1 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 2 #include "LiveDebugValues/LiveDebugValues.h" 3 #include "llvm/ADT/BitVector.h" 4 #include "llvm/ADT/DenseMapInfo.h" 5 #include "llvm/ADT/IntervalMap.h" 6 #include "llvm/ADT/PostOrderIterator.h" 7 #include "llvm/ADT/STLExtras.h" 8 #include "llvm/ADT/Statistic.h" 9 #include "llvm/ADT/UniqueVector.h" 10 #include "llvm/Analysis/Interval.h" 11 #include "llvm/BinaryFormat/Dwarf.h" 12 #include "llvm/IR/BasicBlock.h" 13 #include "llvm/IR/DataLayout.h" 14 #include "llvm/IR/DebugInfo.h" 15 #include "llvm/IR/Function.h" 16 #include "llvm/IR/Instruction.h" 17 #include "llvm/IR/IntrinsicInst.h" 18 #include "llvm/IR/PassManager.h" 19 #include "llvm/IR/PrintPasses.h" 20 #include "llvm/InitializePasses.h" 21 #include "llvm/Support/CommandLine.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 25 #include <assert.h> 26 #include <cstdint> 27 #include <optional> 28 #include <sstream> 29 #include <unordered_map> 30 31 using namespace llvm; 32 #define DEBUG_TYPE "debug-ata" 33 34 STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal"); 35 STATISTIC(NumDefsRemoved, "Number of dbg locs removed"); 36 STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned"); 37 STATISTIC(NumWedgesChanged, "Number of dbg wedges changed"); 38 39 static cl::opt<unsigned> 40 MaxNumBlocks("debug-ata-max-blocks", cl::init(10000), 41 cl::desc("Maximum num basic blocks before debug info dropped"), 42 cl::Hidden); 43 /// Option for debugging the pass, determines if the memory location fragment 44 /// filling happens after generating the variable locations. 45 static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true), 46 cl::Hidden); 47 /// Print the results of the analysis. Respects -filter-print-funcs. 48 static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false), 49 cl::Hidden); 50 51 /// Coalesce adjacent dbg locs describing memory locations that have contiguous 52 /// fragments. This reduces the cost of LiveDebugValues which does SSA 53 /// construction for each explicitly stated variable fragment. 54 static cl::opt<cl::boolOrDefault> 55 CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden); 56 57 // Implicit conversions are disabled for enum class types, so unfortunately we 58 // need to create a DenseMapInfo wrapper around the specified underlying type. 59 template <> struct llvm::DenseMapInfo<VariableID> { 60 using Wrapped = DenseMapInfo<unsigned>; 61 static inline VariableID getEmptyKey() { 62 return static_cast<VariableID>(Wrapped::getEmptyKey()); 63 } 64 static inline VariableID getTombstoneKey() { 65 return static_cast<VariableID>(Wrapped::getTombstoneKey()); 66 } 67 static unsigned getHashValue(const VariableID &Val) { 68 return Wrapped::getHashValue(static_cast<unsigned>(Val)); 69 } 70 static bool isEqual(const VariableID &LHS, const VariableID &RHS) { 71 return LHS == RHS; 72 } 73 }; 74 75 /// Helper class to build FunctionVarLocs, since that class isn't easy to 76 /// modify. TODO: There's not a great deal of value in the split, it could be 77 /// worth merging the two classes. 78 class FunctionVarLocsBuilder { 79 friend FunctionVarLocs; 80 UniqueVector<DebugVariable> Variables; 81 // Use an unordered_map so we don't invalidate iterators after 82 // insert/modifications. 83 std::unordered_map<const Instruction *, SmallVector<VarLocInfo>> 84 VarLocsBeforeInst; 85 86 SmallVector<VarLocInfo> SingleLocVars; 87 88 public: 89 unsigned getNumVariables() const { return Variables.size(); } 90 91 /// Find or insert \p V and return the ID. 92 VariableID insertVariable(DebugVariable V) { 93 return static_cast<VariableID>(Variables.insert(V)); 94 } 95 96 /// Get a variable from its \p ID. 97 const DebugVariable &getVariable(VariableID ID) const { 98 return Variables[static_cast<unsigned>(ID)]; 99 } 100 101 /// Return ptr to wedge of defs or nullptr if no defs come just before /p 102 /// Before. 103 const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const { 104 auto R = VarLocsBeforeInst.find(Before); 105 if (R == VarLocsBeforeInst.end()) 106 return nullptr; 107 return &R->second; 108 } 109 110 /// Replace the defs that come just before /p Before with /p Wedge. 111 void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) { 112 VarLocsBeforeInst[Before] = std::move(Wedge); 113 } 114 115 /// Add a def for a variable that is valid for its lifetime. 116 void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, 117 RawLocationWrapper R) { 118 VarLocInfo VarLoc; 119 VarLoc.VariableID = insertVariable(Var); 120 VarLoc.Expr = Expr; 121 VarLoc.DL = DL; 122 VarLoc.Values = R; 123 SingleLocVars.emplace_back(VarLoc); 124 } 125 126 /// Add a def to the wedge of defs just before /p Before. 127 void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr, 128 DebugLoc DL, RawLocationWrapper R) { 129 VarLocInfo VarLoc; 130 VarLoc.VariableID = insertVariable(Var); 131 VarLoc.Expr = Expr; 132 VarLoc.DL = DL; 133 VarLoc.Values = R; 134 VarLocsBeforeInst[Before].emplace_back(VarLoc); 135 } 136 }; 137 138 void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const { 139 // Print the variable table first. TODO: Sorting by variable could make the 140 // output more stable? 141 unsigned Counter = -1; 142 OS << "=== Variables ===\n"; 143 for (const DebugVariable &V : Variables) { 144 ++Counter; 145 // Skip first entry because it is a dummy entry. 146 if (Counter == 0) { 147 continue; 148 } 149 OS << "[" << Counter << "] " << V.getVariable()->getName(); 150 if (auto F = V.getFragment()) 151 OS << " bits [" << F->OffsetInBits << ", " 152 << F->OffsetInBits + F->SizeInBits << ")"; 153 if (const auto *IA = V.getInlinedAt()) 154 OS << " inlined-at " << *IA; 155 OS << "\n"; 156 } 157 158 auto PrintLoc = [&OS](const VarLocInfo &Loc) { 159 OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]" 160 << " Expr=" << *Loc.Expr << " Values=("; 161 for (auto *Op : Loc.Values.location_ops()) { 162 errs() << Op->getName() << " "; 163 } 164 errs() << ")\n"; 165 }; 166 167 // Print the single location variables. 168 OS << "=== Single location vars ===\n"; 169 for (auto It = single_locs_begin(), End = single_locs_end(); It != End; 170 ++It) { 171 PrintLoc(*It); 172 } 173 174 // Print the non-single-location defs in line with IR. 175 OS << "=== In-line variable defs ==="; 176 for (const BasicBlock &BB : Fn) { 177 OS << "\n" << BB.getName() << ":\n"; 178 for (const Instruction &I : BB) { 179 for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) { 180 PrintLoc(*It); 181 } 182 OS << I << "\n"; 183 } 184 } 185 } 186 187 void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) { 188 // Add the single-location variables first. 189 for (const auto &VarLoc : Builder.SingleLocVars) 190 VarLocRecords.emplace_back(VarLoc); 191 // Mark the end of the section. 192 SingleVarLocEnd = VarLocRecords.size(); 193 194 // Insert a contiguous block of VarLocInfos for each instruction, mapping it 195 // to the start and end position in the vector with VarLocsBeforeInst. 196 for (auto &P : Builder.VarLocsBeforeInst) { 197 unsigned BlockStart = VarLocRecords.size(); 198 for (const VarLocInfo &VarLoc : P.second) 199 VarLocRecords.emplace_back(VarLoc); 200 unsigned BlockEnd = VarLocRecords.size(); 201 // Record the start and end indices. 202 if (BlockEnd != BlockStart) 203 VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd}; 204 } 205 206 // Copy the Variables vector from the builder's UniqueVector. 207 assert(Variables.empty() && "Expect clear before init"); 208 // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values 209 // are one-based) so reserve an extra and insert a dummy. 210 Variables.reserve(Builder.Variables.size() + 1); 211 Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr)); 212 Variables.append(Builder.Variables.begin(), Builder.Variables.end()); 213 } 214 215 void FunctionVarLocs::clear() { 216 Variables.clear(); 217 VarLocRecords.clear(); 218 VarLocsBeforeInst.clear(); 219 SingleVarLocEnd = 0; 220 } 221 222 /// Walk backwards along constant GEPs and bitcasts to the base storage from \p 223 /// Start as far as possible. Prepend \Expression with the offset and append it 224 /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to 225 /// value and modified expression. 226 static std::pair<Value *, DIExpression *> 227 walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, 228 DIExpression *Expression) { 229 APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false); 230 Value *End = 231 Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes); 232 SmallVector<uint64_t, 3> Ops; 233 if (OffsetInBytes.getBoolValue()) { 234 Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()}; 235 Expression = DIExpression::prependOpcodes( 236 Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false); 237 } 238 Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref}); 239 return {End, Expression}; 240 } 241 242 /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression 243 /// doesn't explicitly describe a memory location with DW_OP_deref or if the 244 /// expression is too complex to interpret. 245 static std::optional<int64_t> 246 getDerefOffsetInBytes(const DIExpression *DIExpr) { 247 int64_t Offset = 0; 248 const unsigned NumElements = DIExpr->getNumElements(); 249 const auto Elements = DIExpr->getElements(); 250 unsigned ExpectedDerefIdx = 0; 251 // Extract the offset. 252 if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { 253 Offset = Elements[1]; 254 ExpectedDerefIdx = 2; 255 } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) { 256 ExpectedDerefIdx = 3; 257 if (Elements[2] == dwarf::DW_OP_plus) 258 Offset = Elements[1]; 259 else if (Elements[2] == dwarf::DW_OP_minus) 260 Offset = -Elements[1]; 261 else 262 return std::nullopt; 263 } 264 265 // If that's all there is it means there's no deref. 266 if (ExpectedDerefIdx >= NumElements) 267 return std::nullopt; 268 269 // Check the next element is DW_OP_deref - otherwise this is too complex or 270 // isn't a deref expression. 271 if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref) 272 return std::nullopt; 273 274 // Check the final operation is either the DW_OP_deref or is a fragment. 275 if (NumElements == ExpectedDerefIdx + 1) 276 return Offset; // Ends with deref. 277 unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1; 278 unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2; 279 if (NumElements == ExpectedFragFinalIdx + 1 && 280 Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment) 281 return Offset; // Ends with deref + fragment. 282 283 // Don't bother trying to interpret anything more complex. 284 return std::nullopt; 285 } 286 287 /// A whole (unfragmented) source variable. 288 using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>; 289 static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) { 290 return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt()); 291 } 292 static DebugAggregate getAggregate(const DebugVariable &Var) { 293 return DebugAggregate(Var.getVariable(), Var.getInlinedAt()); 294 } 295 296 static bool shouldCoalesceFragments(Function &F) { 297 // Enabling fragment coalescing reduces compiler run time when instruction 298 // referencing is enabled. However, it may cause LiveDebugVariables to create 299 // incorrect locations. Since instruction-referencing mode effectively 300 // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag 301 // has not been explicitly set and instruction-referencing is turned on. 302 switch (CoalesceAdjacentFragmentsOpt) { 303 case cl::boolOrDefault::BOU_UNSET: 304 return debuginfoShouldUseDebugInstrRef( 305 Triple(F.getParent()->getTargetTriple())); 306 case cl::boolOrDefault::BOU_TRUE: 307 return true; 308 case cl::boolOrDefault::BOU_FALSE: 309 return false; 310 } 311 llvm_unreachable("Unknown boolOrDefault value"); 312 } 313 314 namespace { 315 /// In dwarf emission, the following sequence 316 /// 1. dbg.value ... Fragment(0, 64) 317 /// 2. dbg.value ... Fragment(0, 32) 318 /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in 319 /// the intersection of the fragments to having "no location"). This makes 320 /// sense for implicit location values because splitting the computed values 321 /// could be troublesome, and is probably quite uncommon. When we convert 322 /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing 323 /// a location (memory) rather than a value means we don't need to worry about 324 /// splitting any values, so we try to recover the rest of the fragment 325 /// location here. 326 /// This class performs a(nother) dataflow analysis over the function, adding 327 /// variable locations so that any bits of a variable with a memory location 328 /// have that location explicitly reinstated at each subsequent variable 329 /// location definition that that doesn't overwrite those bits. i.e. after a 330 /// variable location def, insert new defs for the memory location with 331 /// fragments for the difference of "all bits currently in memory" and "the 332 /// fragment of the second def". 