1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineModuleInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/Line.h" 48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 50 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 51 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCContext.h" 64 #include "llvm/MC/MCSectionCOFF.h" 65 #include "llvm/MC/MCStreamer.h" 66 #include "llvm/MC/MCSymbol.h" 67 #include "llvm/Support/BinaryByteStream.h" 68 #include "llvm/Support/BinaryStreamReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Endian.h" 73 #include "llvm/Support/Error.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/SMLoc.h" 77 #include "llvm/Support/ScopedPrinter.h" 78 #include "llvm/Target/TargetLoweringObjectFile.h" 79 #include "llvm/Target/TargetMachine.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cctype> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iterator> 86 #include <limits> 87 #include <string> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 using namespace llvm::codeview; 93 94 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 95 cl::ReallyHidden, cl::init(false)); 96 97 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 98 switch (Type) { 99 case Triple::ArchType::x86: 100 return CPUType::Pentium3; 101 case Triple::ArchType::x86_64: 102 return CPUType::X64; 103 case Triple::ArchType::thumb: 104 return CPUType::Thumb; 105 case Triple::ArchType::aarch64: 106 return CPUType::ARM64; 107 default: 108 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 109 } 110 } 111 112 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 113 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 114 // If module doesn't have named metadata anchors or COFF debug section 115 // is not available, skip any debug info related stuff. 116 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 117 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 118 Asm = nullptr; 119 return; 120 } 121 // Tell MMI that we have debug info. 122 MMI->setDebugInfoAvailability(true); 123 124 TheCPU = 125 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 126 } 127 128 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 129 std::string &Filepath = FileToFilepathMap[File]; 130 if (!Filepath.empty()) 131 return Filepath; 132 133 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 134 135 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 136 // it textually because one of the path components could be a symlink. 137 if (!Dir.empty() && Dir[0] == '/') { 138 Filepath = Dir; 139 if (Dir.back() != '/') 140 Filepath += '/'; 141 Filepath += Filename; 142 return Filepath; 143 } 144 145 // Clang emits directory and relative filename info into the IR, but CodeView 146 // operates on full paths. We could change Clang to emit full paths too, but 147 // that would increase the IR size and probably not needed for other users. 148 // For now, just concatenate and canonicalize the path here. 149 if (Filename.find(':') == 1) 150 Filepath = Filename; 151 else 152 Filepath = (Dir + "\\" + Filename).str(); 153 154 // Canonicalize the path. We have to do it textually because we may no longer 155 // have access the file in the filesystem. 156 // First, replace all slashes with backslashes. 157 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 158 159 // Remove all "\.\" with "\". 160 size_t Cursor = 0; 161 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 162 Filepath.erase(Cursor, 2); 163 164 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 165 // path should be well-formatted, e.g. start with a drive letter, etc. 166 Cursor = 0; 167 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 168 // Something's wrong if the path starts with "\..\", abort. 169 if (Cursor == 0) 170 break; 171 172 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 173 if (PrevSlash == std::string::npos) 174 // Something's wrong, abort. 175 break; 176 177 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 178 // The next ".." might be following the one we've just erased. 179 Cursor = PrevSlash; 180 } 181 182 // Remove all duplicate backslashes. 183 Cursor = 0; 184 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 185 Filepath.erase(Cursor, 1); 186 187 return Filepath; 188 } 189 190 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 191 StringRef FullPath = getFullFilepath(F); 192 unsigned NextId = FileIdMap.size() + 1; 193 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 194 if (Insertion.second) { 195 // We have to compute the full filepath and emit a .cv_file directive. 196 ArrayRef<uint8_t> ChecksumAsBytes; 197 FileChecksumKind CSKind = FileChecksumKind::None; 198 if (F->getChecksum()) { 199 std::string Checksum = fromHex(F->getChecksum()->Value); 200 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 201 memcpy(CKMem, Checksum.data(), Checksum.size()); 202 ChecksumAsBytes = ArrayRef<uint8_t>( 203 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 204 switch (F->getChecksum()->Kind) { 205 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 206 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 207 } 208 } 209 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 210 static_cast<unsigned>(CSKind)); 211 (void)Success; 212 assert(Success && ".cv_file directive failed"); 213 } 214 return Insertion.first->second; 215 } 216 217 CodeViewDebug::InlineSite & 218 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 219 const DISubprogram *Inlinee) { 220 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 221 InlineSite *Site = &SiteInsertion.first->second; 222 if (SiteInsertion.second) { 223 unsigned ParentFuncId = CurFn->FuncId; 224 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 225 ParentFuncId = 226 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 227 .SiteFuncId; 228 229 Site->SiteFuncId = NextFuncId++; 230 OS.EmitCVInlineSiteIdDirective( 231 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 232 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 233 Site->Inlinee = Inlinee; 234 InlinedSubprograms.insert(Inlinee); 235 getFuncIdForSubprogram(Inlinee); 236 } 237 return *Site; 238 } 239 240 static StringRef getPrettyScopeName(const DIScope *Scope) { 241 StringRef ScopeName = Scope->getName(); 242 if (!ScopeName.empty()) 243 return ScopeName; 244 245 switch (Scope->getTag()) { 246 case dwarf::DW_TAG_enumeration_type: 247 case dwarf::DW_TAG_class_type: 248 case dwarf::DW_TAG_structure_type: 249 case dwarf::DW_TAG_union_type: 250 return "<unnamed-tag>"; 251 case dwarf::DW_TAG_namespace: 252 return "`anonymous namespace'"; 253 } 254 255 return StringRef(); 256 } 257 258 static const DISubprogram *getQualifiedNameComponents( 259 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 260 const DISubprogram *ClosestSubprogram = nullptr; 261 while (Scope != nullptr) { 262 if (ClosestSubprogram == nullptr) 263 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 264 StringRef ScopeName = getPrettyScopeName(Scope); 265 if (!ScopeName.empty()) 266 QualifiedNameComponents.push_back(ScopeName); 267 Scope = Scope->getScope().resolve(); 268 } 269 return ClosestSubprogram; 270 } 271 272 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 273 StringRef TypeName) { 274 std::string FullyQualifiedName; 275 for (StringRef QualifiedNameComponent : 276 llvm::reverse(QualifiedNameComponents)) { 277 FullyQualifiedName.append(QualifiedNameComponent); 278 FullyQualifiedName.append("::"); 279 } 280 FullyQualifiedName.append(TypeName); 281 return FullyQualifiedName; 282 } 283 284 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 285 SmallVector<StringRef, 5> QualifiedNameComponents; 286 getQualifiedNameComponents(Scope, QualifiedNameComponents); 287 return getQualifiedName(QualifiedNameComponents, Name); 288 } 289 290 struct CodeViewDebug::TypeLoweringScope { 291 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 292 ~TypeLoweringScope() { 293 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 294 // inner TypeLoweringScopes don't attempt to emit deferred types. 295 if (CVD.TypeEmissionLevel == 1) 296 CVD.emitDeferredCompleteTypes(); 297 --CVD.TypeEmissionLevel; 298 } 299 CodeViewDebug &CVD; 300 }; 301 302 static std::string getFullyQualifiedName(const DIScope *Ty) { 303 const DIScope *Scope = Ty->getScope().resolve(); 304 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 305 } 306 307 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 308 // No scope means global scope and that uses the zero index. 309 if (!Scope || isa<DIFile>(Scope)) 310 return TypeIndex(); 311 312 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 313 314 // Check if we've already translated this scope. 315 auto I = TypeIndices.find({Scope, nullptr}); 316 if (I != TypeIndices.end()) 317 return I->second; 318 319 // Build the fully qualified name of the scope. 320 std::string ScopeName = getFullyQualifiedName(Scope); 321 StringIdRecord SID(TypeIndex(), ScopeName); 322 auto TI = TypeTable.writeLeafType(SID); 323 return recordTypeIndexForDINode(Scope, TI); 324 } 325 326 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 327 assert(SP); 328 329 // Check if we've already translated this subprogram. 330 auto I = TypeIndices.find({SP, nullptr}); 331 if (I != TypeIndices.end()) 332 return I->second; 333 334 // The display name includes function template arguments. Drop them to match 335 // MSVC. 336 StringRef DisplayName = SP->getName().split('<').first; 337 338 const DIScope *Scope = SP->getScope().resolve(); 339 TypeIndex TI; 340 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 341 // If the scope is a DICompositeType, then this must be a method. Member 342 // function types take some special handling, and require access to the 343 // subprogram. 344 TypeIndex ClassType = getTypeIndex(Class); 345 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 346 DisplayName); 347 TI = TypeTable.writeLeafType(MFuncId); 348 } else { 349 // Otherwise, this must be a free function. 350 TypeIndex ParentScope = getScopeIndex(Scope); 351 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 352 TI = TypeTable.writeLeafType(FuncId); 353 } 354 355 return recordTypeIndexForDINode(SP, TI); 356 } 357 358 static bool isTrivial(const DICompositeType *DCTy) { 359 return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial); 360 } 361 362 static FunctionOptions 363 getFunctionOptions(const DISubroutineType *Ty, 364 const DICompositeType *ClassTy = nullptr, 365 StringRef SPName = StringRef("")) { 366 FunctionOptions FO = FunctionOptions::None; 367 const DIType *ReturnTy = nullptr; 368 if (auto TypeArray = Ty->getTypeArray()) { 369 if (TypeArray.size()) 370 ReturnTy = TypeArray[0].resolve(); 371 } 372 373 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 374 if (!isTrivial(ReturnDCTy)) 375 FO |= FunctionOptions::CxxReturnUdt; 376 } 377 378 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 379 if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) { 380 FO |= FunctionOptions::Constructor; 381 382 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 383 384 } 385 return FO; 386 } 387 388 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 389 const DICompositeType *Class) { 390 // Always use the method declaration as the key for the function type. The 391 // method declaration contains the this adjustment. 392 if (SP->getDeclaration()) 393 SP = SP->getDeclaration(); 394 assert(!SP->getDeclaration() && "should use declaration as key"); 395 396 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 397 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 398 auto I = TypeIndices.find({SP, Class}); 399 if (I != TypeIndices.end()) 400 return I->second; 401 402 // Make sure complete type info for the class is emitted *after* the member 403 // function type, as the complete class type is likely to reference this 404 // member function type. 405 TypeLoweringScope S(*this); 406 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 407 408 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 409 TypeIndex TI = lowerTypeMemberFunction( 410 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 411 return recordTypeIndexForDINode(SP, TI, Class); 412 } 413 414 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 415 TypeIndex TI, 416 const DIType *ClassTy) { 417 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 418 (void)InsertResult; 419 assert(InsertResult.second && "DINode was already assigned a type index"); 420 return TI; 421 } 422 423 unsigned CodeViewDebug::getPointerSizeInBytes() { 424 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 425 } 426 427 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 428 const LexicalScope *LS) { 429 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 430 // This variable was inlined. Associate it with the InlineSite. 431 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 432 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 433 Site.InlinedLocals.emplace_back(Var); 434 } else { 435 // This variable goes into the corresponding lexical scope. 