1 //===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Common functionality for different debug information format backends. 10 // LLVM currently supports DWARF and CodeView. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/DebugHandlerBase.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/Twine.h" 17 #include "llvm/CodeGen/AsmPrinter.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineInstr.h" 20 #include "llvm/CodeGen/MachineModuleInfo.h" 21 #include "llvm/CodeGen/TargetSubtargetInfo.h" 22 #include "llvm/IR/DebugInfo.h" 23 #include "llvm/MC/MCStreamer.h" 24 #include "llvm/Support/CommandLine.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "dwarfdebug" 29 30 /// If true, we drop variable location ranges which exist entirely outside the 31 /// variable's lexical scope instruction ranges. 32 static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true)); 33 34 Optional<DbgVariableLocation> 35 DbgVariableLocation::extractFromMachineInstruction( 36 const MachineInstr &Instruction) { 37 DbgVariableLocation Location; 38 // Variables calculated from multiple locations can't be represented here. 39 if (Instruction.getNumDebugOperands() != 1) 40 return None; 41 if (!Instruction.getDebugOperand(0).isReg()) 42 return None; 43 Location.Register = Instruction.getDebugOperand(0).getReg(); 44 Location.FragmentInfo.reset(); 45 // We only handle expressions generated by DIExpression::appendOffset, 46 // which doesn't require a full stack machine. 47 int64_t Offset = 0; 48 const DIExpression *DIExpr = Instruction.getDebugExpression(); 49 auto Op = DIExpr->expr_op_begin(); 50 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that 51 // appears exactly once at the start of the expression. 52 if (Instruction.isDebugValueList()) { 53 if (Instruction.getNumDebugOperands() == 1 && 54 Op->getOp() == dwarf::DW_OP_LLVM_arg) 55 ++Op; 56 else 57 return None; 58 } 59 while (Op != DIExpr->expr_op_end()) { 60 switch (Op->getOp()) { 61 case dwarf::DW_OP_constu: { 62 int Value = Op->getArg(0); 63 ++Op; 64 if (Op != DIExpr->expr_op_end()) { 65 switch (Op->getOp()) { 66 case dwarf::DW_OP_minus: 67 Offset -= Value; 68 break; 69 case dwarf::DW_OP_plus: 70 Offset += Value; 71 break; 72 default: 73 continue; 74 } 75 } 76 } break; 77 case dwarf::DW_OP_plus_uconst: 78 Offset += Op->getArg(0); 79 break; 80 case dwarf::DW_OP_LLVM_fragment: 81 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)}; 82 break; 83 case dwarf::DW_OP_deref: 84 Location.LoadChain.push_back(Offset); 85 Offset = 0; 86 break; 87 default: 88 return None; 89 } 90 ++Op; 91 } 92 93 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE 94 // instruction. 95 // FIXME: Replace these with DIExpression. 96 if (Instruction.isIndirectDebugValue()) 97 Location.LoadChain.push_back(Offset); 98 99 return Location; 100 } 101 102 DebugHandlerBase::DebugHandlerBase(AsmPrinter *A) : Asm(A), MMI(Asm->MMI) {} 103 104 void DebugHandlerBase::beginModule(Module *M) { 105 if (M->debug_compile_units().empty()) 106 Asm = nullptr; 107 } 108 109 // Each LexicalScope has first instruction and last instruction to mark 110 // beginning and end of a scope respectively. Create an inverse map that list 111 // scopes starts (and ends) with an instruction. One instruction may start (or 112 // end) multiple scopes. Ignore scopes that are not reachable. 113 void DebugHandlerBase::identifyScopeMarkers() { 114 SmallVector<LexicalScope *, 4> WorkList; 115 WorkList.push_back(LScopes.getCurrentFunctionScope()); 116 while (!WorkList.empty()) { 117 LexicalScope *S = WorkList.pop_back_val(); 118 119 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren(); 120 if (!Children.empty()) 121 WorkList.append(Children.begin(), Children.end()); 122 123 if (S->isAbstractScope()) 124 continue; 125 126 for (const InsnRange &R : S->getRanges()) { 127 assert(R.first && "InsnRange does not have first instruction!"); 128 assert(R.second && "InsnRange does not have second instruction!"); 129 requestLabelBeforeInsn(R.first); 130 requestLabelAfterInsn(R.second); 131 } 132 } 133 } 134 135 // Return Label preceding the instruction. 136 MCSymbol *DebugHandlerBase::getLabelBeforeInsn(const MachineInstr *MI) { 137 MCSymbol *Label = LabelsBeforeInsn.lookup(MI); 138 assert(Label && "Didn't insert label before instruction"); 139 return Label; 140 } 141 142 // Return Label immediately following the instruction. 