333 class MemLocFragmentFill { 334 Function &Fn; 335 FunctionVarLocsBuilder *FnVarLocs; 336 const DenseSet<DebugAggregate> *VarsWithStackSlot; 337 bool CoalesceAdjacentFragments; 338 339 // 0 = no memory location. 340 using BaseAddress = unsigned; 341 using OffsetInBitsTy = unsigned; 342 using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>; 343 using FragsInMemMap = IntervalMap< 344 OffsetInBitsTy, BaseAddress, 345 IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize, 346 FragTraits>; 347 FragsInMemMap::Allocator IntervalMapAlloc; 348 using VarFragMap = DenseMap<unsigned, FragsInMemMap>; 349 350 /// IDs for memory location base addresses in maps. Use 0 to indicate that 351 /// there's no memory location. 352 UniqueVector<RawLocationWrapper> Bases; 353 UniqueVector<DebugAggregate> Aggregates; 354 DenseMap<const BasicBlock *, VarFragMap> LiveIn; 355 DenseMap<const BasicBlock *, VarFragMap> LiveOut; 356 357 struct FragMemLoc { 358 unsigned Var; 359 unsigned Base; 360 unsigned OffsetInBits; 361 unsigned SizeInBits; 362 DebugLoc DL; 363 }; 364 using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>; 365 366 /// BBInsertBeforeMap holds a description for the set of location defs to be 367 /// inserted after the analysis is complete. It is updated during the dataflow 368 /// and the entry for a block is CLEARED each time it is (re-)visited. After 369 /// the dataflow is complete, each block entry will contain the set of defs 370 /// calculated during the final (fixed-point) iteration. 371 DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap; 372 373 static bool intervalMapsAreEqual(const FragsInMemMap &A, 374 const FragsInMemMap &B) { 375 auto AIt = A.begin(), AEnd = A.end(); 376 auto BIt = B.begin(), BEnd = B.end(); 377 for (; AIt != AEnd; ++AIt, ++BIt) { 378 if (BIt == BEnd) 379 return false; // B has fewer elements than A. 380 if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop()) 381 return false; // Interval is different. 382 if (*AIt != *BIt) 383 return false; // Value at interval is different. 384 } 385 // AIt == AEnd. Check BIt is also now at end. 386 return BIt == BEnd; 387 } 388 389 static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) { 390 if (A.size() != B.size()) 391 return false; 392 for (const auto &APair : A) { 393 auto BIt = B.find(APair.first); 394 if (BIt == B.end()) 395 return false; 396 if (!intervalMapsAreEqual(APair.second, BIt->second)) 397 return false; 398 } 399 return true; 400 } 401 402 /// Return a string for the value that \p BaseID represents. 403 std::string toString(unsigned BaseID) { 404 if (BaseID) 405 return Bases[BaseID].getVariableLocationOp(0)->getName().str(); 406 else 407 return "None"; 408 } 409 410 /// Format string describing an FragsInMemMap (IntervalMap) interval. 411 std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) { 412 std::string String; 413 std::stringstream S(String); 414 if (It.valid()) { 415 S << "[" << It.start() << ", " << It.stop() 416 << "): " << toString(It.value()); 417 } else { 418 S << "invalid iterator (end)"; 419 } 420 if (Newline) 421 S << "\n"; 422 return S.str(); 423 }; 424 425 FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) { 426 FragsInMemMap Result(IntervalMapAlloc); 427 for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) { 428 LLVM_DEBUG(dbgs() << "a " << toString(AIt)); 429 // This is basically copied from process() and inverted (process is 430 // performing something like a union whereas this is more of an 431 // intersect). 432 433 // There's no work to do if interval `a` overlaps no fragments in map `B`. 434 if (!B.overlaps(AIt.start(), AIt.stop())) 435 continue; 436 437 // Does StartBit intersect an existing fragment? 438 auto FirstOverlap = B.find(AIt.start()); 439 assert(FirstOverlap != B.end()); 440 bool IntersectStart = FirstOverlap.start() < AIt.start(); 441 LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false) 442 << ", IntersectStart: " << IntersectStart << "\n"); 443 444 // Does EndBit intersect an existing fragment? 445 auto LastOverlap = B.find(AIt.stop()); 446 bool IntersectEnd = 447 LastOverlap != B.end() && LastOverlap.start() < AIt.stop(); 448 LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false) 449 << ", IntersectEnd: " << IntersectEnd << "\n"); 450 451 // Check if both ends of `a` intersect the same interval `b`. 452 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 453 // Insert `a` (`a` is contained in `b`) if the values match. 454 // [ a ] 455 // [ - b - ] 456 // - 457 // [ r ] 458 LLVM_DEBUG(dbgs() << "- a is contained within " 459 << toString(FirstOverlap)); 460 if (*AIt && *AIt == *FirstOverlap) 461 Result.insert(AIt.start(), AIt.stop(), *AIt); 462 } else { 463 // There's an overlap but `a` is not fully contained within 464 // `b`. Shorten any end-point intersections. 465 // [ - a - ] 466 // [ - b - ] 467 // - 468 // [ r ] 469 auto Next = FirstOverlap; 470 if (IntersectStart) { 471 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 472 << toString(FirstOverlap)); 473 if (*AIt && *AIt == *FirstOverlap) 474 Result.insert(AIt.start(), FirstOverlap.stop(), *AIt); 475 ++Next; 476 } 477 // [ - a - ] 478 // [ - b - ] 479 // - 480 // [ r ] 481 if (IntersectEnd) { 482 LLVM_DEBUG(dbgs() << "- insert intersection of a and " 483 << toString(LastOverlap)); 484 if (*AIt && *AIt == *LastOverlap) 485 Result.insert(LastOverlap.start(), AIt.stop(), *AIt); 486 } 487 488 // Insert all intervals in map `B` that are contained within interval 489 // `a` where the values match. 490 // [ - - a - - ] 491 // [ b1 ] [ b2 ] 492 // - 493 // [ r1 ] [ r2 ] 494 while (Next != B.end() && Next.start() < AIt.stop() && 495 Next.stop() <= AIt.stop()) { 496 LLVM_DEBUG(dbgs() 497 << "- insert intersection of a and " << toString(Next)); 498 if (*AIt && *AIt == *Next) 499 Result.insert(Next.start(), Next.stop(), *Next); 500 ++Next; 501 } 502 } 503 } 504 return Result; 505 } 506 507 /// Meet \p A and \p B, storing the result in \p A. 508 void meetVars(VarFragMap &A, const VarFragMap &B) { 509 // Meet A and B. 510 // 511 // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b) 512 for (auto It = A.begin(), End = A.end(); It != End; ++It) { 513 unsigned AVar = It->first; 514 FragsInMemMap &AFrags = It->second; 515 auto BIt = B.find(AVar); 516 if (BIt == B.end()) { 517 A.erase(It); 518 continue; // Var has no bits defined in B. 519 } 520 LLVM_DEBUG(dbgs() << "meet fragment maps for " 521 << Aggregates[AVar].first->getName() << "\n"); 522 AFrags = meetFragments(AFrags, BIt->second); 523 } 524 } 525 526 bool meet(const BasicBlock &BB, 527 const SmallPtrSet<BasicBlock *, 16> &Visited) { 528 LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName() 529 << "\n"); 530 531 VarFragMap BBLiveIn; 532 bool FirstMeet = true; 533 // LiveIn locs for BB is the meet of the already-processed preds' LiveOut 534 // locs. 535 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 536 // Ignore preds that haven't been processed yet. This is essentially the 537 // same as initialising all variables to implicit top value (⊤) which is 538 // the identity value for the meet operation. 539 const BasicBlock *Pred = *I; 540 if (!Visited.count(Pred)) 541 continue; 542 543 auto PredLiveOut = LiveOut.find(Pred); 544 assert(PredLiveOut != LiveOut.end()); 545 546 if (FirstMeet) { 547 LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n"); 548 BBLiveIn = PredLiveOut->second; 549 FirstMeet = false; 550 } else { 551 LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName() 552 << "\n"); 553 meetVars(BBLiveIn, PredLiveOut->second); 554 } 555 556 // An empty set is ⊥ for the intersect-like meet operation. If we've 557 // already got ⊥ there's no need to run the code - we know the result is 558 // ⊥ since `meet(a, ⊥) = ⊥`. 559 if (BBLiveIn.size() == 0) 560 break; 561 } 562 563 auto CurrentLiveInEntry = LiveIn.find(&BB); 564 // If there's no LiveIn entry for the block yet, add it. 565 if (CurrentLiveInEntry == LiveIn.end()) { 566 LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName() 567 << "\n"); 568 LiveIn[&BB] = std::move(BBLiveIn); 569 return /*Changed=*/true; 570 } 571 572 // If the LiveIn set has changed (expensive check) update it and return 573 // true. 574 if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) { 575 LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n"); 576 CurrentLiveInEntry->second = std::move(BBLiveIn); 577 return /*Changed=*/true; 578 } 579 580 LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n"); 581 return /*Changed=*/false; 582 } 583 584 void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var, 585 unsigned StartBit, unsigned EndBit, unsigned Base, 586 DebugLoc DL) { 587 assert(StartBit < EndBit && "Cannot create fragment of size <= 0"); 588 if (!Base) 589 return; 590 FragMemLoc Loc; 591 Loc.Var = Var; 592 Loc.OffsetInBits = StartBit; 593 Loc.SizeInBits = EndBit - StartBit; 594 assert(Base && "Expected a non-zero ID for Base address"); 595 Loc.Base = Base; 596 Loc.DL = DL; 597 BBInsertBeforeMap[&BB][&Before].push_back(Loc); 598 LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName() 599 << " bits [" << StartBit << ", " << EndBit << ")\n"); 600 } 601 602 /// Inserts a new dbg def if the interval found when looking up \p StartBit 603 /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which 604 /// indicates - assuming StartBit->EndBit has just been inserted - that the 605 /// slice has been coalesced in the map). 606 void coalesceFragments(BasicBlock &BB, Instruction &Before, unsigned Var, 607 unsigned StartBit, unsigned EndBit, unsigned Base, 608 DebugLoc DL, const FragsInMemMap &FragMap) { 609 if (!CoalesceAdjacentFragments) 610 return; 611 // We've inserted the location into the map. The map will have coalesced 612 // adjacent intervals (variable fragments) that describe the same memory 613 // location. Use this knowledge to insert a debug location that describes 614 // that coalesced fragment. This may eclipse other locs we've just 615 // inserted. This is okay as redundant locs will be cleaned up later. 616 auto CoalescedFrag = FragMap.find(StartBit); 617 // Bail if no coalescing has taken place. 618 if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit) 619 return; 620 621 LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start() 622 << " to " << CoalescedFrag.stop() << "\n"); 623 insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(), 624 Base, DL); 625 } 626 627 void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB, 628 VarFragMap &LiveSet) { 629 DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID); 630 if (skipVariable(DbgVar.getVariable())) 631 return; 632 // Don't bother doing anything for this variables if we know it's fully 633 // promoted. We're only interested in variables that (sometimes) live on 634 // the stack here. 635 if (!VarsWithStackSlot->count(getAggregate(DbgVar))) 636 return; 637 unsigned Var = Aggregates.insert( 638 DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt())); 639 640 // [StartBit: EndBit) are the bits affected by this def. 641 const DIExpression *DIExpr = VarLoc.Expr; 642 unsigned StartBit; 643 unsigned EndBit; 644 if (auto Frag = DIExpr->getFragmentInfo()) { 645 StartBit = Frag->OffsetInBits; 646 EndBit = StartBit + Frag->SizeInBits; 647 } else { 648 assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits())); 649 StartBit = 0; 650 EndBit = *DbgVar.getVariable()->getSizeInBits(); 651 } 652 653 // We will only fill fragments for simple memory-describing dbg.value 654 // intrinsics. If the fragment offset is the same as the offset from the 655 // base pointer, do The Thing, otherwise fall back to normal dbg.value 656 // behaviour. AssignmentTrackingLowering has generated DIExpressions 657 // written in terms of the base pointer. 658 // TODO: Remove this condition since the fragment offset doesn't always 659 // equal the offset from base pointer (e.g. for a SROA-split variable). 660 const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr); 661 const unsigned Base = 662 DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit 663 ? Bases.insert(VarLoc.Values) 664 : 0; 665 LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " [" 666 << StartBit << ", " << EndBit << "): " << toString(Base) 667 << "\n"); 668 669 // First of all, any locs that use mem that are disrupted need reinstating. 