1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Common functionality for different debug information format backends. 10 // LLVM currently supports DWARF and CodeView. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/DebugHandlerBase.h" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "llvm/CodeGen/MachineFunction.h" 17 #include "llvm/CodeGen/MachineInstr.h" 18 #include "llvm/CodeGen/MachineModuleInfo.h" 19 #include "llvm/CodeGen/TargetSubtargetInfo.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/MC/MCStreamer.h" 23 #include "llvm/Support/CommandLine.h" 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "dwarfdebug" 28 29 /// If true, we drop variable location ranges which exist entirely outside the 30 /// variable's lexical scope instruction ranges. 31 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true)); 32 33 std::optional<DbgVariableLocation> 34 DbgVariableLocation::extractFromMachineInstruction( 35 const MachineInstr &Instruction) { 36 DbgVariableLocation Location; 37 // Variables calculated from multiple locations can't be represented here. 38 if (Instruction.getNumDebugOperands() != 1) 39 return std::nullopt; 40 if (!Instruction.getDebugOperand(0).isReg()) 41 return std::nullopt; 42 Location.Register = Instruction.getDebugOperand(0).getReg(); 43 Location.FragmentInfo.reset(); 44 // We only handle expressions generated by DIExpression::appendOffset, 45 // which doesn't require a full stack machine. 46 int64_t Offset = 0; 47 const DIExpression *DIExpr = Instruction.getDebugExpression(); 48 auto Op = DIExpr->expr_op_begin(); 49 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that 50 // appears exactly once at the start of the expression. 51 if (Instruction.isDebugValueList()) { 52 if (Instruction.getNumDebugOperands() == 1 && 53 Op->getOp() == dwarf::DW_OP_LLVM_arg) 54 ++Op; 55 else 56 return std::nullopt; 57 } 58 while (Op != DIExpr->expr_op_end()) { 59 switch (Op->getOp()) { 60 case dwarf::DW_OP_constu: { 61 int Value = Op->getArg(0); 62 ++Op; 63 if (Op != DIExpr->expr_op_end()) { 64 switch (Op->getOp()) { 65 case dwarf::DW_OP_minus: 66 Offset -= Value; 67 break; 68 case dwarf::DW_OP_plus: 69 Offset += Value; 70 break; 71 default: 72 continue; 73 } 74 } 75 } break; 76 case dwarf::DW_OP_plus_uconst: 77 Offset += Op->getArg(0); 78 break; 79 case dwarf::DW_OP_LLVM_fragment: 80 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; 81 break; 82 case dwarf::DW_OP_deref: 83 Location.LoadChain.push_back(Offset); 84 Offset = 0; 85 break; 86 default: 87 return std::nullopt; 88 } 89 ++Op; 90 } 91 92 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE 93 // instruction. 94 // FIXME: Replace these with DIExpression. 95 if (Instruction.isIndirectDebugValue()) 96 Location.LoadChain.push_back(Offset); 97 98 return Location; 99 } 100 101 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 102 103 void DebugHandlerBase::beginModule(Module *M) { 104 if (M->debug_compile_units().empty()) 105 Asm = nullptr; 106 } 107 108 // Each LexicalScope has first instruction and last instruction to mark 109 // beginning and end of a scope respectively. Create an inverse map that list 110 // scopes starts (and ends) with an instruction. One instruction may start (or 111 // end) multiple scopes. Ignore scopes that are not reachable. 112 void DebugHandlerBase::identifyScopeMarkers() { 113 SmallVector<LexicalScope *, 4> WorkList; 114 WorkList.push_back(LScopes.getCurrentFunctionScope()); 115 while (!WorkList.empty()) { 116 LexicalScope *S = WorkList.pop_back_val(); 117 118 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 119 if (!Children.empty()) 120 WorkList.append(Children.begin(), Children.end()); 121 122 if (S->isAbstractScope()) 123 continue; 124 125 for (const InsnRange &R : S->getRanges()) { 126 assert(R.first && "InsnRange does not have first instruction!"); 127 assert(R.second && "InsnRange does not have second instruction!"); 128 requestLabelBeforeInsn(R.first); 129 requestLabelAfterInsn(R.second); 130 } 131 } 132 } 133 134 // Return Label preceding the instruction. 135 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 136 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 137 assert(Label && "Didn't insert label before instruction"); 138 return Label; 139 } 140 141 // Return Label immediately following the instruction. 