " memory scope"; 665 }); 666 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 667 } 668 return true; 669 } 670 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 671 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 672 unsigned ValueSize = getAtomicOpSize(AI); 673 if (ValueSize < MinCASSize) { 674 AtomicRMWInst::BinOp Op = AI->getOperation(); 675 // Widen And/Or/Xor and give the target another chance at expanding it. 676 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 677 Op == AtomicRMWInst::And) { 678 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 679 return true; 680 } 681 } 682 expandAtomicRMWToMaskedIntrinsic(AI); 683 return true; 684 } 685 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 686 TLI->emitBitTestAtomicRMWIntrinsic(AI); 687 return true; 688 } 689 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { 690 TLI->emitCmpArithAtomicRMWIntrinsic(AI); 691 return true; 692 } 693 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 694 return lowerAtomicRMWInst(AI); 695 case TargetLoweringBase::AtomicExpansionKind::Expand: 696 TLI->emitExpandAtomicRMW(AI); 697 return true; 698 default: 699 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 700 } 701 } 702 703 namespace { 704 705 struct PartwordMaskValues { 706 // These three fields are guaranteed to be set by createMaskInstrs. 707 Type *WordType = nullptr; 708 Type *ValueType = nullptr; 709 Type *IntValueType = nullptr; 710 Value *AlignedAddr = nullptr; 711 Align AlignedAddrAlignment; 712 // The remaining fields can be null. 713 Value *ShiftAmt = nullptr; 714 Value *Mask = nullptr; 715 Value *Inv_Mask = nullptr; 716 }; 717 718 LLVM_ATTRIBUTE_UNUSED 719 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 720 auto PrintObj = [&O](auto *V) { 721 if (V) 722 O << *V; 723 else 724 O << "nullptr"; 725 O << '\n'; 726 }; 727 O << "PartwordMaskValues {\n"; 728 O << " WordType: "; 729 PrintObj(PMV.WordType); 730 O << " ValueType: "; 731 PrintObj(PMV.ValueType); 732 O << " AlignedAddr: "; 733 PrintObj(PMV.AlignedAddr); 734 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 735 O << " ShiftAmt: "; 736 PrintObj(PMV.ShiftAmt); 737 O << " Mask: "; 738 PrintObj(PMV.Mask); 739 O << " Inv_Mask: "; 740 PrintObj(PMV.Inv_Mask); 741 O << "}\n"; 742 return O; 743 } 744 745 } // end anonymous namespace 746 747 /// This is a helper function which builds instructions to provide 748 /// values necessary for partword atomic operations. It takes an 749 /// incoming address, Addr, and ValueType, and constructs the address, 750 /// shift-amounts and masks needed to work with a larger value of size 751 /// WordSize. 752 /// 753 /// AlignedAddr: Addr rounded down to a multiple of WordSize 754 /// 755 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 756 /// from AlignAddr for it to have the same value as if 757 /// ValueType was loaded from Addr. 758 /// 759 /// Mask: Value to mask with the value loaded from AlignAddr to 760 /// include only the part that would've been loaded from Addr. 761 /// 762 /// Inv_Mask: The inverse of Mask. 763 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, 764 Instruction *I, Type *ValueType, 765 Value *Addr, Align AddrAlign, 766 unsigned MinWordSize) { 767 PartwordMaskValues PMV; 768 769 Module *M = I->getModule(); 770 LLVMContext &Ctx = M->getContext(); 771 const DataLayout &DL = M->getDataLayout(); 772 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 773 774 PMV.ValueType = PMV.IntValueType = ValueType; 775 if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) 776 PMV.IntValueType = 777 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits()); 778 779 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 780 : ValueType; 781 if (PMV.ValueType == PMV.WordType) { 782 PMV.AlignedAddr = Addr; 783 PMV.AlignedAddrAlignment = AddrAlign; 784 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 785 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 786 return PMV; 787 } 788 789 PMV.AlignedAddrAlignment = Align(MinWordSize); 790 791 assert(ValueSize < MinWordSize); 792 793 PointerType *PtrTy = cast<PointerType>(Addr->getType()); 794 IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace()); 795 Value *PtrLSB; 796 797 if (AddrAlign < MinWordSize) { 798 PMV.AlignedAddr = Builder.CreateIntrinsic( 799 Intrinsic::ptrmask, {PtrTy, IntTy}, 800 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr, 801 "AlignedAddr"); 802 803 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy); 804 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 805 } else { 806 // If the alignment is high enough, the LSB are known 0. 807 PMV.AlignedAddr = Addr; 808 PtrLSB = ConstantInt::getNullValue(IntTy); 809 } 810 811 if (DL.isLittleEndian()) { 812 // turn bytes into bits 813 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 814 } else { 815 // turn bytes into bits, and count from the other side. 816 PMV.ShiftAmt = Builder.CreateShl( 817 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 818 } 819 820 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 821 PMV.Mask = Builder.CreateShl( 822 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 823 "Mask"); 824 825 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 826 827 return PMV; 828 } 829 830 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord, 831 const PartwordMaskValues &PMV) { 832 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 833 if (PMV.WordType == PMV.ValueType) 834 return WideWord; 835 836 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 837 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted"); 838 return Builder.CreateBitCast(Trunc, PMV.ValueType); 839 } 840 841 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, 842 Value *Updated, const PartwordMaskValues &PMV) { 843 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 844 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 845 if (PMV.WordType == PMV.ValueType) 846 return Updated; 847 848 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType); 849 850 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 851 Value *Shift = 852 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 853 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 854 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 855 return Or; 856 } 857 858 /// Emit IR to implement a masked version of a given atomicrmw 859 /// operation. (That is, only the bits under the Mask should be 860 /// affected by the operation) 861 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 862 IRBuilderBase &Builder, Value *Loaded, 863 Value *Shifted_Inc, Value *Inc, 864 const PartwordMaskValues &PMV) { 865 // TODO: update to use 866 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 867 // to merge bits from two values without requiring PMV.Inv_Mask. 868 switch (Op) { 869 case AtomicRMWInst::Xchg: { 870 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 871 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 872 return FinalVal; 873 } 874 case AtomicRMWInst::Or: 875 case AtomicRMWInst::Xor: 876 case AtomicRMWInst::And: 877 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 878 case AtomicRMWInst::Add: 879 case AtomicRMWInst::Sub: 880 case AtomicRMWInst::Nand: { 881 // The other arithmetic ops need to be masked into place. 