1 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 2 #include "llvm/ADT/DenseMapInfo.h" 3 #include "llvm/ADT/IntervalMap.h" 4 #include "llvm/ADT/PostOrderIterator.h" 5 #include "llvm/ADT/STLExtras.h" 6 #include "llvm/ADT/SmallSet.h" 7 #include "llvm/ADT/Statistic.h" 8 #include "llvm/ADT/UniqueVector.h" 9 #include "llvm/Analysis/Interval.h" 10 #include "llvm/BinaryFormat/Dwarf.h" 11 #include "llvm/IR/BasicBlock.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/DebugInfo.h" 14 #include "llvm/IR/Function.h" 15 #include "llvm/IR/Instruction.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/PassManager.h" 18 #include "llvm/IR/PrintPasses.h" 19 #include "llvm/InitializePasses.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include <assert.h> 25 #include <cstdint> 26 #include <optional> 27 #include <sstream> 28 #include <unordered_map> 29 30 using namespace llvm; 31 #define DEBUG_TYPE "debug-ata" 32 33 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal"); 34 STATISTIC(NumDefsRemoved, "Number of dbg locs removed"); 35 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned"); 36 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed"); 37 38 static cl::opt<unsigned> 39 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), 40 cl::desc("Maximum num basic blocks before debug info dropped"), 41 cl::Hidden); 42 /// Option for debugging the pass, determines if the memory location fragment 43 /// filling happens after generating the variable locations. 44 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true), 45 cl::Hidden); 46 /// Print the results of the analysis. Respects -filter-print-funcs. 47 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false), 48 cl::Hidden); 49 50 // Implicit conversions are disabled for enum class types, so unfortunately we 51 // need to create a DenseMapInfo wrapper around the specified underlying type. 52 template <> struct llvm::DenseMapInfo<VariableID> { 53 using Wrapped = DenseMapInfo<unsigned>; 54 static inline VariableID getEmptyKey() { 55 return static_cast<VariableID>(Wrapped::getEmptyKey()); 56 } 57 static inline VariableID getTombstoneKey() { 58 return static_cast<VariableID>(Wrapped::getTombstoneKey()); 59 } 60 static unsigned getHashValue(const VariableID &Val) { 61 return Wrapped::getHashValue(static_cast<unsigned>(Val)); 62 } 63 static bool isEqual(const VariableID &LHS, const VariableID &RHS) { 64 return LHS == RHS; 65 } 66 }; 67 68 /// Helper class to build FunctionVarLocs, since that class isn't easy to 69 /// modify. TODO: There's not a great deal of value in the split, it could be 70 /// worth merging the two classes. 71 class FunctionVarLocsBuilder { 72 friend FunctionVarLocs; 73 UniqueVector<DebugVariable> Variables; 74 // Use an unordered_map so we don't invalidate iterators after 75 // insert/modifications. 76 std::unordered_map<const Instruction *, SmallVector<VarLocInfo>> 77 VarLocsBeforeInst; 78 79 SmallVector<VarLocInfo> SingleLocVars; 80 81 public: 82 /// Find or insert \p V and return the ID. 83 VariableID insertVariable(DebugVariable V) { 84 return static_cast<VariableID>(Variables.insert(V)); 85 } 86 87 /// Get a variable from its \p ID. 88 const DebugVariable &getVariable(VariableID ID) const { 89 return Variables[static_cast<unsigned>(ID)]; 90 } 91 92 /// Return ptr to wedge of defs or nullptr if no defs come just before /p 93 /// Before. 94 const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const { 95 auto R = VarLocsBeforeInst.find(Before); 96 if (R == VarLocsBeforeInst.end()) 97 return nullptr; 98 return &R->second; 99 } 100 101 /// Replace the defs that come just before /p Before with /p Wedge. 102 void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) { 103 VarLocsBeforeInst[Before] = std::move(Wedge); 104 } 105 106 /// Add a def for a variable that is valid for its lifetime. 107 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, 108 Value *V) { 109 VarLocInfo VarLoc; 110 VarLoc.VariableID = insertVariable(Var); 111 VarLoc.Expr = Expr; 112 VarLoc.DL = DL; 113 VarLoc.V = V; 114 SingleLocVars.emplace_back(VarLoc); 115 } 116 117 /// Add a def to the wedge of defs just before /p Before. 118 void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr, 119 DebugLoc DL, Value *V) { 120 VarLocInfo VarLoc; 121 VarLoc.VariableID = insertVariable(Var); 122 VarLoc.Expr = Expr; 123 VarLoc.DL = DL; 124 VarLoc.V = V; 125 VarLocsBeforeInst[Before].emplace_back(VarLoc); 126 } 127 }; 128 129 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const { 130 // Print the variable table first. TODO: Sorting by variable could make the 131 // output more stable? 132 unsigned Counter = -1; 133 OS << "=== Variables ===\n"; 134 for (const DebugVariable &V : Variables) { 135 ++Counter; 136 // Skip first entry because it is a dummy entry. 137 if (Counter == 0) { 138 continue; 139 } 140 OS << "[" << Counter << "] " << V.getVariable()->getName(); 141 if (auto F = V.getFragment()) 142 OS << " bits [" << F->OffsetInBits << ", " 143 << F->OffsetInBits + F->SizeInBits << ")"; 144 if (const auto *IA = V.getInlinedAt()) 145 OS << " inlined-at " << *IA; 146 OS << "\n"; 147 } 148 149 auto PrintLoc = [&OS](const VarLocInfo &Loc) { 150 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]" 151 << " Expr=" << *Loc.Expr << " V=" << *Loc.V << "\n"; 152 }; 153 154 // Print the single location variables. 155 OS << "=== Single location vars ===\n"; 156 for (auto It = single_locs_begin(), End = single_locs_end(); It != End; 157 ++It) { 158 PrintLoc(*It); 159 } 160 161 // Print the non-single-location defs in line with IR. 162 OS << "=== In-line variable defs ==="; 163 for (const BasicBlock &BB : Fn) { 164 OS << "\n" << BB.getName() << ":\n"; 165 for (const Instruction &I : BB) { 166 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) { 167 PrintLoc(*It); 168 } 169 OS << I << "\n"; 170 } 171 } 172 } 173 174 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) { 175 // Add the single-location variables first. 176 for (const auto &VarLoc : Builder.SingleLocVars) 177 VarLocRecords.emplace_back(VarLoc); 178 // Mark the end of the section. 179 SingleVarLocEnd = VarLocRecords.size(); 180 181 // Insert a contiguous block of VarLocInfos for each instruction, mapping it 182 // to the start and end position in the vector with VarLocsBeforeInst. 183 for (auto &P : Builder.VarLocsBeforeInst) { 184 unsigned BlockStart = VarLocRecords.size(); 185 for (const VarLocInfo &VarLoc : P.second) 186 VarLocRecords.emplace_back(VarLoc); 187 unsigned BlockEnd = VarLocRecords.size(); 188 // Record the start and end indices. 189 if (BlockEnd != BlockStart) 190 VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd}; 191 } 192 193 // Copy the Variables vector from the builder's UniqueVector. 194 assert(Variables.empty() && "Expect clear before init"); 195 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values 196 // are one-based) so reserve an extra and insert a dummy. 197 Variables.reserve(Builder.Variables.size() + 1); 198 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr)); 199 Variables.append(Builder.Variables.begin(), Builder.Variables.end()); 200 } 201 202 void FunctionVarLocs::clear() { 203 Variables.clear(); 204 VarLocRecords.clear(); 205 VarLocsBeforeInst.clear(); 206 SingleVarLocEnd = 0; 207 } 208 209 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p 210 /// Start as far as possible. Prepend \Expression with the offset and append it 211 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to 212 /// value and modified expression. 213 static std::pair<Value *, DIExpression *> 214 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, 215 DIExpression *Expression) { 216 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false); 217 Value *End = 218 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes); 219 SmallVector<uint64_t, 3> Ops; 220 if (OffsetInBytes.getBoolValue()) { 221 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()}; 222 Expression = DIExpression::prependOpcodes( 223 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false); 224 } 225 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref}); 226 return {End, Expression}; 227 } 228 229 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression 230 /// doesn't explicitly describe a memory location with DW_OP_deref or if the 231 /// expression is too complex to interpret. 232 static std::optional<int64_t> 233 getDerefOffsetInBytes(const DIExpression *DIExpr) { 234 int64_t Offset = 0; 235 const unsigned NumElements = DIExpr->getNumElements(); 236 const auto Elements = DIExpr->getElements(); 237 unsigned NextElement = 0; 238 // Extract the offset. 239 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { 240 Offset = Elements[1]; 241 NextElement = 2; 242 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) { 243 NextElement = 3; 244 if (Elements[2] == dwarf::DW_OP_plus) 245 Offset = Elements[1]; 246 else if (Elements[2] == dwarf::DW_OP_minus) 247 Offset = -Elements[1]; 248 else 249 return std::nullopt; 250 } 251 252 // If that's all there is it means there's no deref. 253 if (NextElement >= NumElements) 254 return std::nullopt; 255 256 // Check the next element is DW_OP_deref - otherwise this is too complex or 257 // isn't a deref expression. 258 if (Elements[NextElement] != dwarf::DW_OP_deref) 259 return std::nullopt; 260 261 // Check the final operation is either the DW_OP_deref or is a fragment. 262 if (NumElements == NextElement + 1) 263 return Offset; // Ends with deref. 264 else if (NumElements == NextElement + 3 && 265 Elements[NextElement] == dwarf::DW_OP_LLVM_fragment) 266 return Offset; // Ends with deref + fragment. 267 268 // Don't bother trying to interpret anything more complex. 269 return std::nullopt; 270 } 271 272 /// A whole (unfragmented) source variable. 273 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>; 274 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) { 275 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt()); 276 } 277 static DebugAggregate getAggregate(const DebugVariable &Var) { 278 return DebugAggregate(Var.getVariable(), Var.getInlinedAt()); 279 } 280 281 namespace { 282 /// In dwarf emission, the following sequence 283 /// 1. dbg.value ... Fragment(0, 64) 284 /// 2. dbg.value ... Fragment(0, 32) 285 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in 286 /// the intersection of the fragments to having "no location"). This makes 287 /// sense for implicit location values because splitting the computed values 288 /// could be troublesome, and is probably quite uncommon. When we convert 289 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing 290 /// a location (memory) rather than a value means we don't need to worry about 291 /// splitting any values, so we try to recover the rest of the fragment 292 /// location here. 293 /// This class performs a(nother) dataflow analysis over the function, adding 294 /// variable locations so that any bits of a variable with a memory location 295 /// have that location explicitly reinstated at each subsequent variable 296 /// location definition that that doesn't overwrite those bits. i.e. after a 297 /// variable location def, insert new defs for the memory location with 298 /// fragments for the difference of "all bits currently in memory" and "the 299 /// fragment of the second def". 300 class MemLocFragmentFill { 301 Function &Fn; 302 FunctionVarLocsBuilder *FnVarLocs; 303 const DenseSet<DebugAggregate> *VarsWithStackSlot; 304 305 // 0 = no memory location. 