1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass (at IR level) to replace atomic instructions with 10 // __atomic_* library calls, or target specific instruction which implement the 11 // same semantics in a way which better fits the target backend. This can 12 // include the use of (intrinsic-based) load-linked/store-conditional loops, 13 // AtomicCmpXchg, or type coercions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/STLFunctionalExtras.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/Analysis/InstSimplifyFolder.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/CodeGen/AtomicExpand.h" 23 #include "llvm/CodeGen/AtomicExpandUtils.h" 24 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/CodeGen/TargetSubtargetInfo.h" 28 #include "llvm/CodeGen/ValueTypes.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/InstIterator.h" 38 #include "llvm/IR/Instruction.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/MemoryModelRelaxationAnnotations.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/InitializePasses.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/AtomicOrdering.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include "llvm/Transforms/Utils/LowerAtomic.h" 55 #include <cassert> 56 #include <cstdint> 57 #include <iterator> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "atomic-expand" 62 63 namespace { 64 65 class AtomicExpandImpl { 66 const TargetLowering *TLI = nullptr; 67 const DataLayout *DL = nullptr; 68 69 private: 70 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order); 71 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL); 72 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI); 73 bool tryExpandAtomicLoad(LoadInst *LI); 74 bool expandAtomicLoadToLL(LoadInst *LI); 75 bool expandAtomicLoadToCmpXchg(LoadInst *LI); 76 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI); 77 bool tryExpandAtomicStore(StoreInst *SI); 78 void expandAtomicStore(StoreInst *SI); 79 bool tryExpandAtomicRMW(AtomicRMWInst *AI); 80 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI); 81 Value * 82 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr, 83 Align AddrAlign, AtomicOrdering MemOpOrder, 84 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 85 void expandAtomicOpToLLSC( 86 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign, 87 AtomicOrdering MemOpOrder, 88 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp); 89 void expandPartwordAtomicRMW( 90 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind); 91 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI); 92 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I); 93 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI); 94 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI); 95 96 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI); 97 static Value *insertRMWCmpXchgLoop( 98 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign, 99 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 100 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 101 CreateCmpXchgInstFun CreateCmpXchg); 102 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI); 103 104 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI); 105 bool isIdempotentRMW(AtomicRMWInst *RMWI); 106 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI); 107 108 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment, 109 Value *PointerOperand, Value *ValueOperand, 110 Value *CASExpected, AtomicOrdering Ordering, 111 AtomicOrdering Ordering2, 112 ArrayRef<RTLIB::Libcall> Libcalls); 113 void expandAtomicLoadToLibcall(LoadInst *LI); 114 void expandAtomicStoreToLibcall(StoreInst *LI); 115 void expandAtomicRMWToLibcall(AtomicRMWInst *I); 116 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I); 117 118 friend bool 119 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 120 CreateCmpXchgInstFun CreateCmpXchg); 121 122 bool processAtomicInstr(Instruction *I); 123 124 public: 125 bool run(Function &F, const TargetMachine *TM); 126 }; 127 128 class AtomicExpandLegacy : public FunctionPass { 129 public: 130 static char ID; // Pass identification, replacement for typeid 131 132 AtomicExpandLegacy() : FunctionPass(ID) { 133 initializeAtomicExpandLegacyPass(*PassRegistry::getPassRegistry()); 134 } 135 136 bool runOnFunction(Function &F) override; 137 }; 138 139 // IRBuilder to be used for replacement atomic instructions. 140 struct ReplacementIRBuilder 141 : IRBuilder<InstSimplifyFolder, IRBuilderCallbackInserter> { 142 MDNode *MMRAMD = nullptr; 143 144 // Preserves the DebugLoc from I, and preserves still valid metadata. 145 // Enable StrictFP builder mode when appropriate. 146 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL) 147 : IRBuilder(I->getContext(), InstSimplifyFolder(DL), 148 IRBuilderCallbackInserter( 149 [this](Instruction *I) { addMMRAMD(I); })) { 150 SetInsertPoint(I); 151 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections}); 152 if (BB->getParent()->getAttributes().hasFnAttr(Attribute::StrictFP)) 153 this->setIsFPConstrained(true); 154 155 MMRAMD = I->getMetadata(LLVMContext::MD_mmra); 156 } 157 158 void addMMRAMD(Instruction *I) { 159 if (canInstructionHaveMMRAs(*I)) 160 I->setMetadata(LLVMContext::MD_mmra, MMRAMD); 161 } 162 }; 163 164 } // end anonymous namespace 165 166 char AtomicExpandLegacy::ID = 0; 167 168 char &llvm::AtomicExpandID = AtomicExpandLegacy::ID; 169 170 INITIALIZE_PASS_BEGIN(AtomicExpandLegacy, DEBUG_TYPE, 171 "Expand Atomic instructions", false, false) 172 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 173 INITIALIZE_PASS_END(AtomicExpandLegacy, DEBUG_TYPE, 174 "Expand Atomic instructions", false, false) 175 176 // Helper functions to retrieve the size of atomic instructions. 177 static unsigned getAtomicOpSize(LoadInst *LI) { 178 const DataLayout &DL = LI->getDataLayout(); 179 return DL.getTypeStoreSize(LI->getType()); 180 } 181 182 static unsigned getAtomicOpSize(StoreInst *SI) { 183 const DataLayout &DL = SI->getDataLayout(); 184 return DL.getTypeStoreSize(SI->getValueOperand()->getType()); 185 } 186 187 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) { 188 const DataLayout &DL = RMWI->getDataLayout(); 189 return DL.getTypeStoreSize(RMWI->getValOperand()->getType()); 190 } 191 192 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) { 193 const DataLayout &DL = CASI->getDataLayout(); 194 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType()); 195 } 196 197 // Determine if a particular atomic operation has a supported size, 198 // and is of appropriate alignment, to be passed through for target 199 // lowering. (Versus turning into a __atomic libcall) 200 template <typename Inst> 201 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) { 202 unsigned Size = getAtomicOpSize(I); 203 Align Alignment = I->getAlign(); 204 return Alignment >= Size && 205 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8; 206 } 207 208 bool AtomicExpandImpl::processAtomicInstr(Instruction *I) { 209 auto *LI = dyn_cast<LoadInst>(I); 210 auto *SI = dyn_cast<StoreInst>(I); 211 auto *RMWI = dyn_cast<AtomicRMWInst>(I); 212 auto *CASI = dyn_cast<AtomicCmpXchgInst>(I); 213 214 bool MadeChange = false; 215 216 // If the Size/Alignment is not supported, replace with a libcall. 217 if (LI) { 218 if (!LI->isAtomic()) 219 return false; 220 221 if (!atomicSizeSupported(TLI, LI)) { 222 expandAtomicLoadToLibcall(LI); 223 return true; 224 } 225 226 if (TLI->shouldCastAtomicLoadInIR(LI) == 227 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 228 I = LI = convertAtomicLoadToIntegerType(LI); 229 MadeChange = true; 230 } 231 } else if (SI) { 232 if (!SI->isAtomic()) 233 return false; 234 235 if (!atomicSizeSupported(TLI, SI)) { 236 expandAtomicStoreToLibcall(SI); 237 return true; 238 } 239 240 if (TLI->shouldCastAtomicStoreInIR(SI) == 241 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 242 I = SI = convertAtomicStoreToIntegerType(SI); 243 MadeChange = true; 244 } 245 } else if (RMWI) { 246 if (!atomicSizeSupported(TLI, RMWI)) { 247 expandAtomicRMWToLibcall(RMWI); 248 return true; 249 } 250 251 if (TLI->shouldCastAtomicRMWIInIR(RMWI) == 252 TargetLoweringBase::AtomicExpansionKind::CastToInteger) { 253 I = RMWI = convertAtomicXchgToIntegerType(RMWI); 254 MadeChange = true; 255 } 256 } else if (CASI) { 257 if (!atomicSizeSupported(TLI, CASI)) { 258 expandAtomicCASToLibcall(CASI); 259 return true; 260 } 261 262 // TODO: when we're ready to make the change at the IR level, we can 263 // extend convertCmpXchgToInteger for floating point too. 264 if (CASI->getCompareOperand()->getType()->isPointerTy()) { 265 // TODO: add a TLI hook to control this so that each target can 266 // convert to lowering the original type one at a time. 267 I = CASI = convertCmpXchgToIntegerType(CASI); 268 MadeChange = true; 269 } 270 } else 271 return false; 272 273 if (TLI->shouldInsertFencesForAtomic(I)) { 274 auto FenceOrdering = AtomicOrdering::Monotonic; 275 if (LI && isAcquireOrStronger(LI->getOrdering())) { 276 FenceOrdering = LI->getOrdering(); 277 LI->setOrdering(AtomicOrdering::Monotonic); 278 } else if (SI && isReleaseOrStronger(SI->getOrdering())) { 279 FenceOrdering = SI->getOrdering(); 280 SI->setOrdering(AtomicOrdering::Monotonic); 281 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) || 282 isAcquireOrStronger(RMWI->getOrdering()))) { 283 FenceOrdering = RMWI->getOrdering(); 284 RMWI->setOrdering(AtomicOrdering::Monotonic); 285 } else if (CASI && 286 TLI->shouldExpandAtomicCmpXchgInIR(CASI) == 287 TargetLoweringBase::AtomicExpansionKind::None && 288 (isReleaseOrStronger(CASI->getSuccessOrdering()) || 289 isAcquireOrStronger(CASI->getSuccessOrdering()) || 290 isAcquireOrStronger(CASI->getFailureOrdering()))) { 291 // If a compare and swap is lowered to LL/SC, we can do smarter fence 292 // insertion, with a stronger one on the success path than on the 293 // failure path. As a result, fence insertion is directly done by 294 // expandAtomicCmpXchg in that case. 295 FenceOrdering = CASI->getMergedOrdering(); 296 CASI->setSuccessOrdering(AtomicOrdering::Monotonic); 297 CASI->setFailureOrdering(AtomicOrdering::Monotonic); 298 } 299 300 if (FenceOrdering != AtomicOrdering::Monotonic) { 301 MadeChange |= bracketInstWithFences(I, FenceOrdering); 302 } 303 } else if (I->hasAtomicStore() && 304 TLI->shouldInsertTrailingFenceForAtomicStore(I)) { 305 auto FenceOrdering = AtomicOrdering::Monotonic; 306 if (SI) 307 FenceOrdering = SI->getOrdering(); 308 else if (RMWI) 309 FenceOrdering = RMWI->getOrdering(); 310 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) != 311 TargetLoweringBase::AtomicExpansionKind::LLSC) 312 // LLSC is handled in expandAtomicCmpXchg(). 