882 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 883 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 884 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 885 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 886 return FinalVal; 887 } 888 case AtomicRMWInst::Max: 889 case AtomicRMWInst::Min: 890 case AtomicRMWInst::UMax: 891 case AtomicRMWInst::UMin: 892 case AtomicRMWInst::FAdd: 893 case AtomicRMWInst::FSub: 894 case AtomicRMWInst::FMin: 895 case AtomicRMWInst::FMax: 896 case AtomicRMWInst::UIncWrap: 897 case AtomicRMWInst::UDecWrap: 898 case AtomicRMWInst::USubCond: 899 case AtomicRMWInst::USubSat: { 900 // Finally, other ops will operate on the full value, so truncate down to 901 // the original size, and expand out again after doing the 902 // operation. Bitcasts will be inserted for FP values. 903 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 904 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 905 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 906 return FinalVal; 907 } 908 default: 909 llvm_unreachable("Unknown atomic op"); 910 } 911 } 912 913 /// Expand a sub-word atomicrmw operation into an appropriate 914 /// word-sized operation. 915 /// 916 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 917 /// way as a typical atomicrmw expansion. The only difference here is 918 /// that the operation inside of the loop may operate upon only a 919 /// part of the value. 920 void AtomicExpandImpl::expandPartwordAtomicRMW( 921 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 922 // Widen And/Or/Xor and give the target another chance at expanding it. 923 AtomicRMWInst::BinOp Op = AI->getOperation(); 924 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 925 Op == AtomicRMWInst::And) { 926 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 927 return; 928 } 929 AtomicOrdering MemOpOrder = AI->getOrdering(); 930 SyncScope::ID SSID = AI->getSyncScopeID(); 931 932 ReplacementIRBuilder Builder(AI, *DL); 933 934 PartwordMaskValues PMV = 935 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 936 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 937 938 Value *ValOperand_Shifted = nullptr; 939 if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || 940 Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { 941 Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType); 942 ValOperand_Shifted = 943 Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt, 944 "ValOperand_Shifted"); 945 } 946 947 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { 948 return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted, 949 AI->getValOperand(), PMV); 950 }; 951 952 Value *OldResult; 953 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 954 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 955 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 956 PerformPartwordOp, createCmpXchgInstFun); 957 } else { 958 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 959 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 960 PMV.AlignedAddrAlignment, MemOpOrder, 961 PerformPartwordOp); 962 } 963 964 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 965 AI->replaceAllUsesWith(FinalOldResult); 966 AI->eraseFromParent(); 967 } 968 969 /// Copy metadata that's safe to preserve when widening atomics. 970 static void copyMetadataForAtomic(Instruction &Dest, 971 const Instruction &Source) { 972 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 973 Source.getAllMetadata(MD); 974 LLVMContext &Ctx = Dest.getContext(); 975 MDBuilder MDB(Ctx); 976 977 for (auto [ID, N] : MD) { 978 switch (ID) { 979 case LLVMContext::MD_dbg: 980 case LLVMContext::MD_tbaa: 981 case LLVMContext::MD_tbaa_struct: 982 case LLVMContext::MD_alias_scope: 983 case LLVMContext::MD_noalias: 984 case LLVMContext::MD_access_group: 985 case LLVMContext::MD_mmra: 986 Dest.setMetadata(ID, N); 987 break; 988 default: 989 if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory")) 990 Dest.setMetadata(ID, N); 991 else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory")) 992 Dest.setMetadata(ID, N); 993 994 break; 995 } 996 } 997 } 998 999 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 1000 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 1001 ReplacementIRBuilder Builder(AI, *DL); 1002 AtomicRMWInst::BinOp Op = AI->getOperation(); 1003 1004 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 1005 Op == AtomicRMWInst::And) && 1006 "Unable to widen operation"); 1007 1008 PartwordMaskValues PMV = 1009 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1010 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1011 1012 Value *ValOperand_Shifted = 1013 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 1014 PMV.ShiftAmt, "ValOperand_Shifted"); 1015 1016 Value *NewOperand; 1017 1018 if (Op == AtomicRMWInst::And) 1019 NewOperand = 1020 Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand"); 1021 else 1022 NewOperand = ValOperand_Shifted; 1023 1024 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( 1025 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment, 1026 AI->getOrdering(), AI->getSyncScopeID()); 1027 1028 copyMetadataForAtomic(*NewAI, *AI); 1029 1030 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 1031 AI->replaceAllUsesWith(FinalOldResult); 1032 AI->eraseFromParent(); 1033 return NewAI; 1034 } 1035 1036 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 1037 // The basic idea here is that we're expanding a cmpxchg of a 1038 // smaller memory size up to a word-sized cmpxchg. To do this, we 1039 // need to add a retry-loop for strong cmpxchg, so that 1040 // modifications to other parts of the word don't cause a spurious 1041 // failure. 1042 1043 // This generates code like the following: 1044 // [[Setup mask values PMV.