1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 43 #include "llvm/DebugInfo/CodeView/CodeView.h" 44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 46 #include "llvm/DebugInfo/CodeView/Line.h" 47 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 48 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 49 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 50 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 51 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugInfoMetadata.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalValue.h" 58 #include "llvm/IR/GlobalVariable.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/MC/MCAsmInfo.h" 62 #include "llvm/MC/MCContext.h" 63 #include "llvm/MC/MCSectionCOFF.h" 64 #include "llvm/MC/MCStreamer.h" 65 #include "llvm/MC/MCSymbol.h" 66 #include "llvm/Support/BinaryByteStream.h" 67 #include "llvm/Support/BinaryStreamReader.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Compiler.h" 71 #include "llvm/Support/Endian.h" 72 #include "llvm/Support/Error.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/FormatVariadic.h" 75 #include "llvm/Support/SMLoc.h" 76 #include "llvm/Support/ScopedPrinter.h" 77 #include "llvm/Target/TargetLoweringObjectFile.h" 78 #include "llvm/Target/TargetMachine.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cctype> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iterator> 85 #include <limits> 86 #include <string> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace llvm::codeview; 92 93 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 94 cl::ReallyHidden, cl::init(false)); 95 96 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 97 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 98 // If module doesn't have named metadata anchors or COFF debug section 99 // is not available, skip any debug info related stuff. 100 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 101 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 102 Asm = nullptr; 103 return; 104 } 105 106 // Tell MMI that we have debug info. 107 MMI->setDebugInfoAvailability(true); 108 } 109 110 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 111 std::string &Filepath = FileToFilepathMap[File]; 112 if (!Filepath.empty()) 113 return Filepath; 114 115 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 116 117 // Clang emits directory and relative filename info into the IR, but CodeView 118 // operates on full paths. We could change Clang to emit full paths too, but 119 // that would increase the IR size and probably not needed for other users. 120 // For now, just concatenate and canonicalize the path here. 121 if (Filename.find(':') == 1) 122 Filepath = Filename; 123 else 124 Filepath = (Dir + "\\" + Filename).str(); 125 126 // Canonicalize the path. We have to do it textually because we may no longer 127 // have access the file in the filesystem. 128 // First, replace all slashes with backslashes. 129 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 130 131 // Remove all "\.\" with "\". 132 size_t Cursor = 0; 133 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 134 Filepath.erase(Cursor, 2); 135 136 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 137 // path should be well-formatted, e.g. start with a drive letter, etc. 138 Cursor = 0; 139 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 140 // Something's wrong if the path starts with "\..\", abort. 141 if (Cursor == 0) 142 break; 143 144 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 145 if (PrevSlash == std::string::npos) 146 // Something's wrong, abort. 147 break; 148 149 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 150 // The next ".." might be following the one we've just erased. 151 Cursor = PrevSlash; 152 } 153 154 // Remove all duplicate backslashes. 155 Cursor = 0; 156 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 157 Filepath.erase(Cursor, 1); 158 159 return Filepath; 160 } 161 162 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 163 StringRef FullPath = getFullFilepath(F); 164 unsigned NextId = FileIdMap.size() + 1; 165 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 166 if (Insertion.second) { 167 // We have to compute the full filepath and emit a .cv_file directive. 168 ArrayRef<uint8_t> ChecksumAsBytes; 169 FileChecksumKind CSKind = FileChecksumKind::None; 170 if (F->getChecksum()) { 171 std::string Checksum = fromHex(F->getChecksum()->Value); 172 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 173 memcpy(CKMem, Checksum.data(), Checksum.size()); 174 ChecksumAsBytes = ArrayRef<uint8_t>( 175 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 176 switch (F->getChecksum()->Kind) { 177 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 178 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 179 } 180 } 181 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 182 static_cast<unsigned>(CSKind)); 183 (void)Success; 184 assert(Success && ".cv_file directive failed"); 185 } 186 return Insertion.first->second; 187 } 188 189 CodeViewDebug::InlineSite & 190 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 191 const DISubprogram *Inlinee) { 192 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 193 InlineSite *Site = &SiteInsertion.first->second; 194 if (SiteInsertion.second) { 195 unsigned ParentFuncId = CurFn->FuncId; 196 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 197 ParentFuncId = 198 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 