1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineModuleInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/Line.h" 48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 50 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 51 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCContext.h" 64 #include "llvm/MC/MCSectionCOFF.h" 65 #include "llvm/MC/MCStreamer.h" 66 #include "llvm/MC/MCSymbol.h" 67 #include "llvm/Support/BinaryByteStream.h" 68 #include "llvm/Support/BinaryStreamReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Endian.h" 73 #include "llvm/Support/Error.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/Path.h" 77 #include "llvm/Support/SMLoc.h" 78 #include "llvm/Support/ScopedPrinter.h" 79 #include "llvm/Target/TargetLoweringObjectFile.h" 80 #include "llvm/Target/TargetMachine.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cctype> 84 #include <cstddef> 85 #include <cstdint> 86 #include <iterator> 87 #include <limits> 88 #include <string> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 using namespace llvm::codeview; 94 95 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 96 cl::ReallyHidden, cl::init(false)); 97 98 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 99 switch (Type) { 100 case Triple::ArchType::x86: 101 return CPUType::Pentium3; 102 case Triple::ArchType::x86_64: 103 return CPUType::X64; 104 case Triple::ArchType::thumb: 105 return CPUType::Thumb; 106 case Triple::ArchType::aarch64: 107 return CPUType::ARM64; 108 default: 109 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 110 } 111 } 112 113 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 114 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 115 // If module doesn't have named metadata anchors or COFF debug section 116 // is not available, skip any debug info related stuff. 117 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 118 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 119 Asm = nullptr; 120 return; 121 } 122 // Tell MMI that we have debug info. 123 MMI->setDebugInfoAvailability(true); 124 125 TheCPU = 126 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 127 } 128 129 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 130 std::string &Filepath = FileToFilepathMap[File]; 131 if (!Filepath.empty()) 132 return Filepath; 133 134 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 135 136 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 137 // it textually because one of the path components could be a symlink. 138 if (Dir.startswith("/") || Filename.startswith("/")) { 139 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 140 return Filename; 141 Filepath = Dir; 142 if (Dir.back() != '/') 143 Filepath += '/'; 144 Filepath += Filename; 145 return Filepath; 146 } 147 148 // Clang emits directory and relative filename info into the IR, but CodeView 149 // operates on full paths. We could change Clang to emit full paths too, but 150 // that would increase the IR size and probably not needed for other users. 151 // For now, just concatenate and canonicalize the path here. 152 if (Filename.find(':') == 1) 153 Filepath = Filename; 154 else 155 Filepath = (Dir + "\\" + Filename).str(); 156 157 // Canonicalize the path. We have to do it textually because we may no longer 158 // have access the file in the filesystem. 159 // First, replace all slashes with backslashes. 160 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 161 162 // Remove all "\.\" with "\". 163 size_t Cursor = 0; 164 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 165 Filepath.erase(Cursor, 2); 166 167 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 168 // path should be well-formatted, e.g. start with a drive letter, etc. 169 Cursor = 0; 170 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 171 // Something's wrong if the path starts with "\..\", abort. 172 if (Cursor == 0) 173 break; 174 175 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 176 if (PrevSlash == std::string::npos) 177 // Something's wrong, abort. 178 break; 179 180 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 181 // The next ".." might be following the one we've just erased. 182 Cursor = PrevSlash; 183 } 184 185 // Remove all duplicate backslashes. 186 Cursor = 0; 187 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 188 Filepath.erase(Cursor, 1); 189 190 return Filepath; 191 } 192 193 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 194 StringRef FullPath = getFullFilepath(F); 195 unsigned NextId = FileIdMap.size() + 1; 196 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 197 if (Insertion.second) { 198 // We have to compute the full filepath and emit a .cv_file directive. 199 ArrayRef<uint8_t> ChecksumAsBytes; 200 FileChecksumKind CSKind = FileChecksumKind::None; 201 if (F->getChecksum()) { 202 std::string Checksum = fromHex(F->getChecksum()->Value); 203 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 204 memcpy(CKMem, Checksum.data(), Checksum.size()); 205 ChecksumAsBytes = ArrayRef<uint8_t>( 206 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 207 switch (F->getChecksum()->Kind) { 208 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 209 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 210 } 211 } 212 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 213 static_cast<unsigned>(CSKind)); 214 (void)Success; 215 assert(Success && ".cv_file directive failed"); 216 } 217 return Insertion.first->second; 218 } 219 220 CodeViewDebug::InlineSite & 221 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 222 const DISubprogram *Inlinee) { 223 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 224 InlineSite *Site = &SiteInsertion.first->second; 225 if (SiteInsertion.second) { 226 unsigned ParentFuncId = CurFn->FuncId; 227 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 228 ParentFuncId = 229 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 230 .SiteFuncId; 231 232 Site->SiteFuncId = NextFuncId++; 233 OS.EmitCVInlineSiteIdDirective( 234 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 235 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 236 Site->Inlinee = Inlinee; 237 InlinedSubprograms.insert(Inlinee); 238 getFuncIdForSubprogram(Inlinee); 239 } 240 return *Site; 241 } 242 243 static StringRef getPrettyScopeName(const DIScope *Scope) { 244 StringRef ScopeName = Scope->getName(); 245 if (!ScopeName.empty()) 246 return ScopeName; 247 248 switch (Scope->getTag()) { 249 case dwarf::DW_TAG_enumeration_type: 250 case dwarf::DW_TAG_class_type: 251 case dwarf::DW_TAG_structure_type: 252 case dwarf::DW_TAG_union_type: 253 return "<unnamed-tag>"; 254 case dwarf::DW_TAG_namespace: 255 return "`anonymous namespace'"; 256 } 257 258 return StringRef(); 259 } 260 261 static const DISubprogram *getQualifiedNameComponents( 262 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 263 const DISubprogram *ClosestSubprogram = nullptr; 264 while (Scope != nullptr) { 265 if (ClosestSubprogram == nullptr) 266 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 267 StringRef ScopeName = getPrettyScopeName(Scope); 268 if (!ScopeName.empty()) 269 QualifiedNameComponents.push_back(ScopeName); 270 Scope = Scope->getScope().resolve(); 271 } 272 return ClosestSubprogram; 273 } 274 275 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 276 StringRef TypeName) { 277 std::string FullyQualifiedName; 278 for (StringRef QualifiedNameComponent : 279 llvm::reverse(QualifiedNameComponents)) { 280 FullyQualifiedName.append(QualifiedNameComponent); 281 FullyQualifiedName.append("::"); 282 } 283 FullyQualifiedName.append(TypeName); 284 return FullyQualifiedName; 285 } 286 287 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 288 SmallVector<StringRef, 5> QualifiedNameComponents; 289 getQualifiedNameComponents(Scope, QualifiedNameComponents); 290 return getQualifiedName(QualifiedNameComponents, Name); 291 } 292 293 struct CodeViewDebug::TypeLoweringScope { 294 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 295 ~TypeLoweringScope() { 296 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 297 // inner TypeLoweringScopes don't attempt to emit deferred types. 298 if (CVD.TypeEmissionLevel == 1) 299 CVD.emitDeferredCompleteTypes(); 300 --CVD.TypeEmissionLevel; 301 } 302 CodeViewDebug &CVD; 303 }; 304 305 static std::string getFullyQualifiedName(const DIScope *Ty) { 306 const DIScope *Scope = Ty->getScope().resolve(); 307 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 308 } 309 310 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 311 // No scope means global scope and that uses the zero index. 312 if (!Scope || isa<DIFile>(Scope)) 313 return TypeIndex(); 314 315 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 316 317 // Check if we've already translated this scope. 318 auto I = TypeIndices.find({Scope, nullptr}); 319 if (I != TypeIndices.end()) 320 return I->second; 321 322 // Build the fully qualified name of the scope. 323 std::string ScopeName = getFullyQualifiedName(Scope); 324 StringIdRecord SID(TypeIndex(), ScopeName); 325 auto TI = TypeTable.writeLeafType(SID); 326 return recordTypeIndexForDINode(Scope, TI); 327 } 328 329 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 330 assert(SP); 331 332 // Check if we've already translated this subprogram. 333 auto I = TypeIndices.find({SP, nullptr}); 334 if (I != TypeIndices.end()) 335 return I->second; 336 337 // The display name includes function template arguments. Drop them to match 338 // MSVC. 339 StringRef DisplayName = SP->getName().split('<').first; 340 341 const DIScope *Scope = SP->getScope().resolve(); 342 TypeIndex TI; 343 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 344 // If the scope is a DICompositeType, then this must be a method. Member 345 // function types take some special handling, and require access to the 346 // subprogram. 347 TypeIndex ClassType = getTypeIndex(Class); 348 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 349 DisplayName); 350 TI = TypeTable.writeLeafType(MFuncId); 351 } else { 352 // Otherwise, this must be a free function. 353 TypeIndex ParentScope = getScopeIndex(Scope); 354 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 355 TI = TypeTable.writeLeafType(FuncId); 356 } 357 358 return recordTypeIndexForDINode(SP, TI); 359 } 360 361 static bool isTrivial(const DICompositeType *DCTy) { 362 return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial); 363 } 364 365 static FunctionOptions 366 getFunctionOptions(const DISubroutineType *Ty, 367 const DICompositeType *ClassTy = nullptr, 368 StringRef SPName = StringRef("")) { 369 FunctionOptions FO = FunctionOptions::None; 370 const DIType *ReturnTy = nullptr; 371 if (auto TypeArray = Ty->getTypeArray()) { 372 if (TypeArray.size()) 373 ReturnTy = TypeArray[0].resolve(); 374 } 375 376 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 377 if (!isTrivial(ReturnDCTy)) 378 FO |= FunctionOptions::CxxReturnUdt; 379 } 380 381 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 382 if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) { 383 FO |= FunctionOptions::Constructor; 384 385 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 386 387 } 388 return FO; 389 } 390 391 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 392 const DICompositeType *Class) { 393 // Always use the method declaration as the key for the function type. The 394 // method declaration contains the this adjustment. 395 if (SP->getDeclaration()) 396 SP = SP->getDeclaration(); 397 assert(!SP->getDeclaration() && "should use declaration as key"); 398 399 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 400 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 401 auto I = TypeIndices.find({SP, Class}); 402 if (I != TypeIndices.end()) 403 return I->second; 404 405 // Make sure complete type info for the class is emitted *after* the member 406 // function type, as the complete class type is likely to reference this 407 // member function type. 408 TypeLoweringScope S(*this); 409 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 410 411 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 412 TypeIndex TI = lowerTypeMemberFunction( 413 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 414 return recordTypeIndexForDINode(SP, TI, Class); 415 } 416 417 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 418 TypeIndex TI, 419 const DIType *ClassTy) { 420 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 421 (void)InsertResult; 422 assert(InsertResult.second && "DINode was already assigned a type index"); 423 return TI; 424 } 425 426 unsigned CodeViewDebug::getPointerSizeInBytes() { 427 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 428 } 429 430 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 431 const LexicalScope *LS) { 432 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 433 // This variable was inlined. Associate it with the InlineSite. 434 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 435 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 436 Site.InlinedLocals.emplace_back(Var); 437 } else { 438 // This variable goes into the corresponding lexical scope. 