436 ScopeVariables[LS].emplace_back(Var); 437 } 438 } 439 440 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 441 const DILocation *Loc) { 442 auto B = Locs.begin(), E = Locs.end(); 443 if (std::find(B, E, Loc) == E) 444 Locs.push_back(Loc); 445 } 446 447 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 448 const MachineFunction *MF) { 449 // Skip this instruction if it has the same location as the previous one. 450 if (!DL || DL == PrevInstLoc) 451 return; 452 453 const DIScope *Scope = DL.get()->getScope(); 454 if (!Scope) 455 return; 456 457 // Skip this line if it is longer than the maximum we can record. 458 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 459 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 460 LI.isNeverStepInto()) 461 return; 462 463 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 464 if (CI.getStartColumn() != DL.getCol()) 465 return; 466 467 if (!CurFn->HaveLineInfo) 468 CurFn->HaveLineInfo = true; 469 unsigned FileId = 0; 470 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 471 FileId = CurFn->LastFileId; 472 else 473 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 474 PrevInstLoc = DL; 475 476 unsigned FuncId = CurFn->FuncId; 477 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 478 const DILocation *Loc = DL.get(); 479 480 // If this location was actually inlined from somewhere else, give it the ID 481 // of the inline call site. 482 FuncId = 483 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 484 485 // Ensure we have links in the tree of inline call sites. 486 bool FirstLoc = true; 487 while ((SiteLoc = Loc->getInlinedAt())) { 488 InlineSite &Site = 489 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 490 if (!FirstLoc) 491 addLocIfNotPresent(Site.ChildSites, Loc); 492 FirstLoc = false; 493 Loc = SiteLoc; 494 } 495 addLocIfNotPresent(CurFn->ChildSites, Loc); 496 } 497 498 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 499 /*PrologueEnd=*/false, /*IsStmt=*/false, 500 DL->getFilename(), SMLoc()); 501 } 502 503 void CodeViewDebug::emitCodeViewMagicVersion() { 504 OS.EmitValueToAlignment(4); 505 OS.AddComment("Debug section magic"); 506 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 507 } 508 509 void CodeViewDebug::endModule() { 510 if (!Asm || !MMI->hasDebugInfo()) 511 return; 512 513 assert(Asm != nullptr); 514 515 // The COFF .debug$S section consists of several subsections, each starting 516 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 517 // of the payload followed by the payload itself. The subsections are 4-byte 518 // aligned. 519 520 // Use the generic .debug$S section, and make a subsection for all the inlined 521 // subprograms. 522 switchToDebugSectionForSymbol(nullptr); 523 524 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 525 emitCompilerInformation(); 526 endCVSubsection(CompilerInfo); 527 528 emitInlineeLinesSubsection(); 529 530 // Emit per-function debug information. 531 for (auto &P : FnDebugInfo) 532 if (!P.first->isDeclarationForLinker()) 533 emitDebugInfoForFunction(P.first, *P.second); 534 535 // Emit global variable debug information. 536 setCurrentSubprogram(nullptr); 537 emitDebugInfoForGlobals(); 538 539 // Emit retained types. 540 emitDebugInfoForRetainedTypes(); 541 542 // Switch back to the generic .debug$S section after potentially processing 543 // comdat symbol sections. 544 switchToDebugSectionForSymbol(nullptr); 545 546 // Emit UDT records for any types used by global variables. 547 if (!GlobalUDTs.empty()) { 548 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 549 emitDebugInfoForUDTs(GlobalUDTs); 550 endCVSubsection(SymbolsEnd); 551 } 552 553 // This subsection holds a file index to offset in string table table. 554 OS.AddComment("File index to string table offset subsection"); 555 OS.EmitCVFileChecksumsDirective(); 556 557 // This subsection holds the string table. 558 OS.AddComment("String table"); 559 OS.EmitCVStringTableDirective(); 560 561 // Emit type information and hashes last, so that any types we translate while 562 // emitting function info are included. 563 emitTypeInformation(); 564 565 if (EmitDebugGlobalHashes) 566 emitTypeGlobalHashes(); 567 568 clear(); 569 } 570 571 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 572 unsigned MaxFixedRecordLength = 0xF00) { 573 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 574 // after a fixed length portion of the record. The fixed length portion should 575 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 576 // overall record size is less than the maximum allowed. 577 SmallString<32> NullTerminatedString( 578 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 579 NullTerminatedString.push_back('\0'); 580 OS.EmitBytes(NullTerminatedString); 581 } 582 583 void CodeViewDebug::emitTypeInformation() { 584 if (TypeTable.empty()) 585 return; 586 587 // Start the .debug$T or .debug$P section with 0x4. 588 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 589 emitCodeViewMagicVersion(); 590 591 SmallString<8> CommentPrefix; 592 if (OS.isVerboseAsm()) { 593 CommentPrefix += '\t'; 594 CommentPrefix += Asm->MAI->getCommentString(); 595 CommentPrefix += ' '; 596 } 597 598 TypeTableCollection Table(TypeTable.records()); 599 Optional<TypeIndex> B = Table.getFirst(); 600 while (B) { 601 // This will fail if the record data is invalid. 602 CVType Record = Table.getType(*B); 603 604 if (OS.isVerboseAsm()) { 605 // Emit a block comment describing the type record for readability. 606 SmallString<512> CommentBlock; 607 raw_svector_ostream CommentOS(CommentBlock); 608 ScopedPrinter SP(CommentOS); 609 SP.setPrefix(CommentPrefix); 610 TypeDumpVisitor TDV(Table, &SP, false); 611 612 Error E = codeview::visitTypeRecord(Record, *B, TDV); 613 if (E) { 614 logAllUnhandledErrors(std::move(E), errs(), "error: "); 615 llvm_unreachable("produced malformed type record"); 616 } 617 // emitRawComment will insert its own tab and comment string before 618 // the first line, so strip off our first one. It also prints its own 619 // newline. 620 OS.emitRawComment( 621 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 622 } 623 OS.EmitBinaryData(Record.str_data()); 624 B = Table.getNext(*B); 625 } 626 } 627 628 void CodeViewDebug::emitTypeGlobalHashes() { 629 if (TypeTable.empty()) 630 return; 631 632 // Start the .debug$H section with the version and hash algorithm, currently 633 // hardcoded to version 0, SHA1. 634 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 635 636 OS.EmitValueToAlignment(4); 637 OS.AddComment("Magic"); 638 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 639 OS.AddComment("Section Version"); 640 OS.EmitIntValue(0, 2); 641 OS.AddComment("Hash Algorithm"); 642 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 643 644 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 645 for (const auto &GHR : TypeTable.hashes()) { 646 if (OS.isVerboseAsm()) { 647 // Emit an EOL-comment describing which TypeIndex this hash corresponds 648 // to, as well as the stringified SHA1 hash. 649 SmallString<32> Comment; 650 raw_svector_ostream CommentOS(Comment); 651 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 652 OS.AddComment(Comment); 653 ++TI; 654 } 655 assert(GHR.Hash.size() == 8); 656 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 657 GHR.Hash.size()); 658 OS.EmitBinaryData(S); 659 } 660 } 661 662 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 663 switch (DWLang) { 664 case dwarf::DW_LANG_C: 665 case dwarf::DW_LANG_C89: 666 case dwarf::DW_LANG_C99: 667 case dwarf::DW_LANG_C11: 668 case dwarf::DW_LANG_ObjC: 669 return SourceLanguage::C; 670 case dwarf::DW_LANG_C_plus_plus: 671 case dwarf::DW_LANG_C_plus_plus_03: 672 case dwarf::DW_LANG_C_plus_plus_11: 673 case dwarf::DW_LANG_C_plus_plus_14: 674 return SourceLanguage::Cpp; 675 case dwarf::DW_LANG_Fortran77: 676 case dwarf::DW_LANG_Fortran90: 677 case dwarf::DW_LANG_Fortran03: 678 case dwarf::DW_LANG_Fortran08: 679 return SourceLanguage::Fortran; 680 case dwarf::DW_LANG_Pascal83: 681 return SourceLanguage::Pascal; 682 case dwarf::DW_LANG_Cobol74: 683 case dwarf::DW_LANG_Cobol85: 684 return SourceLanguage::Cobol; 685 case dwarf::DW_LANG_Java: 686 return SourceLanguage::Java; 687 case dwarf::DW_LANG_D: 688 return SourceLanguage::D; 689 default: 690 // There's no CodeView representation for this language, and CV doesn't 691 // have an "unknown" option for the language field, so we'll use MASM, 692 // as it's very low level. 693 return SourceLanguage::Masm; 694 } 695 } 696 697 namespace { 698 struct Version { 699 int Part[4]; 700 }; 701 } // end anonymous namespace 702 703 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 704 // the version number. 705 static Version parseVersion(StringRef Name) { 706 Version V = {{0}}; 707 int N = 0; 708 for (const char C : Name) { 709 if (isdigit(C)) { 710 V.Part[N] *= 10; 711 V.Part[N] += C - '0'; 712 } else if (C == '.') { 713 ++N; 714 if (N >= 4) 715 return V; 716 } else if (N > 0) 717 return V; 718 } 719 return V; 720 } 721 722 void CodeViewDebug::emitCompilerInformation() { 723 MCContext &Context = MMI->getContext(); 724 MCSymbol *CompilerBegin = Context.createTempSymbol(), 725 *CompilerEnd = Context.createTempSymbol(); 726 OS.AddComment("Record length"); 727 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 728 OS.EmitLabel(CompilerBegin); 729 OS.AddComment("Record kind: S_COMPILE3"); 730 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 731 uint32_t Flags = 0; 732 733 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 734 const MDNode *Node = *CUs->operands().begin(); 735 const auto *CU = cast<DICompileUnit>(Node); 736 737 // The low byte of the flags indicates the source language. 738 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 739 // TODO: Figure out which other flags need to be set. 740 741 OS.AddComment("Flags and language"); 742 OS.EmitIntValue(Flags, 4); 743 744 OS.AddComment("CPUType"); 745 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 746 747 StringRef CompilerVersion = CU->getProducer(); 748 Version FrontVer = parseVersion(CompilerVersion); 749 OS.AddComment("Frontend version"); 750 for (int N = 0; N < 4; ++N) 751 OS.EmitIntValue(FrontVer.Part[N], 2); 752 753 // Some Microsoft tools, like Binscope, expect a backend version number of at 754 // least 8.something, so we'll coerce the LLVM version into a form that 755 // guarantees it'll be big enough without really lying about the version. 756 int Major = 1000 * LLVM_VERSION_MAJOR + 757 10 * LLVM_VERSION_MINOR + 758 LLVM_VERSION_PATCH; 759 // Clamp it for builds that use unusually large version numbers. 760 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 761 Version BackVer = {{ Major, 0, 0, 0 }}; 762 OS.AddComment("Backend version"); 763 for (int N = 0; N < 4; ++N) 764 OS.EmitIntValue(BackVer.Part[N], 2); 765 766 OS.AddComment("Null-terminated compiler version string"); 767 emitNullTerminatedSymbolName(OS, CompilerVersion); 768 769 OS.EmitLabel(CompilerEnd); 770 } 771 772 void CodeViewDebug::emitInlineeLinesSubsection() { 773 if (InlinedSubprograms.empty()) 774 return; 775 776 OS.AddComment("Inlinee lines subsection"); 777 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 778 779 // We emit the checksum info for files. This is used by debuggers to 780 // determine if a pdb matches the source before loading it. Visual Studio, 781 // for instance, will display a warning that the breakpoints are not valid if 782 // the pdb does not match the source. 783 OS.AddComment("Inlinee lines signature"); 784 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 785 786 for (const DISubprogram *SP : InlinedSubprograms) { 787 assert(TypeIndices.count({SP, nullptr})); 788 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 789 790 OS.AddBlankLine(); 791 unsigned FileId = maybeRecordFile(SP->getFile()); 792 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 793 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 794 OS.AddBlankLine(); 795 OS.AddComment("Type index of inlined function"); 796 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 797 OS.AddComment("Offset into filechecksum table"); 798 OS.EmitCVFileChecksumOffsetDirective(FileId); 799 OS.AddComment("Starting line number"); 800 OS.EmitIntValue(SP->getLine(), 4); 801 } 802 803 endCVSubsection(InlineEnd); 804 } 805 806 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 807 const DILocation *InlinedAt, 808 const InlineSite &Site) { 809 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 810 *InlineEnd = MMI->getContext().createTempSymbol(); 811 812 assert(TypeIndices.count({Site.Inlinee, nullptr})); 813 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 814 815 // SymbolRecord 816 OS.AddComment("Record length"); 817 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 818 OS.EmitLabel(InlineBegin); 819 OS.AddComment("Record kind: S_INLINESITE"); 820 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 821 822 OS.AddComment("PtrParent"); 823 OS.EmitIntValue(0, 4); 824 OS.AddComment("PtrEnd"); 825 OS.EmitIntValue(0, 4); 826 OS.AddComment("Inlinee type index"); 827 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 828 829 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 830 unsigned StartLineNum = Site.Inlinee->getLine(); 831 832 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 833 FI.Begin, FI.End); 834 835 OS.EmitLabel(InlineEnd); 836 837 emitLocalVariableList(FI, Site.InlinedLocals); 838 839 // Recurse on child inlined call sites before closing the scope. 