306 using BaseAddress = unsigned; 307 using OffsetInBitsTy = unsigned; 308 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>; 309 using FragsInMemMap = IntervalMap< 310 OffsetInBitsTy, BaseAddress, 311 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize, 312 FragTraits>; 313 FragsInMemMap::Allocator IntervalMapAlloc; 314 using VarFragMap = DenseMap<unsigned, FragsInMemMap>; 315 316 /// IDs for memory location base addresses in maps. Use 0 to indicate that 317 /// there's no memory location. 318 UniqueVector<Value *> Bases; 319 UniqueVector<DebugAggregate> Aggregates; 320 DenseMap<const BasicBlock *, VarFragMap> LiveIn; 321 DenseMap<const BasicBlock *, VarFragMap> LiveOut; 322 323 struct FragMemLoc { 324 unsigned Var; 325 unsigned Base; 326 unsigned OffsetInBits; 327 unsigned SizeInBits; 328 DebugLoc DL; 329 }; 330 using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>; 331 332 /// BBInsertBeforeMap holds a description for the set of location defs to be 333 /// inserted after the analysis is complete. It is updated during the dataflow 334 /// and the entry for a block is CLEARED each time it is (re-)visited. After 335 /// the dataflow is complete, each block entry will contain the set of defs 336 /// calculated during the final (fixed-point) iteration. 337 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap; 338 339 static bool intervalMapsAreEqual(const FragsInMemMap &A, 340 const FragsInMemMap &B) { 341 auto AIt = A.begin(), AEnd = A.end(); 342 auto BIt = B.begin(), BEnd = B.end(); 343 for (; AIt != AEnd; ++AIt, ++BIt) { 344 if (BIt == BEnd) 345 return false; // B has fewer elements than A. 346 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop()) 347 return false; // Interval is different. 348 if (*AIt != *BIt) 349 return false; // Value at interval is different. 350 } 351 // AIt == AEnd. Check BIt is also now at end. 352 return BIt == BEnd; 353 } 354 355 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) { 356 if (A.size() != B.size()) 357 return false; 358 for (const auto &APair : A) { 359 auto BIt = B.find(APair.first); 360 if (BIt == B.end()) 361 return false; 362 if (!intervalMapsAreEqual(APair.second, BIt->second)) 363 return false; 364 } 365 return true; 366 } 367 368 /// Return a string for the value that \p BaseID represents. 369 std::string toString(unsigned BaseID) { 370 if (BaseID) 371 return Bases[BaseID]->getName().str(); 372 else 373 return "None"; 374 } 375 376 /// Format string describing an FragsInMemMap (IntervalMap) interval. 377 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) { 378 std::string String; 379 std::stringstream S(String); 380 if (It.valid()) { 381 S << "[" << It.start() << ", " << It.stop() 382 << "): " << toString(It.value()); 383 } else { 384 S << "invalid iterator (end)"; 385 } 386 if (Newline) 387 S << "\n"; 388 return S.str(); 389 }; 390 391 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) { 392 FragsInMemMap Result(IntervalMapAlloc); 393 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) { 394 LLVM_DEBUG(dbgs() << "a " << toString(AIt)); 395 // This is basically copied from process() and inverted (process is 396 // performing something like a union whereas this is more of an 397 // intersect). 398 399 // There's no work to do if interval `a` overlaps no fragments in map `B`. 400 if (!B.overlaps(AIt.start(), AIt.stop())) 401 continue; 402 403 // Does StartBit intersect an existing fragment? 404 auto FirstOverlap = B.find(AIt.start()); 405 assert(FirstOverlap != B.end()); 406 bool IntersectStart = FirstOverlap.start() < AIt.start(); 407 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false) 408 << ", IntersectStart: " << IntersectStart << "\n"); 409 410 // Does EndBit intersect an existing fragment? 411 auto LastOverlap = B.find(AIt.stop()); 412 bool IntersectEnd = 413 LastOverlap != B.end() && LastOverlap.start() < AIt.stop(); 414 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false) 415 << ", IntersectEnd: " << IntersectEnd << "\n"); 416 417 // Check if both ends of `a` intersect the same interval `b`. 418 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 419 // Insert `a` (`a` is contained in `b`) if the values match. 420 // [ a ] 421 // [ - b - ] 422 // - 423 // [ r ] 424 LLVM_DEBUG(dbgs() << "- a is contained within " 425 << toString(FirstOverlap)); 426 if (*AIt && *AIt == *FirstOverlap) 427 Result.insert(AIt.start(), AIt.stop(), *AIt); 428 } else { 429 // There's an overlap but `a` is not fully contained within 430 // `b`. Shorten any end-point intersections. 431 // [ - a - ] 432 // [ - b - ] 433 // - 434 // [ r ] 435 auto Next = FirstOverlap; 436 if (IntersectStart) { 437 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 438 << toString(FirstOverlap)); 439 if (*AIt && *AIt == *FirstOverlap) 440 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt); 441 ++Next; 442 } 443 // [ - a - ] 444 // [ - b - ] 445 // - 446 // [ r ] 447 if (IntersectEnd) { 448 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 449 << toString(LastOverlap)); 450 if (*AIt && *AIt == *LastOverlap) 451 Result.insert(LastOverlap.start(), AIt.stop(), *AIt); 452 } 453 454 // Insert all intervals in map `B` that are contained within interval 455 // `a` where the values match. 456 // [ - - a - - ] 457 // [ b1 ] [ b2 ] 458 // - 459 // [ r1 ] [ r2 ] 460 while (Next != B.end() && Next.start() < AIt.stop() && 461 Next.stop() <= AIt.stop()) { 462 LLVM_DEBUG(dbgs() 463 << "- insert intersection of a and " << toString(Next)); 464 if (*AIt && *AIt == *Next) 465 Result.insert(Next.start(), Next.stop(), *Next); 466 ++Next; 467 } 468 } 469 } 470 return Result; 471 } 472 473 /// Meet \p A and \p B, storing the result in \p A. 474 void meetVars(VarFragMap &A, const VarFragMap &B) { 475 // Meet A and B. 476 // 477 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b) 478 for (auto It = A.begin(), End = A.end(); It != End; ++It) { 479 unsigned AVar = It->first; 480 FragsInMemMap &AFrags = It->second; 481 auto BIt = B.find(AVar); 482 if (BIt == B.end()) { 483 A.erase(It); 484 continue; // Var has no bits defined in B. 485 } 486 LLVM_DEBUG(dbgs() << "meet fragment maps for " 487 << Aggregates[AVar].first->getName() << "\n"); 488 AFrags = meetFragments(AFrags, BIt->second); 489 } 490 } 491 492 bool meet(const BasicBlock &BB, 493 const SmallPtrSet<BasicBlock *, 16> &Visited) { 494 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName() 495 << "\n"); 496 497 VarFragMap BBLiveIn; 498 bool FirstMeet = true; 499 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut 500 // locs. 501 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 502 // Ignore preds that haven't been processed yet. This is essentially the 503 // same as initialising all variables to implicit top value (⊤) which is 504 // the identity value for the meet operation. 505 const BasicBlock *Pred = *I; 506 if (!Visited.count(Pred)) 507 continue; 508 509 auto PredLiveOut = LiveOut.find(Pred); 510 assert(PredLiveOut != LiveOut.end()); 511 512 if (FirstMeet) { 513 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n"); 514 BBLiveIn = PredLiveOut->second; 515 FirstMeet = false; 516 } else { 517 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName() 518 << "\n"); 519 meetVars(BBLiveIn, PredLiveOut->second); 520 } 521 522 // An empty set is ⊥ for the intersect-like meet operation. If we've 523 // already got ⊥ there's no need to run the code - we know the result is 524 // ⊥ since `meet(a, ⊥) = ⊥`. 525 if (BBLiveIn.size() == 0) 526 break; 527 } 528 529 auto CurrentLiveInEntry = LiveIn.find(&BB); 530 // If there's no LiveIn entry for the block yet, add it. 531 if (CurrentLiveInEntry == LiveIn.end()) { 532 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName() 533 << "\n"); 534 LiveIn[&BB] = std::move(BBLiveIn); 535 return /*Changed=*/true; 536 } 537 538 // If the LiveIn set has changed (expensive check) update it and return 539 // true. 540 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) { 541 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n"); 542 CurrentLiveInEntry->second = std::move(BBLiveIn); 543 return /*Changed=*/true; 544 } 545 546 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n"); 547 return /*Changed=*/false; 548 } 549 550 void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var, 551 unsigned StartBit, unsigned EndBit, unsigned Base, 552 DebugLoc DL) { 553 assert(StartBit < EndBit && "Cannot create fragment of size <= 0"); 554 if (!Base) 555 return; 556 FragMemLoc Loc; 557 Loc.Var = Var; 558 Loc.OffsetInBits = StartBit; 559 Loc.SizeInBits = EndBit - StartBit; 560 assert(Base && "Expected a non-zero ID for Base address"); 561 Loc.Base = Base; 562 Loc.DL = DL; 563 BBInsertBeforeMap[&BB][&Before].push_back(Loc); 564 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName() 565 << " bits [" << StartBit << ", " << EndBit << ")\n"); 566 } 567 568 void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB, 569 VarFragMap &LiveSet) { 570 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID); 571 if (skipVariable(DbgVar.getVariable())) 572 return; 573 // Don't bother doing anything for this variables if we know it's fully 574 // promoted. We're only interested in variables that (sometimes) live on 575 // the stack here. 576 if (!VarsWithStackSlot->count(getAggregate(DbgVar))) 577 return; 578 unsigned Var = Aggregates.insert( 579 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt())); 580 581 // [StartBit: EndBit) are the bits affected by this def. 582 const DIExpression *DIExpr = VarLoc.Expr; 583 unsigned StartBit; 584 unsigned EndBit; 585 if (auto Frag = DIExpr->getFragmentInfo()) { 586 StartBit = Frag->OffsetInBits; 587 EndBit = StartBit + Frag->SizeInBits; 588 } else { 589 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits())); 590 StartBit = 0; 591 EndBit = *DbgVar.getVariable()->getSizeInBits(); 592 } 593 594 // We will only fill fragments for simple memory-describing dbg.value 595 // intrinsics. If the fragment offset is the same as the offset from the 596 // base pointer, do The Thing, otherwise fall back to normal dbg.value 597 // behaviour. AssignmentTrackingLowering has generated DIExpressions 598 // written in terms of the base pointer. 599 // TODO: Remove this condition since the fragment offset doesn't always 600 // equal the offset from base pointer (e.g. for a SROA-split variable). 601 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr); 602 const unsigned Base = 603 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit 604 ? Bases.insert(VarLoc.V) 605 : 0; 606 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " [" 607 << StartBit << ", " << EndBit << "): " << toString(Base) 608 << "\n"); 609 610 // First of all, any locs that use mem that are disrupted need reinstating. 611 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap 612 // with existing intervals so this code involves a lot of fiddling around 613 // with intervals to do that manually. 614 auto FragIt = LiveSet.find(Var); 615 616 // Check if the variable does not exist in the map. 617 if (FragIt == LiveSet.end()) { 618 // Add this variable to the BB map. 619 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc)); 620 assert(P.second && "Var already in map?"); 621 // Add the interval to the fragment map. 622 P.first->second.insert(StartBit, EndBit, Base); 623 return; 624 } 625 // The variable has an entry in the map. 626 627 FragsInMemMap &FragMap = FragIt->second; 628 // First check the easy case: the new fragment `f` doesn't overlap with any 629 // intervals. 630 if (!FragMap.overlaps(StartBit, EndBit)) { 631 LLVM_DEBUG(dbgs() << "- No overlaps\n"); 632 FragMap.insert(StartBit, EndBit, Base); 633 return; 634 } 635 // There is at least one overlap. 636 637 // Does StartBit intersect an existing fragment? 