313 FenceOrdering = CASI->getSuccessOrdering(); 314 315 IRBuilder Builder(I); 316 if (auto TrailingFence = 317 TLI->emitTrailingFence(Builder, I, FenceOrdering)) { 318 TrailingFence->moveAfter(I); 319 MadeChange = true; 320 } 321 } 322 323 if (LI) 324 MadeChange |= tryExpandAtomicLoad(LI); 325 else if (SI) 326 MadeChange |= tryExpandAtomicStore(SI); 327 else if (RMWI) { 328 // There are two different ways of expanding RMW instructions: 329 // - into a load if it is idempotent 330 // - into a Cmpxchg/LL-SC loop otherwise 331 // we try them in that order. 332 333 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) { 334 MadeChange = true; 335 336 } else { 337 MadeChange |= tryExpandAtomicRMW(RMWI); 338 } 339 } else if (CASI) 340 MadeChange |= tryExpandAtomicCmpXchg(CASI); 341 342 return MadeChange; 343 } 344 345 bool AtomicExpandImpl::run(Function &F, const TargetMachine *TM) { 346 const auto *Subtarget = TM->getSubtargetImpl(F); 347 if (!Subtarget->enableAtomicExpand()) 348 return false; 349 TLI = Subtarget->getTargetLowering(); 350 DL = &F.getDataLayout(); 351 352 bool MadeChange = false; 353 354 for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE;) { 355 BasicBlock *BB = &*BBI; 356 ++BBI; 357 358 BasicBlock::iterator Next; 359 360 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; 361 I = Next) { 362 Instruction &Inst = *I; 363 Next = std::next(I); 364 365 if (processAtomicInstr(&Inst)) { 366 MadeChange = true; 367 368 // Detect control flow change and resume iteration from the original 369 // block to inspect any newly inserted blocks. This allows incremental 370 // legalization of atomicrmw and cmpxchg. 371 if (Next == E || BB != Next->getParent()) { 372 BBI = BB->getIterator(); 373 BBE = F.end(); 374 break; 375 } 376 } 377 } 378 } 379 380 return MadeChange; 381 } 382 383 bool AtomicExpandLegacy::runOnFunction(Function &F) { 384 385 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 386 if (!TPC) 387 return false; 388 auto *TM = &TPC->getTM<TargetMachine>(); 389 AtomicExpandImpl AE; 390 return AE.run(F, TM); 391 } 392 393 FunctionPass *llvm::createAtomicExpandLegacyPass() { 394 return new AtomicExpandLegacy(); 395 } 396 397 PreservedAnalyses AtomicExpandPass::run(Function &F, 398 FunctionAnalysisManager &AM) { 399 AtomicExpandImpl AE; 400 401 bool Changed = AE.run(F, TM); 402 if (!Changed) 403 return PreservedAnalyses::all(); 404 405 return PreservedAnalyses::none(); 406 } 407 408 bool AtomicExpandImpl::bracketInstWithFences(Instruction *I, 409 AtomicOrdering Order) { 410 ReplacementIRBuilder Builder(I, *DL); 411 412 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order); 413 414 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order); 415 // We have a guard here because not every atomic operation generates a 416 // trailing fence. 417 if (TrailingFence) 418 TrailingFence->moveAfter(I); 419 420 return (LeadingFence || TrailingFence); 421 } 422 423 /// Get the iX type with the same bitwidth as T. 424 IntegerType * 425 AtomicExpandImpl::getCorrespondingIntegerType(Type *T, const DataLayout &DL) { 426 EVT VT = TLI->getMemValueType(DL, T); 427 unsigned BitWidth = VT.getStoreSizeInBits(); 428 assert(BitWidth == VT.getSizeInBits() && "must be a power of two"); 429 return IntegerType::get(T->getContext(), BitWidth); 430 } 431 432 /// Convert an atomic load of a non-integral type to an integer load of the 433 /// equivalent bitwidth. See the function comment on 434 /// convertAtomicStoreToIntegerType for background. 435 LoadInst *AtomicExpandImpl::convertAtomicLoadToIntegerType(LoadInst *LI) { 436 auto *M = LI->getModule(); 437 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout()); 438 439 ReplacementIRBuilder Builder(LI, *DL); 440 441 Value *Addr = LI->getPointerOperand(); 442 443 auto *NewLI = Builder.CreateLoad(NewTy, Addr); 444 NewLI->setAlignment(LI->getAlign()); 445 NewLI->setVolatile(LI->isVolatile()); 446 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID()); 447 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n"); 448 449 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType()); 450 LI->replaceAllUsesWith(NewVal); 451 LI->eraseFromParent(); 452 return NewLI; 453 } 454 455 AtomicRMWInst * 456 AtomicExpandImpl::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) { 457 assert(RMWI->getOperation() == AtomicRMWInst::Xchg); 458 459 auto *M = RMWI->getModule(); 460 Type *NewTy = 461 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout()); 462 463 ReplacementIRBuilder Builder(RMWI, *DL); 464 465 Value *Addr = RMWI->getPointerOperand(); 466 Value *Val = RMWI->getValOperand(); 467 Value *NewVal = Val->getType()->isPointerTy() 468 ? Builder.CreatePtrToInt(Val, NewTy) 469 : Builder.CreateBitCast(Val, NewTy); 470 471 auto *NewRMWI = Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal, 472 RMWI->getAlign(), RMWI->getOrdering(), 473 RMWI->getSyncScopeID()); 474 NewRMWI->setVolatile(RMWI->isVolatile()); 475 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n"); 476 477 Value *NewRVal = RMWI->getType()->isPointerTy() 478 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType()) 479 : Builder.CreateBitCast(NewRMWI, RMWI->getType()); 480 RMWI->replaceAllUsesWith(NewRVal); 481 RMWI->eraseFromParent(); 482 return NewRMWI; 483 } 484 485 bool AtomicExpandImpl::tryExpandAtomicLoad(LoadInst *LI) { 486 switch (TLI->shouldExpandAtomicLoadInIR(LI)) { 487 case TargetLoweringBase::AtomicExpansionKind::None: 488 return false; 489 case TargetLoweringBase::AtomicExpansionKind::LLSC: 490 expandAtomicOpToLLSC( 491 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(), 492 LI->getOrdering(), 493 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; }); 494 return true; 495 case TargetLoweringBase::AtomicExpansionKind::LLOnly: 496 return expandAtomicLoadToLL(LI); 497 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: 498 return expandAtomicLoadToCmpXchg(LI); 499 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 500 LI->setAtomic(AtomicOrdering::NotAtomic); 501 return true; 502 default: 503 llvm_unreachable("Unhandled case in tryExpandAtomicLoad"); 504 } 505 } 506 507 bool AtomicExpandImpl::tryExpandAtomicStore(StoreInst *SI) { 508 switch (TLI->shouldExpandAtomicStoreInIR(SI)) { 509 case TargetLoweringBase::AtomicExpansionKind::None: 510 return false; 511 case TargetLoweringBase::AtomicExpansionKind::Expand: 512 expandAtomicStore(SI); 513 return true; 514 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 515 SI->setAtomic(AtomicOrdering::NotAtomic); 516 return true; 517 default: 518 llvm_unreachable("Unhandled case in tryExpandAtomicStore"); 519 } 520 } 521 522 bool AtomicExpandImpl::expandAtomicLoadToLL(LoadInst *LI) { 523 ReplacementIRBuilder Builder(LI, *DL); 524 525 // On some architectures, load-linked instructions are atomic for larger 526 // sizes than normal loads. For example, the only 64-bit load guaranteed 527 // to be single-copy atomic by ARM is an ldrexd (A3.5.3). 528 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(), 529 LI->getPointerOperand(), LI->getOrdering()); 530 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 531 532 LI->replaceAllUsesWith(Val); 533 LI->eraseFromParent(); 534 535 return true; 536 } 537 538 bool AtomicExpandImpl::expandAtomicLoadToCmpXchg(LoadInst *LI) { 539 ReplacementIRBuilder Builder(LI, *DL); 540 AtomicOrdering Order = LI->getOrdering(); 541 if (Order == AtomicOrdering::Unordered) 542 Order = AtomicOrdering::Monotonic; 543 544 Value *Addr = LI->getPointerOperand(); 545 Type *Ty = LI->getType(); 546 Constant *DummyVal = Constant::getNullValue(Ty); 547 548 Value *Pair = Builder.CreateAtomicCmpXchg( 549 Addr, DummyVal, DummyVal, LI->getAlign(), Order, 550 AtomicCmpXchgInst::getStrongestFailureOrdering(Order)); 551 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded"); 552 553 LI->replaceAllUsesWith(Loaded); 554 LI->eraseFromParent(); 555 556 return true; 557 } 558 559 /// Convert an atomic store of a non-integral type to an integer store of the 560 /// equivalent bitwidth. We used to not support floating point or vector 561 /// atomics in the IR at all. The backends learned to deal with the bitcast 562 /// idiom because that was the only way of expressing the notion of a atomic 563 /// float or vector store. The long term plan is to teach each backend to 564 /// instruction select from the original atomic store, but as a migration 565 /// mechanism, we convert back to the old format which the backends understand. 566 /// Each backend will need individual work to recognize the new format. 