xref: /llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp (revision 6aeb7a71d40faed14820523b5be24ff93a4e9bf9)
1 //===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
10 #include "LiveDebugValues/LiveDebugValues.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/DenseMapInfo.h"
13 #include "llvm/ADT/IntervalMap.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/UniqueVector.h"
18 #include "llvm/Analysis/Interval.h"
19 #include "llvm/BinaryFormat/Dwarf.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugProgramInstruction.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/IR/PrintPasses.h"
29 #include "llvm/InitializePasses.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
34 #include <assert.h>
35 #include <cstdint>
36 #include <optional>
37 #include <queue>
38 #include <sstream>
39 #include <unordered_map>
40 
41 using namespace llvm;
42 #define DEBUG_TYPE "debug-ata"
43 
44 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
45 STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
46 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
47 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
48 
49 static cl::opt<unsigned>
50     MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
51                  cl::desc("Maximum num basic blocks before debug info dropped"),
52                  cl::Hidden);
53 /// Option for debugging the pass, determines if the memory location fragment
54 /// filling happens after generating the variable locations.
55 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
56                                           cl::Hidden);
57 /// Print the results of the analysis. Respects -filter-print-funcs.
58 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
59                                   cl::Hidden);
60 
61 /// Coalesce adjacent dbg locs describing memory locations that have contiguous
62 /// fragments. This reduces the cost of LiveDebugValues which does SSA
63 /// construction for each explicitly stated variable fragment.
64 static cl::opt<cl::boolOrDefault>
65     CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
66 
67 // Implicit conversions are disabled for enum class types, so unfortunately we
68 // need to create a DenseMapInfo wrapper around the specified underlying type.
69 template <> struct llvm::DenseMapInfo<VariableID> {
70   using Wrapped = DenseMapInfo<unsigned>;
71   static inline VariableID getEmptyKey() {
72     return static_cast<VariableID>(Wrapped::getEmptyKey());
73   }
74   static inline VariableID getTombstoneKey() {
75     return static_cast<VariableID>(Wrapped::getTombstoneKey());
76   }
77   static unsigned getHashValue(const VariableID &Val) {
78     return Wrapped::getHashValue(static_cast<unsigned>(Val));
79   }
80   static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
81     return LHS == RHS;
82   }
83 };
84 
85 using VarLocInsertPt = PointerUnion<const Instruction *, const DPValue *>;
86 
87 namespace std {
88 template <> struct hash<VarLocInsertPt> {
89   using argument_type = VarLocInsertPt;
90   using result_type = std::size_t;
91 
92   result_type operator()(const argument_type &Arg) const {
93     return std::hash<void *>()(Arg.getOpaqueValue());
94   }
95 };
96 } // namespace std
97 
98 /// Helper class to build FunctionVarLocs, since that class isn't easy to
99 /// modify. TODO: There's not a great deal of value in the split, it could be
100 /// worth merging the two classes.
101 class FunctionVarLocsBuilder {
102   friend FunctionVarLocs;
103   UniqueVector<DebugVariable> Variables;
104   // Use an unordered_map so we don't invalidate iterators after
105   // insert/modifications.
106   std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst;
107 
108   SmallVector<VarLocInfo> SingleLocVars;
109 
110 public:
111   unsigned getNumVariables() const { return Variables.size(); }
112 
113   /// Find or insert \p V and return the ID.
114   VariableID insertVariable(DebugVariable V) {
115     return static_cast<VariableID>(Variables.insert(V));
116   }
117 
118   /// Get a variable from its \p ID.
119   const DebugVariable &getVariable(VariableID ID) const {
120     return Variables[static_cast<unsigned>(ID)];
121   }
122 
123   /// Return ptr to wedge of defs or nullptr if no defs come just before /p
124   /// Before.
125   const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const {
126     auto R = VarLocsBeforeInst.find(Before);
127     if (R == VarLocsBeforeInst.end())
128       return nullptr;
129     return &R->second;
130   }
131 
132   /// Replace the defs that come just before /p Before with /p Wedge.
133   void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) {
134     VarLocsBeforeInst[Before] = std::move(Wedge);
135   }
136 
137   /// Add a def for a variable that is valid for its lifetime.
138   void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
139                        RawLocationWrapper R) {
140     VarLocInfo VarLoc;
141     VarLoc.VariableID = insertVariable(Var);
142     VarLoc.Expr = Expr;
143     VarLoc.DL = DL;
144     VarLoc.Values = R;
145     SingleLocVars.emplace_back(VarLoc);
146   }
147 
148   /// Add a def to the wedge of defs just before /p Before.
149   void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr,
150                  DebugLoc DL, RawLocationWrapper R) {
151     VarLocInfo VarLoc;
152     VarLoc.VariableID = insertVariable(Var);
153     VarLoc.Expr = Expr;
154     VarLoc.DL = DL;
155     VarLoc.Values = R;
156     VarLocsBeforeInst[Before].emplace_back(VarLoc);
157   }
158 };
159 
160 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
161   // Print the variable table first. TODO: Sorting by variable could make the
162   // output more stable?
163   unsigned Counter = -1;
164   OS << "=== Variables ===\n";
165   for (const DebugVariable &V : Variables) {
166     ++Counter;
167     // Skip first entry because it is a dummy entry.
168     if (Counter == 0) {
169       continue;
170     }
171     OS << "[" << Counter << "] " << V.getVariable()->getName();
172     if (auto F = V.getFragment())
173       OS << " bits [" << F->OffsetInBits << ", "
174          << F->OffsetInBits + F->SizeInBits << ")";
175     if (const auto *IA = V.getInlinedAt())
176       OS << " inlined-at " << *IA;
177     OS << "\n";
178   }
179 
180   auto PrintLoc = [&OS](const VarLocInfo &Loc) {
181     OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
182        << " Expr=" << *Loc.Expr << " Values=(";
183     for (auto *Op : Loc.Values.location_ops()) {
184       errs() << Op->getName() << " ";
185     }
186     errs() << ")\n";
187   };
188 
189   // Print the single location variables.
190   OS << "=== Single location vars ===\n";
191   for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
192        ++It) {
193     PrintLoc(*It);
194   }
195 
196   // Print the non-single-location defs in line with IR.
197   OS << "=== In-line variable defs ===";
198   for (const BasicBlock &BB : Fn) {
199     OS << "\n" << BB.getName() << ":\n";
200     for (const Instruction &I : BB) {
201       for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
202         PrintLoc(*It);
203       }
204       OS << I << "\n";
205     }
206   }
207 }
208 
209 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
210   // Add the single-location variables first.
211   for (const auto &VarLoc : Builder.SingleLocVars)
212     VarLocRecords.emplace_back(VarLoc);
213   // Mark the end of the section.
214   SingleVarLocEnd = VarLocRecords.size();
215 
216   // Insert a contiguous block of VarLocInfos for each instruction, mapping it
217   // to the start and end position in the vector with VarLocsBeforeInst. This
218   // block includes VarLocs for any DPValues attached to that instruction.
219   for (auto &P : Builder.VarLocsBeforeInst) {
220     // Process VarLocs attached to a DPValue alongside their marker Instruction.
221     if (isa<const DPValue *>(P.first))
222       continue;
223     const Instruction *I = cast<const Instruction *>(P.first);
224     unsigned BlockStart = VarLocRecords.size();
225     // Any VarLocInfos attached to a DPValue should now be remapped to their
226     // marker Instruction, in order of DPValue appearance and prior to any
227     // VarLocInfos attached directly to that instruction.
228     for (const DPValue &DPV : I->getDbgValueRange()) {
229       // Even though DPV defines a variable location, VarLocsBeforeInst can
230       // still be empty if that VarLoc was redundant.
231       if (!Builder.VarLocsBeforeInst.count(&DPV))
232         continue;
233       for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DPV])
234         VarLocRecords.emplace_back(VarLoc);
235     }
236     for (const VarLocInfo &VarLoc : P.second)
237       VarLocRecords.emplace_back(VarLoc);
238     unsigned BlockEnd = VarLocRecords.size();
239     // Record the start and end indices.
240     if (BlockEnd != BlockStart)
241       VarLocsBeforeInst[I] = {BlockStart, BlockEnd};
242   }
243 
244   // Copy the Variables vector from the builder's UniqueVector.
245   assert(Variables.empty() && "Expect clear before init");
246   // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
247   // are one-based) so reserve an extra and insert a dummy.
248   Variables.reserve(Builder.Variables.size() + 1);
249   Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
250   Variables.append(Builder.Variables.begin(), Builder.Variables.end());
251 }
252 
253 void FunctionVarLocs::clear() {
254   Variables.clear();
255   VarLocRecords.clear();
256   VarLocsBeforeInst.clear();
257   SingleVarLocEnd = 0;
258 }
259 
260 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p
261 /// Start as far as possible. Prepend \Expression with the offset and append it
262 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
263 /// value and modified expression.
264 static std::pair<Value *, DIExpression *>
265 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
266                                   DIExpression *Expression) {
267   APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
268   Value *End =
269       Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
270   SmallVector<uint64_t, 3> Ops;
271   if (OffsetInBytes.getBoolValue()) {
272     Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
273     Expression = DIExpression::prependOpcodes(
274         Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
275   }
276   Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
277   return {End, Expression};
278 }
279 
280 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
281 /// doesn't explicitly describe a memory location with DW_OP_deref or if the
282 /// expression is too complex to interpret.
283 static std::optional<int64_t>
284 getDerefOffsetInBytes(const DIExpression *DIExpr) {
285   int64_t Offset = 0;
286   const unsigned NumElements = DIExpr->getNumElements();
287   const auto Elements = DIExpr->getElements();
288   unsigned ExpectedDerefIdx = 0;
289   // Extract the offset.
290   if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
291     Offset = Elements[1];
292     ExpectedDerefIdx = 2;
293   } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
294     ExpectedDerefIdx = 3;
295     if (Elements[2] == dwarf::DW_OP_plus)
296       Offset = Elements[1];
297     else if (Elements[2] == dwarf::DW_OP_minus)
298       Offset = -Elements[1];
299     else
300       return std::nullopt;
301   }
302 
303   // If that's all there is it means there's no deref.
304   if (ExpectedDerefIdx >= NumElements)
305     return std::nullopt;
306 
307   // Check the next element is DW_OP_deref - otherwise this is too complex or
308   // isn't a deref expression.
309   if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
310     return std::nullopt;
311 
312   // Check the final operation is either the DW_OP_deref or is a fragment.
313   if (NumElements == ExpectedDerefIdx + 1)
314     return Offset; // Ends with deref.
315   unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
316   unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
317   if (NumElements == ExpectedFragFinalIdx + 1 &&
318       Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
319     return Offset; // Ends with deref + fragment.
320 
321   // Don't bother trying to interpret anything more complex.
322   return std::nullopt;
323 }
324 
325 /// A whole (unfragmented) source variable.
326 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
327 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
328   return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
329 }
330 static DebugAggregate getAggregate(const DebugVariable &Var) {
331   return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
332 }
333 
334 static bool shouldCoalesceFragments(Function &F) {
335   // Enabling fragment coalescing reduces compiler run time when instruction
336   // referencing is enabled. However, it may cause LiveDebugVariables to create
337   // incorrect locations. Since instruction-referencing mode effectively
338   // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
339   // has not been explicitly set and instruction-referencing is turned on.
340   switch (CoalesceAdjacentFragmentsOpt) {
341   case cl::boolOrDefault::BOU_UNSET:
342     return debuginfoShouldUseDebugInstrRef(
343         Triple(F.getParent()->getTargetTriple()));
344   case cl::boolOrDefault::BOU_TRUE:
345     return true;
346   case cl::boolOrDefault::BOU_FALSE:
347     return false;
348   }
349   llvm_unreachable("Unknown boolOrDefault value");
350 }
351 
352 namespace {
353 /// In dwarf emission, the following sequence
354 ///    1. dbg.value ... Fragment(0, 64)
355 ///    2. dbg.value ... Fragment(0, 32)
356 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
357 /// the intersection of the fragments to having "no location"). This makes
358 /// sense for implicit location values because splitting the computed values
359 /// could be troublesome, and is probably quite uncommon.  When we convert
360 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
361 /// a location (memory) rather than a value means we don't need to worry about
362 /// splitting any values, so we try to recover the rest of the fragment
363 /// location here.