*]] 1045 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 1046 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 1047 // %InitLoaded = load i32* %addr 1048 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 1049 // br partword.cmpxchg.loop 1050 // partword.cmpxchg.loop: 1051 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 1052 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 1053 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 1054 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 1055 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 1056 // i32 %FullWord_NewVal success_ordering failure_ordering 1057 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 1058 // %Success = extractvalue { i32, i1 } %NewCI, 1 1059 // br i1 %Success, label %partword.cmpxchg.end, 1060 // label %partword.cmpxchg.failure 1061 // partword.cmpxchg.failure: 1062 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 1063 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 1064 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 1065 // label %partword.cmpxchg.end 1066 // partword.cmpxchg.end: 1067 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 1068 // %FinalOldVal = trunc i32 %tmp1 to i8 1069 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 1070 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 1071 1072 Value *Addr = CI->getPointerOperand(); 1073 Value *Cmp = CI->getCompareOperand(); 1074 Value *NewVal = CI->getNewValOperand(); 1075 1076 BasicBlock *BB = CI->getParent(); 1077 Function *F = BB->getParent(); 1078 ReplacementIRBuilder Builder(CI, *DL); 1079 LLVMContext &Ctx = Builder.getContext(); 1080 1081 BasicBlock *EndBB = 1082 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 1083 auto FailureBB = 1084 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 1085 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 1086 1087 // The split call above "helpfully" added a branch at the end of BB 1088 // (to the wrong place). 1089 std::prev(BB->end())->eraseFromParent(); 1090 Builder.SetInsertPoint(BB); 1091 1092 PartwordMaskValues PMV = 1093 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1094 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1095 1096 // Shift the incoming values over, into the right location in the word. 1097 Value *NewVal_Shifted = 1098 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 1099 Value *Cmp_Shifted = 1100 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 1101 1102 // Load the entire current word, and mask into place the expected and new 1103 // values 1104 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 1105 InitLoaded->setVolatile(CI->isVolatile()); 1106 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 1107 Builder.CreateBr(LoopBB); 1108 1109 // partword.cmpxchg.loop: 1110 Builder.SetInsertPoint(LoopBB); 1111 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 1112 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 1113 1114 // Mask/Or the expected and new values into place in the loaded word. 1115 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 1116 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 1117 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 1118 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 1119 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 1120 NewCI->setVolatile(CI->isVolatile()); 1121 // When we're building a strong cmpxchg, we need a loop, so you 1122 // might think we could use a weak cmpxchg inside. But, using strong 1123 // allows the below comparison for ShouldContinue, and we're 1124 // expecting the underlying cmpxchg to be a machine instruction, 1125 // which is strong anyways. 1126 NewCI->setWeak(CI->isWeak()); 1127 1128 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1129 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1130 1131 if (CI->isWeak()) 1132 Builder.CreateBr(EndBB); 1133 else 1134 Builder.CreateCondBr(Success, EndBB, FailureBB); 1135 1136 // partword.cmpxchg.failure: 1137 Builder.SetInsertPoint(FailureBB); 1138 // Upon failure, verify that the masked-out part of the loaded value 1139 // has been modified. If it didn't, abort the cmpxchg, since the 1140 // masked-in part must've. 1141 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1142 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1143 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1144 1145 // Add the second value to the phi from above 1146 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1147 1148 // partword.cmpxchg.end: 1149 Builder.SetInsertPoint(CI); 1150 1151 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1152 Value *Res = PoisonValue::get(CI->getType()); 1153 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1154 Res = Builder.CreateInsertValue(Res, Success, 1); 1155 1156 CI->replaceAllUsesWith(Res); 1157 CI->eraseFromParent(); 1158 return true; 1159 } 1160 1161 void AtomicExpandImpl::expandAtomicOpToLLSC( 1162 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1163 AtomicOrdering MemOpOrder, 1164 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1165 ReplacementIRBuilder Builder(I, *DL); 1166 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1167 MemOpOrder, PerformOp); 1168 1169 I->replaceAllUsesWith(Loaded); 1170 I->eraseFromParent(); 1171 } 1172 1173 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1174 ReplacementIRBuilder Builder(AI, *DL); 1175 1176 PartwordMaskValues PMV = 1177 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1178 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1179 1180 // The value operand must be sign-extended for signed min/max so that the 1181 // target's signed comparison instructions can be used. Otherwise, just 1182 // zero-ext. 1183 Instruction::CastOps CastOp = Instruction::ZExt; 1184 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1185 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1186 CastOp = Instruction::SExt; 1187 1188 Value *ValOperand_Shifted = Builder.CreateShl( 1189 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1190 PMV.ShiftAmt, "ValOperand_Shifted"); 1191 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1192 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1193 AI->getOrdering()); 1194 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1195 AI->replaceAllUsesWith(FinalOldResult); 1196 AI->eraseFromParent(); 1197 } 1198 1199 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( 1200 AtomicCmpXchgInst *CI) { 1201 ReplacementIRBuilder Builder(CI, *DL); 1202 1203 PartwordMaskValues PMV = createMaskInstrs( 1204 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1205 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1206 1207 Value *CmpVal_Shifted = Builder.CreateShl( 1208 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1209 "CmpVal_Shifted"); 1210 Value *NewVal_Shifted = Builder.CreateShl( 1211 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1212 "NewVal_Shifted"); 1213 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1214 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1215 CI->getMergedOrdering()); 1216 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1217 Value *Res = PoisonValue::get(CI->getType()); 1218 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1219 Value *Success = Builder.CreateICmpEQ( 1220 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1221 Res = Builder.CreateInsertValue(Res, Success, 1); 1222 1223 CI->replaceAllUsesWith(Res); 1224 CI->eraseFromParent(); 1225 } 1226 1227 Value *AtomicExpandImpl::insertRMWLLSCLoop( 1228 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1229 AtomicOrdering MemOpOrder, 1230 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1231 LLVMContext &Ctx = Builder.getContext(); 1232 BasicBlock *BB = Builder.GetInsertBlock(); 1233 Function *F = BB->getParent(); 1234 1235 assert(AddrAlign >= 1236 F->getDataLayout().getTypeStoreSize(ResultTy) && 1237 "Expected at least natural alignment at this point."); 1238 1239 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1240 // 1241 // The standard expansion we produce is: 1242 // [...] 1243 // atomicrmw.start: 1244 // %loaded = @load.linked(%addr) 1245 // %new = some_op iN %loaded, %incr 1246 // %stored = @store_conditional(%new, %addr) 1247 // %try_again = icmp i32 ne %stored, 0 1248 // br i1 %try_again, label %loop, label %atomicrmw.end 1249 // atomicrmw.end: 1250 // [...] 1251 BasicBlock *ExitBB = 1252 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1253 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1254 1255 // The split call above "helpfully" added a branch at the end of BB (to the 1256 // wrong place). 1257 std::prev(BB->end())->eraseFromParent(); 1258 Builder.SetInsertPoint(BB); 1259 Builder.CreateBr(LoopBB); 1260 1261 // Start the main loop block now that we've taken care of the preliminaries. 1262 Builder.SetInsertPoint(LoopBB); 1263 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1264 1265 Value *NewVal = PerformOp(Builder, Loaded); 1266 1267 Value *StoreSuccess = 1268 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1269 Value *TryAgain = Builder.CreateICmpNE( 1270 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1271 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1272 1273 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1274 return Loaded; 1275 } 1276 1277 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1278 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1279 /// IR. As a migration step, we convert back to what use to be the standard 1280 /// way to represent a pointer cmpxchg so that we can update backends one by 1281 /// one. 1282 AtomicCmpXchgInst * 1283 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1284 auto *M = CI->getModule(); 1285 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1286 M->getDataLayout()); 1287 1288 ReplacementIRBuilder Builder(CI, *DL); 1289 1290 Value *Addr = CI->getPointerOperand(); 1291 1292 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1293 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1294 1295 auto *NewCI = Builder.CreateAtomicCmpXchg( 1296 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1297 CI->getFailureOrdering(), CI->getSyncScopeID()); 1298 NewCI->setVolatile(CI->isVolatile()); 1299 NewCI->setWeak(CI->isWeak()); 1300 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1301 1302 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1303 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1304 1305 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1306 1307 Value *Res = PoisonValue::get(CI->getType()); 1308 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1309 Res = Builder.CreateInsertValue(Res, Succ, 1); 1310 1311 CI->replaceAllUsesWith(Res); 1312 CI->eraseFromParent(); 1313 return NewCI; 1314 } 1315 1316 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1317 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1318 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1319 Value *Addr = CI->getPointerOperand(); 1320 BasicBlock *BB = CI->getParent(); 1321 Function *F = BB->getParent(); 1322 LLVMContext &Ctx = F->getContext(); 1323 // If shouldInsertFencesForAtomic() returns true, then the target does not 1324 // want to deal with memory orders, and emitLeading/TrailingFence should take 1325 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1326 // should preserve the ordering. 1327 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1328 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1329 ? AtomicOrdering::Monotonic 1330 : CI->getMergedOrdering(); 1331 1332 // In implementations which use a barrier to achieve release semantics, we can 1333 // delay emitting this barrier until we know a store is actually going to be 1334 // attempted. The cost of this delay is that we need 2 copies of the block 1335 // emitting the load-linked, affecting code size. 1336 // 1337 // Ideally, this logic would be unconditional except for the minsize check 1338 // since in other cases the extra blocks naturally collapse down to the 1339 // minimal loop. Unfortunately, this puts too much stress on later 1340 // optimisations so we avoid emitting the extra logic in those cases too. 1341 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1342 SuccessOrder != AtomicOrdering::Monotonic && 1343 SuccessOrder != AtomicOrdering::Acquire && 1344 !F->hasMinSize(); 1345 1346 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1347 // do it even on minsize. 1348 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1349 1350 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1351 // 1352 // The full expansion we produce is: 1353 // [...] 1354 // %aligned.addr = ... 1355 // cmpxchg.start: 1356 // %unreleasedload = @load.linked(%aligned.addr) 1357 // %unreleasedload.extract = extract value from %unreleasedload 1358 // %should_store = icmp eq %unreleasedload.extract, %desired 1359 // br i1 %should_store, label %cmpxchg.releasingstore, 1360 // label %cmpxchg.nostore 1361 // cmpxchg.releasingstore: 1362 // fence? 1363 // br label cmpxchg.trystore 1364 // cmpxchg.trystore: 1365 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1366 // [%releasedload, %cmpxchg.releasedload] 1367 // %updated.new = insert %new into %loaded.trystore 1368 // %stored = @store_conditional(%updated.new, %aligned.addr) 1369 // %success = icmp eq i32 %stored, 0 1370 // br i1 %success, label %cmpxchg.success, 1371 // label %cmpxchg.releasedload/%cmpxchg.failure 1372 // cmpxchg.releasedload: 1373 // %releasedload = @load.linked(%aligned.addr) 1374 // %releasedload.extract = extract value from %releasedload 1375 // %should_store = icmp eq %releasedload.extract, %desired 1376 // br i1 %should_store, label %cmpxchg.trystore, 1377 // label %cmpxchg.failure 1378 // cmpxchg.success: 1379 // fence? 