1 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 2 #include "llvm/ADT/DenseMapInfo.h" 3 #include "llvm/ADT/IntervalMap.h" 4 #include "llvm/ADT/PostOrderIterator.h" 5 #include "llvm/ADT/STLExtras.h" 6 #include "llvm/ADT/SmallSet.h" 7 #include "llvm/ADT/Statistic.h" 8 #include "llvm/ADT/UniqueVector.h" 9 #include "llvm/Analysis/Interval.h" 10 #include "llvm/BinaryFormat/Dwarf.h" 11 #include "llvm/IR/BasicBlock.h" 12 #include "llvm/IR/DataLayout.h" 13 #include "llvm/IR/DebugInfo.h" 14 #include "llvm/IR/Function.h" 15 #include "llvm/IR/Instruction.h" 16 #include "llvm/IR/IntrinsicInst.h" 17 #include "llvm/IR/PassManager.h" 18 #include "llvm/IR/PrintPasses.h" 19 #include "llvm/InitializePasses.h" 20 #include "llvm/Support/CommandLine.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include <assert.h> 25 #include <cstdint> 26 #include <optional> 27 #include <sstream> 28 #include <unordered_map> 29 30 using namespace llvm; 31 #define DEBUG_TYPE "debug-ata" 32 33 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal"); 34 STATISTIC(NumDefsRemoved, "Number of dbg locs removed"); 35 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned"); 36 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed"); 37 38 static cl::opt<unsigned> 39 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), 40 cl::desc("Maximum num basic blocks before debug info dropped"), 41 cl::Hidden); 42 /// Option for debugging the pass, determines if the memory location fragment 43 /// filling happens after generating the variable locations. 44 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true), 45 cl::Hidden); 46 /// Print the results of the analysis. Respects -filter-print-funcs. 47 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false), 48 cl::Hidden); 49 50 // Implicit conversions are disabled for enum class types, so unfortunately we 51 // need to create a DenseMapInfo wrapper around the specified underlying type. 52 template <> struct llvm::DenseMapInfo<VariableID> { 53 using Wrapped = DenseMapInfo<unsigned>; 54 static inline VariableID getEmptyKey() { 55 return static_cast<VariableID>(Wrapped::getEmptyKey()); 56 } 57 static inline VariableID getTombstoneKey() { 58 return static_cast<VariableID>(Wrapped::getTombstoneKey()); 59 } 60 static unsigned getHashValue(const VariableID &Val) { 61 return Wrapped::getHashValue(static_cast<unsigned>(Val)); 62 } 63 static bool isEqual(const VariableID &LHS, const VariableID &RHS) { 64 return LHS == RHS; 65 } 66 }; 67 68 /// Helper class to build FunctionVarLocs, since that class isn't easy to 69 /// modify. TODO: There's not a great deal of value in the split, it could be 70 /// worth merging the two classes. 71 class FunctionVarLocsBuilder { 72 friend FunctionVarLocs; 73 UniqueVector<DebugVariable> Variables; 74 // Use an unordered_map so we don't invalidate iterators after 75 // insert/modifications. 76 std::unordered_map<const Instruction *, SmallVector<VarLocInfo>> 77 VarLocsBeforeInst; 78 79 SmallVector<VarLocInfo> SingleLocVars; 80 81 public: 82 /// Find or insert \p V and return the ID. 83 VariableID insertVariable(DebugVariable V) { 84 return static_cast<VariableID>(Variables.insert(V)); 85 } 86 87 /// Get a variable from its \p ID. 88 const DebugVariable &getVariable(VariableID ID) const { 89 return Variables[static_cast<unsigned>(ID)]; 90 } 91 92 /// Return ptr to wedge of defs or nullptr if no defs come just before /p 93 /// Before. 94 const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const { 95 auto R = VarLocsBeforeInst.find(Before); 96 if (R == VarLocsBeforeInst.end()) 97 return nullptr; 98 return &R->second; 99 } 100 101 /// Replace the defs that come just before /p Before with /p Wedge. 102 void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) { 103 VarLocsBeforeInst[Before] = std::move(Wedge); 104 } 105 106 /// Add a def for a variable that is valid for its lifetime. 107 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, 108 RawLocationWrapper R) { 109 VarLocInfo VarLoc; 110 VarLoc.VariableID = insertVariable(Var); 111 VarLoc.Expr = Expr; 112 VarLoc.DL = DL; 113 VarLoc.Values = R; 114 SingleLocVars.emplace_back(VarLoc); 115 } 116 117 /// Add a def to the wedge of defs just before /p Before. 118 void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr, 119 DebugLoc DL, RawLocationWrapper R) { 120 VarLocInfo VarLoc; 121 VarLoc.VariableID = insertVariable(Var); 122 VarLoc.Expr = Expr; 123 VarLoc.DL = DL; 124 VarLoc.Values = R; 125 VarLocsBeforeInst[Before].emplace_back(VarLoc); 126 } 127 }; 128 129 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const { 130 // Print the variable table first. TODO: Sorting by variable could make the 131 // output more stable? 132 unsigned Counter = -1; 133 OS << "=== Variables ===\n"; 134 for (const DebugVariable &V : Variables) { 135 ++Counter; 136 // Skip first entry because it is a dummy entry. 137 if (Counter == 0) { 138 continue; 139 } 140 OS << "[" << Counter << "] " << V.getVariable()->getName(); 141 if (auto F = V.getFragment()) 142 OS << " bits [" << F->OffsetInBits << ", " 143 << F->OffsetInBits + F->SizeInBits << ")"; 144 if (const auto *IA = V.getInlinedAt()) 145 OS << " inlined-at " << *IA; 146 OS << "\n"; 147 } 148 149 auto PrintLoc = [&OS](const VarLocInfo &Loc) { 150 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]" 151 << " Expr=" << *Loc.Expr << " Values=("; 152 for (auto *Op : Loc.Values.location_ops()) { 153 errs() << Op->getName() << " "; 154 } 155 errs() << ")\n"; 156 }; 157 158 // Print the single location variables. 159 OS << "=== Single location vars ===\n"; 160 for (auto It = single_locs_begin(), End = single_locs_end(); It != End; 161 ++It) { 162 PrintLoc(*It); 163 } 164 165 // Print the non-single-location defs in line with IR. 166 OS << "=== In-line variable defs ==="; 167 for (const BasicBlock &BB : Fn) { 168 OS << "\n" << BB.getName() << ":\n"; 169 for (const Instruction &I : BB) { 170 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) { 171 PrintLoc(*It); 172 } 173 OS << I << "\n"; 174 } 175 } 176 } 177 178 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) { 179 // Add the single-location variables first. 180 for (const auto &VarLoc : Builder.SingleLocVars) 181 VarLocRecords.emplace_back(VarLoc); 182 // Mark the end of the section. 183 SingleVarLocEnd = VarLocRecords.size(); 184 185 // Insert a contiguous block of VarLocInfos for each instruction, mapping it 186 // to the start and end position in the vector with VarLocsBeforeInst. 187 for (auto &P : Builder.VarLocsBeforeInst) { 188 unsigned BlockStart = VarLocRecords.size(); 189 for (const VarLocInfo &VarLoc : P.second) 190 VarLocRecords.emplace_back(VarLoc); 191 unsigned BlockEnd = VarLocRecords.size(); 192 // Record the start and end indices. 193 if (BlockEnd != BlockStart) 194 VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd}; 195 } 196 197 // Copy the Variables vector from the builder's UniqueVector. 198 assert(Variables.empty() && "Expect clear before init"); 199 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values 200 // are one-based) so reserve an extra and insert a dummy. 201 Variables.reserve(Builder.Variables.size() + 1); 202 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr)); 203 Variables.append(Builder.Variables.begin(), Builder.Variables.end()); 204 } 205 206 void FunctionVarLocs::clear() { 207 Variables.clear(); 208 VarLocRecords.clear(); 209 VarLocsBeforeInst.clear(); 210 SingleVarLocEnd = 0; 211 } 212 213 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p 214 /// Start as far as possible. Prepend \Expression with the offset and append it 215 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to 216 /// value and modified expression. 217 static std::pair<Value *, DIExpression *> 218 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, 219 DIExpression *Expression) { 220 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false); 221 Value *End = 222 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes); 223 SmallVector<uint64_t, 3> Ops; 224 if (OffsetInBytes.getBoolValue()) { 225 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()}; 226 Expression = DIExpression::prependOpcodes( 227 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false); 228 } 229 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref}); 230 return {End, Expression}; 231 } 232 233 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression 234 /// doesn't explicitly describe a memory location with DW_OP_deref or if the 235 /// expression is too complex to interpret. 236 static std::optional<int64_t> 237 getDerefOffsetInBytes(const DIExpression *DIExpr) { 238 int64_t Offset = 0; 239 const unsigned NumElements = DIExpr->getNumElements(); 240 const auto Elements = DIExpr->getElements(); 241 unsigned ExpectedDerefIdx = 0; 242 // Extract the offset. 243 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { 244 Offset = Elements[1]; 245 ExpectedDerefIdx = 2; 246 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) { 247 ExpectedDerefIdx = 3; 248 if (Elements[2] == dwarf::DW_OP_plus) 249 Offset = Elements[1]; 250 else if (Elements[2] == dwarf::DW_OP_minus) 251 Offset = -Elements[1]; 252 else 253 return std::nullopt; 254 } 255 256 // If that's all there is it means there's no deref. 257 if (ExpectedDerefIdx >= NumElements) 258 return std::nullopt; 259 260 // Check the next element is DW_OP_deref - otherwise this is too complex or 261 // isn't a deref expression. 262 if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref) 263 return std::nullopt; 264 265 // Check the final operation is either the DW_OP_deref or is a fragment. 266 if (NumElements == ExpectedDerefIdx + 1) 267 return Offset; // Ends with deref. 268 unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1; 269 unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2; 270 if (NumElements == ExpectedFragFinalIdx + 1 && 271 Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment) 272 return Offset; // Ends with deref + fragment. 273 274 // Don't bother trying to interpret anything more complex. 275 return std::nullopt; 276 } 277 278 /// A whole (unfragmented) source variable. 279 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>; 280 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) { 281 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt()); 282 } 283 static DebugAggregate getAggregate(const DebugVariable &Var) { 284 return DebugAggregate(Var.getVariable(), Var.getInlinedAt()); 285 } 286 287 namespace { 288 /// In dwarf emission, the following sequence 289 /// 1. dbg.value ... Fragment(0, 64) 290 /// 2. dbg.value ... Fragment(0, 32) 291 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in 292 /// the intersection of the fragments to having "no location"). This makes 293 /// sense for implicit location values because splitting the computed values 294 /// could be troublesome, and is probably quite uncommon. When we convert 295 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing 296 /// a location (memory) rather than a value means we don't need to worry about 297 /// splitting any values, so we try to recover the rest of the fragment 298 /// location here. 299 /// This class performs a(nother) dataflow analysis over the function, adding 300 /// variable locations so that any bits of a variable with a memory location 301 /// have that location explicitly reinstated at each subsequent variable 302 /// location definition that that doesn't overwrite those bits. i.e. after a 303 /// variable location def, insert new defs for the memory location with 304 /// fragments for the difference of "all bits currently in memory" and "the 305 /// fragment of the second def". 