638 auto FirstOverlap = FragMap.find(StartBit); 639 assert(FirstOverlap != FragMap.end()); 640 bool IntersectStart = FirstOverlap.start() < StartBit; 641 642 // Does EndBit intersect an existing fragment? 643 auto LastOverlap = FragMap.find(EndBit); 644 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit; 645 646 // Check if both ends of `f` intersect the same interval `i`. 647 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 648 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n"); 649 // Shorten `i` so that there's space to insert `f`. 650 // [ f ] 651 // [ - i - ] 652 // + 653 // [ i ][ f ][ i ] 654 auto EndBitOfOverlap = FirstOverlap.stop(); 655 FirstOverlap.setStop(StartBit); 656 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 657 *FirstOverlap, VarLoc.DL); 658 659 // Insert a new interval to represent the end part. 660 FragMap.insert(EndBit, EndBitOfOverlap, *FirstOverlap); 661 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, *FirstOverlap, 662 VarLoc.DL); 663 664 // Insert the new (middle) fragment now there is space. 665 FragMap.insert(StartBit, EndBit, Base); 666 } else { 667 // There's an overlap but `f` may not be fully contained within 668 // `i`. Shorten any end-point intersections so that we can then 669 // insert `f`. 670 // [ - f - ] 671 // [ - i - ] 672 // | | 673 // [ i ] 674 // Shorten any end-point intersections. 675 if (IntersectStart) { 676 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n"); 677 // Split off at the intersection. 678 FirstOverlap.setStop(StartBit); 679 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 680 *FirstOverlap, VarLoc.DL); 681 } 682 // [ - f - ] 683 // [ - i - ] 684 // | | 685 // [ i ] 686 if (IntersectEnd) { 687 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n"); 688 // Split off at the intersection. 689 LastOverlap.setStart(EndBit); 690 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap, 691 VarLoc.DL); 692 } 693 694 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n"); 695 // FirstOverlap and LastOverlap have been shortened such that they're 696 // no longer overlapping with [StartBit, EndBit). Delete any overlaps 697 // that remain (these will be fully contained within `f`). 698 // [ - f - ] } 699 // [ - i - ] } Intersection shortening that has happened above. 700 // | | } 701 // [ i ] } 702 // ----------------- 703 // [i2 ] } Intervals fully contained within `f` get erased. 704 // ----------------- 705 // [ - f - ][ i ] } Completed insertion. 706 auto It = FirstOverlap; 707 if (IntersectStart) 708 ++It; // IntersectStart: first overlap has been shortened. 709 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) { 710 LLVM_DEBUG(dbgs() << "- Erase " << toString(It)); 711 It.erase(); // This increments It after removing the interval. 712 } 713 // We've dealt with all the overlaps now! 714 assert(!FragMap.overlaps(StartBit, EndBit)); 715 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n"); 716 FragMap.insert(StartBit, EndBit, Base); 717 } 718 } 719 720 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); } 721 722 void process(BasicBlock &BB, VarFragMap &LiveSet) { 723 BBInsertBeforeMap[&BB].clear(); 724 for (auto &I : BB) { 725 if (const auto *Locs = FnVarLocs->getWedge(&I)) { 726 for (const VarLocInfo &Loc : *Locs) { 727 addDef(Loc, I, *I.getParent(), LiveSet); 728 } 729 } 730 } 731 } 732 733 public: 734 MemLocFragmentFill(Function &Fn, 735 const DenseSet<DebugAggregate> *VarsWithStackSlot) 736 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot) {} 737 738 /// Add variable locations to \p FnVarLocs so that any bits of a variable 739 /// with a memory location have that location explicitly reinstated at each 740 /// subsequent variable location definition that that doesn't overwrite those 741 /// bits. i.e. after a variable location def, insert new defs for the memory 742 /// location with fragments for the difference of "all bits currently in 743 /// memory" and "the fragment of the second def". e.g. 744 /// 745 /// Before: 746 /// 747 /// var x bits 0 to 63: value in memory 748 /// more instructions 749 /// var x bits 0 to 31: value is %0 750 /// 751 /// After: 752 /// 753 /// var x bits 0 to 63: value in memory 754 /// more instructions 755 /// var x bits 0 to 31: value is %0 756 /// var x bits 32 to 61: value in memory ; <-- new loc def 757 /// 758 void run(FunctionVarLocsBuilder *FnVarLocs) { 759 if (!EnableMemLocFragFill) 760 return; 761 762 this->FnVarLocs = FnVarLocs; 763 764 // Prepare for traversal. 765 // 766 ReversePostOrderTraversal<Function *> RPOT(&Fn); 767 std::priority_queue<unsigned int, std::vector<unsigned int>, 768 std::greater<unsigned int>> 769 Worklist; 770 std::priority_queue<unsigned int, std::vector<unsigned int>, 771 std::greater<unsigned int>> 772 Pending; 773 DenseMap<unsigned int, BasicBlock *> OrderToBB; 774 DenseMap<BasicBlock *, unsigned int> BBToOrder; 775 { // Init OrderToBB and BBToOrder. 776 unsigned int RPONumber = 0; 777 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 778 OrderToBB[RPONumber] = *RI; 779 BBToOrder[*RI] = RPONumber; 780 Worklist.push(RPONumber); 781 ++RPONumber; 782 } 783 LiveIn.init(RPONumber); 784 LiveOut.init(RPONumber); 785 } 786 787 // Perform the traversal. 788 // 789 // This is a standard "intersect of predecessor outs" dataflow problem. To 790 // solve it, we perform meet() and process() using the two worklist method 791 // until the LiveIn data for each block becomes unchanging. 792 // 793 // This dataflow is essentially working on maps of sets and at each meet we 794 // intersect the maps and the mapped sets. So, initialized live-in maps 795 // monotonically decrease in value throughout the dataflow. 796 SmallPtrSet<BasicBlock *, 16> Visited; 797 while (!Worklist.empty() || !Pending.empty()) { 798 // We track what is on the pending worklist to avoid inserting the same 799 // thing twice. We could avoid this with a custom priority queue, but 800 // this is probably not worth it. 801 SmallPtrSet<BasicBlock *, 16> OnPending; 802 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 803 while (!Worklist.empty()) { 804 BasicBlock *BB = OrderToBB[Worklist.top()]; 805 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 806 Worklist.pop(); 807 bool InChanged = meet(*BB, Visited); 808 // Always consider LiveIn changed on the first visit. 809 InChanged |= Visited.insert(BB).second; 810 if (InChanged) { 811 LLVM_DEBUG(dbgs() 812 << BB->getName() << " has new InLocs, process it\n"); 813 // Mutate a copy of LiveIn while processing BB. Once we've processed 814 // the terminator LiveSet is the LiveOut set for BB. 815 // This is an expensive copy! 816 VarFragMap LiveSet = LiveIn[BB]; 817 818 // Process the instructions in the block. 819 process(*BB, LiveSet); 820 821 // Relatively expensive check: has anything changed in LiveOut for BB? 822 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) { 823 LLVM_DEBUG(dbgs() << BB->getName() 824 << " has new OutLocs, add succs to worklist: [ "); 825 LiveOut[BB] = std::move(LiveSet); 826 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 827 if (OnPending.insert(*I).second) { 828 LLVM_DEBUG(dbgs() << I->getName() << " "); 829 Pending.push(BBToOrder[*I]); 830 } 831 } 832 LLVM_DEBUG(dbgs() << "]\n"); 833 } 834 } 835 } 836 Worklist.swap(Pending); 837 // At this point, pending must be empty, since it was just the empty 838 // worklist 839 assert(Pending.empty() && "Pending should be empty"); 840 } 841 842 // Insert new location defs. 843 for (auto Pair : BBInsertBeforeMap) { 844 InsertMap &Map = Pair.second; 845 for (auto Pair : Map) { 846 Instruction *InsertBefore = Pair.first; 847 assert(InsertBefore && "should never be null"); 848 auto FragMemLocs = Pair.second; 849 auto &Ctx = Fn.getContext(); 850 851 for (auto FragMemLoc : FragMemLocs) { 852 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt); 853 Expr = *DIExpression::createFragmentExpression( 854 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits); 855 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, 856 FragMemLoc.OffsetInBits / 8); 857 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr, 858 FragMemLoc.DL.getInlinedAt()); 859 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL, 860 Bases[FragMemLoc.Base]); 861 } 862 } 863 } 864 } 865 }; 866 867 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function 868 /// that interprets assignment tracking debug info metadata and stores in IR to 869 /// create a map of variable locations. 870 class AssignmentTrackingLowering { 871 public: 872 /// The kind of location in use for a variable, where Mem is the stack home, 873 /// Val is an SSA value or const, and None means that there is not one single 874 /// kind (either because there are multiple or because there is none; it may 875 /// prove useful to split this into two values in the future). 876 /// 877 /// LocKind is a join-semilattice with the partial order: 878 /// None > Mem, Val 879 /// 880 /// i.e. 881 /// join(Mem, Mem) = Mem 882 /// join(Val, Val) = Val 883 /// join(Mem, Val) = None 884 /// join(None, Mem) = None 885 /// join(None, Val) = None 886 /// join(None, None) = None 887 /// 888 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID 889 /// to name assignments and are not tracking the actual stored values. 890 /// Therefore currently there's no way to ensure that Mem values and Val 891 /// values are the same. This could be a future extension, though it's not 892 /// clear that many additional locations would be recovered that way in 893 /// practice as the likelihood of this sitation arising naturally seems 894 /// incredibly low. 895 enum class LocKind { Mem, Val, None }; 896 897 /// An abstraction of the assignment of a value to a variable or memory 898 /// location. 899 /// 900 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a 901 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or 902 /// can't) know the ID of the last assignment that took place. 903 /// 904 /// The Status of the Assignment (Known or NoneOrPhi) is another 905 /// join-semilattice. The partial order is: 906 /// NoneOrPhi > Known {id_0, id_1, ...id_N} 907 /// 908 /// i.e. for all values x and y where x != y: 909 /// join(x, x) = x 910 /// join(x, y) = NoneOrPhi 911 struct Assignment { 912 enum S { Known, NoneOrPhi } Status; 913 /// ID of the assignment. nullptr if Status is not Known. 914 DIAssignID *ID; 915 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field. 916 /// May be nullptr. 917 DbgAssignIntrinsic *Source; 918 919 bool isSameSourceAssignment(const Assignment &Other) const { 920 // Don't include Source in the equality check. Assignments are 921 // defined by their ID, not debug intrinsic(s). 922 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID); 923 } 924 void dump(raw_ostream &OS) { 925 static const char *LUT[] = {"Known", "NoneOrPhi"}; 926 OS << LUT[Status] << "(id="; 927 if (ID) 928 OS << ID; 929 else 930 OS << "null"; 931 OS << ", s="; 932 if (Source) 933 OS << *Source; 934 else 935 OS << "null"; 936 OS << ")"; 937 } 938 939 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) { 940 return Assignment(Known, ID, Source); 941 } 942 static Assignment makeFromMemDef(DIAssignID *ID) { 943 return Assignment(Known, ID, nullptr); 944 } 945 static Assignment makeNoneOrPhi() { 946 return Assignment(NoneOrPhi, nullptr, nullptr); 947 } 948 // Again, need a Top value? 