439 ScopeVariables[LS].emplace_back(Var); 440 } 441 } 442 443 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 444 const DILocation *Loc) { 445 auto B = Locs.begin(), E = Locs.end(); 446 if (std::find(B, E, Loc) == E) 447 Locs.push_back(Loc); 448 } 449 450 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 451 const MachineFunction *MF) { 452 // Skip this instruction if it has the same location as the previous one. 453 if (!DL || DL == PrevInstLoc) 454 return; 455 456 const DIScope *Scope = DL.get()->getScope(); 457 if (!Scope) 458 return; 459 460 // Skip this line if it is longer than the maximum we can record. 461 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 462 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 463 LI.isNeverStepInto()) 464 return; 465 466 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 467 if (CI.getStartColumn() != DL.getCol()) 468 return; 469 470 if (!CurFn->HaveLineInfo) 471 CurFn->HaveLineInfo = true; 472 unsigned FileId = 0; 473 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 474 FileId = CurFn->LastFileId; 475 else 476 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 477 PrevInstLoc = DL; 478 479 unsigned FuncId = CurFn->FuncId; 480 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 481 const DILocation *Loc = DL.get(); 482 483 // If this location was actually inlined from somewhere else, give it the ID 484 // of the inline call site. 485 FuncId = 486 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 487 488 // Ensure we have links in the tree of inline call sites. 489 bool FirstLoc = true; 490 while ((SiteLoc = Loc->getInlinedAt())) { 491 InlineSite &Site = 492 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 493 if (!FirstLoc) 494 addLocIfNotPresent(Site.ChildSites, Loc); 495 FirstLoc = false; 496 Loc = SiteLoc; 497 } 498 addLocIfNotPresent(CurFn->ChildSites, Loc); 499 } 500 501 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 502 /*PrologueEnd=*/false, /*IsStmt=*/false, 503 DL->getFilename(), SMLoc()); 504 } 505 506 void CodeViewDebug::emitCodeViewMagicVersion() { 507 OS.EmitValueToAlignment(4); 508 OS.AddComment("Debug section magic"); 509 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 510 } 511 512 void CodeViewDebug::endModule() { 513 if (!Asm || !MMI->hasDebugInfo()) 514 return; 515 516 assert(Asm != nullptr); 517 518 // The COFF .debug$S section consists of several subsections, each starting 519 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 520 // of the payload followed by the payload itself. The subsections are 4-byte 521 // aligned. 522 523 // Use the generic .debug$S section, and make a subsection for all the inlined 524 // subprograms. 525 switchToDebugSectionForSymbol(nullptr); 526 527 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 528 emitCompilerInformation(); 529 endCVSubsection(CompilerInfo); 530 531 emitInlineeLinesSubsection(); 532 533 // Emit per-function debug information. 534 for (auto &P : FnDebugInfo) 535 if (!P.first->isDeclarationForLinker()) 536 emitDebugInfoForFunction(P.first, *P.second); 537 538 // Emit global variable debug information. 539 setCurrentSubprogram(nullptr); 540 emitDebugInfoForGlobals(); 541 542 // Emit retained types. 543 emitDebugInfoForRetainedTypes(); 544 545 // Switch back to the generic .debug$S section after potentially processing 546 // comdat symbol sections. 547 switchToDebugSectionForSymbol(nullptr); 548 549 // Emit UDT records for any types used by global variables. 550 if (!GlobalUDTs.empty()) { 551 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 552 emitDebugInfoForUDTs(GlobalUDTs); 553 endCVSubsection(SymbolsEnd); 554 } 555 556 // This subsection holds a file index to offset in string table table. 557 OS.AddComment("File index to string table offset subsection"); 558 OS.EmitCVFileChecksumsDirective(); 559 560 // This subsection holds the string table. 561 OS.AddComment("String table"); 562 OS.EmitCVStringTableDirective(); 563 564 // Emit type information and hashes last, so that any types we translate while 565 // emitting function info are included. 566 emitTypeInformation(); 567 568 if (EmitDebugGlobalHashes) 569 emitTypeGlobalHashes(); 570 571 clear(); 572 } 573 574 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 575 unsigned MaxFixedRecordLength = 0xF00) { 576 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 577 // after a fixed length portion of the record. The fixed length portion should 578 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 579 // overall record size is less than the maximum allowed. 580 SmallString<32> NullTerminatedString( 581 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 582 NullTerminatedString.push_back('\0'); 583 OS.EmitBytes(NullTerminatedString); 584 } 585 586 void CodeViewDebug::emitTypeInformation() { 587 if (TypeTable.empty()) 588 return; 589 590 // Start the .debug$T or .debug$P section with 0x4. 591 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 592 emitCodeViewMagicVersion(); 593 594 SmallString<8> CommentPrefix; 595 if (OS.isVerboseAsm()) { 596 CommentPrefix += '\t'; 597 CommentPrefix += Asm->MAI->getCommentString(); 598 CommentPrefix += ' '; 599 } 600 601 TypeTableCollection Table(TypeTable.records()); 602 Optional<TypeIndex> B = Table.getFirst(); 603 while (B) { 604 // This will fail if the record data is invalid. 605 CVType Record = Table.getType(*B); 606 607 if (OS.isVerboseAsm()) { 608 // Emit a block comment describing the type record for readability. 609 SmallString<512> CommentBlock; 610 raw_svector_ostream CommentOS(CommentBlock); 611 ScopedPrinter SP(CommentOS); 612 SP.setPrefix(CommentPrefix); 613 TypeDumpVisitor TDV(Table, &SP, false); 614 615 Error E = codeview::visitTypeRecord(Record, *B, TDV); 616 if (E) { 617 logAllUnhandledErrors(std::move(E), errs(), "error: "); 618 llvm_unreachable("produced malformed type record"); 619 } 620 // emitRawComment will insert its own tab and comment string before 621 // the first line, so strip off our first one. It also prints its own 622 // newline. 623 OS.emitRawComment( 624 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 625 } 626 OS.EmitBinaryData(Record.str_data()); 627 B = Table.getNext(*B); 628 } 629 } 630 631 void CodeViewDebug::emitTypeGlobalHashes() { 632 if (TypeTable.empty()) 633 return; 634 635 // Start the .debug$H section with the version and hash algorithm, currently 636 // hardcoded to version 0, SHA1. 637 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 638 639 OS.EmitValueToAlignment(4); 640 OS.AddComment("Magic"); 641 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 642 OS.AddComment("Section Version"); 643 OS.EmitIntValue(0, 2); 644 OS.AddComment("Hash Algorithm"); 645 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 646 647 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 648 for (const auto &GHR : TypeTable.hashes()) { 649 if (OS.isVerboseAsm()) { 650 // Emit an EOL-comment describing which TypeIndex this hash corresponds 651 // to, as well as the stringified SHA1 hash. 652 SmallString<32> Comment; 653 raw_svector_ostream CommentOS(Comment); 654 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 655 OS.AddComment(Comment); 656 ++TI; 657 } 658 assert(GHR.Hash.size() == 8); 659 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 660 GHR.Hash.size()); 661 OS.EmitBinaryData(S); 662 } 663 } 664 665 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 666 switch (DWLang) { 667 case dwarf::DW_LANG_C: 668 case dwarf::DW_LANG_C89: 669 case dwarf::DW_LANG_C99: 670 case dwarf::DW_LANG_C11: 671 case dwarf::DW_LANG_ObjC: 672 return SourceLanguage::C; 673 case dwarf::DW_LANG_C_plus_plus: 674 case dwarf::DW_LANG_C_plus_plus_03: 675 case dwarf::DW_LANG_C_plus_plus_11: 676 case dwarf::DW_LANG_C_plus_plus_14: 677 return SourceLanguage::Cpp; 678 case dwarf::DW_LANG_Fortran77: 679 case dwarf::DW_LANG_Fortran90: 680 case dwarf::DW_LANG_Fortran03: 681 case dwarf::DW_LANG_Fortran08: 682 return SourceLanguage::Fortran; 683 case dwarf::DW_LANG_Pascal83: 684 return SourceLanguage::Pascal; 685 case dwarf::DW_LANG_Cobol74: 686 case dwarf::DW_LANG_Cobol85: 687 return SourceLanguage::Cobol; 688 case dwarf::DW_LANG_Java: 689 return SourceLanguage::Java; 690 case dwarf::DW_LANG_D: 691 return SourceLanguage::D; 692 default: 693 // There's no CodeView representation for this language, and CV doesn't 694 // have an "unknown" option for the language field, so we'll use MASM, 695 // as it's very low level. 696 return SourceLanguage::Masm; 697 } 698 } 699 700 namespace { 701 struct Version { 702 int Part[4]; 703 }; 704 } // end anonymous namespace 705 706 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 707 // the version number. 708 static Version parseVersion(StringRef Name) { 709 Version V = {{0}}; 710 int N = 0; 711 for (const char C : Name) { 712 if (isdigit(C)) { 713 V.Part[N] *= 10; 714 V.Part[N] += C - '0'; 715 } else if (C == '.') { 716 ++N; 717 if (N >= 4) 718 return V; 719 } else if (N > 0) 720 return V; 721 } 722 return V; 723 } 724 725 void CodeViewDebug::emitCompilerInformation() { 726 MCContext &Context = MMI->getContext(); 727 MCSymbol *CompilerBegin = Context.createTempSymbol(), 728 *CompilerEnd = Context.createTempSymbol(); 729 OS.AddComment("Record length"); 730 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 731 OS.EmitLabel(CompilerBegin); 732 OS.AddComment("Record kind: S_COMPILE3"); 733 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 734 uint32_t Flags = 0; 735 736 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 737 const MDNode *Node = *CUs->operands().begin(); 738 const auto *CU = cast<DICompileUnit>(Node); 739 740 // The low byte of the flags indicates the source language. 741 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 742 // TODO: Figure out which other flags need to be set. 743 744 OS.AddComment("Flags and language"); 745 OS.EmitIntValue(Flags, 4); 746 747 OS.AddComment("CPUType"); 748 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 749 750 StringRef CompilerVersion = CU->getProducer(); 751 Version FrontVer = parseVersion(CompilerVersion); 752 OS.AddComment("Frontend version"); 753 for (int N = 0; N < 4; ++N) 754 OS.EmitIntValue(FrontVer.Part[N], 2); 755 756 // Some Microsoft tools, like Binscope, expect a backend version number of at 757 // least 8.something, so we'll coerce the LLVM version into a form that 758 // guarantees it'll be big enough without really lying about the version. 759 int Major = 1000 * LLVM_VERSION_MAJOR + 760 10 * LLVM_VERSION_MINOR + 761 LLVM_VERSION_PATCH; 762 // Clamp it for builds that use unusually large version numbers. 763 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 764 Version BackVer = {{ Major, 0, 0, 0 }}; 765 OS.AddComment("Backend version"); 766 for (int N = 0; N < 4; ++N) 767 OS.EmitIntValue(BackVer.Part[N], 2); 768 769 OS.AddComment("Null-terminated compiler version string"); 770 emitNullTerminatedSymbolName(OS, CompilerVersion); 771 772 OS.EmitLabel(CompilerEnd); 773 } 774 775 void CodeViewDebug::emitInlineeLinesSubsection() { 776 if (InlinedSubprograms.empty()) 777 return; 778 779 OS.AddComment("Inlinee lines subsection"); 780 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 781 782 // We emit the checksum info for files. This is used by debuggers to 783 // determine if a pdb matches the source before loading it. Visual Studio, 784 // for instance, will display a warning that the breakpoints are not valid if 785 // the pdb does not match the source. 786 OS.AddComment("Inlinee lines signature"); 787 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 788 789 for (const DISubprogram *SP : InlinedSubprograms) { 790 assert(TypeIndices.count({SP, nullptr})); 791 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 792 793 OS.AddBlankLine(); 794 unsigned FileId = maybeRecordFile(SP->getFile()); 795 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 796 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 797 OS.AddBlankLine(); 798 OS.AddComment("Type index of inlined function"); 799 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 800 OS.AddComment("Offset into filechecksum table"); 801 OS.EmitCVFileChecksumOffsetDirective(FileId); 802 OS.AddComment("Starting line number"); 803 OS.EmitIntValue(SP->getLine(), 4); 804 } 805 806 endCVSubsection(InlineEnd); 807 } 808 809 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 810 const DILocation *InlinedAt, 811 const InlineSite &Site) { 812 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 813 *InlineEnd = MMI->getContext().createTempSymbol(); 814 815 assert(TypeIndices.count({Site.Inlinee, nullptr})); 816 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 817 818 // SymbolRecord 819 OS.AddComment("Record length"); 820 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 821 OS.EmitLabel(InlineBegin); 822 OS.AddComment("Record kind: S_INLINESITE"); 823 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 824 825 OS.AddComment("PtrParent"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrEnd"); 828 OS.EmitIntValue(0, 4); 829 OS.AddComment("Inlinee type index"); 830 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 831 832 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 833 unsigned StartLineNum = Site.Inlinee->getLine(); 834 835 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 836 FI.Begin, FI.End); 837 838 OS.EmitLabel(InlineEnd); 839 840 emitLocalVariableList(FI, Site.InlinedLocals); 841 842 // Recurse on child inlined call sites before closing the scope. 