1380 // br label %cmpxchg.end 1381 // cmpxchg.nostore: 1382 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1383 // [%releasedload, 1384 // %cmpxchg.releasedload/%cmpxchg.trystore] 1385 // @load_linked_fail_balance()? 1386 // br label %cmpxchg.failure 1387 // cmpxchg.failure: 1388 // fence? 1389 // br label %cmpxchg.end 1390 // cmpxchg.end: 1391 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1392 // [%loaded.trystore, %cmpxchg.trystore] 1393 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1394 // %loaded = extract value from %loaded.exit 1395 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1396 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1397 // [...] 1398 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1399 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1400 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1401 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1402 auto ReleasedLoadBB = 1403 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1404 auto TryStoreBB = 1405 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1406 auto ReleasingStoreBB = 1407 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1408 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1409 1410 ReplacementIRBuilder Builder(CI, *DL); 1411 1412 // The split call above "helpfully" added a branch at the end of BB (to the 1413 // wrong place), but we might want a fence too. It's easiest to just remove 1414 // the branch entirely. 1415 std::prev(BB->end())->eraseFromParent(); 1416 Builder.SetInsertPoint(BB); 1417 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1418 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1419 1420 PartwordMaskValues PMV = 1421 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1422 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1423 Builder.CreateBr(StartBB); 1424 1425 // Start the main loop block now that we've taken care of the preliminaries. 1426 Builder.SetInsertPoint(StartBB); 1427 Value *UnreleasedLoad = 1428 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1429 Value *UnreleasedLoadExtract = 1430 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1431 Value *ShouldStore = Builder.CreateICmpEQ( 1432 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1433 1434 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1435 // jump straight past that fence instruction (if it exists). 1436 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1437 1438 Builder.SetInsertPoint(ReleasingStoreBB); 1439 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1440 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1441 Builder.CreateBr(TryStoreBB); 1442 1443 Builder.SetInsertPoint(TryStoreBB); 1444 PHINode *LoadedTryStore = 1445 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1446 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1447 Value *NewValueInsert = 1448 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1449 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1450 PMV.AlignedAddr, MemOpOrder); 1451 StoreSuccess = Builder.CreateICmpEQ( 1452 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1453 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1454 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1455 CI->isWeak() ? FailureBB : RetryBB); 1456 1457 Builder.SetInsertPoint(ReleasedLoadBB); 1458 Value *SecondLoad; 1459 if (HasReleasedLoadBB) { 1460 SecondLoad = 1461 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1462 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1463 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1464 CI->getCompareOperand(), "should_store"); 1465 1466 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1467 // jump straight past that fence instruction (if it exists). 1468 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1469 // Update PHI node in TryStoreBB. 1470 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1471 } else 1472 Builder.CreateUnreachable(); 1473 1474 // Make sure later instructions don't get reordered with a fence if 1475 // necessary. 1476 Builder.SetInsertPoint(SuccessBB); 1477 if (ShouldInsertFencesForAtomic || 1478 TLI->shouldInsertTrailingFenceForAtomicStore(CI)) 1479 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1480 Builder.CreateBr(ExitBB); 1481 1482 Builder.SetInsertPoint(NoStoreBB); 1483 PHINode *LoadedNoStore = 1484 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1485 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1486 if (HasReleasedLoadBB) 1487 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1488 1489 // In the failing case, where we don't execute the store-conditional, the 1490 // target might want to balance out the load-linked with a dedicated 1491 // instruction (e.g., on ARM, clearing the exclusive monitor). 1492 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1493 Builder.CreateBr(FailureBB); 1494 1495 Builder.SetInsertPoint(FailureBB); 1496 PHINode *LoadedFailure = 1497 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1498 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1499 if (CI->isWeak()) 1500 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1501 if (ShouldInsertFencesForAtomic) 1502 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1503 Builder.CreateBr(ExitBB); 1504 1505 // Finally, we have control-flow based knowledge of whether the cmpxchg 1506 // succeeded or not. We expose this to later passes by converting any 1507 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1508 // PHI. 1509 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1510 PHINode *LoadedExit = 1511 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1512 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1513 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1514 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1515 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1516 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1517 1518 // This is the "exit value" from the cmpxchg expansion. It may be of 1519 // a type wider than the one in the cmpxchg instruction. 1520 Value *LoadedFull = LoadedExit; 1521 1522 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1523 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1524 1525 // Look for any users of the cmpxchg that are just comparing the loaded value 1526 // against the desired one, and replace them with the CFG-derived version. 