364 /// This class performs a(nother) dataflow analysis over the function, adding
365 /// variable locations so that any bits of a variable with a memory location
366 /// have that location explicitly reinstated at each subsequent variable
367 /// location definition that that doesn't overwrite those bits. i.e. after a
368 /// variable location def, insert new defs for the memory location with
369 /// fragments for the difference of "all bits currently in memory" and "the
370 /// fragment of the second def".
371 class MemLocFragmentFill {
372   Function &Fn;
373   FunctionVarLocsBuilder *FnVarLocs;
374   const DenseSet<DebugAggregate> *VarsWithStackSlot;
375   bool CoalesceAdjacentFragments;
376 
377   // 0 = no memory location.
378   using BaseAddress = unsigned;
379   using OffsetInBitsTy = unsigned;
380   using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
381   using FragsInMemMap = IntervalMap<
382       OffsetInBitsTy, BaseAddress,
383       IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
384       FragTraits>;
385   FragsInMemMap::Allocator IntervalMapAlloc;
386   using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
387 
388   /// IDs for memory location base addresses in maps. Use 0 to indicate that
389   /// there's no memory location.
390   UniqueVector<RawLocationWrapper> Bases;
391   UniqueVector<DebugAggregate> Aggregates;
392   DenseMap<const BasicBlock *, VarFragMap> LiveIn;
393   DenseMap<const BasicBlock *, VarFragMap> LiveOut;
394 
395   struct FragMemLoc {
396     unsigned Var;
397     unsigned Base;
398     unsigned OffsetInBits;
399     unsigned SizeInBits;
400     DebugLoc DL;
401   };
402   using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>;
403 
404   /// BBInsertBeforeMap holds a description for the set of location defs to be
405   /// inserted after the analysis is complete. It is updated during the dataflow
406   /// and the entry for a block is CLEARED each time it is (re-)visited. After
407   /// the dataflow is complete, each block entry will contain the set of defs
408   /// calculated during the final (fixed-point) iteration.
409   DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
410 
411   static bool intervalMapsAreEqual(const FragsInMemMap &A,
412                                    const FragsInMemMap &B) {
413     auto AIt = A.begin(), AEnd = A.end();
414     auto BIt = B.begin(), BEnd = B.end();
415     for (; AIt != AEnd; ++AIt, ++BIt) {
416       if (BIt == BEnd)
417         return false; // B has fewer elements than A.
418       if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
419         return false; // Interval is different.
420       if (*AIt != *BIt)
421         return false; // Value at interval is different.
422     }
423     // AIt == AEnd. Check BIt is also now at end.
424     return BIt == BEnd;
425   }
426 
427   static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
428     if (A.size() != B.size())
429       return false;
430     for (const auto &APair : A) {
431       auto BIt = B.find(APair.first);
432       if (BIt == B.end())
433         return false;
434       if (!intervalMapsAreEqual(APair.second, BIt->second))
435         return false;
436     }
437     return true;
438   }
439 
440   /// Return a string for the value that \p BaseID represents.
441   std::string toString(unsigned BaseID) {
442     if (BaseID)
443       return Bases[BaseID].getVariableLocationOp(0)->getName().str();
444     else
445       return "None";
446   }
447 
448   /// Format string describing an FragsInMemMap (IntervalMap) interval.
449   std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
450     std::string String;
451     std::stringstream S(String);
452     if (It.valid()) {
453       S << "[" << It.start() << ", " << It.stop()
454         << "): " << toString(It.value());
455     } else {
456       S << "invalid iterator (end)";
457     }
458     if (Newline)
459       S << "\n";
460     return S.str();
461   };
462 
463   FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
464     FragsInMemMap Result(IntervalMapAlloc);
465     for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
466       LLVM_DEBUG(dbgs() << "a " << toString(AIt));
467       // This is basically copied from process() and inverted (process is
468       // performing something like a union whereas this is more of an
469       // intersect).
470 
471       // There's no work to do if interval `a` overlaps no fragments in map `B`.
472       if (!B.overlaps(AIt.start(), AIt.stop()))
473         continue;
474 
475       // Does StartBit intersect an existing fragment?
476       auto FirstOverlap = B.find(AIt.start());
477       assert(FirstOverlap != B.end());
478       bool IntersectStart = FirstOverlap.start() < AIt.start();
479       LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
480                         << ", IntersectStart: " << IntersectStart << "\n");
481 
482       // Does EndBit intersect an existing fragment?
483       auto LastOverlap = B.find(AIt.stop());
484       bool IntersectEnd =
485           LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
486       LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
487                         << ", IntersectEnd: " << IntersectEnd << "\n");
488 
489       // Check if both ends of `a` intersect the same interval `b`.
490       if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
491         // Insert `a` (`a` is contained in `b`) if the values match.
492         // [ a ]
493         // [ - b - ]
494         // -
495         // [ r ]
496         LLVM_DEBUG(dbgs() << "- a is contained within "
497                           << toString(FirstOverlap));
498         if (*AIt && *AIt == *FirstOverlap)
499           Result.insert(AIt.start(), AIt.stop(), *AIt);
500       } else {
501         // There's an overlap but `a` is not fully contained within
502         // `b`. Shorten any end-point intersections.
503         //     [ - a - ]
504         // [ - b - ]
505         // -
506         //     [ r ]
507         auto Next = FirstOverlap;
508         if (IntersectStart) {
509           LLVM_DEBUG(dbgs() << "- insert intersection of a and "
510                             << toString(FirstOverlap));
511           if (*AIt && *AIt == *FirstOverlap)
512             Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
513           ++Next;
514         }
515         // [ - a - ]
516         //     [ - b - ]
517         // -
518         //     [ r ]
519         if (IntersectEnd) {
520           LLVM_DEBUG(dbgs() << "- insert intersection of a and "
521                             << toString(LastOverlap));
522           if (*AIt && *AIt == *LastOverlap)
523             Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
524         }
525 
526         // Insert all intervals in map `B` that are contained within interval
527         // `a` where the values match.
528         // [ -  - a -  - ]
529         // [ b1 ]   [ b2 ]
530         // -
531         // [ r1 ]   [ r2 ]
532         while (Next != B.end() && Next.start() < AIt.stop() &&
533                Next.stop() <= AIt.stop()) {
534           LLVM_DEBUG(dbgs()
535                      << "- insert intersection of a and " << toString(Next));
536           if (*AIt && *AIt == *Next)
537             Result.insert(Next.start(), Next.stop(), *Next);
538           ++Next;
539         }
540       }
541     }
542     return Result;
543   }
544 
545   /// Meet \p A and \p B, storing the result in \p A.
546   void meetVars(VarFragMap &A, const VarFragMap &B) {
547     // Meet A and B.
548     //
549     // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
550     for (auto It = A.begin(), End = A.end(); It != End; ++It) {
551       unsigned AVar = It->first;
552       FragsInMemMap &AFrags = It->second;
553       auto BIt = B.find(AVar);
554       if (BIt == B.end()) {
555         A.erase(It);
556         continue; // Var has no bits defined in B.
557       }
558       LLVM_DEBUG(dbgs() << "meet fragment maps for "
559                         << Aggregates[AVar].first->getName() << "\n");
560       AFrags = meetFragments(AFrags, BIt->second);
561     }
562   }
563 
564   bool meet(const BasicBlock &BB,
565             const SmallPtrSet<BasicBlock *, 16> &Visited) {
566     LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
567                       << "\n");
568 
569     VarFragMap BBLiveIn;
570     bool FirstMeet = true;
571     // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
572     // locs.
573     for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
574       // Ignore preds that haven't been processed yet. This is essentially the
575       // same as initialising all variables to implicit top value (⊤) which is
576       // the identity value for the meet operation.
577       const BasicBlock *Pred = *I;
578       if (!Visited.count(Pred))
579         continue;
580 
581       auto PredLiveOut = LiveOut.find(Pred);
582       assert(PredLiveOut != LiveOut.end());
583 
584       if (FirstMeet) {
585         LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
586         BBLiveIn = PredLiveOut->second;
587         FirstMeet = false;
588       } else {
589         LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
590                           << "\n");
591         meetVars(BBLiveIn, PredLiveOut->second);
592       }
593 
594       // An empty set is ⊥ for the intersect-like meet operation. If we've
595       // already got ⊥ there's no need to run the code - we know the result is
596       // ⊥ since `meet(a, ⊥) = ⊥`.
597       if (BBLiveIn.size() == 0)
598         break;
599     }
600 
601     auto CurrentLiveInEntry = LiveIn.find(&BB);
602     // If there's no LiveIn entry for the block yet, add it.
603     if (CurrentLiveInEntry == LiveIn.end()) {
604       LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
605                         << "\n");
606       LiveIn[&BB] = std::move(BBLiveIn);
607       return /*Changed=*/true;
608     }
609 
610     // If the LiveIn set has changed (expensive check) update it and return
611     // true.
612     if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
613       LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
614       CurrentLiveInEntry->second = std::move(BBLiveIn);
615       return /*Changed=*/true;
616     }
617 
618     LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
619     return /*Changed=*/false;
620   }
621 
622   void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
623                     unsigned StartBit, unsigned EndBit, unsigned Base,
624                     DebugLoc DL) {
625     assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
626     if (!Base)
627       return;
628     FragMemLoc Loc;
629     Loc.Var = Var;
630     Loc.OffsetInBits = StartBit;
631     Loc.SizeInBits = EndBit - StartBit;
632     assert(Base && "Expected a non-zero ID for Base address");
633     Loc.Base = Base;
634     Loc.DL = DL;
635     BBInsertBeforeMap[&BB][Before].push_back(Loc);
636     LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
637                       << " bits [" << StartBit << ", " << EndBit << ")\n");
638   }
639 
640   /// Inserts a new dbg def if the interval found when looking up \p StartBit
641   /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
642   /// indicates - assuming StartBit->EndBit has just been inserted - that the
643   /// slice has been coalesced in the map).
644   void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
645                          unsigned StartBit, unsigned EndBit, unsigned Base,
646                          DebugLoc DL, const FragsInMemMap &FragMap) {
647     if (!CoalesceAdjacentFragments)
648       return;
649     // We've inserted the location into the map. The map will have coalesced
650     // adjacent intervals (variable fragments) that describe the same memory
651     // location. Use this knowledge to insert a debug location that describes
652     // that coalesced fragment. This may eclipse other locs we've just
653     // inserted. This is okay as redundant locs will be cleaned up later.
654     auto CoalescedFrag = FragMap.find(StartBit);
655     // Bail if no coalescing has taken place.
656     if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
657       return;
658 
659     LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
660                       << " to " << CoalescedFrag.stop() << "\n");
661     insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
662                  Base, DL);
663   }
664 
665   void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB,
666               VarFragMap &LiveSet) {
667     DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
668     if (skipVariable(DbgVar.getVariable()))
669       return;
670     // Don't bother doing anything for this variables if we know it's fully
671     // promoted. We're only interested in variables that (sometimes) live on
672     // the stack here.
673     if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
674       return;
675     unsigned Var = Aggregates.insert(
676         DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
677 
678     // [StartBit: EndBit) are the bits affected by this def.
679     const DIExpression *DIExpr = VarLoc.Expr;
680     unsigned StartBit;
681     unsigned EndBit;
682     if (auto Frag = DIExpr->getFragmentInfo()) {
683       StartBit = Frag->OffsetInBits;
684       EndBit = StartBit + Frag->SizeInBits;
685     } else {
686       assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
687       StartBit = 0;
688       EndBit = *DbgVar.getVariable()->getSizeInBits();
689     }
690 
691     // We will only fill fragments for simple memory-describing dbg.value
692     // intrinsics. If the fragment offset is the same as the offset from the
693     // base pointer, do The Thing, otherwise fall back to normal dbg.value
694     // behaviour. AssignmentTrackingLowering has generated DIExpressions
695     // written in terms of the base pointer.
696     // TODO: Remove this condition since the fragment offset doesn't always
697     // equal the offset from base pointer (e.g. for a SROA-split variable).
698     const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
699     const unsigned Base =
700         DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
701             ? Bases.insert(VarLoc.Values)
702             : 0;
703     LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
704                       << StartBit << ", " << EndBit << "): " << toString(Base)
705                       << "\n");
706 
707     // First of all, any locs that use mem that are disrupted need reinstating.