843 for (const DILocation *ChildSite : Site.ChildSites) { 844 auto I = FI.InlineSites.find(ChildSite); 845 assert(I != FI.InlineSites.end() && 846 "child site not in function inline site map"); 847 emitInlinedCallSite(FI, ChildSite, I->second); 848 } 849 850 // Close the scope. 851 OS.AddComment("Record length"); 852 OS.EmitIntValue(2, 2); // RecordLength 853 OS.AddComment("Record kind: S_INLINESITE_END"); 854 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 855 } 856 857 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 858 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 859 // comdat key. A section may be comdat because of -ffunction-sections or 860 // because it is comdat in the IR. 861 MCSectionCOFF *GVSec = 862 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 863 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 864 865 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 866 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 867 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 868 869 OS.SwitchSection(DebugSec); 870 871 // Emit the magic version number if this is the first time we've switched to 872 // this section. 873 if (ComdatDebugSections.insert(DebugSec).second) 874 emitCodeViewMagicVersion(); 875 } 876 877 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 878 // The only supported thunk ordinal is currently the standard type. 879 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 880 FunctionInfo &FI, 881 const MCSymbol *Fn) { 882 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 883 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 884 885 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 886 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 887 888 // Emit S_THUNK32 889 MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(), 890 *ThunkRecordEnd = MMI->getContext().createTempSymbol(); 891 OS.AddComment("Record length"); 892 OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2); 893 OS.EmitLabel(ThunkRecordBegin); 894 OS.AddComment("Record kind: S_THUNK32"); 895 OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2); 896 OS.AddComment("PtrParent"); 897 OS.EmitIntValue(0, 4); 898 OS.AddComment("PtrEnd"); 899 OS.EmitIntValue(0, 4); 900 OS.AddComment("PtrNext"); 901 OS.EmitIntValue(0, 4); 902 OS.AddComment("Thunk section relative address"); 903 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 904 OS.AddComment("Thunk section index"); 905 OS.EmitCOFFSectionIndex(Fn); 906 OS.AddComment("Code size"); 907 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 908 OS.AddComment("Ordinal"); 909 OS.EmitIntValue(unsigned(ordinal), 1); 910 OS.AddComment("Function name"); 911 emitNullTerminatedSymbolName(OS, FuncName); 912 // Additional fields specific to the thunk ordinal would go here. 913 OS.EmitLabel(ThunkRecordEnd); 914 915 // Local variables/inlined routines are purposely omitted here. The point of 916 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 917 918 // Emit S_PROC_ID_END 919 const unsigned RecordLengthForSymbolEnd = 2; 920 OS.AddComment("Record length"); 921 OS.EmitIntValue(RecordLengthForSymbolEnd, 2); 922 OS.AddComment("Record kind: S_PROC_ID_END"); 923 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 924 925 endCVSubsection(SymbolsEnd); 926 } 927 928 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 929 FunctionInfo &FI) { 930 // For each function there is a separate subsection which holds the PC to 931 // file:line table. 932 const MCSymbol *Fn = Asm->getSymbol(GV); 933 assert(Fn); 934 935 // Switch to the to a comdat section, if appropriate. 936 switchToDebugSectionForSymbol(Fn); 937 938 std::string FuncName; 939 auto *SP = GV->getSubprogram(); 940 assert(SP); 941 setCurrentSubprogram(SP); 942 943 if (SP->isThunk()) { 944 emitDebugInfoForThunk(GV, FI, Fn); 945 return; 946 } 947 948 // If we have a display name, build the fully qualified name by walking the 949 // chain of scopes. 950 if (!SP->getName().empty()) 951 FuncName = 952 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 953 954 // If our DISubprogram name is empty, use the mangled name. 955 if (FuncName.empty()) 956 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 957 958 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 959 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 960 OS.EmitCVFPOData(Fn); 961 962 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 963 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 964 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 965 { 966 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 967 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 968 OS.AddComment("Record length"); 969 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 970 OS.EmitLabel(ProcRecordBegin); 971 972 if (GV->hasLocalLinkage()) { 973 OS.AddComment("Record kind: S_LPROC32_ID"); 974 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 975 } else { 976 OS.AddComment("Record kind: S_GPROC32_ID"); 977 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 978 } 979 980 // These fields are filled in by tools like CVPACK which run after the fact. 981 OS.AddComment("PtrParent"); 982 OS.EmitIntValue(0, 4); 983 OS.AddComment("PtrEnd"); 984 OS.EmitIntValue(0, 4); 985 OS.AddComment("PtrNext"); 986 OS.EmitIntValue(0, 4); 987 // This is the important bit that tells the debugger where the function 988 // code is located and what's its size: 989 OS.AddComment("Code size"); 990 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 991 OS.AddComment("Offset after prologue"); 992 OS.EmitIntValue(0, 4); 993 OS.AddComment("Offset before epilogue"); 994 OS.EmitIntValue(0, 4); 995 OS.AddComment("Function type index"); 996 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 997 OS.AddComment("Function section relative address"); 998 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 999 OS.AddComment("Function section index"); 1000 OS.EmitCOFFSectionIndex(Fn); 1001 OS.AddComment("Flags"); 1002 OS.EmitIntValue(0, 1); 1003 // Emit the function display name as a null-terminated string. 1004 OS.AddComment("Function name"); 1005 // Truncate the name so we won't overflow the record length field. 1006 emitNullTerminatedSymbolName(OS, FuncName); 1007 OS.EmitLabel(ProcRecordEnd); 1008 1009 MCSymbol *FrameProcBegin = MMI->getContext().createTempSymbol(), 1010 *FrameProcEnd = MMI->getContext().createTempSymbol(); 1011 OS.AddComment("Record length"); 1012 OS.emitAbsoluteSymbolDiff(FrameProcEnd, FrameProcBegin, 2); 1013 OS.EmitLabel(FrameProcBegin); 1014 OS.AddComment("Record kind: S_FRAMEPROC"); 1015 OS.EmitIntValue(unsigned(SymbolKind::S_FRAMEPROC), 2); 1016 // Subtract out the CSR size since MSVC excludes that and we include it. 1017 OS.AddComment("FrameSize"); 1018 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1019 OS.AddComment("Padding"); 1020 OS.EmitIntValue(0, 4); 1021 OS.AddComment("Offset of padding"); 1022 OS.EmitIntValue(0, 4); 1023 OS.AddComment("Bytes of callee saved registers"); 1024 OS.EmitIntValue(FI.CSRSize, 4); 1025 OS.AddComment("Exception handler offset"); 1026 OS.EmitIntValue(0, 4); 1027 OS.AddComment("Exception handler section"); 1028 OS.EmitIntValue(0, 2); 1029 OS.AddComment("Flags (defines frame register)"); 1030 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1031 OS.EmitLabel(FrameProcEnd); 1032 1033 emitLocalVariableList(FI, FI.Locals); 1034 emitLexicalBlockList(FI.ChildBlocks, FI); 1035 1036 // Emit inlined call site information. Only emit functions inlined directly 1037 // into the parent function. We'll emit the other sites recursively as part 1038 // of their parent inline site. 1039 for (const DILocation *InlinedAt : FI.ChildSites) { 1040 auto I = FI.InlineSites.find(InlinedAt); 1041 assert(I != FI.InlineSites.end() && 1042 "child site not in function inline site map"); 1043 emitInlinedCallSite(FI, InlinedAt, I->second); 1044 } 1045 1046 for (auto Annot : FI.Annotations) { 1047 MCSymbol *Label = Annot.first; 1048 MDTuple *Strs = cast<MDTuple>(Annot.second); 1049 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 1050 *AnnotEnd = MMI->getContext().createTempSymbol(); 1051 OS.AddComment("Record length"); 1052 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 1053 OS.EmitLabel(AnnotBegin); 1054 OS.AddComment("Record kind: S_ANNOTATION"); 1055 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 1056 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1057 // FIXME: Make sure we don't overflow the max record size. 1058 OS.EmitCOFFSectionIndex(Label); 1059 OS.EmitIntValue(Strs->getNumOperands(), 2); 1060 for (Metadata *MD : Strs->operands()) { 1061 // MDStrings are null terminated, so we can do EmitBytes and get the 1062 // nice .asciz directive. 1063 StringRef Str = cast<MDString>(MD)->getString(); 1064 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1065 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1066 } 1067 OS.EmitLabel(AnnotEnd); 1068 } 1069 1070 if (SP != nullptr) 1071 emitDebugInfoForUDTs(LocalUDTs); 1072 1073 // We're done with this function. 1074 OS.AddComment("Record length"); 1075 OS.EmitIntValue(0x0002, 2); 1076 OS.AddComment("Record kind: S_PROC_ID_END"); 1077 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 1078 } 1079 endCVSubsection(SymbolsEnd); 1080 1081 // We have an assembler directive that takes care of the whole line table. 1082 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1083 } 1084 1085 CodeViewDebug::LocalVarDefRange 1086 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1087 LocalVarDefRange DR; 1088 DR.InMemory = -1; 1089 DR.DataOffset = Offset; 1090 assert(DR.DataOffset == Offset && "truncation"); 1091 DR.IsSubfield = 0; 1092 DR.StructOffset = 0; 1093 DR.CVRegister = CVRegister; 1094 return DR; 1095 } 1096 1097 void CodeViewDebug::collectVariableInfoFromMFTable( 1098 DenseSet<InlinedEntity> &Processed) { 1099 const MachineFunction &MF = *Asm->MF; 1100 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1101 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1102 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1103 1104 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1105 if (!VI.Var) 1106 continue; 1107 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1108 "Expected inlined-at fields to agree"); 1109 1110 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1111 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1112 1113 // If variable scope is not found then skip this variable. 1114 if (!Scope) 1115 continue; 1116 1117 // If the variable has an attached offset expression, extract it. 1118 // FIXME: Try to handle DW_OP_deref as well. 1119 int64_t ExprOffset = 0; 1120 if (VI.Expr) 1121 if (!VI.Expr->extractIfOffset(ExprOffset)) 1122 continue; 1123 1124 // Get the frame register used and the offset. 1125 unsigned FrameReg = 0; 1126 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1127 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1128 1129 // Calculate the label ranges. 1130 LocalVarDefRange DefRange = 1131 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1132 for (const InsnRange &Range : Scope->getRanges()) { 1133 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1134 const MCSymbol *End = getLabelAfterInsn(Range.second); 1135 End = End ? End : Asm->getFunctionEnd(); 1136 DefRange.Ranges.emplace_back(Begin, End); 1137 } 1138 1139 LocalVariable Var; 1140 Var.DIVar = VI.Var; 1141 Var.DefRanges.emplace_back(std::move(DefRange)); 1142 recordLocalVariable(std::move(Var), Scope); 1143 } 1144 } 1145 1146 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1147 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1148 } 1149 1150 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1151 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1152 } 1153 1154 void CodeViewDebug::calculateRanges( 1155 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1156 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1157 1158 // Calculate the definition ranges. 1159 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1160 const InsnRange &Range = *I; 1161 const MachineInstr *DVInst = Range.first; 1162 assert(DVInst->isDebugValue() && "Invalid History entry"); 1163 // FIXME: Find a way to represent constant variables, since they are 1164 // relatively common. 