1527 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1528 for (auto *User : CI->users()) { 1529 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1530 if (!EV) 1531 continue; 1532 1533 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1534 "weird extraction from { iN, i1 }"); 1535 1536 if (EV->getIndices()[0] == 0) 1537 EV->replaceAllUsesWith(Loaded); 1538 else 1539 EV->replaceAllUsesWith(Success); 1540 1541 PrunedInsts.push_back(EV); 1542 } 1543 1544 // We can remove the instructions now we're no longer iterating through them. 1545 for (auto *EV : PrunedInsts) 1546 EV->eraseFromParent(); 1547 1548 if (!CI->use_empty()) { 1549 // Some use of the full struct return that we don't understand has happened, 1550 // so we've got to reconstruct it properly. 1551 Value *Res; 1552 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0); 1553 Res = Builder.CreateInsertValue(Res, Success, 1); 1554 1555 CI->replaceAllUsesWith(Res); 1556 } 1557 1558 CI->eraseFromParent(); 1559 return true; 1560 } 1561 1562 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { 1563 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1564 if (!C) 1565 return false; 1566 1567 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1568 switch (Op) { 1569 case AtomicRMWInst::Add: 1570 case AtomicRMWInst::Sub: 1571 case AtomicRMWInst::Or: 1572 case AtomicRMWInst::Xor: 1573 return C->isZero(); 1574 case AtomicRMWInst::And: 1575 return C->isMinusOne(); 1576 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1577 default: 1578 return false; 1579 } 1580 } 1581 1582 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1583 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1584 tryExpandAtomicLoad(ResultingLoad); 1585 return true; 1586 } 1587 return false; 1588 } 1589 1590 Value *AtomicExpandImpl::insertRMWCmpXchgLoop( 1591 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1592 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1593 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 1594 CreateCmpXchgInstFun CreateCmpXchg) { 1595 LLVMContext &Ctx = Builder.getContext(); 1596 BasicBlock *BB = Builder.GetInsertBlock(); 1597 Function *F = BB->getParent(); 1598 1599 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1600 // 1601 // The standard expansion we produce is: 1602 // [...] 1603 // %init_loaded = load atomic iN* %addr 1604 // br label %loop 1605 // loop: 1606 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1607 // %new = some_op iN %loaded, %incr 1608 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1609 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1610 // %success = extractvalue { iN, i1 } %pair, 1 1611 // br i1 %success, label %atomicrmw.end, label %loop 1612 // atomicrmw.end: 1613 // [...] 1614 BasicBlock *ExitBB = 1615 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1616 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1617 1618 // The split call above "helpfully" added a branch at the end of BB (to the 1619 // wrong place), but we want a load. It's easiest to just remove 1620 // the branch entirely. 1621 std::prev(BB->end())->eraseFromParent(); 1622 Builder.SetInsertPoint(BB); 1623 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1624 Builder.CreateBr(LoopBB); 1625 1626 // Start the main loop block now that we've taken care of the preliminaries. 1627 Builder.SetInsertPoint(LoopBB); 1628 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1629 Loaded->addIncoming(InitLoaded, BB); 1630 1631 Value *NewVal = PerformOp(Builder, Loaded); 1632 1633 Value *NewLoaded = nullptr; 1634 Value *Success = nullptr; 1635 1636 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1637 MemOpOrder == AtomicOrdering::Unordered 1638 ? AtomicOrdering::Monotonic 1639 : MemOpOrder, 1640 SSID, Success, NewLoaded); 1641 assert(Success && NewLoaded); 1642 1643 Loaded->addIncoming(NewLoaded, LoopBB); 1644 1645 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1646 1647 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1648 return NewLoaded; 1649 } 1650 1651 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1652 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1653 unsigned ValueSize = getAtomicOpSize(CI); 1654 1655 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1656 default: 1657 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1658 case TargetLoweringBase::AtomicExpansionKind::None: 1659 if (ValueSize < MinCASSize) 1660 return expandPartwordCmpXchg(CI); 1661 return false; 1662 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1663 return expandAtomicCmpXchg(CI); 1664 } 1665 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1666 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1667 return true; 1668 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1669 return lowerAtomicCmpXchgInst(CI); 1670 } 1671 } 1672 1673 // Note: This function is exposed externally by AtomicExpandUtils.h 1674 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1675 CreateCmpXchgInstFun CreateCmpXchg) { 1676 ReplacementIRBuilder Builder(AI, AI->getDataLayout()); 1677 Builder.setIsFPConstrained( 1678 AI->getFunction()->hasFnAttribute(Attribute::StrictFP)); 1679 1680 // FIXME: If FP exceptions are observable, we should force them off for the 1681 // loop for the FP atomics. 1682 Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( 1683 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1684 AI->getOrdering(), AI->getSyncScopeID(), 1685 [&](IRBuilderBase &Builder, Value *Loaded) { 1686 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1687 AI->getValOperand()); 1688 }, 1689 CreateCmpXchg); 1690 1691 AI->replaceAllUsesWith(Loaded); 1692 AI->eraseFromParent(); 1693 return true; 1694 } 1695 1696 // In order to use one of the sized library calls such as 1697 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1698 // must be one of the potentially-specialized sizes, and the value 1699 // type must actually exist in C on the target (otherwise, the 1700 // function wouldn't actually be defined.) 