949 Assignment() 950 : Status(NoneOrPhi), ID(nullptr), Source(nullptr) { 951 } // Can we delete this? 952 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source) 953 : Status(Status), ID(ID), Source(Source) { 954 // If the Status is Known then we expect there to be an assignment ID. 955 assert(Status == NoneOrPhi || ID); 956 } 957 }; 958 959 using AssignmentMap = DenseMap<VariableID, Assignment>; 960 using LocMap = DenseMap<VariableID, LocKind>; 961 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID, 4>>; 962 using UntaggedStoreAssignmentMap = 963 DenseMap<const Instruction *, 964 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>; 965 966 private: 967 /// Map a variable to the set of variables that it fully contains. 968 OverlapMap VarContains; 969 /// Map untagged stores to the variable fragments they assign to. Used by 970 /// processUntaggedInstruction. 971 UntaggedStoreAssignmentMap UntaggedStoreVars; 972 973 // Machinery to defer inserting dbg.values. 974 using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>; 975 InsertMap InsertBeforeMap; 976 /// Clear the location definitions currently cached for insertion after /p 977 /// After. 978 void resetInsertionPoint(Instruction &After); 979 void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source, 980 Instruction *After); 981 982 static bool mapsAreEqual(const AssignmentMap &A, const AssignmentMap &B) { 983 if (A.size() != B.size()) 984 return false; 985 for (const auto &Pair : A) { 986 VariableID Var = Pair.first; 987 const Assignment &AV = Pair.second; 988 auto R = B.find(Var); 989 // Check if this entry exists in B, otherwise ret false. 990 if (R == B.end()) 991 return false; 992 // Check that the assignment value is the same. 993 if (!AV.isSameSourceAssignment(R->second)) 994 return false; 995 } 996 return true; 997 } 998 999 /// Represents the stack and debug assignments in a block. Used to describe 1000 /// the live-in and live-out values for blocks, as well as the "current" 1001 /// value as we process each instruction in a block. 1002 struct BlockInfo { 1003 /// Dominating assignment to memory for each variable. 1004 AssignmentMap StackHomeValue; 1005 /// Dominating assignemnt to each variable. 1006 AssignmentMap DebugValue; 1007 /// Location kind for each variable. LiveLoc indicates whether the 1008 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue 1009 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of 1010 /// preference. This cannot be derived by inspecting DebugValue and 1011 /// StackHomeValue due to the fact that there's no distinction in 1012 /// Assignment (the class) between whether an assignment is unknown or a 1013 /// merge of multiple assignments (both are Status::NoneOrPhi). In other 1014 /// words, the memory location may well be valid while both DebugValue and 1015 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi. 1016 LocMap LiveLoc; 1017 1018 /// Compare every element in each map to determine structural equality 1019 /// (slow). 1020 bool operator==(const BlockInfo &Other) const { 1021 return LiveLoc == Other.LiveLoc && 1022 mapsAreEqual(StackHomeValue, Other.StackHomeValue) && 1023 mapsAreEqual(DebugValue, Other.DebugValue); 1024 } 1025 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); } 1026 bool isValid() { 1027 return LiveLoc.size() == DebugValue.size() && 1028 LiveLoc.size() == StackHomeValue.size(); 1029 } 1030 }; 1031 1032 Function &Fn; 1033 const DataLayout &Layout; 1034 const DenseSet<DebugAggregate> *VarsWithStackSlot; 1035 FunctionVarLocsBuilder *FnVarLocs; 1036 DenseMap<const BasicBlock *, BlockInfo> LiveIn; 1037 DenseMap<const BasicBlock *, BlockInfo> LiveOut; 1038 1039 /// Helper for process methods to track variables touched each frame. 1040 DenseSet<VariableID> VarsTouchedThisFrame; 1041 1042 /// The set of variables that sometimes are not located in their stack home. 1043 DenseSet<DebugAggregate> NotAlwaysStackHomed; 1044 1045 VariableID getVariableID(const DebugVariable &Var) { 1046 return static_cast<VariableID>(FnVarLocs->insertVariable(Var)); 1047 } 1048 1049 /// Join the LiveOut values of preds that are contained in \p Visited into 1050 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB] 1051 /// values monotonically increase. See the @link joinMethods join methods 1052 /// @endlink documentation for more info. 1053 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited); 1054 ///@name joinMethods 1055 /// Functions that implement `join` (the least upper bound) for the 1056 /// join-semilattice types used in the dataflow. There is an explicit bottom 1057 /// value (⊥) for some types and and explicit top value (⊤) for all types. 1058 /// By definition: 1059 /// 1060 /// Join(A, B) >= A && Join(A, B) >= B 1061 /// Join(A, ⊥) = A 1062 /// Join(A, ⊤) = ⊤ 1063 /// 1064 /// These invariants are important for monotonicity. 1065 /// 1066 /// For the map-type functions, all unmapped keys in an empty map are 1067 /// associated with a bottom value (⊥). This represents their values being 1068 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key 1069 /// only present in one) represents either a variable going out of scope or 1070 /// dropped debug info. It is assumed the key is associated with a top value 1071 /// (⊤) in this case (unknown location / assignment). 1072 ///@{ 1073 static LocKind joinKind(LocKind A, LocKind B); 1074 static LocMap joinLocMap(const LocMap &A, const LocMap &B); 1075 static Assignment joinAssignment(const Assignment &A, const Assignment &B); 1076 static AssignmentMap joinAssignmentMap(const AssignmentMap &A, 1077 const AssignmentMap &B); 1078 static BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B); 1079 ///@} 1080 1081 /// Process the instructions in \p BB updating \p LiveSet along the way. \p 1082 /// LiveSet must be initialized with the current live-in locations before 1083 /// calling this. 1084 void process(BasicBlock &BB, BlockInfo *LiveSet); 1085 ///@name processMethods 1086 /// Methods to process instructions in order to update the LiveSet (current 1087 /// location information). 1088 ///@{ 1089 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1090 void processDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1091 /// Update \p LiveSet after encountering an instruction with a DIAssignID 1092 /// attachment, \p I. 1093 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1094 /// Update \p LiveSet after encountering an instruciton without a DIAssignID 1095 /// attachment, \p I. 1096 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1097 void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet); 1098 void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet); 1099 /// Add an assignment to memory for the variable /p Var. 1100 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1101 /// Add an assignment to the variable /p Var. 1102 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1103 ///@} 1104 1105 /// Set the LocKind for \p Var. 1106 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K); 1107 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to 1108 /// have been called for \p Var first. 1109 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var); 1110 /// Return true if \p Var has an assignment in \p M matching \p AV. 1111 bool hasVarWithAssignment(VariableID Var, const Assignment &AV, 1112 const AssignmentMap &M); 1113 1114 /// Emit info for variables that are fully promoted. 1115 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs); 1116 1117 public: 1118 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout, 1119 const DenseSet<DebugAggregate> *VarsWithStackSlot) 1120 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {} 1121 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns 1122 /// true if any variable locations have been added to FnVarLocs. 1123 bool run(FunctionVarLocsBuilder *FnVarLocs); 1124 }; 1125 } // namespace 1126 1127 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var, 1128 LocKind K) { 1129 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) { 1130 VarsTouchedThisFrame.insert(Var); 1131 LiveSet->LiveLoc[Var] = K; 1132 }; 1133 SetKind(LiveSet, Var, K); 1134 1135 // Update the LocKind for all fragments contained within Var. 1136 for (VariableID Frag : VarContains[Var]) 1137 SetKind(LiveSet, Frag, K); 1138 } 1139 1140 AssignmentTrackingLowering::LocKind 1141 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) { 1142 auto Pair = LiveSet->LiveLoc.find(Var); 1143 assert(Pair != LiveSet->LiveLoc.end()); 1144 return Pair->second; 1145 } 1146 1147 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var, 1148 const Assignment &AV) { 1149 auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) { 1150 LiveSet->StackHomeValue[Var] = AV; 1151 // Add default (Var -> ⊤) to DebugValue if Var isn't in DebugValue yet. 1152 LiveSet->DebugValue.insert({Var, Assignment::makeNoneOrPhi()}); 1153 // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers 1154 // of addMemDef will call setLocKind to override. 1155 LiveSet->LiveLoc.insert({Var, LocKind::None}); 1156 }; 1157 AddDef(LiveSet, Var, AV); 1158 1159 // Use this assigment for all fragments contained within Var, but do not 1160 // provide a Source because we cannot convert Var's value to a value for the 1161 // fragment. 1162 Assignment FragAV = AV; 1163 FragAV.Source = nullptr; 1164 for (VariableID Frag : VarContains[Var]) 1165 AddDef(LiveSet, Frag, FragAV); 1166 } 1167 1168 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var, 1169 const Assignment &AV) { 1170 auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) { 1171 LiveSet->DebugValue[Var] = AV; 1172 // Add default (Var -> ⊤) to StackHome if Var isn't in StackHome yet. 1173 LiveSet->StackHomeValue.insert({Var, Assignment::makeNoneOrPhi()}); 1174 // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers 1175 // of addDbgDef will call setLocKind to override. 1176 LiveSet->LiveLoc.insert({Var, LocKind::None}); 1177 }; 1178 AddDef(LiveSet, Var, AV); 1179 1180 // Use this assigment for all fragments contained within Var, but do not 1181 // provide a Source because we cannot convert Var's value to a value for the 1182 // fragment. 1183 Assignment FragAV = AV; 1184 FragAV.Source = nullptr; 1185 for (VariableID Frag : VarContains[Var]) 1186 AddDef(LiveSet, Frag, FragAV); 1187 } 1188 1189 static DIAssignID *getIDFromInst(const Instruction &I) { 1190 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID)); 1191 } 1192 1193 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) { 1194 return cast<DIAssignID>(DAI.getAssignID()); 1195 } 1196 1197 /// Return true if \p Var has an assignment in \p M matching \p AV. 1198 bool AssignmentTrackingLowering::hasVarWithAssignment(VariableID Var, 1199 const Assignment &AV, 1200 const AssignmentMap &M) { 1201 auto AssignmentIsMapped = [](VariableID Var, const Assignment &AV, 1202 const AssignmentMap &M) { 1203 auto R = M.find(Var); 1204 if (R == M.end()) 1205 return false; 1206 return AV.isSameSourceAssignment(R->second); 1207 }; 1208 1209 if (!AssignmentIsMapped(Var, AV, M)) 1210 return false; 1211 1212 // Check all the frags contained within Var as these will have all been 1213 // mapped to AV at the last store to Var. 1214 for (VariableID Frag : VarContains[Var]) 1215 if (!AssignmentIsMapped(Frag, AV, M)) 1216 return false; 1217 return true; 1218 } 1219 1220 #ifndef NDEBUG 1221 const char *locStr(AssignmentTrackingLowering::LocKind Loc) { 1222 using LocKind = AssignmentTrackingLowering::LocKind; 1223 switch (Loc) { 1224 case LocKind::Val: 1225 return "Val"; 1226 case LocKind::Mem: 1227 return "Mem"; 1228 case LocKind::None: 1229 return "None"; 1230 }; 1231 llvm_unreachable("unknown LocKind"); 1232 } 1233 #endif 1234 1235 void AssignmentTrackingLowering::emitDbgValue( 1236 AssignmentTrackingLowering::LocKind Kind, 1237 const DbgVariableIntrinsic *Source, Instruction *After) { 1238 1239 DILocation *DL = Source->getDebugLoc(); 1240 auto Emit = [this, Source, After, DL](Value *Val, DIExpression *Expr) { 1241 assert(Expr); 1242 if (!Val) 1243 Val = PoisonValue::get(Type::getInt1Ty(Source->getContext())); 1244 1245 // Find a suitable insert point. 