199 .SiteFuncId; 200 201 Site->SiteFuncId = NextFuncId++; 202 OS.EmitCVInlineSiteIdDirective( 203 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 204 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 205 Site->Inlinee = Inlinee; 206 InlinedSubprograms.insert(Inlinee); 207 getFuncIdForSubprogram(Inlinee); 208 } 209 return *Site; 210 } 211 212 static StringRef getPrettyScopeName(const DIScope *Scope) { 213 StringRef ScopeName = Scope->getName(); 214 if (!ScopeName.empty()) 215 return ScopeName; 216 217 switch (Scope->getTag()) { 218 case dwarf::DW_TAG_enumeration_type: 219 case dwarf::DW_TAG_class_type: 220 case dwarf::DW_TAG_structure_type: 221 case dwarf::DW_TAG_union_type: 222 return "<unnamed-tag>"; 223 case dwarf::DW_TAG_namespace: 224 return "`anonymous namespace'"; 225 } 226 227 return StringRef(); 228 } 229 230 static const DISubprogram *getQualifiedNameComponents( 231 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 232 const DISubprogram *ClosestSubprogram = nullptr; 233 while (Scope != nullptr) { 234 if (ClosestSubprogram == nullptr) 235 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 236 StringRef ScopeName = getPrettyScopeName(Scope); 237 if (!ScopeName.empty()) 238 QualifiedNameComponents.push_back(ScopeName); 239 Scope = Scope->getScope().resolve(); 240 } 241 return ClosestSubprogram; 242 } 243 244 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 245 StringRef TypeName) { 246 std::string FullyQualifiedName; 247 for (StringRef QualifiedNameComponent : 248 llvm::reverse(QualifiedNameComponents)) { 249 FullyQualifiedName.append(QualifiedNameComponent); 250 FullyQualifiedName.append("::"); 251 } 252 FullyQualifiedName.append(TypeName); 253 return FullyQualifiedName; 254 } 255 256 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 257 SmallVector<StringRef, 5> QualifiedNameComponents; 258 getQualifiedNameComponents(Scope, QualifiedNameComponents); 259 return getQualifiedName(QualifiedNameComponents, Name); 260 } 261 262 struct CodeViewDebug::TypeLoweringScope { 263 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 264 ~TypeLoweringScope() { 265 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 266 // inner TypeLoweringScopes don't attempt to emit deferred types. 267 if (CVD.TypeEmissionLevel == 1) 268 CVD.emitDeferredCompleteTypes(); 269 --CVD.TypeEmissionLevel; 270 } 271 CodeViewDebug &CVD; 272 }; 273 274 static std::string getFullyQualifiedName(const DIScope *Ty) { 275 const DIScope *Scope = Ty->getScope().resolve(); 276 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 277 } 278 279 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 280 // No scope means global scope and that uses the zero index. 281 if (!Scope || isa<DIFile>(Scope)) 282 return TypeIndex(); 283 284 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 285 286 // Check if we've already translated this scope. 287 auto I = TypeIndices.find({Scope, nullptr}); 288 if (I != TypeIndices.end()) 289 return I->second; 290 291 // Build the fully qualified name of the scope. 292 std::string ScopeName = getFullyQualifiedName(Scope); 293 StringIdRecord SID(TypeIndex(), ScopeName); 294 auto TI = TypeTable.writeLeafType(SID); 295 return recordTypeIndexForDINode(Scope, TI); 296 } 297 298 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 299 assert(SP); 300 301 // Check if we've already translated this subprogram. 302 auto I = TypeIndices.find({SP, nullptr}); 303 if (I != TypeIndices.end()) 304 return I->second; 305 306 // The display name includes function template arguments. Drop them to match 307 // MSVC. 308 StringRef DisplayName = SP->getName().split('<').first; 309 310 const DIScope *Scope = SP->getScope().resolve(); 311 TypeIndex TI; 312 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 313 // If the scope is a DICompositeType, then this must be a method. Member 314 // function types take some special handling, and require access to the 315 // subprogram. 316 TypeIndex ClassType = getTypeIndex(Class); 317 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 318 DisplayName); 319 TI = TypeTable.writeLeafType(MFuncId); 320 } else { 321 // Otherwise, this must be a free function. 322 TypeIndex ParentScope = getScopeIndex(Scope); 323 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 324 TI = TypeTable.writeLeafType(FuncId); 325 } 326 327 return recordTypeIndexForDINode(SP, TI); 328 } 329 330 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 331 const DICompositeType *Class) { 332 // Always use the method declaration as the key for the function type. The 333 // method declaration contains the this adjustment. 334 if (SP->getDeclaration()) 335 SP = SP->getDeclaration(); 336 assert(!SP->getDeclaration() && "should use declaration as key"); 337 338 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 339 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 340 auto I = TypeIndices.find({SP, Class}); 341 if (I != TypeIndices.end()) 342 return I->second; 343 344 // Make sure complete type info for the class is emitted *after* the member 345 // function type, as the complete class type is likely to reference this 346 // member function type. 347 TypeLoweringScope S(*this); 348 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 349 TypeIndex TI = lowerTypeMemberFunction( 350 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod); 351 return recordTypeIndexForDINode(SP, TI, Class); 352 } 353 354 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 355 TypeIndex TI, 356 const DIType *ClassTy) { 357 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 358 (void)InsertResult; 359 assert(InsertResult.second && "DINode was already assigned a type index"); 360 return TI; 361 } 362 363 unsigned CodeViewDebug::getPointerSizeInBytes() { 364 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 365 } 366 367 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 368 const LexicalScope *LS) { 369 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 370 // This variable was inlined. Associate it with the InlineSite. 