1701 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1702 const DataLayout &DL) { 1703 // TODO: "LargestSize" is an approximation for "largest type that 1704 // you can express in C". It seems to be the case that int128 is 1705 // supported on all 64-bit platforms, otherwise only up to 64-bit 1706 // integers are supported. If we get this wrong, then we'll try to 1707 // call a sized libcall that doesn't actually exist. There should 1708 // really be some more reliable way in LLVM of determining integer 1709 // sizes which are valid in the target's C ABI... 1710 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1711 return Alignment >= Size && 1712 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1713 Size <= LargestSize; 1714 } 1715 1716 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { 1717 static const RTLIB::Libcall Libcalls[6] = { 1718 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1719 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1720 unsigned Size = getAtomicOpSize(I); 1721 1722 bool expanded = expandAtomicOpToLibcall( 1723 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1724 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1725 if (!expanded) 1726 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1727 } 1728 1729 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { 1730 static const RTLIB::Libcall Libcalls[6] = { 1731 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1732 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1733 unsigned Size = getAtomicOpSize(I); 1734 1735 bool expanded = expandAtomicOpToLibcall( 1736 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1737 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1738 if (!expanded) 1739 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1740 } 1741 1742 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1743 static const RTLIB::Libcall Libcalls[6] = { 1744 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1745 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1746 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1747 unsigned Size = getAtomicOpSize(I); 1748 1749 bool expanded = expandAtomicOpToLibcall( 1750 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1751 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1752 Libcalls); 1753 if (!expanded) 1754 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1755 } 1756 1757 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1758 static const RTLIB::Libcall LibcallsXchg[6] = { 1759 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1760 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1761 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1762 static const RTLIB::Libcall LibcallsAdd[6] = { 1763 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1764 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1765 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1766 static const RTLIB::Libcall LibcallsSub[6] = { 1767 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1768 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1769 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1770 static const RTLIB::Libcall LibcallsAnd[6] = { 1771 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1772 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1773 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1774 static const RTLIB::Libcall LibcallsOr[6] = { 1775 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1776 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1777 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1778 static const RTLIB::Libcall LibcallsXor[6] = { 1779 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1780 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1781 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1782 static const RTLIB::Libcall LibcallsNand[6] = { 1783 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1784 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1785 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1786 1787 switch (Op) { 1788 case AtomicRMWInst::BAD_BINOP: 1789 llvm_unreachable("Should not have BAD_BINOP."); 1790 case AtomicRMWInst::Xchg: 1791 return ArrayRef(LibcallsXchg); 1792 case AtomicRMWInst::Add: 1793 return ArrayRef(LibcallsAdd); 1794 case AtomicRMWInst::Sub: 1795 return ArrayRef(LibcallsSub); 1796 case AtomicRMWInst::And: 1797 return ArrayRef(LibcallsAnd); 1798 case AtomicRMWInst::Or: 1799 return ArrayRef(LibcallsOr); 1800 case AtomicRMWInst::Xor: 1801 return ArrayRef(LibcallsXor); 1802 case AtomicRMWInst::Nand: 1803 return ArrayRef(LibcallsNand); 1804 case AtomicRMWInst::Max: 1805 case AtomicRMWInst::Min: 1806 case AtomicRMWInst::UMax: 1807 case AtomicRMWInst::UMin: 1808 case AtomicRMWInst::FMax: 1809 case AtomicRMWInst::FMin: 1810 case AtomicRMWInst::FAdd: 1811 case AtomicRMWInst::FSub: 1812 case AtomicRMWInst::UIncWrap: 1813 case AtomicRMWInst::UDecWrap: 1814 case AtomicRMWInst::USubCond: 1815 case AtomicRMWInst::USubSat: 1816 // No atomic libcalls are available for these. 1817 return {}; 1818 } 1819 llvm_unreachable("Unexpected AtomicRMW operation."); 1820 } 1821 1822 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1823 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1824 1825 unsigned Size = getAtomicOpSize(I); 1826 1827 bool Success = false; 1828 if (!Libcalls.empty()) 1829 Success = expandAtomicOpToLibcall( 1830 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1831 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1832 1833 // The expansion failed: either there were no libcalls at all for 1834 // the operation (min/max), or there were only size-specialized 1835 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1836 // CAS libcall, via a CAS loop, instead. 1837 if (!Success) { 1838 expandAtomicRMWToCmpXchg( 1839 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, 1840 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1841 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1842 // Create the CAS instruction normally... 1843 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1844 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1845 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1846 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1847 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1848 1849 // ...and then expand the CAS into a libcall. 1850 expandAtomicCASToLibcall(Pair); 1851 }); 1852 } 1853 } 1854 1855 // A helper routine for the above expandAtomic*ToLibcall functions. 