670 // Unfortunately, IntervalMap doesn't let us insert intervals that overlap 671 // with existing intervals so this code involves a lot of fiddling around 672 // with intervals to do that manually. 673 auto FragIt = LiveSet.find(Var); 674 675 // Check if the variable does not exist in the map. 676 if (FragIt == LiveSet.end()) { 677 // Add this variable to the BB map. 678 auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc)); 679 assert(P.second && "Var already in map?"); 680 // Add the interval to the fragment map. 681 P.first->second.insert(StartBit, EndBit, Base); 682 return; 683 } 684 // The variable has an entry in the map. 685 686 FragsInMemMap &FragMap = FragIt->second; 687 // First check the easy case: the new fragment `f` doesn't overlap with any 688 // intervals. 689 if (!FragMap.overlaps(StartBit, EndBit)) { 690 LLVM_DEBUG(dbgs() << "- No overlaps\n"); 691 FragMap.insert(StartBit, EndBit, Base); 692 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL, 693 FragMap); 694 return; 695 } 696 // There is at least one overlap. 697 698 // Does StartBit intersect an existing fragment? 699 auto FirstOverlap = FragMap.find(StartBit); 700 assert(FirstOverlap != FragMap.end()); 701 bool IntersectStart = FirstOverlap.start() < StartBit; 702 703 // Does EndBit intersect an existing fragment? 704 auto LastOverlap = FragMap.find(EndBit); 705 bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit; 706 707 // Check if both ends of `f` intersect the same interval `i`. 708 if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { 709 LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n"); 710 // Shorten `i` so that there's space to insert `f`. 711 // [ f ] 712 // [ - i - ] 713 // + 714 // [ i ][ f ][ i ] 715 716 // Save values for use after inserting a new interval. 717 auto EndBitOfOverlap = FirstOverlap.stop(); 718 unsigned OverlapValue = FirstOverlap.value(); 719 720 // Shorten the overlapping interval. 721 FirstOverlap.setStop(StartBit); 722 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 723 OverlapValue, VarLoc.DL); 724 725 // Insert a new interval to represent the end part. 726 FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue); 727 insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue, 728 VarLoc.DL); 729 730 // Insert the new (middle) fragment now there is space. 731 FragMap.insert(StartBit, EndBit, Base); 732 } else { 733 // There's an overlap but `f` may not be fully contained within 734 // `i`. Shorten any end-point intersections so that we can then 735 // insert `f`. 736 // [ - f - ] 737 // [ - i - ] 738 // | | 739 // [ i ] 740 // Shorten any end-point intersections. 741 if (IntersectStart) { 742 LLVM_DEBUG(dbgs() << "- Intersect interval at start\n"); 743 // Split off at the intersection. 744 FirstOverlap.setStop(StartBit); 745 insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit, 746 *FirstOverlap, VarLoc.DL); 747 } 748 // [ - f - ] 749 // [ - i - ] 750 // | | 751 // [ i ] 752 if (IntersectEnd) { 753 LLVM_DEBUG(dbgs() << "- Intersect interval at end\n"); 754 // Split off at the intersection. 755 LastOverlap.setStart(EndBit); 756 insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap, 757 VarLoc.DL); 758 } 759 760 LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n"); 761 // FirstOverlap and LastOverlap have been shortened such that they're 762 // no longer overlapping with [StartBit, EndBit). Delete any overlaps 763 // that remain (these will be fully contained within `f`). 764 // [ - f - ] } 765 // [ - i - ] } Intersection shortening that has happened above. 766 // | | } 767 // [ i ] } 768 // ----------------- 769 // [i2 ] } Intervals fully contained within `f` get erased. 770 // ----------------- 771 // [ - f - ][ i ] } Completed insertion. 772 auto It = FirstOverlap; 773 if (IntersectStart) 774 ++It; // IntersectStart: first overlap has been shortened. 775 while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) { 776 LLVM_DEBUG(dbgs() << "- Erase " << toString(It)); 777 It.erase(); // This increments It after removing the interval. 778 } 779 // We've dealt with all the overlaps now! 780 assert(!FragMap.overlaps(StartBit, EndBit)); 781 LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n"); 782 FragMap.insert(StartBit, EndBit, Base); 783 } 784 785 coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL, 786 FragMap); 787 } 788 789 bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); } 790 791 void process(BasicBlock &BB, VarFragMap &LiveSet) { 792 BBInsertBeforeMap[&BB].clear(); 793 for (auto &I : BB) { 794 if (const auto *Locs = FnVarLocs->getWedge(&I)) { 795 for (const VarLocInfo &Loc : *Locs) { 796 addDef(Loc, I, *I.getParent(), LiveSet); 797 } 798 } 799 } 800 } 801 802 public: 803 MemLocFragmentFill(Function &Fn, 804 const DenseSet<DebugAggregate> *VarsWithStackSlot, 805 bool CoalesceAdjacentFragments) 806 : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot), 807 CoalesceAdjacentFragments(CoalesceAdjacentFragments) {} 808 809 /// Add variable locations to \p FnVarLocs so that any bits of a variable 810 /// with a memory location have that location explicitly reinstated at each 811 /// subsequent variable location definition that that doesn't overwrite those 812 /// bits. i.e. after a variable location def, insert new defs for the memory 813 /// location with fragments for the difference of "all bits currently in 814 /// memory" and "the fragment of the second def". e.g. 815 /// 816 /// Before: 817 /// 818 /// var x bits 0 to 63: value in memory 819 /// more instructions 820 /// var x bits 0 to 31: value is %0 821 /// 822 /// After: 823 /// 824 /// var x bits 0 to 63: value in memory 825 /// more instructions 826 /// var x bits 0 to 31: value is %0 827 /// var x bits 32 to 61: value in memory ; <-- new loc def 828 /// 829 void run(FunctionVarLocsBuilder *FnVarLocs) { 830 if (!EnableMemLocFragFill) 831 return; 832 833 this->FnVarLocs = FnVarLocs; 834 835 // Prepare for traversal. 836 // 837 ReversePostOrderTraversal<Function *> RPOT(&Fn); 838 std::priority_queue<unsigned int, std::vector<unsigned int>, 839 std::greater<unsigned int>> 840 Worklist; 841 std::priority_queue<unsigned int, std::vector<unsigned int>, 842 std::greater<unsigned int>> 843 Pending; 844 DenseMap<unsigned int, BasicBlock *> OrderToBB; 845 DenseMap<BasicBlock *, unsigned int> BBToOrder; 846 { // Init OrderToBB and BBToOrder. 847 unsigned int RPONumber = 0; 848 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 849 OrderToBB[RPONumber] = *RI; 850 BBToOrder[*RI] = RPONumber; 851 Worklist.push(RPONumber); 852 ++RPONumber; 853 } 854 LiveIn.init(RPONumber); 855 LiveOut.init(RPONumber); 856 } 857 858 // Perform the traversal. 859 // 860 // This is a standard "intersect of predecessor outs" dataflow problem. To 861 // solve it, we perform meet() and process() using the two worklist method 862 // until the LiveIn data for each block becomes unchanging. 863 // 864 // This dataflow is essentially working on maps of sets and at each meet we 865 // intersect the maps and the mapped sets. So, initialized live-in maps 866 // monotonically decrease in value throughout the dataflow. 867 SmallPtrSet<BasicBlock *, 16> Visited; 868 while (!Worklist.empty() || !Pending.empty()) { 869 // We track what is on the pending worklist to avoid inserting the same 870 // thing twice. We could avoid this with a custom priority queue, but 871 // this is probably not worth it. 872 SmallPtrSet<BasicBlock *, 16> OnPending; 873 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 874 while (!Worklist.empty()) { 875 BasicBlock *BB = OrderToBB[Worklist.top()]; 876 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 877 Worklist.pop(); 878 bool InChanged = meet(*BB, Visited); 879 // Always consider LiveIn changed on the first visit. 880 InChanged |= Visited.insert(BB).second; 881 if (InChanged) { 882 LLVM_DEBUG(dbgs() 883 << BB->getName() << " has new InLocs, process it\n"); 884 // Mutate a copy of LiveIn while processing BB. Once we've processed 885 // the terminator LiveSet is the LiveOut set for BB. 886 // This is an expensive copy! 887 VarFragMap LiveSet = LiveIn[BB]; 888 889 // Process the instructions in the block. 890 process(*BB, LiveSet); 891 892 // Relatively expensive check: has anything changed in LiveOut for BB? 893 if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) { 894 LLVM_DEBUG(dbgs() << BB->getName() 895 << " has new OutLocs, add succs to worklist: [ "); 896 LiveOut[BB] = std::move(LiveSet); 897 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 898 if (OnPending.insert(*I).second) { 899 LLVM_DEBUG(dbgs() << I->getName() << " "); 900 Pending.push(BBToOrder[*I]); 901 } 902 } 903 LLVM_DEBUG(dbgs() << "]\n"); 904 } 905 } 906 } 907 Worklist.swap(Pending); 908 // At this point, pending must be empty, since it was just the empty 909 // worklist 910 assert(Pending.empty() && "Pending should be empty"); 911 } 912 913 // Insert new location defs. 914 for (auto &Pair : BBInsertBeforeMap) { 915 InsertMap &Map = Pair.second; 916 for (auto &Pair : Map) { 917 Instruction *InsertBefore = Pair.first; 918 assert(InsertBefore && "should never be null"); 919 auto FragMemLocs = Pair.second; 920 auto &Ctx = Fn.getContext(); 921 922 for (auto &FragMemLoc : FragMemLocs) { 923 DIExpression *Expr = DIExpression::get(Ctx, std::nullopt); 924 if (FragMemLoc.SizeInBits != 925 *Aggregates[FragMemLoc.Var].first->getSizeInBits()) 926 Expr = *DIExpression::createFragmentExpression( 927 Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits); 928 Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter, 929 FragMemLoc.OffsetInBits / 8); 930 DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr, 931 FragMemLoc.DL.getInlinedAt()); 932 FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL, 933 Bases[FragMemLoc.Base]); 934 } 935 } 936 } 937 } 938 }; 939 940 /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function 941 /// that interprets assignment tracking debug info metadata and stores in IR to 942 /// create a map of variable locations. 943 class AssignmentTrackingLowering { 944 public: 945 /// The kind of location in use for a variable, where Mem is the stack home, 946 /// Val is an SSA value or const, and None means that there is not one single 947 /// kind (either because there are multiple or because there is none; it may 948 /// prove useful to split this into two values in the future). 949 /// 950 /// LocKind is a join-semilattice with the partial order: 951 /// None > Mem, Val 952 /// 953 /// i.e. 954 /// join(Mem, Mem) = Mem 955 /// join(Val, Val) = Val 956 /// join(Mem, Val) = None 957 /// join(None, Mem) = None 958 /// join(None, Val) = None 959 /// join(None, None) = None 960 /// 961 /// Note: the order is not `None > Val > Mem` because we're using DIAssignID 962 /// to name assignments and are not tracking the actual stored values. 963 /// Therefore currently there's no way to ensure that Mem values and Val 964 /// values are the same. This could be a future extension, though it's not 965 /// clear that many additional locations would be recovered that way in 966 /// practice as the likelihood of this sitation arising naturally seems 967 /// incredibly low. 968 enum class LocKind { Mem, Val, None }; 969 970 /// An abstraction of the assignment of a value to a variable or memory 971 /// location. 972 /// 973 /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a 974 /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or 975 /// can't) know the ID of the last assignment that took place. 976 /// 977 /// The Status of the Assignment (Known or NoneOrPhi) is another 978 /// join-semilattice. The partial order is: 979 /// NoneOrPhi > Known {id_0, id_1, ...id_N} 980 /// 981 /// i.e. for all values x and y where x != y: 982 /// join(x, x) = x 983 /// join(x, y) = NoneOrPhi 984 struct Assignment { 985 enum S { Known, NoneOrPhi } Status; 986 /// ID of the assignment. nullptr if Status is not Known. 987 DIAssignID *ID; 988 /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field. 989 /// May be nullptr. 990 DbgAssignIntrinsic *Source; 991 992 bool isSameSourceAssignment(const Assignment &Other) const { 993 // Don't include Source in the equality check. Assignments are 994 // defined by their ID, not debug intrinsic(s). 