306 class MemLocFragmentFill { 307 Function &Fn; 308 FunctionVarLocsBuilder *FnVarLocs; 309 const DenseSet<DebugAggregate> *VarsWithStackSlot; 310 311 // 0 = no memory location. 312 using BaseAddress = unsigned; 313 using OffsetInBitsTy = unsigned; 314 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>; 315 using FragsInMemMap = IntervalMap< 316 OffsetInBitsTy, BaseAddress, 317 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize, 318 FragTraits>; 319 FragsInMemMap::Allocator IntervalMapAlloc; 320 using VarFragMap = DenseMap<unsigned, FragsInMemMap>; 321 322 /// IDs for memory location base addresses in maps. Use 0 to indicate that 323 /// there's no memory location. 324 UniqueVector<RawLocationWrapper> Bases; 325 UniqueVector<DebugAggregate> Aggregates; 326 DenseMap<const BasicBlock *, VarFragMap> LiveIn; 327 DenseMap<const BasicBlock *, VarFragMap> LiveOut; 328 329 struct FragMemLoc { 330 unsigned Var; 331 unsigned Base; 332 unsigned OffsetInBits; 333 unsigned SizeInBits; 334 DebugLoc DL; 335 }; 336 using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>; 337 338 /// BBInsertBeforeMap holds a description for the set of location defs to be 339 /// inserted after the analysis is complete. It is updated during the dataflow 340 /// and the entry for a block is CLEARED each time it is (re-)visited. After 341 /// the dataflow is complete, each block entry will contain the set of defs 342 /// calculated during the final (fixed-point) iteration. 343 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap; 344 345 static bool intervalMapsAreEqual(const FragsInMemMap &A, 346 const FragsInMemMap &B) { 347 auto AIt = A.begin(), AEnd = A.end(); 348 auto BIt = B.begin(), BEnd = B.end(); 349 for (; AIt != AEnd; ++AIt, ++BIt) { 350 if (BIt == BEnd) 351 return false; // B has fewer elements than A. 352 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop()) 353 return false; // Interval is different. 354 if (*AIt != *BIt) 355 return false; // Value at interval is different. 356 } 357 // AIt == AEnd. Check BIt is also now at end. 358 return BIt == BEnd; 359 } 360 361 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) { 362 if (A.size() != B.size()) 363 return false; 364 for (const auto &APair : A) { 365 auto BIt = B.find(APair.first); 366 if (BIt == B.end()) 367 return false; 368 if (!intervalMapsAreEqual(APair.second, BIt->second)) 369 return false; 370 } 371 return true; 372 } 373 374 /// Return a string for the value that \p BaseID represents. 375 std::string toString(unsigned BaseID) { 376 if (BaseID) 377 return Bases[BaseID].getVariableLocationOp(0)->getName().str(); 378 else 379 return "None"; 380 } 381 382 /// Format string describing an FragsInMemMap (IntervalMap) interval. 383 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) { 384 std::string String; 385 std::stringstream S(String); 386 if (It.valid()) { 387 S << "[" << It.start() << ", " << It.stop() 388 << "): " << toString(It.value()); 389 } else { 390 S << "invalid iterator (end)"; 391 } 392 if (Newline) 393 S << "\n"; 394 return S.str(); 395 }; 396 397 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) { 398 FragsInMemMap Result(IntervalMapAlloc); 399 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) { 400 LLVM_DEBUG(dbgs() << "a " << toString(AIt)); 401 // This is basically copied from process() and inverted (process is 402 // performing something like a union whereas this is more of an 403 // intersect). 404 405 // There's no work to do if interval `a` overlaps no fragments in map `B`. 406 if (!B.overlaps(AIt.start(), AIt.stop())) 407 continue; 408 409 // Does StartBit intersect an existing fragment? 410 auto FirstOverlap = B.find(AIt.start()); 411 assert(FirstOverlap != B.end()); 412 bool IntersectStart = FirstOverlap.start() < AIt.start(); 413 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false) 414 << ", IntersectStart: " << IntersectStart << "\n"); 415 416 // Does EndBit intersect an existing fragment? 417 auto LastOverlap = B.find(AIt.stop()); 418 bool IntersectEnd = 419 LastOverlap != B.end() && LastOverlap.start() < AIt.stop(); 420 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false) 421 << ", IntersectEnd: " << IntersectEnd << "\n"); 422 423 // Check if both ends of `a` intersect the same interval `b`. 424 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 425 // Insert `a` (`a` is contained in `b`) if the values match. 426 // [ a ] 427 // [ - b - ] 428 // - 429 // [ r ] 430 LLVM_DEBUG(dbgs() << "- a is contained within " 431 << toString(FirstOverlap)); 432 if (*AIt && *AIt == *FirstOverlap) 433 Result.insert(AIt.start(), AIt.stop(), *AIt); 434 } else { 435 // There's an overlap but `a` is not fully contained within 436 // `b`. Shorten any end-point intersections. 437 // [ - a - ] 438 // [ - b - ] 439 // - 440 // [ r ] 441 auto Next = FirstOverlap; 442 if (IntersectStart) { 443 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 444 << toString(FirstOverlap)); 445 if (*AIt && *AIt == *FirstOverlap) 446 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt); 447 ++Next; 448 } 449 // [ - a - ] 450 // [ - b - ] 451 // - 452 // [ r ] 453 if (IntersectEnd) { 454 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 455 << toString(LastOverlap)); 456 if (*AIt && *AIt == *LastOverlap) 457 Result.insert(LastOverlap.start(), AIt.stop(), *AIt); 458 } 459 460 // Insert all intervals in map `B` that are contained within interval 461 // `a` where the values match. 462 // [ - - a - - ] 463 // [ b1 ] [ b2 ] 464 // - 465 // [ r1 ] [ r2 ] 466 while (Next != B.end() && Next.start() < AIt.stop() && 467 Next.stop() <= AIt.stop()) { 468 LLVM_DEBUG(dbgs() 469 << "- insert intersection of a and " << toString(Next)); 470 if (*AIt && *AIt == *Next) 471 Result.insert(Next.start(), Next.stop(), *Next); 472 ++Next; 473 } 474 } 475 } 476 return Result; 477 } 478 479 /// Meet \p A and \p B, storing the result in \p A. 480 void meetVars(VarFragMap &A, const VarFragMap &B) { 481 // Meet A and B. 482 // 483 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b) 484 for (auto It = A.begin(), End = A.end(); It != End; ++It) { 485 unsigned AVar = It->first; 486 FragsInMemMap &AFrags = It->second; 487 auto BIt = B.find(AVar); 488 if (BIt == B.end()) { 489 A.erase(It); 490 continue; // Var has no bits defined in B. 491 } 492 LLVM_DEBUG(dbgs() << "meet fragment maps for " 493 << Aggregates[AVar].first->getName() << "\n"); 494 AFrags = meetFragments(AFrags, BIt->second); 495 } 496 } 497 498 bool meet(const BasicBlock &BB, 499 const SmallPtrSet<BasicBlock *, 16> &Visited) { 500 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName() 501 << "\n"); 502 503 VarFragMap BBLiveIn; 504 bool FirstMeet = true; 505 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut 506 // locs. 507 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 508 // Ignore preds that haven't been processed yet. This is essentially the 509 // same as initialising all variables to implicit top value (⊤) which is 510 // the identity value for the meet operation. 511 const BasicBlock *Pred = *I; 512 if (!Visited.count(Pred)) 513 continue; 514 515 auto PredLiveOut = LiveOut.find(Pred); 516 assert(PredLiveOut != LiveOut.end()); 517 518 if (FirstMeet) { 519 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n"); 520 BBLiveIn = PredLiveOut->second; 521 FirstMeet = false; 522 } else { 523 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName() 524 << "\n"); 525 meetVars(BBLiveIn, PredLiveOut->second); 526 } 527 528 // An empty set is ⊥ for the intersect-like meet operation. If we've 529 // already got ⊥ there's no need to run the code - we know the result is 530 // ⊥ since `meet(a, ⊥) = ⊥`. 531 if (BBLiveIn.size() == 0) 532 break; 533 } 534 535 auto CurrentLiveInEntry = LiveIn.find(&BB); 536 // If there's no LiveIn entry for the block yet, add it. 537 if (CurrentLiveInEntry == LiveIn.end()) { 538 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName() 539 << "\n"); 540 LiveIn[&BB] = std::move(BBLiveIn); 541 return /*Changed=*/true; 542 } 543 544 // If the LiveIn set has changed (expensive check) update it and return 545 // true. 546 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) { 547 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n"); 548 CurrentLiveInEntry->second = std::move(BBLiveIn); 549 return /*Changed=*/true; 550 } 551 552 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n"); 553 return /*Changed=*/false; 554 } 555 556 void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var, 557 unsigned StartBit, unsigned EndBit, unsigned Base, 558 DebugLoc DL) { 559 assert(StartBit < EndBit && "Cannot create fragment of size <= 0"); 560 if (!Base) 561 return; 562 FragMemLoc Loc; 563 Loc.Var = Var; 564 Loc.OffsetInBits = StartBit; 565 Loc.SizeInBits = EndBit - StartBit; 566 assert(Base && "Expected a non-zero ID for Base address"); 567 Loc.Base = Base; 568 Loc.DL = DL; 569 BBInsertBeforeMap[&BB][&Before].push_back(Loc); 570 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName() 571 << " bits [" << StartBit << ", " << EndBit << ")\n"); 572 } 573 574 void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB, 575 VarFragMap &LiveSet) { 576 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID); 577 if (skipVariable(DbgVar.getVariable())) 578 return; 579 // Don't bother doing anything for this variables if we know it's fully 580 // promoted. We're only interested in variables that (sometimes) live on 581 // the stack here. 582 if (!VarsWithStackSlot->count(getAggregate(DbgVar))) 583 return; 584 unsigned Var = Aggregates.insert( 585 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt())); 586 587 // [StartBit: EndBit) are the bits affected by this def. 588 const DIExpression *DIExpr = VarLoc.Expr; 589 unsigned StartBit; 590 unsigned EndBit; 591 if (auto Frag = DIExpr->getFragmentInfo()) { 592 StartBit = Frag->OffsetInBits; 593 EndBit = StartBit + Frag->SizeInBits; 594 } else { 595 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits())); 596 StartBit = 0; 597 EndBit = *DbgVar.getVariable()->getSizeInBits(); 598 } 599 600 // We will only fill fragments for simple memory-describing dbg.value 601 // intrinsics. If the fragment offset is the same as the offset from the 602 // base pointer, do The Thing, otherwise fall back to normal dbg.value 603 // behaviour. AssignmentTrackingLowering has generated DIExpressions 604 // written in terms of the base pointer. 605 // TODO: Remove this condition since the fragment offset doesn't always 606 // equal the offset from base pointer (e.g. for a SROA-split variable). 607 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr); 608 const unsigned Base = 609 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit 610 ? Bases.insert(VarLoc.Values) 611 : 0; 612 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " [" 613 << StartBit << ", " << EndBit << "): " << toString(Base) 614 << "\n"); 615 616 // First of all, any locs that use mem that are disrupted need reinstating. 617 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap 618 // with existing intervals so this code involves a lot of fiddling around 619 // with intervals to do that manually. 620 auto FragIt = LiveSet.find(Var); 621 622 // Check if the variable does not exist in the map. 623 if (FragIt == LiveSet.end()) { 624 // Add this variable to the BB map. 625 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc)); 626 assert(P.second && "Var already in map?"); 627 // Add the interval to the fragment map. 628 P.first->second.insert(StartBit, EndBit, Base); 629 return; 630 } 631 // The variable has an entry in the map. 632 633 FragsInMemMap &FragMap = FragIt->second; 634 // First check the easy case: the new fragment `f` doesn't overlap with any 635 // intervals. 