708     // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
709     // with existing intervals so this code involves a lot of fiddling around
710     // with intervals to do that manually.
711     auto FragIt = LiveSet.find(Var);
712 
713     // Check if the variable does not exist in the map.
714     if (FragIt == LiveSet.end()) {
715       // Add this variable to the BB map.
716       auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
717       assert(P.second && "Var already in map?");
718       // Add the interval to the fragment map.
719       P.first->second.insert(StartBit, EndBit, Base);
720       return;
721     }
722     // The variable has an entry in the map.
723 
724     FragsInMemMap &FragMap = FragIt->second;
725     // First check the easy case: the new fragment `f` doesn't overlap with any
726     // intervals.
727     if (!FragMap.overlaps(StartBit, EndBit)) {
728       LLVM_DEBUG(dbgs() << "- No overlaps\n");
729       FragMap.insert(StartBit, EndBit, Base);
730       coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
731                         FragMap);
732       return;
733     }
734     // There is at least one overlap.
735 
736     // Does StartBit intersect an existing fragment?
737     auto FirstOverlap = FragMap.find(StartBit);
738     assert(FirstOverlap != FragMap.end());
739     bool IntersectStart = FirstOverlap.start() < StartBit;
740 
741     // Does EndBit intersect an existing fragment?
742     auto LastOverlap = FragMap.find(EndBit);
743     bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
744 
745     // Check if both ends of `f` intersect the same interval `i`.
746     if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
747       LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
748       // Shorten `i` so that there's space to insert `f`.
749       //      [ f ]
750       // [  -   i   -  ]
751       // +
752       // [ i ][ f ][ i ]
753 
754       // Save values for use after inserting a new interval.
755       auto EndBitOfOverlap = FirstOverlap.stop();
756       unsigned OverlapValue = FirstOverlap.value();
757 
758       // Shorten the overlapping interval.
759       FirstOverlap.setStop(StartBit);
760       insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
761                    OverlapValue, VarLoc.DL);
762 
763       // Insert a new interval to represent the end part.
764       FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
765       insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
766                    VarLoc.DL);
767 
768       // Insert the new (middle) fragment now there is space.
769       FragMap.insert(StartBit, EndBit, Base);
770     } else {
771       // There's an overlap but `f` may not be fully contained within
772       // `i`. Shorten any end-point intersections so that we can then
773       // insert `f`.
774       //      [ - f - ]
775       // [ - i - ]
776       // |   |
777       // [ i ]
778       // Shorten any end-point intersections.
779       if (IntersectStart) {
780         LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
781         // Split off at the intersection.
782         FirstOverlap.setStop(StartBit);
783         insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
784                      *FirstOverlap, VarLoc.DL);
785       }
786       // [ - f - ]
787       //      [ - i - ]
788       //          |   |
789       //          [ i ]
790       if (IntersectEnd) {
791         LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
792         // Split off at the intersection.
793         LastOverlap.setStart(EndBit);
794         insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
795                      VarLoc.DL);
796       }
797 
798       LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
799       // FirstOverlap and LastOverlap have been shortened such that they're
800       // no longer overlapping with [StartBit, EndBit). Delete any overlaps
801       // that remain (these will be fully contained within `f`).
802       // [ - f - ]       }
803       //      [ - i - ]  } Intersection shortening that has happened above.
804       //          |   |  }
805       //          [ i ]  }
806       // -----------------
807       // [i2 ]           } Intervals fully contained within `f` get erased.
808       // -----------------
809       // [ - f - ][ i ]  } Completed insertion.
810       auto It = FirstOverlap;
811       if (IntersectStart)
812         ++It; // IntersectStart: first overlap has been shortened.
813       while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
814         LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
815         It.erase(); // This increments It after removing the interval.
816       }
817       // We've dealt with all the overlaps now!
818       assert(!FragMap.overlaps(StartBit, EndBit));
819       LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
820       FragMap.insert(StartBit, EndBit, Base);
821     }
822 
823     coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
824                       FragMap);
825   }
826 
827   bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
828 
829   void process(BasicBlock &BB, VarFragMap &LiveSet) {
830     BBInsertBeforeMap[&BB].clear();
831     for (auto &I : BB) {
832       if (const auto *Locs = FnVarLocs->getWedge(&I)) {
833         for (const VarLocInfo &Loc : *Locs) {
834           addDef(Loc, &I, *I.getParent(), LiveSet);
835         }
836       }
837     }
838   }
839 
840 public:
841   MemLocFragmentFill(Function &Fn,
842                      const DenseSet<DebugAggregate> *VarsWithStackSlot,
843                      bool CoalesceAdjacentFragments)
844       : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
845         CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
846 
847   /// Add variable locations to \p FnVarLocs so that any bits of a variable
848   /// with a memory location have that location explicitly reinstated at each
849   /// subsequent variable location definition that that doesn't overwrite those
850   /// bits. i.e. after a variable location def, insert new defs for the memory
851   /// location with fragments for the difference of "all bits currently in
852   /// memory" and "the fragment of the second def". e.g.
853   ///
854   ///     Before:
855   ///
856   ///     var x bits 0 to 63:  value in memory
857   ///     more instructions
858   ///     var x bits 0 to 31:  value is %0
859   ///
860   ///     After:
861   ///
862   ///     var x bits 0 to 63:  value in memory
863   ///     more instructions
864   ///     var x bits 0 to 31:  value is %0
865   ///     var x bits 32 to 61: value in memory ; <-- new loc def
866   ///
867   void run(FunctionVarLocsBuilder *FnVarLocs) {
868     if (!EnableMemLocFragFill)
869       return;
870 
871     this->FnVarLocs = FnVarLocs;
872 
873     // Prepare for traversal.
874     //
875     ReversePostOrderTraversal<Function *> RPOT(&Fn);
876     std::priority_queue<unsigned int, std::vector<unsigned int>,
877                         std::greater<unsigned int>>
878         Worklist;
879     std::priority_queue<unsigned int, std::vector<unsigned int>,
880                         std::greater<unsigned int>>
881         Pending;
882     DenseMap<unsigned int, BasicBlock *> OrderToBB;
883     DenseMap<BasicBlock *, unsigned int> BBToOrder;
884     { // Init OrderToBB and BBToOrder.
885       unsigned int RPONumber = 0;
886       for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
887         OrderToBB[RPONumber] = *RI;
888         BBToOrder[*RI] = RPONumber;
889         Worklist.push(RPONumber);
890         ++RPONumber;
891       }
892       LiveIn.init(RPONumber);
893       LiveOut.init(RPONumber);
894     }
895 
896     // Perform the traversal.
897     //
898     // This is a standard "intersect of predecessor outs" dataflow problem. To
899     // solve it, we perform meet() and process() using the two worklist method
900     // until the LiveIn data for each block becomes unchanging.
901     //
902     // This dataflow is essentially working on maps of sets and at each meet we
903     // intersect the maps and the mapped sets. So, initialized live-in maps
904     // monotonically decrease in value throughout the dataflow.
905     SmallPtrSet<BasicBlock *, 16> Visited;
906     while (!Worklist.empty() || !Pending.empty()) {
907       // We track what is on the pending worklist to avoid inserting the same
908       // thing twice.  We could avoid this with a custom priority queue, but
909       // this is probably not worth it.
910       SmallPtrSet<BasicBlock *, 16> OnPending;
911       LLVM_DEBUG(dbgs() << "Processing Worklist\n");
912       while (!Worklist.empty()) {
913         BasicBlock *BB = OrderToBB[Worklist.top()];
914         LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
915         Worklist.pop();
916         bool InChanged = meet(*BB, Visited);
917         // Always consider LiveIn changed on the first visit.
918         InChanged |= Visited.insert(BB).second;
919         if (InChanged) {
920           LLVM_DEBUG(dbgs()
921                      << BB->getName() << " has new InLocs, process it\n");
922           //  Mutate a copy of LiveIn while processing BB. Once we've processed
923           //  the terminator LiveSet is the LiveOut set for BB.
924           //  This is an expensive copy!
925           VarFragMap LiveSet = LiveIn[BB];
926 
927           // Process the instructions in the block.
928           process(*BB, LiveSet);
929 
930           // Relatively expensive check: has anything changed in LiveOut for BB?
931           if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
932             LLVM_DEBUG(dbgs() << BB->getName()
933                               << " has new OutLocs, add succs to worklist: [ ");
934             LiveOut[BB] = std::move(LiveSet);
935             for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
936               if (OnPending.insert(*I).second) {
937                 LLVM_DEBUG(dbgs() << I->getName() << " ");
938                 Pending.push(BBToOrder[*I]);
939               }
940             }
941             LLVM_DEBUG(dbgs() << "]\n");
942           }
943         }
944       }
945       Worklist.swap(Pending);
946       // At this point, pending must be empty, since it was just the empty
947       // worklist
948       assert(Pending.empty() && "Pending should be empty");
949     }
950 
951     // Insert new location defs.
952     for (auto &Pair : BBInsertBeforeMap) {
953       InsertMap &Map = Pair.second;
954       for (auto &Pair : Map) {
955         auto InsertBefore = Pair.first;
956         assert(InsertBefore && "should never be null");
957         auto FragMemLocs = Pair.second;
958         auto &Ctx = Fn.getContext();
959 
960         for (auto &FragMemLoc : FragMemLocs) {
961           DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
962           if (FragMemLoc.SizeInBits !=
963               *Aggregates[FragMemLoc.Var].first->getSizeInBits())
964             Expr = *DIExpression::createFragmentExpression(
965                 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
966           Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
967                                        FragMemLoc.OffsetInBits / 8);
968           DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
969                             FragMemLoc.DL.getInlinedAt());
970           FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
971                                Bases[FragMemLoc.Base]);
972         }
973       }
974     }
975   }
976 };
977 
978 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
979 /// that interprets assignment tracking debug info metadata and stores in IR to
980 /// create a map of variable locations.
981 class AssignmentTrackingLowering {
982 public:
983   /// The kind of location in use for a variable, where Mem is the stack home,
984   /// Val is an SSA value or const, and None means that there is not one single
985   /// kind (either because there are multiple or because there is none; it may
986   /// prove useful to split this into two values in the future).
987   ///
988   /// LocKind is a join-semilattice with the partial order:
989   /// None > Mem, Val
990   ///
991   /// i.e.
992   /// join(Mem, Mem)   = Mem
993   /// join(Val, Val)   = Val
994   /// join(Mem, Val)   = None
995   /// join(None, Mem)  = None
996   /// join(None, Val)  = None
997   /// join(None, None) = None
998   ///
999   /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
1000   /// to name assignments and are not tracking the actual stored values.
1001   /// Therefore currently there's no way to ensure that Mem values and Val
1002   /// values are the same. This could be a future extension, though it's not
1003   /// clear that many additional locations would be recovered that way in
1004   /// practice as the likelihood of this sitation arising naturally seems
1005   /// incredibly low.
1006   enum class LocKind { Mem, Val, None };
1007 
1008   /// An abstraction of the assignment of a value to a variable or memory
1009   /// location.
1010   ///
1011   /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
1012   /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
1013   /// can't) know the ID of the last assignment that took place.
1014   ///
1015   /// The Status of the Assignment (Known or NoneOrPhi) is another
1016   /// join-semilattice. The partial order is:
1017   /// NoneOrPhi > Known {id_0, id_1, ...id_N}
1018   ///
1019   /// i.e. for all values x and y where x != y:
1020   /// join(x, x) = x
1021   /// join(x, y) = NoneOrPhi
1022   struct Assignment {
1023     enum S { Known, NoneOrPhi } Status;
1024     /// ID of the assignment. nullptr if Status is not Known.
1025     DIAssignID *ID;
1026     /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
1027     /// May be nullptr.
1028     DbgAssignIntrinsic *Source;
1029 
1030     bool isSameSourceAssignment(const Assignment &Other) const {
1031       // Don't include Source in the equality check. Assignments are
1032       // defined by their ID, not debug intrinsic(s).