995 return std::tie(Status, ID) == std::tie(Other.Status, Other.ID); 996 } 997 void dump(raw_ostream &OS) { 998 static const char *LUT[] = {"Known", "NoneOrPhi"}; 999 OS << LUT[Status] << "(id="; 1000 if (ID) 1001 OS << ID; 1002 else 1003 OS << "null"; 1004 OS << ", s="; 1005 if (Source) 1006 OS << *Source; 1007 else 1008 OS << "null"; 1009 OS << ")"; 1010 } 1011 1012 static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) { 1013 return Assignment(Known, ID, Source); 1014 } 1015 static Assignment makeFromMemDef(DIAssignID *ID) { 1016 return Assignment(Known, ID, nullptr); 1017 } 1018 static Assignment makeNoneOrPhi() { 1019 return Assignment(NoneOrPhi, nullptr, nullptr); 1020 } 1021 // Again, need a Top value? 1022 Assignment() 1023 : Status(NoneOrPhi), ID(nullptr), Source(nullptr) { 1024 } // Can we delete this? 1025 Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source) 1026 : Status(Status), ID(ID), Source(Source) { 1027 // If the Status is Known then we expect there to be an assignment ID. 1028 assert(Status == NoneOrPhi || ID); 1029 } 1030 }; 1031 1032 using AssignmentMap = SmallVector<Assignment>; 1033 using LocMap = SmallVector<LocKind>; 1034 using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>; 1035 using UntaggedStoreAssignmentMap = 1036 DenseMap<const Instruction *, 1037 SmallVector<std::pair<VariableID, at::AssignmentInfo>>>; 1038 1039 private: 1040 /// The highest numbered VariableID for partially promoted variables plus 1, 1041 /// the values for which start at 1. 1042 unsigned TrackedVariablesVectorSize = 0; 1043 /// Map a variable to the set of variables that it fully contains. 1044 OverlapMap VarContains; 1045 /// Map untagged stores to the variable fragments they assign to. Used by 1046 /// processUntaggedInstruction. 1047 UntaggedStoreAssignmentMap UntaggedStoreVars; 1048 1049 // Machinery to defer inserting dbg.values. 1050 using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>; 1051 InsertMap InsertBeforeMap; 1052 /// Clear the location definitions currently cached for insertion after /p 1053 /// After. 1054 void resetInsertionPoint(Instruction &After); 1055 void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source, 1056 Instruction *After); 1057 1058 static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A, 1059 const AssignmentMap &B) { 1060 return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) { 1061 return A[VarID].isSameSourceAssignment(B[VarID]); 1062 }); 1063 } 1064 1065 /// Represents the stack and debug assignments in a block. Used to describe 1066 /// the live-in and live-out values for blocks, as well as the "current" 1067 /// value as we process each instruction in a block. 1068 struct BlockInfo { 1069 /// The set of variables (VariableID) being tracked in this block. 1070 BitVector VariableIDsInBlock; 1071 /// Dominating assignment to memory for each variable, indexed by 1072 /// VariableID. 1073 AssignmentMap StackHomeValue; 1074 /// Dominating assignemnt to each variable, indexed by VariableID. 1075 AssignmentMap DebugValue; 1076 /// Location kind for each variable. LiveLoc indicates whether the 1077 /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue 1078 /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of 1079 /// preference. This cannot be derived by inspecting DebugValue and 1080 /// StackHomeValue due to the fact that there's no distinction in 1081 /// Assignment (the class) between whether an assignment is unknown or a 1082 /// merge of multiple assignments (both are Status::NoneOrPhi). In other 1083 /// words, the memory location may well be valid while both DebugValue and 1084 /// StackHomeValue contain Assignments that have a Status of NoneOrPhi. 1085 /// Indexed by VariableID. 1086 LocMap LiveLoc; 1087 1088 public: 1089 enum AssignmentKind { Stack, Debug }; 1090 const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const { 1091 switch (Kind) { 1092 case Stack: 1093 return StackHomeValue; 1094 case Debug: 1095 return DebugValue; 1096 } 1097 llvm_unreachable("Unknown AssignmentKind"); 1098 } 1099 AssignmentMap &getAssignmentMap(AssignmentKind Kind) { 1100 return const_cast<AssignmentMap &>( 1101 const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind)); 1102 } 1103 1104 bool isVariableTracked(VariableID Var) const { 1105 return VariableIDsInBlock[static_cast<unsigned>(Var)]; 1106 } 1107 1108 const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const { 1109 assert(isVariableTracked(Var) && "Var not tracked in block"); 1110 return getAssignmentMap(Kind)[static_cast<unsigned>(Var)]; 1111 } 1112 1113 LocKind getLocKind(VariableID Var) const { 1114 assert(isVariableTracked(Var) && "Var not tracked in block"); 1115 return LiveLoc[static_cast<unsigned>(Var)]; 1116 } 1117 1118 /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of 1119 /// fragments contained win \p Var. 1120 void setLocKind(VariableID Var, LocKind K) { 1121 VariableIDsInBlock.set(static_cast<unsigned>(Var)); 1122 LiveLoc[static_cast<unsigned>(Var)] = K; 1123 } 1124 1125 /// Set the assignment in the \p Kind assignment map for \p Var only: does 1126 /// not set the assignment for VariableIDs of fragments contained win \p 1127 /// Var. 1128 void setAssignment(AssignmentKind Kind, VariableID Var, 1129 const Assignment &AV) { 1130 VariableIDsInBlock.set(static_cast<unsigned>(Var)); 1131 getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV; 1132 } 1133 1134 /// Return true if there is an assignment matching \p AV in the \p Kind 1135 /// assignment map. Does consider assignments for VariableIDs of fragments 1136 /// contained win \p Var. 1137 bool hasAssignment(AssignmentKind Kind, VariableID Var, 1138 const Assignment &AV) const { 1139 if (!isVariableTracked(Var)) 1140 return false; 1141 return AV.isSameSourceAssignment(getAssignment(Kind, Var)); 1142 } 1143 1144 /// Compare every element in each map to determine structural equality 1145 /// (slow). 1146 bool operator==(const BlockInfo &Other) const { 1147 return VariableIDsInBlock == Other.VariableIDsInBlock && 1148 LiveLoc == Other.LiveLoc && 1149 mapsAreEqual(VariableIDsInBlock, StackHomeValue, 1150 Other.StackHomeValue) && 1151 mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue); 1152 } 1153 bool operator!=(const BlockInfo &Other) const { return !(*this == Other); } 1154 bool isValid() { 1155 return LiveLoc.size() == DebugValue.size() && 1156 LiveLoc.size() == StackHomeValue.size(); 1157 } 1158 1159 /// Clear everything and initialise with ⊤-values for all variables. 1160 void init(int NumVars) { 1161 StackHomeValue.clear(); 1162 DebugValue.clear(); 1163 LiveLoc.clear(); 1164 VariableIDsInBlock = BitVector(NumVars); 1165 StackHomeValue.insert(StackHomeValue.begin(), NumVars, 1166 Assignment::makeNoneOrPhi()); 1167 DebugValue.insert(DebugValue.begin(), NumVars, 1168 Assignment::makeNoneOrPhi()); 1169 LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None); 1170 } 1171 1172 /// Helper for join. 1173 template <typename ElmtType, typename FnInputType> 1174 static void joinElmt(int Index, SmallVector<ElmtType> &Target, 1175 const SmallVector<ElmtType> &A, 1176 const SmallVector<ElmtType> &B, 1177 ElmtType (*Fn)(FnInputType, FnInputType)) { 1178 Target[Index] = Fn(A[Index], B[Index]); 1179 } 1180 1181 /// See comment for AssignmentTrackingLowering::joinBlockInfo. 1182 static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) { 1183 // Join A and B. 1184 // 1185 // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b) 1186 // Difference = join(x, ⊤) for x where Var(x) is in A xor B 1187 // Join = Intersect ∪ Difference 1188 // 1189 // This is achieved by performing a join on elements from A and B with 1190 // variables common to both A and B (join elements indexed by var 1191 // intersect), then adding ⊤-value elements for vars in A xor B. The 1192 // latter part is equivalent to performing join on elements with variables 1193 // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤. 1194 // BlockInfo::init initializes all variable entries to the ⊤ value so we 1195 // don't need to explicitly perform that step as Join.VariableIDsInBlock 1196 // is set to the union of the variables in A and B at the end of this 1197 // function. 1198 BlockInfo Join; 1199 Join.init(NumVars); 1200 1201 BitVector Intersect = A.VariableIDsInBlock; 1202 Intersect &= B.VariableIDsInBlock; 1203 1204 for (auto VarID : Intersect.set_bits()) { 1205 joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind); 1206 joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue, 1207 joinAssignment); 1208 joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue, 1209 joinAssignment); 1210 } 1211 1212 Join.VariableIDsInBlock = A.VariableIDsInBlock; 1213 Join.VariableIDsInBlock |= B.VariableIDsInBlock; 1214 assert(Join.isValid()); 1215 return Join; 1216 } 1217 }; 1218 1219 Function &Fn; 1220 const DataLayout &Layout; 1221 const DenseSet<DebugAggregate> *VarsWithStackSlot; 1222 FunctionVarLocsBuilder *FnVarLocs; 1223 DenseMap<const BasicBlock *, BlockInfo> LiveIn; 1224 DenseMap<const BasicBlock *, BlockInfo> LiveOut; 1225 1226 /// Helper for process methods to track variables touched each frame. 1227 DenseSet<VariableID> VarsTouchedThisFrame; 1228 1229 /// The set of variables that sometimes are not located in their stack home. 1230 DenseSet<DebugAggregate> NotAlwaysStackHomed; 1231 1232 VariableID getVariableID(const DebugVariable &Var) { 1233 return static_cast<VariableID>(FnVarLocs->insertVariable(Var)); 1234 } 1235 1236 /// Join the LiveOut values of preds that are contained in \p Visited into 1237 /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB] 1238 /// values monotonically increase. See the @link joinMethods join methods 1239 /// @endlink documentation for more info. 1240 bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited); 1241 ///@name joinMethods 1242 /// Functions that implement `join` (the least upper bound) for the 1243 /// join-semilattice types used in the dataflow. There is an explicit bottom 1244 /// value (⊥) for some types and and explicit top value (⊤) for all types. 1245 /// By definition: 1246 /// 1247 /// Join(A, B) >= A && Join(A, B) >= B 1248 /// Join(A, ⊥) = A 1249 /// Join(A, ⊤) = ⊤ 1250 /// 1251 /// These invariants are important for monotonicity. 1252 /// 1253 /// For the map-type functions, all unmapped keys in an empty map are 1254 /// associated with a bottom value (⊥). This represents their values being 1255 /// unknown. Unmapped keys in non-empty maps (joining two maps with a key 1256 /// only present in one) represents either a variable going out of scope or 1257 /// dropped debug info. It is assumed the key is associated with a top value 1258 /// (⊤) in this case (unknown location / assignment). 1259 ///@{ 1260 static LocKind joinKind(LocKind A, LocKind B); 1261 static Assignment joinAssignment(const Assignment &A, const Assignment &B); 1262 BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B); 1263 ///@} 1264 1265 /// Process the instructions in \p BB updating \p LiveSet along the way. \p 1266 /// LiveSet must be initialized with the current live-in locations before 1267 /// calling this. 1268 void process(BasicBlock &BB, BlockInfo *LiveSet); 1269 ///@name processMethods 1270 /// Methods to process instructions in order to update the LiveSet (current 1271 /// location information). 1272 ///@{ 1273 void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet); 1274 void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet); 1275 /// Update \p LiveSet after encountering an instruction with a DIAssignID 1276 /// attachment, \p I. 1277 void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1278 /// Update \p LiveSet after encountering an instruciton without a DIAssignID 1279 /// attachment, \p I. 1280 void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet); 1281 void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet); 1282 void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet); 1283 /// Add an assignment to memory for the variable /p Var. 1284 void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1285 /// Add an assignment to the variable /p Var. 1286 void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); 1287 ///@} 1288 1289 /// Set the LocKind for \p Var. 1290 void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K); 1291 /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to 1292 /// have been called for \p Var first. 1293 LocKind getLocKind(BlockInfo *LiveSet, VariableID Var); 1294 /// Return true if \p Var has an assignment in \p M matching \p AV. 1295 bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, 1296 VariableID Var, const Assignment &AV); 1297 /// Return the set of VariableIDs corresponding the fragments contained fully 1298 /// within the variable/fragment \p Var. 1299 ArrayRef<VariableID> getContainedFragments(VariableID Var) const; 1300 1301 /// Mark \p Var as having been touched this frame. Note, this applies only 1302 /// to the exact fragment \p Var and not to any fragments contained within. 