1165 Optional<DbgVariableLocation> Location = 1166 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1167 if (!Location) 1168 continue; 1169 1170 // CodeView can only express variables in register and variables in memory 1171 // at a constant offset from a register. However, for variables passed 1172 // indirectly by pointer, it is common for that pointer to be spilled to a 1173 // stack location. For the special case of one offseted load followed by a 1174 // zero offset load (a pointer spilled to the stack), we change the type of 1175 // the local variable from a value type to a reference type. This tricks the 1176 // debugger into doing the load for us. 1177 if (Var.UseReferenceType) { 1178 // We're using a reference type. Drop the last zero offset load. 1179 if (canUseReferenceType(*Location)) 1180 Location->LoadChain.pop_back(); 1181 else 1182 continue; 1183 } else if (needsReferenceType(*Location)) { 1184 // This location can't be expressed without switching to a reference type. 1185 // Start over using that. 1186 Var.UseReferenceType = true; 1187 Var.DefRanges.clear(); 1188 calculateRanges(Var, Ranges); 1189 return; 1190 } 1191 1192 // We can only handle a register or an offseted load of a register. 1193 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1194 continue; 1195 { 1196 LocalVarDefRange DR; 1197 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1198 DR.InMemory = !Location->LoadChain.empty(); 1199 DR.DataOffset = 1200 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1201 if (Location->FragmentInfo) { 1202 DR.IsSubfield = true; 1203 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1204 } else { 1205 DR.IsSubfield = false; 1206 DR.StructOffset = 0; 1207 } 1208 1209 if (Var.DefRanges.empty() || 1210 Var.DefRanges.back().isDifferentLocation(DR)) { 1211 Var.DefRanges.emplace_back(std::move(DR)); 1212 } 1213 } 1214 1215 // Compute the label range. 1216 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1217 const MCSymbol *End = getLabelAfterInsn(Range.second); 1218 if (!End) { 1219 // This range is valid until the next overlapping bitpiece. In the 1220 // common case, ranges will not be bitpieces, so they will overlap. 1221 auto J = std::next(I); 1222 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1223 while (J != E && 1224 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1225 ++J; 1226 if (J != E) 1227 End = getLabelBeforeInsn(J->first); 1228 else 1229 End = Asm->getFunctionEnd(); 1230 } 1231 1232 // If the last range end is our begin, just extend the last range. 1233 // Otherwise make a new range. 1234 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1235 Var.DefRanges.back().Ranges; 1236 if (!R.empty() && R.back().second == Begin) 1237 R.back().second = End; 1238 else 1239 R.emplace_back(Begin, End); 1240 1241 // FIXME: Do more range combining. 1242 } 1243 } 1244 1245 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1246 DenseSet<InlinedEntity> Processed; 1247 // Grab the variable info that was squirreled away in the MMI side-table. 1248 collectVariableInfoFromMFTable(Processed); 1249 1250 for (const auto &I : DbgValues) { 1251 InlinedEntity IV = I.first; 1252 if (Processed.count(IV)) 1253 continue; 1254 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1255 const DILocation *InlinedAt = IV.second; 1256 1257 // Instruction ranges, specifying where IV is accessible. 1258 const auto &Ranges = I.second; 1259 1260 LexicalScope *Scope = nullptr; 1261 if (InlinedAt) 1262 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1263 else 1264 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1265 // If variable scope is not found then skip this variable. 1266 if (!Scope) 1267 continue; 1268 1269 LocalVariable Var; 1270 Var.DIVar = DIVar; 1271 1272 calculateRanges(Var, Ranges); 1273 recordLocalVariable(std::move(Var), Scope); 1274 } 1275 } 1276 1277 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1278 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1279 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1280 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1281 const Function &GV = MF->getFunction(); 1282 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1283 assert(Insertion.second && "function already has info"); 1284 CurFn = Insertion.first->second.get(); 1285 CurFn->FuncId = NextFuncId++; 1286 CurFn->Begin = Asm->getFunctionBegin(); 1287 1288 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1289 // callee-saved registers were used. For targets that don't use a PUSH 1290 // instruction (AArch64), this will be zero. 1291 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1292 CurFn->FrameSize = MFI.getStackSize(); 1293 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1294 1295 // For this function S_FRAMEPROC record, figure out which codeview register 1296 // will be the frame pointer. 1297 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1298 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1299 if (CurFn->FrameSize > 0) { 1300 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1301 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1302 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1303 } else { 1304 // If there is an FP, parameters are always relative to it. 1305 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1306 if (CurFn->HasStackRealignment) { 1307 // If the stack needs realignment, locals are relative to SP or VFRAME. 1308 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1309 } else { 1310 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1311 // other stack adjustments. 1312 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1313 } 1314 } 1315 } 1316 1317 // Compute other frame procedure options. 1318 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1319 if (MFI.hasVarSizedObjects()) 1320 FPO |= FrameProcedureOptions::HasAlloca; 1321 if (MF->exposesReturnsTwice()) 1322 FPO |= FrameProcedureOptions::HasSetJmp; 1323 // FIXME: Set HasLongJmp if we ever track that info. 1324 if (MF->hasInlineAsm()) 1325 FPO |= FrameProcedureOptions::HasInlineAssembly; 1326 if (GV.hasPersonalityFn()) { 1327 if (isAsynchronousEHPersonality( 1328 classifyEHPersonality(GV.getPersonalityFn()))) 1329 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1330 else 1331 FPO |= FrameProcedureOptions::HasExceptionHandling; 1332 } 1333 if (GV.hasFnAttribute(Attribute::InlineHint)) 1334 FPO |= FrameProcedureOptions::MarkedInline; 1335 if (GV.hasFnAttribute(Attribute::Naked)) 1336 FPO |= FrameProcedureOptions::Naked; 1337 if (MFI.hasStackProtectorIndex()) 1338 FPO |= FrameProcedureOptions::SecurityChecks; 1339 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1340 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1341 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && 1342 !GV.hasFnAttribute(Attribute::OptimizeNone)) 1343 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1344 // FIXME: Set GuardCfg when it is implemented. 1345 CurFn->FrameProcOpts = FPO; 1346 1347 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1348 1349 // Find the end of the function prolog. First known non-DBG_VALUE and 1350 // non-frame setup location marks the beginning of the function body. 1351 // FIXME: is there a simpler a way to do this? Can we just search 1352 // for the first instruction of the function, not the last of the prolog? 1353 DebugLoc PrologEndLoc; 1354 bool EmptyPrologue = true; 1355 for (const auto &MBB : *MF) { 1356 for (const auto &MI : MBB) { 1357 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1358 MI.getDebugLoc()) { 1359 PrologEndLoc = MI.getDebugLoc(); 1360 break; 1361 } else if (!MI.isMetaInstruction()) { 1362 EmptyPrologue = false; 1363 } 1364 } 1365 } 1366 1367 // Record beginning of function if we have a non-empty prologue. 1368 if (PrologEndLoc && !EmptyPrologue) { 1369 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1370 maybeRecordLocation(FnStartDL, MF); 1371 } 1372 } 1373 1374 static bool shouldEmitUdt(const DIType *T) { 1375 if (!T) 1376 return false; 1377 1378 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1379 if (T->getTag() == dwarf::DW_TAG_typedef) { 1380 if (DIScope *Scope = T->getScope().resolve()) { 1381 switch (Scope->getTag()) { 1382 case dwarf::DW_TAG_structure_type: 1383 case dwarf::DW_TAG_class_type: 1384 case dwarf::DW_TAG_union_type: 1385 return false; 1386 } 1387 } 1388 } 1389 1390 while (true) { 1391 if (!T || T->isForwardDecl()) 1392 return false; 1393 1394 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1395 if (!DT) 1396 return true; 1397 T = DT->getBaseType().resolve(); 1398 } 1399 return true; 1400 } 1401 1402 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1403 // Don't record empty UDTs. 1404 if (Ty->getName().empty()) 1405 return; 1406 if (!shouldEmitUdt(Ty)) 1407 return; 1408 1409 SmallVector<StringRef, 5> QualifiedNameComponents; 1410 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1411 Ty->getScope().resolve(), QualifiedNameComponents); 1412 1413 std::string FullyQualifiedName = 1414 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1415 1416 if (ClosestSubprogram == nullptr) { 1417 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1418 } else if (ClosestSubprogram == CurrentSubprogram) { 1419 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1420 } 1421 1422 // TODO: What if the ClosestSubprogram is neither null or the current 1423 // subprogram? Currently, the UDT just gets dropped on the floor. 1424 // 1425 // The current behavior is not desirable. To get maximal fidelity, we would 1426 // need to perform all type translation before beginning emission of .debug$S 1427 // and then make LocalUDTs a member of FunctionInfo 1428 } 1429 1430 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1431 // Generic dispatch for lowering an unknown type. 1432 switch (Ty->getTag()) { 1433 case dwarf::DW_TAG_array_type: 1434 return lowerTypeArray(cast<DICompositeType>(Ty)); 1435 case dwarf::DW_TAG_typedef: 1436 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1437 case dwarf::DW_TAG_base_type: 1438 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1439 case dwarf::DW_TAG_pointer_type: 1440 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1441 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1442 LLVM_FALLTHROUGH; 1443 case dwarf::DW_TAG_reference_type: 1444 case dwarf::DW_TAG_rvalue_reference_type: 1445 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1446 case dwarf::DW_TAG_ptr_to_member_type: 1447 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1448 case dwarf::DW_TAG_restrict_type: 1449 case dwarf::DW_TAG_const_type: 1450 case dwarf::DW_TAG_volatile_type: 1451 // TODO: add support for DW_TAG_atomic_type here 1452 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1453 case dwarf::DW_TAG_subroutine_type: 1454 if (ClassTy) { 1455 // The member function type of a member function pointer has no 1456 // ThisAdjustment. 1457 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1458 /*ThisAdjustment=*/0, 1459 /*IsStaticMethod=*/false); 1460 } 1461 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1462 case dwarf::DW_TAG_enumeration_type: 1463 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1464 case dwarf::DW_TAG_class_type: 1465 case dwarf::DW_TAG_structure_type: 1466 return lowerTypeClass(cast<DICompositeType>(Ty)); 1467 case dwarf::DW_TAG_union_type: 1468 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1469 case dwarf::DW_TAG_unspecified_type: 1470 return TypeIndex::None(); 1471 default: 1472 // Use the null type index. 1473 return TypeIndex(); 1474 } 1475 } 1476 1477 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1478 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1479 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1480 StringRef TypeName = Ty->getName(); 1481 1482 addToUDTs(Ty); 1483 1484 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1485 TypeName == "HRESULT") 1486 return TypeIndex(SimpleTypeKind::HResult); 1487 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1488 TypeName == "wchar_t") 1489 return TypeIndex(SimpleTypeKind::WideCharacter); 1490 1491 return UnderlyingTypeIndex; 1492 } 1493 1494 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1495 DITypeRef ElementTypeRef = Ty->getBaseType(); 1496 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1497 // IndexType is size_t, which depends on the bitness of the target. 1498 TypeIndex IndexType = getPointerSizeInBytes() == 8 1499 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1500 : TypeIndex(SimpleTypeKind::UInt32Long); 1501 1502 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1503 1504 // Add subranges to array type. 1505 DINodeArray Elements = Ty->getElements(); 1506 for (int i = Elements.size() - 1; i >= 0; --i) { 1507 const DINode *Element = Elements[i]; 1508 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1509 1510 const DISubrange *Subrange = cast<DISubrange>(Element); 1511 assert(Subrange->getLowerBound() == 0 && 1512 "codeview doesn't support subranges with lower bounds"); 1513 int64_t Count = -1; 1514 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1515 Count = CI->getSExtValue(); 1516 1517 // Forward declarations of arrays without a size and VLAs use a count of -1. 