1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Common functionality for different debug information format backends. 11 // LLVM currently supports DWARF and CodeView. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "DebugHandlerBase.h" 16 #include "llvm/CodeGen/AsmPrinter.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineModuleInfo.h" 20 #include "llvm/IR/DebugInfo.h" 21 #include "llvm/MC/MCStreamer.h" 22 #include "llvm/Target/TargetSubtargetInfo.h" 23 24 using namespace llvm; 25 26 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 27 28 // Each LexicalScope has first instruction and last instruction to mark 29 // beginning and end of a scope respectively. Create an inverse map that list 30 // scopes starts (and ends) with an instruction. One instruction may start (or 31 // end) multiple scopes. Ignore scopes that are not reachable. 32 void DebugHandlerBase::identifyScopeMarkers() { 33 SmallVector<LexicalScope *, 4> WorkList; 34 WorkList.push_back(LScopes.getCurrentFunctionScope()); 35 while (!WorkList.empty()) { 36 LexicalScope *S = WorkList.pop_back_val(); 37 38 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 39 if (!Children.empty()) 40 WorkList.append(Children.begin(), Children.end()); 41 42 if (S->isAbstractScope()) 43 continue; 44 45 for (const InsnRange &R : S->getRanges()) { 46 assert(R.first && "InsnRange does not have first instruction!"); 47 assert(R.second && "InsnRange does not have second instruction!"); 48 requestLabelBeforeInsn(R.first); 49 requestLabelAfterInsn(R.second); 50 } 51 } 52 } 53 54 // Return Label preceding the instruction. 55 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 56 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 57 assert(Label && "Didn't insert label before instruction"); 58 return Label; 59 } 60 61 // Return Label immediately following the instruction. 62 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 63 return LabelsAfterInsn.lookup(MI); 64 } 65 66 // Determine the relative position of the pieces described by P1 and P2. 67 // Returns -1 if P1 is entirely before P2, 0 if P1 and P2 overlap, 68 // 1 if P1 is entirely after P2. 69 int DebugHandlerBase::pieceCmp(const DIExpression *P1, const DIExpression *P2) { 70 unsigned l1 = P1->getBitPieceOffset(); 71 unsigned l2 = P2->getBitPieceOffset(); 72 unsigned r1 = l1 + P1->getBitPieceSize(); 73 unsigned r2 = l2 + P2->getBitPieceSize(); 74 if (r1 <= l2) 75 return -1; 76 else if (r2 <= l1) 77 return 1; 78 else 79 return 0; 80 } 81 82 /// Determine whether two variable pieces overlap. 83 bool DebugHandlerBase::piecesOverlap(const DIExpression *P1, const DIExpression *P2) { 84 if (!P1->isBitPiece() || !P2->isBitPiece()) 85 return true; 86 return pieceCmp(P1, P2) == 0; 87 } 88 89 /// If this type is derived from a base type then return base type size. 90 uint64_t DebugHandlerBase::getBaseTypeSize(const DITypeRef TyRef) { 91 DIType *Ty = TyRef.resolve(); 92 assert(Ty); 93 DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 94 if (!DDTy) 95 return Ty->getSizeInBits(); 96 97 unsigned Tag = DDTy->getTag(); 98 99 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 100 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 101 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type) 102 return DDTy->getSizeInBits(); 103 104 DIType *BaseType = DDTy->getBaseType().resolve(); 105 106 assert(BaseType && "Unexpected invalid base type"); 107 108 // If this is a derived type, go ahead and get the base type, unless it's a 109 // reference then it's just the size of the field. Pointer types have no need 110 // of this since they're a different type of qualification on the type. 111 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 112 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 113 return Ty->getSizeInBits(); 114 115 return getBaseTypeSize(BaseType); 116 } 117 118 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 119 // Grab the lexical scopes for the function, if we don't have any of those 120 // then we're not going to be able to do anything. 121 LScopes.initialize(*MF); 122 if (LScopes.empty()) 123 return; 124 125 // Make sure that each lexical scope will have a begin/end label. 126 identifyScopeMarkers(); 127 128 // Calculate history for local variables. 129 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 130 calculateDbgValueHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 131 DbgValues); 132 133 // Request labels for the full history. 134 for (const auto &I : DbgValues) { 135 const auto &Ranges = I.second; 136 if (Ranges.empty()) 137 continue; 138 139 // The first mention of a function argument gets the CurrentFnBegin 140 // label, so arguments are visible when breaking at function entry. 141 const DILocalVariable *DIVar = Ranges.front().first->getDebugVariable(); 142 if (DIVar->isParameter() && 143 getDISubprogram(DIVar->getScope())->describes(MF->getFunction())) { 144 LabelsBeforeInsn[Ranges.front().first] = Asm->getFunctionBegin(); 145 if (Ranges.front().first->getDebugExpression()->isBitPiece()) { 146 // Mark all non-overlapping initial pieces. 147 for (auto I = Ranges.begin(); I != Ranges.end(); ++I) { 148 const DIExpression *Piece = I->first->getDebugExpression(); 149 if (std::all_of(Ranges.begin(), I, 150 [&](DbgValueHistoryMap::InstrRange Pred) { 151 return !piecesOverlap(Piece, Pred.first->getDebugExpression()); 152 })) 153 LabelsBeforeInsn[I->first] = Asm->getFunctionBegin(); 154 else 155 break; 156 } 157 } 158 } 159 160 for (const auto &Range : Ranges) { 161 requestLabelBeforeInsn(Range.first); 162 if (Range.second) 163 requestLabelAfterInsn(Range.second); 164 } 165 } 166 167 PrevInstLoc = DebugLoc(); 168 PrevLabel = Asm->getFunctionBegin(); 169 } 170 171 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 172 if (!MMI->hasDebugInfo()) 173 return; 174 175 assert(CurMI == nullptr); 176 CurMI = MI; 177 178 // Insert labels where requested. 179 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 180 LabelsBeforeInsn.find(MI); 181 182 // No label needed. 183 if (I == LabelsBeforeInsn.end()) 184 return; 185 186 // Label already assigned. 187 if (I->second) 188 return; 189 190 if (!PrevLabel) { 191 PrevLabel = MMI->getContext().createTempSymbol(); 192 Asm->OutStreamer->EmitLabel(PrevLabel); 193 } 194 I->second = PrevLabel; 195 } 196 197 void DebugHandlerBase::endInstruction() { 198 if (!MMI->hasDebugInfo()) 199 return; 200 201 assert(CurMI != nullptr); 202 // Don't create a new label after DBG_VALUE instructions. 203 // They don't generate code. 204 if (!CurMI->isDebugValue()) { 205 PrevLabel = nullptr; 206 PrevInstBB = CurMI->getParent(); 207 } 208 209 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 210 LabelsAfterInsn.find(CurMI); 211 CurMI = nullptr; 212 213 // No label needed. 214 if (I == LabelsAfterInsn.end()) 215 return; 216 217 // Label already assigned. 218 if (I->second) 219 return; 220 221 // We need a label after this instruction. 222 if (!PrevLabel) { 223 PrevLabel = MMI->getContext().createTempSymbol(); 224 Asm->OutStreamer->EmitLabel(PrevLabel); 225 } 226 I->second = PrevLabel; 227 } 228 229 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 230 DbgValues.clear(); 231 LabelsBeforeInsn.clear(); 232 LabelsAfterInsn.clear(); 233 } 234