567 StoreInst *AtomicExpandImpl::convertAtomicStoreToIntegerType(StoreInst *SI) { 568 ReplacementIRBuilder Builder(SI, *DL); 569 auto *M = SI->getModule(); 570 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(), 571 M->getDataLayout()); 572 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy); 573 574 Value *Addr = SI->getPointerOperand(); 575 576 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr); 577 NewSI->setAlignment(SI->getAlign()); 578 NewSI->setVolatile(SI->isVolatile()); 579 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID()); 580 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n"); 581 SI->eraseFromParent(); 582 return NewSI; 583 } 584 585 void AtomicExpandImpl::expandAtomicStore(StoreInst *SI) { 586 // This function is only called on atomic stores that are too large to be 587 // atomic if implemented as a native store. So we replace them by an 588 // atomic swap, that can be implemented for example as a ldrex/strex on ARM 589 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes. 590 // It is the responsibility of the target to only signal expansion via 591 // shouldExpandAtomicRMW in cases where this is required and possible. 592 ReplacementIRBuilder Builder(SI, *DL); 593 AtomicOrdering Ordering = SI->getOrdering(); 594 assert(Ordering != AtomicOrdering::NotAtomic); 595 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered 596 ? AtomicOrdering::Monotonic 597 : Ordering; 598 AtomicRMWInst *AI = Builder.CreateAtomicRMW( 599 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(), 600 SI->getAlign(), RMWOrdering); 601 SI->eraseFromParent(); 602 603 // Now we have an appropriate swap instruction, lower it as usual. 604 tryExpandAtomicRMW(AI); 605 } 606 607 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr, 608 Value *Loaded, Value *NewVal, Align AddrAlign, 609 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 610 Value *&Success, Value *&NewLoaded) { 611 Type *OrigTy = NewVal->getType(); 612 613 // This code can go away when cmpxchg supports FP and vector types. 614 assert(!OrigTy->isPointerTy()); 615 bool NeedBitcast = OrigTy->isFloatingPointTy() || OrigTy->isVectorTy(); 616 if (NeedBitcast) { 617 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits()); 618 NewVal = Builder.CreateBitCast(NewVal, IntTy); 619 Loaded = Builder.CreateBitCast(Loaded, IntTy); 620 } 621 622 Value *Pair = Builder.CreateAtomicCmpXchg( 623 Addr, Loaded, NewVal, AddrAlign, MemOpOrder, 624 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 625 Success = Builder.CreateExtractValue(Pair, 1, "success"); 626 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 627 628 if (NeedBitcast) 629 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy); 630 } 631 632 bool AtomicExpandImpl::tryExpandAtomicRMW(AtomicRMWInst *AI) { 633 LLVMContext &Ctx = AI->getModule()->getContext(); 634 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI); 635 switch (Kind) { 636 case TargetLoweringBase::AtomicExpansionKind::None: 637 return false; 638 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 639 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 640 unsigned ValueSize = getAtomicOpSize(AI); 641 if (ValueSize < MinCASSize) { 642 expandPartwordAtomicRMW(AI, 643 TargetLoweringBase::AtomicExpansionKind::LLSC); 644 } else { 645 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) { 646 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 647 AI->getValOperand()); 648 }; 649 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(), 650 AI->getAlign(), AI->getOrdering(), PerformOp); 651 } 652 return true; 653 } 654 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: { 655 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 656 unsigned ValueSize = getAtomicOpSize(AI); 657 if (ValueSize < MinCASSize) { 658 expandPartwordAtomicRMW(AI, 659 TargetLoweringBase::AtomicExpansionKind::CmpXChg); 660 } else { 661 SmallVector<StringRef> SSNs; 662 Ctx.getSyncScopeNames(SSNs); 663 auto MemScope = SSNs[AI->getSyncScopeID()].empty() 664 ? "system" 665 : SSNs[AI->getSyncScopeID()]; 666 OptimizationRemarkEmitter ORE(AI->getFunction()); 667 ORE.emit([&]() { 668 return OptimizationRemark(DEBUG_TYPE, "Passed", AI) 669 << "A compare and swap loop was generated for an atomic " 670 << AI->getOperationName(AI->getOperation()) << " operation at " 671 << MemScope << " memory scope"; 672 }); 673 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun); 674 } 675 return true; 676 } 677 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: { 678 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 679 unsigned ValueSize = getAtomicOpSize(AI); 680 if (ValueSize < MinCASSize) { 681 AtomicRMWInst::BinOp Op = AI->getOperation(); 682 // Widen And/Or/Xor and give the target another chance at expanding it. 683 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 684 Op == AtomicRMWInst::And) { 685 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 686 return true; 687 } 688 } 689 expandAtomicRMWToMaskedIntrinsic(AI); 690 return true; 691 } 692 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: { 693 TLI->emitBitTestAtomicRMWIntrinsic(AI); 694 return true; 695 } 696 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: { 697 TLI->emitCmpArithAtomicRMWIntrinsic(AI); 698 return true; 699 } 700 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 701 return lowerAtomicRMWInst(AI); 702 case TargetLoweringBase::AtomicExpansionKind::Expand: 703 TLI->emitExpandAtomicRMW(AI); 704 return true; 705 default: 706 llvm_unreachable("Unhandled case in tryExpandAtomicRMW"); 707 } 708 } 709 710 namespace { 711 712 struct PartwordMaskValues { 713 // These three fields are guaranteed to be set by createMaskInstrs. 714 Type *WordType = nullptr; 715 Type *ValueType = nullptr; 716 Type *IntValueType = nullptr; 717 Value *AlignedAddr = nullptr; 718 Align AlignedAddrAlignment; 719 // The remaining fields can be null. 720 Value *ShiftAmt = nullptr; 721 Value *Mask = nullptr; 722 Value *Inv_Mask = nullptr; 723 }; 724 725 LLVM_ATTRIBUTE_UNUSED 726 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) { 727 auto PrintObj = [&O](auto *V) { 728 if (V) 729 O << *V; 730 else 731 O << "nullptr"; 732 O << '\n'; 733 }; 734 O << "PartwordMaskValues {\n"; 735 O << " WordType: "; 736 PrintObj(PMV.WordType); 737 O << " ValueType: "; 738 PrintObj(PMV.ValueType); 739 O << " AlignedAddr: "; 740 PrintObj(PMV.AlignedAddr); 741 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n'; 742 O << " ShiftAmt: "; 743 PrintObj(PMV.ShiftAmt); 744 O << " Mask: "; 745 PrintObj(PMV.Mask); 746 O << " Inv_Mask: "; 747 PrintObj(PMV.Inv_Mask); 748 O << "}\n"; 749 return O; 750 } 751 752 } // end anonymous namespace 753 754 /// This is a helper function which builds instructions to provide 755 /// values necessary for partword atomic operations. It takes an 756 /// incoming address, Addr, and ValueType, and constructs the address, 757 /// shift-amounts and masks needed to work with a larger value of size 758 /// WordSize. 759 /// 760 /// AlignedAddr: Addr rounded down to a multiple of WordSize 761 /// 762 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded 763 /// from AlignAddr for it to have the same value as if 764 /// ValueType was loaded from Addr. 765 /// 766 /// Mask: Value to mask with the value loaded from AlignAddr to 767 /// include only the part that would've been loaded from Addr. 768 /// 769 /// Inv_Mask: The inverse of Mask. 770 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder, 771 Instruction *I, Type *ValueType, 772 Value *Addr, Align AddrAlign, 773 unsigned MinWordSize) { 774 PartwordMaskValues PMV; 775 776 Module *M = I->getModule(); 777 LLVMContext &Ctx = M->getContext(); 778 const DataLayout &DL = M->getDataLayout(); 779 unsigned ValueSize = DL.getTypeStoreSize(ValueType); 780 781 PMV.ValueType = PMV.IntValueType = ValueType; 782 if (PMV.ValueType->isFloatingPointTy() || PMV.ValueType->isVectorTy()) 783 PMV.IntValueType = 784 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits()); 785 786 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8) 787 : ValueType; 788 if (PMV.ValueType == PMV.WordType) { 789 PMV.AlignedAddr = Addr; 790 PMV.AlignedAddrAlignment = AddrAlign; 791 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0); 792 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true); 793 return PMV; 794 } 795 796 PMV.AlignedAddrAlignment = Align(MinWordSize); 797 798 assert(ValueSize < MinWordSize); 799 800 PointerType *PtrTy = cast<PointerType>(Addr->getType()); 801 IntegerType *IntTy = DL.getIndexType(Ctx, PtrTy->getAddressSpace()); 802 Value *PtrLSB; 803 804 if (AddrAlign < MinWordSize) { 805 PMV.AlignedAddr = Builder.CreateIntrinsic( 806 Intrinsic::ptrmask, {PtrTy, IntTy}, 807 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr, 808 "AlignedAddr"); 809 810 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy); 811 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB"); 812 } else { 813 // If the alignment is high enough, the LSB are known 0. 