1033       return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
1034     }
1035     void dump(raw_ostream &OS) {
1036       static const char *LUT[] = {"Known", "NoneOrPhi"};
1037       OS << LUT[Status] << "(id=";
1038       if (ID)
1039         OS << ID;
1040       else
1041         OS << "null";
1042       OS << ", s=";
1043       if (Source)
1044         OS << *Source;
1045       else
1046         OS << "null";
1047       OS << ")";
1048     }
1049 
1050     static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
1051       return Assignment(Known, ID, Source);
1052     }
1053     static Assignment makeFromMemDef(DIAssignID *ID) {
1054       return Assignment(Known, ID, nullptr);
1055     }
1056     static Assignment makeNoneOrPhi() {
1057       return Assignment(NoneOrPhi, nullptr, nullptr);
1058     }
1059     // Again, need a Top value?
1060     Assignment()
1061         : Status(NoneOrPhi), ID(nullptr), Source(nullptr) {
1062     } // Can we delete this?
1063     Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
1064         : Status(Status), ID(ID), Source(Source) {
1065       // If the Status is Known then we expect there to be an assignment ID.
1066       assert(Status == NoneOrPhi || ID);
1067     }
1068   };
1069 
1070   using AssignmentMap = SmallVector<Assignment>;
1071   using LocMap = SmallVector<LocKind>;
1072   using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>;
1073   using UntaggedStoreAssignmentMap =
1074       DenseMap<const Instruction *,
1075                SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
1076 
1077 private:
1078   /// The highest numbered VariableID for partially promoted variables plus 1,
1079   /// the values for which start at 1.
1080   unsigned TrackedVariablesVectorSize = 0;
1081   /// Map a variable to the set of variables that it fully contains.
1082   OverlapMap VarContains;
1083   /// Map untagged stores to the variable fragments they assign to. Used by
1084   /// processUntaggedInstruction.
1085   UntaggedStoreAssignmentMap UntaggedStoreVars;
1086 
1087   // Machinery to defer inserting dbg.values.
1088   using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>;
1089   InstInsertMap InsertBeforeMap;
1090   /// Clear the location definitions currently cached for insertion after /p
1091   /// After.
1092   void resetInsertionPoint(Instruction &After);
1093   void resetInsertionPoint(DPValue &After);
1094   void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source,
1095                     Instruction *After);
1096 
1097   static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
1098                            const AssignmentMap &B) {
1099     return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
1100       return A[VarID].isSameSourceAssignment(B[VarID]);
1101     });
1102   }
1103 
1104   /// Represents the stack and debug assignments in a block. Used to describe
1105   /// the live-in and live-out values for blocks, as well as the "current"
1106   /// value as we process each instruction in a block.
1107   struct BlockInfo {
1108     /// The set of variables (VariableID) being tracked in this block.
1109     BitVector VariableIDsInBlock;
1110     /// Dominating assignment to memory for each variable, indexed by
1111     /// VariableID.
1112     AssignmentMap StackHomeValue;
1113     /// Dominating assignemnt to each variable, indexed by VariableID.
1114     AssignmentMap DebugValue;
1115     /// Location kind for each variable. LiveLoc indicates whether the
1116     /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1117     /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1118     /// preference. This cannot be derived by inspecting DebugValue and
1119     /// StackHomeValue due to the fact that there's no distinction in
1120     /// Assignment (the class) between whether an assignment is unknown or a
1121     /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1122     /// words, the memory location may well be valid while both DebugValue and
1123     /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1124     /// Indexed by VariableID.
1125     LocMap LiveLoc;
1126 
1127   public:
1128     enum AssignmentKind { Stack, Debug };
1129     const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
1130       switch (Kind) {
1131       case Stack:
1132         return StackHomeValue;
1133       case Debug:
1134         return DebugValue;
1135       }
1136       llvm_unreachable("Unknown AssignmentKind");
1137     }
1138     AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
1139       return const_cast<AssignmentMap &>(
1140           const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
1141     }
1142 
1143     bool isVariableTracked(VariableID Var) const {
1144       return VariableIDsInBlock[static_cast<unsigned>(Var)];
1145     }
1146 
1147     const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
1148       assert(isVariableTracked(Var) && "Var not tracked in block");
1149       return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
1150     }
1151 
1152     LocKind getLocKind(VariableID Var) const {
1153       assert(isVariableTracked(Var) && "Var not tracked in block");
1154       return LiveLoc[static_cast<unsigned>(Var)];
1155     }
1156 
1157     /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1158     /// fragments contained win \p Var.
1159     void setLocKind(VariableID Var, LocKind K) {
1160       VariableIDsInBlock.set(static_cast<unsigned>(Var));
1161       LiveLoc[static_cast<unsigned>(Var)] = K;
1162     }
1163 
1164     /// Set the assignment in the \p Kind assignment map for \p Var only: does
1165     /// not set the assignment for VariableIDs of fragments contained win \p
1166     /// Var.
1167     void setAssignment(AssignmentKind Kind, VariableID Var,
1168                        const Assignment &AV) {
1169       VariableIDsInBlock.set(static_cast<unsigned>(Var));
1170       getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
1171     }
1172 
1173     /// Return true if there is an assignment matching \p AV in the \p Kind
1174     /// assignment map. Does consider assignments for VariableIDs of fragments
1175     /// contained win \p Var.
1176     bool hasAssignment(AssignmentKind Kind, VariableID Var,
1177                        const Assignment &AV) const {
1178       if (!isVariableTracked(Var))
1179         return false;
1180       return AV.isSameSourceAssignment(getAssignment(Kind, Var));
1181     }
1182 
1183     /// Compare every element in each map to determine structural equality
1184     /// (slow).
1185     bool operator==(const BlockInfo &Other) const {
1186       return VariableIDsInBlock == Other.VariableIDsInBlock &&
1187              LiveLoc == Other.LiveLoc &&
1188              mapsAreEqual(VariableIDsInBlock, StackHomeValue,
1189                           Other.StackHomeValue) &&
1190              mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
1191     }
1192     bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
1193     bool isValid() {
1194       return LiveLoc.size() == DebugValue.size() &&
1195              LiveLoc.size() == StackHomeValue.size();
1196     }
1197 
1198     /// Clear everything and initialise with ⊤-values for all variables.
1199     void init(int NumVars) {
1200       StackHomeValue.clear();
1201       DebugValue.clear();
1202       LiveLoc.clear();
1203       VariableIDsInBlock = BitVector(NumVars);
1204       StackHomeValue.insert(StackHomeValue.begin(), NumVars,
1205                             Assignment::makeNoneOrPhi());
1206       DebugValue.insert(DebugValue.begin(), NumVars,
1207                         Assignment::makeNoneOrPhi());
1208       LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
1209     }
1210 
1211     /// Helper for join.
1212     template <typename ElmtType, typename FnInputType>
1213     static void joinElmt(int Index, SmallVector<ElmtType> &Target,
1214                          const SmallVector<ElmtType> &A,
1215                          const SmallVector<ElmtType> &B,
1216                          ElmtType (*Fn)(FnInputType, FnInputType)) {
1217       Target[Index] = Fn(A[Index], B[Index]);
1218     }
1219 
1220     /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1221     static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
1222       // Join A and B.
1223       //
1224       // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1225       // Difference = join(x, ⊤) for x where Var(x) is in A xor B
1226       // Join = Intersect ∪ Difference
1227       //
1228       // This is achieved by performing a join on elements from A and B with
1229       // variables common to both A and B (join elements indexed by var
1230       // intersect), then adding ⊤-value elements for vars in A xor B. The
1231       // latter part is equivalent to performing join on elements with variables
1232       // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤.
1233       // BlockInfo::init initializes all variable entries to the ⊤ value so we
1234       // don't need to explicitly perform that step as Join.VariableIDsInBlock
1235       // is set to the union of the variables in A and B at the end of this
1236       // function.
1237       BlockInfo Join;
1238       Join.init(NumVars);
1239 
1240       BitVector Intersect = A.VariableIDsInBlock;
1241       Intersect &= B.VariableIDsInBlock;
1242 
1243       for (auto VarID : Intersect.set_bits()) {
1244         joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
1245         joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
1246                  joinAssignment);
1247         joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
1248                  joinAssignment);
1249       }
1250 
1251       Join.VariableIDsInBlock = A.VariableIDsInBlock;
1252       Join.VariableIDsInBlock |= B.VariableIDsInBlock;
1253       assert(Join.isValid());
1254       return Join;
1255     }
1256   };
1257 
1258   Function &Fn;
1259   const DataLayout &Layout;
1260   const DenseSet<DebugAggregate> *VarsWithStackSlot;
1261   FunctionVarLocsBuilder *FnVarLocs;
1262   DenseMap<const BasicBlock *, BlockInfo> LiveIn;
1263   DenseMap<const BasicBlock *, BlockInfo> LiveOut;
1264 
1265   /// Helper for process methods to track variables touched each frame.
1266   DenseSet<VariableID> VarsTouchedThisFrame;
1267 
1268   /// The set of variables that sometimes are not located in their stack home.
1269   DenseSet<DebugAggregate> NotAlwaysStackHomed;
1270 
1271   VariableID getVariableID(const DebugVariable &Var) {
1272     return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
1273   }
1274 
1275   /// Join the LiveOut values of preds that are contained in \p Visited into
1276   /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1277   /// values monotonically increase. See the @link joinMethods join methods
1278   /// @endlink documentation for more info.
1279   bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1280   ///@name joinMethods
1281   /// Functions that implement `join` (the least upper bound) for the
1282   /// join-semilattice types used in the dataflow. There is an explicit bottom
1283   /// value (⊥) for some types and and explicit top value (⊤) for all types.
1284   /// By definition:
1285   ///
1286   ///     Join(A, B) >= A && Join(A, B) >= B
1287   ///     Join(A, ⊥) = A
1288   ///     Join(A, ⊤) = ⊤
1289   ///
1290   /// These invariants are important for monotonicity.
1291   ///
1292   /// For the map-type functions, all unmapped keys in an empty map are
1293   /// associated with a bottom value (⊥). This represents their values being
1294   /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1295   /// only present in one) represents either a variable going out of scope or
1296   /// dropped debug info. It is assumed the key is associated with a top value
1297   /// (⊤) in this case (unknown location / assignment).
1298   ///@{
1299   static LocKind joinKind(LocKind A, LocKind B);
1300   static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1301   BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1302   ///@}
1303 
1304   /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1305   /// LiveSet must be initialized with the current live-in locations before
1306   /// calling this.
1307   void process(BasicBlock &BB, BlockInfo *LiveSet);
1308   ///@name processMethods
1309   /// Methods to process instructions in order to update the LiveSet (current
1310   /// location information).
1311   ///@{
1312   void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1313   void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet);
1314   /// Update \p LiveSet after encountering an instruction with a DIAssignID
1315   /// attachment, \p I.
1316   void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1317   /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1318   /// attachment, \p I.
1319   void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1320   void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet);
1321   void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet);
1322   /// Add an assignment to memory for the variable /p Var.
1323   void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1324   /// Add an assignment to the variable /p Var.
1325   void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1326   ///@}
1327 
1328   /// Set the LocKind for \p Var.
1329   void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1330   /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1331   /// have been called for \p Var first.
1332   LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1333   /// Return true if \p Var has an assignment in \p M matching \p AV.
1334   bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
1335                             VariableID Var, const Assignment &AV);
1336   /// Return the set of VariableIDs corresponding the fragments contained fully
1337   /// within the variable/fragment \p Var.
1338   ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
1339 
1340   /// Mark \p Var as having been touched this frame. Note, this applies only
1341   /// to the exact fragment \p Var and not to any fragments contained within.
1342   void touchFragment(VariableID Var);
1343 
1344   /// Emit info for variables that are fully promoted.
1345   bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1346 
1347 public:
1348   AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1349                              const DenseSet<DebugAggregate> *VarsWithStackSlot)
1350       : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1351   /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1352   /// true if any variable locations have been added to FnVarLocs.
1353   bool run(FunctionVarLocsBuilder *FnVarLocs);
1354 };
1355 } // namespace
1356 
1357 ArrayRef<VariableID>
1358 AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
1359   auto R = VarContains.find(Var);
1360   if (R == VarContains.end())
1361     return std::nullopt;
1362   return R->second;
1363 }
1364 
1365 void AssignmentTrackingLowering::touchFragment(VariableID Var) {
1366   VarsTouchedThisFrame.insert(Var);
1367 }
1368 
1369 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1370                                             LocKind K) {
1371   auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1372     LiveSet->setLocKind(Var, K);
1373     touchFragment(Var);
1374   };
1375   SetKind(LiveSet, Var, K);
1376 
1377   // Update the LocKind for all fragments contained within Var.