143 MCSymbol *DebugHandlerBase::getLabelAfterInsn(const MachineInstr *MI) { 144 return LabelsAfterInsn.lookup(MI); 145 } 146 147 /// If this type is derived from a base type then return base type size. 148 uint64_t DebugHandlerBase::getBaseTypeSize(const DIType *Ty) { 149 assert(Ty); 150 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty); 151 if (!DDTy) 152 return Ty->getSizeInBits(); 153 154 unsigned Tag = DDTy->getTag(); 155 156 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef && 157 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type && 158 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type) 159 return DDTy->getSizeInBits(); 160 161 DIType *BaseType = DDTy->getBaseType(); 162 163 if (!BaseType) 164 return 0; 165 166 // If this is a derived type, go ahead and get the base type, unless it's a 167 // reference then it's just the size of the field. Pointer types have no need 168 // of this since they're a different type of qualification on the type. 169 if (BaseType->getTag() == dwarf::DW_TAG_reference_type || 170 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type) 171 return Ty->getSizeInBits(); 172 173 return getBaseTypeSize(BaseType); 174 } 175 176 bool DebugHandlerBase::isUnsignedDIType(const DIType *Ty) { 177 if (isa<DIStringType>(Ty)) { 178 // Some transformations (e.g. instcombine) may decide to turn a Fortran 179 // character object into an integer, and later ones (e.g. SROA) may 180 // further inject a constant integer in a llvm.dbg.value call to track 181 // the object's value. Here we trust the transformations are doing the 182 // right thing, and treat the constant as unsigned to preserve that value 183 // (i.e. avoid sign extension). 184 return true; 185 } 186 187 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) { 188 // FIXME: Enums without a fixed underlying type have unknown signedness 189 // here, leading to incorrectly emitted constants. 190 if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) 191 return false; 192 193 // (Pieces of) aggregate types that get hacked apart by SROA may be 194 // represented by a constant. Encode them as unsigned bytes. 195 return true; 196 } 197 198 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 199 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 200 // Encode pointer constants as unsigned bytes. This is used at least for 201 // null pointer constant emission. 202 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed 203 // here, but accept them for now due to a bug in SROA producing bogus 204 // dbg.values. 205 if (T == dwarf::DW_TAG_pointer_type || 206 T == dwarf::DW_TAG_ptr_to_member_type || 207 T == dwarf::DW_TAG_reference_type || 208 T == dwarf::DW_TAG_rvalue_reference_type) 209 return true; 210 assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type || 211 T == dwarf::DW_TAG_volatile_type || 212 T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type); 213 assert(DTy->getBaseType() && "Expected valid base type"); 214 return isUnsignedDIType(DTy->getBaseType()); 215 } 216 217 auto *BTy = cast<DIBasicType>(Ty); 218 unsigned Encoding = BTy->getEncoding(); 219 assert((Encoding == dwarf::DW_ATE_unsigned || 220 Encoding == dwarf::DW_ATE_unsigned_char || 221 Encoding == dwarf::DW_ATE_signed || 222 Encoding == dwarf::DW_ATE_signed_char || 223 Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF || 224 Encoding == dwarf::DW_ATE_boolean || 225 (Ty->getTag() == dwarf::DW_TAG_unspecified_type && 226 Ty->getName() == "decltype(nullptr)")) && 227 "Unsupported encoding"); 228 return Encoding == dwarf::DW_ATE_unsigned || 229 Encoding == dwarf::DW_ATE_unsigned_char || 230 Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean || 231 Ty->getTag() == dwarf::DW_TAG_unspecified_type; 232 } 233 234 static bool hasDebugInfo(const MachineModuleInfo *MMI, 235 const MachineFunction *MF) { 236 if (!MMI->hasDebugInfo()) 237 return false; 238 auto *SP = MF->getFunction().getSubprogram(); 239 if (!SP) 240 return false; 241 assert(SP->getUnit()); 242 auto EK = SP->getUnit()->getEmissionKind(); 243 if (EK == DICompileUnit::NoDebug) 244 return false; 245 return true; 246 } 247 248 void DebugHandlerBase::beginFunction(const MachineFunction *MF) { 249 PrevInstBB = nullptr; 250 251 if (!Asm || !hasDebugInfo(MMI, MF)) { 252 skippedNonDebugFunction(); 253 return; 254 } 255 256 // Grab the lexical scopes for the function, if we don't have any of those 257 // then we're not going to be able to do anything. 258 LScopes.initialize(*MF); 259 if (LScopes.empty()) { 260 beginFunctionImpl(MF); 261 return; 262 } 263 264 // Make sure that each lexical scope will have a begin/end label. 265 identifyScopeMarkers(); 266 267 // Calculate history for local variables. 268 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!"); 269 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!"); 270 calculateDbgEntityHistory(MF, Asm->MF->getSubtarget().getRegisterInfo(), 271 DbgValues, DbgLabels); 272 InstOrdering.initialize(*MF); 273 if (TrimVarLocs) 274 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering); 275 LLVM_DEBUG(DbgValues.dump()); 276 277 // Request labels for the full history. 