371 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 372 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 373 Site.InlinedLocals.emplace_back(Var); 374 } else { 375 // This variable goes into the corresponding lexical scope. 376 ScopeVariables[LS].emplace_back(Var); 377 } 378 } 379 380 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 381 const DILocation *Loc) { 382 auto B = Locs.begin(), E = Locs.end(); 383 if (std::find(B, E, Loc) == E) 384 Locs.push_back(Loc); 385 } 386 387 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 388 const MachineFunction *MF) { 389 // Skip this instruction if it has the same location as the previous one. 390 if (!DL || DL == PrevInstLoc) 391 return; 392 393 const DIScope *Scope = DL.get()->getScope(); 394 if (!Scope) 395 return; 396 397 // Skip this line if it is longer than the maximum we can record. 398 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 399 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 400 LI.isNeverStepInto()) 401 return; 402 403 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 404 if (CI.getStartColumn() != DL.getCol()) 405 return; 406 407 if (!CurFn->HaveLineInfo) 408 CurFn->HaveLineInfo = true; 409 unsigned FileId = 0; 410 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 411 FileId = CurFn->LastFileId; 412 else 413 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 414 PrevInstLoc = DL; 415 416 unsigned FuncId = CurFn->FuncId; 417 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 418 const DILocation *Loc = DL.get(); 419 420 // If this location was actually inlined from somewhere else, give it the ID 421 // of the inline call site. 422 FuncId = 423 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 424 425 // Ensure we have links in the tree of inline call sites. 426 bool FirstLoc = true; 427 while ((SiteLoc = Loc->getInlinedAt())) { 428 InlineSite &Site = 429 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 430 if (!FirstLoc) 431 addLocIfNotPresent(Site.ChildSites, Loc); 432 FirstLoc = false; 433 Loc = SiteLoc; 434 } 435 addLocIfNotPresent(CurFn->ChildSites, Loc); 436 } 437 438 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 439 /*PrologueEnd=*/false, /*IsStmt=*/false, 440 DL->getFilename(), SMLoc()); 441 } 442 443 void CodeViewDebug::emitCodeViewMagicVersion() { 444 OS.EmitValueToAlignment(4); 445 OS.AddComment("Debug section magic"); 446 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 447 } 448 449 void CodeViewDebug::endModule() { 450 if (!Asm || !MMI->hasDebugInfo()) 451 return; 452 453 assert(Asm != nullptr); 454 455 // The COFF .debug$S section consists of several subsections, each starting 456 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 457 // of the payload followed by the payload itself. The subsections are 4-byte 458 // aligned. 459 460 // Use the generic .debug$S section, and make a subsection for all the inlined 461 // subprograms. 462 switchToDebugSectionForSymbol(nullptr); 463 464 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 465 emitCompilerInformation(); 466 endCVSubsection(CompilerInfo); 467 468 emitInlineeLinesSubsection(); 469 470 // Emit per-function debug information. 471 for (auto &P : FnDebugInfo) 472 if (!P.first->isDeclarationForLinker()) 473 emitDebugInfoForFunction(P.first, *P.second); 474 475 // Emit global variable debug information. 476 setCurrentSubprogram(nullptr); 477 emitDebugInfoForGlobals(); 478 479 // Emit retained types. 480 emitDebugInfoForRetainedTypes(); 481 482 // Switch back to the generic .debug$S section after potentially processing 483 // comdat symbol sections. 484 switchToDebugSectionForSymbol(nullptr); 485 486 // Emit UDT records for any types used by global variables. 487 if (!GlobalUDTs.empty()) { 488 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 489 emitDebugInfoForUDTs(GlobalUDTs); 490 endCVSubsection(SymbolsEnd); 491 } 492 493 // This subsection holds a file index to offset in string table table. 494 OS.AddComment("File index to string table offset subsection"); 495 OS.EmitCVFileChecksumsDirective(); 496 497 // This subsection holds the string table. 498 OS.AddComment("String table"); 499 OS.EmitCVStringTableDirective(); 500 501 // Emit type information and hashes last, so that any types we translate while 502 // emitting function info are included. 503 emitTypeInformation(); 504 505 if (EmitDebugGlobalHashes) 506 emitTypeGlobalHashes(); 507 508 clear(); 509 } 510 511 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 512 unsigned MaxFixedRecordLength = 0xF00) { 513 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 514 // after a fixed length portion of the record. The fixed length portion should 515 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 516 // overall record size is less than the maximum allowed. 