814 PMV.AlignedAddr = Addr; 815 PtrLSB = ConstantInt::getNullValue(IntTy); 816 } 817 818 if (DL.isLittleEndian()) { 819 // turn bytes into bits 820 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3); 821 } else { 822 // turn bytes into bits, and count from the other side. 823 PMV.ShiftAmt = Builder.CreateShl( 824 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3); 825 } 826 827 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt"); 828 PMV.Mask = Builder.CreateShl( 829 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt, 830 "Mask"); 831 832 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask"); 833 834 return PMV; 835 } 836 837 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord, 838 const PartwordMaskValues &PMV) { 839 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 840 if (PMV.WordType == PMV.ValueType) 841 return WideWord; 842 843 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted"); 844 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted"); 845 return Builder.CreateBitCast(Trunc, PMV.ValueType); 846 } 847 848 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord, 849 Value *Updated, const PartwordMaskValues &PMV) { 850 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch"); 851 assert(Updated->getType() == PMV.ValueType && "Value type mismatch"); 852 if (PMV.WordType == PMV.ValueType) 853 return Updated; 854 855 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType); 856 857 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended"); 858 Value *Shift = 859 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true); 860 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked"); 861 Value *Or = Builder.CreateOr(And, Shift, "inserted"); 862 return Or; 863 } 864 865 /// Emit IR to implement a masked version of a given atomicrmw 866 /// operation. (That is, only the bits under the Mask should be 867 /// affected by the operation) 868 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op, 869 IRBuilderBase &Builder, Value *Loaded, 870 Value *Shifted_Inc, Value *Inc, 871 const PartwordMaskValues &PMV) { 872 // TODO: update to use 873 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order 874 // to merge bits from two values without requiring PMV.Inv_Mask. 875 switch (Op) { 876 case AtomicRMWInst::Xchg: { 877 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 878 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc); 879 return FinalVal; 880 } 881 case AtomicRMWInst::Or: 882 case AtomicRMWInst::Xor: 883 case AtomicRMWInst::And: 884 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW"); 885 case AtomicRMWInst::Add: 886 case AtomicRMWInst::Sub: 887 case AtomicRMWInst::Nand: { 888 // The other arithmetic ops need to be masked into place. 889 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc); 890 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask); 891 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask); 892 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked); 893 return FinalVal; 894 } 895 case AtomicRMWInst::Max: 896 case AtomicRMWInst::Min: 897 case AtomicRMWInst::UMax: 898 case AtomicRMWInst::UMin: 899 case AtomicRMWInst::FAdd: 900 case AtomicRMWInst::FSub: 901 case AtomicRMWInst::FMin: 902 case AtomicRMWInst::FMax: 903 case AtomicRMWInst::UIncWrap: 904 case AtomicRMWInst::UDecWrap: { 905 // Finally, other ops will operate on the full value, so truncate down to 906 // the original size, and expand out again after doing the 907 // operation. Bitcasts will be inserted for FP values. 908 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV); 909 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc); 910 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV); 911 return FinalVal; 912 } 913 default: 914 llvm_unreachable("Unknown atomic op"); 915 } 916 } 917 918 /// Expand a sub-word atomicrmw operation into an appropriate 919 /// word-sized operation. 920 /// 921 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same 922 /// way as a typical atomicrmw expansion. The only difference here is 923 /// that the operation inside of the loop may operate upon only a 924 /// part of the value. 925 void AtomicExpandImpl::expandPartwordAtomicRMW( 926 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) { 927 // Widen And/Or/Xor and give the target another chance at expanding it. 928 AtomicRMWInst::BinOp Op = AI->getOperation(); 929 if (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 930 Op == AtomicRMWInst::And) { 931 tryExpandAtomicRMW(widenPartwordAtomicRMW(AI)); 932 return; 933 } 934 AtomicOrdering MemOpOrder = AI->getOrdering(); 935 SyncScope::ID SSID = AI->getSyncScopeID(); 936 937 ReplacementIRBuilder Builder(AI, *DL); 938 939 PartwordMaskValues PMV = 940 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 941 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 942 943 Value *ValOperand_Shifted = nullptr; 944 if (Op == AtomicRMWInst::Xchg || Op == AtomicRMWInst::Add || 945 Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Nand) { 946 Value *ValOp = Builder.CreateBitCast(AI->getValOperand(), PMV.IntValueType); 947 ValOperand_Shifted = 948 Builder.CreateShl(Builder.CreateZExt(ValOp, PMV.WordType), PMV.ShiftAmt, 949 "ValOperand_Shifted"); 950 } 951 952 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) { 953 return performMaskedAtomicOp(Op, Builder, Loaded, ValOperand_Shifted, 954 AI->getValOperand(), PMV); 955 }; 956 957 Value *OldResult; 958 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) { 959 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, 960 PMV.AlignedAddrAlignment, MemOpOrder, SSID, 961 PerformPartwordOp, createCmpXchgInstFun); 962 } else { 963 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC); 964 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr, 965 PMV.AlignedAddrAlignment, MemOpOrder, 966 PerformPartwordOp); 967 } 968 969 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 970 AI->replaceAllUsesWith(FinalOldResult); 971 AI->eraseFromParent(); 972 } 973 974 /// Copy metadata that's safe to preserve when widening atomics. 975 static void copyMetadataForAtomic(Instruction &Dest, 976 const Instruction &Source) { 977 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 978 Source.getAllMetadata(MD); 979 LLVMContext &Ctx = Dest.getContext(); 980 MDBuilder MDB(Ctx); 981 982 for (auto [ID, N] : MD) { 983 switch (ID) { 984 case LLVMContext::MD_dbg: 985 case LLVMContext::MD_tbaa: 986 case LLVMContext::MD_tbaa_struct: 987 case LLVMContext::MD_alias_scope: 988 case LLVMContext::MD_noalias: 989 case LLVMContext::MD_access_group: 990 case LLVMContext::MD_mmra: 991 Dest.setMetadata(ID, N); 992 break; 993 default: 994 if (ID == Ctx.getMDKindID("amdgpu.no.remote.memory")) 995 Dest.setMetadata(ID, N); 996 else if (ID == Ctx.getMDKindID("amdgpu.no.fine.grained.memory")) 997 Dest.setMetadata(ID, N); 998 999 break; 1000 } 1001 } 1002 } 1003 1004 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width. 1005 AtomicRMWInst *AtomicExpandImpl::widenPartwordAtomicRMW(AtomicRMWInst *AI) { 1006 ReplacementIRBuilder Builder(AI, *DL); 1007 AtomicRMWInst::BinOp Op = AI->getOperation(); 1008 1009 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor || 1010 Op == AtomicRMWInst::And) && 1011 "Unable to widen operation"); 1012 1013 PartwordMaskValues PMV = 1014 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1015 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1016 1017 Value *ValOperand_Shifted = 1018 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType), 1019 PMV.ShiftAmt, "ValOperand_Shifted"); 1020 1021 Value *NewOperand; 1022 1023 if (Op == AtomicRMWInst::And) 1024 NewOperand = 1025 Builder.CreateOr(ValOperand_Shifted, PMV.Inv_Mask, "AndOperand"); 1026 else 1027 NewOperand = ValOperand_Shifted; 1028 1029 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW( 1030 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment, 1031 AI->getOrdering(), AI->getSyncScopeID()); 1032 1033 copyMetadataForAtomic(*NewAI, *AI); 1034 1035 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV); 1036 AI->replaceAllUsesWith(FinalOldResult); 1037 AI->eraseFromParent(); 1038 return NewAI; 1039 } 1040 1041 bool AtomicExpandImpl::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) { 1042 // The basic idea here is that we're expanding a cmpxchg of a 1043 // smaller memory size up to a word-sized cmpxchg. To do this, we 1044 // need to add a retry-loop for strong cmpxchg, so that 1045 // modifications to other parts of the word don't cause a spurious 1046 // failure. 1047 1048 // This generates code like the following: 1049 // [[Setup mask values PMV.*]] 1050 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt 1051 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt 1052 // %InitLoaded = load i32* %addr 1053 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask 1054 // br partword.cmpxchg.loop 1055 // partword.cmpxchg.loop: 1056 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ], 1057 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ] 1058 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted 1059 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted 1060 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp, 1061 // i32 %FullWord_NewVal success_ordering failure_ordering 1062 // %OldVal = extractvalue { i32, i1 } %NewCI, 0 1063 // %Success = extractvalue { i32, i1 } %NewCI, 1 1064 // br i1 %Success, label %partword.cmpxchg.end, 1065 // label %partword.cmpxchg.failure 1066 // partword.cmpxchg.failure: 1067 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask 1068 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut 1069 // br i1 %ShouldContinue, label %partword.cmpxchg.loop, 1070 // label %partword.cmpxchg.end 1071 // partword.cmpxchg.end: 1072 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt 1073 // %FinalOldVal = trunc i32 %tmp1 to i8 1074 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0 1075 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1 1076 1077 Value *Addr = CI->getPointerOperand(); 1078 Value *Cmp = CI->getCompareOperand(); 1079 Value *NewVal = CI->getNewValOperand(); 1080 1081 BasicBlock *BB = CI->getParent(); 1082 Function *F = BB->getParent(); 1083 ReplacementIRBuilder Builder(CI, *DL); 1084 LLVMContext &Ctx = Builder.getContext(); 1085 1086 BasicBlock *EndBB = 1087 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end"); 1088 auto FailureBB = 1089 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB); 1090 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB); 1091 1092 // The split call above "helpfully" added a branch at the end of BB 1093 // (to the wrong place). 