840 for (const DILocation *ChildSite : Site.ChildSites) { 841 auto I = FI.InlineSites.find(ChildSite); 842 assert(I != FI.InlineSites.end() && 843 "child site not in function inline site map"); 844 emitInlinedCallSite(FI, ChildSite, I->second); 845 } 846 847 // Close the scope. 848 OS.AddComment("Record length"); 849 OS.EmitIntValue(2, 2); // RecordLength 850 OS.AddComment("Record kind: S_INLINESITE_END"); 851 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 852 } 853 854 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 855 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 856 // comdat key. A section may be comdat because of -ffunction-sections or 857 // because it is comdat in the IR. 858 MCSectionCOFF *GVSec = 859 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 860 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 861 862 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 863 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 864 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 865 866 OS.SwitchSection(DebugSec); 867 868 // Emit the magic version number if this is the first time we've switched to 869 // this section. 870 if (ComdatDebugSections.insert(DebugSec).second) 871 emitCodeViewMagicVersion(); 872 } 873 874 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 875 // The only supported thunk ordinal is currently the standard type. 876 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 877 FunctionInfo &FI, 878 const MCSymbol *Fn) { 879 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 880 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 881 882 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 883 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 884 885 // Emit S_THUNK32 886 MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(), 887 *ThunkRecordEnd = MMI->getContext().createTempSymbol(); 888 OS.AddComment("Record length"); 889 OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2); 890 OS.EmitLabel(ThunkRecordBegin); 891 OS.AddComment("Record kind: S_THUNK32"); 892 OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2); 893 OS.AddComment("PtrParent"); 894 OS.EmitIntValue(0, 4); 895 OS.AddComment("PtrEnd"); 896 OS.EmitIntValue(0, 4); 897 OS.AddComment("PtrNext"); 898 OS.EmitIntValue(0, 4); 899 OS.AddComment("Thunk section relative address"); 900 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 901 OS.AddComment("Thunk section index"); 902 OS.EmitCOFFSectionIndex(Fn); 903 OS.AddComment("Code size"); 904 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 905 OS.AddComment("Ordinal"); 906 OS.EmitIntValue(unsigned(ordinal), 1); 907 OS.AddComment("Function name"); 908 emitNullTerminatedSymbolName(OS, FuncName); 909 // Additional fields specific to the thunk ordinal would go here. 910 OS.EmitLabel(ThunkRecordEnd); 911 912 // Local variables/inlined routines are purposely omitted here. The point of 913 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 914 915 // Emit S_PROC_ID_END 916 const unsigned RecordLengthForSymbolEnd = 2; 917 OS.AddComment("Record length"); 918 OS.EmitIntValue(RecordLengthForSymbolEnd, 2); 919 OS.AddComment("Record kind: S_PROC_ID_END"); 920 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 921 922 endCVSubsection(SymbolsEnd); 923 } 924 925 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 926 FunctionInfo &FI) { 927 // For each function there is a separate subsection which holds the PC to 928 // file:line table. 929 const MCSymbol *Fn = Asm->getSymbol(GV); 930 assert(Fn); 931 932 // Switch to the to a comdat section, if appropriate. 933 switchToDebugSectionForSymbol(Fn); 934 935 std::string FuncName; 936 auto *SP = GV->getSubprogram(); 937 assert(SP); 938 setCurrentSubprogram(SP); 939 940 if (SP->isThunk()) { 941 emitDebugInfoForThunk(GV, FI, Fn); 942 return; 943 } 944 945 // If we have a display name, build the fully qualified name by walking the 946 // chain of scopes. 947 if (!SP->getName().empty()) 948 FuncName = 949 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 950 951 // If our DISubprogram name is empty, use the mangled name. 952 if (FuncName.empty()) 953 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 954 955 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 956 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 957 OS.EmitCVFPOData(Fn); 958 959 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 960 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 961 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 962 { 963 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 964 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 965 OS.AddComment("Record length"); 966 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 967 OS.EmitLabel(ProcRecordBegin); 968 969 if (GV->hasLocalLinkage()) { 970 OS.AddComment("Record kind: S_LPROC32_ID"); 971 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 972 } else { 973 OS.AddComment("Record kind: S_GPROC32_ID"); 974 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 975 } 976 977 // These fields are filled in by tools like CVPACK which run after the fact. 978 OS.AddComment("PtrParent"); 979 OS.EmitIntValue(0, 4); 980 OS.AddComment("PtrEnd"); 981 OS.EmitIntValue(0, 4); 982 OS.AddComment("PtrNext"); 983 OS.EmitIntValue(0, 4); 984 // This is the important bit that tells the debugger where the function 985 // code is located and what's its size: 986 OS.AddComment("Code size"); 987 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 988 OS.AddComment("Offset after prologue"); 989 OS.EmitIntValue(0, 4); 990 OS.AddComment("Offset before epilogue"); 991 OS.EmitIntValue(0, 4); 992 OS.AddComment("Function type index"); 993 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 994 OS.AddComment("Function section relative address"); 995 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 996 OS.AddComment("Function section index"); 997 OS.EmitCOFFSectionIndex(Fn); 998 OS.AddComment("Flags"); 999 OS.EmitIntValue(0, 1); 1000 // Emit the function display name as a null-terminated string. 1001 OS.AddComment("Function name"); 1002 // Truncate the name so we won't overflow the record length field. 1003 emitNullTerminatedSymbolName(OS, FuncName); 1004 OS.EmitLabel(ProcRecordEnd); 1005 1006 MCSymbol *FrameProcBegin = MMI->getContext().createTempSymbol(), 1007 *FrameProcEnd = MMI->getContext().createTempSymbol(); 1008 OS.AddComment("Record length"); 1009 OS.emitAbsoluteSymbolDiff(FrameProcEnd, FrameProcBegin, 2); 1010 OS.EmitLabel(FrameProcBegin); 1011 OS.AddComment("Record kind: S_FRAMEPROC"); 1012 OS.EmitIntValue(unsigned(SymbolKind::S_FRAMEPROC), 2); 1013 // Subtract out the CSR size since MSVC excludes that and we include it. 1014 OS.AddComment("FrameSize"); 1015 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1016 OS.AddComment("Padding"); 1017 OS.EmitIntValue(0, 4); 1018 OS.AddComment("Offset of padding"); 1019 OS.EmitIntValue(0, 4); 1020 OS.AddComment("Bytes of callee saved registers"); 1021 OS.EmitIntValue(FI.CSRSize, 4); 1022 OS.AddComment("Exception handler offset"); 1023 OS.EmitIntValue(0, 4); 1024 OS.AddComment("Exception handler section"); 1025 OS.EmitIntValue(0, 2); 1026 OS.AddComment("Flags (defines frame register)"); 1027 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1028 OS.EmitLabel(FrameProcEnd); 1029 1030 emitLocalVariableList(FI, FI.Locals); 1031 emitLexicalBlockList(FI.ChildBlocks, FI); 1032 1033 // Emit inlined call site information. Only emit functions inlined directly 1034 // into the parent function. We'll emit the other sites recursively as part 1035 // of their parent inline site. 1036 for (const DILocation *InlinedAt : FI.ChildSites) { 1037 auto I = FI.InlineSites.find(InlinedAt); 1038 assert(I != FI.InlineSites.end() && 1039 "child site not in function inline site map"); 1040 emitInlinedCallSite(FI, InlinedAt, I->second); 1041 } 1042 1043 for (auto Annot : FI.Annotations) { 1044 MCSymbol *Label = Annot.first; 1045 MDTuple *Strs = cast<MDTuple>(Annot.second); 1046 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 1047 *AnnotEnd = MMI->getContext().createTempSymbol(); 1048 OS.AddComment("Record length"); 1049 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 1050 OS.EmitLabel(AnnotBegin); 1051 OS.AddComment("Record kind: S_ANNOTATION"); 1052 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 1053 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1054 // FIXME: Make sure we don't overflow the max record size. 1055 OS.EmitCOFFSectionIndex(Label); 1056 OS.EmitIntValue(Strs->getNumOperands(), 2); 1057 for (Metadata *MD : Strs->operands()) { 1058 // MDStrings are null terminated, so we can do EmitBytes and get the 1059 // nice .asciz directive. 1060 StringRef Str = cast<MDString>(MD)->getString(); 1061 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1062 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1063 } 1064 OS.EmitLabel(AnnotEnd); 1065 } 1066 1067 if (SP != nullptr) 1068 emitDebugInfoForUDTs(LocalUDTs); 1069 1070 // We're done with this function. 1071 OS.AddComment("Record length"); 1072 OS.EmitIntValue(0x0002, 2); 1073 OS.AddComment("Record kind: S_PROC_ID_END"); 1074 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 1075 } 1076 endCVSubsection(SymbolsEnd); 1077 1078 // We have an assembler directive that takes care of the whole line table. 1079 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1080 } 1081 1082 CodeViewDebug::LocalVarDefRange 1083 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1084 LocalVarDefRange DR; 1085 DR.InMemory = -1; 1086 DR.DataOffset = Offset; 1087 assert(DR.DataOffset == Offset && "truncation"); 1088 DR.IsSubfield = 0; 1089 DR.StructOffset = 0; 1090 DR.CVRegister = CVRegister; 1091 return DR; 1092 } 1093 1094 void CodeViewDebug::collectVariableInfoFromMFTable( 1095 DenseSet<InlinedEntity> &Processed) { 1096 const MachineFunction &MF = *Asm->MF; 1097 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1098 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1099 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1100 1101 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1102 if (!VI.Var) 1103 continue; 1104 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1105 "Expected inlined-at fields to agree"); 1106 1107 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1108 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1109 1110 // If variable scope is not found then skip this variable. 1111 if (!Scope) 1112 continue; 1113 1114 // If the variable has an attached offset expression, extract it. 1115 // FIXME: Try to handle DW_OP_deref as well. 1116 int64_t ExprOffset = 0; 1117 if (VI.Expr) 1118 if (!VI.Expr->extractIfOffset(ExprOffset)) 1119 continue; 1120 1121 // Get the frame register used and the offset. 1122 unsigned FrameReg = 0; 1123 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1124 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1125 1126 // Calculate the label ranges. 1127 LocalVarDefRange DefRange = 1128 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1129 for (const InsnRange &Range : Scope->getRanges()) { 1130 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1131 const MCSymbol *End = getLabelAfterInsn(Range.second); 1132 End = End ? End : Asm->getFunctionEnd(); 1133 DefRange.Ranges.emplace_back(Begin, End); 1134 } 1135 1136 LocalVariable Var; 1137 Var.DIVar = VI.Var; 1138 Var.DefRanges.emplace_back(std::move(DefRange)); 1139 recordLocalVariable(std::move(Var), Scope); 1140 } 1141 } 1142 1143 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1144 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1145 } 1146 1147 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1148 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1149 } 1150 1151 void CodeViewDebug::calculateRanges( 1152 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1153 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1154 1155 // Calculate the definition ranges. 1156 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1157 const InsnRange &Range = *I; 1158 const MachineInstr *DVInst = Range.first; 1159 assert(DVInst->isDebugValue() && "Invalid History entry"); 1160 // FIXME: Find a way to represent constant variables, since they are 1161 // relatively common. 