1303 void touchFragment(VariableID Var); 1304 1305 /// Emit info for variables that are fully promoted. 1306 bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs); 1307 1308 public: 1309 AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout, 1310 const DenseSet<DebugAggregate> *VarsWithStackSlot) 1311 : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {} 1312 /// Run the analysis, adding variable location info to \p FnVarLocs. Returns 1313 /// true if any variable locations have been added to FnVarLocs. 1314 bool run(FunctionVarLocsBuilder *FnVarLocs); 1315 }; 1316 } // namespace 1317 1318 ArrayRef<VariableID> 1319 AssignmentTrackingLowering::getContainedFragments(VariableID Var) const { 1320 auto R = VarContains.find(Var); 1321 if (R == VarContains.end()) 1322 return std::nullopt; 1323 return R->second; 1324 } 1325 1326 void AssignmentTrackingLowering::touchFragment(VariableID Var) { 1327 VarsTouchedThisFrame.insert(Var); 1328 } 1329 1330 void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var, 1331 LocKind K) { 1332 auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) { 1333 LiveSet->setLocKind(Var, K); 1334 touchFragment(Var); 1335 }; 1336 SetKind(LiveSet, Var, K); 1337 1338 // Update the LocKind for all fragments contained within Var. 1339 for (VariableID Frag : getContainedFragments(Var)) 1340 SetKind(LiveSet, Frag, K); 1341 } 1342 1343 AssignmentTrackingLowering::LocKind 1344 AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) { 1345 return LiveSet->getLocKind(Var); 1346 } 1347 1348 void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var, 1349 const Assignment &AV) { 1350 LiveSet->setAssignment(BlockInfo::Stack, Var, AV); 1351 1352 // Use this assigment for all fragments contained within Var, but do not 1353 // provide a Source because we cannot convert Var's value to a value for the 1354 // fragment. 1355 Assignment FragAV = AV; 1356 FragAV.Source = nullptr; 1357 for (VariableID Frag : getContainedFragments(Var)) 1358 LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV); 1359 } 1360 1361 void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var, 1362 const Assignment &AV) { 1363 LiveSet->setAssignment(BlockInfo::Debug, Var, AV); 1364 1365 // Use this assigment for all fragments contained within Var, but do not 1366 // provide a Source because we cannot convert Var's value to a value for the 1367 // fragment. 1368 Assignment FragAV = AV; 1369 FragAV.Source = nullptr; 1370 for (VariableID Frag : getContainedFragments(Var)) 1371 LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV); 1372 } 1373 1374 static DIAssignID *getIDFromInst(const Instruction &I) { 1375 return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID)); 1376 } 1377 1378 static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) { 1379 return cast<DIAssignID>(DAI.getAssignID()); 1380 } 1381 1382 /// Return true if \p Var has an assignment in \p M matching \p AV. 1383 bool AssignmentTrackingLowering::hasVarWithAssignment( 1384 BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var, 1385 const Assignment &AV) { 1386 if (!LiveSet->hasAssignment(Kind, Var, AV)) 1387 return false; 1388 1389 // Check all the frags contained within Var as these will have all been 1390 // mapped to AV at the last store to Var. 1391 for (VariableID Frag : getContainedFragments(Var)) 1392 if (!LiveSet->hasAssignment(Kind, Frag, AV)) 1393 return false; 1394 return true; 1395 } 1396 1397 #ifndef NDEBUG 1398 const char *locStr(AssignmentTrackingLowering::LocKind Loc) { 1399 using LocKind = AssignmentTrackingLowering::LocKind; 1400 switch (Loc) { 1401 case LocKind::Val: 1402 return "Val"; 1403 case LocKind::Mem: 1404 return "Mem"; 1405 case LocKind::None: 1406 return "None"; 1407 }; 1408 llvm_unreachable("unknown LocKind"); 1409 } 1410 #endif 1411 1412 void AssignmentTrackingLowering::emitDbgValue( 1413 AssignmentTrackingLowering::LocKind Kind, 1414 const DbgVariableIntrinsic *Source, Instruction *After) { 1415 1416 DILocation *DL = Source->getDebugLoc(); 1417 auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) { 1418 assert(Expr); 1419 if (!Val) 1420 Val = ValueAsMetadata::get( 1421 PoisonValue::get(Type::getInt1Ty(Source->getContext()))); 1422 1423 // Find a suitable insert point. 1424 Instruction *InsertBefore = After->getNextNode(); 1425 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1426 1427 VariableID Var = getVariableID(DebugVariable(Source)); 1428 VarLocInfo VarLoc; 1429 VarLoc.VariableID = static_cast<VariableID>(Var); 1430 VarLoc.Expr = Expr; 1431 VarLoc.Values = RawLocationWrapper(Val); 1432 VarLoc.DL = DL; 1433 // Insert it into the map for later. 1434 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1435 }; 1436 1437 // NOTE: This block can mutate Kind. 1438 if (Kind == LocKind::Mem) { 1439 const auto *DAI = cast<DbgAssignIntrinsic>(Source); 1440 // Check the address hasn't been dropped (e.g. the debug uses may not have 1441 // been replaced before deleting a Value). 1442 if (DAI->isKillAddress()) { 1443 // The address isn't valid so treat this as a non-memory def. 1444 Kind = LocKind::Val; 1445 } else { 1446 Value *Val = DAI->getAddress(); 1447 DIExpression *Expr = DAI->getAddressExpression(); 1448 assert(!Expr->getFragmentInfo() && 1449 "fragment info should be stored in value-expression only"); 1450 // Copy the fragment info over from the value-expression to the new 1451 // DIExpression. 1452 if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) { 1453 auto FragInfo = *OptFragInfo; 1454 Expr = *DIExpression::createFragmentExpression( 1455 Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits); 1456 } 1457 // The address-expression has an implicit deref, add it now. 1458 std::tie(Val, Expr) = 1459 walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr); 1460 Emit(ValueAsMetadata::get(Val), Expr); 1461 return; 1462 } 1463 } 1464 1465 if (Kind == LocKind::Val) { 1466 Emit(Source->getRawLocation(), Source->getExpression()); 1467 return; 1468 } 1469 1470 if (Kind == LocKind::None) { 1471 Emit(nullptr, Source->getExpression()); 1472 return; 1473 } 1474 } 1475 1476 void AssignmentTrackingLowering::processNonDbgInstruction( 1477 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1478 if (I.hasMetadata(LLVMContext::MD_DIAssignID)) 1479 processTaggedInstruction(I, LiveSet); 1480 else 1481 processUntaggedInstruction(I, LiveSet); 1482 } 1483 1484 void AssignmentTrackingLowering::processUntaggedInstruction( 1485 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1486 // Interpret stack stores that are not tagged as an assignment in memory for 1487 // the variables associated with that address. These stores may not be tagged 1488 // because a) the store cannot be represented using dbg.assigns (non-const 1489 // length or offset) or b) the tag was accidentally dropped during 1490 // optimisations. For these stores we fall back to assuming that the stack 1491 // home is a valid location for the variables. The benefit is that this 1492 // prevents us missing an assignment and therefore incorrectly maintaining 1493 // earlier location definitions, and in many cases it should be a reasonable 1494 // assumption. However, this will occasionally lead to slight 1495 // inaccuracies. The value of a hoisted untagged store will be visible 1496 // "early", for example. 1497 assert(!I.hasMetadata(LLVMContext::MD_DIAssignID)); 1498 auto It = UntaggedStoreVars.find(&I); 1499 if (It == UntaggedStoreVars.end()) 1500 return; // No variables associated with the store destination. 1501 1502 LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I 1503 << "\n"); 1504 // Iterate over the variables that this store affects, add a NoneOrPhi dbg 1505 // and mem def, set lockind to Mem, and emit a location def for each. 1506 for (auto [Var, Info] : It->second) { 1507 // This instruction is treated as both a debug and memory assignment, 1508 // meaning the memory location should be used. We don't have an assignment 1509 // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one. 1510 addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1511 addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi()); 1512 setLocKind(LiveSet, Var, LocKind::Mem); 1513 LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem) 1514 << "\n"); 1515 // Build the dbg location def to insert. 1516 // 1517 // DIExpression: Add fragment and offset. 1518 DebugVariable V = FnVarLocs->getVariable(Var); 1519 DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt); 1520 if (auto Frag = V.getFragment()) { 1521 auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits, 1522 Frag->SizeInBits); 1523 assert(R && "unexpected createFragmentExpression failure"); 1524 DIE = *R; 1525 } 1526 SmallVector<uint64_t, 3> Ops; 1527 if (Info.OffsetInBits) 1528 Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8}; 1529 Ops.push_back(dwarf::DW_OP_deref); 1530 DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false, 1531 /*EntryValue=*/false); 1532 // Find a suitable insert point. 1533 Instruction *InsertBefore = I.getNextNode(); 1534 assert(InsertBefore && "Shouldn't be inserting after a terminator"); 1535 1536 // Get DILocation for this unrecorded assignment. 1537 DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt()); 1538 const DILocation *DILoc = DILocation::get( 1539 Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt); 1540 1541 VarLocInfo VarLoc; 1542 VarLoc.VariableID = static_cast<VariableID>(Var); 1543 VarLoc.Expr = DIE; 1544 VarLoc.Values = RawLocationWrapper( 1545 ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base))); 1546 VarLoc.DL = DILoc; 1547 // 3. Insert it into the map for later. 1548 InsertBeforeMap[InsertBefore].push_back(VarLoc); 1549 } 1550 } 1551 1552 void AssignmentTrackingLowering::processTaggedInstruction( 1553 Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1554 auto Linked = at::getAssignmentMarkers(&I); 1555 // No dbg.assign intrinsics linked. 1556 // FIXME: All vars that have a stack slot this store modifies that don't have 1557 // a dbg.assign linked to it should probably treat this like an untagged 1558 // store. 1559 if (Linked.empty()) 1560 return; 1561 1562 LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n"); 1563 for (DbgAssignIntrinsic *DAI : Linked) { 1564 VariableID Var = getVariableID(DebugVariable(DAI)); 1565 // Something has gone wrong if VarsWithStackSlot doesn't contain a variable 1566 // that is linked to a store. 1567 assert(VarsWithStackSlot->count(getAggregate(DAI)) && 1568 "expected DAI's variable to have stack slot"); 1569 1570 Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I)); 1571 addMemDef(LiveSet, Var, AV); 1572 1573 LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n"); 1574 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1575 << " -> "); 1576 1577 // The last assignment to the stack is now AV. Check if the last debug 1578 // assignment has a matching Assignment. 1579 if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) { 1580 // The StackHomeValue and DebugValue for this variable match so we can 1581 // emit a stack home location here. 1582 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1583 LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n"); 1584 LLVM_DEBUG(dbgs() << " Debug val: "; 1585 LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs()); 1586 dbgs() << "\n"); 1587 setLocKind(LiveSet, Var, LocKind::Mem); 1588 emitDbgValue(LocKind::Mem, DAI, &I); 1589 continue; 1590 } 1591 1592 // The StackHomeValue and DebugValue for this variable do not match. I.e. 1593 // The value currently stored in the stack is not what we'd expect to 1594 // see, so we cannot use emit a stack home location here. Now we will 1595 // look at the live LocKind for the variable and determine an appropriate 1596 // dbg.value to emit. 1597 LocKind PrevLoc = getLocKind(LiveSet, Var); 1598 switch (PrevLoc) { 1599 case LocKind::Val: { 1600 // The value in memory in memory has changed but we're not currently 1601 // using the memory location. Do nothing. 1602 LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";); 1603 setLocKind(LiveSet, Var, LocKind::Val); 1604 } break; 1605 case LocKind::Mem: { 1606 // There's been an assignment to memory that we were using as a 1607 // location for this variable, and the Assignment doesn't match what 1608 // we'd expect to see in memory. 