636 if (!FragMap.overlaps(StartBit, EndBit)) { 637 LLVM_DEBUG(dbgs() << "- No overlaps\n"); 638 FragMap.insert(StartBit, EndBit, Base); 639 return; 640 } 641 // There is at least one overlap. 642 643 // Does StartBit intersect an existing fragment? 644 auto FirstOverlap = FragMap.find(StartBit); 645 assert(FirstOverlap != FragMap.end()); 646 bool IntersectStart = FirstOverlap.start() < StartBit; 647 648 // Does EndBit intersect an existing fragment? 649 auto LastOverlap = FragMap.find(EndBit); 650 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit; 651 652 // Check if both ends of `f` intersect the same interval `i`. 653 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 654 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n"); 655 // Shorten `i` so that there's space to insert `f`. 656 // [ f ] 657 // [ - i - ] 658 // + 659 // [ i ][ f ][ i ] 660 661 // Save values for use after inserting a new interval. 662 auto EndBitOfOverlap = FirstOverlap.stop(); 663 unsigned OverlapValue = FirstOverlap.value(); 664 665 // Shorten the overlapping interval. 666 FirstOverlap.setStop(StartBit); 667 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 668 OverlapValue, VarLoc.DL); 669 670 // Insert a new interval to represent the end part. 671 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue); 672 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue, 673 VarLoc.DL); 674 675 // Insert the new (middle) fragment now there is space. 676 FragMap.insert(StartBit, EndBit, Base); 677 } else { 678 // There's an overlap but `f` may not be fully contained within 679 // `i`. Shorten any end-point intersections so that we can then 680 // insert `f`. 681 // [ - f - ] 682 // [ - i - ] 683 // | | 684 // [ i ] 685 // Shorten any end-point intersections. 686 if (IntersectStart) { 687 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n"); 688 // Split off at the intersection. 689 FirstOverlap.setStop(StartBit); 690 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 691 *FirstOverlap, VarLoc.DL); 692 } 693 // [ - f - ] 694 // [ - i - ] 695 // | | 696 // [ i ] 697 if (IntersectEnd) { 698 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n"); 699 // Split off at the intersection. 700 LastOverlap.setStart(EndBit); 701 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap, 702 VarLoc.DL); 703 } 704 705 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n"); 706 // FirstOverlap and LastOverlap have been shortened such that they're 707 // no longer overlapping with [StartBit, EndBit). Delete any overlaps 708 // that remain (these will be fully contained within `f`). 709 // [ - f - ] } 710 // [ - i - ] } Intersection shortening that has happened above. 711 // | | } 712 // [ i ] } 713 // ----------------- 714 // [i2 ] } Intervals fully contained within `f` get erased. 715 // ----------------- 716 // [ - f - ][ i ] } Completed insertion. 717 auto It = FirstOverlap; 718 if (IntersectStart) 719 ++It; // IntersectStart: first overlap has been shortened. 720 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) { 721 LLVM_DEBUG(dbgs() << "- Erase " << toString(It)); 722 It.erase(); // This increments It after removing the interval. 723 } 724 // We've dealt with all the overlaps now! 725 assert(!FragMap.overlaps(StartBit, EndBit)); 726 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n"); 727 FragMap.insert(StartBit, EndBit, Base); 728 } 729 } 730 731 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); } 732 733 void process(BasicBlock &BB, VarFragMap &LiveSet) { 734 BBInsertBeforeMap[&BB].clear(); 735 for (auto &I : BB) { 736 if (const auto *Locs = FnVarLocs->getWedge(&I)) { 737 for (const VarLocInfo &Loc : *Locs) { 738 addDef(Loc, I, *I.getParent(), LiveSet); 739 } 740 } 741 } 742 } 743 744 public: 745 MemLocFragmentFill(Function &Fn, 746 const DenseSet<DebugAggregate> *VarsWithStackSlot) 747 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot) {} 748 749 /// Add variable locations to \p FnVarLocs so that any bits of a variable 750 /// with a memory location have that location explicitly reinstated at each 751 /// subsequent variable location definition that that doesn't overwrite those 752 /// bits. i.e. after a variable location def, insert new defs for the memory 753 /// location with fragments for the difference of "all bits currently in 754 /// memory" and "the fragment of the second def". e.g. 755 /// 756 /// Before: 757 /// 758 /// var x bits 0 to 63: value in memory 759 /// more instructions 760 /// var x bits 0 to 31: value is %0 761 /// 762 /// After: 763 /// 764 /// var x bits 0 to 63: value in memory 765 /// more instructions 766 /// var x bits 0 to 31: value is %0 767 /// var x bits 32 to 61: value in memory ; <-- new loc def 768 /// 769 void run(FunctionVarLocsBuilder *FnVarLocs) { 770 if (!EnableMemLocFragFill) 771 return; 772 773 this->FnVarLocs = FnVarLocs; 774 775 // Prepare for traversal. 776 // 777 ReversePostOrderTraversal<Function *> RPOT(&Fn); 778 std::priority_queue<unsigned int, std::vector<unsigned int>, 779 std::greater<unsigned int>> 780 Worklist; 781 std::priority_queue<unsigned int, std::vector<unsigned int>, 782 std::greater<unsigned int>> 783 Pending; 784 DenseMap<unsigned int, BasicBlock *> OrderToBB; 785 DenseMap<BasicBlock *, unsigned int> BBToOrder; 786 { // Init OrderToBB and BBToOrder. 787 unsigned int RPONumber = 0; 788 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 789 OrderToBB[RPONumber] = *RI; 790 BBToOrder[*RI] = RPONumber; 791 Worklist.push(RPONumber); 792 ++RPONumber; 793 } 794 LiveIn.init(RPONumber); 795 LiveOut.init(RPONumber); 796 } 797 798 // Perform the traversal. 799 // 800 // This is a standard "intersect of predecessor outs" dataflow problem. To 801 // solve it, we perform meet() and process() using the two worklist method 802 // until the LiveIn data for each block becomes unchanging. 803 // 804 // This dataflow is essentially working on maps of sets and at each meet we 805 // intersect the maps and the mapped sets. So, initialized live-in maps 806 // monotonically decrease in value throughout the dataflow. 807 SmallPtrSet<BasicBlock *, 16> Visited; 808 while (!Worklist.empty() || !Pending.empty()) { 809 // We track what is on the pending worklist to avoid inserting the same 810 // thing twice. We could avoid this with a custom priority queue, but 811 // this is probably not worth it. 812 SmallPtrSet<BasicBlock *, 16> OnPending; 813 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 814 while (!Worklist.empty()) { 815 BasicBlock *BB = OrderToBB[Worklist.top()]; 816 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 817 Worklist.pop(); 818 bool InChanged = meet(*BB, Visited); 819 // Always consider LiveIn changed on the first visit. 820 InChanged |= Visited.insert(BB).second; 821 if (InChanged) { 822 LLVM_DEBUG(dbgs() 823 << BB->getName() << " has new InLocs, process it\n"); 824 // Mutate a copy of LiveIn while processing BB. Once we've processed 825 // the terminator LiveSet is the LiveOut set for BB. 826 // This is an expensive copy! 827 VarFragMap LiveSet = LiveIn[BB]; 828 829 // Process the instructions in the block. 830 process(*BB, LiveSet); 831 832 // Relatively expensive check: has anything changed in LiveOut for BB? 833 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) { 834 LLVM_DEBUG(dbgs() << BB->getName() 835 << " has new OutLocs, add succs to worklist: [ "); 836 LiveOut[BB] = std::move(LiveSet); 837 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 838 if (OnPending.insert(*I).second) { 839 LLVM_DEBUG(dbgs() << I->getName() << " "); 840 Pending.push(BBToOrder[*I]); 841 } 842 } 843 LLVM_DEBUG(dbgs() << "]\n"); 844 } 845 } 846 } 847 Worklist.swap(Pending); 848 // At this point, pending must be empty, since it was just the empty 849 // worklist 850 assert(Pending.empty() && "Pending should be empty"); 851 } 852 853 // Insert new location defs. 854 for (auto Pair : BBInsertBeforeMap) { 855 InsertMap &Map = Pair.second; 856 for (auto Pair : Map) { 857 Instruction *InsertBefore = Pair.first; 858 assert(InsertBefore && "should never be null"); 859 auto FragMemLocs = Pair.second; 860 auto &Ctx = Fn.getContext(); 861 862 for (auto FragMemLoc : FragMemLocs) { 863 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt); 864 Expr = *DIExpression::createFragmentExpression( 865 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits); 866 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, 867 FragMemLoc.OffsetInBits / 8); 868 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr, 869 FragMemLoc.DL.getInlinedAt()); 870 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL, 871 Bases[FragMemLoc.Base]); 872 } 873 } 874 } 875 } 876 }; 877 878 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function 879 /// that interprets assignment tracking debug info metadata and stores in IR to 880 /// create a map of variable locations. 881 class AssignmentTrackingLowering { 882 public: 883 /// The kind of location in use for a variable, where Mem is the stack home, 884 /// Val is an SSA value or const, and None means that there is not one single 885 /// kind (either because there are multiple or because there is none; it may 886 /// prove useful to split this into two values in the future). 887 /// 888 /// LocKind is a join-semilattice with the partial order: 889 /// None > Mem, Val 890 /// 891 /// i.e. 892 /// join(Mem, Mem) = Mem 893 /// join(Val, Val) = Val 894 /// join(Mem, Val) = None 895 /// join(None, Mem) = None 896 /// join(None, Val) = None 897 /// join(None, None) = None 898 /// 899 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID 900 /// to name assignments and are not tracking the actual stored values. 901 /// Therefore currently there's no way to ensure that Mem values and Val 902 /// values are the same. This could be a future extension, though it's not 903 /// clear that many additional locations would be recovered that way in 904 /// practice as the likelihood of this sitation arising naturally seems 905 /// incredibly low. 906 enum class LocKind { Mem, Val, None }; 907 908 /// An abstraction of the assignment of a value to a variable or memory 909 /// location. 910 /// 911 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a 912 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or 913 /// can't) know the ID of the last assignment that took place. 914 /// 915 /// The Status of the Assignment (Known or NoneOrPhi) is another 916 /// join-semilattice. The partial order is: 917 /// NoneOrPhi > Known {id_0, id_1, ...id_N} 918 /// 919 /// i.e. for all values x and y where x != y: 920 /// join(x, x) = x 921 /// join(x, y) = NoneOrPhi 922 struct Assignment { 923 enum S { Known, NoneOrPhi } Status; 924 /// ID of the assignment. nullptr if Status is not Known. 925 DIAssignID *ID; 926 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field. 927 /// May be nullptr. 928 DbgAssignIntrinsic *Source; 929 930 bool isSameSourceAssignment(const Assignment &Other) const { 931 // Don't include Source in the equality check. Assignments are 932 // defined by their ID, not debug intrinsic(s). 933 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID); 934 } 935 void dump(raw_ostream &OS) { 936 static const char *LUT[] = {"Known", "NoneOrPhi"}; 937 OS << LUT[Status] << "(id="; 938 if (ID) 939 OS << ID; 940 else 941 OS << "null"; 942 OS << ", s="; 943 if (Source) 944 OS << *Source; 945 else 946 OS << "null"; 947 OS << ")"; 948 } 949 950 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) { 951 return Assignment(Known, ID, Source); 952 } 953 static Assignment makeFromMemDef(DIAssignID *ID) { 954 return Assignment(Known, ID, nullptr); 955 } 956 static Assignment makeNoneOrPhi() { 957 return Assignment(NoneOrPhi, nullptr, nullptr); 958 } 959 // Again, need a Top value? 