1162 Optional<DbgVariableLocation> Location = 1163 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1164 if (!Location) 1165 continue; 1166 1167 // CodeView can only express variables in register and variables in memory 1168 // at a constant offset from a register. However, for variables passed 1169 // indirectly by pointer, it is common for that pointer to be spilled to a 1170 // stack location. For the special case of one offseted load followed by a 1171 // zero offset load (a pointer spilled to the stack), we change the type of 1172 // the local variable from a value type to a reference type. This tricks the 1173 // debugger into doing the load for us. 1174 if (Var.UseReferenceType) { 1175 // We're using a reference type. Drop the last zero offset load. 1176 if (canUseReferenceType(*Location)) 1177 Location->LoadChain.pop_back(); 1178 else 1179 continue; 1180 } else if (needsReferenceType(*Location)) { 1181 // This location can't be expressed without switching to a reference type. 1182 // Start over using that. 1183 Var.UseReferenceType = true; 1184 Var.DefRanges.clear(); 1185 calculateRanges(Var, Ranges); 1186 return; 1187 } 1188 1189 // We can only handle a register or an offseted load of a register. 1190 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1191 continue; 1192 { 1193 LocalVarDefRange DR; 1194 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1195 DR.InMemory = !Location->LoadChain.empty(); 1196 DR.DataOffset = 1197 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1198 if (Location->FragmentInfo) { 1199 DR.IsSubfield = true; 1200 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1201 } else { 1202 DR.IsSubfield = false; 1203 DR.StructOffset = 0; 1204 } 1205 1206 if (Var.DefRanges.empty() || 1207 Var.DefRanges.back().isDifferentLocation(DR)) { 1208 Var.DefRanges.emplace_back(std::move(DR)); 1209 } 1210 } 1211 1212 // Compute the label range. 1213 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1214 const MCSymbol *End = getLabelAfterInsn(Range.second); 1215 if (!End) { 1216 // This range is valid until the next overlapping bitpiece. In the 1217 // common case, ranges will not be bitpieces, so they will overlap. 1218 auto J = std::next(I); 1219 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1220 while (J != E && 1221 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1222 ++J; 1223 if (J != E) 1224 End = getLabelBeforeInsn(J->first); 1225 else 1226 End = Asm->getFunctionEnd(); 1227 } 1228 1229 // If the last range end is our begin, just extend the last range. 1230 // Otherwise make a new range. 1231 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1232 Var.DefRanges.back().Ranges; 1233 if (!R.empty() && R.back().second == Begin) 1234 R.back().second = End; 1235 else 1236 R.emplace_back(Begin, End); 1237 1238 // FIXME: Do more range combining. 1239 } 1240 } 1241 1242 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1243 DenseSet<InlinedEntity> Processed; 1244 // Grab the variable info that was squirreled away in the MMI side-table. 1245 collectVariableInfoFromMFTable(Processed); 1246 1247 for (const auto &I : DbgValues) { 1248 InlinedEntity IV = I.first; 1249 if (Processed.count(IV)) 1250 continue; 1251 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1252 const DILocation *InlinedAt = IV.second; 1253 1254 // Instruction ranges, specifying where IV is accessible. 1255 const auto &Ranges = I.second; 1256 1257 LexicalScope *Scope = nullptr; 1258 if (InlinedAt) 1259 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1260 else 1261 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1262 // If variable scope is not found then skip this variable. 1263 if (!Scope) 1264 continue; 1265 1266 LocalVariable Var; 1267 Var.DIVar = DIVar; 1268 1269 calculateRanges(Var, Ranges); 1270 recordLocalVariable(std::move(Var), Scope); 1271 } 1272 } 1273 1274 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1275 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1276 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1277 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1278 const Function &GV = MF->getFunction(); 1279 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1280 assert(Insertion.second && "function already has info"); 1281 CurFn = Insertion.first->second.get(); 1282 CurFn->FuncId = NextFuncId++; 1283 CurFn->Begin = Asm->getFunctionBegin(); 1284 1285 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1286 // callee-saved registers were used. For targets that don't use a PUSH 1287 // instruction (AArch64), this will be zero. 1288 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1289 CurFn->FrameSize = MFI.getStackSize(); 1290 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1291 1292 // For this function S_FRAMEPROC record, figure out which codeview register 1293 // will be the frame pointer. 1294 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1295 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1296 if (CurFn->FrameSize > 0) { 1297 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1298 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1299 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1300 } else { 1301 // If there is an FP, parameters are always relative to it. 1302 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1303 if (CurFn->HasStackRealignment) { 1304 // If the stack needs realignment, locals are relative to SP or VFRAME. 1305 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1306 } else { 1307 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1308 // other stack adjustments. 1309 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1310 } 1311 } 1312 } 1313 1314 // Compute other frame procedure options. 1315 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1316 if (MFI.hasVarSizedObjects()) 1317 FPO |= FrameProcedureOptions::HasAlloca; 1318 if (MF->exposesReturnsTwice()) 1319 FPO |= FrameProcedureOptions::HasSetJmp; 1320 // FIXME: Set HasLongJmp if we ever track that info. 1321 if (MF->hasInlineAsm()) 1322 FPO |= FrameProcedureOptions::HasInlineAssembly; 1323 if (GV.hasPersonalityFn()) { 1324 if (isAsynchronousEHPersonality( 1325 classifyEHPersonality(GV.getPersonalityFn()))) 1326 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1327 else 1328 FPO |= FrameProcedureOptions::HasExceptionHandling; 1329 } 1330 if (GV.hasFnAttribute(Attribute::InlineHint)) 1331 FPO |= FrameProcedureOptions::MarkedInline; 1332 if (GV.hasFnAttribute(Attribute::Naked)) 1333 FPO |= FrameProcedureOptions::Naked; 1334 if (MFI.hasStackProtectorIndex()) 1335 FPO |= FrameProcedureOptions::SecurityChecks; 1336 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1337 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1338 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && 1339 !GV.hasFnAttribute(Attribute::OptimizeNone)) 1340 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1341 // FIXME: Set GuardCfg when it is implemented. 1342 CurFn->FrameProcOpts = FPO; 1343 1344 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1345 1346 // Find the end of the function prolog. First known non-DBG_VALUE and 1347 // non-frame setup location marks the beginning of the function body. 1348 // FIXME: is there a simpler a way to do this? Can we just search 1349 // for the first instruction of the function, not the last of the prolog? 1350 DebugLoc PrologEndLoc; 1351 bool EmptyPrologue = true; 1352 for (const auto &MBB : *MF) { 1353 for (const auto &MI : MBB) { 1354 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1355 MI.getDebugLoc()) { 1356 PrologEndLoc = MI.getDebugLoc(); 1357 break; 1358 } else if (!MI.isMetaInstruction()) { 1359 EmptyPrologue = false; 1360 } 1361 } 1362 } 1363 1364 // Record beginning of function if we have a non-empty prologue. 1365 if (PrologEndLoc && !EmptyPrologue) { 1366 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1367 maybeRecordLocation(FnStartDL, MF); 1368 } 1369 } 1370 1371 static bool shouldEmitUdt(const DIType *T) { 1372 if (!T) 1373 return false; 1374 1375 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1376 if (T->getTag() == dwarf::DW_TAG_typedef) { 1377 if (DIScope *Scope = T->getScope().resolve()) { 1378 switch (Scope->getTag()) { 1379 case dwarf::DW_TAG_structure_type: 1380 case dwarf::DW_TAG_class_type: 1381 case dwarf::DW_TAG_union_type: 1382 return false; 1383 } 1384 } 1385 } 1386 1387 while (true) { 1388 if (!T || T->isForwardDecl()) 1389 return false; 1390 1391 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1392 if (!DT) 1393 return true; 1394 T = DT->getBaseType().resolve(); 1395 } 1396 return true; 1397 } 1398 1399 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1400 // Don't record empty UDTs. 1401 if (Ty->getName().empty()) 1402 return; 1403 if (!shouldEmitUdt(Ty)) 1404 return; 1405 1406 SmallVector<StringRef, 5> QualifiedNameComponents; 1407 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1408 Ty->getScope().resolve(), QualifiedNameComponents); 1409 1410 std::string FullyQualifiedName = 1411 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1412 1413 if (ClosestSubprogram == nullptr) { 1414 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1415 } else if (ClosestSubprogram == CurrentSubprogram) { 1416 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1417 } 1418 1419 // TODO: What if the ClosestSubprogram is neither null or the current 1420 // subprogram? Currently, the UDT just gets dropped on the floor. 1421 // 1422 // The current behavior is not desirable. To get maximal fidelity, we would 1423 // need to perform all type translation before beginning emission of .debug$S 1424 // and then make LocalUDTs a member of FunctionInfo 1425 } 1426 1427 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1428 // Generic dispatch for lowering an unknown type. 1429 switch (Ty->getTag()) { 1430 case dwarf::DW_TAG_array_type: 1431 return lowerTypeArray(cast<DICompositeType>(Ty)); 1432 case dwarf::DW_TAG_typedef: 1433 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1434 case dwarf::DW_TAG_base_type: 1435 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1436 case dwarf::DW_TAG_pointer_type: 1437 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1438 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1439 LLVM_FALLTHROUGH; 1440 case dwarf::DW_TAG_reference_type: 1441 case dwarf::DW_TAG_rvalue_reference_type: 1442 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1443 case dwarf::DW_TAG_ptr_to_member_type: 1444 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1445 case dwarf::DW_TAG_restrict_type: 1446 case dwarf::DW_TAG_const_type: 1447 case dwarf::DW_TAG_volatile_type: 1448 // TODO: add support for DW_TAG_atomic_type here 1449 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1450 case dwarf::DW_TAG_subroutine_type: 1451 if (ClassTy) { 1452 // The member function type of a member function pointer has no 1453 // ThisAdjustment. 1454 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1455 /*ThisAdjustment=*/0, 1456 /*IsStaticMethod=*/false); 1457 } 1458 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1459 case dwarf::DW_TAG_enumeration_type: 1460 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1461 case dwarf::DW_TAG_class_type: 1462 case dwarf::DW_TAG_structure_type: 1463 return lowerTypeClass(cast<DICompositeType>(Ty)); 1464 case dwarf::DW_TAG_union_type: 1465 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1466 case dwarf::DW_TAG_unspecified_type: 1467 return TypeIndex::None(); 1468 default: 1469 // Use the null type index. 1470 return TypeIndex(); 1471 } 1472 } 1473 1474 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1475 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1476 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1477 StringRef TypeName = Ty->getName(); 1478 1479 addToUDTs(Ty); 1480 1481 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1482 TypeName == "HRESULT") 1483 return TypeIndex(SimpleTypeKind::HResult); 1484 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1485 TypeName == "wchar_t") 1486 return TypeIndex(SimpleTypeKind::WideCharacter); 1487 1488 return UnderlyingTypeIndex; 1489 } 1490 1491 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1492 DITypeRef ElementTypeRef = Ty->getBaseType(); 1493 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1494 // IndexType is size_t, which depends on the bitness of the target. 1495 TypeIndex IndexType = getPointerSizeInBytes() == 8 1496 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1497 : TypeIndex(SimpleTypeKind::UInt32Long); 1498 1499 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1500 1501 // Add subranges to array type. 1502 DINodeArray Elements = Ty->getElements(); 1503 for (int i = Elements.size() - 1; i >= 0; --i) { 1504 const DINode *Element = Elements[i]; 1505 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1506 1507 const DISubrange *Subrange = cast<DISubrange>(Element); 1508 assert(Subrange->getLowerBound() == 0 && 1509 "codeview doesn't support subranges with lower bounds"); 1510 int64_t Count = -1; 1511 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1512 Count = CI->getSExtValue(); 1513 1514 // Forward declarations of arrays without a size and VLAs use a count of -1. 