1609 Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var); 1610 if (DbgAV.Status == Assignment::NoneOrPhi) { 1611 // We need to terminate any previously open location now. 1612 LLVM_DEBUG(dbgs() << "None, No Debug value available\n";); 1613 setLocKind(LiveSet, Var, LocKind::None); 1614 emitDbgValue(LocKind::None, DAI, &I); 1615 } else { 1616 // The previous DebugValue Value can be used here. 1617 LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";); 1618 setLocKind(LiveSet, Var, LocKind::Val); 1619 if (DbgAV.Source) { 1620 emitDbgValue(LocKind::Val, DbgAV.Source, &I); 1621 } else { 1622 // PrevAV.Source is nullptr so we must emit undef here. 1623 emitDbgValue(LocKind::None, DAI, &I); 1624 } 1625 } 1626 } break; 1627 case LocKind::None: { 1628 // There's been an assignment to memory and we currently are 1629 // not tracking a location for the variable. Do not emit anything. 1630 LLVM_DEBUG(dbgs() << "None, (unchanged)\n";); 1631 setLocKind(LiveSet, Var, LocKind::None); 1632 } break; 1633 } 1634 } 1635 } 1636 1637 void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI, 1638 BlockInfo *LiveSet) { 1639 // Only bother tracking variables that are at some point stack homed. Other 1640 // variables can be dealt with trivially later. 1641 if (!VarsWithStackSlot->count(getAggregate(&DAI))) 1642 return; 1643 1644 VariableID Var = getVariableID(DebugVariable(&DAI)); 1645 Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI); 1646 addDbgDef(LiveSet, Var, AV); 1647 1648 LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";); 1649 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1650 << " -> "); 1651 1652 // Check if the DebugValue and StackHomeValue both hold the same 1653 // Assignment. 1654 if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) { 1655 // They match. We can use the stack home because the debug intrinsics state 1656 // that an assignment happened here, and we know that specific assignment 1657 // was the last one to take place in memory for this variable. 1658 LocKind Kind; 1659 if (DAI.isKillAddress()) { 1660 LLVM_DEBUG( 1661 dbgs() 1662 << "Val, Stack matches Debug program but address is killed\n";); 1663 Kind = LocKind::Val; 1664 } else { 1665 LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";); 1666 Kind = LocKind::Mem; 1667 }; 1668 setLocKind(LiveSet, Var, Kind); 1669 emitDbgValue(Kind, &DAI, &DAI); 1670 } else { 1671 // The last assignment to the memory location isn't the one that we want to 1672 // show to the user so emit a dbg.value(Value). Value may be undef. 1673 LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";); 1674 setLocKind(LiveSet, Var, LocKind::Val); 1675 emitDbgValue(LocKind::Val, &DAI, &DAI); 1676 } 1677 } 1678 1679 void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI, 1680 BlockInfo *LiveSet) { 1681 // Only other tracking variables that are at some point stack homed. 1682 // Other variables can be dealt with trivally later. 1683 if (!VarsWithStackSlot->count(getAggregate(&DVI))) 1684 return; 1685 1686 VariableID Var = getVariableID(DebugVariable(&DVI)); 1687 // We have no ID to create an Assignment with so we mark this assignment as 1688 // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine 1689 // the assignment responsible for setting this value. 1690 // This is fine; dbg.values are essentially interchangable with unlinked 1691 // dbg.assigns, and some passes such as mem2reg and instcombine add them to 1692 // PHIs for promoted variables. 1693 Assignment AV = Assignment::makeNoneOrPhi(); 1694 addDbgDef(LiveSet, Var, AV); 1695 1696 LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";); 1697 LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) 1698 << " -> Val, dbg.value override"); 1699 1700 setLocKind(LiveSet, Var, LocKind::Val); 1701 emitDbgValue(LocKind::Val, &DVI, &DVI); 1702 } 1703 1704 static bool hasZeroSizedFragment(DbgVariableIntrinsic &DVI) { 1705 if (auto F = DVI.getExpression()->getFragmentInfo()) 1706 return F->SizeInBits == 0; 1707 return false; 1708 } 1709 1710 void AssignmentTrackingLowering::processDbgInstruction( 1711 DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { 1712 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); 1713 if (!DVI) 1714 return; 1715 1716 // Ignore assignments to zero bits of the variable. 1717 if (hasZeroSizedFragment(*DVI)) 1718 return; 1719 1720 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I)) 1721 processDbgAssign(*DAI, LiveSet); 1722 else if (auto *DVI = dyn_cast<DbgValueInst>(&I)) 1723 processDbgValue(*DVI, LiveSet); 1724 } 1725 1726 void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) { 1727 assert(!After.isTerminator() && "Can't insert after a terminator"); 1728 auto R = InsertBeforeMap.find(After.getNextNode()); 1729 if (R == InsertBeforeMap.end()) 1730 return; 1731 R->second.clear(); 1732 } 1733 1734 void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) { 1735 for (auto II = BB.begin(), EI = BB.end(); II != EI;) { 1736 assert(VarsTouchedThisFrame.empty()); 1737 // Process the instructions in "frames". A "frame" includes a single 1738 // non-debug instruction followed any debug instructions before the 1739 // next non-debug instruction. 1740 if (!isa<DbgInfoIntrinsic>(&*II)) { 1741 if (II->isTerminator()) 1742 break; 1743 resetInsertionPoint(*II); 1744 processNonDbgInstruction(*II, LiveSet); 1745 assert(LiveSet->isValid()); 1746 ++II; 1747 } 1748 while (II != EI) { 1749 auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II); 1750 if (!Dbg) 1751 break; 1752 resetInsertionPoint(*II); 1753 processDbgInstruction(*Dbg, LiveSet); 1754 assert(LiveSet->isValid()); 1755 ++II; 1756 } 1757 1758 // We've processed everything in the "frame". Now determine which variables 1759 // cannot be represented by a dbg.declare. 1760 for (auto Var : VarsTouchedThisFrame) { 1761 LocKind Loc = getLocKind(LiveSet, Var); 1762 // If a variable's LocKind is anything other than LocKind::Mem then we 1763 // must note that it cannot be represented with a dbg.declare. 1764 // Note that this check is enough without having to check the result of 1765 // joins() because for join to produce anything other than Mem after 1766 // we've already seen a Mem we'd be joining None or Val with Mem. In that 1767 // case, we've already hit this codepath when we set the LocKind to Val 1768 // or None in that block. 1769 if (Loc != LocKind::Mem) { 1770 DebugVariable DbgVar = FnVarLocs->getVariable(Var); 1771 DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()}; 1772 NotAlwaysStackHomed.insert(Aggr); 1773 } 1774 } 1775 VarsTouchedThisFrame.clear(); 1776 } 1777 } 1778 1779 AssignmentTrackingLowering::LocKind 1780 AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) { 1781 // Partial order: 1782 // None > Mem, Val 1783 return A == B ? A : LocKind::None; 1784 } 1785 1786 AssignmentTrackingLowering::Assignment 1787 AssignmentTrackingLowering::joinAssignment(const Assignment &A, 1788 const Assignment &B) { 1789 // Partial order: 1790 // NoneOrPhi(null, null) > Known(v, ?s) 1791 1792 // If either are NoneOrPhi the join is NoneOrPhi. 1793 // If either value is different then the result is 1794 // NoneOrPhi (joining two values is a Phi). 1795 if (!A.isSameSourceAssignment(B)) 1796 return Assignment::makeNoneOrPhi(); 1797 if (A.Status == Assignment::NoneOrPhi) 1798 return Assignment::makeNoneOrPhi(); 1799 1800 // Source is used to lookup the value + expression in the debug program if 1801 // the stack slot gets assigned a value earlier than expected. Because 1802 // we're only tracking the one dbg.assign, we can't capture debug PHIs. 1803 // It's unlikely that we're losing out on much coverage by avoiding that 1804 // extra work. 1805 // The Source may differ in this situation: 1806 // Pred.1: 1807 // dbg.assign i32 0, ..., !1, ... 1808 // Pred.2: 1809 // dbg.assign i32 1, ..., !1, ... 1810 // Here the same assignment (!1) was performed in both preds in the source, 1811 // but we can't use either one unless they are identical (e.g. .we don't 1812 // want to arbitrarily pick between constant values). 1813 auto JoinSource = [&]() -> DbgAssignIntrinsic * { 1814 if (A.Source == B.Source) 1815 return A.Source; 1816 if (A.Source == nullptr || B.Source == nullptr) 1817 return nullptr; 1818 if (A.Source->isIdenticalTo(B.Source)) 1819 return A.Source; 1820 return nullptr; 1821 }; 1822 DbgAssignIntrinsic *Source = JoinSource(); 1823 assert(A.Status == B.Status && A.Status == Assignment::Known); 1824 assert(A.ID == B.ID); 1825 return Assignment::make(A.ID, Source); 1826 } 1827 1828 AssignmentTrackingLowering::BlockInfo 1829 AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A, 1830 const BlockInfo &B) { 1831 return BlockInfo::join(A, B, TrackedVariablesVectorSize); 1832 } 1833 1834 bool AssignmentTrackingLowering::join( 1835 const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) { 1836 1837 SmallVector<const BasicBlock *> VisitedPreds; 1838 // Ignore backedges if we have not visited the predecessor yet. As the 1839 // predecessor hasn't yet had locations propagated into it, most locations 1840 // will not yet be valid, so treat them as all being uninitialized and 1841 // potentially valid. If a location guessed to be correct here is 1842 // invalidated later, we will remove it when we revisit this block. This 1843 // is essentially the same as initialising all LocKinds and Assignments to 1844 // an implicit ⊥ value which is the identity value for the join operation. 1845 for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) { 1846 const BasicBlock *Pred = *I; 1847 if (Visited.count(Pred)) 1848 VisitedPreds.push_back(Pred); 1849 } 1850 1851 // No preds visited yet. 1852 if (VisitedPreds.empty()) { 1853 auto It = LiveIn.try_emplace(&BB, BlockInfo()); 1854 bool DidInsert = It.second; 1855 if (DidInsert) 1856 It.first->second.init(TrackedVariablesVectorSize); 1857 return /*Changed*/ DidInsert; 1858 } 1859 1860 // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn. 1861 if (VisitedPreds.size() == 1) { 1862 const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second; 1863 auto CurrentLiveInEntry = LiveIn.find(&BB); 1864 1865 // Check if there isn't an entry, or there is but the LiveIn set has 1866 // changed (expensive check). 1867 if (CurrentLiveInEntry == LiveIn.end()) 1868 LiveIn.insert(std::make_pair(&BB, PredLiveOut)); 1869 else if (PredLiveOut != CurrentLiveInEntry->second) 1870 CurrentLiveInEntry->second = PredLiveOut; 1871 else 1872 return /*Changed*/ false; 1873 return /*Changed*/ true; 1874 } 1875 1876 // More than one pred. Join LiveOuts of blocks 1 and 2. 1877 assert(VisitedPreds.size() > 1); 1878 const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second; 1879 const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second; 1880 BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1); 1881 1882 // Join the LiveOuts of subsequent blocks. 1883 ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2); 1884 for (const BasicBlock *Pred : Tail) { 1885 const auto &PredLiveOut = LiveOut.find(Pred); 1886 assert(PredLiveOut != LiveOut.end() && 1887 "block should have been processed already"); 1888 BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second); 1889 } 1890 1891 // Save the joined result for BB. 1892 auto CurrentLiveInEntry = LiveIn.find(&BB); 1893 // Check if there isn't an entry, or there is but the LiveIn set has changed 1894 // (expensive check). 1895 if (CurrentLiveInEntry == LiveIn.end()) 1896 LiveIn.try_emplace(&BB, std::move(BBLiveIn)); 1897 else if (BBLiveIn != CurrentLiveInEntry->second) 1898 CurrentLiveInEntry->second = std::move(BBLiveIn); 1899 else 1900 return /*Changed*/ false; 1901 return /*Changed*/ true; 1902 } 1903 1904 /// Return true if A fully contains B. 1905 static bool fullyContains(DIExpression::FragmentInfo A, 1906 DIExpression::FragmentInfo B) { 1907 auto ALeft = A.OffsetInBits; 1908 auto BLeft = B.OffsetInBits; 1909 if (BLeft < ALeft) 1910 return false; 1911 1912 auto ARight = ALeft + A.SizeInBits; 1913 auto BRight = BLeft + B.SizeInBits; 1914 if (BRight > ARight) 1915 return false; 1916 return true; 1917 } 1918 1919 static std::optional<at::AssignmentInfo> 1920 getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) { 1921 // Don't bother checking if this is an AllocaInst. We know this 1922 // instruction has no tag which means there are no variables associated 1923 // with it. 1924 if (const auto *SI = dyn_cast<StoreInst>(&I)) 1925 return at::getAssignmentInfo(Layout, SI); 1926 if (const auto *MI = dyn_cast<MemIntrinsic>(&I)) 1927 return at::getAssignmentInfo(Layout, MI); 1928 // Alloca or non-store-like inst. 1929 return std::nullopt; 1930 } 1931 1932 /// Build a map of {Variable x: Variables y} where all variable fragments 1933 /// contained within the variable fragment x are in set y. This means that 1934 /// y does not contain all overlaps because partial overlaps are excluded. 