960 Assignment() 961 : Status(NoneOrPhi), ID(nullptr), Source(nullptr) { 962 } // Can we delete this? 963 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source) 964 : Status(Status), ID(ID), Source(Source) { 965 // If the Status is Known then we expect there to be an assignment ID. 966 assert(Status == NoneOrPhi || ID); 967 } 968 }; 969 970 using AssignmentMap = DenseMap<VariableID, Assignment>; 971 using LocMap = DenseMap<VariableID, LocKind>; 972 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID, 4>>; 973 using UntaggedStoreAssignmentMap = 974 DenseMap<const Instruction *, 975 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>; 976 977 private: 978 /// Map a variable to the set of variables that it fully contains. 979 OverlapMap VarContains; 980 /// Map untagged stores to the variable fragments they assign to. Used by 981 /// processUntaggedInstruction. 982 UntaggedStoreAssignmentMap UntaggedStoreVars; 983 984 // Machinery to defer inserting dbg.values. 985 using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>; 986 InsertMap InsertBeforeMap; 987 /// Clear the location definitions currently cached for insertion after /p 988 /// After. 989 void resetInsertionPoint(Instruction &After); 990 void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source, 991 Instruction *After); 992 993 static bool mapsAreEqual(const AssignmentMap &A, const AssignmentMap &B) { 994 if (A.size() != B.size()) 995 return false; 996 for (const auto &Pair : A) { 997 VariableID Var = Pair.first; 998 const Assignment &AV = Pair.second; 999 auto R = B.find(Var); 1000 // Check if this entry exists in B, otherwise ret false. 1001 if (R == B.end()) 1002 return false; 1003 // Check that the assignment value is the same. 1004 if (!AV.isSameSourceAssignment(R->second)) 1005 return false; 1006 } 1007 return true; 1008 } 1009 1010 /// Represents the stack and debug assignments in a block. Used to describe 1011 /// the live-in and live-out values for blocks, as well as the "current" 1012 /// value as we process each instruction in a block. 1013 struct BlockInfo { 1014 /// Dominating assignment to memory for each variable. 1015 AssignmentMap StackHomeValue; 1016 /// Dominating assignemnt to each variable. 1017 AssignmentMap DebugValue; 1018 /// Location kind for each variable. LiveLoc indicates whether the 1019 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue 1020 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of 1021 /// preference. This cannot be derived by inspecting DebugValue and 1022 /// StackHomeValue due to the fact that there's no distinction in 1023 /// Assignment (the class) between whether an assignment is unknown or a 1024 /// merge of multiple assignments (both are Status::NoneOrPhi). In other 1025 /// words, the memory location may well be valid while both DebugValue and 1026 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi. 1027 LocMap LiveLoc; 1028 1029 /// Compare every element in each map to determine structural equality 1030 /// (slow). 1031 bool operator==(const BlockInfo &Other) const { 1032 return LiveLoc == Other.LiveLoc && 1033 mapsAreEqual(StackHomeValue, Other.StackHomeValue) && 1034 mapsAreEqual(DebugValue, Other.DebugValue); 1035 } 1036 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); } 1037 bool isValid() { 1038 return LiveLoc.size() == DebugValue.size() && 1039 LiveLoc.size() == StackHomeValue.size(); 1040 } 1041 }; 1042 1043 Function &Fn; 1044 const DataLayout &Layout; 1045 const DenseSet<DebugAggregate> *VarsWithStackSlot; 1046 FunctionVarLocsBuilder *FnVarLocs; 1047 DenseMap<const BasicBlock *, BlockInfo> LiveIn; 1048 DenseMap<const BasicBlock *, BlockInfo> LiveOut; 1049 1050 /// Helper for process methods to track variables touched each frame. 1051 DenseSet<VariableID> VarsTouchedThisFrame; 1052 1053 /// The set of variables that sometimes are not located in their stack home. 1054 DenseSet<DebugAggregate> NotAlwaysStackHomed; 1055 1056 VariableID getVariableID(const DebugVariable &Var) { 1057 return static_cast<VariableID>(FnVarLocs->insertVariable(Var)); 1058 } 1059 1060 /// Join the LiveOut values of preds that are contained in \p Visited into 1061 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB] 1062 /// values monotonically increase. See the @link joinMethods join methods 1063 /// @endlink documentation for more info. 1064 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited); 1065 ///@name joinMethods 1066 /// Functions that implement `join` (the least upper bound) for the 1067 /// join-semilattice types used in the dataflow. There is an explicit bottom 1068 /// value (⊥) for some types and and explicit top value (⊤) for all types. 1069 /// By definition: 1070 /// 1071 /// Join(A, B) >= A && Join(A, B) >= B 1072 /// Join(A, ⊥) = A 1073 /// Join(A, ⊤) = ⊤ 1074 /// 1075 /// These invariants are important for monotonicity. 1076 /// 1077 /// For the map-type functions, all unmapped keys in an empty map are 1078 /// associated with a bottom value (⊥). This represents their values being 1079 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key 1080 /// only present in one) represents either a variable going out of scope or 1081 /// dropped debug info. It is assumed the key is associated with a top value 1082 /// (⊤) in this case (unknown location / assignment). 1083 ///@{ 1084 static LocKind joinKind(LocKind A, LocKind B); 1085 static LocMap joinLocMap(const LocMap &A, const LocMap &B); 1086 static Assignment joinAssignment(const Assignment &A, const Assignment &B); 1087 static AssignmentMap joinAssignmentMap(const AssignmentMap &A, 1088 const AssignmentMap &B); 1089 static BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B); 1090 ///@} 1091 1092 /// Process the instructions in \p BB updating \p LiveSet along the way. \p 1093 /// LiveSet must be initialized with the current live-in locations before 1094 /// calling this. 1095 void process(BasicBlock &BB, BlockInfo *LiveSet); 1096 ///@name processMethods 1097 /// Methods to process instructions in order to update the LiveSet (current 1098 /// location information). 1099 ///@{ 1100 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1101 void processDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1102 /// Update \p LiveSet after encountering an instruction with a DIAssignID 1103 /// attachment, \p I. 1104 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1105 /// Update \p LiveSet after encountering an instruciton without a DIAssignID 1106 /// attachment, \p I. 1107 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1108 void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet); 1109 void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet); 1110 /// Add an assignment to memory for the variable /p Var. 1111 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1112 /// Add an assignment to the variable /p Var. 1113 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1114 ///@} 1115 1116 /// Set the LocKind for \p Var. 1117 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K); 1118 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to 1119 /// have been called for \p Var first. 1120 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var); 1121 /// Return true if \p Var has an assignment in \p M matching \p AV. 1122 bool hasVarWithAssignment(VariableID Var, const Assignment &AV, 1123 const AssignmentMap &M); 1124 1125 /// Emit info for variables that are fully promoted. 1126 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs); 1127 1128 public: 1129 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout, 1130 const DenseSet<DebugAggregate> *VarsWithStackSlot) 1131 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {} 1132 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns 1133 /// true if any variable locations have been added to FnVarLocs. 1134 bool run(FunctionVarLocsBuilder *FnVarLocs); 1135 }; 1136 } // namespace 1137 1138 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var, 1139 LocKind K) { 1140 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) { 1141 VarsTouchedThisFrame.insert(Var); 1142 LiveSet->LiveLoc[Var] = K; 1143 }; 1144 SetKind(LiveSet, Var, K); 1145 1146 // Update the LocKind for all fragments contained within Var. 1147 for (VariableID Frag : VarContains[Var]) 1148 SetKind(LiveSet, Frag, K); 1149 } 1150 1151 AssignmentTrackingLowering::LocKind 1152 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) { 1153 auto Pair = LiveSet->LiveLoc.find(Var); 1154 assert(Pair != LiveSet->LiveLoc.end()); 1155 return Pair->second; 1156 } 1157 1158 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var, 1159 const Assignment &AV) { 1160 auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) { 1161 LiveSet->StackHomeValue[Var] = AV; 1162 // Add default (Var -> ⊤) to DebugValue if Var isn't in DebugValue yet. 1163 LiveSet->DebugValue.insert({Var, Assignment::makeNoneOrPhi()}); 1164 // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers 1165 // of addMemDef will call setLocKind to override. 1166 LiveSet->LiveLoc.insert({Var, LocKind::None}); 1167 }; 1168 AddDef(LiveSet, Var, AV); 1169 1170 // Use this assigment for all fragments contained within Var, but do not 1171 // provide a Source because we cannot convert Var's value to a value for the 1172 // fragment. 1173 Assignment FragAV = AV; 1174 FragAV.Source = nullptr; 1175 for (VariableID Frag : VarContains[Var]) 1176 AddDef(LiveSet, Frag, FragAV); 1177 } 1178 1179 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var, 1180 const Assignment &AV) { 1181 auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) { 1182 LiveSet->DebugValue[Var] = AV; 1183 // Add default (Var -> ⊤) to StackHome if Var isn't in StackHome yet. 1184 LiveSet->StackHomeValue.insert({Var, Assignment::makeNoneOrPhi()}); 1185 // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers 1186 // of addDbgDef will call setLocKind to override. 1187 LiveSet->LiveLoc.insert({Var, LocKind::None}); 1188 }; 1189 AddDef(LiveSet, Var, AV); 1190 1191 // Use this assigment for all fragments contained within Var, but do not 1192 // provide a Source because we cannot convert Var's value to a value for the 1193 // fragment. 1194 Assignment FragAV = AV; 1195 FragAV.Source = nullptr; 1196 for (VariableID Frag : VarContains[Var]) 1197 AddDef(LiveSet, Frag, FragAV); 1198 } 1199 1200 static DIAssignID *getIDFromInst(const Instruction &I) { 1201 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID)); 1202 } 1203 1204 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) { 1205 return cast<DIAssignID>(DAI.getAssignID()); 1206 } 1207 1208 /// Return true if \p Var has an assignment in \p M matching \p AV. 1209 bool AssignmentTrackingLowering::hasVarWithAssignment(VariableID Var, 1210 const Assignment &AV, 1211 const AssignmentMap &M) { 1212 auto AssignmentIsMapped = [](VariableID Var, const Assignment &AV, 1213 const AssignmentMap &M) { 1214 auto R = M.find(Var); 1215 if (R == M.end()) 1216 return false; 1217 return AV.isSameSourceAssignment(R->second); 1218 }; 1219 1220 if (!AssignmentIsMapped(Var, AV, M)) 1221 return false; 1222 1223 // Check all the frags contained within Var as these will have all been 1224 // mapped to AV at the last store to Var. 1225 for (VariableID Frag : VarContains[Var]) 1226 if (!AssignmentIsMapped(Frag, AV, M)) 1227 return false; 1228 return true; 1229 } 1230 1231 #ifndef NDEBUG 1232 const char *locStr(AssignmentTrackingLowering::LocKind Loc) { 1233 using LocKind = AssignmentTrackingLowering::LocKind; 1234 switch (Loc) { 1235 case LocKind::Val: 1236 return "Val"; 1237 case LocKind::Mem: 1238 return "Mem"; 1239 case LocKind::None: 1240 return "None"; 1241 }; 1242 llvm_unreachable("unknown LocKind"); 1243 } 1244 #endif 1245 1246 void AssignmentTrackingLowering::emitDbgValue( 1247 AssignmentTrackingLowering::LocKind Kind, 1248 const DbgVariableIntrinsic *Source, Instruction *After) { 1249 1250 DILocation *DL = Source->getDebugLoc(); 1251 auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) { 1252 assert(Expr); 1253 if (!Val) 1254 Val = ValueAsMetadata::get( 1255 PoisonValue::get(Type::getInt1Ty(Source->getContext()))); 1256 1257 // Find a suitable insert point. 