142 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 143 return LabelsAfterInsn.lookup(MI); 144 } 145 146 /// If this type is derived from a base type then return base type size. 147 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) { 148 assert(Ty); 149 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 150 if (!DDTy) 151 return Ty->getSizeInBits(); 152 153 unsigned Tag = DDTy->getTag(); 154 155 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 156 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 157 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type && 158 Tag != dwarf::DW_TAG_immutable_type && 159 Tag != dwarf::DW_TAG_template_alias) 160 return DDTy->getSizeInBits(); 161 162 DIType *BaseType = DDTy->getBaseType(); 163 164 if (!BaseType) 165 return 0; 166 167 // If this is a derived type, go ahead and get the base type, unless it's a 168 // reference then it's just the size of the field. Pointer types have no need 169 // of this since they're a different type of qualification on the type. 170 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 171 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 172 return Ty->getSizeInBits(); 173 174 return getBaseTypeSize(BaseType); 175 } 176 177 bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) { 178 if (isa<DIStringType>(Ty)) { 179 // Some transformations (e.g. instcombine) may decide to turn a Fortran 180 // character object into an integer, and later ones (e.g. SROA) may 181 // further inject a constant integer in a llvm.dbg.value call to track 182 // the object's value. Here we trust the transformations are doing the 183 // right thing, and treat the constant as unsigned to preserve that value 184 // (i.e. avoid sign extension). 185 return true; 186 } 187 188 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) { 189 if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) { 190 if (!(Ty = CTy->getBaseType())) 191 // FIXME: Enums without a fixed underlying type have unknown signedness 192 // here, leading to incorrectly emitted constants. 193 return false; 194 } else 195 // (Pieces of) aggregate types that get hacked apart by SROA may be 196 // represented by a constant. Encode them as unsigned bytes. 197 return true; 198 } 199 200 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 201 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 202 // Encode pointer constants as unsigned bytes. This is used at least for 203 // null pointer constant emission. 204 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed 205 // here, but accept them for now due to a bug in SROA producing bogus 206 // dbg.values. 207 if (T == dwarf::DW_TAG_pointer_type || 208 T == dwarf::DW_TAG_ptr_to_member_type || 209 T == dwarf::DW_TAG_reference_type || 210 T == dwarf::DW_TAG_rvalue_reference_type) 211 return true; 212 assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type || 213 T == dwarf::DW_TAG_volatile_type || 214 T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type || 215 T == dwarf::DW_TAG_immutable_type || 216 T == dwarf::DW_TAG_template_alias); 217 assert(DTy->getBaseType() && "Expected valid base type"); 218 return isUnsignedDIType(DTy->getBaseType()); 219 } 220 221 auto *BTy = cast<DIBasicType>(Ty); 222 unsigned Encoding = BTy->getEncoding(); 223 assert((Encoding == dwarf::DW_ATE_unsigned || 224 Encoding == dwarf::DW_ATE_unsigned_char || 225 Encoding == dwarf::DW_ATE_signed || 226 Encoding == dwarf::DW_ATE_signed_char || 227 Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF || 228 Encoding == dwarf::DW_ATE_boolean || 229 Encoding == dwarf::DW_ATE_complex_float || 230 Encoding == dwarf::DW_ATE_signed_fixed || 231 Encoding == dwarf::DW_ATE_unsigned_fixed || 232 (Ty->getTag() == dwarf::DW_TAG_unspecified_type && 233 Ty->getName() == "decltype(nullptr)")) && 234 "Unsupported encoding"); 235 return Encoding == dwarf::DW_ATE_unsigned || 236 Encoding == dwarf::DW_ATE_unsigned_char || 237 Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean || 238 Encoding == llvm::dwarf::DW_ATE_unsigned_fixed || 239 Ty->getTag() == dwarf::DW_TAG_unspecified_type; 240 } 241 242 static bool hasDebugInfo(const MachineModuleInfo *MMI, 243 const MachineFunction *MF) { 244 if (!MMI->hasDebugInfo()) 245 return false; 246 auto *SP = MF->getFunction().getSubprogram(); 247 if (!SP) 248 return false; 249 assert(SP->getUnit()); 250 auto EK = SP->getUnit()->getEmissionKind(); 251 if (EK == DICompileUnit::NoDebug) 252 return false; 253 return true; 254 } 255 256 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 257 PrevInstBB = nullptr; 258 259 if (!Asm || !hasDebugInfo(MMI, MF)) { 260 skippedNonDebugFunction(); 261 return; 262 } 263 264 // Grab the lexical scopes for the function, if we don't have any of those 265 // then we're not going to be able to do anything. 266 LScopes.initialize(*MF); 267 if (LScopes.empty()) { 268 beginFunctionImpl(MF); 269 return; 270 } 271 272 // Make sure that each lexical scope will have a begin/end label. 273 identifyScopeMarkers(); 274 275 // Calculate history for local variables. 276 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 277 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!"); 278 calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 279 DbgValues, DbgLabels); 280 InstOrdering.initialize(*MF); 281 if (TrimVarLocs) 282 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering); 283 LLVM_DEBUG(DbgValues.dump(MF->getName())); 284 285 // Request labels for the full history. 