1094 std::prev(BB->end())->eraseFromParent(); 1095 Builder.SetInsertPoint(BB); 1096 1097 PartwordMaskValues PMV = 1098 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1099 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1100 1101 // Shift the incoming values over, into the right location in the word. 1102 Value *NewVal_Shifted = 1103 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt); 1104 Value *Cmp_Shifted = 1105 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt); 1106 1107 // Load the entire current word, and mask into place the expected and new 1108 // values 1109 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr); 1110 InitLoaded->setVolatile(CI->isVolatile()); 1111 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask); 1112 Builder.CreateBr(LoopBB); 1113 1114 // partword.cmpxchg.loop: 1115 Builder.SetInsertPoint(LoopBB); 1116 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2); 1117 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB); 1118 1119 // Mask/Or the expected and new values into place in the loaded word. 1120 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted); 1121 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted); 1122 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg( 1123 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment, 1124 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID()); 1125 NewCI->setVolatile(CI->isVolatile()); 1126 // When we're building a strong cmpxchg, we need a loop, so you 1127 // might think we could use a weak cmpxchg inside. But, using strong 1128 // allows the below comparison for ShouldContinue, and we're 1129 // expecting the underlying cmpxchg to be a machine instruction, 1130 // which is strong anyways. 1131 NewCI->setWeak(CI->isWeak()); 1132 1133 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1134 Value *Success = Builder.CreateExtractValue(NewCI, 1); 1135 1136 if (CI->isWeak()) 1137 Builder.CreateBr(EndBB); 1138 else 1139 Builder.CreateCondBr(Success, EndBB, FailureBB); 1140 1141 // partword.cmpxchg.failure: 1142 Builder.SetInsertPoint(FailureBB); 1143 // Upon failure, verify that the masked-out part of the loaded value 1144 // has been modified. If it didn't, abort the cmpxchg, since the 1145 // masked-in part must've. 1146 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask); 1147 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut); 1148 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB); 1149 1150 // Add the second value to the phi from above 1151 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB); 1152 1153 // partword.cmpxchg.end: 1154 Builder.SetInsertPoint(CI); 1155 1156 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1157 Value *Res = PoisonValue::get(CI->getType()); 1158 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1159 Res = Builder.CreateInsertValue(Res, Success, 1); 1160 1161 CI->replaceAllUsesWith(Res); 1162 CI->eraseFromParent(); 1163 return true; 1164 } 1165 1166 void AtomicExpandImpl::expandAtomicOpToLLSC( 1167 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign, 1168 AtomicOrdering MemOpOrder, 1169 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1170 ReplacementIRBuilder Builder(I, *DL); 1171 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign, 1172 MemOpOrder, PerformOp); 1173 1174 I->replaceAllUsesWith(Loaded); 1175 I->eraseFromParent(); 1176 } 1177 1178 void AtomicExpandImpl::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) { 1179 ReplacementIRBuilder Builder(AI, *DL); 1180 1181 PartwordMaskValues PMV = 1182 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(), 1183 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1184 1185 // The value operand must be sign-extended for signed min/max so that the 1186 // target's signed comparison instructions can be used. Otherwise, just 1187 // zero-ext. 1188 Instruction::CastOps CastOp = Instruction::ZExt; 1189 AtomicRMWInst::BinOp RMWOp = AI->getOperation(); 1190 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min) 1191 CastOp = Instruction::SExt; 1192 1193 Value *ValOperand_Shifted = Builder.CreateShl( 1194 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType), 1195 PMV.ShiftAmt, "ValOperand_Shifted"); 1196 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic( 1197 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt, 1198 AI->getOrdering()); 1199 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV); 1200 AI->replaceAllUsesWith(FinalOldResult); 1201 AI->eraseFromParent(); 1202 } 1203 1204 void AtomicExpandImpl::expandAtomicCmpXchgToMaskedIntrinsic( 1205 AtomicCmpXchgInst *CI) { 1206 ReplacementIRBuilder Builder(CI, *DL); 1207 1208 PartwordMaskValues PMV = createMaskInstrs( 1209 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(), 1210 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1211 1212 Value *CmpVal_Shifted = Builder.CreateShl( 1213 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt, 1214 "CmpVal_Shifted"); 1215 Value *NewVal_Shifted = Builder.CreateShl( 1216 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt, 1217 "NewVal_Shifted"); 1218 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic( 1219 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask, 1220 CI->getMergedOrdering()); 1221 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV); 1222 Value *Res = PoisonValue::get(CI->getType()); 1223 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0); 1224 Value *Success = Builder.CreateICmpEQ( 1225 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success"); 1226 Res = Builder.CreateInsertValue(Res, Success, 1); 1227 1228 CI->replaceAllUsesWith(Res); 1229 CI->eraseFromParent(); 1230 } 1231 1232 Value *AtomicExpandImpl::insertRMWLLSCLoop( 1233 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1234 AtomicOrdering MemOpOrder, 1235 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) { 1236 LLVMContext &Ctx = Builder.getContext(); 1237 BasicBlock *BB = Builder.GetInsertBlock(); 1238 Function *F = BB->getParent(); 1239 1240 assert(AddrAlign >= 1241 F->getDataLayout().getTypeStoreSize(ResultTy) && 1242 "Expected at least natural alignment at this point."); 1243 1244 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1245 // 1246 // The standard expansion we produce is: 1247 // [...] 1248 // atomicrmw.start: 1249 // %loaded = @load.linked(%addr) 1250 // %new = some_op iN %loaded, %incr 1251 // %stored = @store_conditional(%new, %addr) 1252 // %try_again = icmp i32 ne %stored, 0 1253 // br i1 %try_again, label %loop, label %atomicrmw.end 1254 // atomicrmw.end: 1255 // [...] 1256 BasicBlock *ExitBB = 1257 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1258 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1259 1260 // The split call above "helpfully" added a branch at the end of BB (to the 1261 // wrong place). 1262 std::prev(BB->end())->eraseFromParent(); 1263 Builder.SetInsertPoint(BB); 1264 Builder.CreateBr(LoopBB); 1265 1266 // Start the main loop block now that we've taken care of the preliminaries. 1267 Builder.SetInsertPoint(LoopBB); 1268 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder); 1269 1270 Value *NewVal = PerformOp(Builder, Loaded); 1271 1272 Value *StoreSuccess = 1273 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder); 1274 Value *TryAgain = Builder.CreateICmpNE( 1275 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain"); 1276 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB); 1277 1278 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1279 return Loaded; 1280 } 1281 1282 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of 1283 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the 1284 /// IR. As a migration step, we convert back to what use to be the standard 1285 /// way to represent a pointer cmpxchg so that we can update backends one by 1286 /// one. 1287 AtomicCmpXchgInst * 1288 AtomicExpandImpl::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) { 1289 auto *M = CI->getModule(); 1290 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(), 1291 M->getDataLayout()); 1292 1293 ReplacementIRBuilder Builder(CI, *DL); 1294 1295 Value *Addr = CI->getPointerOperand(); 1296 1297 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy); 1298 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy); 1299 1300 auto *NewCI = Builder.CreateAtomicCmpXchg( 1301 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(), 1302 CI->getFailureOrdering(), CI->getSyncScopeID()); 1303 NewCI->setVolatile(CI->isVolatile()); 1304 NewCI->setWeak(CI->isWeak()); 1305 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n"); 1306 1307 Value *OldVal = Builder.CreateExtractValue(NewCI, 0); 1308 Value *Succ = Builder.CreateExtractValue(NewCI, 1); 1309 1310 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType()); 1311 1312 Value *Res = PoisonValue::get(CI->getType()); 1313 Res = Builder.CreateInsertValue(Res, OldVal, 0); 1314 Res = Builder.CreateInsertValue(Res, Succ, 1); 1315 1316 CI->replaceAllUsesWith(Res); 1317 CI->eraseFromParent(); 1318 return NewCI; 1319 } 1320 1321 bool AtomicExpandImpl::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1322 AtomicOrdering SuccessOrder = CI->getSuccessOrdering(); 1323 AtomicOrdering FailureOrder = CI->getFailureOrdering(); 1324 Value *Addr = CI->getPointerOperand(); 1325 BasicBlock *BB = CI->getParent(); 1326 Function *F = BB->getParent(); 1327 LLVMContext &Ctx = F->getContext(); 1328 // If shouldInsertFencesForAtomic() returns true, then the target does not 1329 // want to deal with memory orders, and emitLeading/TrailingFence should take 1330 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we 1331 // should preserve the ordering. 