1515 // Emit a count of zero in these cases to match what MSVC does for arrays 1516 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1517 // should do for them even if we could distinguish them. 1518 if (Count == -1) 1519 Count = 0; 1520 1521 // Update the element size and element type index for subsequent subranges. 1522 ElementSize *= Count; 1523 1524 // If this is the outermost array, use the size from the array. It will be 1525 // more accurate if we had a VLA or an incomplete element type size. 1526 uint64_t ArraySize = 1527 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1528 1529 StringRef Name = (i == 0) ? Ty->getName() : ""; 1530 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1531 ElementTypeIndex = TypeTable.writeLeafType(AR); 1532 } 1533 1534 return ElementTypeIndex; 1535 } 1536 1537 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1538 TypeIndex Index; 1539 dwarf::TypeKind Kind; 1540 uint32_t ByteSize; 1541 1542 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1543 ByteSize = Ty->getSizeInBits() / 8; 1544 1545 SimpleTypeKind STK = SimpleTypeKind::None; 1546 switch (Kind) { 1547 case dwarf::DW_ATE_address: 1548 // FIXME: Translate 1549 break; 1550 case dwarf::DW_ATE_boolean: 1551 switch (ByteSize) { 1552 case 1: STK = SimpleTypeKind::Boolean8; break; 1553 case 2: STK = SimpleTypeKind::Boolean16; break; 1554 case 4: STK = SimpleTypeKind::Boolean32; break; 1555 case 8: STK = SimpleTypeKind::Boolean64; break; 1556 case 16: STK = SimpleTypeKind::Boolean128; break; 1557 } 1558 break; 1559 case dwarf::DW_ATE_complex_float: 1560 switch (ByteSize) { 1561 case 2: STK = SimpleTypeKind::Complex16; break; 1562 case 4: STK = SimpleTypeKind::Complex32; break; 1563 case 8: STK = SimpleTypeKind::Complex64; break; 1564 case 10: STK = SimpleTypeKind::Complex80; break; 1565 case 16: STK = SimpleTypeKind::Complex128; break; 1566 } 1567 break; 1568 case dwarf::DW_ATE_float: 1569 switch (ByteSize) { 1570 case 2: STK = SimpleTypeKind::Float16; break; 1571 case 4: STK = SimpleTypeKind::Float32; break; 1572 case 6: STK = SimpleTypeKind::Float48; break; 1573 case 8: STK = SimpleTypeKind::Float64; break; 1574 case 10: STK = SimpleTypeKind::Float80; break; 1575 case 16: STK = SimpleTypeKind::Float128; break; 1576 } 1577 break; 1578 case dwarf::DW_ATE_signed: 1579 switch (ByteSize) { 1580 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1581 case 2: STK = SimpleTypeKind::Int16Short; break; 1582 case 4: STK = SimpleTypeKind::Int32; break; 1583 case 8: STK = SimpleTypeKind::Int64Quad; break; 1584 case 16: STK = SimpleTypeKind::Int128Oct; break; 1585 } 1586 break; 1587 case dwarf::DW_ATE_unsigned: 1588 switch (ByteSize) { 1589 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1590 case 2: STK = SimpleTypeKind::UInt16Short; break; 1591 case 4: STK = SimpleTypeKind::UInt32; break; 1592 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1593 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1594 } 1595 break; 1596 case dwarf::DW_ATE_UTF: 1597 switch (ByteSize) { 1598 case 2: STK = SimpleTypeKind::Character16; break; 1599 case 4: STK = SimpleTypeKind::Character32; break; 1600 } 1601 break; 1602 case dwarf::DW_ATE_signed_char: 1603 if (ByteSize == 1) 1604 STK = SimpleTypeKind::SignedCharacter; 1605 break; 1606 case dwarf::DW_ATE_unsigned_char: 1607 if (ByteSize == 1) 1608 STK = SimpleTypeKind::UnsignedCharacter; 1609 break; 1610 default: 1611 break; 1612 } 1613 1614 // Apply some fixups based on the source-level type name. 1615 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1616 STK = SimpleTypeKind::Int32Long; 1617 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1618 STK = SimpleTypeKind::UInt32Long; 1619 if (STK == SimpleTypeKind::UInt16Short && 1620 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1621 STK = SimpleTypeKind::WideCharacter; 1622 if ((STK == SimpleTypeKind::SignedCharacter || 1623 STK == SimpleTypeKind::UnsignedCharacter) && 1624 Ty->getName() == "char") 1625 STK = SimpleTypeKind::NarrowCharacter; 1626 1627 return TypeIndex(STK); 1628 } 1629 1630 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1631 PointerOptions PO) { 1632 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1633 1634 // Pointers to simple types without any options can use SimpleTypeMode, rather 1635 // than having a dedicated pointer type record. 1636 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1637 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1638 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1639 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1640 ? SimpleTypeMode::NearPointer64 1641 : SimpleTypeMode::NearPointer32; 1642 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1643 } 1644 1645 PointerKind PK = 1646 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1647 PointerMode PM = PointerMode::Pointer; 1648 switch (Ty->getTag()) { 1649 default: llvm_unreachable("not a pointer tag type"); 1650 case dwarf::DW_TAG_pointer_type: 1651 PM = PointerMode::Pointer; 1652 break; 1653 case dwarf::DW_TAG_reference_type: 1654 PM = PointerMode::LValueReference; 1655 break; 1656 case dwarf::DW_TAG_rvalue_reference_type: 1657 PM = PointerMode::RValueReference; 1658 break; 1659 } 1660 1661 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1662 return TypeTable.writeLeafType(PR); 1663 } 1664 1665 static PointerToMemberRepresentation 1666 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1667 // SizeInBytes being zero generally implies that the member pointer type was 1668 // incomplete, which can happen if it is part of a function prototype. In this 1669 // case, use the unknown model instead of the general model. 1670 if (IsPMF) { 1671 switch (Flags & DINode::FlagPtrToMemberRep) { 1672 case 0: 1673 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1674 : PointerToMemberRepresentation::GeneralFunction; 1675 case DINode::FlagSingleInheritance: 1676 return PointerToMemberRepresentation::SingleInheritanceFunction; 1677 case DINode::FlagMultipleInheritance: 1678 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1679 case DINode::FlagVirtualInheritance: 1680 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1681 } 1682 } else { 1683 switch (Flags & DINode::FlagPtrToMemberRep) { 1684 case 0: 1685 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1686 : PointerToMemberRepresentation::GeneralData; 1687 case DINode::FlagSingleInheritance: 1688 return PointerToMemberRepresentation::SingleInheritanceData; 1689 case DINode::FlagMultipleInheritance: 1690 return PointerToMemberRepresentation::MultipleInheritanceData; 1691 case DINode::FlagVirtualInheritance: 1692 return PointerToMemberRepresentation::VirtualInheritanceData; 1693 } 1694 } 1695 llvm_unreachable("invalid ptr to member representation"); 1696 } 1697 1698 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1699 PointerOptions PO) { 1700 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1701 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1702 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1703 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1704 : PointerKind::Near32; 1705 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1706 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1707 : PointerMode::PointerToDataMember; 1708 1709 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1710 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1711 MemberPointerInfo MPI( 1712 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1713 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1714 return TypeTable.writeLeafType(PR); 1715 } 1716 1717 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1718 /// have a translation, use the NearC convention. 1719 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1720 switch (DwarfCC) { 1721 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1722 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1723 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1724 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1725 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1726 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1727 } 1728 return CallingConvention::NearC; 1729 } 1730 1731 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1732 ModifierOptions Mods = ModifierOptions::None; 1733 PointerOptions PO = PointerOptions::None; 1734 bool IsModifier = true; 1735 const DIType *BaseTy = Ty; 1736 while (IsModifier && BaseTy) { 1737 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1738 switch (BaseTy->getTag()) { 1739 case dwarf::DW_TAG_const_type: 1740 Mods |= ModifierOptions::Const; 1741 PO |= PointerOptions::Const; 1742 break; 1743 case dwarf::DW_TAG_volatile_type: 1744 Mods |= ModifierOptions::Volatile; 1745 PO |= PointerOptions::Volatile; 1746 break; 1747 case dwarf::DW_TAG_restrict_type: 1748 // Only pointer types be marked with __restrict. There is no known flag 1749 // for __restrict in LF_MODIFIER records. 1750 PO |= PointerOptions::Restrict; 1751 break; 1752 default: 1753 IsModifier = false; 1754 break; 1755 } 1756 if (IsModifier) 1757 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1758 } 1759 1760 // Check if the inner type will use an LF_POINTER record. If so, the 1761 // qualifiers will go in the LF_POINTER record. This comes up for types like 1762 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1763 // char *'. 1764 if (BaseTy) { 1765 switch (BaseTy->getTag()) { 1766 case dwarf::DW_TAG_pointer_type: 1767 case dwarf::DW_TAG_reference_type: 1768 case dwarf::DW_TAG_rvalue_reference_type: 1769 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1770 case dwarf::DW_TAG_ptr_to_member_type: 1771 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1772 default: 1773 break; 1774 } 1775 } 1776 1777 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1778 1779 // Return the base type index if there aren't any modifiers. For example, the 1780 // metadata could contain restrict wrappers around non-pointer types. 1781 if (Mods == ModifierOptions::None) 1782 return ModifiedTI; 1783 1784 ModifierRecord MR(ModifiedTI, Mods); 1785 return TypeTable.writeLeafType(MR); 1786 } 1787 1788 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1789 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1790 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1791 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1792 1793 // MSVC uses type none for variadic argument. 1794 if (ReturnAndArgTypeIndices.size() > 1 && 1795 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1796 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1797 } 1798 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1799 ArrayRef<TypeIndex> ArgTypeIndices = None; 1800 if (!ReturnAndArgTypeIndices.empty()) { 1801 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1802 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1803 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1804 } 1805 1806 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1807 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1808 1809 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1810 1811 FunctionOptions FO = getFunctionOptions(Ty); 1812 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1813 ArgListIndex); 1814 return TypeTable.writeLeafType(Procedure); 1815 } 1816 1817 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1818 const DIType *ClassTy, 1819 int ThisAdjustment, 1820 bool IsStaticMethod, 1821 FunctionOptions FO) { 1822 // Lower the containing class type. 1823 TypeIndex ClassType = getTypeIndex(ClassTy); 1824 1825 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1826 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1827 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1828 1829 // MSVC uses type none for variadic argument. 1830 if (ReturnAndArgTypeIndices.size() > 1 && 1831 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1832 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1833 } 1834 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1835 ArrayRef<TypeIndex> ArgTypeIndices = None; 1836 if (!ReturnAndArgTypeIndices.empty()) { 1837 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1838 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1839 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1840 } 1841 TypeIndex ThisTypeIndex; 1842 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1843 ThisTypeIndex = ArgTypeIndices.front(); 1844 ArgTypeIndices = ArgTypeIndices.drop_front(); 1845 } 1846 1847 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1848 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1849 1850 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1851 1852 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1853 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1854 return TypeTable.writeLeafType(MFR); 1855 } 1856 1857 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1858 unsigned VSlotCount = 1859 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1860 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1861 1862 VFTableShapeRecord VFTSR(Slots); 1863 return TypeTable.writeLeafType(VFTSR); 1864 } 1865 1866 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1867 switch (Flags & DINode::FlagAccessibility) { 1868 case DINode::FlagPrivate: return MemberAccess::Private; 1869 case DINode::FlagPublic: return MemberAccess::Public; 1870 case DINode::FlagProtected: return MemberAccess::Protected; 1871 case 0: 1872 // If there was no explicit access control, provide the default for the tag. 1873 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1874 : MemberAccess::Public; 1875 } 1876 llvm_unreachable("access flags are exclusive"); 1877 } 1878 1879 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1880 if (SP->isArtificial()) 1881 return MethodOptions::CompilerGenerated; 1882 1883 // FIXME: Handle other MethodOptions. 