1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Common functionality for different debug information format backends. 10 // LLVM currently supports DWARF and CodeView. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/DebugHandlerBase.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/Twine.h" 17 #include "llvm/CodeGen/AsmPrinter.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineModuleInfo.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "dwarfdebug" 29 30 /// If true, we drop variable location ranges which exist entirely outside the 31 /// variable's lexical scope instruction ranges. 32 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true)); 33 34 Optional<DbgVariableLocation> 35 DbgVariableLocation::extractFromMachineInstruction( 36 const MachineInstr &Instruction) { 37 DbgVariableLocation Location; 38 if (!Instruction.isDebugValue()) 39 return None; 40 if (!Instruction.getDebugOperand(0).isReg()) 41 return None; 42 Location.Register = Instruction.getDebugOperand(0).getReg(); 43 Location.FragmentInfo.reset(); 44 // We only handle expressions generated by DIExpression::appendOffset, 45 // which doesn't require a full stack machine. 46 int64_t Offset = 0; 47 const DIExpression *DIExpr = Instruction.getDebugExpression(); 48 auto Op = DIExpr->expr_op_begin(); 49 while (Op != DIExpr->expr_op_end()) { 50 switch (Op->getOp()) { 51 case dwarf::DW_OP_constu: { 52 int Value = Op->getArg(0); 53 ++Op; 54 if (Op != DIExpr->expr_op_end()) { 55 switch (Op->getOp()) { 56 case dwarf::DW_OP_minus: 57 Offset -= Value; 58 break; 59 case dwarf::DW_OP_plus: 60 Offset += Value; 61 break; 62 default: 63 continue; 64 } 65 } 66 } break; 67 case dwarf::DW_OP_plus_uconst: 68 Offset += Op->getArg(0); 69 break; 70 case dwarf::DW_OP_LLVM_fragment: 71 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; 72 break; 73 case dwarf::DW_OP_deref: 74 Location.LoadChain.push_back(Offset); 75 Offset = 0; 76 break; 77 default: 78 return None; 79 } 80 ++Op; 81 } 82 83 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE 84 // instruction. 85 // FIXME: Replace these with DIExpression. 86 if (Instruction.isIndirectDebugValue()) 87 Location.LoadChain.push_back(Offset); 88 89 return Location; 90 } 91 92 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 93 94 // Each LexicalScope has first instruction and last instruction to mark 95 // beginning and end of a scope respectively. Create an inverse map that list 96 // scopes starts (and ends) with an instruction. One instruction may start (or 97 // end) multiple scopes. Ignore scopes that are not reachable. 98 void DebugHandlerBase::identifyScopeMarkers() { 99 SmallVector<LexicalScope *, 4> WorkList; 100 WorkList.push_back(LScopes.getCurrentFunctionScope()); 101 while (!WorkList.empty()) { 102 LexicalScope *S = WorkList.pop_back_val(); 103 104 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 105 if (!Children.empty()) 106 WorkList.append(Children.begin(), Children.end()); 107 108 if (S->isAbstractScope()) 109 continue; 110 111 for (const InsnRange &R : S->getRanges()) { 112 assert(R.first && "InsnRange does not have first instruction!"); 113 assert(R.second && "InsnRange does not have second instruction!"); 114 requestLabelBeforeInsn(R.first); 115 requestLabelAfterInsn(R.second); 116 } 117 } 118 } 119 120 // Return Label preceding the instruction. 121 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 122 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 123 assert(Label && "Didn't insert label before instruction"); 124 return Label; 125 } 126 127 // Return Label immediately following the instruction. 128 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 129 return LabelsAfterInsn.lookup(MI); 130 } 131 132 /// If this type is derived from a base type then return base type size. 133 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) { 134 assert(Ty); 135 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 136 if (!DDTy) 137 return Ty->getSizeInBits(); 138 139 unsigned Tag = DDTy->getTag(); 140 141 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 142 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 143 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type) 144 return DDTy->getSizeInBits(); 145 146 DIType *BaseType = DDTy->getBaseType(); 147 148 if (!BaseType) 149 return 0; 150 151 // If this is a derived type, go ahead and get the base type, unless it's a 152 // reference then it's just the size of the field. Pointer types have no need 153 // of this since they're a different type of qualification on the type. 154 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 155 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 156 return Ty->getSizeInBits(); 157 158 return getBaseTypeSize(BaseType); 159 } 160 161 static bool hasDebugInfo(const MachineModuleInfo *MMI, 162 const MachineFunction *MF) { 163 if (!MMI->hasDebugInfo()) 164 return false; 165 auto *SP = MF->getFunction().getSubprogram(); 166 if (!SP) 167 return false; 168 assert(SP->getUnit()); 169 auto EK = SP->getUnit()->getEmissionKind(); 170 if (EK == DICompileUnit::NoDebug) 171 return false; 172 return true; 173 } 174 175 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 176 PrevInstBB = nullptr; 177 178 if (!Asm || !hasDebugInfo(MMI, MF)) { 179 skippedNonDebugFunction(); 180 return; 181 } 182 183 // Grab the lexical scopes for the function, if we don't have any of those 184 // then we're not going to be able to do anything. 