1246 Instruction *InsertBefore = After->getNextNode(); 1247 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1248 1249 VariableID Var = getVariableID(DebugVariable(Source)); 1250 VarLocInfo VarLoc; 1251 VarLoc.VariableID = static_cast<VariableID>(Var); 1252 VarLoc.Expr = Expr; 1253 VarLoc.V = Val; 1254 VarLoc.DL = DL; 1255 // Insert it into the map for later. 1256 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1257 }; 1258 1259 // NOTE: This block can mutate Kind. 1260 if (Kind == LocKind::Mem) { 1261 const auto *DAI = cast<DbgAssignIntrinsic>(Source); 1262 // Check the address hasn't been dropped (e.g. the debug uses may not have 1263 // been replaced before deleting a Value). 1264 if (DAI->isKillAddress()) { 1265 // The address isn't valid so treat this as a non-memory def. 1266 Kind = LocKind::Val; 1267 } else { 1268 Value *Val = DAI->getAddress(); 1269 DIExpression *Expr = DAI->getAddressExpression(); 1270 assert(!Expr->getFragmentInfo() && 1271 "fragment info should be stored in value-expression only"); 1272 // Copy the fragment info over from the value-expression to the new 1273 // DIExpression. 1274 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) { 1275 auto FragInfo = *OptFragInfo; 1276 Expr = *DIExpression::createFragmentExpression( 1277 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits); 1278 } 1279 // The address-expression has an implicit deref, add it now. 1280 std::tie(Val, Expr) = 1281 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr); 1282 Emit(Val, Expr); 1283 return; 1284 } 1285 } 1286 1287 if (Kind == LocKind::Val) { 1288 /// Get the value component, converting to Undef if it is variadic. 1289 Value *Val = 1290 Source->hasArgList() ? nullptr : Source->getVariableLocationOp(0); 1291 Emit(Val, Source->getExpression()); 1292 return; 1293 } 1294 1295 if (Kind == LocKind::None) { 1296 Emit(nullptr, Source->getExpression()); 1297 return; 1298 } 1299 } 1300 1301 void AssignmentTrackingLowering::processNonDbgInstruction( 1302 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1303 if (I.hasMetadata(LLVMContext::MD_DIAssignID)) 1304 processTaggedInstruction(I, LiveSet); 1305 else 1306 processUntaggedInstruction(I, LiveSet); 1307 } 1308 1309 void AssignmentTrackingLowering::processUntaggedInstruction( 1310 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1311 // Interpret stack stores that are not tagged as an assignment in memory for 1312 // the variables associated with that address. These stores may not be tagged 1313 // because a) the store cannot be represented using dbg.assigns (non-const 1314 // length or offset) or b) the tag was accidentally dropped during 1315 // optimisations. For these stores we fall back to assuming that the stack 1316 // home is a valid location for the variables. The benefit is that this 1317 // prevents us missing an assignment and therefore incorrectly maintaining 1318 // earlier location definitions, and in many cases it should be a reasonable 1319 // assumption. However, this will occasionally lead to slight 1320 // inaccuracies. The value of a hoisted untagged store will be visible 1321 // "early", for example. 1322 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID)); 1323 auto It = UntaggedStoreVars.find(&I); 1324 if (It == UntaggedStoreVars.end()) 1325 return; // No variables associated with the store destination. 1326 1327 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I 1328 << "\n"); 1329 // Iterate over the variables that this store affects, add a NoneOrPhi dbg 1330 // and mem def, set lockind to Mem, and emit a location def for each. 1331 for (auto [Var, Info] : It->second) { 1332 // This instruction is treated as both a debug and memory assignment, 1333 // meaning the memory location should be used. We don't have an assignment 1334 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one. 1335 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1336 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1337 setLocKind(LiveSet, Var, LocKind::Mem); 1338 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem) 1339 << "\n"); 1340 // Build the dbg location def to insert. 1341 // 1342 // DIExpression: Add fragment and offset. 1343 DebugVariable V = FnVarLocs->getVariable(Var); 1344 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt); 1345 if (auto Frag = V.getFragment()) { 1346 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits, 1347 Frag->SizeInBits); 1348 assert(R && "unexpected createFragmentExpression failure"); 1349 DIE = *R; 1350 } 1351 SmallVector<uint64_t, 3> Ops; 1352 if (Info.OffsetInBits) 1353 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8}; 1354 Ops.push_back(dwarf::DW_OP_deref); 1355 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false, 1356 /*EntryValue=*/false); 1357 // Find a suitable insert point. 1358 Instruction *InsertBefore = I.getNextNode(); 1359 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1360 1361 // Get DILocation for this unrecorded assignment. 1362 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt()); 1363 const DILocation *DILoc = DILocation::get( 1364 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt); 1365 1366 VarLocInfo VarLoc; 1367 VarLoc.VariableID = static_cast<VariableID>(Var); 1368 VarLoc.Expr = DIE; 1369 VarLoc.V = const_cast<AllocaInst *>(Info.Base); 1370 VarLoc.DL = DILoc; 1371 // 3. Insert it into the map for later. 1372 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1373 } 1374 } 1375 1376 void AssignmentTrackingLowering::processTaggedInstruction( 1377 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1378 auto Linked = at::getAssignmentMarkers(&I); 1379 // No dbg.assign intrinsics linked. 1380 // FIXME: All vars that have a stack slot this store modifies that don't have 1381 // a dbg.assign linked to it should probably treat this like an untagged 1382 // store. 1383 if (Linked.empty()) 1384 return; 1385 1386 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n"); 1387 for (DbgAssignIntrinsic *DAI : Linked) { 1388 VariableID Var = getVariableID(DebugVariable(DAI)); 1389 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable 1390 // that is linked to a store. 1391 assert(VarsWithStackSlot->count(getAggregate(DAI)) && 1392 "expected DAI's variable to have stack slot"); 1393 1394 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I)); 1395 addMemDef(LiveSet, Var, AV); 1396 1397 LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n"); 1398 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1399 << " -> "); 1400 1401 // The last assignment to the stack is now AV. Check if the last debug 1402 // assignment has a matching Assignment. 1403 if (hasVarWithAssignment(Var, AV, LiveSet->DebugValue)) { 1404 // The StackHomeValue and DebugValue for this variable match so we can 1405 // emit a stack home location here. 1406 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1407 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n"); 1408 LLVM_DEBUG(dbgs() << " Debug val: "; 1409 LiveSet->DebugValue[Var].dump(dbgs()); dbgs() << "\n"); 1410 setLocKind(LiveSet, Var, LocKind::Mem); 1411 emitDbgValue(LocKind::Mem, DAI, &I); 1412 continue; 1413 } 1414 1415 // The StackHomeValue and DebugValue for this variable do not match. I.e. 1416 // The value currently stored in the stack is not what we'd expect to 1417 // see, so we cannot use emit a stack home location here. Now we will 1418 // look at the live LocKind for the variable and determine an appropriate 1419 // dbg.value to emit. 1420 LocKind PrevLoc = getLocKind(LiveSet, Var); 1421 switch (PrevLoc) { 1422 case LocKind::Val: { 1423 // The value in memory in memory has changed but we're not currently 1424 // using the memory location. Do nothing. 1425 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";); 1426 setLocKind(LiveSet, Var, LocKind::Val); 1427 } break; 1428 case LocKind::Mem: { 1429 // There's been an assignment to memory that we were using as a 1430 // location for this variable, and the Assignment doesn't match what 1431 // we'd expect to see in memory. 1432 if (LiveSet->DebugValue[Var].Status == Assignment::NoneOrPhi) { 1433 // We need to terminate any previously open location now. 1434 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";); 1435 setLocKind(LiveSet, Var, LocKind::None); 1436 emitDbgValue(LocKind::None, DAI, &I); 1437 } else { 1438 // The previous DebugValue Value can be used here. 1439 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";); 1440 setLocKind(LiveSet, Var, LocKind::Val); 1441 Assignment PrevAV = LiveSet->DebugValue.lookup(Var); 1442 if (PrevAV.Source) { 1443 emitDbgValue(LocKind::Val, PrevAV.Source, &I); 1444 } else { 1445 // PrevAV.Source is nullptr so we must emit undef here. 1446 emitDbgValue(LocKind::None, DAI, &I); 1447 } 1448 } 1449 } break; 1450 case LocKind::None: { 1451 // There's been an assignment to memory and we currently are 1452 // not tracking a location for the variable. Do not emit anything. 1453 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";); 1454 setLocKind(LiveSet, Var, LocKind::None); 1455 } break; 1456 } 1457 } 1458 } 1459 1460 void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI, 1461 BlockInfo *LiveSet) { 1462 // Only bother tracking variables that are at some point stack homed. Other 1463 // variables can be dealt with trivially later. 1464 if (!VarsWithStackSlot->count(getAggregate(&DAI))) 1465 return; 1466 1467 VariableID Var = getVariableID(DebugVariable(&DAI)); 1468 Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI); 1469 addDbgDef(LiveSet, Var, AV); 1470 1471 LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";); 1472 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1473 << " -> "); 1474 1475 // Check if the DebugValue and StackHomeValue both hold the same 1476 // Assignment. 1477 if (hasVarWithAssignment(Var, AV, LiveSet->StackHomeValue)) { 1478 // They match. We can use the stack home because the debug intrinsics state 1479 // that an assignment happened here, and we know that specific assignment 1480 // was the last one to take place in memory for this variable. 1481 LocKind Kind; 1482 if (DAI.isKillAddress()) { 1483 LLVM_DEBUG( 1484 dbgs() 1485 << "Val, Stack matches Debug program but address is killed\n";); 1486 Kind = LocKind::Val; 1487 } else { 1488 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1489 Kind = LocKind::Mem; 1490 }; 1491 setLocKind(LiveSet, Var, Kind); 1492 emitDbgValue(Kind, &DAI, &DAI); 1493 } else { 1494 // The last assignment to the memory location isn't the one that we want to 1495 // show to the user so emit a dbg.value(Value). Value may be undef. 1496 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";); 1497 setLocKind(LiveSet, Var, LocKind::Val); 1498 emitDbgValue(LocKind::Val, &DAI, &DAI); 1499 } 1500 } 1501 1502 void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI, 1503 BlockInfo *LiveSet) { 1504 // Only other tracking variables that are at some point stack homed. 1505 // Other variables can be dealt with trivally later. 1506 if (!VarsWithStackSlot->count(getAggregate(&DVI))) 1507 return; 1508 1509 VariableID Var = getVariableID(DebugVariable(&DVI)); 1510 // We have no ID to create an Assignment with so we mark this assignment as 1511 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine 1512 // the assignment responsible for setting this value. 1513 // This is fine; dbg.values are essentially interchangable with unlinked 1514 // dbg.assigns, and some passes such as mem2reg and instcombine add them to 1515 // PHIs for promoted variables. 