1378   for (VariableID Frag : getContainedFragments(Var))
1379     SetKind(LiveSet, Frag, K);
1380 }
1381 
1382 AssignmentTrackingLowering::LocKind
1383 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1384   return LiveSet->getLocKind(Var);
1385 }
1386 
1387 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1388                                            const Assignment &AV) {
1389   LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
1390 
1391   // Use this assigment for all fragments contained within Var, but do not
1392   // provide a Source because we cannot convert Var's value to a value for the
1393   // fragment.
1394   Assignment FragAV = AV;
1395   FragAV.Source = nullptr;
1396   for (VariableID Frag : getContainedFragments(Var))
1397     LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
1398 }
1399 
1400 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1401                                            const Assignment &AV) {
1402   LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
1403 
1404   // Use this assigment for all fragments contained within Var, but do not
1405   // provide a Source because we cannot convert Var's value to a value for the
1406   // fragment.
1407   Assignment FragAV = AV;
1408   FragAV.Source = nullptr;
1409   for (VariableID Frag : getContainedFragments(Var))
1410     LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
1411 }
1412 
1413 static DIAssignID *getIDFromInst(const Instruction &I) {
1414   return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1415 }
1416 
1417 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
1418   return cast<DIAssignID>(DAI.getAssignID());
1419 }
1420 
1421 /// Return true if \p Var has an assignment in \p M matching \p AV.
1422 bool AssignmentTrackingLowering::hasVarWithAssignment(
1423     BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
1424     const Assignment &AV) {
1425   if (!LiveSet->hasAssignment(Kind, Var, AV))
1426     return false;
1427 
1428   // Check all the frags contained within Var as these will have all been
1429   // mapped to AV at the last store to Var.
1430   for (VariableID Frag : getContainedFragments(Var))
1431     if (!LiveSet->hasAssignment(Kind, Frag, AV))
1432       return false;
1433   return true;
1434 }
1435 
1436 #ifndef NDEBUG
1437 const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1438   using LocKind = AssignmentTrackingLowering::LocKind;
1439   switch (Loc) {
1440   case LocKind::Val:
1441     return "Val";
1442   case LocKind::Mem:
1443     return "Mem";
1444   case LocKind::None:
1445     return "None";
1446   };
1447   llvm_unreachable("unknown LocKind");
1448 }
1449 #endif
1450 
1451 VarLocInsertPt getNextNode(const DPValue *DPV) {
1452   auto NextIt = ++(DPV->getIterator());
1453   if (NextIt == DPV->getMarker()->getDbgValueRange().end())
1454     return DPV->getMarker()->MarkedInstr;
1455   return &*NextIt;
1456 }
1457 VarLocInsertPt getNextNode(const Instruction *Inst) {
1458   const Instruction *Next = Inst->getNextNode();
1459   if (!Next->hasDbgValues())
1460     return Next;
1461   return &*Next->getDbgValueRange().begin();
1462 }
1463 VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) {
1464   if (isa<const Instruction *>(InsertPt))
1465     return getNextNode(cast<const Instruction *>(InsertPt));
1466   return getNextNode(cast<const DPValue *>(InsertPt));
1467 }
1468 
1469 void AssignmentTrackingLowering::emitDbgValue(
1470     AssignmentTrackingLowering::LocKind Kind,
1471     const DbgVariableIntrinsic *Source, Instruction *After) {
1472 
1473   DILocation *DL = Source->getDebugLoc();
1474   auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
1475     assert(Expr);
1476     if (!Val)
1477       Val = ValueAsMetadata::get(
1478           PoisonValue::get(Type::getInt1Ty(Source->getContext())));
1479 
1480     // Find a suitable insert point.
1481     auto InsertBefore = getNextNode(After);
1482     assert(InsertBefore && "Shouldn't be inserting after a terminator");
1483 
1484     VariableID Var = getVariableID(DebugVariable(Source));
1485     VarLocInfo VarLoc;
1486     VarLoc.VariableID = static_cast<VariableID>(Var);
1487     VarLoc.Expr = Expr;
1488     VarLoc.Values = RawLocationWrapper(Val);
1489     VarLoc.DL = DL;
1490     // Insert it into the map for later.
1491     InsertBeforeMap[InsertBefore].push_back(VarLoc);
1492   };
1493 
1494   // NOTE: This block can mutate Kind.
1495   if (Kind == LocKind::Mem) {
1496     const auto *DAI = cast<DbgAssignIntrinsic>(Source);
1497     // Check the address hasn't been dropped (e.g. the debug uses may not have
1498     // been replaced before deleting a Value).
1499     if (DAI->isKillAddress()) {
1500       // The address isn't valid so treat this as a non-memory def.
1501       Kind = LocKind::Val;
1502     } else {
1503       Value *Val = DAI->getAddress();
1504       DIExpression *Expr = DAI->getAddressExpression();
1505       assert(!Expr->getFragmentInfo() &&
1506              "fragment info should be stored in value-expression only");
1507       // Copy the fragment info over from the value-expression to the new
1508       // DIExpression.
1509       if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1510         auto FragInfo = *OptFragInfo;
1511         Expr = *DIExpression::createFragmentExpression(
1512             Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1513       }
1514       // The address-expression has an implicit deref, add it now.
1515       std::tie(Val, Expr) =
1516           walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1517       Emit(ValueAsMetadata::get(Val), Expr);
1518       return;
1519     }
1520   }
1521 
1522   if (Kind == LocKind::Val) {
1523     Emit(Source->getRawLocation(), Source->getExpression());
1524     return;
1525   }
1526 
1527   if (Kind == LocKind::None) {
1528     Emit(nullptr, Source->getExpression());
1529     return;
1530   }
1531 }
1532 
1533 void AssignmentTrackingLowering::processNonDbgInstruction(
1534     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1535   if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1536     processTaggedInstruction(I, LiveSet);
1537   else
1538     processUntaggedInstruction(I, LiveSet);
1539 }
1540 
1541 void AssignmentTrackingLowering::processUntaggedInstruction(
1542     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1543   // Interpret stack stores that are not tagged as an assignment in memory for
1544   // the variables associated with that address. These stores may not be tagged
1545   // because a) the store cannot be represented using dbg.assigns (non-const
1546   // length or offset) or b) the tag was accidentally dropped during
1547   // optimisations. For these stores we fall back to assuming that the stack
1548   // home is a valid location for the variables. The benefit is that this
1549   // prevents us missing an assignment and therefore incorrectly maintaining
1550   // earlier location definitions, and in many cases it should be a reasonable
1551   // assumption. However, this will occasionally lead to slight
1552   // inaccuracies. The value of a hoisted untagged store will be visible
1553   // "early", for example.
1554   assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1555   auto It = UntaggedStoreVars.find(&I);
1556   if (It == UntaggedStoreVars.end())
1557     return; // No variables associated with the store destination.
1558 
1559   LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1560                     << "\n");
1561   // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1562   // and mem def, set lockind to Mem, and emit a location def for each.
1563   for (auto [Var, Info] : It->second) {
1564     // This instruction is treated as both a debug and memory assignment,
1565     // meaning the memory location should be used. We don't have an assignment
1566     // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1567     addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1568     addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1569     setLocKind(LiveSet, Var, LocKind::Mem);
1570     LLVM_DEBUG(dbgs() << "  setting Stack LocKind to: " << locStr(LocKind::Mem)
1571                       << "\n");
1572     // Build the dbg location def to insert.
1573     //
1574     // DIExpression: Add fragment and offset.
1575     DebugVariable V = FnVarLocs->getVariable(Var);
1576     DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
1577     if (auto Frag = V.getFragment()) {
1578       auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1579                                                       Frag->SizeInBits);
1580       assert(R && "unexpected createFragmentExpression failure");
1581       DIE = *R;
1582     }
1583     SmallVector<uint64_t, 3> Ops;
1584     if (Info.OffsetInBits)
1585       Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1586     Ops.push_back(dwarf::DW_OP_deref);
1587     DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1588                                        /*EntryValue=*/false);
1589     // Find a suitable insert point, before the next instruction or DPValue
1590     // after I.
1591     auto InsertBefore = getNextNode(&I);
1592     assert(InsertBefore && "Shouldn't be inserting after a terminator");
1593 
1594     // Get DILocation for this unrecorded assignment.
1595     DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1596     const DILocation *DILoc = DILocation::get(
1597         Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1598 
1599     VarLocInfo VarLoc;
1600     VarLoc.VariableID = static_cast<VariableID>(Var);
1601     VarLoc.Expr = DIE;
1602     VarLoc.Values = RawLocationWrapper(
1603         ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
1604     VarLoc.DL = DILoc;
1605     // 3. Insert it into the map for later.
1606     InsertBeforeMap[InsertBefore].push_back(VarLoc);
1607   }
1608 }
1609 
1610 void AssignmentTrackingLowering::processTaggedInstruction(
1611     Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1612   auto Linked = at::getAssignmentMarkers(&I);
1613   // No dbg.assign intrinsics linked.
1614   // FIXME: All vars that have a stack slot this store modifies that don't have
1615   // a dbg.assign linked to it should probably treat this like an untagged
1616   // store.
1617   if (Linked.empty())
1618     return;
1619 
1620   LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1621   for (DbgAssignIntrinsic *DAI : Linked) {
1622     VariableID Var = getVariableID(DebugVariable(DAI));
1623     // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1624     // that is linked to a store.
1625     assert(VarsWithStackSlot->count(getAggregate(DAI)) &&
1626            "expected DAI's variable to have stack slot");
1627 
1628     Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1629     addMemDef(LiveSet, Var, AV);
1630 
1631     LLVM_DEBUG(dbgs() << "   linked to " << *DAI << "\n");
1632     LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1633                       << " -> ");
1634 
1635     // The last assignment to the stack is now AV. Check if the last debug
1636     // assignment has a matching Assignment.
1637     if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
1638       // The StackHomeValue and DebugValue for this variable match so we can
1639       // emit a stack home location here.
1640       LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1641       LLVM_DEBUG(dbgs() << "   Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1642       LLVM_DEBUG(dbgs() << "   Debug val: ";
1643                  LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
1644                  dbgs() << "\n");
1645       setLocKind(LiveSet, Var, LocKind::Mem);
1646       emitDbgValue(LocKind::Mem, DAI, &I);
1647       continue;
1648     }
1649 
1650     // The StackHomeValue and DebugValue for this variable do not match. I.e.
1651     // The value currently stored in the stack is not what we'd expect to
1652     // see, so we cannot use emit a stack home location here. Now we will
1653     // look at the live LocKind for the variable and determine an appropriate
1654     // dbg.value to emit.
1655     LocKind PrevLoc = getLocKind(LiveSet, Var);
1656     switch (PrevLoc) {
1657     case LocKind::Val: {
1658       // The value in memory in memory has changed but we're not currently
1659       // using the memory location. Do nothing.
1660       LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1661       setLocKind(LiveSet, Var, LocKind::Val);
1662     } break;
1663     case LocKind::Mem: {
1664       // There's been an assignment to memory that we were using as a
1665       // location for this variable, and the Assignment doesn't match what
1666       // we'd expect to see in memory.
1667       Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1668       if (DbgAV.Status == Assignment::NoneOrPhi) {
1669         // We need to terminate any previously open location now.
1670         LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1671         setLocKind(LiveSet, Var, LocKind::None);
1672         emitDbgValue(LocKind::None, DAI, &I);
1673       } else {
1674         // The previous DebugValue Value can be used here.
1675         LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1676         setLocKind(LiveSet, Var, LocKind::Val);
1677         if (DbgAV.Source) {
1678           emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1679         } else {
1680           // PrevAV.Source is nullptr so we must emit undef here.
1681           emitDbgValue(LocKind::None, DAI, &I);
1682         }
1683       }
1684     } break;
1685     case LocKind::None: {
1686       // There's been an assignment to memory and we currently are
1687       // not tracking a location for the variable. Do not emit anything.