1332 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI); 1333 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic 1334 ? AtomicOrdering::Monotonic 1335 : CI->getMergedOrdering(); 1336 1337 // In implementations which use a barrier to achieve release semantics, we can 1338 // delay emitting this barrier until we know a store is actually going to be 1339 // attempted. The cost of this delay is that we need 2 copies of the block 1340 // emitting the load-linked, affecting code size. 1341 // 1342 // Ideally, this logic would be unconditional except for the minsize check 1343 // since in other cases the extra blocks naturally collapse down to the 1344 // minimal loop. Unfortunately, this puts too much stress on later 1345 // optimisations so we avoid emitting the extra logic in those cases too. 1346 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic && 1347 SuccessOrder != AtomicOrdering::Monotonic && 1348 SuccessOrder != AtomicOrdering::Acquire && 1349 !F->hasMinSize(); 1350 1351 // There's no overhead for sinking the release barrier in a weak cmpxchg, so 1352 // do it even on minsize. 1353 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak(); 1354 1355 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord 1356 // 1357 // The full expansion we produce is: 1358 // [...] 1359 // %aligned.addr = ... 1360 // cmpxchg.start: 1361 // %unreleasedload = @load.linked(%aligned.addr) 1362 // %unreleasedload.extract = extract value from %unreleasedload 1363 // %should_store = icmp eq %unreleasedload.extract, %desired 1364 // br i1 %should_store, label %cmpxchg.releasingstore, 1365 // label %cmpxchg.nostore 1366 // cmpxchg.releasingstore: 1367 // fence? 1368 // br label cmpxchg.trystore 1369 // cmpxchg.trystore: 1370 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore], 1371 // [%releasedload, %cmpxchg.releasedload] 1372 // %updated.new = insert %new into %loaded.trystore 1373 // %stored = @store_conditional(%updated.new, %aligned.addr) 1374 // %success = icmp eq i32 %stored, 0 1375 // br i1 %success, label %cmpxchg.success, 1376 // label %cmpxchg.releasedload/%cmpxchg.failure 1377 // cmpxchg.releasedload: 1378 // %releasedload = @load.linked(%aligned.addr) 1379 // %releasedload.extract = extract value from %releasedload 1380 // %should_store = icmp eq %releasedload.extract, %desired 1381 // br i1 %should_store, label %cmpxchg.trystore, 1382 // label %cmpxchg.failure 1383 // cmpxchg.success: 1384 // fence? 1385 // br label %cmpxchg.end 1386 // cmpxchg.nostore: 1387 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start], 1388 // [%releasedload, 1389 // %cmpxchg.releasedload/%cmpxchg.trystore] 1390 // @load_linked_fail_balance()? 1391 // br label %cmpxchg.failure 1392 // cmpxchg.failure: 1393 // fence? 1394 // br label %cmpxchg.end 1395 // cmpxchg.end: 1396 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure], 1397 // [%loaded.trystore, %cmpxchg.trystore] 1398 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure] 1399 // %loaded = extract value from %loaded.exit 1400 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0 1401 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1 1402 // [...] 1403 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end"); 1404 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB); 1405 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB); 1406 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB); 1407 auto ReleasedLoadBB = 1408 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB); 1409 auto TryStoreBB = 1410 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB); 1411 auto ReleasingStoreBB = 1412 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB); 1413 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB); 1414 1415 ReplacementIRBuilder Builder(CI, *DL); 1416 1417 // The split call above "helpfully" added a branch at the end of BB (to the 1418 // wrong place), but we might want a fence too. It's easiest to just remove 1419 // the branch entirely. 1420 std::prev(BB->end())->eraseFromParent(); 1421 Builder.SetInsertPoint(BB); 1422 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier) 1423 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1424 1425 PartwordMaskValues PMV = 1426 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr, 1427 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8); 1428 Builder.CreateBr(StartBB); 1429 1430 // Start the main loop block now that we've taken care of the preliminaries. 1431 Builder.SetInsertPoint(StartBB); 1432 Value *UnreleasedLoad = 1433 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1434 Value *UnreleasedLoadExtract = 1435 extractMaskedValue(Builder, UnreleasedLoad, PMV); 1436 Value *ShouldStore = Builder.CreateICmpEQ( 1437 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store"); 1438 1439 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1440 // jump straight past that fence instruction (if it exists). 1441 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB); 1442 1443 Builder.SetInsertPoint(ReleasingStoreBB); 1444 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier) 1445 TLI->emitLeadingFence(Builder, CI, SuccessOrder); 1446 Builder.CreateBr(TryStoreBB); 1447 1448 Builder.SetInsertPoint(TryStoreBB); 1449 PHINode *LoadedTryStore = 1450 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore"); 1451 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB); 1452 Value *NewValueInsert = 1453 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV); 1454 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert, 1455 PMV.AlignedAddr, MemOpOrder); 1456 StoreSuccess = Builder.CreateICmpEQ( 1457 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success"); 1458 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB; 1459 Builder.CreateCondBr(StoreSuccess, SuccessBB, 1460 CI->isWeak() ? FailureBB : RetryBB); 1461 1462 Builder.SetInsertPoint(ReleasedLoadBB); 1463 Value *SecondLoad; 1464 if (HasReleasedLoadBB) { 1465 SecondLoad = 1466 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder); 1467 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV); 1468 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract, 1469 CI->getCompareOperand(), "should_store"); 1470 1471 // If the cmpxchg doesn't actually need any ordering when it fails, we can 1472 // jump straight past that fence instruction (if it exists). 1473 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB); 1474 // Update PHI node in TryStoreBB. 1475 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB); 1476 } else 1477 Builder.CreateUnreachable(); 1478 1479 // Make sure later instructions don't get reordered with a fence if 1480 // necessary. 1481 Builder.SetInsertPoint(SuccessBB); 1482 if (ShouldInsertFencesForAtomic || 1483 TLI->shouldInsertTrailingFenceForAtomicStore(CI)) 1484 TLI->emitTrailingFence(Builder, CI, SuccessOrder); 1485 Builder.CreateBr(ExitBB); 1486 1487 Builder.SetInsertPoint(NoStoreBB); 1488 PHINode *LoadedNoStore = 1489 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore"); 1490 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB); 1491 if (HasReleasedLoadBB) 1492 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB); 1493 1494 // In the failing case, where we don't execute the store-conditional, the 1495 // target might want to balance out the load-linked with a dedicated 1496 // instruction (e.g., on ARM, clearing the exclusive monitor). 1497 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder); 1498 Builder.CreateBr(FailureBB); 1499 1500 Builder.SetInsertPoint(FailureBB); 1501 PHINode *LoadedFailure = 1502 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure"); 1503 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB); 1504 if (CI->isWeak()) 1505 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB); 1506 if (ShouldInsertFencesForAtomic) 1507 TLI->emitTrailingFence(Builder, CI, FailureOrder); 1508 Builder.CreateBr(ExitBB); 1509 1510 // Finally, we have control-flow based knowledge of whether the cmpxchg 1511 // succeeded or not. We expose this to later passes by converting any 1512 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate 1513 // PHI. 1514 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1515 PHINode *LoadedExit = 1516 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit"); 1517 LoadedExit->addIncoming(LoadedTryStore, SuccessBB); 1518 LoadedExit->addIncoming(LoadedFailure, FailureBB); 1519 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success"); 1520 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB); 1521 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB); 1522 1523 // This is the "exit value" from the cmpxchg expansion. It may be of 1524 // a type wider than the one in the cmpxchg instruction. 1525 Value *LoadedFull = LoadedExit; 1526 1527 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator())); 1528 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV); 1529 1530 // Look for any users of the cmpxchg that are just comparing the loaded value 1531 // against the desired one, and replace them with the CFG-derived version. 1532 SmallVector<ExtractValueInst *, 2> PrunedInsts; 1533 for (auto *User : CI->users()) { 1534 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User); 1535 if (!EV) 1536 continue; 1537 1538 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 && 1539 "weird extraction from { iN, i1 }"); 1540 1541 if (EV->getIndices()[0] == 0) 1542 EV->replaceAllUsesWith(Loaded); 1543 else 1544 EV->replaceAllUsesWith(Success); 1545 1546 PrunedInsts.push_back(EV); 1547 } 1548 1549 // We can remove the instructions now we're no longer iterating through them. 1550 for (auto *EV : PrunedInsts) 1551 EV->eraseFromParent(); 1552 1553 if (!CI->use_empty()) { 1554 // Some use of the full struct return that we don't understand has happened, 1555 // so we've got to reconstruct it properly. 