278 for (const auto &I : DbgValues) { 279 const auto &Entries = I.second; 280 if (Entries.empty()) 281 continue; 282 283 auto IsDescribedByReg = [](const MachineInstr *MI) { 284 return any_of(MI->debug_operands(), 285 [](auto &MO) { return MO.isReg() && MO.getReg(); }); 286 }; 287 288 // The first mention of a function argument gets the CurrentFnBegin label, 289 // so arguments are visible when breaking at function entry. 290 // 291 // We do not change the label for values that are described by registers, 292 // as that could place them above their defining instructions. We should 293 // ideally not change the labels for constant debug values either, since 294 // doing that violates the ranges that are calculated in the history map. 295 // However, we currently do not emit debug values for constant arguments 296 // directly at the start of the function, so this code is still useful. 297 const DILocalVariable *DIVar = 298 Entries.front().getInstr()->getDebugVariable(); 299 if (DIVar->isParameter() && 300 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) { 301 if (!IsDescribedByReg(Entries.front().getInstr())) 302 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin(); 303 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) { 304 // Mark all non-overlapping initial fragments. 305 for (auto I = Entries.begin(); I != Entries.end(); ++I) { 306 if (!I->isDbgValue()) 307 continue; 308 const DIExpression *Fragment = I->getInstr()->getDebugExpression(); 309 if (std::any_of(Entries.begin(), I, 310 [&](DbgValueHistoryMap::Entry Pred) { 311 return Pred.isDbgValue() && 312 Fragment->fragmentsOverlap( 313 Pred.getInstr()->getDebugExpression()); 314 })) 315 break; 316 // The code that generates location lists for DWARF assumes that the 317 // entries' start labels are monotonically increasing, and since we 318 // don't change the label for fragments that are described by 319 // registers, we must bail out when encountering such a fragment. 320 if (IsDescribedByReg(I->getInstr())) 321 break; 322 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin(); 323 } 324 } 325 } 326 327 for (const auto &Entry : Entries) { 328 if (Entry.isDbgValue()) 329 requestLabelBeforeInsn(Entry.getInstr()); 330 else 331 requestLabelAfterInsn(Entry.getInstr()); 332 } 333 } 334 335 // Ensure there is a symbol before DBG_LABEL. 336 for (const auto &I : DbgLabels) { 337 const MachineInstr *MI = I.second; 338 requestLabelBeforeInsn(MI); 339 } 340 341 PrevInstLoc = DebugLoc(); 342 PrevLabel = Asm->getFunctionBegin(); 343 beginFunctionImpl(MF); 344 } 345 346 void DebugHandlerBase::beginInstruction(const MachineInstr *MI) { 347 if (!Asm || !MMI->hasDebugInfo()) 348 return; 349 350 assert(CurMI == nullptr); 351 CurMI = MI; 352 353 // Insert labels where requested. 354 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 355 LabelsBeforeInsn.find(MI); 356 357 // No label needed. 358 if (I == LabelsBeforeInsn.end()) 359 return; 360 361 // Label already assigned. 362 if (I->second) 363 return; 364 365 if (!PrevLabel) { 366 PrevLabel = MMI->getContext().createTempSymbol(); 367 Asm->OutStreamer->emitLabel(PrevLabel); 368 } 369 I->second = PrevLabel; 370 } 371 372 void DebugHandlerBase::endInstruction() { 373 if (!Asm || !MMI->hasDebugInfo()) 374 return; 375 376 assert(CurMI != nullptr); 377 // Don't create a new label after DBG_VALUE and other instructions that don't 378 // generate code. 379 if (!CurMI->isMetaInstruction()) { 380 PrevLabel = nullptr; 381 PrevInstBB = CurMI->getParent(); 382 } 383 384 DenseMap<const MachineInstr *, MCSymbol *>::iterator I = 385 LabelsAfterInsn.find(CurMI); 386 387 // No label needed or label already assigned. 388 if (I == LabelsAfterInsn.end() || I->second) { 389 CurMI = nullptr; 390 return; 391 } 392 393 // We need a label after this instruction. With basic block sections, just 394 // use the end symbol of the section if this is the last instruction of the 395 // section. This reduces the need for an additional label and also helps 396 // merging ranges. 397 if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) { 398 PrevLabel = CurMI->getParent()->getEndSymbol(); 399 } else if (!PrevLabel) { 400 PrevLabel = MMI->getContext().createTempSymbol(); 401 Asm->OutStreamer->emitLabel(PrevLabel); 402 } 403 I->second = PrevLabel; 404 CurMI = nullptr; 405 } 406 407 void DebugHandlerBase::endFunction(const MachineFunction *MF) { 408 if (Asm && hasDebugInfo(MMI, MF)) 409 endFunctionImpl(MF); 410 DbgValues.clear(); 411 DbgLabels.clear(); 412 LabelsBeforeInsn.clear(); 413 LabelsAfterInsn.clear(); 414 InstOrdering.clear(); 415 } 416 417 void DebugHandlerBase::beginBasicBlock(const MachineBasicBlock &MBB) { 418 if (!MBB.isBeginSection()) 419 return; 420 421 PrevLabel = MBB.getSymbol(); 422 } 423 424 void DebugHandlerBase::endBasicBlock(const MachineBasicBlock &MBB) { 425 if (!MBB.isEndSection()) 426 return; 427 428 PrevLabel = nullptr; 429 } 430