517 SmallString<32> NullTerminatedString( 518 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 519 NullTerminatedString.push_back('\0'); 520 OS.EmitBytes(NullTerminatedString); 521 } 522 523 void CodeViewDebug::emitTypeInformation() { 524 if (TypeTable.empty()) 525 return; 526 527 // Start the .debug$T or .debug$P section with 0x4. 528 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 529 emitCodeViewMagicVersion(); 530 531 SmallString<8> CommentPrefix; 532 if (OS.isVerboseAsm()) { 533 CommentPrefix += '\t'; 534 CommentPrefix += Asm->MAI->getCommentString(); 535 CommentPrefix += ' '; 536 } 537 538 TypeTableCollection Table(TypeTable.records()); 539 Optional<TypeIndex> B = Table.getFirst(); 540 while (B) { 541 // This will fail if the record data is invalid. 542 CVType Record = Table.getType(*B); 543 544 if (OS.isVerboseAsm()) { 545 // Emit a block comment describing the type record for readability. 546 SmallString<512> CommentBlock; 547 raw_svector_ostream CommentOS(CommentBlock); 548 ScopedPrinter SP(CommentOS); 549 SP.setPrefix(CommentPrefix); 550 TypeDumpVisitor TDV(Table, &SP, false); 551 552 Error E = codeview::visitTypeRecord(Record, *B, TDV); 553 if (E) { 554 logAllUnhandledErrors(std::move(E), errs(), "error: "); 555 llvm_unreachable("produced malformed type record"); 556 } 557 // emitRawComment will insert its own tab and comment string before 558 // the first line, so strip off our first one. It also prints its own 559 // newline. 560 OS.emitRawComment( 561 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 562 } 563 OS.EmitBinaryData(Record.str_data()); 564 B = Table.getNext(*B); 565 } 566 } 567 568 void CodeViewDebug::emitTypeGlobalHashes() { 569 if (TypeTable.empty()) 570 return; 571 572 // Start the .debug$H section with the version and hash algorithm, currently 573 // hardcoded to version 0, SHA1. 574 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 575 576 OS.EmitValueToAlignment(4); 577 OS.AddComment("Magic"); 578 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 579 OS.AddComment("Section Version"); 580 OS.EmitIntValue(0, 2); 581 OS.AddComment("Hash Algorithm"); 582 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1), 2); 583 584 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 585 for (const auto &GHR : TypeTable.hashes()) { 586 if (OS.isVerboseAsm()) { 587 // Emit an EOL-comment describing which TypeIndex this hash corresponds 588 // to, as well as the stringified SHA1 hash. 589 SmallString<32> Comment; 590 raw_svector_ostream CommentOS(Comment); 591 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 592 OS.AddComment(Comment); 593 ++TI; 594 } 595 assert(GHR.Hash.size() % 20 == 0); 596 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 597 GHR.Hash.size()); 598 OS.EmitBinaryData(S); 599 } 600 } 601 602 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 603 switch (DWLang) { 604 case dwarf::DW_LANG_C: 605 case dwarf::DW_LANG_C89: 606 case dwarf::DW_LANG_C99: 607 case dwarf::DW_LANG_C11: 608 case dwarf::DW_LANG_ObjC: 609 return SourceLanguage::C; 610 case dwarf::DW_LANG_C_plus_plus: 611 case dwarf::DW_LANG_C_plus_plus_03: 612 case dwarf::DW_LANG_C_plus_plus_11: 613 case dwarf::DW_LANG_C_plus_plus_14: 614 return SourceLanguage::Cpp; 615 case dwarf::DW_LANG_Fortran77: 616 case dwarf::DW_LANG_Fortran90: 617 case dwarf::DW_LANG_Fortran03: 618 case dwarf::DW_LANG_Fortran08: 619 return SourceLanguage::Fortran; 620 case dwarf::DW_LANG_Pascal83: 621 return SourceLanguage::Pascal; 622 case dwarf::DW_LANG_Cobol74: 623 case dwarf::DW_LANG_Cobol85: 624 return SourceLanguage::Cobol; 625 case dwarf::DW_LANG_Java: 626 return SourceLanguage::Java; 627 case dwarf::DW_LANG_D: 628 return SourceLanguage::D; 629 default: 630 // There's no CodeView representation for this language, and CV doesn't 631 // have an "unknown" option for the language field, so we'll use MASM, 632 // as it's very low level. 633 return SourceLanguage::Masm; 634 } 635 } 636 637 namespace { 638 struct Version { 639 int Part[4]; 640 }; 641 } // end anonymous namespace 642 643 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 644 // the version number. 645 static Version parseVersion(StringRef Name) { 646 Version V = {{0}}; 647 int N = 0; 648 for (const char C : Name) { 649 if (isdigit(C)) { 650 V.Part[N] *= 10; 651 V.Part[N] += C - '0'; 652 } else if (C == '.') { 653 ++N; 654 if (N >= 4) 655 return V; 656 } else if (N > 0) 657 return V; 658 } 659 return V; 660 } 661 662 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 663 switch (Type) { 664 case Triple::ArchType::x86: 665 return CPUType::Pentium3; 666 case Triple::ArchType::x86_64: 667 return CPUType::X64; 668 case Triple::ArchType::thumb: 669 return CPUType::Thumb; 670 case Triple::ArchType::aarch64: 671 return CPUType::ARM64; 672 default: 673 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 674 } 675 } 676 677 void CodeViewDebug::emitCompilerInformation() { 678 MCContext &Context = MMI->getContext(); 679 MCSymbol *CompilerBegin = Context.createTempSymbol(), 680 *CompilerEnd = Context.createTempSymbol(); 681 OS.AddComment("Record length"); 682 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 683 OS.EmitLabel(CompilerBegin); 684 OS.AddComment("Record kind: S_COMPILE3"); 685 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 686 uint32_t Flags = 0; 687 688 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 689 const MDNode *Node = *CUs->operands().begin(); 690 const auto *CU = cast<DICompileUnit>(Node); 691 692 // The low byte of the flags indicates the source language. 