1688       LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1689       setLocKind(LiveSet, Var, LocKind::None);
1690     } break;
1691     }
1692   }
1693 }
1694 
1695 void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI,
1696                                                   BlockInfo *LiveSet) {
1697   // Only bother tracking variables that are at some point stack homed. Other
1698   // variables can be dealt with trivially later.
1699   if (!VarsWithStackSlot->count(getAggregate(&DAI)))
1700     return;
1701 
1702   VariableID Var = getVariableID(DebugVariable(&DAI));
1703   Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI);
1704   addDbgDef(LiveSet, Var, AV);
1705 
1706   LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";);
1707   LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1708                     << " -> ");
1709 
1710   // Check if the DebugValue and StackHomeValue both hold the same
1711   // Assignment.
1712   if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
1713     // They match. We can use the stack home because the debug intrinsics state
1714     // that an assignment happened here, and we know that specific assignment
1715     // was the last one to take place in memory for this variable.
1716     LocKind Kind;
1717     if (DAI.isKillAddress()) {
1718       LLVM_DEBUG(
1719           dbgs()
1720               << "Val, Stack matches Debug program but address is killed\n";);
1721       Kind = LocKind::Val;
1722     } else {
1723       LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1724       Kind = LocKind::Mem;
1725     };
1726     setLocKind(LiveSet, Var, Kind);
1727     emitDbgValue(Kind, &DAI, &DAI);
1728   } else {
1729     // The last assignment to the memory location isn't the one that we want to
1730     // show to the user so emit a dbg.value(Value). Value may be undef.
1731     LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1732     setLocKind(LiveSet, Var, LocKind::Val);
1733     emitDbgValue(LocKind::Val, &DAI, &DAI);
1734   }
1735 }
1736 
1737 void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI,
1738                                                  BlockInfo *LiveSet) {
1739   // Only other tracking variables that are at some point stack homed.
1740   // Other variables can be dealt with trivally later.
1741   if (!VarsWithStackSlot->count(getAggregate(&DVI)))
1742     return;
1743 
1744   VariableID Var = getVariableID(DebugVariable(&DVI));
1745   // We have no ID to create an Assignment with so we mark this assignment as
1746   // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1747   // the assignment responsible for setting this value.
1748   // This is fine; dbg.values are essentially interchangable with unlinked
1749   // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1750   // PHIs for promoted variables.
1751   Assignment AV = Assignment::makeNoneOrPhi();
1752   addDbgDef(LiveSet, Var, AV);
1753 
1754   LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";);
1755   LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1756                     << " -> Val, dbg.value override");
1757 
1758   setLocKind(LiveSet, Var, LocKind::Val);
1759   emitDbgValue(LocKind::Val, &DVI, &DVI);
1760 }
1761 
1762 template <typename T> static bool hasZeroSizedFragment(T &DbgValue) {
1763   if (auto F = DbgValue.getExpression()->getFragmentInfo())
1764     return F->SizeInBits == 0;
1765   return false;
1766 }
1767 
1768 void AssignmentTrackingLowering::processDbgInstruction(
1769     DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1770   auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
1771   if (!DVI)
1772     return;
1773 
1774   // Ignore assignments to zero bits of the variable.
1775   if (hasZeroSizedFragment(*DVI))
1776     return;
1777 
1778   if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1779     processDbgAssign(*DAI, LiveSet);
1780   else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
1781     processDbgValue(*DVI, LiveSet);
1782 }
1783 
1784 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1785   assert(!After.isTerminator() && "Can't insert after a terminator");
1786   auto R = InsertBeforeMap.find(After.getNextNode());
1787   if (R == InsertBeforeMap.end())
1788     return;
1789   R->second.clear();
1790 }
1791 
1792 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1793   for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1794     assert(VarsTouchedThisFrame.empty());
1795     // Process the instructions in "frames". A "frame" includes a single
1796     // non-debug instruction followed any debug instructions before the
1797     // next non-debug instruction.
1798     if (!isa<DbgInfoIntrinsic>(&*II)) {
1799       if (II->isTerminator())
1800         break;
1801       resetInsertionPoint(*II);
1802       processNonDbgInstruction(*II, LiveSet);
1803       assert(LiveSet->isValid());
1804       ++II;
1805     }
1806     while (II != EI) {
1807       auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II);
1808       if (!Dbg)
1809         break;
1810       resetInsertionPoint(*II);
1811       processDbgInstruction(*Dbg, LiveSet);
1812       assert(LiveSet->isValid());
1813       ++II;
1814     }
1815 
1816     // We've processed everything in the "frame". Now determine which variables
1817     // cannot be represented by a dbg.declare.
1818     for (auto Var : VarsTouchedThisFrame) {
1819       LocKind Loc = getLocKind(LiveSet, Var);
1820       // If a variable's LocKind is anything other than LocKind::Mem then we
1821       // must note that it cannot be represented with a dbg.declare.
1822       // Note that this check is enough without having to check the result of
1823       // joins() because for join to produce anything other than Mem after
1824       // we've already seen a Mem we'd be joining None or Val with Mem. In that
1825       // case, we've already hit this codepath when we set the LocKind to Val
1826       // or None in that block.
1827       if (Loc != LocKind::Mem) {
1828         DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1829         DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1830         NotAlwaysStackHomed.insert(Aggr);
1831       }
1832     }
1833     VarsTouchedThisFrame.clear();
1834   }
1835 }
1836 
1837 AssignmentTrackingLowering::LocKind
1838 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1839   // Partial order:
1840   // None > Mem, Val
1841   return A == B ? A : LocKind::None;
1842 }
1843 
1844 AssignmentTrackingLowering::Assignment
1845 AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1846                                            const Assignment &B) {
1847   // Partial order:
1848   // NoneOrPhi(null, null) > Known(v, ?s)
1849 
1850   // If either are NoneOrPhi the join is NoneOrPhi.
1851   // If either value is different then the result is
1852   // NoneOrPhi (joining two values is a Phi).
1853   if (!A.isSameSourceAssignment(B))
1854     return Assignment::makeNoneOrPhi();
1855   if (A.Status == Assignment::NoneOrPhi)
1856     return Assignment::makeNoneOrPhi();
1857 
1858   // Source is used to lookup the value + expression in the debug program if
1859   // the stack slot gets assigned a value earlier than expected. Because
1860   // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1861   // It's unlikely that we're losing out on much coverage by avoiding that
1862   // extra work.
1863   // The Source may differ in this situation:
1864   // Pred.1:
1865   //   dbg.assign i32 0, ..., !1, ...
1866   // Pred.2:
1867   //   dbg.assign i32 1, ..., !1, ...
1868   // Here the same assignment (!1) was performed in both preds in the source,
1869   // but we can't use either one unless they are identical (e.g. .we don't
1870   // want to arbitrarily pick between constant values).
1871   auto JoinSource = [&]() -> DbgAssignIntrinsic * {
1872     if (A.Source == B.Source)
1873       return A.Source;
1874     if (A.Source == nullptr || B.Source == nullptr)
1875       return nullptr;
1876     if (A.Source->isIdenticalTo(B.Source))
1877       return A.Source;
1878     return nullptr;
1879   };
1880   DbgAssignIntrinsic *Source = JoinSource();
1881   assert(A.Status == B.Status && A.Status == Assignment::Known);
1882   assert(A.ID == B.ID);
1883   return Assignment::make(A.ID, Source);
1884 }
1885 
1886 AssignmentTrackingLowering::BlockInfo
1887 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
1888                                           const BlockInfo &B) {
1889   return BlockInfo::join(A, B, TrackedVariablesVectorSize);
1890 }
1891 
1892 bool AssignmentTrackingLowering::join(
1893     const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
1894 
1895   SmallVector<const BasicBlock *> VisitedPreds;
1896   // Ignore backedges if we have not visited the predecessor yet. As the
1897   // predecessor hasn't yet had locations propagated into it, most locations
1898   // will not yet be valid, so treat them as all being uninitialized and
1899   // potentially valid. If a location guessed to be correct here is
1900   // invalidated later, we will remove it when we revisit this block. This
1901   // is essentially the same as initialising all LocKinds and Assignments to
1902   // an implicit ⊥ value which is the identity value for the join operation.
1903   for (const BasicBlock *Pred : predecessors(&BB)) {
1904     if (Visited.count(Pred))
1905       VisitedPreds.push_back(Pred);
1906   }
1907 
1908   // No preds visited yet.
1909   if (VisitedPreds.empty()) {
1910     auto It = LiveIn.try_emplace(&BB, BlockInfo());
1911     bool DidInsert = It.second;
1912     if (DidInsert)
1913       It.first->second.init(TrackedVariablesVectorSize);
1914     return /*Changed*/ DidInsert;
1915   }
1916 
1917   // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
1918   if (VisitedPreds.size() == 1) {
1919     const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
1920     auto CurrentLiveInEntry = LiveIn.find(&BB);
1921 
1922     // Check if there isn't an entry, or there is but the LiveIn set has
1923     // changed (expensive check).
1924     if (CurrentLiveInEntry == LiveIn.end())
1925       LiveIn.insert(std::make_pair(&BB, PredLiveOut));
1926     else if (PredLiveOut != CurrentLiveInEntry->second)
1927       CurrentLiveInEntry->second = PredLiveOut;
1928     else
1929       return /*Changed*/ false;
1930     return /*Changed*/ true;
1931   }
1932 
1933   // More than one pred. Join LiveOuts of blocks 1 and 2.
1934   assert(VisitedPreds.size() > 1);
1935   const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
1936   const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
1937   BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
1938 
1939   // Join the LiveOuts of subsequent blocks.
1940   ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
1941   for (const BasicBlock *Pred : Tail) {
1942     const auto &PredLiveOut = LiveOut.find(Pred);
1943     assert(PredLiveOut != LiveOut.end() &&
1944            "block should have been processed already");
1945     BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
1946   }
1947 
1948   // Save the joined result for BB.
1949   auto CurrentLiveInEntry = LiveIn.find(&BB);
1950   // Check if there isn't an entry, or there is but the LiveIn set has changed
1951   // (expensive check).
1952   if (CurrentLiveInEntry == LiveIn.end())
1953     LiveIn.try_emplace(&BB, std::move(BBLiveIn));
1954   else if (BBLiveIn != CurrentLiveInEntry->second)
1955     CurrentLiveInEntry->second = std::move(BBLiveIn);
1956   else
1957     return /*Changed*/ false;
1958   return /*Changed*/ true;
1959 }
1960 
1961 /// Return true if A fully contains B.
1962 static bool fullyContains(DIExpression::FragmentInfo A,
1963                           DIExpression::FragmentInfo B) {
1964   auto ALeft = A.OffsetInBits;
1965   auto BLeft = B.OffsetInBits;
1966   if (BLeft < ALeft)
1967     return false;
1968 
1969   auto ARight = ALeft + A.SizeInBits;
1970   auto BRight = BLeft + B.SizeInBits;
1971   if (BRight > ARight)
1972     return false;
1973   return true;
1974 }
1975 
1976 static std::optional<at::AssignmentInfo>
1977 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
1978   // Don't bother checking if this is an AllocaInst. We know this
1979   // instruction has no tag which means there are no variables associated
1980   // with it.
1981   if (const auto *SI = dyn_cast<StoreInst>(&I))
1982     return at::getAssignmentInfo(Layout, SI);
1983   if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
1984     return at::getAssignmentInfo(Layout, MI);
1985   // Alloca or non-store-like inst.
1986   return std::nullopt;
1987 }
1988 
1989 /// Build a map of {Variable x: Variables y} where all variable fragments
1990 /// contained within the variable fragment x are in set y. This means that
1991 /// y does not contain all overlaps because partial overlaps are excluded.
1992 ///
1993 /// While we're iterating over the function, add single location defs for
1994 /// dbg.declares to \p FnVarLocs.
1995 ///
1996 /// Variables that are interesting to this pass in are added to
1997 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
1998 /// the last interesting variable plus 1, meaning variables with ID 1
1999 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
2000 /// subsequent variables are either stack homed or fully promoted.
2001 ///
2002 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
2003 /// the stored-to variable fragments.
2004 ///
2005 /// These tasks are bundled together to reduce the number of times we need
2006 /// to iterate over the function as they can be achieved together in one pass.