1935 /// 1936 /// While we're iterating over the function, add single location defs for 1937 /// dbg.declares to \p FnVarLocs. 1938 /// 1939 /// Variables that are interesting to this pass in are added to 1940 /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of 1941 /// the last interesting variable plus 1, meaning variables with ID 1 1942 /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The 1943 /// subsequent variables are either stack homed or fully promoted. 1944 /// 1945 /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to 1946 /// the stored-to variable fragments. 1947 /// 1948 /// These tasks are bundled together to reduce the number of times we need 1949 /// to iterate over the function as they can be achieved together in one pass. 1950 static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares( 1951 Function &Fn, FunctionVarLocsBuilder *FnVarLocs, 1952 const DenseSet<DebugAggregate> &VarsWithStackSlot, 1953 AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars, 1954 unsigned &TrackedVariablesVectorSize) { 1955 DenseSet<DebugVariable> Seen; 1956 // Map of Variable: [Fragments]. 1957 DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap; 1958 // Iterate over all instructions: 1959 // - dbg.declare -> add single location variable record 1960 // - dbg.* -> Add fragments to FragmentMap 1961 // - untagged store -> Add fragments to FragmentMap and update 1962 // UntaggedStoreVars. 1963 // We need to add fragments for untagged stores too so that we can correctly 1964 // clobber overlapped fragment locations later. 1965 SmallVector<DbgDeclareInst *> Declares; 1966 for (auto &BB : Fn) { 1967 for (auto &I : BB) { 1968 if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) { 1969 Declares.push_back(DDI); 1970 } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) { 1971 DebugVariable DV = DebugVariable(DII); 1972 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 1973 if (!VarsWithStackSlot.contains(DA)) 1974 continue; 1975 if (Seen.insert(DV).second) 1976 FragmentMap[DA].push_back(DV); 1977 } else if (auto Info = getUntaggedStoreAssignmentInfo( 1978 I, Fn.getParent()->getDataLayout())) { 1979 // Find markers linked to this alloca. 1980 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) { 1981 std::optional<DIExpression::FragmentInfo> FragInfo; 1982 1983 // Skip this assignment if the affected bits are outside of the 1984 // variable fragment. 1985 if (!at::calculateFragmentIntersect( 1986 I.getModule()->getDataLayout(), Info->Base, 1987 Info->OffsetInBits, Info->SizeInBits, DAI, FragInfo) || 1988 (FragInfo && FragInfo->SizeInBits == 0)) 1989 continue; 1990 1991 // FragInfo from calculateFragmentIntersect is nullopt if the 1992 // resultant fragment matches DAI's fragment or entire variable - in 1993 // which case copy the fragment info from DAI. If FragInfo is still 1994 // nullopt after the copy it means "no fragment info" instead, which 1995 // is how it is usually interpreted. 1996 if (!FragInfo) 1997 FragInfo = DAI->getExpression()->getFragmentInfo(); 1998 1999 DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo, 2000 DAI->getDebugLoc().getInlinedAt()); 2001 DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; 2002 if (!VarsWithStackSlot.contains(DA)) 2003 continue; 2004 2005 // Cache this info for later. 2006 UntaggedStoreVars[&I].push_back( 2007 {FnVarLocs->insertVariable(DV), *Info}); 2008 2009 if (Seen.insert(DV).second) 2010 FragmentMap[DA].push_back(DV); 2011 } 2012 } 2013 } 2014 } 2015 2016 // Sort the fragment map for each DebugAggregate in ascending 2017 // order of fragment size - there should be no duplicates. 2018 for (auto &Pair : FragmentMap) { 2019 SmallVector<DebugVariable, 8> &Frags = Pair.second; 2020 std::sort(Frags.begin(), Frags.end(), 2021 [](const DebugVariable &Next, const DebugVariable &Elmt) { 2022 return Elmt.getFragmentOrDefault().SizeInBits > 2023 Next.getFragmentOrDefault().SizeInBits; 2024 }); 2025 // Check for duplicates. 2026 assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end()); 2027 } 2028 2029 // Build the map. 2030 AssignmentTrackingLowering::OverlapMap Map; 2031 for (auto &Pair : FragmentMap) { 2032 auto &Frags = Pair.second; 2033 for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) { 2034 DIExpression::FragmentInfo Frag = It->getFragmentOrDefault(); 2035 // Find the frags that this is contained within. 2036 // 2037 // Because Frags is sorted by size and none have the same offset and 2038 // size, we know that this frag can only be contained by subsequent 2039 // elements. 2040 SmallVector<DebugVariable, 8>::iterator OtherIt = It; 2041 ++OtherIt; 2042 VariableID ThisVar = FnVarLocs->insertVariable(*It); 2043 for (; OtherIt != IEnd; ++OtherIt) { 2044 DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault(); 2045 VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt); 2046 if (fullyContains(OtherFrag, Frag)) 2047 Map[OtherVar].push_back(ThisVar); 2048 } 2049 } 2050 } 2051 2052 // VariableIDs are 1-based so the variable-tracking bitvector needs 2053 // NumVariables plus 1 bits. 2054 TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1; 2055 2056 // Finally, insert the declares afterwards, so the first IDs are all 2057 // partially stack homed vars. 2058 for (auto *DDI : Declares) 2059 FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(), 2060 DDI->getDebugLoc(), DDI->getWrappedLocation()); 2061 return Map; 2062 } 2063 2064 bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) { 2065 if (Fn.size() > MaxNumBlocks) { 2066 LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName() 2067 << ": too many blocks (" << Fn.size() << ")\n"); 2068 at::deleteAll(&Fn); 2069 return false; 2070 } 2071 2072 FnVarLocs = FnVarLocsBuilder; 2073 2074 // The general structure here is inspired by VarLocBasedImpl.cpp 2075 // (LiveDebugValues). 2076 2077 // Build the variable fragment overlap map. 2078 // Note that this pass doesn't handle partial overlaps correctly (FWIW 2079 // neither does LiveDebugVariables) because that is difficult to do and 2080 // appears to be rare occurance. 2081 VarContains = buildOverlapMapAndRecordDeclares( 2082 Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars, 2083 TrackedVariablesVectorSize); 2084 2085 // Prepare for traversal. 2086 ReversePostOrderTraversal<Function *> RPOT(&Fn); 2087 std::priority_queue<unsigned int, std::vector<unsigned int>, 2088 std::greater<unsigned int>> 2089 Worklist; 2090 std::priority_queue<unsigned int, std::vector<unsigned int>, 2091 std::greater<unsigned int>> 2092 Pending; 2093 DenseMap<unsigned int, BasicBlock *> OrderToBB; 2094 DenseMap<BasicBlock *, unsigned int> BBToOrder; 2095 { // Init OrderToBB and BBToOrder. 2096 unsigned int RPONumber = 0; 2097 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { 2098 OrderToBB[RPONumber] = *RI; 2099 BBToOrder[*RI] = RPONumber; 2100 Worklist.push(RPONumber); 2101 ++RPONumber; 2102 } 2103 LiveIn.init(RPONumber); 2104 LiveOut.init(RPONumber); 2105 } 2106 2107 // Perform the traversal. 2108 // 2109 // This is a standard "union of predecessor outs" dataflow problem. To solve 2110 // it, we perform join() and process() using the two worklist method until 2111 // the LiveIn data for each block becomes unchanging. The "proof" that this 2112 // terminates can be put together by looking at the comments around LocKind, 2113 // Assignment, and the various join methods, which show that all the elements 2114 // involved are made up of join-semilattices; LiveIn(n) can only 2115 // monotonically increase in value throughout the dataflow. 2116 // 2117 SmallPtrSet<BasicBlock *, 16> Visited; 2118 while (!Worklist.empty()) { 2119 // We track what is on the pending worklist to avoid inserting the same 2120 // thing twice. 2121 SmallPtrSet<BasicBlock *, 16> OnPending; 2122 LLVM_DEBUG(dbgs() << "Processing Worklist\n"); 2123 while (!Worklist.empty()) { 2124 BasicBlock *BB = OrderToBB[Worklist.top()]; 2125 LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n"); 2126 Worklist.pop(); 2127 bool InChanged = join(*BB, Visited); 2128 // Always consider LiveIn changed on the first visit. 2129 InChanged |= Visited.insert(BB).second; 2130 if (InChanged) { 2131 LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n"); 2132 // Mutate a copy of LiveIn while processing BB. After calling process 2133 // LiveSet is the LiveOut set for BB. 2134 BlockInfo LiveSet = LiveIn[BB]; 2135 2136 // Process the instructions in the block. 2137 process(*BB, &LiveSet); 2138 2139 // Relatively expensive check: has anything changed in LiveOut for BB? 2140 if (LiveOut[BB] != LiveSet) { 2141 LLVM_DEBUG(dbgs() << BB->getName() 2142 << " has new OutLocs, add succs to worklist: [ "); 2143 LiveOut[BB] = std::move(LiveSet); 2144 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) { 2145 if (OnPending.insert(*I).second) { 2146 LLVM_DEBUG(dbgs() << I->getName() << " "); 2147 Pending.push(BBToOrder[*I]); 2148 } 2149 } 2150 LLVM_DEBUG(dbgs() << "]\n"); 2151 } 2152 } 2153 } 2154 Worklist.swap(Pending); 2155 // At this point, pending must be empty, since it was just the empty 2156 // worklist 2157 assert(Pending.empty() && "Pending should be empty"); 2158 } 2159 2160 // That's the hard part over. Now we just have some admin to do. 2161 2162 // Record whether we inserted any intrinsics. 2163 bool InsertedAnyIntrinsics = false; 2164 2165 // Identify and add defs for single location variables. 2166 // 2167 // Go through all of the defs that we plan to add. If the aggregate variable 2168 // it's a part of is not in the NotAlwaysStackHomed set we can emit a single 2169 // location def and omit the rest. Add an entry to AlwaysStackHomed so that 2170 // we can identify those uneeded defs later. 2171 DenseSet<DebugAggregate> AlwaysStackHomed; 2172 for (const auto &Pair : InsertBeforeMap) { 2173 const auto &Vec = Pair.second; 2174 for (VarLocInfo VarLoc : Vec) { 2175 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2176 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2177 2178 // Skip this Var if it's not always stack homed. 2179 if (NotAlwaysStackHomed.contains(Aggr)) 2180 continue; 2181 2182 // Skip complex cases such as when different fragments of a variable have 2183 // been split into different allocas. Skipping in this case means falling 2184 // back to using a list of defs (which could reduce coverage, but is no 2185 // less correct). 2186 bool Simple = 2187 VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref(); 2188 if (!Simple) { 2189 NotAlwaysStackHomed.insert(Aggr); 2190 continue; 2191 } 2192 2193 // All source assignments to this variable remain and all stores to any 2194 // part of the variable store to the same address (with varying 2195 // offsets). We can just emit a single location for the whole variable. 2196 // 2197 // Unless we've already done so, create the single location def now. 2198 if (AlwaysStackHomed.insert(Aggr).second) { 2199 assert(!VarLoc.Values.hasArgList()); 2200 // TODO: When more complex cases are handled VarLoc.Expr should be 2201 // built appropriately rather than always using an empty DIExpression. 2202 // The assert below is a reminder. 2203 assert(Simple); 2204 VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt); 2205 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2206 FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values); 2207 InsertedAnyIntrinsics = true; 2208 } 2209 } 2210 } 2211 2212 // Insert the other DEFs. 2213 for (const auto &[InsertBefore, Vec] : InsertBeforeMap) { 2214 SmallVector<VarLocInfo> NewDefs; 2215 for (const VarLocInfo &VarLoc : Vec) { 2216 DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID); 2217 DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; 2218 // If this variable is always stack homed then we have already inserted a 2219 // dbg.declare and deleted this dbg.value. 2220 if (AlwaysStackHomed.contains(Aggr)) 2221 continue; 2222 NewDefs.push_back(VarLoc); 2223 InsertedAnyIntrinsics = true; 2224 } 2225 2226 FnVarLocs->setWedge(InsertBefore, std::move(NewDefs)); 2227 } 2228 2229 InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs); 2230 2231 return InsertedAnyIntrinsics; 2232 } 2233 2234 bool AssignmentTrackingLowering::emitPromotedVarLocs( 2235 FunctionVarLocsBuilder *FnVarLocs) { 2236 bool InsertedAnyIntrinsics = false; 2237 // Go through every block, translating debug intrinsics for fully promoted 2238 // variables into FnVarLocs location defs. No analysis required for these. 