693 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 694 // TODO: Figure out which other flags need to be set. 695 696 OS.AddComment("Flags and language"); 697 OS.EmitIntValue(Flags, 4); 698 699 OS.AddComment("CPUType"); 700 CPUType CPU = 701 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 702 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 703 704 StringRef CompilerVersion = CU->getProducer(); 705 Version FrontVer = parseVersion(CompilerVersion); 706 OS.AddComment("Frontend version"); 707 for (int N = 0; N < 4; ++N) 708 OS.EmitIntValue(FrontVer.Part[N], 2); 709 710 // Some Microsoft tools, like Binscope, expect a backend version number of at 711 // least 8.something, so we'll coerce the LLVM version into a form that 712 // guarantees it'll be big enough without really lying about the version. 713 int Major = 1000 * LLVM_VERSION_MAJOR + 714 10 * LLVM_VERSION_MINOR + 715 LLVM_VERSION_PATCH; 716 // Clamp it for builds that use unusually large version numbers. 717 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 718 Version BackVer = {{ Major, 0, 0, 0 }}; 719 OS.AddComment("Backend version"); 720 for (int N = 0; N < 4; ++N) 721 OS.EmitIntValue(BackVer.Part[N], 2); 722 723 OS.AddComment("Null-terminated compiler version string"); 724 emitNullTerminatedSymbolName(OS, CompilerVersion); 725 726 OS.EmitLabel(CompilerEnd); 727 } 728 729 void CodeViewDebug::emitInlineeLinesSubsection() { 730 if (InlinedSubprograms.empty()) 731 return; 732 733 OS.AddComment("Inlinee lines subsection"); 734 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 735 736 // We emit the checksum info for files. This is used by debuggers to 737 // determine if a pdb matches the source before loading it. Visual Studio, 738 // for instance, will display a warning that the breakpoints are not valid if 739 // the pdb does not match the source. 740 OS.AddComment("Inlinee lines signature"); 741 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 742 743 for (const DISubprogram *SP : InlinedSubprograms) { 744 assert(TypeIndices.count({SP, nullptr})); 745 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 746 747 OS.AddBlankLine(); 748 unsigned FileId = maybeRecordFile(SP->getFile()); 749 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 750 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 751 OS.AddBlankLine(); 752 OS.AddComment("Type index of inlined function"); 753 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 754 OS.AddComment("Offset into filechecksum table"); 755 OS.EmitCVFileChecksumOffsetDirective(FileId); 756 OS.AddComment("Starting line number"); 757 OS.EmitIntValue(SP->getLine(), 4); 758 } 759 760 endCVSubsection(InlineEnd); 761 } 762 763 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 764 const DILocation *InlinedAt, 765 const InlineSite &Site) { 766 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 767 *InlineEnd = MMI->getContext().createTempSymbol(); 768 769 assert(TypeIndices.count({Site.Inlinee, nullptr})); 770 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 771 772 // SymbolRecord 773 OS.AddComment("Record length"); 774 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 775 OS.EmitLabel(InlineBegin); 776 OS.AddComment("Record kind: S_INLINESITE"); 777 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 778 779 OS.AddComment("PtrParent"); 780 OS.EmitIntValue(0, 4); 781 OS.AddComment("PtrEnd"); 782 OS.EmitIntValue(0, 4); 783 OS.AddComment("Inlinee type index"); 784 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 785 786 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 787 unsigned StartLineNum = Site.Inlinee->getLine(); 788 789 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 790 FI.Begin, FI.End); 791 792 OS.EmitLabel(InlineEnd); 793 794 emitLocalVariableList(Site.InlinedLocals); 795 796 // Recurse on child inlined call sites before closing the scope. 797 for (const DILocation *ChildSite : Site.ChildSites) { 798 auto I = FI.InlineSites.find(ChildSite); 799 assert(I != FI.InlineSites.end() && 800 "child site not in function inline site map"); 801 emitInlinedCallSite(FI, ChildSite, I->second); 802 } 803 804 // Close the scope. 805 OS.AddComment("Record length"); 806 OS.EmitIntValue(2, 2); // RecordLength 807 OS.AddComment("Record kind: S_INLINESITE_END"); 808 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 809 } 810 811 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 812 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 813 // comdat key. A section may be comdat because of -ffunction-sections or 814 // because it is comdat in the IR. 815 MCSectionCOFF *GVSec = 816 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 817 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 818 819 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 820 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 821 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 822 823 OS.SwitchSection(DebugSec); 824 825 // Emit the magic version number if this is the first time we've switched to 826 // this section. 827 if (ComdatDebugSections.insert(DebugSec).second) 828 emitCodeViewMagicVersion(); 829 } 830 831 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 832 FunctionInfo &FI) { 833 // For each function there is a separate subsection which holds the PC to 834 // file:line table. 835 const MCSymbol *Fn = Asm->getSymbol(GV); 836 assert(Fn); 837 838 // Switch to the to a comdat section, if appropriate. 