1856 // 1857 // 'Libcalls' contains an array of enum values for the particular 1858 // ATOMIC libcalls to be emitted. All of the other arguments besides 1859 // 'I' are extracted from the Instruction subclass by the 1860 // caller. Depending on the particular call, some will be null. 1861 bool AtomicExpandImpl::expandAtomicOpToLibcall( 1862 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1863 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1864 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1865 assert(Libcalls.size() == 6); 1866 1867 LLVMContext &Ctx = I->getContext(); 1868 Module *M = I->getModule(); 1869 const DataLayout &DL = M->getDataLayout(); 1870 IRBuilder<> Builder(I); 1871 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1872 1873 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1874 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1875 1876 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1877 1878 // TODO: the "order" argument type is "int", not int32. So 1879 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1880 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1881 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1882 Constant *OrderingVal = 1883 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1884 Constant *Ordering2Val = nullptr; 1885 if (CASExpected) { 1886 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1887 Ordering2Val = 1888 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1889 } 1890 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1891 1892 RTLIB::Libcall RTLibType; 1893 if (UseSizedLibcall) { 1894 switch (Size) { 1895 case 1: 1896 RTLibType = Libcalls[1]; 1897 break; 1898 case 2: 1899 RTLibType = Libcalls[2]; 1900 break; 1901 case 4: 1902 RTLibType = Libcalls[3]; 1903 break; 1904 case 8: 1905 RTLibType = Libcalls[4]; 1906 break; 1907 case 16: 1908 RTLibType = Libcalls[5]; 1909 break; 1910 } 1911 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1912 RTLibType = Libcalls[0]; 1913 } else { 1914 // Can't use sized function, and there's no generic for this 1915 // operation, so give up. 1916 return false; 1917 } 1918 1919 if (!TLI->getLibcallName(RTLibType)) { 1920 // This target does not implement the requested atomic libcall so give up. 1921 return false; 1922 } 1923 1924 // Build up the function call. There's two kinds. First, the sized 1925 // variants. These calls are going to be one of the following (with 1926 // N=1,2,4,8,16): 1927 // iN __atomic_load_N(iN *ptr, int ordering) 1928 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1929 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1930 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1931 // int success_order, int failure_order) 1932 // 1933 // Note that these functions can be used for non-integer atomic 1934 // operations, the values just need to be bitcast to integers on the 1935 // way in and out. 1936 // 1937 // And, then, the generic variants. They look like the following: 1938 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1939 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1940 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1941 // int ordering) 1942 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1943 // void *desired, int success_order, 1944 // int failure_order) 1945 // 1946 // The different signatures are built up depending on the 1947 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1948 // variables. 1949 1950 AllocaInst *AllocaCASExpected = nullptr; 1951 AllocaInst *AllocaValue = nullptr; 1952 AllocaInst *AllocaResult = nullptr; 1953 1954 Type *ResultTy; 1955 SmallVector<Value *, 6> Args; 1956 AttributeList Attr; 1957 1958 // 'size' argument. 1959 if (!UseSizedLibcall) { 1960 // Note, getIntPtrType is assumed equivalent to size_t. 1961 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1962 } 1963 1964 // 'ptr' argument. 1965 // note: This assumes all address spaces share a common libfunc 1966 // implementation and that addresses are convertable. For systems without 1967 // that property, we'd need to extend this mechanism to support AS-specific 1968 // families of atomic intrinsics. 1969 Value *PtrVal = PointerOperand; 1970 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx)); 1971 Args.push_back(PtrVal); 1972 1973 // 'expected' argument, if present. 1974 if (CASExpected) { 1975 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1976 AllocaCASExpected->setAlignment(AllocaAlignment); 1977 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64); 1978 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1979 Args.push_back(AllocaCASExpected); 1980 } 1981 1982 // 'val' argument ('desired' for cas), if present. 1983 if (ValueOperand) { 1984 if (UseSizedLibcall) { 1985 Value *IntValue = 1986 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1987 Args.push_back(IntValue); 1988 } else { 1989 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1990 AllocaValue->setAlignment(AllocaAlignment); 1991 Builder.CreateLifetimeStart(AllocaValue, SizeVal64); 1992 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1993 Args.push_back(AllocaValue); 1994 } 1995 } 1996 1997 // 'ret' argument. 1998 if (!CASExpected && HasResult && !UseSizedLibcall) { 1999 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 2000 AllocaResult->setAlignment(AllocaAlignment); 2001 Builder.CreateLifetimeStart(AllocaResult, SizeVal64); 2002 Args.push_back(AllocaResult); 2003 } 2004 2005 // 'ordering' ('success_order' for cas) argument. 2006 Args.push_back(OrderingVal); 2007 2008 // 'failure_order' argument, if present. 2009 if (Ordering2Val) 2010 Args.push_back(Ordering2Val); 2011 2012 // Now, the return type. 2013 if (CASExpected) { 2014 ResultTy = Type::getInt1Ty(Ctx); 2015 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 2016 } else if (HasResult && UseSizedLibcall) 2017 ResultTy = SizedIntTy; 2018 else 2019 ResultTy = Type::getVoidTy(Ctx); 2020 2021 // Done with setting up arguments and return types, create the call: 2022 SmallVector<Type *, 6> ArgTys; 2023 for (Value *Arg : Args) 2024 ArgTys.push_back(Arg->getType()); 2025 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 2026 FunctionCallee LibcallFn = 2027 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 2028 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 2029 Call->setAttributes(Attr); 2030 Value *Result = Call; 2031 2032 // And then, extract the results... 2033 if (ValueOperand && !UseSizedLibcall) 2034 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64); 2035 2036 if (CASExpected) { 2037 // The final result from the CAS is {load of 'expected' alloca, bool result 2038 // from call} 2039 Type *FinalResultTy = I->getType(); 2040 Value *V = PoisonValue::get(FinalResultTy); 2041 Value *ExpectedOut = Builder.CreateAlignedLoad( 2042 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 2043 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64); 2044 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 2045 V = Builder.CreateInsertValue(V, Result, 1); 2046 I->replaceAllUsesWith(V); 2047 } else if (HasResult) { 2048 Value *V; 2049 if (UseSizedLibcall) 2050 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 2051 else { 2052 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 2053 AllocaAlignment); 2054 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64); 2055 } 2056 I->replaceAllUsesWith(V); 2057 } 2058 I->eraseFromParent(); 2059 return true; 2060 } 2061