185 LScopes.initialize(*MF); 186 if (LScopes.empty()) { 187 beginFunctionImpl(MF); 188 return; 189 } 190 191 // Make sure that each lexical scope will have a begin/end label. 192 identifyScopeMarkers(); 193 194 // Calculate history for local variables. 195 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 196 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!"); 197 calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 198 DbgValues, DbgLabels); 199 InstOrdering.initialize(*MF); 200 if (TrimVarLocs) 201 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering); 202 LLVM_DEBUG(DbgValues.dump()); 203 204 // Request labels for the full history. 205 for (const auto &I : DbgValues) { 206 const auto &Entries = I.second; 207 if (Entries.empty()) 208 continue; 209 210 auto IsDescribedByReg = [](const MachineInstr *MI) { 211 return MI->getDebugOperand(0).isReg() && MI->getDebugOperand(0).getReg(); 212 }; 213 214 // The first mention of a function argument gets the CurrentFnBegin label, 215 // so arguments are visible when breaking at function entry. 216 // 217 // We do not change the label for values that are described by registers, 218 // as that could place them above their defining instructions. We should 219 // ideally not change the labels for constant debug values either, since 220 // doing that violates the ranges that are calculated in the history map. 221 // However, we currently do not emit debug values for constant arguments 222 // directly at the start of the function, so this code is still useful. 223 // FIXME: If the first mention of an argument is in a unique section basic 224 // block, we cannot always assign the CurrentFnBeginLabel as it lies in a 225 // different section. Temporarily, we disable generating loc list 226 // information or DW_AT_const_value when the block is in a different 227 // section. 228 const DILocalVariable *DIVar = 229 Entries.front().getInstr()->getDebugVariable(); 230 if (DIVar->isParameter() && 231 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction()) && 232 Entries.front().getInstr()->getParent()->sameSection(&MF->front())) { 233 if (!IsDescribedByReg(Entries.front().getInstr())) 234 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin(); 235 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) { 236 // Mark all non-overlapping initial fragments. 237 for (auto I = Entries.begin(); I != Entries.end(); ++I) { 238 if (!I->isDbgValue()) 239 continue; 240 const DIExpression *Fragment = I->getInstr()->getDebugExpression(); 241 if (std::any_of(Entries.begin(), I, 242 [&](DbgValueHistoryMap::Entry Pred) { 243 return Pred.isDbgValue() && 244 Fragment->fragmentsOverlap( 245 Pred.getInstr()->getDebugExpression()); 246 })) 247 break; 248 // The code that generates location lists for DWARF assumes that the 249 // entries' start labels are monotonically increasing, and since we 250 // don't change the label for fragments that are described by 251 // registers, we must bail out when encountering such a fragment. 252 if (IsDescribedByReg(I->getInstr())) 253 break; 254 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin(); 255 } 256 } 257 } 258 259 for (const auto &Entry : Entries) { 260 if (Entry.isDbgValue()) 261 requestLabelBeforeInsn(Entry.getInstr()); 262 else 263 requestLabelAfterInsn(Entry.getInstr()); 264 } 265 } 266 267 // Ensure there is a symbol before DBG_LABEL. 268 for (const auto &I : DbgLabels) { 269 const MachineInstr *MI = I.second; 270 requestLabelBeforeInsn(MI); 271 } 272 273 PrevInstLoc = DebugLoc(); 274 PrevLabel = Asm->getFunctionBegin(); 275 beginFunctionImpl(MF); 276 } 277 278 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 279 if (!MMI->hasDebugInfo()) 280 return; 281 282 assert(CurMI == nullptr); 283 CurMI = MI; 284 285 // Insert labels where requested. 286 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 287 LabelsBeforeInsn.find(MI); 288 289 // No label needed. 290 if (I == LabelsBeforeInsn.end()) 291 return; 292 293 // Label already assigned. 294 if (I->second) 295 return; 296 297 if (!PrevLabel) { 298 PrevLabel = MMI->getContext().createTempSymbol(); 299 Asm->OutStreamer->emitLabel(PrevLabel); 300 } 301 I->second = PrevLabel; 302 } 303 304 void DebugHandlerBase::endInstruction() { 305 if (!MMI->hasDebugInfo()) 306 return; 307 308 assert(CurMI != nullptr); 309 // Don't create a new label after DBG_VALUE and other instructions that don't 310 // generate code. 311 if (!CurMI->isMetaInstruction()) { 312 PrevLabel = nullptr; 313 PrevInstBB = CurMI->getParent(); 314 } 315 316 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 317 LabelsAfterInsn.find(CurMI); 318 CurMI = nullptr; 319 320 // No label needed. 321 if (I == LabelsAfterInsn.end()) 322 return; 323 324 // Label already assigned. 325 if (I->second) 326 return; 327 328 // We need a label after this instruction. 329 if (!PrevLabel) { 330 PrevLabel = MMI->getContext().createTempSymbol(); 331 Asm->OutStreamer->emitLabel(PrevLabel); 332 } 333 I->second = PrevLabel; 334 } 335 336 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 337 if (hasDebugInfo(MMI, MF)) 338 endFunctionImpl(MF); 339 DbgValues.clear(); 340 DbgLabels.clear(); 341 LabelsBeforeInsn.clear(); 342 LabelsAfterInsn.clear(); 343 InstOrdering.clear(); 344 } 345 346 void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) { 347 if (!MBB.isBeginSection()) 348 return; 349 350 PrevLabel = MBB.getSymbol(); 351 } 352 353 void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) { 354 if (!MBB.isEndSection()) 355 return; 356 357 PrevLabel = nullptr; 358 } 359