1258 Instruction *InsertBefore = After->getNextNode(); 1259 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1260 1261 VariableID Var = getVariableID(DebugVariable(Source)); 1262 VarLocInfo VarLoc; 1263 VarLoc.VariableID = static_cast<VariableID>(Var); 1264 VarLoc.Expr = Expr; 1265 VarLoc.Values = RawLocationWrapper(Val); 1266 VarLoc.DL = DL; 1267 // Insert it into the map for later. 1268 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1269 }; 1270 1271 // NOTE: This block can mutate Kind. 1272 if (Kind == LocKind::Mem) { 1273 const auto *DAI = cast<DbgAssignIntrinsic>(Source); 1274 // Check the address hasn't been dropped (e.g. the debug uses may not have 1275 // been replaced before deleting a Value). 1276 if (DAI->isKillAddress()) { 1277 // The address isn't valid so treat this as a non-memory def. 1278 Kind = LocKind::Val; 1279 } else { 1280 Value *Val = DAI->getAddress(); 1281 DIExpression *Expr = DAI->getAddressExpression(); 1282 assert(!Expr->getFragmentInfo() && 1283 "fragment info should be stored in value-expression only"); 1284 // Copy the fragment info over from the value-expression to the new 1285 // DIExpression. 1286 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) { 1287 auto FragInfo = *OptFragInfo; 1288 Expr = *DIExpression::createFragmentExpression( 1289 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits); 1290 } 1291 // The address-expression has an implicit deref, add it now. 1292 std::tie(Val, Expr) = 1293 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr); 1294 Emit(ValueAsMetadata::get(Val), Expr); 1295 return; 1296 } 1297 } 1298 1299 if (Kind == LocKind::Val) { 1300 Emit(Source->getRawLocation(), Source->getExpression()); 1301 return; 1302 } 1303 1304 if (Kind == LocKind::None) { 1305 Emit(nullptr, Source->getExpression()); 1306 return; 1307 } 1308 } 1309 1310 void AssignmentTrackingLowering::processNonDbgInstruction( 1311 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1312 if (I.hasMetadata(LLVMContext::MD_DIAssignID)) 1313 processTaggedInstruction(I, LiveSet); 1314 else 1315 processUntaggedInstruction(I, LiveSet); 1316 } 1317 1318 void AssignmentTrackingLowering::processUntaggedInstruction( 1319 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1320 // Interpret stack stores that are not tagged as an assignment in memory for 1321 // the variables associated with that address. These stores may not be tagged 1322 // because a) the store cannot be represented using dbg.assigns (non-const 1323 // length or offset) or b) the tag was accidentally dropped during 1324 // optimisations. For these stores we fall back to assuming that the stack 1325 // home is a valid location for the variables. The benefit is that this 1326 // prevents us missing an assignment and therefore incorrectly maintaining 1327 // earlier location definitions, and in many cases it should be a reasonable 1328 // assumption. However, this will occasionally lead to slight 1329 // inaccuracies. The value of a hoisted untagged store will be visible 1330 // "early", for example. 1331 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID)); 1332 auto It = UntaggedStoreVars.find(&I); 1333 if (It == UntaggedStoreVars.end()) 1334 return; // No variables associated with the store destination. 1335 1336 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I 1337 << "\n"); 1338 // Iterate over the variables that this store affects, add a NoneOrPhi dbg 1339 // and mem def, set lockind to Mem, and emit a location def for each. 1340 for (auto [Var, Info] : It->second) { 1341 // This instruction is treated as both a debug and memory assignment, 1342 // meaning the memory location should be used. We don't have an assignment 1343 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one. 1344 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1345 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1346 setLocKind(LiveSet, Var, LocKind::Mem); 1347 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem) 1348 << "\n"); 1349 // Build the dbg location def to insert. 1350 // 1351 // DIExpression: Add fragment and offset. 1352 DebugVariable V = FnVarLocs->getVariable(Var); 1353 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt); 1354 if (auto Frag = V.getFragment()) { 1355 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits, 1356 Frag->SizeInBits); 1357 assert(R && "unexpected createFragmentExpression failure"); 1358 DIE = *R; 1359 } 1360 SmallVector<uint64_t, 3> Ops; 1361 if (Info.OffsetInBits) 1362 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8}; 1363 Ops.push_back(dwarf::DW_OP_deref); 1364 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false, 1365 /*EntryValue=*/false); 1366 // Find a suitable insert point. 1367 Instruction *InsertBefore = I.getNextNode(); 1368 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1369 1370 // Get DILocation for this unrecorded assignment. 1371 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt()); 1372 const DILocation *DILoc = DILocation::get( 1373 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt); 1374 1375 VarLocInfo VarLoc; 1376 VarLoc.VariableID = static_cast<VariableID>(Var); 1377 VarLoc.Expr = DIE; 1378 VarLoc.Values = RawLocationWrapper( 1379 ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base))); 1380 VarLoc.DL = DILoc; 1381 // 3. Insert it into the map for later. 1382 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1383 } 1384 } 1385 1386 void AssignmentTrackingLowering::processTaggedInstruction( 1387 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1388 auto Linked = at::getAssignmentMarkers(&I); 1389 // No dbg.assign intrinsics linked. 1390 // FIXME: All vars that have a stack slot this store modifies that don't have 1391 // a dbg.assign linked to it should probably treat this like an untagged 1392 // store. 1393 if (Linked.empty()) 1394 return; 1395 1396 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n"); 1397 for (DbgAssignIntrinsic *DAI : Linked) { 1398 VariableID Var = getVariableID(DebugVariable(DAI)); 1399 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable 1400 // that is linked to a store. 1401 assert(VarsWithStackSlot->count(getAggregate(DAI)) && 1402 "expected DAI's variable to have stack slot"); 1403 1404 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I)); 1405 addMemDef(LiveSet, Var, AV); 1406 1407 LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n"); 1408 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1409 << " -> "); 1410 1411 // The last assignment to the stack is now AV. Check if the last debug 1412 // assignment has a matching Assignment. 1413 if (hasVarWithAssignment(Var, AV, LiveSet->DebugValue)) { 1414 // The StackHomeValue and DebugValue for this variable match so we can 1415 // emit a stack home location here. 1416 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1417 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n"); 1418 LLVM_DEBUG(dbgs() << " Debug val: "; 1419 LiveSet->DebugValue[Var].dump(dbgs()); dbgs() << "\n"); 1420 setLocKind(LiveSet, Var, LocKind::Mem); 1421 emitDbgValue(LocKind::Mem, DAI, &I); 1422 continue; 1423 } 1424 1425 // The StackHomeValue and DebugValue for this variable do not match. I.e. 1426 // The value currently stored in the stack is not what we'd expect to 1427 // see, so we cannot use emit a stack home location here. Now we will 1428 // look at the live LocKind for the variable and determine an appropriate 1429 // dbg.value to emit. 1430 LocKind PrevLoc = getLocKind(LiveSet, Var); 1431 switch (PrevLoc) { 1432 case LocKind::Val: { 1433 // The value in memory in memory has changed but we're not currently 1434 // using the memory location. Do nothing. 1435 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";); 1436 setLocKind(LiveSet, Var, LocKind::Val); 1437 } break; 1438 case LocKind::Mem: { 1439 // There's been an assignment to memory that we were using as a 1440 // location for this variable, and the Assignment doesn't match what 1441 // we'd expect to see in memory. 1442 if (LiveSet->DebugValue[Var].Status == Assignment::NoneOrPhi) { 1443 // We need to terminate any previously open location now. 1444 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";); 1445 setLocKind(LiveSet, Var, LocKind::None); 1446 emitDbgValue(LocKind::None, DAI, &I); 1447 } else { 1448 // The previous DebugValue Value can be used here. 1449 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";); 1450 setLocKind(LiveSet, Var, LocKind::Val); 1451 Assignment PrevAV = LiveSet->DebugValue.lookup(Var); 1452 if (PrevAV.Source) { 1453 emitDbgValue(LocKind::Val, PrevAV.Source, &I); 1454 } else { 1455 // PrevAV.Source is nullptr so we must emit undef here. 1456 emitDbgValue(LocKind::None, DAI, &I); 1457 } 1458 } 1459 } break; 1460 case LocKind::None: { 1461 // There's been an assignment to memory and we currently are 1462 // not tracking a location for the variable. Do not emit anything. 1463 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";); 1464 setLocKind(LiveSet, Var, LocKind::None); 1465 } break; 1466 } 1467 } 1468 } 1469 1470 void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI, 1471 BlockInfo *LiveSet) { 1472 // Only bother tracking variables that are at some point stack homed. Other 1473 // variables can be dealt with trivially later. 1474 if (!VarsWithStackSlot->count(getAggregate(&DAI))) 1475 return; 1476 1477 VariableID Var = getVariableID(DebugVariable(&DAI)); 1478 Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI); 1479 addDbgDef(LiveSet, Var, AV); 1480 1481 LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";); 1482 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1483 << " -> "); 1484 1485 // Check if the DebugValue and StackHomeValue both hold the same 1486 // Assignment. 1487 if (hasVarWithAssignment(Var, AV, LiveSet->StackHomeValue)) { 1488 // They match. We can use the stack home because the debug intrinsics state 1489 // that an assignment happened here, and we know that specific assignment 1490 // was the last one to take place in memory for this variable. 1491 LocKind Kind; 1492 if (DAI.isKillAddress()) { 1493 LLVM_DEBUG( 1494 dbgs() 1495 << "Val, Stack matches Debug program but address is killed\n";); 1496 Kind = LocKind::Val; 1497 } else { 1498 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1499 Kind = LocKind::Mem; 1500 }; 1501 setLocKind(LiveSet, Var, Kind); 1502 emitDbgValue(Kind, &DAI, &DAI); 1503 } else { 1504 // The last assignment to the memory location isn't the one that we want to 1505 // show to the user so emit a dbg.value(Value). Value may be undef. 1506 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";); 1507 setLocKind(LiveSet, Var, LocKind::Val); 1508 emitDbgValue(LocKind::Val, &DAI, &DAI); 1509 } 1510 } 1511 1512 void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI, 1513 BlockInfo *LiveSet) { 1514 // Only other tracking variables that are at some point stack homed. 1515 // Other variables can be dealt with trivally later. 1516 if (!VarsWithStackSlot->count(getAggregate(&DVI))) 1517 return; 1518 1519 VariableID Var = getVariableID(DebugVariable(&DVI)); 1520 // We have no ID to create an Assignment with so we mark this assignment as 1521 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine 1522 // the assignment responsible for setting this value. 