839 switchToDebugSectionForSymbol(Fn); 840 841 std::string FuncName; 842 auto *SP = GV->getSubprogram(); 843 assert(SP); 844 setCurrentSubprogram(SP); 845 846 // If we have a display name, build the fully qualified name by walking the 847 // chain of scopes. 848 if (!SP->getName().empty()) 849 FuncName = 850 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 851 852 // If our DISubprogram name is empty, use the mangled name. 853 if (FuncName.empty()) 854 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 855 856 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 857 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 858 OS.EmitCVFPOData(Fn); 859 860 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 861 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 862 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 863 { 864 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 865 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 866 OS.AddComment("Record length"); 867 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 868 OS.EmitLabel(ProcRecordBegin); 869 870 if (GV->hasLocalLinkage()) { 871 OS.AddComment("Record kind: S_LPROC32_ID"); 872 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 873 } else { 874 OS.AddComment("Record kind: S_GPROC32_ID"); 875 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 876 } 877 878 // These fields are filled in by tools like CVPACK which run after the fact. 879 OS.AddComment("PtrParent"); 880 OS.EmitIntValue(0, 4); 881 OS.AddComment("PtrEnd"); 882 OS.EmitIntValue(0, 4); 883 OS.AddComment("PtrNext"); 884 OS.EmitIntValue(0, 4); 885 // This is the important bit that tells the debugger where the function 886 // code is located and what's its size: 887 OS.AddComment("Code size"); 888 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 889 OS.AddComment("Offset after prologue"); 890 OS.EmitIntValue(0, 4); 891 OS.AddComment("Offset before epilogue"); 892 OS.EmitIntValue(0, 4); 893 OS.AddComment("Function type index"); 894 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 895 OS.AddComment("Function section relative address"); 896 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 897 OS.AddComment("Function section index"); 898 OS.EmitCOFFSectionIndex(Fn); 899 OS.AddComment("Flags"); 900 OS.EmitIntValue(0, 1); 901 // Emit the function display name as a null-terminated string. 902 OS.AddComment("Function name"); 903 // Truncate the name so we won't overflow the record length field. 904 emitNullTerminatedSymbolName(OS, FuncName); 905 OS.EmitLabel(ProcRecordEnd); 906 907 emitLocalVariableList(FI.Locals); 908 emitLexicalBlockList(FI.ChildBlocks, FI); 909 910 // Emit inlined call site information. Only emit functions inlined directly 911 // into the parent function. We'll emit the other sites recursively as part 912 // of their parent inline site. 913 for (const DILocation *InlinedAt : FI.ChildSites) { 914 auto I = FI.InlineSites.find(InlinedAt); 915 assert(I != FI.InlineSites.end() && 916 "child site not in function inline site map"); 917 emitInlinedCallSite(FI, InlinedAt, I->second); 918 } 919 920 for (auto Annot : FI.Annotations) { 921 MCSymbol *Label = Annot.first; 922 MDTuple *Strs = cast<MDTuple>(Annot.second); 923 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 924 *AnnotEnd = MMI->getContext().createTempSymbol(); 925 OS.AddComment("Record length"); 926 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 927 OS.EmitLabel(AnnotBegin); 928 OS.AddComment("Record kind: S_ANNOTATION"); 929 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 930 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 931 // FIXME: Make sure we don't overflow the max record size. 932 OS.EmitCOFFSectionIndex(Label); 933 OS.EmitIntValue(Strs->getNumOperands(), 2); 934 for (Metadata *MD : Strs->operands()) { 935 // MDStrings are null terminated, so we can do EmitBytes and get the 936 // nice .asciz directive. 937 StringRef Str = cast<MDString>(MD)->getString(); 938 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 939 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 940 } 941 OS.EmitLabel(AnnotEnd); 942 } 943 944 if (SP != nullptr) 945 emitDebugInfoForUDTs(LocalUDTs); 946 947 // We're done with this function. 948 OS.AddComment("Record length"); 949 OS.EmitIntValue(0x0002, 2); 950 OS.AddComment("Record kind: S_PROC_ID_END"); 951 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 952 } 953 endCVSubsection(SymbolsEnd); 954 955 // We have an assembler directive that takes care of the whole line table. 956 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 957 } 958 959 CodeViewDebug::LocalVarDefRange 960 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 961 LocalVarDefRange DR; 962 DR.InMemory = -1; 963 DR.DataOffset = Offset; 964 assert(DR.DataOffset == Offset && "truncation"); 965 DR.IsSubfield = 0; 966 DR.StructOffset = 0; 967 DR.CVRegister = CVRegister; 968 return DR; 969 } 970 971 CodeViewDebug::LocalVarDefRange 972 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 973 int Offset, bool IsSubfield, 974 uint16_t StructOffset) { 975 LocalVarDefRange DR; 976 DR.InMemory = InMemory; 977 DR.DataOffset = Offset; 978 DR.IsSubfield = IsSubfield; 979 DR.StructOffset = StructOffset; 980 DR.CVRegister = CVRegister; 981 return DR; 982 } 983 984 void CodeViewDebug::collectVariableInfoFromMFTable( 985 DenseSet<InlinedVariable> &Processed) { 986 const MachineFunction &MF = *Asm->MF; 987 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 988 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 989 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 990 991 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 992 if (!VI.Var) 993 continue; 994 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 995 "Expected inlined-at fields to agree"); 996 997 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 998 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 999 1000 // If variable scope is not found then skip this variable. 