1516 Assignment AV = Assignment::makeNoneOrPhi(); 1517 addDbgDef(LiveSet, Var, AV); 1518 1519 LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";); 1520 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1521 << " -> Val, dbg.value override"); 1522 1523 setLocKind(LiveSet, Var, LocKind::Val); 1524 emitDbgValue(LocKind::Val, &DVI, &DVI); 1525 } 1526 1527 void AssignmentTrackingLowering::processDbgInstruction( 1528 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1529 assert(!isa<DbgAddrIntrinsic>(&I) && "unexpected dbg.addr"); 1530 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I)) 1531 processDbgAssign(*DAI, LiveSet); 1532 else if (auto *DVI = dyn_cast<DbgValueInst>(&I)) 1533 processDbgValue(*DVI, LiveSet); 1534 } 1535 1536 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) { 1537 assert(!After.isTerminator() && "Can't insert after a terminator"); 1538 auto R = InsertBeforeMap.find(After.getNextNode()); 1539 if (R == InsertBeforeMap.end()) 1540 return; 1541 R->second.clear(); 1542 } 1543 1544 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) { 1545 for (auto II = BB.begin(), EI = BB.end(); II != EI;) { 1546 assert(VarsTouchedThisFrame.empty()); 1547 // Process the instructions in "frames". A "frame" includes a single 1548 // non-debug instruction followed any debug instructions before the 1549 // next non-debug instruction. 1550 if (!isa<DbgInfoIntrinsic>(&*II)) { 1551 if (II->isTerminator()) 1552 break; 1553 resetInsertionPoint(*II); 1554 processNonDbgInstruction(*II, LiveSet); 1555 assert(LiveSet->isValid()); 1556 ++II; 1557 } 1558 while (II != EI) { 1559 if (!isa<DbgInfoIntrinsic>(&*II)) 1560 break; 1561 resetInsertionPoint(*II); 1562 processDbgInstruction(*II, LiveSet); 1563 assert(LiveSet->isValid()); 1564 ++II; 1565 } 1566 1567 // We've processed everything in the "frame". Now determine which variables 1568 // cannot be represented by a dbg.declare. 1569 for (auto Var : VarsTouchedThisFrame) { 1570 LocKind Loc = getLocKind(LiveSet, Var); 1571 // If a variable's LocKind is anything other than LocKind::Mem then we 1572 // must note that it cannot be represented with a dbg.declare. 1573 // Note that this check is enough without having to check the result of 1574 // joins() because for join to produce anything other than Mem after 1575 // we've already seen a Mem we'd be joining None or Val with Mem. In that 1576 // case, we've already hit this codepath when we set the LocKind to Val 1577 // or None in that block. 1578 if (Loc != LocKind::Mem) { 1579 DebugVariable DbgVar = FnVarLocs->getVariable(Var); 1580 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()}; 1581 NotAlwaysStackHomed.insert(Aggr); 1582 } 1583 } 1584 VarsTouchedThisFrame.clear(); 1585 } 1586 } 1587 1588 AssignmentTrackingLowering::LocKind 1589 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) { 1590 // Partial order: 1591 // None > Mem, Val 1592 return A == B ? A : LocKind::None; 1593 } 1594 1595 AssignmentTrackingLowering::LocMap 1596 AssignmentTrackingLowering::joinLocMap(const LocMap &A, const LocMap &B) { 1597 // Join A and B. 1598 // 1599 // U = join(a, b) for a in A, b in B where Var(a) == Var(b) 1600 // D = join(x, ⊤) for x where Var(x) is in A xor B 1601 // Join = U ∪ D 1602 // 1603 // This is achieved by performing a join on elements from A and B with 1604 // variables common to both A and B (join elements indexed by var intersect), 1605 // then adding LocKind::None elements for vars in A xor B. The latter part is 1606 // equivalent to performing join on elements with variables in A xor B with 1607 // LocKind::None (⊤) since join(x, ⊤) = ⊤. 1608 LocMap Join; 1609 SmallVector<VariableID, 16> SymmetricDifference; 1610 // Insert the join of the elements with common vars into Join. Add the 1611 // remaining elements to into SymmetricDifference. 1612 for (const auto &[Var, Loc] : A) { 1613 // If this Var doesn't exist in B then add it to the symmetric difference 1614 // set. 1615 auto R = B.find(Var); 1616 if (R == B.end()) { 1617 SymmetricDifference.push_back(Var); 1618 continue; 1619 } 1620 // There is an entry for Var in both, join it. 1621 Join[Var] = joinKind(Loc, R->second); 1622 } 1623 unsigned IntersectSize = Join.size(); 1624 (void)IntersectSize; 1625 1626 // Add the elements in B with variables that are not in A into 1627 // SymmetricDifference. 1628 for (const auto &Pair : B) { 1629 VariableID Var = Pair.first; 1630 if (A.count(Var) == 0) 1631 SymmetricDifference.push_back(Var); 1632 } 1633 1634 // Add SymmetricDifference elements to Join and return the result. 1635 for (const auto &Var : SymmetricDifference) 1636 Join.insert({Var, LocKind::None}); 1637 1638 assert(Join.size() == (IntersectSize + SymmetricDifference.size())); 1639 assert(Join.size() >= A.size() && Join.size() >= B.size()); 1640 return Join; 1641 } 1642 1643 AssignmentTrackingLowering::Assignment 1644 AssignmentTrackingLowering::joinAssignment(const Assignment &A, 1645 const Assignment &B) { 1646 // Partial order: 1647 // NoneOrPhi(null, null) > Known(v, ?s) 1648 1649 // If either are NoneOrPhi the join is NoneOrPhi. 1650 // If either value is different then the result is 1651 // NoneOrPhi (joining two values is a Phi). 1652 if (!A.isSameSourceAssignment(B)) 1653 return Assignment::makeNoneOrPhi(); 1654 if (A.Status == Assignment::NoneOrPhi) 1655 return Assignment::makeNoneOrPhi(); 1656 1657 // Source is used to lookup the value + expression in the debug program if 1658 // the stack slot gets assigned a value earlier than expected. Because 1659 // we're only tracking the one dbg.assign, we can't capture debug PHIs. 1660 // It's unlikely that we're losing out on much coverage by avoiding that 1661 // extra work. 1662 // The Source may differ in this situation: 1663 // Pred.1: 1664 // dbg.assign i32 0, ..., !1, ... 1665 // Pred.2: 1666 // dbg.assign i32 1, ..., !1, ... 1667 // Here the same assignment (!1) was performed in both preds in the source, 1668 // but we can't use either one unless they are identical (e.g. .we don't 1669 // want to arbitrarily pick between constant values). 1670 auto JoinSource = [&]() -> DbgAssignIntrinsic * { 1671 if (A.Source == B.Source) 1672 return A.Source; 1673 if (A.Source == nullptr || B.Source == nullptr) 1674 return nullptr; 1675 if (A.Source->isIdenticalTo(B.Source)) 1676 return A.Source; 1677 return nullptr; 1678 }; 1679 DbgAssignIntrinsic *Source = JoinSource(); 1680 assert(A.Status == B.Status && A.Status == Assignment::Known); 1681 assert(A.ID == B.ID); 1682 return Assignment::make(A.ID, Source); 1683 } 1684 1685 AssignmentTrackingLowering::AssignmentMap 1686 AssignmentTrackingLowering::joinAssignmentMap(const AssignmentMap &A, 1687 const AssignmentMap &B) { 1688 // Join A and B. 1689 // 1690 // U = join(a, b) for a in A, b in B where Var(a) == Var(b) 1691 // D = join(x, ⊤) for x where Var(x) is in A xor B 1692 // Join = U ∪ D 1693 // 1694 // This is achieved by performing a join on elements from A and B with 1695 // variables common to both A and B (join elements indexed by var intersect), 1696 // then adding LocKind::None elements for vars in A xor B. The latter part is 1697 // equivalent to performing join on elements with variables in A xor B with 1698 // Status::NoneOrPhi (⊤) since join(x, ⊤) = ⊤. 1699 AssignmentMap Join; 1700 SmallVector<VariableID, 16> SymmetricDifference; 1701 // Insert the join of the elements with common vars into Join. Add the 1702 // remaining elements to into SymmetricDifference. 1703 for (const auto &[Var, AV] : A) { 1704 // If this Var doesn't exist in B then add it to the symmetric difference 1705 // set. 1706 auto R = B.find(Var); 1707 if (R == B.end()) { 1708 SymmetricDifference.push_back(Var); 1709 continue; 1710 } 1711 // There is an entry for Var in both, join it. 1712 Join[Var] = joinAssignment(AV, R->second); 1713 } 1714 unsigned IntersectSize = Join.size(); 1715 (void)IntersectSize; 1716 1717 // Add the elements in B with variables that are not in A into 1718 // SymmetricDifference. 1719 for (const auto &Pair : B) { 1720 VariableID Var = Pair.first; 1721 if (A.count(Var) == 0) 1722 SymmetricDifference.push_back(Var); 1723 } 1724 1725 // Add SymmetricDifference elements to Join and return the result. 1726 for (auto Var : SymmetricDifference) 1727 Join.insert({Var, Assignment::makeNoneOrPhi()}); 1728 1729 assert(Join.size() == (IntersectSize + SymmetricDifference.size())); 1730 assert(Join.size() >= A.size() && Join.size() >= B.size()); 1731 return Join; 1732 } 1733 1734 AssignmentTrackingLowering::BlockInfo 1735 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A, 1736 const BlockInfo &B) { 1737 BlockInfo Join; 1738 Join.LiveLoc = joinLocMap(A.LiveLoc, B.LiveLoc); 1739 Join.StackHomeValue = joinAssignmentMap(A.StackHomeValue, B.StackHomeValue); 1740 Join.DebugValue = joinAssignmentMap(A.DebugValue, B.DebugValue); 1741 assert(Join.isValid()); 1742 return Join; 1743 } 1744 1745 bool AssignmentTrackingLowering::join( 1746 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) { 1747 BlockInfo BBLiveIn; 1748 bool FirstJoin = true; 1749 // LiveIn locs for BB is the join of the already-processed preds' LiveOut 1750 // locs. 1751 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 1752 // Ignore backedges if we have not visited the predecessor yet. As the 1753 // predecessor hasn't yet had locations propagated into it, most locations 1754 // will not yet be valid, so treat them as all being uninitialized and 1755 // potentially valid. If a location guessed to be correct here is 1756 // invalidated later, we will remove it when we revisit this block. This 1757 // is essentially the same as initialising all LocKinds and Assignments to 1758 // an implicit ⊥ value which is the identity value for the join operation. 1759 const BasicBlock *Pred = *I; 1760 if (!Visited.count(Pred)) 1761 continue; 1762 1763 auto PredLiveOut = LiveOut.find(Pred); 1764 // Pred must have been processed already. See comment at start of this loop. 1765 assert(PredLiveOut != LiveOut.end()); 1766 1767 // Perform the join of BBLiveIn (current live-in info) and PrevLiveOut. 1768 if (FirstJoin) 1769 BBLiveIn = PredLiveOut->second; 1770 else 1771 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second); 1772 FirstJoin = false; 1773 } 1774 1775 auto CurrentLiveInEntry = LiveIn.find(&BB); 1776 // Check if there isn't an entry, or there is but the LiveIn set has changed 1777 // (expensive check). 1778 if (CurrentLiveInEntry == LiveIn.end() || 1779 BBLiveIn != CurrentLiveInEntry->second) { 1780 LiveIn[&BB] = std::move(BBLiveIn); 1781 // A change has occured. 1782 return true; 1783 } 1784 // No change. 1785 return false; 1786 } 1787 1788 /// Return true if A fully contains B. 1789 static bool fullyContains(DIExpression::FragmentInfo A, 1790 DIExpression::FragmentInfo B) { 1791 auto ALeft = A.OffsetInBits; 1792 auto BLeft = B.OffsetInBits; 1793 if (BLeft < ALeft) 1794 return false; 1795 1796 auto ARight = ALeft + A.SizeInBits; 1797 auto BRight = BLeft + B.SizeInBits; 1798 if (BRight > ARight) 1799 return false; 1800 return true; 1801 } 1802 1803 static std::optional<at::AssignmentInfo> 1804 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) { 1805 // Don't bother checking if this is an AllocaInst. We know this 1806 // instruction has no tag which means there are no variables associated 1807 // with it. 1808 if (const auto *SI = dyn_cast<StoreInst>(&I)) 1809 return at::getAssignmentInfo(Layout, SI); 1810 if (const auto *MI = dyn_cast<MemIntrinsic>(&I)) 1811 return at::getAssignmentInfo(Layout, MI); 1812 // Alloca or non-store-like inst. 1813 return std::nullopt; 1814 } 1815 1816 /// Build a map of {Variable x: Variables y} where all variable fragments 1817 /// contained within the variable fragment x are in set y. This means that 1818 /// y does not contain all overlaps because partial overlaps are excluded. 