2007 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
2008     Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
2009     const DenseSet<DebugAggregate> &VarsWithStackSlot,
2010     AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars,
2011     unsigned &TrackedVariablesVectorSize) {
2012   DenseSet<DebugVariable> Seen;
2013   // Map of Variable: [Fragments].
2014   DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
2015   // Iterate over all instructions:
2016   // - dbg.declare    -> add single location variable record
2017   // - dbg.*          -> Add fragments to FragmentMap
2018   // - untagged store -> Add fragments to FragmentMap and update
2019   //                     UntaggedStoreVars.
2020   // We need to add fragments for untagged stores too so that we can correctly
2021   // clobber overlapped fragment locations later.
2022   SmallVector<DbgDeclareInst *> Declares;
2023   for (auto &BB : Fn) {
2024     for (auto &I : BB) {
2025       if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) {
2026         Declares.push_back(DDI);
2027       } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2028         DebugVariable DV = DebugVariable(DII);
2029         DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2030         if (!VarsWithStackSlot.contains(DA))
2031           continue;
2032         if (Seen.insert(DV).second)
2033           FragmentMap[DA].push_back(DV);
2034       } else if (auto Info = getUntaggedStoreAssignmentInfo(
2035                      I, Fn.getParent()->getDataLayout())) {
2036         // Find markers linked to this alloca.
2037         for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) {
2038           std::optional<DIExpression::FragmentInfo> FragInfo;
2039 
2040           // Skip this assignment if the affected bits are outside of the
2041           // variable fragment.
2042           if (!at::calculateFragmentIntersect(
2043                   I.getModule()->getDataLayout(), Info->Base,
2044                   Info->OffsetInBits, Info->SizeInBits, DAI, FragInfo) ||
2045               (FragInfo && FragInfo->SizeInBits == 0))
2046             continue;
2047 
2048           // FragInfo from calculateFragmentIntersect is nullopt if the
2049           // resultant fragment matches DAI's fragment or entire variable - in
2050           // which case copy the fragment info from DAI. If FragInfo is still
2051           // nullopt after the copy it means "no fragment info" instead, which
2052           // is how it is usually interpreted.
2053           if (!FragInfo)
2054             FragInfo = DAI->getExpression()->getFragmentInfo();
2055 
2056           DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo,
2057                                            DAI->getDebugLoc().getInlinedAt());
2058           DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2059           if (!VarsWithStackSlot.contains(DA))
2060             continue;
2061 
2062           // Cache this info for later.
2063           UntaggedStoreVars[&I].push_back(
2064               {FnVarLocs->insertVariable(DV), *Info});
2065 
2066           if (Seen.insert(DV).second)
2067             FragmentMap[DA].push_back(DV);
2068         }
2069       }
2070     }
2071   }
2072 
2073   // Sort the fragment map for each DebugAggregate in ascending
2074   // order of fragment size - there should be no duplicates.
2075   for (auto &Pair : FragmentMap) {
2076     SmallVector<DebugVariable, 8> &Frags = Pair.second;
2077     std::sort(Frags.begin(), Frags.end(),
2078               [](const DebugVariable &Next, const DebugVariable &Elmt) {
2079                 return Elmt.getFragmentOrDefault().SizeInBits >
2080                        Next.getFragmentOrDefault().SizeInBits;
2081               });
2082     // Check for duplicates.
2083     assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
2084   }
2085 
2086   // Build the map.
2087   AssignmentTrackingLowering::OverlapMap Map;
2088   for (auto &Pair : FragmentMap) {
2089     auto &Frags = Pair.second;
2090     for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
2091       DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
2092       // Find the frags that this is contained within.
2093       //
2094       // Because Frags is sorted by size and none have the same offset and
2095       // size, we know that this frag can only be contained by subsequent
2096       // elements.
2097       SmallVector<DebugVariable, 8>::iterator OtherIt = It;
2098       ++OtherIt;
2099       VariableID ThisVar = FnVarLocs->insertVariable(*It);
2100       for (; OtherIt != IEnd; ++OtherIt) {
2101         DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
2102         VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
2103         if (fullyContains(OtherFrag, Frag))
2104           Map[OtherVar].push_back(ThisVar);
2105       }
2106     }
2107   }
2108 
2109   // VariableIDs are 1-based so the variable-tracking bitvector needs
2110   // NumVariables plus 1 bits.
2111   TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
2112 
2113   // Finally, insert the declares afterwards, so the first IDs are all
2114   // partially stack homed vars.
2115   for (auto *DDI : Declares)
2116     FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
2117                                DDI->getDebugLoc(), DDI->getWrappedLocation());
2118   return Map;
2119 }
2120 
2121 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
2122   if (Fn.size() > MaxNumBlocks) {
2123     LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
2124                       << ": too many blocks (" << Fn.size() << ")\n");
2125     at::deleteAll(&Fn);
2126     return false;
2127   }
2128 
2129   FnVarLocs = FnVarLocsBuilder;
2130 
2131   // The general structure here is inspired by VarLocBasedImpl.cpp
2132   // (LiveDebugValues).
2133 
2134   // Build the variable fragment overlap map.
2135   // Note that this pass doesn't handle partial overlaps correctly (FWIW
2136   // neither does LiveDebugVariables) because that is difficult to do and
2137   // appears to be rare occurance.
2138   VarContains = buildOverlapMapAndRecordDeclares(
2139       Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars,
2140       TrackedVariablesVectorSize);
2141 
2142   // Prepare for traversal.
2143   ReversePostOrderTraversal<Function *> RPOT(&Fn);
2144   std::priority_queue<unsigned int, std::vector<unsigned int>,
2145                       std::greater<unsigned int>>
2146       Worklist;
2147   std::priority_queue<unsigned int, std::vector<unsigned int>,
2148                       std::greater<unsigned int>>
2149       Pending;
2150   DenseMap<unsigned int, BasicBlock *> OrderToBB;
2151   DenseMap<BasicBlock *, unsigned int> BBToOrder;
2152   { // Init OrderToBB and BBToOrder.
2153     unsigned int RPONumber = 0;
2154     for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
2155       OrderToBB[RPONumber] = *RI;
2156       BBToOrder[*RI] = RPONumber;
2157       Worklist.push(RPONumber);
2158       ++RPONumber;
2159     }
2160     LiveIn.init(RPONumber);
2161     LiveOut.init(RPONumber);
2162   }
2163 
2164   // Perform the traversal.
2165   //
2166   // This is a standard "union of predecessor outs" dataflow problem. To solve
2167   // it, we perform join() and process() using the two worklist method until
2168   // the LiveIn data for each block becomes unchanging. The "proof" that this
2169   // terminates can be put together by looking at the comments around LocKind,
2170   // Assignment, and the various join methods, which show that all the elements
2171   // involved are made up of join-semilattices; LiveIn(n) can only
2172   // monotonically increase in value throughout the dataflow.
2173   //
2174   SmallPtrSet<BasicBlock *, 16> Visited;
2175   while (!Worklist.empty()) {
2176     // We track what is on the pending worklist to avoid inserting the same
2177     // thing twice.
2178     SmallPtrSet<BasicBlock *, 16> OnPending;
2179     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2180     while (!Worklist.empty()) {
2181       BasicBlock *BB = OrderToBB[Worklist.top()];
2182       LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
2183       Worklist.pop();
2184       bool InChanged = join(*BB, Visited);
2185       // Always consider LiveIn changed on the first visit.
2186       InChanged |= Visited.insert(BB).second;
2187       if (InChanged) {
2188         LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
2189         // Mutate a copy of LiveIn while processing BB. After calling process
2190         // LiveSet is the LiveOut set for BB.
2191         BlockInfo LiveSet = LiveIn[BB];
2192 
2193         // Process the instructions in the block.
2194         process(*BB, &LiveSet);
2195 
2196         // Relatively expensive check: has anything changed in LiveOut for BB?
2197         if (LiveOut[BB] != LiveSet) {
2198           LLVM_DEBUG(dbgs() << BB->getName()
2199                             << " has new OutLocs, add succs to worklist: [ ");
2200           LiveOut[BB] = std::move(LiveSet);
2201           for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
2202             if (OnPending.insert(*I).second) {
2203               LLVM_DEBUG(dbgs() << I->getName() << " ");
2204               Pending.push(BBToOrder[*I]);
2205             }
2206           }
2207           LLVM_DEBUG(dbgs() << "]\n");
2208         }
2209       }
2210     }
2211     Worklist.swap(Pending);
2212     // At this point, pending must be empty, since it was just the empty
2213     // worklist
2214     assert(Pending.empty() && "Pending should be empty");
2215   }
2216 
2217   // That's the hard part over. Now we just have some admin to do.
2218 
2219   // Record whether we inserted any intrinsics.
2220   bool InsertedAnyIntrinsics = false;
2221 
2222   // Identify and add defs for single location variables.
2223   //
2224   // Go through all of the defs that we plan to add. If the aggregate variable
2225   // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2226   // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2227   // we can identify those uneeded defs later.
2228   DenseSet<DebugAggregate> AlwaysStackHomed;
2229   for (const auto &Pair : InsertBeforeMap) {
2230     const auto &Vec = Pair.second;
2231     for (VarLocInfo VarLoc : Vec) {
2232       DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2233       DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2234 
2235       // Skip this Var if it's not always stack homed.
2236       if (NotAlwaysStackHomed.contains(Aggr))
2237         continue;
2238 
2239       // Skip complex cases such as when different fragments of a variable have
2240       // been split into different allocas. Skipping in this case means falling
2241       // back to using a list of defs (which could reduce coverage, but is no
2242       // less correct).
2243       bool Simple =
2244           VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2245       if (!Simple) {
2246         NotAlwaysStackHomed.insert(Aggr);
2247         continue;
2248       }
2249 
2250       // All source assignments to this variable remain and all stores to any
2251       // part of the variable store to the same address (with varying
2252       // offsets). We can just emit a single location for the whole variable.
2253       //
2254       // Unless we've already done so, create the single location def now.
2255       if (AlwaysStackHomed.insert(Aggr).second) {
2256         assert(!VarLoc.Values.hasArgList());
2257         // TODO: When more complex cases are handled VarLoc.Expr should be
2258         // built appropriately rather than always using an empty DIExpression.
2259         // The assert below is a reminder.
2260         assert(Simple);
2261         VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
2262         DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2263         FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
2264         InsertedAnyIntrinsics = true;
2265       }
2266     }
2267   }
2268 
2269   // Insert the other DEFs.
2270   for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2271     SmallVector<VarLocInfo> NewDefs;
2272     for (const VarLocInfo &VarLoc : Vec) {
2273       DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2274       DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2275       // If this variable is always stack homed then we have already inserted a
2276       // dbg.declare and deleted this dbg.value.
2277       if (AlwaysStackHomed.contains(Aggr))
2278         continue;
2279       NewDefs.push_back(VarLoc);
2280       InsertedAnyIntrinsics = true;
2281     }
2282 
2283     FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2284   }
2285 
2286   InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2287 
2288   return InsertedAnyIntrinsics;
2289 }
2290 
2291 bool AssignmentTrackingLowering::emitPromotedVarLocs(
2292     FunctionVarLocsBuilder *FnVarLocs) {
2293   bool InsertedAnyIntrinsics = false;
2294   // Go through every block, translating debug intrinsics for fully promoted
2295   // variables into FnVarLocs location defs. No analysis required for these.
2296   for (auto &BB : Fn) {
2297     for (auto &I : BB) {
2298       // Skip instructions other than dbg.values and dbg.assigns.
2299       auto *DVI = dyn_cast<DbgValueInst>(&I);
2300       if (!DVI)
2301         continue;
2302       // Skip variables that haven't been promoted - we've dealt with those
2303       // already.
2304       if (VarsWithStackSlot->contains(getAggregate(DVI)))
2305         continue;
2306       Instruction *InsertBefore = I.getNextNode();
2307       assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2308       FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI),
2309                            DVI->getExpression(), DVI->getDebugLoc(),
2310                            DVI->getWrappedLocation());
2311       InsertedAnyIntrinsics = true;
2312     }
2313   }
2314   return InsertedAnyIntrinsics;
2315 }
2316 
2317 /// Remove redundant definitions within sequences of consecutive location defs.
2318 /// This is done using a backward scan to keep the last def describing a
2319 /// specific variable/fragment.