2239 for (auto &BB : Fn) { 2240 for (auto &I : BB) { 2241 // Skip instructions other than dbg.values and dbg.assigns. 2242 auto *DVI = dyn_cast<DbgValueInst>(&I); 2243 if (!DVI) 2244 continue; 2245 // Skip variables that haven't been promoted - we've dealt with those 2246 // already. 2247 if (VarsWithStackSlot->contains(getAggregate(DVI))) 2248 continue; 2249 Instruction *InsertBefore = I.getNextNode(); 2250 assert(InsertBefore && "Unexpected: debug intrinsics after a terminator"); 2251 FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI), 2252 DVI->getExpression(), DVI->getDebugLoc(), 2253 DVI->getWrappedLocation()); 2254 InsertedAnyIntrinsics = true; 2255 } 2256 } 2257 return InsertedAnyIntrinsics; 2258 } 2259 2260 /// Remove redundant definitions within sequences of consecutive location defs. 2261 /// This is done using a backward scan to keep the last def describing a 2262 /// specific variable/fragment. 2263 /// 2264 /// This implements removeRedundantDbgInstrsUsingBackwardScan from 2265 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2266 /// FunctionVarLocsBuilder instead of with intrinsics. 2267 static bool 2268 removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, 2269 FunctionVarLocsBuilder &FnVarLocs) { 2270 bool Changed = false; 2271 SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBits; 2272 // Scan over the entire block, not just over the instructions mapped by 2273 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2274 // instructions. 2275 for (const Instruction &I : reverse(*BB)) { 2276 if (!isa<DbgVariableIntrinsic>(I)) { 2277 // Sequence of consecutive defs ended. Clear map for the next one. 2278 VariableDefinedBits.clear(); 2279 } 2280 2281 // Get the location defs that start just before this instruction. 2282 const auto *Locs = FnVarLocs.getWedge(&I); 2283 if (!Locs) 2284 continue; 2285 2286 NumWedgesScanned++; 2287 bool ChangedThisWedge = false; 2288 // The new pruned set of defs, reversed because we're scanning backwards. 2289 SmallVector<VarLocInfo> NewDefsReversed; 2290 2291 // Iterate over the existing defs in reverse. 2292 for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) { 2293 NumDefsScanned++; 2294 DebugAggregate Aggr = 2295 getAggregate(FnVarLocs.getVariable(RIt->VariableID)); 2296 uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0); 2297 2298 if (SizeInBits == 0) { 2299 // If the size is unknown (0) then keep this location def to be safe. 2300 NewDefsReversed.push_back(*RIt); 2301 continue; 2302 } 2303 2304 // Only keep this location definition if it is not fully eclipsed by 2305 // other definitions in this wedge that come after it 2306 2307 // Inert the bits the location definition defines. 2308 auto InsertResult = 2309 VariableDefinedBits.try_emplace(Aggr, BitVector(SizeInBits)); 2310 bool FirstDefinition = InsertResult.second; 2311 BitVector &DefinedBits = InsertResult.first->second; 2312 2313 DIExpression::FragmentInfo Fragment = 2314 RIt->Expr->getFragmentInfo().value_or( 2315 DIExpression::FragmentInfo(SizeInBits, 0)); 2316 bool InvalidFragment = Fragment.endInBits() > SizeInBits; 2317 2318 // If this defines any previously undefined bits, keep it. 2319 if (FirstDefinition || InvalidFragment || 2320 DefinedBits.find_first_unset_in(Fragment.startInBits(), 2321 Fragment.endInBits()) != -1) { 2322 if (!InvalidFragment) 2323 DefinedBits.set(Fragment.startInBits(), Fragment.endInBits()); 2324 NewDefsReversed.push_back(*RIt); 2325 continue; 2326 } 2327 2328 // Redundant def found: throw it away. Since the wedge of defs is being 2329 // rebuilt, doing nothing is the same as deleting an entry. 2330 ChangedThisWedge = true; 2331 NumDefsRemoved++; 2332 } 2333 2334 // Un-reverse the defs and replace the wedge with the pruned version. 2335 if (ChangedThisWedge) { 2336 std::reverse(NewDefsReversed.begin(), NewDefsReversed.end()); 2337 FnVarLocs.setWedge(&I, std::move(NewDefsReversed)); 2338 NumWedgesChanged++; 2339 Changed = true; 2340 } 2341 } 2342 2343 return Changed; 2344 } 2345 2346 /// Remove redundant location defs using a forward scan. This can remove a 2347 /// location definition that is redundant due to indicating that a variable has 2348 /// the same value as is already being indicated by an earlier def. 2349 /// 2350 /// This implements removeRedundantDbgInstrsUsingForwardScan from 2351 /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with 2352 /// FunctionVarLocsBuilder instead of with intrinsics 2353 static bool 2354 removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, 2355 FunctionVarLocsBuilder &FnVarLocs) { 2356 bool Changed = false; 2357 DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>> 2358 VariableMap; 2359 2360 // Scan over the entire block, not just over the instructions mapped by 2361 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2362 // instructions. 2363 for (const Instruction &I : *BB) { 2364 // Get the defs that come just before this instruction. 2365 const auto *Locs = FnVarLocs.getWedge(&I); 2366 if (!Locs) 2367 continue; 2368 2369 NumWedgesScanned++; 2370 bool ChangedThisWedge = false; 2371 // The new pruned set of defs. 2372 SmallVector<VarLocInfo> NewDefs; 2373 2374 // Iterate over the existing defs. 2375 for (const VarLocInfo &Loc : *Locs) { 2376 NumDefsScanned++; 2377 DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2378 std::nullopt, Loc.DL.getInlinedAt()); 2379 auto VMI = VariableMap.find(Key); 2380 2381 // Update the map if we found a new value/expression describing the 2382 // variable, or if the variable wasn't mapped already. 2383 if (VMI == VariableMap.end() || VMI->second.first != Loc.Values || 2384 VMI->second.second != Loc.Expr) { 2385 VariableMap[Key] = {Loc.Values, Loc.Expr}; 2386 NewDefs.push_back(Loc); 2387 continue; 2388 } 2389 2390 // Did not insert this Loc, which is the same as removing it. 2391 ChangedThisWedge = true; 2392 NumDefsRemoved++; 2393 } 2394 2395 // Replace the existing wedge with the pruned version. 2396 if (ChangedThisWedge) { 2397 FnVarLocs.setWedge(&I, std::move(NewDefs)); 2398 NumWedgesChanged++; 2399 Changed = true; 2400 } 2401 } 2402 2403 return Changed; 2404 } 2405 2406 static bool 2407 removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, 2408 FunctionVarLocsBuilder &FnVarLocs) { 2409 assert(BB->isEntryBlock()); 2410 // Do extra work to ensure that we remove semantically unimportant undefs. 2411 // 2412 // This is to work around the fact that SelectionDAG will hoist dbg.values 2413 // using argument values to the top of the entry block. That can move arg 2414 // dbg.values before undef and constant dbg.values which they previously 2415 // followed. The easiest thing to do is to just try to feed SelectionDAG 2416 // input it's happy with. 2417 // 2418 // Map of {Variable x: Fragments y} where the fragments y of variable x have 2419 // have at least one non-undef location defined already. Don't use directly, 2420 // instead call DefineBits and HasDefinedBits. 2421 SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>> 2422 VarsWithDef; 2423 // Specify that V (a fragment of A) has a non-undef location. 2424 auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2425 VarsWithDef[A].insert(V.getFragmentOrDefault()); 2426 }; 2427 // Return true if a non-undef location has been defined for V (a fragment of 2428 // A). Doesn't imply that the location is currently non-undef, just that a 2429 // non-undef location has been seen previously. 2430 auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { 2431 auto FragsIt = VarsWithDef.find(A); 2432 if (FragsIt == VarsWithDef.end()) 2433 return false; 2434 return llvm::any_of(FragsIt->second, [V](auto Frag) { 2435 return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault()); 2436 }); 2437 }; 2438 2439 bool Changed = false; 2440 DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap; 2441 2442 // Scan over the entire block, not just over the instructions mapped by 2443 // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug 2444 // instructions. 2445 for (const Instruction &I : *BB) { 2446 // Get the defs that come just before this instruction. 2447 const auto *Locs = FnVarLocs.getWedge(&I); 2448 if (!Locs) 2449 continue; 2450 2451 NumWedgesScanned++; 2452 bool ChangedThisWedge = false; 2453 // The new pruned set of defs. 2454 SmallVector<VarLocInfo> NewDefs; 2455 2456 // Iterate over the existing defs. 2457 for (const VarLocInfo &Loc : *Locs) { 2458 NumDefsScanned++; 2459 DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(), 2460 Loc.DL.getInlinedAt()}; 2461 DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID); 2462 2463 // Remove undef entries that are encountered before any non-undef 2464 // intrinsics from the entry block. 2465 if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) { 2466 // Did not insert this Loc, which is the same as removing it. 2467 NumDefsRemoved++; 2468 ChangedThisWedge = true; 2469 continue; 2470 } 2471 2472 DefineBits(Aggr, Var); 2473 NewDefs.push_back(Loc); 2474 } 2475 2476 // Replace the existing wedge with the pruned version. 2477 if (ChangedThisWedge) { 2478 FnVarLocs.setWedge(&I, std::move(NewDefs)); 2479 NumWedgesChanged++; 2480 Changed = true; 2481 } 2482 } 2483 2484 return Changed; 2485 } 2486 2487 static bool removeRedundantDbgLocs(const BasicBlock *BB, 2488 FunctionVarLocsBuilder &FnVarLocs) { 2489 bool MadeChanges = false; 2490 MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs); 2491 if (BB->isEntryBlock()) 2492 MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs); 2493 MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs); 2494 2495 if (MadeChanges) 2496 LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName() 2497 << "\n"); 2498 return MadeChanges; 2499 } 2500 2501 static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) { 2502 DenseSet<DebugAggregate> Result; 2503 for (auto &BB : Fn) { 2504 for (auto &I : BB) { 2505 // Any variable linked to an instruction is considered 2506 // interesting. Ideally we only need to check Allocas, however, a 2507 // DIAssignID might get dropped from an alloca but not stores. In that 2508 // case, we need to consider the variable interesting for NFC behaviour 2509 // with this change. TODO: Consider only looking at allocas. 2510 for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) { 2511 Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()}); 2512 } 2513 } 2514 } 2515 return Result; 2516 } 2517 2518 static void analyzeFunction(Function &Fn, const DataLayout &Layout, 2519 FunctionVarLocsBuilder *FnVarLocs) { 2520 // The analysis will generate location definitions for all variables, but we 2521 // only need to perform a dataflow on the set of variables which have a stack 2522 // slot. Find those now. 2523 DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn); 2524 2525 bool Changed = false; 2526 2527 // Use a scope block to clean up AssignmentTrackingLowering before running 2528 // MemLocFragmentFill to reduce peak memory consumption. 2529 { 2530 AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot); 2531 Changed = Pass.run(FnVarLocs); 2532 } 2533 2534 if (Changed) { 2535 MemLocFragmentFill Pass(Fn, &VarsWithStackSlot, 2536 shouldCoalesceFragments(Fn)); 2537 Pass.run(FnVarLocs); 2538 2539 // Remove redundant entries. As well as reducing memory consumption and 2540 // avoiding waiting cycles later by burning some now, this has another 2541 // important job. That is to work around some SelectionDAG quirks. See 2542 // removeRedundantDbgLocsUsingForwardScan comments for more info on that. 2543 for (auto &BB : Fn) 2544 removeRedundantDbgLocs(&BB, *FnVarLocs); 2545 } 2546 } 2547 2548 bool AssignmentTrackingAnalysis::runOnFunction(Function &F) { 2549 if (!isAssignmentTrackingEnabled(*F.getParent())) 2550 return false; 2551 2552 LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName() 2553 << "\n"); 2554 auto DL = std::make_unique<DataLayout>(F.getParent()); 2555 2556 // Clear previous results. 2557 Results->clear(); 2558 2559 FunctionVarLocsBuilder Builder; 2560 analyzeFunction(F, *DL.get(), &Builder); 2561 2562 // Save these results. 2563 Results->init(Builder); 2564 2565 if (PrintResults && isFunctionInPrintList(F.getName())) 2566 Results->print(errs(), F); 2567 2568 // Return false because this pass does not modify the function. 2569 return false; 2570 } 2571 2572 AssignmentTrackingAnalysis::AssignmentTrackingAnalysis() 2573 : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {} 2574 2575 char AssignmentTrackingAnalysis::ID = 0; 2576 2577 INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE, 2578 "Assignment Tracking Analysis", false, true) 2579