1001 if (!Scope) 1002 continue; 1003 1004 // If the variable has an attached offset expression, extract it. 1005 // FIXME: Try to handle DW_OP_deref as well. 1006 int64_t ExprOffset = 0; 1007 if (VI.Expr) 1008 if (!VI.Expr->extractIfOffset(ExprOffset)) 1009 continue; 1010 1011 // Get the frame register used and the offset. 1012 unsigned FrameReg = 0; 1013 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1014 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1015 1016 // Calculate the label ranges. 1017 LocalVarDefRange DefRange = 1018 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1019 for (const InsnRange &Range : Scope->getRanges()) { 1020 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1021 const MCSymbol *End = getLabelAfterInsn(Range.second); 1022 End = End ? End : Asm->getFunctionEnd(); 1023 DefRange.Ranges.emplace_back(Begin, End); 1024 } 1025 1026 LocalVariable Var; 1027 Var.DIVar = VI.Var; 1028 Var.DefRanges.emplace_back(std::move(DefRange)); 1029 recordLocalVariable(std::move(Var), Scope); 1030 } 1031 } 1032 1033 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1034 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1035 } 1036 1037 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1038 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1039 } 1040 1041 void CodeViewDebug::calculateRanges( 1042 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1043 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1044 1045 // Calculate the definition ranges. 1046 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1047 const InsnRange &Range = *I; 1048 const MachineInstr *DVInst = Range.first; 1049 assert(DVInst->isDebugValue() && "Invalid History entry"); 1050 // FIXME: Find a way to represent constant variables, since they are 1051 // relatively common. 1052 Optional<DbgVariableLocation> Location = 1053 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1054 if (!Location) 1055 continue; 1056 1057 // CodeView can only express variables in register and variables in memory 1058 // at a constant offset from a register. However, for variables passed 1059 // indirectly by pointer, it is common for that pointer to be spilled to a 1060 // stack location. For the special case of one offseted load followed by a 1061 // zero offset load (a pointer spilled to the stack), we change the type of 1062 // the local variable from a value type to a reference type. This tricks the 1063 // debugger into doing the load for us. 1064 if (Var.UseReferenceType) { 1065 // We're using a reference type. Drop the last zero offset load. 1066 if (canUseReferenceType(*Location)) 1067 Location->LoadChain.pop_back(); 1068 else 1069 continue; 1070 } else if (needsReferenceType(*Location)) { 1071 // This location can't be expressed without switching to a reference type. 1072 // Start over using that. 1073 Var.UseReferenceType = true; 1074 Var.DefRanges.clear(); 1075 calculateRanges(Var, Ranges); 1076 return; 1077 } 1078 1079 // We can only handle a register or an offseted load of a register. 1080 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1081 continue; 1082 { 1083 LocalVarDefRange DR; 1084 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1085 DR.InMemory = !Location->LoadChain.empty(); 1086 DR.DataOffset = 1087 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1088 if (Location->FragmentInfo) { 1089 DR.IsSubfield = true; 1090 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1091 } else { 1092 DR.IsSubfield = false; 1093 DR.StructOffset = 0; 1094 } 1095 1096 if (Var.DefRanges.empty() || 1097 Var.DefRanges.back().isDifferentLocation(DR)) { 1098 Var.DefRanges.emplace_back(std::move(DR)); 1099 } 1100 } 1101 1102 // Compute the label range. 1103 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1104 const MCSymbol *End = getLabelAfterInsn(Range.second); 1105 if (!End) { 1106 // This range is valid until the next overlapping bitpiece. In the 1107 // common case, ranges will not be bitpieces, so they will overlap. 1108 auto J = std::next(I); 1109 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1110 while (J != E && 1111 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1112 ++J; 1113 if (J != E) 1114 End = getLabelBeforeInsn(J->first); 1115 else 1116 End = Asm->getFunctionEnd(); 1117 } 1118 1119 // If the last range end is our begin, just extend the last range. 1120 // Otherwise make a new range. 1121 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1122 Var.DefRanges.back().Ranges; 1123 if (!R.empty() && R.back().second == Begin) 1124 R.back().second = End; 1125 else 1126 R.emplace_back(Begin, End); 1127 1128 // FIXME: Do more range combining. 1129 } 1130 } 1131 1132 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1133 DenseSet<InlinedVariable> Processed; 1134 // Grab the variable info that was squirreled away in the MMI side-table. 