1518 // Emit a count of zero in these cases to match what MSVC does for arrays 1519 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1520 // should do for them even if we could distinguish them. 1521 if (Count == -1) 1522 Count = 0; 1523 1524 // Update the element size and element type index for subsequent subranges. 1525 ElementSize *= Count; 1526 1527 // If this is the outermost array, use the size from the array. It will be 1528 // more accurate if we had a VLA or an incomplete element type size. 1529 uint64_t ArraySize = 1530 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1531 1532 StringRef Name = (i == 0) ? Ty->getName() : ""; 1533 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1534 ElementTypeIndex = TypeTable.writeLeafType(AR); 1535 } 1536 1537 return ElementTypeIndex; 1538 } 1539 1540 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1541 TypeIndex Index; 1542 dwarf::TypeKind Kind; 1543 uint32_t ByteSize; 1544 1545 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1546 ByteSize = Ty->getSizeInBits() / 8; 1547 1548 SimpleTypeKind STK = SimpleTypeKind::None; 1549 switch (Kind) { 1550 case dwarf::DW_ATE_address: 1551 // FIXME: Translate 1552 break; 1553 case dwarf::DW_ATE_boolean: 1554 switch (ByteSize) { 1555 case 1: STK = SimpleTypeKind::Boolean8; break; 1556 case 2: STK = SimpleTypeKind::Boolean16; break; 1557 case 4: STK = SimpleTypeKind::Boolean32; break; 1558 case 8: STK = SimpleTypeKind::Boolean64; break; 1559 case 16: STK = SimpleTypeKind::Boolean128; break; 1560 } 1561 break; 1562 case dwarf::DW_ATE_complex_float: 1563 switch (ByteSize) { 1564 case 2: STK = SimpleTypeKind::Complex16; break; 1565 case 4: STK = SimpleTypeKind::Complex32; break; 1566 case 8: STK = SimpleTypeKind::Complex64; break; 1567 case 10: STK = SimpleTypeKind::Complex80; break; 1568 case 16: STK = SimpleTypeKind::Complex128; break; 1569 } 1570 break; 1571 case dwarf::DW_ATE_float: 1572 switch (ByteSize) { 1573 case 2: STK = SimpleTypeKind::Float16; break; 1574 case 4: STK = SimpleTypeKind::Float32; break; 1575 case 6: STK = SimpleTypeKind::Float48; break; 1576 case 8: STK = SimpleTypeKind::Float64; break; 1577 case 10: STK = SimpleTypeKind::Float80; break; 1578 case 16: STK = SimpleTypeKind::Float128; break; 1579 } 1580 break; 1581 case dwarf::DW_ATE_signed: 1582 switch (ByteSize) { 1583 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1584 case 2: STK = SimpleTypeKind::Int16Short; break; 1585 case 4: STK = SimpleTypeKind::Int32; break; 1586 case 8: STK = SimpleTypeKind::Int64Quad; break; 1587 case 16: STK = SimpleTypeKind::Int128Oct; break; 1588 } 1589 break; 1590 case dwarf::DW_ATE_unsigned: 1591 switch (ByteSize) { 1592 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1593 case 2: STK = SimpleTypeKind::UInt16Short; break; 1594 case 4: STK = SimpleTypeKind::UInt32; break; 1595 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1596 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1597 } 1598 break; 1599 case dwarf::DW_ATE_UTF: 1600 switch (ByteSize) { 1601 case 2: STK = SimpleTypeKind::Character16; break; 1602 case 4: STK = SimpleTypeKind::Character32; break; 1603 } 1604 break; 1605 case dwarf::DW_ATE_signed_char: 1606 if (ByteSize == 1) 1607 STK = SimpleTypeKind::SignedCharacter; 1608 break; 1609 case dwarf::DW_ATE_unsigned_char: 1610 if (ByteSize == 1) 1611 STK = SimpleTypeKind::UnsignedCharacter; 1612 break; 1613 default: 1614 break; 1615 } 1616 1617 // Apply some fixups based on the source-level type name. 1618 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1619 STK = SimpleTypeKind::Int32Long; 1620 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1621 STK = SimpleTypeKind::UInt32Long; 1622 if (STK == SimpleTypeKind::UInt16Short && 1623 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1624 STK = SimpleTypeKind::WideCharacter; 1625 if ((STK == SimpleTypeKind::SignedCharacter || 1626 STK == SimpleTypeKind::UnsignedCharacter) && 1627 Ty->getName() == "char") 1628 STK = SimpleTypeKind::NarrowCharacter; 1629 1630 return TypeIndex(STK); 1631 } 1632 1633 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1634 PointerOptions PO) { 1635 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1636 1637 // Pointers to simple types without any options can use SimpleTypeMode, rather 1638 // than having a dedicated pointer type record. 1639 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1640 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1641 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1642 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1643 ? SimpleTypeMode::NearPointer64 1644 : SimpleTypeMode::NearPointer32; 1645 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1646 } 1647 1648 PointerKind PK = 1649 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1650 PointerMode PM = PointerMode::Pointer; 1651 switch (Ty->getTag()) { 1652 default: llvm_unreachable("not a pointer tag type"); 1653 case dwarf::DW_TAG_pointer_type: 1654 PM = PointerMode::Pointer; 1655 break; 1656 case dwarf::DW_TAG_reference_type: 1657 PM = PointerMode::LValueReference; 1658 break; 1659 case dwarf::DW_TAG_rvalue_reference_type: 1660 PM = PointerMode::RValueReference; 1661 break; 1662 } 1663 1664 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1665 return TypeTable.writeLeafType(PR); 1666 } 1667 1668 static PointerToMemberRepresentation 1669 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1670 // SizeInBytes being zero generally implies that the member pointer type was 1671 // incomplete, which can happen if it is part of a function prototype. In this 1672 // case, use the unknown model instead of the general model. 1673 if (IsPMF) { 1674 switch (Flags & DINode::FlagPtrToMemberRep) { 1675 case 0: 1676 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1677 : PointerToMemberRepresentation::GeneralFunction; 1678 case DINode::FlagSingleInheritance: 1679 return PointerToMemberRepresentation::SingleInheritanceFunction; 1680 case DINode::FlagMultipleInheritance: 1681 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1682 case DINode::FlagVirtualInheritance: 1683 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1684 } 1685 } else { 1686 switch (Flags & DINode::FlagPtrToMemberRep) { 1687 case 0: 1688 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1689 : PointerToMemberRepresentation::GeneralData; 1690 case DINode::FlagSingleInheritance: 1691 return PointerToMemberRepresentation::SingleInheritanceData; 1692 case DINode::FlagMultipleInheritance: 1693 return PointerToMemberRepresentation::MultipleInheritanceData; 1694 case DINode::FlagVirtualInheritance: 1695 return PointerToMemberRepresentation::VirtualInheritanceData; 1696 } 1697 } 1698 llvm_unreachable("invalid ptr to member representation"); 1699 } 1700 1701 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1702 PointerOptions PO) { 1703 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1704 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1705 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1706 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1707 : PointerKind::Near32; 1708 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1709 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1710 : PointerMode::PointerToDataMember; 1711 1712 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1713 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1714 MemberPointerInfo MPI( 1715 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1716 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1717 return TypeTable.writeLeafType(PR); 1718 } 1719 1720 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1721 /// have a translation, use the NearC convention. 1722 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1723 switch (DwarfCC) { 1724 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1725 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1726 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1727 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1728 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1729 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1730 } 1731 return CallingConvention::NearC; 1732 } 1733 1734 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1735 ModifierOptions Mods = ModifierOptions::None; 1736 PointerOptions PO = PointerOptions::None; 1737 bool IsModifier = true; 1738 const DIType *BaseTy = Ty; 1739 while (IsModifier && BaseTy) { 1740 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1741 switch (BaseTy->getTag()) { 1742 case dwarf::DW_TAG_const_type: 1743 Mods |= ModifierOptions::Const; 1744 PO |= PointerOptions::Const; 1745 break; 1746 case dwarf::DW_TAG_volatile_type: 1747 Mods |= ModifierOptions::Volatile; 1748 PO |= PointerOptions::Volatile; 1749 break; 1750 case dwarf::DW_TAG_restrict_type: 1751 // Only pointer types be marked with __restrict. There is no known flag 1752 // for __restrict in LF_MODIFIER records. 1753 PO |= PointerOptions::Restrict; 1754 break; 1755 default: 1756 IsModifier = false; 1757 break; 1758 } 1759 if (IsModifier) 1760 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1761 } 1762 1763 // Check if the inner type will use an LF_POINTER record. If so, the 1764 // qualifiers will go in the LF_POINTER record. This comes up for types like 1765 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1766 // char *'. 1767 if (BaseTy) { 1768 switch (BaseTy->getTag()) { 1769 case dwarf::DW_TAG_pointer_type: 1770 case dwarf::DW_TAG_reference_type: 1771 case dwarf::DW_TAG_rvalue_reference_type: 1772 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1773 case dwarf::DW_TAG_ptr_to_member_type: 1774 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1775 default: 1776 break; 1777 } 1778 } 1779 1780 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1781 1782 // Return the base type index if there aren't any modifiers. For example, the 1783 // metadata could contain restrict wrappers around non-pointer types. 1784 if (Mods == ModifierOptions::None) 1785 return ModifiedTI; 1786 1787 ModifierRecord MR(ModifiedTI, Mods); 1788 return TypeTable.writeLeafType(MR); 1789 } 1790 1791 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1792 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1793 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1794 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1795 1796 // MSVC uses type none for variadic argument. 1797 if (ReturnAndArgTypeIndices.size() > 1 && 1798 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1799 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1800 } 1801 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1802 ArrayRef<TypeIndex> ArgTypeIndices = None; 1803 if (!ReturnAndArgTypeIndices.empty()) { 1804 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1805 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1806 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1807 } 1808 1809 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1810 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1811 1812 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1813 1814 FunctionOptions FO = getFunctionOptions(Ty); 1815 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1816 ArgListIndex); 1817 return TypeTable.writeLeafType(Procedure); 1818 } 1819 1820 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1821 const DIType *ClassTy, 1822 int ThisAdjustment, 1823 bool IsStaticMethod, 1824 FunctionOptions FO) { 1825 // Lower the containing class type. 1826 TypeIndex ClassType = getTypeIndex(ClassTy); 1827 1828 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1829 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1830 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1831 1832 // MSVC uses type none for variadic argument. 1833 if (ReturnAndArgTypeIndices.size() > 1 && 1834 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1835 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1836 } 1837 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1838 ArrayRef<TypeIndex> ArgTypeIndices = None; 1839 if (!ReturnAndArgTypeIndices.empty()) { 1840 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1841 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1842 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1843 } 1844 TypeIndex ThisTypeIndex; 1845 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1846 ThisTypeIndex = ArgTypeIndices.front(); 1847 ArgTypeIndices = ArgTypeIndices.drop_front(); 1848 } 1849 1850 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1851 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1852 1853 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1854 1855 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1856 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1857 return TypeTable.writeLeafType(MFR); 1858 } 1859 1860 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1861 unsigned VSlotCount = 1862 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1863 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1864 1865 VFTableShapeRecord VFTSR(Slots); 1866 return TypeTable.writeLeafType(VFTSR); 1867 } 1868 1869 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1870 switch (Flags & DINode::FlagAccessibility) { 1871 case DINode::FlagPrivate: return MemberAccess::Private; 1872 case DINode::FlagPublic: return MemberAccess::Public; 1873 case DINode::FlagProtected: return MemberAccess::Protected; 1874 case 0: 1875 // If there was no explicit access control, provide the default for the tag. 1876 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1877 : MemberAccess::Public; 1878 } 1879 llvm_unreachable("access flags are exclusive"); 1880 } 1881 1882 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1883 if (SP->isArtificial()) 1884 return MethodOptions::CompilerGenerated; 1885 1886 // FIXME: Handle other MethodOptions. 