1884 1885 return MethodOptions::None; 1886 } 1887 1888 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1889 bool Introduced) { 1890 if (SP->getFlags() & DINode::FlagStaticMember) 1891 return MethodKind::Static; 1892 1893 switch (SP->getVirtuality()) { 1894 case dwarf::DW_VIRTUALITY_none: 1895 break; 1896 case dwarf::DW_VIRTUALITY_virtual: 1897 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1898 case dwarf::DW_VIRTUALITY_pure_virtual: 1899 return Introduced ? MethodKind::PureIntroducingVirtual 1900 : MethodKind::PureVirtual; 1901 default: 1902 llvm_unreachable("unhandled virtuality case"); 1903 } 1904 1905 return MethodKind::Vanilla; 1906 } 1907 1908 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1909 switch (Ty->getTag()) { 1910 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1911 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1912 } 1913 llvm_unreachable("unexpected tag"); 1914 } 1915 1916 /// Return ClassOptions that should be present on both the forward declaration 1917 /// and the defintion of a tag type. 1918 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1919 ClassOptions CO = ClassOptions::None; 1920 1921 // MSVC always sets this flag, even for local types. Clang doesn't always 1922 // appear to give every type a linkage name, which may be problematic for us. 1923 // FIXME: Investigate the consequences of not following them here. 1924 if (!Ty->getIdentifier().empty()) 1925 CO |= ClassOptions::HasUniqueName; 1926 1927 // Put the Nested flag on a type if it appears immediately inside a tag type. 1928 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1929 // here. That flag is only set on definitions, and not forward declarations. 1930 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1931 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1932 CO |= ClassOptions::Nested; 1933 1934 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 1935 // type only when it has an immediate function scope. Clang never puts enums 1936 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 1937 // always in function, class, or file scopes. 1938 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 1939 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 1940 CO |= ClassOptions::Scoped; 1941 } else { 1942 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1943 Scope = Scope->getScope().resolve()) { 1944 if (isa<DISubprogram>(Scope)) { 1945 CO |= ClassOptions::Scoped; 1946 break; 1947 } 1948 } 1949 } 1950 1951 return CO; 1952 } 1953 1954 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1955 switch (Ty->getTag()) { 1956 case dwarf::DW_TAG_class_type: 1957 case dwarf::DW_TAG_structure_type: 1958 case dwarf::DW_TAG_union_type: 1959 case dwarf::DW_TAG_enumeration_type: 1960 break; 1961 default: 1962 return; 1963 } 1964 1965 if (const auto *File = Ty->getFile()) { 1966 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1967 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1968 1969 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1970 TypeTable.writeLeafType(USLR); 1971 } 1972 } 1973 1974 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1975 ClassOptions CO = getCommonClassOptions(Ty); 1976 TypeIndex FTI; 1977 unsigned EnumeratorCount = 0; 1978 1979 if (Ty->isForwardDecl()) { 1980 CO |= ClassOptions::ForwardReference; 1981 } else { 1982 ContinuationRecordBuilder ContinuationBuilder; 1983 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1984 for (const DINode *Element : Ty->getElements()) { 1985 // We assume that the frontend provides all members in source declaration 1986 // order, which is what MSVC does. 1987 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1988 EnumeratorRecord ER(MemberAccess::Public, 1989 APSInt::getUnsigned(Enumerator->getValue()), 1990 Enumerator->getName()); 1991 ContinuationBuilder.writeMemberType(ER); 1992 EnumeratorCount++; 1993 } 1994 } 1995 FTI = TypeTable.insertRecord(ContinuationBuilder); 1996 } 1997 1998 std::string FullName = getFullyQualifiedName(Ty); 1999 2000 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2001 getTypeIndex(Ty->getBaseType())); 2002 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2003 2004 addUDTSrcLine(Ty, EnumTI); 2005 2006 return EnumTI; 2007 } 2008 2009 //===----------------------------------------------------------------------===// 2010 // ClassInfo 2011 //===----------------------------------------------------------------------===// 2012 2013 struct llvm::ClassInfo { 2014 struct MemberInfo { 2015 const DIDerivedType *MemberTypeNode; 2016 uint64_t BaseOffset; 2017 }; 2018 // [MemberInfo] 2019 using MemberList = std::vector<MemberInfo>; 2020 2021 using MethodsList = TinyPtrVector<const DISubprogram *>; 2022 // MethodName -> MethodsList 2023 using MethodsMap = MapVector<MDString *, MethodsList>; 2024 2025 /// Base classes. 2026 std::vector<const DIDerivedType *> Inheritance; 2027 2028 /// Direct members. 2029 MemberList Members; 2030 // Direct overloaded methods gathered by name. 2031 MethodsMap Methods; 2032 2033 TypeIndex VShapeTI; 2034 2035 std::vector<const DIType *> NestedTypes; 2036 }; 2037 2038 void CodeViewDebug::clear() { 2039 assert(CurFn == nullptr); 2040 FileIdMap.clear(); 2041 FnDebugInfo.clear(); 2042 FileToFilepathMap.clear(); 2043 LocalUDTs.clear(); 2044 GlobalUDTs.clear(); 2045 TypeIndices.clear(); 2046 CompleteTypeIndices.clear(); 2047 } 2048 2049 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2050 const DIDerivedType *DDTy) { 2051 if (!DDTy->getName().empty()) { 2052 Info.Members.push_back({DDTy, 0}); 2053 return; 2054 } 2055 2056 // An unnamed member may represent a nested struct or union. Attempt to 2057 // interpret the unnamed member as a DICompositeType possibly wrapped in 2058 // qualifier types. Add all the indirect fields to the current record if that 2059 // succeeds, and drop the member if that fails. 2060 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2061 uint64_t Offset = DDTy->getOffsetInBits(); 2062 const DIType *Ty = DDTy->getBaseType().resolve(); 2063 bool FullyResolved = false; 2064 while (!FullyResolved) { 2065 switch (Ty->getTag()) { 2066 case dwarf::DW_TAG_const_type: 2067 case dwarf::DW_TAG_volatile_type: 2068 // FIXME: we should apply the qualifier types to the indirect fields 2069 // rather than dropping them. 2070 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2071 break; 2072 default: 2073 FullyResolved = true; 2074 break; 2075 } 2076 } 2077 2078 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2079 if (!DCTy) 2080 return; 2081 2082 ClassInfo NestedInfo = collectClassInfo(DCTy); 2083 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2084 Info.Members.push_back( 2085 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2086 } 2087 2088 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2089 ClassInfo Info; 2090 // Add elements to structure type. 2091 DINodeArray Elements = Ty->getElements(); 2092 for (auto *Element : Elements) { 2093 // We assume that the frontend provides all members in source declaration 2094 // order, which is what MSVC does. 2095 if (!Element) 2096 continue; 2097 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2098 Info.Methods[SP->getRawName()].push_back(SP); 2099 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2100 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2101 collectMemberInfo(Info, DDTy); 2102 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2103 Info.Inheritance.push_back(DDTy); 2104 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2105 DDTy->getName() == "__vtbl_ptr_type") { 2106 Info.VShapeTI = getTypeIndex(DDTy); 2107 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2108 Info.NestedTypes.push_back(DDTy); 2109 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2110 // Ignore friend members. It appears that MSVC emitted info about 2111 // friends in the past, but modern versions do not. 2112 } 2113 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2114 Info.NestedTypes.push_back(Composite); 2115 } 2116 // Skip other unrecognized kinds of elements. 2117 } 2118 return Info; 2119 } 2120 2121 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2122 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2123 // if a complete type should be emitted instead of a forward reference. 2124 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2125 !Ty->isForwardDecl(); 2126 } 2127 2128 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2129 // Emit the complete type for unnamed structs. C++ classes with methods 2130 // which have a circular reference back to the class type are expected to 2131 // be named by the front-end and should not be "unnamed". C unnamed 2132 // structs should not have circular references. 2133 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2134 // If this unnamed complete type is already in the process of being defined 2135 // then the description of the type is malformed and cannot be emitted 2136 // into CodeView correctly so report a fatal error. 2137 auto I = CompleteTypeIndices.find(Ty); 2138 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2139 report_fatal_error("cannot debug circular reference to unnamed type"); 2140 return getCompleteTypeIndex(Ty); 2141 } 2142 2143 // First, construct the forward decl. Don't look into Ty to compute the 2144 // forward decl options, since it might not be available in all TUs. 2145 TypeRecordKind Kind = getRecordKind(Ty); 2146 ClassOptions CO = 2147 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2148 std::string FullName = getFullyQualifiedName(Ty); 2149 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2150 FullName, Ty->getIdentifier()); 2151 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2152 if (!Ty->isForwardDecl()) 2153 DeferredCompleteTypes.push_back(Ty); 2154 return FwdDeclTI; 2155 } 2156 2157 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2158 // Construct the field list and complete type record. 2159 TypeRecordKind Kind = getRecordKind(Ty); 2160 ClassOptions CO = getCommonClassOptions(Ty); 2161 TypeIndex FieldTI; 2162 TypeIndex VShapeTI; 2163 unsigned FieldCount; 2164 bool ContainsNestedClass; 2165 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2166 lowerRecordFieldList(Ty); 2167 2168 if (ContainsNestedClass) 2169 CO |= ClassOptions::ContainsNestedClass; 2170 2171 std::string FullName = getFullyQualifiedName(Ty); 2172 2173 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2174 2175 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2176 SizeInBytes, FullName, Ty->getIdentifier()); 2177 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2178 2179 addUDTSrcLine(Ty, ClassTI); 2180 2181 addToUDTs(Ty); 2182 2183 return ClassTI; 2184 } 2185 2186 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2187 // Emit the complete type for unnamed unions. 2188 if (shouldAlwaysEmitCompleteClassType(Ty)) 2189 return getCompleteTypeIndex(Ty); 2190 2191 ClassOptions CO = 2192 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2193 std::string FullName = getFullyQualifiedName(Ty); 2194 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2195 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2196 if (!Ty->isForwardDecl()) 2197 DeferredCompleteTypes.push_back(Ty); 2198 return FwdDeclTI; 2199 } 2200 2201 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2202 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2203 TypeIndex FieldTI; 2204 unsigned FieldCount; 2205 bool ContainsNestedClass; 2206 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2207 lowerRecordFieldList(Ty); 2208 2209 if (ContainsNestedClass) 2210 CO |= ClassOptions::ContainsNestedClass; 2211 2212 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2213 std::string FullName = getFullyQualifiedName(Ty); 2214 2215 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2216 Ty->getIdentifier()); 2217 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2218 2219 addUDTSrcLine(Ty, UnionTI); 2220 2221 addToUDTs(Ty); 2222 2223 return UnionTI; 2224 } 2225 2226 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2227 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2228 // Manually count members. MSVC appears to count everything that generates a 2229 // field list record. Each individual overload in a method overload group 2230 // contributes to this count, even though the overload group is a single field 2231 // list record. 