1556 Value *Res; 1557 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0); 1558 Res = Builder.CreateInsertValue(Res, Success, 1); 1559 1560 CI->replaceAllUsesWith(Res); 1561 } 1562 1563 CI->eraseFromParent(); 1564 return true; 1565 } 1566 1567 bool AtomicExpandImpl::isIdempotentRMW(AtomicRMWInst *RMWI) { 1568 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand()); 1569 if (!C) 1570 return false; 1571 1572 AtomicRMWInst::BinOp Op = RMWI->getOperation(); 1573 switch (Op) { 1574 case AtomicRMWInst::Add: 1575 case AtomicRMWInst::Sub: 1576 case AtomicRMWInst::Or: 1577 case AtomicRMWInst::Xor: 1578 return C->isZero(); 1579 case AtomicRMWInst::And: 1580 return C->isMinusOne(); 1581 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/... 1582 default: 1583 return false; 1584 } 1585 } 1586 1587 bool AtomicExpandImpl::simplifyIdempotentRMW(AtomicRMWInst *RMWI) { 1588 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) { 1589 tryExpandAtomicLoad(ResultingLoad); 1590 return true; 1591 } 1592 return false; 1593 } 1594 1595 Value *AtomicExpandImpl::insertRMWCmpXchgLoop( 1596 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign, 1597 AtomicOrdering MemOpOrder, SyncScope::ID SSID, 1598 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp, 1599 CreateCmpXchgInstFun CreateCmpXchg) { 1600 LLVMContext &Ctx = Builder.getContext(); 1601 BasicBlock *BB = Builder.GetInsertBlock(); 1602 Function *F = BB->getParent(); 1603 1604 // Given: atomicrmw some_op iN* %addr, iN %incr ordering 1605 // 1606 // The standard expansion we produce is: 1607 // [...] 1608 // %init_loaded = load atomic iN* %addr 1609 // br label %loop 1610 // loop: 1611 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ] 1612 // %new = some_op iN %loaded, %incr 1613 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new 1614 // %new_loaded = extractvalue { iN, i1 } %pair, 0 1615 // %success = extractvalue { iN, i1 } %pair, 1 1616 // br i1 %success, label %atomicrmw.end, label %loop 1617 // atomicrmw.end: 1618 // [...] 1619 BasicBlock *ExitBB = 1620 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end"); 1621 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB); 1622 1623 // The split call above "helpfully" added a branch at the end of BB (to the 1624 // wrong place), but we want a load. It's easiest to just remove 1625 // the branch entirely. 1626 std::prev(BB->end())->eraseFromParent(); 1627 Builder.SetInsertPoint(BB); 1628 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign); 1629 Builder.CreateBr(LoopBB); 1630 1631 // Start the main loop block now that we've taken care of the preliminaries. 1632 Builder.SetInsertPoint(LoopBB); 1633 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded"); 1634 Loaded->addIncoming(InitLoaded, BB); 1635 1636 Value *NewVal = PerformOp(Builder, Loaded); 1637 1638 Value *NewLoaded = nullptr; 1639 Value *Success = nullptr; 1640 1641 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign, 1642 MemOpOrder == AtomicOrdering::Unordered 1643 ? AtomicOrdering::Monotonic 1644 : MemOpOrder, 1645 SSID, Success, NewLoaded); 1646 assert(Success && NewLoaded); 1647 1648 Loaded->addIncoming(NewLoaded, LoopBB); 1649 1650 Builder.CreateCondBr(Success, ExitBB, LoopBB); 1651 1652 Builder.SetInsertPoint(ExitBB, ExitBB->begin()); 1653 return NewLoaded; 1654 } 1655 1656 bool AtomicExpandImpl::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) { 1657 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8; 1658 unsigned ValueSize = getAtomicOpSize(CI); 1659 1660 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) { 1661 default: 1662 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg"); 1663 case TargetLoweringBase::AtomicExpansionKind::None: 1664 if (ValueSize < MinCASSize) 1665 return expandPartwordCmpXchg(CI); 1666 return false; 1667 case TargetLoweringBase::AtomicExpansionKind::LLSC: { 1668 return expandAtomicCmpXchg(CI); 1669 } 1670 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: 1671 expandAtomicCmpXchgToMaskedIntrinsic(CI); 1672 return true; 1673 case TargetLoweringBase::AtomicExpansionKind::NotAtomic: 1674 return lowerAtomicCmpXchgInst(CI); 1675 } 1676 } 1677 1678 // Note: This function is exposed externally by AtomicExpandUtils.h 1679 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI, 1680 CreateCmpXchgInstFun CreateCmpXchg) { 1681 ReplacementIRBuilder Builder(AI, AI->getDataLayout()); 1682 Builder.setIsFPConstrained( 1683 AI->getFunction()->hasFnAttribute(Attribute::StrictFP)); 1684 1685 // FIXME: If FP exceptions are observable, we should force them off for the 1686 // loop for the FP atomics. 1687 Value *Loaded = AtomicExpandImpl::insertRMWCmpXchgLoop( 1688 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(), 1689 AI->getOrdering(), AI->getSyncScopeID(), 1690 [&](IRBuilderBase &Builder, Value *Loaded) { 1691 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded, 1692 AI->getValOperand()); 1693 }, 1694 CreateCmpXchg); 1695 1696 AI->replaceAllUsesWith(Loaded); 1697 AI->eraseFromParent(); 1698 return true; 1699 } 1700 1701 // In order to use one of the sized library calls such as 1702 // __atomic_fetch_add_4, the alignment must be sufficient, the size 1703 // must be one of the potentially-specialized sizes, and the value 1704 // type must actually exist in C on the target (otherwise, the 1705 // function wouldn't actually be defined.) 1706 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment, 1707 const DataLayout &DL) { 1708 // TODO: "LargestSize" is an approximation for "largest type that 1709 // you can express in C". It seems to be the case that int128 is 1710 // supported on all 64-bit platforms, otherwise only up to 64-bit 1711 // integers are supported. If we get this wrong, then we'll try to 1712 // call a sized libcall that doesn't actually exist. There should 1713 // really be some more reliable way in LLVM of determining integer 1714 // sizes which are valid in the target's C ABI... 1715 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8; 1716 return Alignment >= Size && 1717 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) && 1718 Size <= LargestSize; 1719 } 1720 1721 void AtomicExpandImpl::expandAtomicLoadToLibcall(LoadInst *I) { 1722 static const RTLIB::Libcall Libcalls[6] = { 1723 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2, 1724 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16}; 1725 unsigned Size = getAtomicOpSize(I); 1726 1727 bool expanded = expandAtomicOpToLibcall( 1728 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr, 1729 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1730 if (!expanded) 1731 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load"); 1732 } 1733 1734 void AtomicExpandImpl::expandAtomicStoreToLibcall(StoreInst *I) { 1735 static const RTLIB::Libcall Libcalls[6] = { 1736 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2, 1737 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16}; 1738 unsigned Size = getAtomicOpSize(I); 1739 1740 bool expanded = expandAtomicOpToLibcall( 1741 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(), 1742 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1743 if (!expanded) 1744 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store"); 1745 } 1746 1747 void AtomicExpandImpl::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) { 1748 static const RTLIB::Libcall Libcalls[6] = { 1749 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1, 1750 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4, 1751 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16}; 1752 unsigned Size = getAtomicOpSize(I); 1753 1754 bool expanded = expandAtomicOpToLibcall( 1755 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(), 1756 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(), 1757 Libcalls); 1758 if (!expanded) 1759 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS"); 1760 } 1761 1762 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) { 1763 static const RTLIB::Libcall LibcallsXchg[6] = { 1764 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1, 1765 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4, 1766 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16}; 1767 static const RTLIB::Libcall LibcallsAdd[6] = { 1768 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1, 1769 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4, 1770 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16}; 1771 static const RTLIB::Libcall LibcallsSub[6] = { 1772 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1, 1773 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4, 1774 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16}; 1775 static const RTLIB::Libcall LibcallsAnd[6] = { 1776 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1, 1777 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4, 1778 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16}; 1779 static const RTLIB::Libcall LibcallsOr[6] = { 1780 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1, 1781 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4, 1782 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16}; 1783 static const RTLIB::Libcall LibcallsXor[6] = { 1784 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1, 1785 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4, 1786 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16}; 1787 static const RTLIB::Libcall LibcallsNand[6] = { 1788 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1, 1789 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4, 1790 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16}; 1791 1792 switch (Op) { 1793 case AtomicRMWInst::BAD_BINOP: 1794 llvm_unreachable("Should not have BAD_BINOP."); 1795 case AtomicRMWInst::Xchg: 1796 return ArrayRef(LibcallsXchg); 1797 case AtomicRMWInst::Add: 1798 return ArrayRef(LibcallsAdd); 1799 case AtomicRMWInst::Sub: 1800 return ArrayRef(LibcallsSub); 1801 case AtomicRMWInst::And: 1802 return ArrayRef(LibcallsAnd); 1803 case AtomicRMWInst::Or: 1804 return ArrayRef(LibcallsOr); 1805 case AtomicRMWInst::Xor: 1806 return ArrayRef(LibcallsXor); 1807 case AtomicRMWInst::Nand: 1808 return ArrayRef(LibcallsNand); 1809 case AtomicRMWInst::Max: 1810 case AtomicRMWInst::Min: 1811 case AtomicRMWInst::UMax: 1812 case AtomicRMWInst::UMin: 1813 case AtomicRMWInst::FMax: 1814 case AtomicRMWInst::FMin: 1815 case AtomicRMWInst::FAdd: 1816 case AtomicRMWInst::FSub: 1817 case AtomicRMWInst::UIncWrap: 1818 case AtomicRMWInst::UDecWrap: 1819 // No atomic libcalls are available for max/min/umax/umin. 1820 return {}; 1821 } 1822 llvm_unreachable("Unexpected AtomicRMW operation."); 1823 } 1824 1825 void AtomicExpandImpl::expandAtomicRMWToLibcall(AtomicRMWInst *I) { 1826 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation()); 1827 1828 unsigned Size = getAtomicOpSize(I); 1829 1830 bool Success = false; 1831 if (!Libcalls.empty()) 1832 Success = expandAtomicOpToLibcall( 1833 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(), 1834 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls); 1835 1836 // The expansion failed: either there were no libcalls at all for 1837 // the operation (min/max), or there were only size-specialized 1838 // libcalls (add/sub/etc) and we needed a generic. So, expand to a 1839 // CAS libcall, via a CAS loop, instead. 