286 for (const auto &I : DbgValues) { 287 const auto &Entries = I.second; 288 if (Entries.empty()) 289 continue; 290 291 auto IsDescribedByReg = [](const MachineInstr *MI) { 292 return any_of(MI->debug_operands(), 293 [](auto &MO) { return MO.isReg() && MO.getReg(); }); 294 }; 295 296 // The first mention of a function argument gets the CurrentFnBegin label, 297 // so arguments are visible when breaking at function entry. 298 // 299 // We do not change the label for values that are described by registers, 300 // as that could place them above their defining instructions. We should 301 // ideally not change the labels for constant debug values either, since 302 // doing that violates the ranges that are calculated in the history map. 303 // However, we currently do not emit debug values for constant arguments 304 // directly at the start of the function, so this code is still useful. 305 const DILocalVariable *DIVar = 306 Entries.front().getInstr()->getDebugVariable(); 307 if (DIVar->isParameter() && 308 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) { 309 if (!IsDescribedByReg(Entries.front().getInstr())) 310 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin(); 311 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) { 312 // Mark all non-overlapping initial fragments. 313 for (const auto *I = Entries.begin(); I != Entries.end(); ++I) { 314 if (!I->isDbgValue()) 315 continue; 316 const DIExpression *Fragment = I->getInstr()->getDebugExpression(); 317 if (std::any_of(Entries.begin(), I, 318 [&](DbgValueHistoryMap::Entry Pred) { 319 return Pred.isDbgValue() && 320 Fragment->fragmentsOverlap( 321 Pred.getInstr()->getDebugExpression()); 322 })) 323 break; 324 // The code that generates location lists for DWARF assumes that the 325 // entries' start labels are monotonically increasing, and since we 326 // don't change the label for fragments that are described by 327 // registers, we must bail out when encountering such a fragment. 328 if (IsDescribedByReg(I->getInstr())) 329 break; 330 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin(); 331 } 332 } 333 } 334 335 for (const auto &Entry : Entries) { 336 if (Entry.isDbgValue()) 337 requestLabelBeforeInsn(Entry.getInstr()); 338 else 339 requestLabelAfterInsn(Entry.getInstr()); 340 } 341 } 342 343 // Ensure there is a symbol before DBG_LABEL. 344 for (const auto &I : DbgLabels) { 345 const MachineInstr *MI = I.second; 346 requestLabelBeforeInsn(MI); 347 } 348 349 PrevInstLoc = DebugLoc(); 350 PrevLabel = Asm->getFunctionBegin(); 351 beginFunctionImpl(MF); 352 } 353 354 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 355 if (!Asm || !MMI->hasDebugInfo()) 356 return; 357 358 assert(CurMI == nullptr); 359 CurMI = MI; 360 361 // Insert labels where requested. 362 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 363 LabelsBeforeInsn.find(MI); 364 365 // No label needed. 366 if (I == LabelsBeforeInsn.end()) 367 return; 368 369 // Label already assigned. 370 if (I->second) 371 return; 372 373 if (!PrevLabel) { 374 PrevLabel = MMI->getContext().createTempSymbol(); 375 Asm->OutStreamer->emitLabel(PrevLabel); 376 } 377 I->second = PrevLabel; 378 } 379 380 void DebugHandlerBase::endInstruction() { 381 if (!Asm || !MMI->hasDebugInfo()) 382 return; 383 384 assert(CurMI != nullptr); 385 // Don't create a new label after DBG_VALUE and other instructions that don't 386 // generate code. 387 if (!CurMI->isMetaInstruction()) { 388 PrevLabel = nullptr; 389 PrevInstBB = CurMI->getParent(); 390 } 391 392 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 393 LabelsAfterInsn.find(CurMI); 394 395 // No label needed or label already assigned. 396 if (I == LabelsAfterInsn.end() || I->second) { 397 CurMI = nullptr; 398 return; 399 } 400 401 // We need a label after this instruction. With basic block sections, just 402 // use the end symbol of the section if this is the last instruction of the 403 // section. This reduces the need for an additional label and also helps 404 // merging ranges. 405 if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) { 406 PrevLabel = CurMI->getParent()->getEndSymbol(); 407 } else if (!PrevLabel) { 408 PrevLabel = MMI->getContext().createTempSymbol(); 409 Asm->OutStreamer->emitLabel(PrevLabel); 410 } 411 I->second = PrevLabel; 412 CurMI = nullptr; 413 } 414 415 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 416 if (Asm && hasDebugInfo(MMI, MF)) 417 endFunctionImpl(MF); 418 DbgValues.clear(); 419 DbgLabels.clear(); 420 LabelsBeforeInsn.clear(); 421 LabelsAfterInsn.clear(); 422 InstOrdering.clear(); 423 } 424 425 void DebugHandlerBase::beginBasicBlockSection(const MachineBasicBlock &MBB) { 426 EpilogBeginBlock = nullptr; 427 if (!MBB.isEntryBlock()) 428 PrevLabel = MBB.getSymbol(); 429 } 430 431 void DebugHandlerBase::endBasicBlockSection(const MachineBasicBlock &MBB) { 432 PrevLabel = nullptr; 433 } 434