2232 unsigned MemberCount = 0; 2233 ClassInfo Info = collectClassInfo(Ty); 2234 ContinuationRecordBuilder ContinuationBuilder; 2235 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2236 2237 // Create base classes. 2238 for (const DIDerivedType *I : Info.Inheritance) { 2239 if (I->getFlags() & DINode::FlagVirtual) { 2240 // Virtual base. 2241 unsigned VBPtrOffset = I->getVBPtrOffset(); 2242 // FIXME: Despite the accessor name, the offset is really in bytes. 2243 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2244 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2245 ? TypeRecordKind::IndirectVirtualBaseClass 2246 : TypeRecordKind::VirtualBaseClass; 2247 VirtualBaseClassRecord VBCR( 2248 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2249 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2250 VBTableIndex); 2251 2252 ContinuationBuilder.writeMemberType(VBCR); 2253 MemberCount++; 2254 } else { 2255 assert(I->getOffsetInBits() % 8 == 0 && 2256 "bases must be on byte boundaries"); 2257 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2258 getTypeIndex(I->getBaseType()), 2259 I->getOffsetInBits() / 8); 2260 ContinuationBuilder.writeMemberType(BCR); 2261 MemberCount++; 2262 } 2263 } 2264 2265 // Create members. 2266 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2267 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2268 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2269 StringRef MemberName = Member->getName(); 2270 MemberAccess Access = 2271 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2272 2273 if (Member->isStaticMember()) { 2274 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2275 ContinuationBuilder.writeMemberType(SDMR); 2276 MemberCount++; 2277 continue; 2278 } 2279 2280 // Virtual function pointer member. 2281 if ((Member->getFlags() & DINode::FlagArtificial) && 2282 Member->getName().startswith("_vptr$")) { 2283 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2284 ContinuationBuilder.writeMemberType(VFPR); 2285 MemberCount++; 2286 continue; 2287 } 2288 2289 // Data member. 2290 uint64_t MemberOffsetInBits = 2291 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2292 if (Member->isBitField()) { 2293 uint64_t StartBitOffset = MemberOffsetInBits; 2294 if (const auto *CI = 2295 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2296 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2297 } 2298 StartBitOffset -= MemberOffsetInBits; 2299 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2300 StartBitOffset); 2301 MemberBaseType = TypeTable.writeLeafType(BFR); 2302 } 2303 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2304 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2305 MemberName); 2306 ContinuationBuilder.writeMemberType(DMR); 2307 MemberCount++; 2308 } 2309 2310 // Create methods 2311 for (auto &MethodItr : Info.Methods) { 2312 StringRef Name = MethodItr.first->getString(); 2313 2314 std::vector<OneMethodRecord> Methods; 2315 for (const DISubprogram *SP : MethodItr.second) { 2316 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2317 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2318 2319 unsigned VFTableOffset = -1; 2320 if (Introduced) 2321 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2322 2323 Methods.push_back(OneMethodRecord( 2324 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2325 translateMethodKindFlags(SP, Introduced), 2326 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2327 MemberCount++; 2328 } 2329 assert(!Methods.empty() && "Empty methods map entry"); 2330 if (Methods.size() == 1) 2331 ContinuationBuilder.writeMemberType(Methods[0]); 2332 else { 2333 // FIXME: Make this use its own ContinuationBuilder so that 2334 // MethodOverloadList can be split correctly. 2335 MethodOverloadListRecord MOLR(Methods); 2336 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2337 2338 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2339 ContinuationBuilder.writeMemberType(OMR); 2340 } 2341 } 2342 2343 // Create nested classes. 2344 for (const DIType *Nested : Info.NestedTypes) { 2345 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2346 ContinuationBuilder.writeMemberType(R); 2347 MemberCount++; 2348 } 2349 2350 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2351 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2352 !Info.NestedTypes.empty()); 2353 } 2354 2355 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2356 if (!VBPType.getIndex()) { 2357 // Make a 'const int *' type. 2358 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2359 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2360 2361 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2362 : PointerKind::Near32; 2363 PointerMode PM = PointerMode::Pointer; 2364 PointerOptions PO = PointerOptions::None; 2365 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2366 VBPType = TypeTable.writeLeafType(PR); 2367 } 2368 2369 return VBPType; 2370 } 2371 2372 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2373 const DIType *Ty = TypeRef.resolve(); 2374 const DIType *ClassTy = ClassTyRef.resolve(); 2375 2376 // The null DIType is the void type. Don't try to hash it. 2377 if (!Ty) 2378 return TypeIndex::Void(); 2379 2380 // Check if we've already translated this type. Don't try to do a 2381 // get-or-create style insertion that caches the hash lookup across the 2382 // lowerType call. It will update the TypeIndices map. 2383 auto I = TypeIndices.find({Ty, ClassTy}); 2384 if (I != TypeIndices.end()) 2385 return I->second; 2386 2387 TypeLoweringScope S(*this); 2388 TypeIndex TI = lowerType(Ty, ClassTy); 2389 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2390 } 2391 2392 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2393 DIType *Ty = TypeRef.resolve(); 2394 PointerRecord PR(getTypeIndex(Ty), 2395 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2396 : PointerKind::Near32, 2397 PointerMode::LValueReference, PointerOptions::None, 2398 Ty->getSizeInBits() / 8); 2399 return TypeTable.writeLeafType(PR); 2400 } 2401 2402 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2403 const DIType *Ty = TypeRef.resolve(); 2404 2405 // The null DIType is the void type. Don't try to hash it. 2406 if (!Ty) 2407 return TypeIndex::Void(); 2408 2409 // If this is a non-record type, the complete type index is the same as the 2410 // normal type index. Just call getTypeIndex. 2411 switch (Ty->getTag()) { 2412 case dwarf::DW_TAG_class_type: 2413 case dwarf::DW_TAG_structure_type: 2414 case dwarf::DW_TAG_union_type: 2415 break; 2416 default: 2417 return getTypeIndex(Ty); 2418 } 2419 2420 // Check if we've already translated the complete record type. 2421 const auto *CTy = cast<DICompositeType>(Ty); 2422 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2423 if (!InsertResult.second) 2424 return InsertResult.first->second; 2425 2426 TypeLoweringScope S(*this); 2427 2428 // Make sure the forward declaration is emitted first. It's unclear if this 2429 // is necessary, but MSVC does it, and we should follow suit until we can show 2430 // otherwise. 2431 // We only emit a forward declaration for named types. 2432 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2433 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2434 2435 // Just use the forward decl if we don't have complete type info. This 2436 // might happen if the frontend is using modules and expects the complete 2437 // definition to be emitted elsewhere. 2438 if (CTy->isForwardDecl()) 2439 return FwdDeclTI; 2440 } 2441 2442 TypeIndex TI; 2443 switch (CTy->getTag()) { 2444 case dwarf::DW_TAG_class_type: 2445 case dwarf::DW_TAG_structure_type: 2446 TI = lowerCompleteTypeClass(CTy); 2447 break; 2448 case dwarf::DW_TAG_union_type: 2449 TI = lowerCompleteTypeUnion(CTy); 2450 break; 2451 default: 2452 llvm_unreachable("not a record"); 2453 } 2454 2455 // Update the type index associated with this CompositeType. This cannot 2456 // use the 'InsertResult' iterator above because it is potentially 2457 // invalidated by map insertions which can occur while lowering the class 2458 // type above. 2459 CompleteTypeIndices[CTy] = TI; 2460 return TI; 2461 } 2462 2463 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2464 /// and do this until fixpoint, as each complete record type typically 2465 /// references 2466 /// many other record types. 2467 void CodeViewDebug::emitDeferredCompleteTypes() { 2468 SmallVector<const DICompositeType *, 4> TypesToEmit; 2469 while (!DeferredCompleteTypes.empty()) { 2470 std::swap(DeferredCompleteTypes, TypesToEmit); 2471 for (const DICompositeType *RecordTy : TypesToEmit) 2472 getCompleteTypeIndex(RecordTy); 2473 TypesToEmit.clear(); 2474 } 2475 } 2476 2477 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2478 ArrayRef<LocalVariable> Locals) { 2479 // Get the sorted list of parameters and emit them first. 2480 SmallVector<const LocalVariable *, 6> Params; 2481 for (const LocalVariable &L : Locals) 2482 if (L.DIVar->isParameter()) 2483 Params.push_back(&L); 2484 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2485 return L->DIVar->getArg() < R->DIVar->getArg(); 2486 }); 2487 for (const LocalVariable *L : Params) 2488 emitLocalVariable(FI, *L); 2489 2490 // Next emit all non-parameters in the order that we found them. 2491 for (const LocalVariable &L : Locals) 2492 if (!L.DIVar->isParameter()) 2493 emitLocalVariable(FI, L); 2494 } 2495 2496 /// Only call this on endian-specific types like ulittle16_t and little32_t, or 2497 /// structs composed of them. 2498 template <typename T> 2499 static void copyBytesForDefRange(SmallString<20> &BytePrefix, 2500 SymbolKind SymKind, const T &DefRangeHeader) { 2501 BytePrefix.resize(2 + sizeof(T)); 2502 ulittle16_t SymKindLE = ulittle16_t(SymKind); 2503 memcpy(&BytePrefix[0], &SymKindLE, 2); 2504 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); 2505 } 2506 2507 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2508 const LocalVariable &Var) { 2509 // LocalSym record, see SymbolRecord.h for more info. 2510 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2511 *LocalEnd = MMI->getContext().createTempSymbol(); 2512 OS.AddComment("Record length"); 2513 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2514 OS.EmitLabel(LocalBegin); 2515 2516 OS.AddComment("Record kind: S_LOCAL"); 2517 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2518 2519 LocalSymFlags Flags = LocalSymFlags::None; 2520 if (Var.DIVar->isParameter()) 2521 Flags |= LocalSymFlags::IsParameter; 2522 if (Var.DefRanges.empty()) 2523 Flags |= LocalSymFlags::IsOptimizedOut; 2524 2525 OS.AddComment("TypeIndex"); 2526 TypeIndex TI = Var.UseReferenceType 2527 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2528 : getCompleteTypeIndex(Var.DIVar->getType()); 2529 OS.EmitIntValue(TI.getIndex(), 4); 2530 OS.AddComment("Flags"); 2531 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2532 // Truncate the name so we won't overflow the record length field. 2533 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2534 OS.EmitLabel(LocalEnd); 2535 2536 // Calculate the on disk prefix of the appropriate def range record. The 2537 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2538 // should be big enough to hold all forms without memory allocation. 2539 SmallString<20> BytePrefix; 2540 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2541 BytePrefix.clear(); 2542 if (DefRange.InMemory) { 2543 int Offset = DefRange.DataOffset; 2544 unsigned Reg = DefRange.CVRegister; 2545 2546 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2547 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2548 // instead. In simple cases, $T0 will be the CFA. 2549 if (RegisterId(Reg) == RegisterId::ESP) { 2550 Reg = unsigned(RegisterId::VFRAME); 2551 Offset -= FI.FrameSize; 2552 2553 // If the frame requires realignment, VFRAME will be ESP after it is 2554 // aligned. We have to remove the ESP adjustments made to push CSRs and 2555 // EBP. EBP is not included in CSRSize. 2556 if (FI.HasStackRealignment) 2557 Offset += FI.CSRSize + 4; 2558 } 2559 2560 // If we can use the chosen frame pointer for the frame and this isn't a 2561 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2562 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2563 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2564 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2565 (bool(Flags & LocalSymFlags::IsParameter) 2566 ? (EncFP == FI.EncodedParamFramePtrReg) 2567 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2568 little32_t FPOffset = little32_t(Offset); 2569 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); 2570 } else { 2571 uint16_t RegRelFlags = 0; 2572 if (DefRange.IsSubfield) { 2573 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2574 (DefRange.StructOffset 2575 << DefRangeRegisterRelSym::OffsetInParentShift); 2576 } 2577 DefRangeRegisterRelSym::Header DRHdr; 2578 DRHdr.Register = Reg; 2579 DRHdr.Flags = RegRelFlags; 2580 DRHdr.BasePointerOffset = Offset; 2581 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); 2582 } 2583 } else { 2584 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2585 if (DefRange.IsSubfield) { 2586 DefRangeSubfieldRegisterSym::Header DRHdr; 2587 DRHdr.Register = DefRange.CVRegister; 2588 DRHdr.MayHaveNoName = 0; 2589 DRHdr.OffsetInParent = DefRange.StructOffset; 2590 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); 2591 } else { 2592 DefRangeRegisterSym::Header DRHdr; 2593 DRHdr.Register = DefRange.CVRegister; 2594 DRHdr.MayHaveNoName = 0; 2595 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); 2596 } 2597 } 2598 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2599 } 2600 } 2601 2602 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2603 const FunctionInfo& FI) { 2604 for (LexicalBlock *Block : Blocks) 2605 emitLexicalBlock(*Block, FI); 2606 } 2607 2608 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2609 /// lexical block scope. 