2320 ///
2321 /// This implements removeRedundantDbgInstrsUsingBackwardScan from
2322 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2323 /// FunctionVarLocsBuilder instead of with intrinsics.
2324 static bool
2325 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
2326                                         FunctionVarLocsBuilder &FnVarLocs) {
2327   bool Changed = false;
2328   SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes;
2329   // Scan over the entire block, not just over the instructions mapped by
2330   // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2331   // instructions.
2332   for (const Instruction &I : reverse(*BB)) {
2333     if (!isa<DbgVariableIntrinsic>(I)) {
2334       // Sequence of consecutive defs ended. Clear map for the next one.
2335       VariableDefinedBytes.clear();
2336     }
2337 
2338     // Get the location defs that start just before this instruction.
2339     const auto *Locs = FnVarLocs.getWedge(&I);
2340     if (!Locs)
2341       continue;
2342 
2343     NumWedgesScanned++;
2344     bool ChangedThisWedge = false;
2345     // The new pruned set of defs, reversed because we're scanning backwards.
2346     SmallVector<VarLocInfo> NewDefsReversed;
2347 
2348     // Iterate over the existing defs in reverse.
2349     for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2350       NumDefsScanned++;
2351       DebugAggregate Aggr =
2352           getAggregate(FnVarLocs.getVariable(RIt->VariableID));
2353       uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
2354       uint64_t SizeInBytes = divideCeil(SizeInBits, 8);
2355 
2356       // Cutoff for large variables to prevent expensive bitvector operations.
2357       const uint64_t MaxSizeBytes = 2048;
2358 
2359       if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) {
2360         // If the size is unknown (0) then keep this location def to be safe.
2361         // Do the same for defs of large variables, which would be expensive
2362         // to represent with a BitVector.
2363         NewDefsReversed.push_back(*RIt);
2364         continue;
2365       }
2366 
2367       // Only keep this location definition if it is not fully eclipsed by
2368       // other definitions in this wedge that come after it
2369 
2370       // Inert the bytes the location definition defines.
2371       auto InsertResult =
2372           VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes));
2373       bool FirstDefinition = InsertResult.second;
2374       BitVector &DefinedBytes = InsertResult.first->second;
2375 
2376       DIExpression::FragmentInfo Fragment =
2377           RIt->Expr->getFragmentInfo().value_or(
2378               DIExpression::FragmentInfo(SizeInBits, 0));
2379       bool InvalidFragment = Fragment.endInBits() > SizeInBits;
2380       uint64_t StartInBytes = Fragment.startInBits() / 8;
2381       uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8);
2382 
2383       // If this defines any previously undefined bytes, keep it.
2384       if (FirstDefinition || InvalidFragment ||
2385           DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) {
2386         if (!InvalidFragment)
2387           DefinedBytes.set(StartInBytes, EndInBytes);
2388         NewDefsReversed.push_back(*RIt);
2389         continue;
2390       }
2391 
2392       // Redundant def found: throw it away. Since the wedge of defs is being
2393       // rebuilt, doing nothing is the same as deleting an entry.
2394       ChangedThisWedge = true;
2395       NumDefsRemoved++;
2396     }
2397 
2398     // Un-reverse the defs and replace the wedge with the pruned version.
2399     if (ChangedThisWedge) {
2400       std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2401       FnVarLocs.setWedge(&I, std::move(NewDefsReversed));
2402       NumWedgesChanged++;
2403       Changed = true;
2404     }
2405   }
2406 
2407   return Changed;
2408 }
2409 
2410 /// Remove redundant location defs using a forward scan. This can remove a
2411 /// location definition that is redundant due to indicating that a variable has
2412 /// the same value as is already being indicated by an earlier def.
2413 ///
2414 /// This implements removeRedundantDbgInstrsUsingForwardScan from
2415 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2416 /// FunctionVarLocsBuilder instead of with intrinsics
2417 static bool
2418 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
2419                                        FunctionVarLocsBuilder &FnVarLocs) {
2420   bool Changed = false;
2421   DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>>
2422       VariableMap;
2423 
2424   // Scan over the entire block, not just over the instructions mapped by
2425   // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2426   // instructions.
2427   for (const Instruction &I : *BB) {
2428     // Get the defs that come just before this instruction.
2429     const auto *Locs = FnVarLocs.getWedge(&I);
2430     if (!Locs)
2431       continue;
2432 
2433     NumWedgesScanned++;
2434     bool ChangedThisWedge = false;
2435     // The new pruned set of defs.
2436     SmallVector<VarLocInfo> NewDefs;
2437 
2438     // Iterate over the existing defs.
2439     for (const VarLocInfo &Loc : *Locs) {
2440       NumDefsScanned++;
2441       DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2442                         std::nullopt, Loc.DL.getInlinedAt());
2443       auto VMI = VariableMap.find(Key);
2444 
2445       // Update the map if we found a new value/expression describing the
2446       // variable, or if the variable wasn't mapped already.
2447       if (VMI == VariableMap.end() || VMI->second.first != Loc.Values ||
2448           VMI->second.second != Loc.Expr) {
2449         VariableMap[Key] = {Loc.Values, Loc.Expr};
2450         NewDefs.push_back(Loc);
2451         continue;
2452       }
2453 
2454       // Did not insert this Loc, which is the same as removing it.
2455       ChangedThisWedge = true;
2456       NumDefsRemoved++;
2457     }
2458 
2459     // Replace the existing wedge with the pruned version.
2460     if (ChangedThisWedge) {
2461       FnVarLocs.setWedge(&I, std::move(NewDefs));
2462       NumWedgesChanged++;
2463       Changed = true;
2464     }
2465   }
2466 
2467   return Changed;
2468 }
2469 
2470 static bool
2471 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
2472                                  FunctionVarLocsBuilder &FnVarLocs) {
2473   assert(BB->isEntryBlock());
2474   // Do extra work to ensure that we remove semantically unimportant undefs.
2475   //
2476   // This is to work around the fact that SelectionDAG will hoist dbg.values
2477   // using argument values to the top of the entry block. That can move arg
2478   // dbg.values before undef and constant dbg.values which they previously
2479   // followed. The easiest thing to do is to just try to feed SelectionDAG
2480   // input it's happy with.
2481   //
2482   // Map of {Variable x: Fragments y} where the fragments y of variable x have
2483   // have at least one non-undef location defined already. Don't use directly,
2484   // instead call DefineBits and HasDefinedBits.
2485   SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
2486       VarsWithDef;
2487   // Specify that V (a fragment of A) has a non-undef location.
2488   auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2489     VarsWithDef[A].insert(V.getFragmentOrDefault());
2490   };
2491   // Return true if a non-undef location has been defined for V (a fragment of
2492   // A). Doesn't imply that the location is currently non-undef, just that a
2493   // non-undef location has been seen previously.
2494   auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2495     auto FragsIt = VarsWithDef.find(A);
2496     if (FragsIt == VarsWithDef.end())
2497       return false;
2498     return llvm::any_of(FragsIt->second, [V](auto Frag) {
2499       return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2500     });
2501   };
2502 
2503   bool Changed = false;
2504   DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2505 
2506   // Scan over the entire block, not just over the instructions mapped by
2507   // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2508   // instructions.
2509   for (const Instruction &I : *BB) {
2510     // Get the defs that come just before this instruction.
2511     const auto *Locs = FnVarLocs.getWedge(&I);
2512     if (!Locs)
2513       continue;
2514 
2515     NumWedgesScanned++;
2516     bool ChangedThisWedge = false;
2517     // The new pruned set of defs.
2518     SmallVector<VarLocInfo> NewDefs;
2519 
2520     // Iterate over the existing defs.
2521     for (const VarLocInfo &Loc : *Locs) {
2522       NumDefsScanned++;
2523       DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2524                           Loc.DL.getInlinedAt()};
2525       DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2526 
2527       // Remove undef entries that are encountered before any non-undef
2528       // intrinsics from the entry block.
2529       if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
2530         // Did not insert this Loc, which is the same as removing it.
2531         NumDefsRemoved++;
2532         ChangedThisWedge = true;
2533         continue;
2534       }
2535 
2536       DefineBits(Aggr, Var);
2537       NewDefs.push_back(Loc);
2538     }
2539 
2540     // Replace the existing wedge with the pruned version.
2541     if (ChangedThisWedge) {
2542       FnVarLocs.setWedge(&I, std::move(NewDefs));
2543       NumWedgesChanged++;
2544       Changed = true;
2545     }
2546   }
2547 
2548   return Changed;
2549 }
2550 
2551 static bool removeRedundantDbgLocs(const BasicBlock *BB,
2552                                    FunctionVarLocsBuilder &FnVarLocs) {
2553   bool MadeChanges = false;
2554   MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2555   if (BB->isEntryBlock())
2556     MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2557   MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2558 
2559   if (MadeChanges)
2560     LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2561                       << "\n");
2562   return MadeChanges;
2563 }
2564 
2565 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
2566   DenseSet<DebugAggregate> Result;
2567   for (auto &BB : Fn) {
2568     for (auto &I : BB) {
2569       // Any variable linked to an instruction is considered
2570       // interesting. Ideally we only need to check Allocas, however, a
2571       // DIAssignID might get dropped from an alloca but not stores. In that
2572       // case, we need to consider the variable interesting for NFC behaviour
2573       // with this change. TODO: Consider only looking at allocas.
2574       for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
2575         Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
2576       }
2577     }
2578   }
2579   return Result;
2580 }
2581 
2582 static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2583                             FunctionVarLocsBuilder *FnVarLocs) {
2584   // The analysis will generate location definitions for all variables, but we
2585   // only need to perform a dataflow on the set of variables which have a stack
2586   // slot. Find those now.
2587   DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2588 
2589   bool Changed = false;
2590 
2591   // Use a scope block to clean up AssignmentTrackingLowering before running
2592   // MemLocFragmentFill to reduce peak memory consumption.
2593   {
2594     AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2595     Changed = Pass.run(FnVarLocs);
2596   }
2597 
2598   if (Changed) {
2599     MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
2600                             shouldCoalesceFragments(Fn));
2601     Pass.run(FnVarLocs);
2602 
2603     // Remove redundant entries. As well as reducing memory consumption and
2604     // avoiding waiting cycles later by burning some now, this has another
2605     // important job. That is to work around some SelectionDAG quirks. See
2606     // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2607     for (auto &BB : Fn)
2608       removeRedundantDbgLocs(&BB, *FnVarLocs);
2609   }
2610 }
2611 
2612 FunctionVarLocs
2613 DebugAssignmentTrackingAnalysis::run(Function &F,
2614                                      FunctionAnalysisManager &FAM) {
2615   if (!isAssignmentTrackingEnabled(*F.getParent()))
2616     return FunctionVarLocs();
2617 
2618   auto &DL = F.getParent()->getDataLayout();
2619 
2620   FunctionVarLocsBuilder Builder;
2621   analyzeFunction(F, DL, &Builder);
2622 
2623   // Save these results.
2624   FunctionVarLocs Results;
2625   Results.init(Builder);
2626   return Results;
2627 }
2628 
2629 AnalysisKey DebugAssignmentTrackingAnalysis::Key;
2630 
2631 PreservedAnalyses
2632 DebugAssignmentTrackingPrinterPass::run(Function &F,
2633                                         FunctionAnalysisManager &FAM) {
2634   FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F);
2635   return PreservedAnalyses::all();
2636 }
2637 
2638 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
2639   if (!isAssignmentTrackingEnabled(*F.getParent()))
2640     return false;
2641 
2642   LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2643                     << "\n");
2644   auto DL = std::make_unique<DataLayout>(F.getParent());
2645 
2646   // Clear previous results.
2647   Results->clear();
2648 
2649   FunctionVarLocsBuilder Builder;
2650   analyzeFunction(F, *DL.get(), &Builder);
2651 
2652   // Save these results.
2653   Results->init(Builder);
2654 
2655   if (PrintResults && isFunctionInPrintList(F.getName()))
2656     Results->print(errs(), F);
2657 
2658   // Return false because this pass does not modify the function.
2659   return false;
2660 }
2661 
2662 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2663     : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2664 
2665 char AssignmentTrackingAnalysis::ID = 0;
2666 
2667 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
2668                 "Assignment Tracking Analysis", false, true)
2669