1523 // This is fine; dbg.values are essentially interchangable with unlinked 1524 // dbg.assigns, and some passes such as mem2reg and instcombine add them to 1525 // PHIs for promoted variables. 1526 Assignment AV = Assignment::makeNoneOrPhi(); 1527 addDbgDef(LiveSet, Var, AV); 1528 1529 LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";); 1530 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1531 << " -> Val, dbg.value override"); 1532 1533 setLocKind(LiveSet, Var, LocKind::Val); 1534 emitDbgValue(LocKind::Val, &DVI, &DVI); 1535 } 1536 1537 void AssignmentTrackingLowering::processDbgInstruction( 1538 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1539 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I)) 1540 processDbgAssign(*DAI, LiveSet); 1541 else if (auto *DVI = dyn_cast<DbgValueInst>(&I)) 1542 processDbgValue(*DVI, LiveSet); 1543 } 1544 1545 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) { 1546 assert(!After.isTerminator() && "Can't insert after a terminator"); 1547 auto R = InsertBeforeMap.find(After.getNextNode()); 1548 if (R == InsertBeforeMap.end()) 1549 return; 1550 R->second.clear(); 1551 } 1552 1553 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) { 1554 for (auto II = BB.begin(), EI = BB.end(); II != EI;) { 1555 assert(VarsTouchedThisFrame.empty()); 1556 // Process the instructions in "frames". A "frame" includes a single 1557 // non-debug instruction followed any debug instructions before the 1558 // next non-debug instruction. 1559 if (!isa<DbgInfoIntrinsic>(&*II)) { 1560 if (II->isTerminator()) 1561 break; 1562 resetInsertionPoint(*II); 1563 processNonDbgInstruction(*II, LiveSet); 1564 assert(LiveSet->isValid()); 1565 ++II; 1566 } 1567 while (II != EI) { 1568 if (!isa<DbgInfoIntrinsic>(&*II)) 1569 break; 1570 resetInsertionPoint(*II); 1571 processDbgInstruction(*II, LiveSet); 1572 assert(LiveSet->isValid()); 1573 ++II; 1574 } 1575 1576 // We've processed everything in the "frame". Now determine which variables 1577 // cannot be represented by a dbg.declare. 1578 for (auto Var : VarsTouchedThisFrame) { 1579 LocKind Loc = getLocKind(LiveSet, Var); 1580 // If a variable's LocKind is anything other than LocKind::Mem then we 1581 // must note that it cannot be represented with a dbg.declare. 1582 // Note that this check is enough without having to check the result of 1583 // joins() because for join to produce anything other than Mem after 1584 // we've already seen a Mem we'd be joining None or Val with Mem. In that 1585 // case, we've already hit this codepath when we set the LocKind to Val 1586 // or None in that block. 1587 if (Loc != LocKind::Mem) { 1588 DebugVariable DbgVar = FnVarLocs->getVariable(Var); 1589 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()}; 1590 NotAlwaysStackHomed.insert(Aggr); 1591 } 1592 } 1593 VarsTouchedThisFrame.clear(); 1594 } 1595 } 1596 1597 AssignmentTrackingLowering::LocKind 1598 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) { 1599 // Partial order: 1600 // None > Mem, Val 1601 return A == B ? A : LocKind::None; 1602 } 1603 1604 AssignmentTrackingLowering::LocMap 1605 AssignmentTrackingLowering::joinLocMap(const LocMap &A, const LocMap &B) { 1606 // Join A and B. 1607 // 1608 // U = join(a, b) for a in A, b in B where Var(a) == Var(b) 1609 // D = join(x, ⊤) for x where Var(x) is in A xor B 1610 // Join = U ∪ D 1611 // 1612 // This is achieved by performing a join on elements from A and B with 1613 // variables common to both A and B (join elements indexed by var intersect), 1614 // then adding LocKind::None elements for vars in A xor B. The latter part is 1615 // equivalent to performing join on elements with variables in A xor B with 1616 // LocKind::None (⊤) since join(x, ⊤) = ⊤. 1617 LocMap Join(std::max(A.size(), B.size())); 1618 SmallVector<VariableID, 16> SymmetricDifference; 1619 // Insert the join of the elements with common vars into Join. Add the 1620 // remaining elements to into SymmetricDifference. 1621 for (const auto &[Var, Loc] : A) { 1622 // If this Var doesn't exist in B then add it to the symmetric difference 1623 // set. 1624 auto R = B.find(Var); 1625 if (R == B.end()) { 1626 SymmetricDifference.push_back(Var); 1627 continue; 1628 } 1629 // There is an entry for Var in both, join it. 1630 Join[Var] = joinKind(Loc, R->second); 1631 } 1632 unsigned IntersectSize = Join.size(); 1633 (void)IntersectSize; 1634 1635 // Check if A and B contain the same variables. 1636 if (SymmetricDifference.empty() && A.size() == B.size()) 1637 return Join; 1638 1639 // Add the elements in B with variables that are not in A into 1640 // SymmetricDifference. 1641 for (const auto &Pair : B) { 1642 VariableID Var = Pair.first; 1643 if (A.count(Var) == 0) 1644 SymmetricDifference.push_back(Var); 1645 } 1646 1647 // Add SymmetricDifference elements to Join and return the result. 1648 for (const auto &Var : SymmetricDifference) 1649 Join.insert({Var, LocKind::None}); 1650 1651 assert(Join.size() == (IntersectSize + SymmetricDifference.size())); 1652 assert(Join.size() >= A.size() && Join.size() >= B.size()); 1653 return Join; 1654 } 1655 1656 AssignmentTrackingLowering::Assignment 1657 AssignmentTrackingLowering::joinAssignment(const Assignment &A, 1658 const Assignment &B) { 1659 // Partial order: 1660 // NoneOrPhi(null, null) > Known(v, ?s) 1661 1662 // If either are NoneOrPhi the join is NoneOrPhi. 1663 // If either value is different then the result is 1664 // NoneOrPhi (joining two values is a Phi). 1665 if (!A.isSameSourceAssignment(B)) 1666 return Assignment::makeNoneOrPhi(); 1667 if (A.Status == Assignment::NoneOrPhi) 1668 return Assignment::makeNoneOrPhi(); 1669 1670 // Source is used to lookup the value + expression in the debug program if 1671 // the stack slot gets assigned a value earlier than expected. Because 1672 // we're only tracking the one dbg.assign, we can't capture debug PHIs. 1673 // It's unlikely that we're losing out on much coverage by avoiding that 1674 // extra work. 1675 // The Source may differ in this situation: 1676 // Pred.1: 1677 // dbg.assign i32 0, ..., !1, ... 1678 // Pred.2: 1679 // dbg.assign i32 1, ..., !1, ... 1680 // Here the same assignment (!1) was performed in both preds in the source, 1681 // but we can't use either one unless they are identical (e.g. .we don't 1682 // want to arbitrarily pick between constant values). 1683 auto JoinSource = [&]() -> DbgAssignIntrinsic * { 1684 if (A.Source == B.Source) 1685 return A.Source; 1686 if (A.Source == nullptr || B.Source == nullptr) 1687 return nullptr; 1688 if (A.Source->isIdenticalTo(B.Source)) 1689 return A.Source; 1690 return nullptr; 1691 }; 1692 DbgAssignIntrinsic *Source = JoinSource(); 1693 assert(A.Status == B.Status && A.Status == Assignment::Known); 1694 assert(A.ID == B.ID); 1695 return Assignment::make(A.ID, Source); 1696 } 1697 1698 AssignmentTrackingLowering::AssignmentMap 1699 AssignmentTrackingLowering::joinAssignmentMap(const AssignmentMap &A, 1700 const AssignmentMap &B) { 1701 // Join A and B. 1702 // 1703 // U = join(a, b) for a in A, b in B where Var(a) == Var(b) 1704 // D = join(x, ⊤) for x where Var(x) is in A xor B 1705 // Join = U ∪ D 1706 // 1707 // This is achieved by performing a join on elements from A and B with 1708 // variables common to both A and B (join elements indexed by var intersect), 1709 // then adding LocKind::None elements for vars in A xor B. The latter part is 1710 // equivalent to performing join on elements with variables in A xor B with 1711 // Status::NoneOrPhi (⊤) since join(x, ⊤) = ⊤. 1712 AssignmentMap Join(std::max(A.size(), B.size())); 1713 SmallVector<VariableID, 16> SymmetricDifference; 1714 // Insert the join of the elements with common vars into Join. Add the 1715 // remaining elements to into SymmetricDifference. 1716 for (const auto &[Var, AV] : A) { 1717 // If this Var doesn't exist in B then add it to the symmetric difference 1718 // set. 1719 auto R = B.find(Var); 1720 if (R == B.end()) { 1721 SymmetricDifference.push_back(Var); 1722 continue; 1723 } 1724 // There is an entry for Var in both, join it. 1725 Join[Var] = joinAssignment(AV, R->second); 1726 } 1727 unsigned IntersectSize = Join.size(); 1728 (void)IntersectSize; 1729 1730 // Check if A and B contain the same variables. 1731 if (SymmetricDifference.empty() && A.size() == B.size()) 1732 return Join; 1733 1734 // Add the elements in B with variables that are not in A into 1735 // SymmetricDifference. 1736 for (const auto &Pair : B) { 1737 VariableID Var = Pair.first; 1738 if (A.count(Var) == 0) 1739 SymmetricDifference.push_back(Var); 1740 } 1741 1742 // Add SymmetricDifference elements to Join and return the result. 1743 for (auto Var : SymmetricDifference) 1744 Join.insert({Var, Assignment::makeNoneOrPhi()}); 1745 1746 assert(Join.size() == (IntersectSize + SymmetricDifference.size())); 1747 assert(Join.size() >= A.size() && Join.size() >= B.size()); 1748 return Join; 1749 } 1750 1751 AssignmentTrackingLowering::BlockInfo 1752 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A, 1753 const BlockInfo &B) { 1754 BlockInfo Join; 1755 Join.LiveLoc = joinLocMap(A.LiveLoc, B.LiveLoc); 1756 Join.StackHomeValue = joinAssignmentMap(A.StackHomeValue, B.StackHomeValue); 1757 Join.DebugValue = joinAssignmentMap(A.DebugValue, B.DebugValue); 1758 assert(Join.isValid()); 1759 return Join; 1760 } 1761 1762 bool AssignmentTrackingLowering::join( 1763 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) { 1764 BlockInfo BBLiveIn; 1765 bool FirstJoin = true; 1766 // LiveIn locs for BB is the join of the already-processed preds' LiveOut 1767 // locs. 1768 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 1769 // Ignore backedges if we have not visited the predecessor yet. As the 1770 // predecessor hasn't yet had locations propagated into it, most locations 1771 // will not yet be valid, so treat them as all being uninitialized and 1772 // potentially valid. If a location guessed to be correct here is 1773 // invalidated later, we will remove it when we revisit this block. This 1774 // is essentially the same as initialising all LocKinds and Assignments to 1775 // an implicit ⊥ value which is the identity value for the join operation. 1776 const BasicBlock *Pred = *I; 1777 if (!Visited.count(Pred)) 1778 continue; 1779 1780 auto PredLiveOut = LiveOut.find(Pred); 1781 // Pred must have been processed already. See comment at start of this loop. 1782 assert(PredLiveOut != LiveOut.end()); 1783 1784 // Perform the join of BBLiveIn (current live-in info) and PrevLiveOut. 1785 if (FirstJoin) 1786 BBLiveIn = PredLiveOut->second; 1787 else 1788 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second); 1789 FirstJoin = false; 1790 } 1791 1792 auto CurrentLiveInEntry = LiveIn.find(&BB); 1793 // Check if there isn't an entry, or there is but the LiveIn set has changed 1794 // (expensive check). 1795 if (CurrentLiveInEntry == LiveIn.end() || 1796 BBLiveIn != CurrentLiveInEntry->second) { 1797 LiveIn[&BB] = std::move(BBLiveIn); 1798 // A change has occured. 1799 return true; 1800 } 1801 // No change. 1802 return false; 1803 } 1804 1805 /// Return true if A fully contains B. 1806 static bool fullyContains(DIExpression::FragmentInfo A, 1807 DIExpression::FragmentInfo B) { 1808 auto ALeft = A.OffsetInBits; 1809 auto BLeft = B.OffsetInBits; 1810 if (BLeft < ALeft) 1811 return false; 1812 1813 auto ARight = ALeft + A.SizeInBits; 1814 auto BRight = BLeft + B.SizeInBits; 1815 if (BRight > ARight) 1816 return false; 1817 return true; 1818 } 1819 1820 static std::optional<at::AssignmentInfo> 1821 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) { 1822 // Don't bother checking if this is an AllocaInst. We know this 1823 // instruction has no tag which means there are no variables associated 1824 // with it. 1825 if (const auto *SI = dyn_cast<StoreInst>(&I)) 1826 return at::getAssignmentInfo(Layout, SI); 1827 if (const auto *MI = dyn_cast<MemIntrinsic>(&I)) 1828 return at::getAssignmentInfo(Layout, MI); 1829 // Alloca or non-store-like inst. 1830 return std::nullopt; 1831 } 1832 1833 /// Build a map of {Variable x: Variables y} where all variable fragments 1834 /// contained within the variable fragment x are in set y. This means that 1835 /// y does not contain all overlaps because partial overlaps are excluded. 