1819 /// 1820 /// While we're iterating over the function, add single location defs for 1821 /// dbg.declares to \p FnVarLocs 1822 /// 1823 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to 1824 /// the stored-to variable fragments. 1825 /// 1826 /// These tasks are bundled together to reduce the number of times we need 1827 /// to iterate over the function as they can be achieved together in one pass. 1828 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares( 1829 Function &Fn, FunctionVarLocsBuilder *FnVarLocs, 1830 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars) { 1831 DenseSet<DebugVariable> Seen; 1832 // Map of Variable: [Fragments]. 1833 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap; 1834 // Iterate over all instructions: 1835 // - dbg.declare -> add single location variable record 1836 // - dbg.* -> Add fragments to FragmentMap 1837 // - untagged store -> Add fragments to FragmentMap and update 1838 // UntaggedStoreVars. 1839 // We need to add fragments for untagged stores too so that we can correctly 1840 // clobber overlapped fragment locations later. 1841 for (auto &BB : Fn) { 1842 for (auto &I : BB) { 1843 if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) { 1844 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(), 1845 DDI->getDebugLoc(), DDI->getAddress()); 1846 } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1847 DebugVariable DV = DebugVariable(DII); 1848 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 1849 if (Seen.insert(DV).second) 1850 FragmentMap[DA].push_back(DV); 1851 } else if (auto Info = getUntaggedStoreAssignmentInfo( 1852 I, Fn.getParent()->getDataLayout())) { 1853 // Find markers linked to this alloca. 1854 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) { 1855 // Discard the fragment if it covers the entire variable. 1856 std::optional<DIExpression::FragmentInfo> FragInfo = 1857 [&Info, DAI]() -> std::optional<DIExpression::FragmentInfo> { 1858 DIExpression::FragmentInfo F; 1859 F.OffsetInBits = Info->OffsetInBits; 1860 F.SizeInBits = Info->SizeInBits; 1861 if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo()) 1862 F.OffsetInBits += ExistingFrag->OffsetInBits; 1863 if (auto Sz = DAI->getVariable()->getSizeInBits()) { 1864 if (F.OffsetInBits == 0 && F.SizeInBits == *Sz) 1865 return std::nullopt; 1866 } 1867 return F; 1868 }(); 1869 1870 DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo, 1871 DAI->getDebugLoc().getInlinedAt()); 1872 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 1873 1874 // Cache this info for later. 1875 UntaggedStoreVars[&I].push_back( 1876 {FnVarLocs->insertVariable(DV), *Info}); 1877 1878 if (Seen.insert(DV).second) 1879 FragmentMap[DA].push_back(DV); 1880 } 1881 } 1882 } 1883 } 1884 1885 // Sort the fragment map for each DebugAggregate in non-descending 1886 // order of fragment size. Assert no entries are duplicates. 1887 for (auto &Pair : FragmentMap) { 1888 SmallVector<DebugVariable, 8> &Frags = Pair.second; 1889 std::sort( 1890 Frags.begin(), Frags.end(), [](DebugVariable Next, DebugVariable Elmt) { 1891 assert(!(Elmt.getFragmentOrDefault() == Next.getFragmentOrDefault())); 1892 return Elmt.getFragmentOrDefault().SizeInBits > 1893 Next.getFragmentOrDefault().SizeInBits; 1894 }); 1895 } 1896 1897 // Build the map. 1898 AssignmentTrackingLowering::OverlapMap Map; 1899 for (auto Pair : FragmentMap) { 1900 auto &Frags = Pair.second; 1901 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) { 1902 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault(); 1903 // Find the frags that this is contained within. 1904 // 1905 // Because Frags is sorted by size and none have the same offset and 1906 // size, we know that this frag can only be contained by subsequent 1907 // elements. 1908 SmallVector<DebugVariable, 8>::iterator OtherIt = It; 1909 ++OtherIt; 1910 VariableID ThisVar = FnVarLocs->insertVariable(*It); 1911 for (; OtherIt != IEnd; ++OtherIt) { 1912 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault(); 1913 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt); 1914 if (fullyContains(OtherFrag, Frag)) 1915 Map[OtherVar].push_back(ThisVar); 1916 } 1917 } 1918 } 1919 1920 return Map; 1921 } 1922 1923 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) { 1924 if (Fn.size() > MaxNumBlocks) { 1925 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName() 1926 << ": too many blocks (" << Fn.size() << ")\n"); 1927 at::deleteAll(&Fn); 1928 return false; 1929 } 1930 1931 FnVarLocs = FnVarLocsBuilder; 1932 1933 // The general structure here is inspired by VarLocBasedImpl.cpp 1934 // (LiveDebugValues). 1935 1936 // Build the variable fragment overlap map. 1937 // Note that this pass doesn't handle partial overlaps correctly (FWIW 1938 // neither does LiveDebugVariables) because that is difficult to do and 1939 // appears to be rare occurance. 1940 VarContains = 1941 buildOverlapMapAndRecordDeclares(Fn, FnVarLocs, UntaggedStoreVars); 1942 1943 // Prepare for traversal. 1944 ReversePostOrderTraversal<Function *> RPOT(&Fn); 1945 std::priority_queue<unsigned int, std::vector<unsigned int>, 1946 std::greater<unsigned int>> 1947 Worklist; 1948 std::priority_queue<unsigned int, std::vector<unsigned int>, 1949 std::greater<unsigned int>> 1950 Pending; 1951 DenseMap<unsigned int, BasicBlock *> OrderToBB; 1952 DenseMap<BasicBlock *, unsigned int> BBToOrder; 1953 { // Init OrderToBB and BBToOrder. 1954 unsigned int RPONumber = 0; 1955 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 1956 OrderToBB[RPONumber] = *RI; 1957 BBToOrder[*RI] = RPONumber; 1958 Worklist.push(RPONumber); 1959 ++RPONumber; 1960 } 1961 LiveIn.init(RPONumber); 1962 LiveOut.init(RPONumber); 1963 } 1964 1965 // Perform the traversal. 1966 // 1967 // This is a standard "union of predecessor outs" dataflow problem. To solve 1968 // it, we perform join() and process() using the two worklist method until 1969 // the LiveIn data for each block becomes unchanging. The "proof" that this 1970 // terminates can be put together by looking at the comments around LocKind, 1971 // Assignment, and the various join methods, which show that all the elements 1972 // involved are made up of join-semilattices; LiveIn(n) can only 1973 // monotonically increase in value throughout the dataflow. 1974 // 1975 SmallPtrSet<BasicBlock *, 16> Visited; 1976 while (!Worklist.empty()) { 1977 // We track what is on the pending worklist to avoid inserting the same 1978 // thing twice. 1979 SmallPtrSet<BasicBlock *, 16> OnPending; 1980 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 1981 while (!Worklist.empty()) { 1982 BasicBlock *BB = OrderToBB[Worklist.top()]; 1983 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 1984 Worklist.pop(); 1985 bool InChanged = join(*BB, Visited); 1986 // Always consider LiveIn changed on the first visit. 1987 InChanged |= Visited.insert(BB).second; 1988 if (InChanged) { 1989 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n"); 1990 // Mutate a copy of LiveIn while processing BB. After calling process 1991 // LiveSet is the LiveOut set for BB. 1992 BlockInfo LiveSet = LiveIn[BB]; 1993 1994 // Process the instructions in the block. 1995 process(*BB, &LiveSet); 1996 1997 // Relatively expensive check: has anything changed in LiveOut for BB? 1998 if (LiveOut[BB] != LiveSet) { 1999 LLVM_DEBUG(dbgs() << BB->getName() 2000 << " has new OutLocs, add succs to worklist: [ "); 2001 LiveOut[BB] = std::move(LiveSet); 2002 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 2003 if (OnPending.insert(*I).second) { 2004 LLVM_DEBUG(dbgs() << I->getName() << " "); 2005 Pending.push(BBToOrder[*I]); 2006 } 2007 } 2008 LLVM_DEBUG(dbgs() << "]\n"); 2009 } 2010 } 2011 } 2012 Worklist.swap(Pending); 2013 // At this point, pending must be empty, since it was just the empty 2014 // worklist 2015 assert(Pending.empty() && "Pending should be empty"); 2016 } 2017 2018 // That's the hard part over. Now we just have some admin to do. 2019 2020 // Record whether we inserted any intrinsics. 2021 bool InsertedAnyIntrinsics = false; 2022 2023 // Identify and add defs for single location variables. 2024 // 2025 // Go through all of the defs that we plan to add. If the aggregate variable 2026 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single 2027 // location def and omit the rest. Add an entry to AlwaysStackHomed so that 2028 // we can identify those uneeded defs later. 2029 DenseSet<DebugAggregate> AlwaysStackHomed; 2030 for (const auto &Pair : InsertBeforeMap) { 2031 const auto &Vec = Pair.second; 2032 for (VarLocInfo VarLoc : Vec) { 2033 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2034 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2035 2036 // Skip this Var if it's not always stack homed. 2037 if (NotAlwaysStackHomed.contains(Aggr)) 2038 continue; 2039 2040 // Skip complex cases such as when different fragments of a variable have 2041 // been split into different allocas. Skipping in this case means falling 2042 // back to using a list of defs (which could reduce coverage, but is no 2043 // less correct). 2044 bool Simple = 2045 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref(); 2046 if (!Simple) { 2047 NotAlwaysStackHomed.insert(Aggr); 2048 continue; 2049 } 2050 2051 // All source assignments to this variable remain and all stores to any 2052 // part of the variable store to the same address (with varying 2053 // offsets). We can just emit a single location for the whole variable. 2054 // 2055 // Unless we've already done so, create the single location def now. 2056 if (AlwaysStackHomed.insert(Aggr).second) { 2057 assert(isa<AllocaInst>(VarLoc.V)); 2058 // TODO: When more complex cases are handled VarLoc.Expr should be 2059 // built appropriately rather than always using an empty DIExpression. 2060 // The assert below is a reminder. 2061 assert(Simple); 2062 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt); 2063 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2064 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.V); 2065 InsertedAnyIntrinsics = true; 2066 } 2067 } 2068 } 2069 2070 // Insert the other DEFs. 2071 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) { 2072 SmallVector<VarLocInfo> NewDefs; 2073 for (const VarLocInfo &VarLoc : Vec) { 2074 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2075 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2076 // If this variable is always stack homed then we have already inserted a 2077 // dbg.declare and deleted this dbg.value. 2078 if (AlwaysStackHomed.contains(Aggr)) 2079 continue; 2080 NewDefs.push_back(VarLoc); 2081 InsertedAnyIntrinsics = true; 2082 } 2083 2084 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs)); 2085 } 2086 2087 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs); 2088 2089 return InsertedAnyIntrinsics; 2090 } 2091 2092 bool AssignmentTrackingLowering::emitPromotedVarLocs( 2093 FunctionVarLocsBuilder *FnVarLocs) { 2094 bool InsertedAnyIntrinsics = false; 2095 // Go through every block, translating debug intrinsics for fully promoted 2096 // variables into FnVarLocs location defs. No analysis required for these. 2097 for (auto &BB : Fn) { 2098 for (auto &I : BB) { 2099 // Skip instructions other than dbg.values and dbg.assigns. 2100 auto *DVI = dyn_cast<DbgValueInst>(&I); 2101 if (!DVI) 2102 continue; 2103 // Skip variables that haven't been promoted - we've dealt with those 2104 // already. 