1887 1888 return MethodOptions::None; 1889 } 1890 1891 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1892 bool Introduced) { 1893 if (SP->getFlags() & DINode::FlagStaticMember) 1894 return MethodKind::Static; 1895 1896 switch (SP->getVirtuality()) { 1897 case dwarf::DW_VIRTUALITY_none: 1898 break; 1899 case dwarf::DW_VIRTUALITY_virtual: 1900 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1901 case dwarf::DW_VIRTUALITY_pure_virtual: 1902 return Introduced ? MethodKind::PureIntroducingVirtual 1903 : MethodKind::PureVirtual; 1904 default: 1905 llvm_unreachable("unhandled virtuality case"); 1906 } 1907 1908 return MethodKind::Vanilla; 1909 } 1910 1911 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1912 switch (Ty->getTag()) { 1913 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1914 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1915 } 1916 llvm_unreachable("unexpected tag"); 1917 } 1918 1919 /// Return ClassOptions that should be present on both the forward declaration 1920 /// and the defintion of a tag type. 1921 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1922 ClassOptions CO = ClassOptions::None; 1923 1924 // MSVC always sets this flag, even for local types. Clang doesn't always 1925 // appear to give every type a linkage name, which may be problematic for us. 1926 // FIXME: Investigate the consequences of not following them here. 1927 if (!Ty->getIdentifier().empty()) 1928 CO |= ClassOptions::HasUniqueName; 1929 1930 // Put the Nested flag on a type if it appears immediately inside a tag type. 1931 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1932 // here. That flag is only set on definitions, and not forward declarations. 1933 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1934 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1935 CO |= ClassOptions::Nested; 1936 1937 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 1938 // type only when it has an immediate function scope. Clang never puts enums 1939 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 1940 // always in function, class, or file scopes. 1941 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 1942 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 1943 CO |= ClassOptions::Scoped; 1944 } else { 1945 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1946 Scope = Scope->getScope().resolve()) { 1947 if (isa<DISubprogram>(Scope)) { 1948 CO |= ClassOptions::Scoped; 1949 break; 1950 } 1951 } 1952 } 1953 1954 return CO; 1955 } 1956 1957 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1958 switch (Ty->getTag()) { 1959 case dwarf::DW_TAG_class_type: 1960 case dwarf::DW_TAG_structure_type: 1961 case dwarf::DW_TAG_union_type: 1962 case dwarf::DW_TAG_enumeration_type: 1963 break; 1964 default: 1965 return; 1966 } 1967 1968 if (const auto *File = Ty->getFile()) { 1969 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1970 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1971 1972 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1973 TypeTable.writeLeafType(USLR); 1974 } 1975 } 1976 1977 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1978 ClassOptions CO = getCommonClassOptions(Ty); 1979 TypeIndex FTI; 1980 unsigned EnumeratorCount = 0; 1981 1982 if (Ty->isForwardDecl()) { 1983 CO |= ClassOptions::ForwardReference; 1984 } else { 1985 ContinuationRecordBuilder ContinuationBuilder; 1986 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1987 for (const DINode *Element : Ty->getElements()) { 1988 // We assume that the frontend provides all members in source declaration 1989 // order, which is what MSVC does. 1990 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1991 EnumeratorRecord ER(MemberAccess::Public, 1992 APSInt::getUnsigned(Enumerator->getValue()), 1993 Enumerator->getName()); 1994 ContinuationBuilder.writeMemberType(ER); 1995 EnumeratorCount++; 1996 } 1997 } 1998 FTI = TypeTable.insertRecord(ContinuationBuilder); 1999 } 2000 2001 std::string FullName = getFullyQualifiedName(Ty); 2002 2003 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2004 getTypeIndex(Ty->getBaseType())); 2005 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2006 2007 addUDTSrcLine(Ty, EnumTI); 2008 2009 return EnumTI; 2010 } 2011 2012 //===----------------------------------------------------------------------===// 2013 // ClassInfo 2014 //===----------------------------------------------------------------------===// 2015 2016 struct llvm::ClassInfo { 2017 struct MemberInfo { 2018 const DIDerivedType *MemberTypeNode; 2019 uint64_t BaseOffset; 2020 }; 2021 // [MemberInfo] 2022 using MemberList = std::vector<MemberInfo>; 2023 2024 using MethodsList = TinyPtrVector<const DISubprogram *>; 2025 // MethodName -> MethodsList 2026 using MethodsMap = MapVector<MDString *, MethodsList>; 2027 2028 /// Base classes. 2029 std::vector<const DIDerivedType *> Inheritance; 2030 2031 /// Direct members. 2032 MemberList Members; 2033 // Direct overloaded methods gathered by name. 2034 MethodsMap Methods; 2035 2036 TypeIndex VShapeTI; 2037 2038 std::vector<const DIType *> NestedTypes; 2039 }; 2040 2041 void CodeViewDebug::clear() { 2042 assert(CurFn == nullptr); 2043 FileIdMap.clear(); 2044 FnDebugInfo.clear(); 2045 FileToFilepathMap.clear(); 2046 LocalUDTs.clear(); 2047 GlobalUDTs.clear(); 2048 TypeIndices.clear(); 2049 CompleteTypeIndices.clear(); 2050 } 2051 2052 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2053 const DIDerivedType *DDTy) { 2054 if (!DDTy->getName().empty()) { 2055 Info.Members.push_back({DDTy, 0}); 2056 return; 2057 } 2058 2059 // An unnamed member may represent a nested struct or union. Attempt to 2060 // interpret the unnamed member as a DICompositeType possibly wrapped in 2061 // qualifier types. Add all the indirect fields to the current record if that 2062 // succeeds, and drop the member if that fails. 2063 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2064 uint64_t Offset = DDTy->getOffsetInBits(); 2065 const DIType *Ty = DDTy->getBaseType().resolve(); 2066 bool FullyResolved = false; 2067 while (!FullyResolved) { 2068 switch (Ty->getTag()) { 2069 case dwarf::DW_TAG_const_type: 2070 case dwarf::DW_TAG_volatile_type: 2071 // FIXME: we should apply the qualifier types to the indirect fields 2072 // rather than dropping them. 2073 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2074 break; 2075 default: 2076 FullyResolved = true; 2077 break; 2078 } 2079 } 2080 2081 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2082 if (!DCTy) 2083 return; 2084 2085 ClassInfo NestedInfo = collectClassInfo(DCTy); 2086 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2087 Info.Members.push_back( 2088 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2089 } 2090 2091 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2092 ClassInfo Info; 2093 // Add elements to structure type. 2094 DINodeArray Elements = Ty->getElements(); 2095 for (auto *Element : Elements) { 2096 // We assume that the frontend provides all members in source declaration 2097 // order, which is what MSVC does. 2098 if (!Element) 2099 continue; 2100 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2101 Info.Methods[SP->getRawName()].push_back(SP); 2102 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2103 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2104 collectMemberInfo(Info, DDTy); 2105 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2106 Info.Inheritance.push_back(DDTy); 2107 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2108 DDTy->getName() == "__vtbl_ptr_type") { 2109 Info.VShapeTI = getTypeIndex(DDTy); 2110 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2111 Info.NestedTypes.push_back(DDTy); 2112 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2113 // Ignore friend members. It appears that MSVC emitted info about 2114 // friends in the past, but modern versions do not. 2115 } 2116 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2117 Info.NestedTypes.push_back(Composite); 2118 } 2119 // Skip other unrecognized kinds of elements. 2120 } 2121 return Info; 2122 } 2123 2124 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2125 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2126 // if a complete type should be emitted instead of a forward reference. 2127 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2128 !Ty->isForwardDecl(); 2129 } 2130 2131 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2132 // Emit the complete type for unnamed structs. C++ classes with methods 2133 // which have a circular reference back to the class type are expected to 2134 // be named by the front-end and should not be "unnamed". C unnamed 2135 // structs should not have circular references. 2136 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2137 // If this unnamed complete type is already in the process of being defined 2138 // then the description of the type is malformed and cannot be emitted 2139 // into CodeView correctly so report a fatal error. 2140 auto I = CompleteTypeIndices.find(Ty); 2141 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2142 report_fatal_error("cannot debug circular reference to unnamed type"); 2143 return getCompleteTypeIndex(Ty); 2144 } 2145 2146 // First, construct the forward decl. Don't look into Ty to compute the 2147 // forward decl options, since it might not be available in all TUs. 2148 TypeRecordKind Kind = getRecordKind(Ty); 2149 ClassOptions CO = 2150 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2151 std::string FullName = getFullyQualifiedName(Ty); 2152 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2153 FullName, Ty->getIdentifier()); 2154 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2155 if (!Ty->isForwardDecl()) 2156 DeferredCompleteTypes.push_back(Ty); 2157 return FwdDeclTI; 2158 } 2159 2160 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2161 // Construct the field list and complete type record. 2162 TypeRecordKind Kind = getRecordKind(Ty); 2163 ClassOptions CO = getCommonClassOptions(Ty); 2164 TypeIndex FieldTI; 2165 TypeIndex VShapeTI; 2166 unsigned FieldCount; 2167 bool ContainsNestedClass; 2168 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2169 lowerRecordFieldList(Ty); 2170 2171 if (ContainsNestedClass) 2172 CO |= ClassOptions::ContainsNestedClass; 2173 2174 std::string FullName = getFullyQualifiedName(Ty); 2175 2176 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2177 2178 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2179 SizeInBytes, FullName, Ty->getIdentifier()); 2180 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2181 2182 addUDTSrcLine(Ty, ClassTI); 2183 2184 addToUDTs(Ty); 2185 2186 return ClassTI; 2187 } 2188 2189 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2190 // Emit the complete type for unnamed unions. 2191 if (shouldAlwaysEmitCompleteClassType(Ty)) 2192 return getCompleteTypeIndex(Ty); 2193 2194 ClassOptions CO = 2195 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2196 std::string FullName = getFullyQualifiedName(Ty); 2197 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2198 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2199 if (!Ty->isForwardDecl()) 2200 DeferredCompleteTypes.push_back(Ty); 2201 return FwdDeclTI; 2202 } 2203 2204 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2205 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2206 TypeIndex FieldTI; 2207 unsigned FieldCount; 2208 bool ContainsNestedClass; 2209 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2210 lowerRecordFieldList(Ty); 2211 2212 if (ContainsNestedClass) 2213 CO |= ClassOptions::ContainsNestedClass; 2214 2215 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2216 std::string FullName = getFullyQualifiedName(Ty); 2217 2218 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2219 Ty->getIdentifier()); 2220 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2221 2222 addUDTSrcLine(Ty, UnionTI); 2223 2224 addToUDTs(Ty); 2225 2226 return UnionTI; 2227 } 2228 2229 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2230 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2231 // Manually count members. MSVC appears to count everything that generates a 2232 // field list record. Each individual overload in a method overload group 2233 // contributes to this count, even though the overload group is a single field 2234 // list record. 