1836 /// 1837 /// While we're iterating over the function, add single location defs for 1838 /// dbg.declares to \p FnVarLocs 1839 /// 1840 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to 1841 /// the stored-to variable fragments. 1842 /// 1843 /// These tasks are bundled together to reduce the number of times we need 1844 /// to iterate over the function as they can be achieved together in one pass. 1845 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares( 1846 Function &Fn, FunctionVarLocsBuilder *FnVarLocs, 1847 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars) { 1848 DenseSet<DebugVariable> Seen; 1849 // Map of Variable: [Fragments]. 1850 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap; 1851 // Iterate over all instructions: 1852 // - dbg.declare -> add single location variable record 1853 // - dbg.* -> Add fragments to FragmentMap 1854 // - untagged store -> Add fragments to FragmentMap and update 1855 // UntaggedStoreVars. 1856 // We need to add fragments for untagged stores too so that we can correctly 1857 // clobber overlapped fragment locations later. 1858 for (auto &BB : Fn) { 1859 for (auto &I : BB) { 1860 if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) { 1861 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(), 1862 DDI->getDebugLoc(), 1863 DDI->getWrappedLocation()); 1864 } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1865 DebugVariable DV = DebugVariable(DII); 1866 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 1867 if (Seen.insert(DV).second) 1868 FragmentMap[DA].push_back(DV); 1869 } else if (auto Info = getUntaggedStoreAssignmentInfo( 1870 I, Fn.getParent()->getDataLayout())) { 1871 // Find markers linked to this alloca. 1872 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) { 1873 // Discard the fragment if it covers the entire variable. 1874 std::optional<DIExpression::FragmentInfo> FragInfo = 1875 [&Info, DAI]() -> std::optional<DIExpression::FragmentInfo> { 1876 DIExpression::FragmentInfo F; 1877 F.OffsetInBits = Info->OffsetInBits; 1878 F.SizeInBits = Info->SizeInBits; 1879 if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo()) 1880 F.OffsetInBits += ExistingFrag->OffsetInBits; 1881 if (auto Sz = DAI->getVariable()->getSizeInBits()) { 1882 if (F.OffsetInBits == 0 && F.SizeInBits == *Sz) 1883 return std::nullopt; 1884 } 1885 return F; 1886 }(); 1887 1888 DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo, 1889 DAI->getDebugLoc().getInlinedAt()); 1890 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 1891 1892 // Cache this info for later. 1893 UntaggedStoreVars[&I].push_back( 1894 {FnVarLocs->insertVariable(DV), *Info}); 1895 1896 if (Seen.insert(DV).second) 1897 FragmentMap[DA].push_back(DV); 1898 } 1899 } 1900 } 1901 } 1902 1903 // Sort the fragment map for each DebugAggregate in non-descending 1904 // order of fragment size. Assert no entries are duplicates. 1905 for (auto &Pair : FragmentMap) { 1906 SmallVector<DebugVariable, 8> &Frags = Pair.second; 1907 std::sort( 1908 Frags.begin(), Frags.end(), [](DebugVariable Next, DebugVariable Elmt) { 1909 assert(!(Elmt.getFragmentOrDefault() == Next.getFragmentOrDefault())); 1910 return Elmt.getFragmentOrDefault().SizeInBits > 1911 Next.getFragmentOrDefault().SizeInBits; 1912 }); 1913 } 1914 1915 // Build the map. 1916 AssignmentTrackingLowering::OverlapMap Map; 1917 for (auto Pair : FragmentMap) { 1918 auto &Frags = Pair.second; 1919 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) { 1920 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault(); 1921 // Find the frags that this is contained within. 1922 // 1923 // Because Frags is sorted by size and none have the same offset and 1924 // size, we know that this frag can only be contained by subsequent 1925 // elements. 1926 SmallVector<DebugVariable, 8>::iterator OtherIt = It; 1927 ++OtherIt; 1928 VariableID ThisVar = FnVarLocs->insertVariable(*It); 1929 for (; OtherIt != IEnd; ++OtherIt) { 1930 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault(); 1931 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt); 1932 if (fullyContains(OtherFrag, Frag)) 1933 Map[OtherVar].push_back(ThisVar); 1934 } 1935 } 1936 } 1937 1938 return Map; 1939 } 1940 1941 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) { 1942 if (Fn.size() > MaxNumBlocks) { 1943 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName() 1944 << ": too many blocks (" << Fn.size() << ")\n"); 1945 at::deleteAll(&Fn); 1946 return false; 1947 } 1948 1949 FnVarLocs = FnVarLocsBuilder; 1950 1951 // The general structure here is inspired by VarLocBasedImpl.cpp 1952 // (LiveDebugValues). 1953 1954 // Build the variable fragment overlap map. 1955 // Note that this pass doesn't handle partial overlaps correctly (FWIW 1956 // neither does LiveDebugVariables) because that is difficult to do and 1957 // appears to be rare occurance. 1958 VarContains = 1959 buildOverlapMapAndRecordDeclares(Fn, FnVarLocs, UntaggedStoreVars); 1960 1961 // Prepare for traversal. 1962 ReversePostOrderTraversal<Function *> RPOT(&Fn); 1963 std::priority_queue<unsigned int, std::vector<unsigned int>, 1964 std::greater<unsigned int>> 1965 Worklist; 1966 std::priority_queue<unsigned int, std::vector<unsigned int>, 1967 std::greater<unsigned int>> 1968 Pending; 1969 DenseMap<unsigned int, BasicBlock *> OrderToBB; 1970 DenseMap<BasicBlock *, unsigned int> BBToOrder; 1971 { // Init OrderToBB and BBToOrder. 1972 unsigned int RPONumber = 0; 1973 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 1974 OrderToBB[RPONumber] = *RI; 1975 BBToOrder[*RI] = RPONumber; 1976 Worklist.push(RPONumber); 1977 ++RPONumber; 1978 } 1979 LiveIn.init(RPONumber); 1980 LiveOut.init(RPONumber); 1981 } 1982 1983 // Perform the traversal. 1984 // 1985 // This is a standard "union of predecessor outs" dataflow problem. To solve 1986 // it, we perform join() and process() using the two worklist method until 1987 // the LiveIn data for each block becomes unchanging. The "proof" that this 1988 // terminates can be put together by looking at the comments around LocKind, 1989 // Assignment, and the various join methods, which show that all the elements 1990 // involved are made up of join-semilattices; LiveIn(n) can only 1991 // monotonically increase in value throughout the dataflow. 1992 // 1993 SmallPtrSet<BasicBlock *, 16> Visited; 1994 while (!Worklist.empty()) { 1995 // We track what is on the pending worklist to avoid inserting the same 1996 // thing twice. 1997 SmallPtrSet<BasicBlock *, 16> OnPending; 1998 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 1999 while (!Worklist.empty()) { 2000 BasicBlock *BB = OrderToBB[Worklist.top()]; 2001 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 2002 Worklist.pop(); 2003 bool InChanged = join(*BB, Visited); 2004 // Always consider LiveIn changed on the first visit. 2005 InChanged |= Visited.insert(BB).second; 2006 if (InChanged) { 2007 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n"); 2008 // Mutate a copy of LiveIn while processing BB. After calling process 2009 // LiveSet is the LiveOut set for BB. 2010 BlockInfo LiveSet = LiveIn[BB]; 2011 2012 // Process the instructions in the block. 2013 process(*BB, &LiveSet); 2014 2015 // Relatively expensive check: has anything changed in LiveOut for BB? 2016 if (LiveOut[BB] != LiveSet) { 2017 LLVM_DEBUG(dbgs() << BB->getName() 2018 << " has new OutLocs, add succs to worklist: [ "); 2019 LiveOut[BB] = std::move(LiveSet); 2020 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 2021 if (OnPending.insert(*I).second) { 2022 LLVM_DEBUG(dbgs() << I->getName() << " "); 2023 Pending.push(BBToOrder[*I]); 2024 } 2025 } 2026 LLVM_DEBUG(dbgs() << "]\n"); 2027 } 2028 } 2029 } 2030 Worklist.swap(Pending); 2031 // At this point, pending must be empty, since it was just the empty 2032 // worklist 2033 assert(Pending.empty() && "Pending should be empty"); 2034 } 2035 2036 // That's the hard part over. Now we just have some admin to do. 2037 2038 // Record whether we inserted any intrinsics. 2039 bool InsertedAnyIntrinsics = false; 2040 2041 // Identify and add defs for single location variables. 2042 // 2043 // Go through all of the defs that we plan to add. If the aggregate variable 2044 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single 2045 // location def and omit the rest. Add an entry to AlwaysStackHomed so that 2046 // we can identify those uneeded defs later. 2047 DenseSet<DebugAggregate> AlwaysStackHomed; 2048 for (const auto &Pair : InsertBeforeMap) { 2049 const auto &Vec = Pair.second; 2050 for (VarLocInfo VarLoc : Vec) { 2051 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2052 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2053 2054 // Skip this Var if it's not always stack homed. 2055 if (NotAlwaysStackHomed.contains(Aggr)) 2056 continue; 2057 2058 // Skip complex cases such as when different fragments of a variable have 2059 // been split into different allocas. Skipping in this case means falling 2060 // back to using a list of defs (which could reduce coverage, but is no 2061 // less correct). 2062 bool Simple = 2063 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref(); 2064 if (!Simple) { 2065 NotAlwaysStackHomed.insert(Aggr); 2066 continue; 2067 } 2068 2069 // All source assignments to this variable remain and all stores to any 2070 // part of the variable store to the same address (with varying 2071 // offsets). We can just emit a single location for the whole variable. 2072 // 2073 // Unless we've already done so, create the single location def now. 2074 if (AlwaysStackHomed.insert(Aggr).second) { 2075 assert(!VarLoc.Values.hasArgList() && 2076 isa<AllocaInst>(VarLoc.Values.getVariableLocationOp(0))); 2077 // TODO: When more complex cases are handled VarLoc.Expr should be 2078 // built appropriately rather than always using an empty DIExpression. 2079 // The assert below is a reminder. 2080 assert(Simple); 2081 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt); 2082 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2083 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values); 2084 InsertedAnyIntrinsics = true; 2085 } 2086 } 2087 } 2088 2089 // Insert the other DEFs. 2090 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) { 2091 SmallVector<VarLocInfo> NewDefs; 2092 for (const VarLocInfo &VarLoc : Vec) { 2093 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2094 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2095 // If this variable is always stack homed then we have already inserted a 2096 // dbg.declare and deleted this dbg.value. 2097 if (AlwaysStackHomed.contains(Aggr)) 2098 continue; 2099 NewDefs.push_back(VarLoc); 2100 InsertedAnyIntrinsics = true; 2101 } 2102 2103 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs)); 2104 } 2105 2106 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs); 2107 2108 return InsertedAnyIntrinsics; 2109 } 2110 2111 bool AssignmentTrackingLowering::emitPromotedVarLocs( 2112 FunctionVarLocsBuilder *FnVarLocs) { 2113 bool InsertedAnyIntrinsics = false; 2114 // Go through every block, translating debug intrinsics for fully promoted 2115 // variables into FnVarLocs location defs. No analysis required for these. 