2105 if (VarsWithStackSlot->contains(getAggregate(DVI))) 2106 continue; 2107 // Wrapper to get a single value (or undef) from DVI. 2108 auto GetValue = [DVI]() -> Value * { 2109 // We can't handle variadic DIExpressions yet so treat those as 2110 // kill locations. 2111 if (DVI->isKillLocation() || DVI->getValue() == nullptr || 2112 DVI->hasArgList()) 2113 return PoisonValue::get(Type::getInt32Ty(DVI->getContext())); 2114 return DVI->getValue(); 2115 }; 2116 Instruction *InsertBefore = I.getNextNode(); 2117 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator"); 2118 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI), 2119 DVI->getExpression(), DVI->getDebugLoc(), 2120 GetValue()); 2121 InsertedAnyIntrinsics = true; 2122 } 2123 } 2124 return InsertedAnyIntrinsics; 2125 } 2126 2127 /// Remove redundant definitions within sequences of consecutive location defs. 2128 /// This is done using a backward scan to keep the last def describing a 2129 /// specific variable/fragment. 2130 /// 2131 /// This implements removeRedundantDbgInstrsUsingBackwardScan from 2132 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2133 /// FunctionVarLocsBuilder instead of with intrinsics. 2134 static bool 2135 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, 2136 FunctionVarLocsBuilder &FnVarLocs) { 2137 bool Changed = false; 2138 SmallDenseSet<DebugVariable> VariableSet; 2139 2140 // Scan over the entire block, not just over the instructions mapped by 2141 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2142 // instructions. 2143 for (const Instruction &I : reverse(*BB)) { 2144 if (!isa<DbgVariableIntrinsic>(I)) { 2145 // Sequence of consecutive defs ended. Clear map for the next one. 2146 VariableSet.clear(); 2147 } 2148 2149 // Get the location defs that start just before this instruction. 2150 const auto *Locs = FnVarLocs.getWedge(&I); 2151 if (!Locs) 2152 continue; 2153 2154 NumWedgesScanned++; 2155 bool ChangedThisWedge = false; 2156 // The new pruned set of defs, reversed because we're scanning backwards. 2157 SmallVector<VarLocInfo> NewDefsReversed; 2158 2159 // Iterate over the existing defs in reverse. 2160 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) { 2161 NumDefsScanned++; 2162 const DebugVariable &Key = FnVarLocs.getVariable(RIt->VariableID); 2163 bool FirstDefOfFragment = VariableSet.insert(Key).second; 2164 2165 // If the same variable fragment is described more than once it is enough 2166 // to keep the last one (i.e. the first found in this reverse iteration). 2167 if (FirstDefOfFragment) { 2168 // New def found: keep it. 2169 NewDefsReversed.push_back(*RIt); 2170 } else { 2171 // Redundant def found: throw it away. Since the wedge of defs is being 2172 // rebuilt, doing nothing is the same as deleting an entry. 2173 ChangedThisWedge = true; 2174 NumDefsRemoved++; 2175 } 2176 continue; 2177 } 2178 2179 // Un-reverse the defs and replace the wedge with the pruned version. 2180 if (ChangedThisWedge) { 2181 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end()); 2182 FnVarLocs.setWedge(&I, std::move(NewDefsReversed)); 2183 NumWedgesChanged++; 2184 Changed = true; 2185 } 2186 } 2187 2188 return Changed; 2189 } 2190 2191 /// Remove redundant location defs using a forward scan. This can remove a 2192 /// location definition that is redundant due to indicating that a variable has 2193 /// the same value as is already being indicated by an earlier def. 2194 /// 2195 /// This implements removeRedundantDbgInstrsUsingForwardScan from 2196 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2197 /// FunctionVarLocsBuilder instead of with intrinsics 2198 static bool 2199 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, 2200 FunctionVarLocsBuilder &FnVarLocs) { 2201 bool Changed = false; 2202 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap; 2203 2204 // Scan over the entire block, not just over the instructions mapped by 2205 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2206 // instructions. 2207 for (const Instruction &I : *BB) { 2208 // Get the defs that come just before this instruction. 2209 const auto *Locs = FnVarLocs.getWedge(&I); 2210 if (!Locs) 2211 continue; 2212 2213 NumWedgesScanned++; 2214 bool ChangedThisWedge = false; 2215 // The new pruned set of defs. 2216 SmallVector<VarLocInfo> NewDefs; 2217 2218 // Iterate over the existing defs. 2219 for (const VarLocInfo &Loc : *Locs) { 2220 NumDefsScanned++; 2221 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2222 std::nullopt, Loc.DL.getInlinedAt()); 2223 auto VMI = VariableMap.find(Key); 2224 2225 // Update the map if we found a new value/expression describing the 2226 // variable, or if the variable wasn't mapped already. 2227 if (VMI == VariableMap.end() || VMI->second.first != Loc.V || 2228 VMI->second.second != Loc.Expr) { 2229 VariableMap[Key] = {Loc.V, Loc.Expr}; 2230 NewDefs.push_back(Loc); 2231 continue; 2232 } 2233 2234 // Did not insert this Loc, which is the same as removing it. 2235 ChangedThisWedge = true; 2236 NumDefsRemoved++; 2237 } 2238 2239 // Replace the existing wedge with the pruned version. 2240 if (ChangedThisWedge) { 2241 FnVarLocs.setWedge(&I, std::move(NewDefs)); 2242 NumWedgesChanged++; 2243 Changed = true; 2244 } 2245 } 2246 2247 return Changed; 2248 } 2249 2250 static bool 2251 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, 2252 FunctionVarLocsBuilder &FnVarLocs) { 2253 assert(BB->isEntryBlock()); 2254 // Do extra work to ensure that we remove semantically unimportant undefs. 2255 // 2256 // This is to work around the fact that SelectionDAG will hoist dbg.values 2257 // using argument values to the top of the entry block. That can move arg 2258 // dbg.values before undef and constant dbg.values which they previously 2259 // followed. The easiest thing to do is to just try to feed SelectionDAG 2260 // input it's happy with. 2261 // 2262 // Map of {Variable x: Fragments y} where the fragments y of variable x have 2263 // have at least one non-undef location defined already. Don't use directly, 2264 // instead call DefineBits and HasDefinedBits. 2265 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>> 2266 VarsWithDef; 2267 // Specify that V (a fragment of A) has a non-undef location. 2268 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2269 VarsWithDef[A].insert(V.getFragmentOrDefault()); 2270 }; 2271 // Return true if a non-undef location has been defined for V (a fragment of 2272 // A). Doesn't imply that the location is currently non-undef, just that a 2273 // non-undef location has been seen previously. 2274 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2275 auto FragsIt = VarsWithDef.find(A); 2276 if (FragsIt == VarsWithDef.end()) 2277 return false; 2278 return llvm::any_of(FragsIt->second, [V](auto Frag) { 2279 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault()); 2280 }); 2281 }; 2282 2283 bool Changed = false; 2284 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap; 2285 2286 // Scan over the entire block, not just over the instructions mapped by 2287 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2288 // instructions. 2289 for (const Instruction &I : *BB) { 2290 // Get the defs that come just before this instruction. 2291 const auto *Locs = FnVarLocs.getWedge(&I); 2292 if (!Locs) 2293 continue; 2294 2295 NumWedgesScanned++; 2296 bool ChangedThisWedge = false; 2297 // The new pruned set of defs. 2298 SmallVector<VarLocInfo> NewDefs; 2299 2300 // Iterate over the existing defs. 2301 for (const VarLocInfo &Loc : *Locs) { 2302 NumDefsScanned++; 2303 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2304 Loc.DL.getInlinedAt()}; 2305 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID); 2306 2307 // Remove undef entries that are encountered before any non-undef 2308 // intrinsics from the entry block. 2309 if (isa<UndefValue>(Loc.V) && !HasDefinedBits(Aggr, Var)) { 2310 // Did not insert this Loc, which is the same as removing it. 2311 NumDefsRemoved++; 2312 ChangedThisWedge = true; 2313 continue; 2314 } 2315 2316 DefineBits(Aggr, Var); 2317 NewDefs.push_back(Loc); 2318 } 2319 2320 // Replace the existing wedge with the pruned version. 2321 if (ChangedThisWedge) { 2322 FnVarLocs.setWedge(&I, std::move(NewDefs)); 2323 NumWedgesChanged++; 2324 Changed = true; 2325 } 2326 } 2327 2328 return Changed; 2329 } 2330 2331 static bool removeRedundantDbgLocs(const BasicBlock *BB, 2332 FunctionVarLocsBuilder &FnVarLocs) { 2333 bool MadeChanges = false; 2334 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs); 2335 if (BB->isEntryBlock()) 2336 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs); 2337 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs); 2338 2339 if (MadeChanges) 2340 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName() 2341 << "\n"); 2342 return MadeChanges; 2343 } 2344 2345 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) { 2346 DenseSet<DebugAggregate> Result; 2347 for (auto &BB : Fn) { 2348 for (auto &I : BB) { 2349 // Any variable linked to an instruction is considered 2350 // interesting. Ideally we only need to check Allocas, however, a 2351 // DIAssignID might get dropped from an alloca but not stores. In that 2352 // case, we need to consider the variable interesting for NFC behaviour 2353 // with this change. TODO: Consider only looking at allocas. 2354 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) { 2355 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()}); 2356 } 2357 } 2358 } 2359 return Result; 2360 } 2361 2362 static void analyzeFunction(Function &Fn, const DataLayout &Layout, 2363 FunctionVarLocsBuilder *FnVarLocs) { 2364 // The analysis will generate location definitions for all variables, but we 2365 // only need to perform a dataflow on the set of variables which have a stack 2366 // slot. Find those now. 2367 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn); 2368 2369 bool Changed = false; 2370 2371 // Use a scope block to clean up AssignmentTrackingLowering before running 2372 // MemLocFragmentFill to reduce peak memory consumption. 2373 { 2374 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot); 2375 Changed = Pass.run(FnVarLocs); 2376 } 2377 2378 if (Changed) { 2379 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot); 2380 Pass.run(FnVarLocs); 2381 2382 // Remove redundant entries. As well as reducing memory consumption and 2383 // avoiding waiting cycles later by burning some now, this has another 2384 // important job. That is to work around some SelectionDAG quirks. See 2385 // removeRedundantDbgLocsUsingForwardScan comments for more info on that. 2386 for (auto &BB : Fn) 2387 removeRedundantDbgLocs(&BB, *FnVarLocs); 2388 } 2389 } 2390 2391 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) { 2392 if (!isAssignmentTrackingEnabled(*F.getParent())) 2393 return false; 2394 2395 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName() 2396 << "\n"); 2397 auto DL = std::make_unique<DataLayout>(F.getParent()); 2398 2399 // Clear previous results. 2400 Results->clear(); 2401 2402 FunctionVarLocsBuilder Builder; 2403 analyzeFunction(F, *DL.get(), &Builder); 2404 2405 // Save these results. 2406 Results->init(Builder); 2407 2408 if (PrintResults && isFunctionInPrintList(F.getName())) 2409 Results->print(errs(), F); 2410 2411 // Return false because this pass does not modify the function. 2412 return false; 2413 } 2414 2415 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis() 2416 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {} 2417 2418 char AssignmentTrackingAnalysis::ID = 0; 2419 2420 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE, 2421 "Assignment Tracking Analysis", false, true) 2422