2235 unsigned MemberCount = 0; 2236 ClassInfo Info = collectClassInfo(Ty); 2237 ContinuationRecordBuilder ContinuationBuilder; 2238 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2239 2240 // Create base classes. 2241 for (const DIDerivedType *I : Info.Inheritance) { 2242 if (I->getFlags() & DINode::FlagVirtual) { 2243 // Virtual base. 2244 unsigned VBPtrOffset = I->getVBPtrOffset(); 2245 // FIXME: Despite the accessor name, the offset is really in bytes. 2246 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2247 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2248 ? TypeRecordKind::IndirectVirtualBaseClass 2249 : TypeRecordKind::VirtualBaseClass; 2250 VirtualBaseClassRecord VBCR( 2251 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2252 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2253 VBTableIndex); 2254 2255 ContinuationBuilder.writeMemberType(VBCR); 2256 MemberCount++; 2257 } else { 2258 assert(I->getOffsetInBits() % 8 == 0 && 2259 "bases must be on byte boundaries"); 2260 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2261 getTypeIndex(I->getBaseType()), 2262 I->getOffsetInBits() / 8); 2263 ContinuationBuilder.writeMemberType(BCR); 2264 MemberCount++; 2265 } 2266 } 2267 2268 // Create members. 2269 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2270 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2271 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2272 StringRef MemberName = Member->getName(); 2273 MemberAccess Access = 2274 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2275 2276 if (Member->isStaticMember()) { 2277 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2278 ContinuationBuilder.writeMemberType(SDMR); 2279 MemberCount++; 2280 continue; 2281 } 2282 2283 // Virtual function pointer member. 2284 if ((Member->getFlags() & DINode::FlagArtificial) && 2285 Member->getName().startswith("_vptr$")) { 2286 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2287 ContinuationBuilder.writeMemberType(VFPR); 2288 MemberCount++; 2289 continue; 2290 } 2291 2292 // Data member. 2293 uint64_t MemberOffsetInBits = 2294 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2295 if (Member->isBitField()) { 2296 uint64_t StartBitOffset = MemberOffsetInBits; 2297 if (const auto *CI = 2298 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2299 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2300 } 2301 StartBitOffset -= MemberOffsetInBits; 2302 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2303 StartBitOffset); 2304 MemberBaseType = TypeTable.writeLeafType(BFR); 2305 } 2306 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2307 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2308 MemberName); 2309 ContinuationBuilder.writeMemberType(DMR); 2310 MemberCount++; 2311 } 2312 2313 // Create methods 2314 for (auto &MethodItr : Info.Methods) { 2315 StringRef Name = MethodItr.first->getString(); 2316 2317 std::vector<OneMethodRecord> Methods; 2318 for (const DISubprogram *SP : MethodItr.second) { 2319 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2320 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2321 2322 unsigned VFTableOffset = -1; 2323 if (Introduced) 2324 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2325 2326 Methods.push_back(OneMethodRecord( 2327 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2328 translateMethodKindFlags(SP, Introduced), 2329 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2330 MemberCount++; 2331 } 2332 assert(!Methods.empty() && "Empty methods map entry"); 2333 if (Methods.size() == 1) 2334 ContinuationBuilder.writeMemberType(Methods[0]); 2335 else { 2336 // FIXME: Make this use its own ContinuationBuilder so that 2337 // MethodOverloadList can be split correctly. 2338 MethodOverloadListRecord MOLR(Methods); 2339 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2340 2341 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2342 ContinuationBuilder.writeMemberType(OMR); 2343 } 2344 } 2345 2346 // Create nested classes. 2347 for (const DIType *Nested : Info.NestedTypes) { 2348 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2349 ContinuationBuilder.writeMemberType(R); 2350 MemberCount++; 2351 } 2352 2353 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2354 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2355 !Info.NestedTypes.empty()); 2356 } 2357 2358 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2359 if (!VBPType.getIndex()) { 2360 // Make a 'const int *' type. 2361 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2362 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2363 2364 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2365 : PointerKind::Near32; 2366 PointerMode PM = PointerMode::Pointer; 2367 PointerOptions PO = PointerOptions::None; 2368 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2369 VBPType = TypeTable.writeLeafType(PR); 2370 } 2371 2372 return VBPType; 2373 } 2374 2375 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2376 const DIType *Ty = TypeRef.resolve(); 2377 const DIType *ClassTy = ClassTyRef.resolve(); 2378 2379 // The null DIType is the void type. Don't try to hash it. 2380 if (!Ty) 2381 return TypeIndex::Void(); 2382 2383 // Check if we've already translated this type. Don't try to do a 2384 // get-or-create style insertion that caches the hash lookup across the 2385 // lowerType call. It will update the TypeIndices map. 2386 auto I = TypeIndices.find({Ty, ClassTy}); 2387 if (I != TypeIndices.end()) 2388 return I->second; 2389 2390 TypeLoweringScope S(*this); 2391 TypeIndex TI = lowerType(Ty, ClassTy); 2392 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2393 } 2394 2395 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2396 DIType *Ty = TypeRef.resolve(); 2397 PointerRecord PR(getTypeIndex(Ty), 2398 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2399 : PointerKind::Near32, 2400 PointerMode::LValueReference, PointerOptions::None, 2401 Ty->getSizeInBits() / 8); 2402 return TypeTable.writeLeafType(PR); 2403 } 2404 2405 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2406 const DIType *Ty = TypeRef.resolve(); 2407 2408 // The null DIType is the void type. Don't try to hash it. 2409 if (!Ty) 2410 return TypeIndex::Void(); 2411 2412 // If this is a non-record type, the complete type index is the same as the 2413 // normal type index. Just call getTypeIndex. 2414 switch (Ty->getTag()) { 2415 case dwarf::DW_TAG_class_type: 2416 case dwarf::DW_TAG_structure_type: 2417 case dwarf::DW_TAG_union_type: 2418 break; 2419 default: 2420 return getTypeIndex(Ty); 2421 } 2422 2423 // Check if we've already translated the complete record type. 2424 const auto *CTy = cast<DICompositeType>(Ty); 2425 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2426 if (!InsertResult.second) 2427 return InsertResult.first->second; 2428 2429 TypeLoweringScope S(*this); 2430 2431 // Make sure the forward declaration is emitted first. It's unclear if this 2432 // is necessary, but MSVC does it, and we should follow suit until we can show 2433 // otherwise. 2434 // We only emit a forward declaration for named types. 2435 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2436 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2437 2438 // Just use the forward decl if we don't have complete type info. This 2439 // might happen if the frontend is using modules and expects the complete 2440 // definition to be emitted elsewhere. 2441 if (CTy->isForwardDecl()) 2442 return FwdDeclTI; 2443 } 2444 2445 TypeIndex TI; 2446 switch (CTy->getTag()) { 2447 case dwarf::DW_TAG_class_type: 2448 case dwarf::DW_TAG_structure_type: 2449 TI = lowerCompleteTypeClass(CTy); 2450 break; 2451 case dwarf::DW_TAG_union_type: 2452 TI = lowerCompleteTypeUnion(CTy); 2453 break; 2454 default: 2455 llvm_unreachable("not a record"); 2456 } 2457 2458 // Update the type index associated with this CompositeType. This cannot 2459 // use the 'InsertResult' iterator above because it is potentially 2460 // invalidated by map insertions which can occur while lowering the class 2461 // type above. 2462 CompleteTypeIndices[CTy] = TI; 2463 return TI; 2464 } 2465 2466 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2467 /// and do this until fixpoint, as each complete record type typically 2468 /// references 2469 /// many other record types. 2470 void CodeViewDebug::emitDeferredCompleteTypes() { 2471 SmallVector<const DICompositeType *, 4> TypesToEmit; 2472 while (!DeferredCompleteTypes.empty()) { 2473 std::swap(DeferredCompleteTypes, TypesToEmit); 2474 for (const DICompositeType *RecordTy : TypesToEmit) 2475 getCompleteTypeIndex(RecordTy); 2476 TypesToEmit.clear(); 2477 } 2478 } 2479 2480 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2481 ArrayRef<LocalVariable> Locals) { 2482 // Get the sorted list of parameters and emit them first. 2483 SmallVector<const LocalVariable *, 6> Params; 2484 for (const LocalVariable &L : Locals) 2485 if (L.DIVar->isParameter()) 2486 Params.push_back(&L); 2487 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2488 return L->DIVar->getArg() < R->DIVar->getArg(); 2489 }); 2490 for (const LocalVariable *L : Params) 2491 emitLocalVariable(FI, *L); 2492 2493 // Next emit all non-parameters in the order that we found them. 2494 for (const LocalVariable &L : Locals) 2495 if (!L.DIVar->isParameter()) 2496 emitLocalVariable(FI, L); 2497 } 2498 2499 /// Only call this on endian-specific types like ulittle16_t and little32_t, or 2500 /// structs composed of them. 2501 template <typename T> 2502 static void copyBytesForDefRange(SmallString<20> &BytePrefix, 2503 SymbolKind SymKind, const T &DefRangeHeader) { 2504 BytePrefix.resize(2 + sizeof(T)); 2505 ulittle16_t SymKindLE = ulittle16_t(SymKind); 2506 memcpy(&BytePrefix[0], &SymKindLE, 2); 2507 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); 2508 } 2509 2510 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2511 const LocalVariable &Var) { 2512 // LocalSym record, see SymbolRecord.h for more info. 2513 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2514 *LocalEnd = MMI->getContext().createTempSymbol(); 2515 OS.AddComment("Record length"); 2516 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2517 OS.EmitLabel(LocalBegin); 2518 2519 OS.AddComment("Record kind: S_LOCAL"); 2520 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2521 2522 LocalSymFlags Flags = LocalSymFlags::None; 2523 if (Var.DIVar->isParameter()) 2524 Flags |= LocalSymFlags::IsParameter; 2525 if (Var.DefRanges.empty()) 2526 Flags |= LocalSymFlags::IsOptimizedOut; 2527 2528 OS.AddComment("TypeIndex"); 2529 TypeIndex TI = Var.UseReferenceType 2530 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2531 : getCompleteTypeIndex(Var.DIVar->getType()); 2532 OS.EmitIntValue(TI.getIndex(), 4); 2533 OS.AddComment("Flags"); 2534 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2535 // Truncate the name so we won't overflow the record length field. 2536 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2537 OS.EmitLabel(LocalEnd); 2538 2539 // Calculate the on disk prefix of the appropriate def range record. The 2540 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2541 // should be big enough to hold all forms without memory allocation. 2542 SmallString<20> BytePrefix; 2543 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2544 BytePrefix.clear(); 2545 if (DefRange.InMemory) { 2546 int Offset = DefRange.DataOffset; 2547 unsigned Reg = DefRange.CVRegister; 2548 2549 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2550 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2551 // instead. In simple cases, $T0 will be the CFA. 2552 if (RegisterId(Reg) == RegisterId::ESP) { 2553 Reg = unsigned(RegisterId::VFRAME); 2554 Offset -= FI.FrameSize; 2555 2556 // If the frame requires realignment, VFRAME will be ESP after it is 2557 // aligned. We have to remove the ESP adjustments made to push CSRs and 2558 // EBP. EBP is not included in CSRSize. 2559 if (FI.HasStackRealignment) 2560 Offset += FI.CSRSize + 4; 2561 } 2562 2563 // If we can use the chosen frame pointer for the frame and this isn't a 2564 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2565 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2566 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2567 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2568 (bool(Flags & LocalSymFlags::IsParameter) 2569 ? (EncFP == FI.EncodedParamFramePtrReg) 2570 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2571 little32_t FPOffset = little32_t(Offset); 2572 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); 2573 } else { 2574 uint16_t RegRelFlags = 0; 2575 if (DefRange.IsSubfield) { 2576 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2577 (DefRange.StructOffset 2578 << DefRangeRegisterRelSym::OffsetInParentShift); 2579 } 2580 DefRangeRegisterRelSym::Header DRHdr; 2581 DRHdr.Register = Reg; 2582 DRHdr.Flags = RegRelFlags; 2583 DRHdr.BasePointerOffset = Offset; 2584 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); 2585 } 2586 } else { 2587 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2588 if (DefRange.IsSubfield) { 2589 DefRangeSubfieldRegisterSym::Header DRHdr; 2590 DRHdr.Register = DefRange.CVRegister; 2591 DRHdr.MayHaveNoName = 0; 2592 DRHdr.OffsetInParent = DefRange.StructOffset; 2593 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); 2594 } else { 2595 DefRangeRegisterSym::Header DRHdr; 2596 DRHdr.Register = DefRange.CVRegister; 2597 DRHdr.MayHaveNoName = 0; 2598 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); 2599 } 2600 } 2601 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2602 } 2603 } 2604 2605 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2606 const FunctionInfo& FI) { 2607 for (LexicalBlock *Block : Blocks) 2608 emitLexicalBlock(*Block, FI); 2609 } 2610 2611 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2612 /// lexical block scope. 