1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Common functionality for different debug information format backends. 11 // LLVM currently supports DWARF and CodeView. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "DebugHandlerBase.h" 16 #include "llvm/CodeGen/AsmPrinter.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/MC/MCStreamer.h" 22 #include "llvm/Target/TargetSubtargetInfo.h" 23 24 using namespace llvm; 25 26 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 27 28 // Each LexicalScope has first instruction and last instruction to mark 29 // beginning and end of a scope respectively. Create an inverse map that list 30 // scopes starts (and ends) with an instruction. One instruction may start (or 31 // end) multiple scopes. Ignore scopes that are not reachable. 32 void DebugHandlerBase::identifyScopeMarkers() { 33 SmallVector<LexicalScope *, 4> WorkList; 34 WorkList.push_back(LScopes.getCurrentFunctionScope()); 35 while (!WorkList.empty()) { 36 LexicalScope *S = WorkList.pop_back_val(); 37 38 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 39 if (!Children.empty()) 40 WorkList.append(Children.begin(), Children.end()); 41 42 if (S->isAbstractScope()) 43 continue; 44 45 for (const InsnRange &R : S->getRanges()) { 46 assert(R.first && "InsnRange does not have first instruction!"); 47 assert(R.second && "InsnRange does not have second instruction!"); 48 requestLabelBeforeInsn(R.first); 49 requestLabelAfterInsn(R.second); 50 } 51 } 52 } 53 54 // Return Label preceding the instruction. 55 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 56 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 57 assert(Label && "Didn't insert label before instruction"); 58 return Label; 59 } 60 61 // Return Label immediately following the instruction. 62 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 63 return LabelsAfterInsn.lookup(MI); 64 } 65 66 int DebugHandlerBase::fragmentCmp(const DIExpression *P1, 67 const DIExpression *P2) { 68 unsigned l1 = P1->getFragmentOffsetInBits(); 69 unsigned l2 = P2->getFragmentOffsetInBits(); 70 unsigned r1 = l1 + P1->getFragmentSizeInBits(); 71 unsigned r2 = l2 + P2->getFragmentSizeInBits(); 72 if (r1 <= l2) 73 return -1; 74 else if (r2 <= l1) 75 return 1; 76 else 77 return 0; 78 } 79 80 bool DebugHandlerBase::fragmentsOverlap(const DIExpression *P1, 81 const DIExpression *P2) { 82 if (!P1->isFragment() || !P2->isFragment()) 83 return true; 84 return fragmentCmp(P1, P2) == 0; 85 } 86 87 /// If this type is derived from a base type then return base type size. 88 uint64_t DebugHandlerBase::getBaseTypeSize(const DITypeRef TyRef) { 89 DIType *Ty = TyRef.resolve(); 90 assert(Ty); 91 DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 92 if (!DDTy) 93 return Ty->getSizeInBits(); 94 95 unsigned Tag = DDTy->getTag(); 96 97 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 98 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 99 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type) 100 return DDTy->getSizeInBits(); 101 102 DIType *BaseType = DDTy->getBaseType().resolve(); 103 104 assert(BaseType && "Unexpected invalid base type"); 105 106 // If this is a derived type, go ahead and get the base type, unless it's a 107 // reference then it's just the size of the field. Pointer types have no need 108 // of this since they're a different type of qualification on the type. 109 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 110 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 111 return Ty->getSizeInBits(); 112 113 return getBaseTypeSize(BaseType); 114 } 115 116 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 117 // Grab the lexical scopes for the function, if we don't have any of those 118 // then we're not going to be able to do anything. 119 LScopes.initialize(*MF); 120 if (LScopes.empty()) 121 return; 122 123 // Make sure that each lexical scope will have a begin/end label. 124 identifyScopeMarkers(); 125 126 // Calculate history for local variables. 127 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 128 calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 129 DbgValues); 130 131 // Request labels for the full history. 132 for (const auto &I : DbgValues) { 133 const auto &Ranges = I.second; 134 if (Ranges.empty()) 135 continue; 136 137 // The first mention of a function argument gets the CurrentFnBegin 138 // label, so arguments are visible when breaking at function entry. 139 const DILocalVariable *DIVar = Ranges.front().first->getDebugVariable(); 140 if (DIVar->isParameter() && 141 getDISubprogram(DIVar->getScope())->describes(MF->getFunction())) { 142 LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin(); 143 if (Ranges.front().first->getDebugExpression()->isFragment()) { 144 // Mark all non-overlapping initial fragments. 145 for (auto I = Ranges.begin(); I != Ranges.end(); ++I) { 146 const DIExpression *Fragment = I->first->getDebugExpression(); 147 if (std::all_of(Ranges.begin(), I, 148 [&](DbgValueHistoryMap::InstrRange Pred) { 149 return !fragmentsOverlap( 150 Fragment, Pred.first->getDebugExpression()); 151 })) 152 LabelsBeforeInsn[I->first] = Asm->getFunctionBegin(); 153 else 154 break; 155 } 156 } 157 } 158 159 for (const auto &Range : Ranges) { 160 requestLabelBeforeInsn(Range.first); 161 if (Range.second) 162 requestLabelAfterInsn(Range.second); 163 } 164 } 165 166 PrevInstLoc = DebugLoc(); 167 PrevLabel = Asm->getFunctionBegin(); 168 } 169 170 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 171 if (!MMI->hasDebugInfo()) 172 return; 173 174 assert(CurMI == nullptr); 175 CurMI = MI; 176 177 // Insert labels where requested. 178 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 179 LabelsBeforeInsn.find(MI); 180 181 // No label needed. 182 if (I == LabelsBeforeInsn.end()) 183 return; 184 185 // Label already assigned. 186 if (I->second) 187 return; 188 189 if (!PrevLabel) { 190 PrevLabel = MMI->getContext().createTempSymbol(); 191 Asm->OutStreamer->EmitLabel(PrevLabel); 192 } 193 I->second = PrevLabel; 194 } 195 196 void DebugHandlerBase::endInstruction() { 197 if (!MMI->hasDebugInfo()) 198 return; 199 200 assert(CurMI != nullptr); 201 // Don't create a new label after DBG_VALUE instructions. 202 // They don't generate code. 203 if (!CurMI->isDebugValue()) { 204 PrevLabel = nullptr; 205 PrevInstBB = CurMI->getParent(); 206 } 207 208 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 209 LabelsAfterInsn.find(CurMI); 210 CurMI = nullptr; 211 212 // No label needed. 213 if (I == LabelsAfterInsn.end()) 214 return; 215 216 // Label already assigned. 217 if (I->second) 218 return; 219 220 // We need a label after this instruction. 221 if (!PrevLabel) { 222 PrevLabel = MMI->getContext().createTempSymbol(); 223 Asm->OutStreamer->EmitLabel(PrevLabel); 224 } 225 I->second = PrevLabel; 226 } 227 228 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 229 DbgValues.clear(); 230 LabelsBeforeInsn.clear(); 231 LabelsAfterInsn.clear(); 232 } 233