2610 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2611 const FunctionInfo& FI) { 2612 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(), 2613 *RecordEnd = MMI->getContext().createTempSymbol(); 2614 2615 // Lexical block symbol record. 2616 OS.AddComment("Record length"); 2617 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length 2618 OS.EmitLabel(RecordBegin); 2619 OS.AddComment("Record kind: S_BLOCK32"); 2620 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind 2621 OS.AddComment("PtrParent"); 2622 OS.EmitIntValue(0, 4); // PtrParent 2623 OS.AddComment("PtrEnd"); 2624 OS.EmitIntValue(0, 4); // PtrEnd 2625 OS.AddComment("Code size"); 2626 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2627 OS.AddComment("Function section relative address"); 2628 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2629 OS.AddComment("Function section index"); 2630 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2631 OS.AddComment("Lexical block name"); 2632 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2633 OS.EmitLabel(RecordEnd); 2634 2635 // Emit variables local to this lexical block. 2636 emitLocalVariableList(FI, Block.Locals); 2637 2638 // Emit lexical blocks contained within this block. 2639 emitLexicalBlockList(Block.Children, FI); 2640 2641 // Close the lexical block scope. 2642 OS.AddComment("Record length"); 2643 OS.EmitIntValue(2, 2); // Record Length 2644 OS.AddComment("Record kind: S_END"); 2645 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind 2646 } 2647 2648 /// Convenience routine for collecting lexical block information for a list 2649 /// of lexical scopes. 2650 void CodeViewDebug::collectLexicalBlockInfo( 2651 SmallVectorImpl<LexicalScope *> &Scopes, 2652 SmallVectorImpl<LexicalBlock *> &Blocks, 2653 SmallVectorImpl<LocalVariable> &Locals) { 2654 for (LexicalScope *Scope : Scopes) 2655 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2656 } 2657 2658 /// Populate the lexical blocks and local variable lists of the parent with 2659 /// information about the specified lexical scope. 2660 void CodeViewDebug::collectLexicalBlockInfo( 2661 LexicalScope &Scope, 2662 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2663 SmallVectorImpl<LocalVariable> &ParentLocals) { 2664 if (Scope.isAbstractScope()) 2665 return; 2666 2667 auto LocalsIter = ScopeVariables.find(&Scope); 2668 if (LocalsIter == ScopeVariables.end()) { 2669 // This scope does not contain variables and can be eliminated. 2670 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2671 return; 2672 } 2673 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2674 2675 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2676 if (!DILB) { 2677 // This scope is not a lexical block and can be eliminated, but keep any 2678 // local variables it contains. 2679 ParentLocals.append(Locals.begin(), Locals.end()); 2680 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2681 return; 2682 } 2683 2684 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2685 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2686 // This lexical block scope has too many address ranges to represent in the 2687 // current CodeView format or does not have a valid address range. 2688 // Eliminate this lexical scope and promote any locals it contains to the 2689 // parent scope. 2690 // 2691 // For lexical scopes with multiple address ranges you may be tempted to 2692 // construct a single range covering every instruction where the block is 2693 // live and everything in between. Unfortunately, Visual Studio only 2694 // displays variables from the first matching lexical block scope. If the 2695 // first lexical block contains exception handling code or cold code which 2696 // is moved to the bottom of the routine creating a single range covering 2697 // nearly the entire routine, then it will hide all other lexical blocks 2698 // and the variables they contain. 2699 // 2700 ParentLocals.append(Locals.begin(), Locals.end()); 2701 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2702 return; 2703 } 2704 2705 // Create a new CodeView lexical block for this lexical scope. If we've 2706 // seen this DILexicalBlock before then the scope tree is malformed and 2707 // we can handle this gracefully by not processing it a second time. 2708 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2709 if (!BlockInsertion.second) 2710 return; 2711 2712 // Create a lexical block containing the local variables and collect the 2713 // the lexical block information for the children. 2714 const InsnRange &Range = Ranges.front(); 2715 assert(Range.first && Range.second); 2716 LexicalBlock &Block = BlockInsertion.first->second; 2717 Block.Begin = getLabelBeforeInsn(Range.first); 2718 Block.End = getLabelAfterInsn(Range.second); 2719 assert(Block.Begin && "missing label for scope begin"); 2720 assert(Block.End && "missing label for scope end"); 2721 Block.Name = DILB->getName(); 2722 Block.Locals = std::move(Locals); 2723 ParentBlocks.push_back(&Block); 2724 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2725 } 2726 2727 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2728 const Function &GV = MF->getFunction(); 2729 assert(FnDebugInfo.count(&GV)); 2730 assert(CurFn == FnDebugInfo[&GV].get()); 2731 2732 collectVariableInfo(GV.getSubprogram()); 2733 2734 // Build the lexical block structure to emit for this routine. 2735 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2736 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2737 2738 // Clear the scope and variable information from the map which will not be 2739 // valid after we have finished processing this routine. This also prepares 2740 // the map for the subsequent routine. 2741 ScopeVariables.clear(); 2742 2743 // Don't emit anything if we don't have any line tables. 2744 // Thunks are compiler-generated and probably won't have source correlation. 2745 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2746 FnDebugInfo.erase(&GV); 2747 CurFn = nullptr; 2748 return; 2749 } 2750 2751 CurFn->Annotations = MF->getCodeViewAnnotations(); 2752 2753 CurFn->End = Asm->getFunctionEnd(); 2754 2755 CurFn = nullptr; 2756 } 2757 2758 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2759 DebugHandlerBase::beginInstruction(MI); 2760 2761 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2762 if (!Asm || !CurFn || MI->isDebugInstr() || 2763 MI->getFlag(MachineInstr::FrameSetup)) 2764 return; 2765 2766 // If the first instruction of a new MBB has no location, find the first 2767 // instruction with a location and use that. 2768 DebugLoc DL = MI->getDebugLoc(); 2769 if (!DL && MI->getParent() != PrevInstBB) { 2770 for (const auto &NextMI : *MI->getParent()) { 2771 if (NextMI.isDebugInstr()) 2772 continue; 2773 DL = NextMI.getDebugLoc(); 2774 if (DL) 2775 break; 2776 } 2777 } 2778 PrevInstBB = MI->getParent(); 2779 2780 // If we still don't have a debug location, don't record a location. 2781 if (!DL) 2782 return; 2783 2784 maybeRecordLocation(DL, Asm->MF); 2785 } 2786 2787 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2788 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2789 *EndLabel = MMI->getContext().createTempSymbol(); 2790 OS.EmitIntValue(unsigned(Kind), 4); 2791 OS.AddComment("Subsection size"); 2792 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2793 OS.EmitLabel(BeginLabel); 2794 return EndLabel; 2795 } 2796 2797 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2798 OS.EmitLabel(EndLabel); 2799 // Every subsection must be aligned to a 4-byte boundary. 2800 OS.EmitValueToAlignment(4); 2801 } 2802 2803 void CodeViewDebug::emitDebugInfoForUDTs( 2804 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2805 for (const auto &UDT : UDTs) { 2806 const DIType *T = UDT.second; 2807 assert(shouldEmitUdt(T)); 2808 2809 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2810 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2811 OS.AddComment("Record length"); 2812 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2813 OS.EmitLabel(UDTRecordBegin); 2814 2815 OS.AddComment("Record kind: S_UDT"); 2816 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2817 2818 OS.AddComment("Type"); 2819 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2820 2821 emitNullTerminatedSymbolName(OS, UDT.first); 2822 OS.EmitLabel(UDTRecordEnd); 2823 } 2824 } 2825 2826 void CodeViewDebug::emitDebugInfoForGlobals() { 2827 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2828 GlobalMap; 2829 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2830 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2831 GV.getDebugInfo(GVEs); 2832 for (const auto *GVE : GVEs) 2833 GlobalMap[GVE] = &GV; 2834 } 2835 2836 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2837 for (const MDNode *Node : CUs->operands()) { 2838 const auto *CU = cast<DICompileUnit>(Node); 2839 2840 // First, emit all globals that are not in a comdat in a single symbol 2841 // substream. MSVC doesn't like it if the substream is empty, so only open 2842 // it if we have at least one global to emit. 2843 switchToDebugSectionForSymbol(nullptr); 2844 MCSymbol *EndLabel = nullptr; 2845 for (const auto *GVE : CU->getGlobalVariables()) { 2846 if (const auto *GV = GlobalMap.lookup(GVE)) 2847 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2848 if (!EndLabel) { 2849 OS.AddComment("Symbol subsection for globals"); 2850 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2851 } 2852 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2853 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2854 } 2855 } 2856 if (EndLabel) 2857 endCVSubsection(EndLabel); 2858 2859 // Second, emit each global that is in a comdat into its own .debug$S 2860 // section along with its own symbol substream. 2861 for (const auto *GVE : CU->getGlobalVariables()) { 2862 if (const auto *GV = GlobalMap.lookup(GVE)) { 2863 if (GV->hasComdat()) { 2864 MCSymbol *GVSym = Asm->getSymbol(GV); 2865 OS.AddComment("Symbol subsection for " + 2866 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2867 switchToDebugSectionForSymbol(GVSym); 2868 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2869 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2870 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2871 endCVSubsection(EndLabel); 2872 } 2873 } 2874 } 2875 } 2876 } 2877 2878 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2879 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2880 for (const MDNode *Node : CUs->operands()) { 2881 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2882 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2883 getTypeIndex(RT); 2884 // FIXME: Add to global/local DTU list. 2885 } 2886 } 2887 } 2888 } 2889 2890 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2891 const GlobalVariable *GV, 2892 MCSymbol *GVSym) { 2893 // DataSym record, see SymbolRecord.h for more info. 2894 // FIXME: Thread local data, etc 2895 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2896 *DataEnd = MMI->getContext().createTempSymbol(); 2897 const unsigned FixedLengthOfThisRecord = 12; 2898 OS.AddComment("Record length"); 2899 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2900 OS.EmitLabel(DataBegin); 2901 if (DIGV->isLocalToUnit()) { 2902 if (GV->isThreadLocal()) { 2903 OS.AddComment("Record kind: S_LTHREAD32"); 2904 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2905 } else { 2906 OS.AddComment("Record kind: S_LDATA32"); 2907 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2908 } 2909 } else { 2910 if (GV->isThreadLocal()) { 2911 OS.AddComment("Record kind: S_GTHREAD32"); 2912 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2913 } else { 2914 OS.AddComment("Record kind: S_GDATA32"); 2915 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2916 } 2917 } 2918 OS.AddComment("Type"); 2919 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2920 OS.AddComment("DataOffset"); 2921 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2922 OS.AddComment("Segment"); 2923 OS.EmitCOFFSectionIndex(GVSym); 2924 OS.AddComment("Name"); 2925 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord); 2926 OS.EmitLabel(DataEnd); 2927 } 2928