2116 for (auto &BB : Fn) { 2117 for (auto &I : BB) { 2118 // Skip instructions other than dbg.values and dbg.assigns. 2119 auto *DVI = dyn_cast<DbgValueInst>(&I); 2120 if (!DVI) 2121 continue; 2122 // Skip variables that haven't been promoted - we've dealt with those 2123 // already. 2124 if (VarsWithStackSlot->contains(getAggregate(DVI))) 2125 continue; 2126 Instruction *InsertBefore = I.getNextNode(); 2127 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator"); 2128 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI), 2129 DVI->getExpression(), DVI->getDebugLoc(), 2130 DVI->getWrappedLocation()); 2131 InsertedAnyIntrinsics = true; 2132 } 2133 } 2134 return InsertedAnyIntrinsics; 2135 } 2136 2137 /// Remove redundant definitions within sequences of consecutive location defs. 2138 /// This is done using a backward scan to keep the last def describing a 2139 /// specific variable/fragment. 2140 /// 2141 /// This implements removeRedundantDbgInstrsUsingBackwardScan from 2142 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2143 /// FunctionVarLocsBuilder instead of with intrinsics. 2144 static bool 2145 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, 2146 FunctionVarLocsBuilder &FnVarLocs) { 2147 bool Changed = false; 2148 SmallDenseSet<DebugVariable> VariableSet; 2149 2150 // Scan over the entire block, not just over the instructions mapped by 2151 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2152 // instructions. 2153 for (const Instruction &I : reverse(*BB)) { 2154 if (!isa<DbgVariableIntrinsic>(I)) { 2155 // Sequence of consecutive defs ended. Clear map for the next one. 2156 VariableSet.clear(); 2157 } 2158 2159 // Get the location defs that start just before this instruction. 2160 const auto *Locs = FnVarLocs.getWedge(&I); 2161 if (!Locs) 2162 continue; 2163 2164 NumWedgesScanned++; 2165 bool ChangedThisWedge = false; 2166 // The new pruned set of defs, reversed because we're scanning backwards. 2167 SmallVector<VarLocInfo> NewDefsReversed; 2168 2169 // Iterate over the existing defs in reverse. 2170 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) { 2171 NumDefsScanned++; 2172 const DebugVariable &Key = FnVarLocs.getVariable(RIt->VariableID); 2173 bool FirstDefOfFragment = VariableSet.insert(Key).second; 2174 2175 // If the same variable fragment is described more than once it is enough 2176 // to keep the last one (i.e. the first found in this reverse iteration). 2177 if (FirstDefOfFragment) { 2178 // New def found: keep it. 2179 NewDefsReversed.push_back(*RIt); 2180 } else { 2181 // Redundant def found: throw it away. Since the wedge of defs is being 2182 // rebuilt, doing nothing is the same as deleting an entry. 2183 ChangedThisWedge = true; 2184 NumDefsRemoved++; 2185 } 2186 continue; 2187 } 2188 2189 // Un-reverse the defs and replace the wedge with the pruned version. 2190 if (ChangedThisWedge) { 2191 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end()); 2192 FnVarLocs.setWedge(&I, std::move(NewDefsReversed)); 2193 NumWedgesChanged++; 2194 Changed = true; 2195 } 2196 } 2197 2198 return Changed; 2199 } 2200 2201 /// Remove redundant location defs using a forward scan. This can remove a 2202 /// location definition that is redundant due to indicating that a variable has 2203 /// the same value as is already being indicated by an earlier def. 2204 /// 2205 /// This implements removeRedundantDbgInstrsUsingForwardScan from 2206 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2207 /// FunctionVarLocsBuilder instead of with intrinsics 2208 static bool 2209 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, 2210 FunctionVarLocsBuilder &FnVarLocs) { 2211 bool Changed = false; 2212 DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>> 2213 VariableMap; 2214 2215 // Scan over the entire block, not just over the instructions mapped by 2216 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2217 // instructions. 2218 for (const Instruction &I : *BB) { 2219 // Get the defs that come just before this instruction. 2220 const auto *Locs = FnVarLocs.getWedge(&I); 2221 if (!Locs) 2222 continue; 2223 2224 NumWedgesScanned++; 2225 bool ChangedThisWedge = false; 2226 // The new pruned set of defs. 2227 SmallVector<VarLocInfo> NewDefs; 2228 2229 // Iterate over the existing defs. 2230 for (const VarLocInfo &Loc : *Locs) { 2231 NumDefsScanned++; 2232 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2233 std::nullopt, Loc.DL.getInlinedAt()); 2234 auto VMI = VariableMap.find(Key); 2235 2236 // Update the map if we found a new value/expression describing the 2237 // variable, or if the variable wasn't mapped already. 2238 if (VMI == VariableMap.end() || VMI->second.first != Loc.Values || 2239 VMI->second.second != Loc.Expr) { 2240 VariableMap[Key] = {Loc.Values, Loc.Expr}; 2241 NewDefs.push_back(Loc); 2242 continue; 2243 } 2244 2245 // Did not insert this Loc, which is the same as removing it. 2246 ChangedThisWedge = true; 2247 NumDefsRemoved++; 2248 } 2249 2250 // Replace the existing wedge with the pruned version. 2251 if (ChangedThisWedge) { 2252 FnVarLocs.setWedge(&I, std::move(NewDefs)); 2253 NumWedgesChanged++; 2254 Changed = true; 2255 } 2256 } 2257 2258 return Changed; 2259 } 2260 2261 static bool 2262 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, 2263 FunctionVarLocsBuilder &FnVarLocs) { 2264 assert(BB->isEntryBlock()); 2265 // Do extra work to ensure that we remove semantically unimportant undefs. 2266 // 2267 // This is to work around the fact that SelectionDAG will hoist dbg.values 2268 // using argument values to the top of the entry block. That can move arg 2269 // dbg.values before undef and constant dbg.values which they previously 2270 // followed. The easiest thing to do is to just try to feed SelectionDAG 2271 // input it's happy with. 2272 // 2273 // Map of {Variable x: Fragments y} where the fragments y of variable x have 2274 // have at least one non-undef location defined already. Don't use directly, 2275 // instead call DefineBits and HasDefinedBits. 2276 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>> 2277 VarsWithDef; 2278 // Specify that V (a fragment of A) has a non-undef location. 2279 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2280 VarsWithDef[A].insert(V.getFragmentOrDefault()); 2281 }; 2282 // Return true if a non-undef location has been defined for V (a fragment of 2283 // A). Doesn't imply that the location is currently non-undef, just that a 2284 // non-undef location has been seen previously. 2285 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2286 auto FragsIt = VarsWithDef.find(A); 2287 if (FragsIt == VarsWithDef.end()) 2288 return false; 2289 return llvm::any_of(FragsIt->second, [V](auto Frag) { 2290 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault()); 2291 }); 2292 }; 2293 2294 bool Changed = false; 2295 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap; 2296 2297 // Scan over the entire block, not just over the instructions mapped by 2298 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2299 // instructions. 2300 for (const Instruction &I : *BB) { 2301 // Get the defs that come just before this instruction. 2302 const auto *Locs = FnVarLocs.getWedge(&I); 2303 if (!Locs) 2304 continue; 2305 2306 NumWedgesScanned++; 2307 bool ChangedThisWedge = false; 2308 // The new pruned set of defs. 2309 SmallVector<VarLocInfo> NewDefs; 2310 2311 // Iterate over the existing defs. 2312 for (const VarLocInfo &Loc : *Locs) { 2313 NumDefsScanned++; 2314 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2315 Loc.DL.getInlinedAt()}; 2316 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID); 2317 2318 // Remove undef entries that are encountered before any non-undef 2319 // intrinsics from the entry block. 2320 if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) { 2321 // Did not insert this Loc, which is the same as removing it. 2322 NumDefsRemoved++; 2323 ChangedThisWedge = true; 2324 continue; 2325 } 2326 2327 DefineBits(Aggr, Var); 2328 NewDefs.push_back(Loc); 2329 } 2330 2331 // Replace the existing wedge with the pruned version. 2332 if (ChangedThisWedge) { 2333 FnVarLocs.setWedge(&I, std::move(NewDefs)); 2334 NumWedgesChanged++; 2335 Changed = true; 2336 } 2337 } 2338 2339 return Changed; 2340 } 2341 2342 static bool removeRedundantDbgLocs(const BasicBlock *BB, 2343 FunctionVarLocsBuilder &FnVarLocs) { 2344 bool MadeChanges = false; 2345 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs); 2346 if (BB->isEntryBlock()) 2347 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs); 2348 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs); 2349 2350 if (MadeChanges) 2351 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName() 2352 << "\n"); 2353 return MadeChanges; 2354 } 2355 2356 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) { 2357 DenseSet<DebugAggregate> Result; 2358 for (auto &BB : Fn) { 2359 for (auto &I : BB) { 2360 // Any variable linked to an instruction is considered 2361 // interesting. Ideally we only need to check Allocas, however, a 2362 // DIAssignID might get dropped from an alloca but not stores. In that 2363 // case, we need to consider the variable interesting for NFC behaviour 2364 // with this change. TODO: Consider only looking at allocas. 2365 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) { 2366 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()}); 2367 } 2368 } 2369 } 2370 return Result; 2371 } 2372 2373 static void analyzeFunction(Function &Fn, const DataLayout &Layout, 2374 FunctionVarLocsBuilder *FnVarLocs) { 2375 // The analysis will generate location definitions for all variables, but we 2376 // only need to perform a dataflow on the set of variables which have a stack 2377 // slot. Find those now. 2378 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn); 2379 2380 bool Changed = false; 2381 2382 // Use a scope block to clean up AssignmentTrackingLowering before running 2383 // MemLocFragmentFill to reduce peak memory consumption. 2384 { 2385 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot); 2386 Changed = Pass.run(FnVarLocs); 2387 } 2388 2389 if (Changed) { 2390 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot); 2391 Pass.run(FnVarLocs); 2392 2393 // Remove redundant entries. As well as reducing memory consumption and 2394 // avoiding waiting cycles later by burning some now, this has another 2395 // important job. That is to work around some SelectionDAG quirks. See 2396 // removeRedundantDbgLocsUsingForwardScan comments for more info on that. 2397 for (auto &BB : Fn) 2398 removeRedundantDbgLocs(&BB, *FnVarLocs); 2399 } 2400 } 2401 2402 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) { 2403 if (!isAssignmentTrackingEnabled(*F.getParent())) 2404 return false; 2405 2406 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName() 2407 << "\n"); 2408 auto DL = std::make_unique<DataLayout>(F.getParent()); 2409 2410 // Clear previous results. 2411 Results->clear(); 2412 2413 FunctionVarLocsBuilder Builder; 2414 analyzeFunction(F, *DL.get(), &Builder); 2415 2416 // Save these results. 2417 Results->init(Builder); 2418 2419 if (PrintResults && isFunctionInPrintList(F.getName())) 2420 Results->print(errs(), F); 2421 2422 // Return false because this pass does not modify the function. 2423 return false; 2424 } 2425 2426 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis() 2427 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {} 2428 2429 char AssignmentTrackingAnalysis::ID = 0; 2430 2431 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE, 2432 "Assignment Tracking Analysis", false, true) 2433