1840 if (!Success) { 1841 expandAtomicRMWToCmpXchg( 1842 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded, 1843 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder, 1844 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) { 1845 // Create the CAS instruction normally... 1846 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg( 1847 Addr, Loaded, NewVal, Alignment, MemOpOrder, 1848 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID); 1849 Success = Builder.CreateExtractValue(Pair, 1, "success"); 1850 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded"); 1851 1852 // ...and then expand the CAS into a libcall. 1853 expandAtomicCASToLibcall(Pair); 1854 }); 1855 } 1856 } 1857 1858 // A helper routine for the above expandAtomic*ToLibcall functions. 1859 // 1860 // 'Libcalls' contains an array of enum values for the particular 1861 // ATOMIC libcalls to be emitted. All of the other arguments besides 1862 // 'I' are extracted from the Instruction subclass by the 1863 // caller. Depending on the particular call, some will be null. 1864 bool AtomicExpandImpl::expandAtomicOpToLibcall( 1865 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand, 1866 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering, 1867 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) { 1868 assert(Libcalls.size() == 6); 1869 1870 LLVMContext &Ctx = I->getContext(); 1871 Module *M = I->getModule(); 1872 const DataLayout &DL = M->getDataLayout(); 1873 IRBuilder<> Builder(I); 1874 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front()); 1875 1876 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL); 1877 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8); 1878 1879 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy); 1880 1881 // TODO: the "order" argument type is "int", not int32. So 1882 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints. 1883 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size); 1884 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO"); 1885 Constant *OrderingVal = 1886 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering)); 1887 Constant *Ordering2Val = nullptr; 1888 if (CASExpected) { 1889 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO"); 1890 Ordering2Val = 1891 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2)); 1892 } 1893 bool HasResult = I->getType() != Type::getVoidTy(Ctx); 1894 1895 RTLIB::Libcall RTLibType; 1896 if (UseSizedLibcall) { 1897 switch (Size) { 1898 case 1: 1899 RTLibType = Libcalls[1]; 1900 break; 1901 case 2: 1902 RTLibType = Libcalls[2]; 1903 break; 1904 case 4: 1905 RTLibType = Libcalls[3]; 1906 break; 1907 case 8: 1908 RTLibType = Libcalls[4]; 1909 break; 1910 case 16: 1911 RTLibType = Libcalls[5]; 1912 break; 1913 } 1914 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) { 1915 RTLibType = Libcalls[0]; 1916 } else { 1917 // Can't use sized function, and there's no generic for this 1918 // operation, so give up. 1919 return false; 1920 } 1921 1922 if (!TLI->getLibcallName(RTLibType)) { 1923 // This target does not implement the requested atomic libcall so give up. 1924 return false; 1925 } 1926 1927 // Build up the function call. There's two kinds. First, the sized 1928 // variants. These calls are going to be one of the following (with 1929 // N=1,2,4,8,16): 1930 // iN __atomic_load_N(iN *ptr, int ordering) 1931 // void __atomic_store_N(iN *ptr, iN val, int ordering) 1932 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering) 1933 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired, 1934 // int success_order, int failure_order) 1935 // 1936 // Note that these functions can be used for non-integer atomic 1937 // operations, the values just need to be bitcast to integers on the 1938 // way in and out. 1939 // 1940 // And, then, the generic variants. They look like the following: 1941 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering) 1942 // void __atomic_store(size_t size, void *ptr, void *val, int ordering) 1943 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret, 1944 // int ordering) 1945 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected, 1946 // void *desired, int success_order, 1947 // int failure_order) 1948 // 1949 // The different signatures are built up depending on the 1950 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult' 1951 // variables. 1952 1953 AllocaInst *AllocaCASExpected = nullptr; 1954 AllocaInst *AllocaValue = nullptr; 1955 AllocaInst *AllocaResult = nullptr; 1956 1957 Type *ResultTy; 1958 SmallVector<Value *, 6> Args; 1959 AttributeList Attr; 1960 1961 // 'size' argument. 1962 if (!UseSizedLibcall) { 1963 // Note, getIntPtrType is assumed equivalent to size_t. 1964 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size)); 1965 } 1966 1967 // 'ptr' argument. 1968 // note: This assumes all address spaces share a common libfunc 1969 // implementation and that addresses are convertable. For systems without 1970 // that property, we'd need to extend this mechanism to support AS-specific 1971 // families of atomic intrinsics. 1972 Value *PtrVal = PointerOperand; 1973 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx)); 1974 Args.push_back(PtrVal); 1975 1976 // 'expected' argument, if present. 1977 if (CASExpected) { 1978 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType()); 1979 AllocaCASExpected->setAlignment(AllocaAlignment); 1980 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64); 1981 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment); 1982 Args.push_back(AllocaCASExpected); 1983 } 1984 1985 // 'val' argument ('desired' for cas), if present. 1986 if (ValueOperand) { 1987 if (UseSizedLibcall) { 1988 Value *IntValue = 1989 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy); 1990 Args.push_back(IntValue); 1991 } else { 1992 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType()); 1993 AllocaValue->setAlignment(AllocaAlignment); 1994 Builder.CreateLifetimeStart(AllocaValue, SizeVal64); 1995 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment); 1996 Args.push_back(AllocaValue); 1997 } 1998 } 1999 2000 // 'ret' argument. 2001 if (!CASExpected && HasResult && !UseSizedLibcall) { 2002 AllocaResult = AllocaBuilder.CreateAlloca(I->getType()); 2003 AllocaResult->setAlignment(AllocaAlignment); 2004 Builder.CreateLifetimeStart(AllocaResult, SizeVal64); 2005 Args.push_back(AllocaResult); 2006 } 2007 2008 // 'ordering' ('success_order' for cas) argument. 2009 Args.push_back(OrderingVal); 2010 2011 // 'failure_order' argument, if present. 2012 if (Ordering2Val) 2013 Args.push_back(Ordering2Val); 2014 2015 // Now, the return type. 2016 if (CASExpected) { 2017 ResultTy = Type::getInt1Ty(Ctx); 2018 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt); 2019 } else if (HasResult && UseSizedLibcall) 2020 ResultTy = SizedIntTy; 2021 else 2022 ResultTy = Type::getVoidTy(Ctx); 2023 2024 // Done with setting up arguments and return types, create the call: 2025 SmallVector<Type *, 6> ArgTys; 2026 for (Value *Arg : Args) 2027 ArgTys.push_back(Arg->getType()); 2028 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false); 2029 FunctionCallee LibcallFn = 2030 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr); 2031 CallInst *Call = Builder.CreateCall(LibcallFn, Args); 2032 Call->setAttributes(Attr); 2033 Value *Result = Call; 2034 2035 // And then, extract the results... 2036 if (ValueOperand && !UseSizedLibcall) 2037 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64); 2038 2039 if (CASExpected) { 2040 // The final result from the CAS is {load of 'expected' alloca, bool result 2041 // from call} 2042 Type *FinalResultTy = I->getType(); 2043 Value *V = PoisonValue::get(FinalResultTy); 2044 Value *ExpectedOut = Builder.CreateAlignedLoad( 2045 CASExpected->getType(), AllocaCASExpected, AllocaAlignment); 2046 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64); 2047 V = Builder.CreateInsertValue(V, ExpectedOut, 0); 2048 V = Builder.CreateInsertValue(V, Result, 1); 2049 I->replaceAllUsesWith(V); 2050 } else if (HasResult) { 2051 Value *V; 2052 if (UseSizedLibcall) 2053 V = Builder.CreateBitOrPointerCast(Result, I->getType()); 2054 else { 2055 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult, 2056 AllocaAlignment); 2057 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64); 2058 } 2059 I->replaceAllUsesWith(V); 2060 } 2061 I->eraseFromParent(); 2062 return true; 2063 } 2064