2613 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2614 const FunctionInfo& FI) { 2615 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(), 2616 *RecordEnd = MMI->getContext().createTempSymbol(); 2617 2618 // Lexical block symbol record. 2619 OS.AddComment("Record length"); 2620 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length 2621 OS.EmitLabel(RecordBegin); 2622 OS.AddComment("Record kind: S_BLOCK32"); 2623 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind 2624 OS.AddComment("PtrParent"); 2625 OS.EmitIntValue(0, 4); // PtrParent 2626 OS.AddComment("PtrEnd"); 2627 OS.EmitIntValue(0, 4); // PtrEnd 2628 OS.AddComment("Code size"); 2629 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2630 OS.AddComment("Function section relative address"); 2631 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2632 OS.AddComment("Function section index"); 2633 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2634 OS.AddComment("Lexical block name"); 2635 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2636 OS.EmitLabel(RecordEnd); 2637 2638 // Emit variables local to this lexical block. 2639 emitLocalVariableList(FI, Block.Locals); 2640 2641 // Emit lexical blocks contained within this block. 2642 emitLexicalBlockList(Block.Children, FI); 2643 2644 // Close the lexical block scope. 2645 OS.AddComment("Record length"); 2646 OS.EmitIntValue(2, 2); // Record Length 2647 OS.AddComment("Record kind: S_END"); 2648 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind 2649 } 2650 2651 /// Convenience routine for collecting lexical block information for a list 2652 /// of lexical scopes. 2653 void CodeViewDebug::collectLexicalBlockInfo( 2654 SmallVectorImpl<LexicalScope *> &Scopes, 2655 SmallVectorImpl<LexicalBlock *> &Blocks, 2656 SmallVectorImpl<LocalVariable> &Locals) { 2657 for (LexicalScope *Scope : Scopes) 2658 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2659 } 2660 2661 /// Populate the lexical blocks and local variable lists of the parent with 2662 /// information about the specified lexical scope. 2663 void CodeViewDebug::collectLexicalBlockInfo( 2664 LexicalScope &Scope, 2665 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2666 SmallVectorImpl<LocalVariable> &ParentLocals) { 2667 if (Scope.isAbstractScope()) 2668 return; 2669 2670 auto LocalsIter = ScopeVariables.find(&Scope); 2671 if (LocalsIter == ScopeVariables.end()) { 2672 // This scope does not contain variables and can be eliminated. 2673 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2674 return; 2675 } 2676 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2677 2678 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2679 if (!DILB) { 2680 // This scope is not a lexical block and can be eliminated, but keep any 2681 // local variables it contains. 2682 ParentLocals.append(Locals.begin(), Locals.end()); 2683 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2684 return; 2685 } 2686 2687 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2688 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2689 // This lexical block scope has too many address ranges to represent in the 2690 // current CodeView format or does not have a valid address range. 2691 // Eliminate this lexical scope and promote any locals it contains to the 2692 // parent scope. 2693 // 2694 // For lexical scopes with multiple address ranges you may be tempted to 2695 // construct a single range covering every instruction where the block is 2696 // live and everything in between. Unfortunately, Visual Studio only 2697 // displays variables from the first matching lexical block scope. If the 2698 // first lexical block contains exception handling code or cold code which 2699 // is moved to the bottom of the routine creating a single range covering 2700 // nearly the entire routine, then it will hide all other lexical blocks 2701 // and the variables they contain. 2702 // 2703 ParentLocals.append(Locals.begin(), Locals.end()); 2704 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2705 return; 2706 } 2707 2708 // Create a new CodeView lexical block for this lexical scope. If we've 2709 // seen this DILexicalBlock before then the scope tree is malformed and 2710 // we can handle this gracefully by not processing it a second time. 2711 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2712 if (!BlockInsertion.second) 2713 return; 2714 2715 // Create a lexical block containing the local variables and collect the 2716 // the lexical block information for the children. 2717 const InsnRange &Range = Ranges.front(); 2718 assert(Range.first && Range.second); 2719 LexicalBlock &Block = BlockInsertion.first->second; 2720 Block.Begin = getLabelBeforeInsn(Range.first); 2721 Block.End = getLabelAfterInsn(Range.second); 2722 assert(Block.Begin && "missing label for scope begin"); 2723 assert(Block.End && "missing label for scope end"); 2724 Block.Name = DILB->getName(); 2725 Block.Locals = std::move(Locals); 2726 ParentBlocks.push_back(&Block); 2727 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2728 } 2729 2730 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2731 const Function &GV = MF->getFunction(); 2732 assert(FnDebugInfo.count(&GV)); 2733 assert(CurFn == FnDebugInfo[&GV].get()); 2734 2735 collectVariableInfo(GV.getSubprogram()); 2736 2737 // Build the lexical block structure to emit for this routine. 2738 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2739 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2740 2741 // Clear the scope and variable information from the map which will not be 2742 // valid after we have finished processing this routine. This also prepares 2743 // the map for the subsequent routine. 2744 ScopeVariables.clear(); 2745 2746 // Don't emit anything if we don't have any line tables. 2747 // Thunks are compiler-generated and probably won't have source correlation. 2748 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2749 FnDebugInfo.erase(&GV); 2750 CurFn = nullptr; 2751 return; 2752 } 2753 2754 CurFn->Annotations = MF->getCodeViewAnnotations(); 2755 2756 CurFn->End = Asm->getFunctionEnd(); 2757 2758 CurFn = nullptr; 2759 } 2760 2761 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2762 DebugHandlerBase::beginInstruction(MI); 2763 2764 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2765 if (!Asm || !CurFn || MI->isDebugInstr() || 2766 MI->getFlag(MachineInstr::FrameSetup)) 2767 return; 2768 2769 // If the first instruction of a new MBB has no location, find the first 2770 // instruction with a location and use that. 2771 DebugLoc DL = MI->getDebugLoc(); 2772 if (!DL && MI->getParent() != PrevInstBB) { 2773 for (const auto &NextMI : *MI->getParent()) { 2774 if (NextMI.isDebugInstr()) 2775 continue; 2776 DL = NextMI.getDebugLoc(); 2777 if (DL) 2778 break; 2779 } 2780 } 2781 PrevInstBB = MI->getParent(); 2782 2783 // If we still don't have a debug location, don't record a location. 2784 if (!DL) 2785 return; 2786 2787 maybeRecordLocation(DL, Asm->MF); 2788 } 2789 2790 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2791 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2792 *EndLabel = MMI->getContext().createTempSymbol(); 2793 OS.EmitIntValue(unsigned(Kind), 4); 2794 OS.AddComment("Subsection size"); 2795 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2796 OS.EmitLabel(BeginLabel); 2797 return EndLabel; 2798 } 2799 2800 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2801 OS.EmitLabel(EndLabel); 2802 // Every subsection must be aligned to a 4-byte boundary. 2803 OS.EmitValueToAlignment(4); 2804 } 2805 2806 void CodeViewDebug::emitDebugInfoForUDTs( 2807 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2808 for (const auto &UDT : UDTs) { 2809 const DIType *T = UDT.second; 2810 assert(shouldEmitUdt(T)); 2811 2812 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2813 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2814 OS.AddComment("Record length"); 2815 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2816 OS.EmitLabel(UDTRecordBegin); 2817 2818 OS.AddComment("Record kind: S_UDT"); 2819 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2820 2821 OS.AddComment("Type"); 2822 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2823 2824 emitNullTerminatedSymbolName(OS, UDT.first); 2825 OS.EmitLabel(UDTRecordEnd); 2826 } 2827 } 2828 2829 void CodeViewDebug::emitDebugInfoForGlobals() { 2830 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2831 GlobalMap; 2832 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2833 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2834 GV.getDebugInfo(GVEs); 2835 for (const auto *GVE : GVEs) 2836 GlobalMap[GVE] = &GV; 2837 } 2838 2839 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2840 for (const MDNode *Node : CUs->operands()) { 2841 const auto *CU = cast<DICompileUnit>(Node); 2842 2843 // First, emit all globals that are not in a comdat in a single symbol 2844 // substream. MSVC doesn't like it if the substream is empty, so only open 2845 // it if we have at least one global to emit. 2846 switchToDebugSectionForSymbol(nullptr); 2847 MCSymbol *EndLabel = nullptr; 2848 for (const auto *GVE : CU->getGlobalVariables()) { 2849 if (const auto *GV = GlobalMap.lookup(GVE)) 2850 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2851 if (!EndLabel) { 2852 OS.AddComment("Symbol subsection for globals"); 2853 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2854 } 2855 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2856 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2857 } 2858 } 2859 if (EndLabel) 2860 endCVSubsection(EndLabel); 2861 2862 // Second, emit each global that is in a comdat into its own .debug$S 2863 // section along with its own symbol substream. 2864 for (const auto *GVE : CU->getGlobalVariables()) { 2865 if (const auto *GV = GlobalMap.lookup(GVE)) { 2866 if (GV->hasComdat()) { 2867 MCSymbol *GVSym = Asm->getSymbol(GV); 2868 OS.AddComment("Symbol subsection for " + 2869 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2870 switchToDebugSectionForSymbol(GVSym); 2871 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2872 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2873 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2874 endCVSubsection(EndLabel); 2875 } 2876 } 2877 } 2878 } 2879 } 2880 2881 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2882 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2883 for (const MDNode *Node : CUs->operands()) { 2884 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2885 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2886 getTypeIndex(RT); 2887 // FIXME: Add to global/local DTU list. 2888 } 2889 } 2890 } 2891 } 2892 2893 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2894 const GlobalVariable *GV, 2895 MCSymbol *GVSym) { 2896 // DataSym record, see SymbolRecord.h for more info. 2897 // FIXME: Thread local data, etc 2898 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2899 *DataEnd = MMI->getContext().createTempSymbol(); 2900 const unsigned FixedLengthOfThisRecord = 12; 2901 OS.AddComment("Record length"); 2902 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2903 OS.EmitLabel(DataBegin); 2904 if (DIGV->isLocalToUnit()) { 2905 if (GV->isThreadLocal()) { 2906 OS.AddComment("Record kind: S_LTHREAD32"); 2907 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2908 } else { 2909 OS.AddComment("Record kind: S_LDATA32"); 2910 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2911 } 2912 } else { 2913 if (GV->isThreadLocal()) { 2914 OS.AddComment("Record kind: S_GTHREAD32"); 2915 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2916 } else { 2917 OS.AddComment("Record kind: S_GDATA32"); 2918 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2919 } 2920 } 2921 OS.AddComment("Type"); 2922 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2923 OS.AddComment("DataOffset"); 2924 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2925 OS.AddComment("Segment"); 2926 OS.EmitCOFFSectionIndex(GVSym); 2927 OS.AddComment("Name"); 2928 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord); 2929 OS.EmitLabel(DataEnd); 2930 } 2931