1135 collectVariableInfoFromMFTable(Processed); 1136 1137 for (const auto &I : DbgValues) { 1138 InlinedVariable IV = I.first; 1139 if (Processed.count(IV)) 1140 continue; 1141 const DILocalVariable *DIVar = IV.first; 1142 const DILocation *InlinedAt = IV.second; 1143 1144 // Instruction ranges, specifying where IV is accessible. 1145 const auto &Ranges = I.second; 1146 1147 LexicalScope *Scope = nullptr; 1148 if (InlinedAt) 1149 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1150 else 1151 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1152 // If variable scope is not found then skip this variable. 1153 if (!Scope) 1154 continue; 1155 1156 LocalVariable Var; 1157 Var.DIVar = DIVar; 1158 1159 calculateRanges(Var, Ranges); 1160 recordLocalVariable(std::move(Var), Scope); 1161 } 1162 } 1163 1164 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1165 const Function &GV = MF->getFunction(); 1166 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1167 assert(Insertion.second && "function already has info"); 1168 CurFn = Insertion.first->second.get(); 1169 CurFn->FuncId = NextFuncId++; 1170 CurFn->Begin = Asm->getFunctionBegin(); 1171 1172 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1173 1174 // Find the end of the function prolog. First known non-DBG_VALUE and 1175 // non-frame setup location marks the beginning of the function body. 1176 // FIXME: is there a simpler a way to do this? Can we just search 1177 // for the first instruction of the function, not the last of the prolog? 1178 DebugLoc PrologEndLoc; 1179 bool EmptyPrologue = true; 1180 for (const auto &MBB : *MF) { 1181 for (const auto &MI : MBB) { 1182 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1183 MI.getDebugLoc()) { 1184 PrologEndLoc = MI.getDebugLoc(); 1185 break; 1186 } else if (!MI.isMetaInstruction()) { 1187 EmptyPrologue = false; 1188 } 1189 } 1190 } 1191 1192 // Record beginning of function if we have a non-empty prologue. 1193 if (PrologEndLoc && !EmptyPrologue) { 1194 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1195 maybeRecordLocation(FnStartDL, MF); 1196 } 1197 } 1198 1199 static bool shouldEmitUdt(const DIType *T) { 1200 if (!T) 1201 return false; 1202 1203 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1204 if (T->getTag() == dwarf::DW_TAG_typedef) { 1205 if (DIScope *Scope = T->getScope().resolve()) { 1206 switch (Scope->getTag()) { 1207 case dwarf::DW_TAG_structure_type: 1208 case dwarf::DW_TAG_class_type: 1209 case dwarf::DW_TAG_union_type: 1210 return false; 1211 } 1212 } 1213 } 1214 1215 while (true) { 1216 if (!T || T->isForwardDecl()) 1217 return false; 1218 1219 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1220 if (!DT) 1221 return true; 1222 T = DT->getBaseType().resolve(); 1223 } 1224 return true; 1225 } 1226 1227 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1228 // Don't record empty UDTs. 1229 if (Ty->getName().empty()) 1230 return; 1231 if (!shouldEmitUdt(Ty)) 1232 return; 1233 1234 SmallVector<StringRef, 5> QualifiedNameComponents; 1235 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1236 Ty->getScope().resolve(), QualifiedNameComponents); 1237 1238 std::string FullyQualifiedName = 1239 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1240 1241 if (ClosestSubprogram == nullptr) { 1242 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1243 } else if (ClosestSubprogram == CurrentSubprogram) { 1244 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1245 } 1246 1247 // TODO: What if the ClosestSubprogram is neither null or the current 1248 // subprogram? Currently, the UDT just gets dropped on the floor. 1249 // 1250 // The current behavior is not desirable. To get maximal fidelity, we would 1251 // need to perform all type translation before beginning emission of .debug$S 1252 // and then make LocalUDTs a member of FunctionInfo 1253 } 1254 1255 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1256 // Generic dispatch for lowering an unknown type. 1257 switch (Ty->getTag()) { 1258 case dwarf::DW_TAG_array_type: 1259 return lowerTypeArray(cast<DICompositeType>(Ty)); 1260 case dwarf::DW_TAG_typedef: 1261 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1262 case dwarf::DW_TAG_base_type: 1263 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1264 case dwarf::DW_TAG_pointer_type: 1265 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1266 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1267 LLVM_FALLTHROUGH; 1268 case dwarf::DW_TAG_reference_type: 1269 case dwarf::DW_TAG_rvalue_reference_type: 1270 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1271 case dwarf::DW_TAG_ptr_to_member_type: 1272 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1273 case dwarf::DW_TAG_restrict_type: 1274 case dwarf::DW_TAG_const_type: 1275 case dwarf::DW_TAG_volatile_type: 1276 // TODO: add support for DW_TAG_atomic_type here 1277 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1278 case dwarf::DW_TAG_subroutine_type: 1279 if (ClassTy) { 1280 // The member function type of a member function pointer has no 1281 // ThisAdjustment. 1282 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1283 /*ThisAdjustment=*/0, 1284 /*IsStaticMethod=*/false); 1285 } 1286 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1287 case dwarf::DW_TAG_enumeration_type: 1288 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1289 case dwarf::DW_TAG_class_type: 1290 case dwarf::DW_TAG_structure_type: 1291 return lowerTypeClass(cast<DICompositeType>(Ty)); 1292 case dwarf::DW_TAG_union_type: 1293 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1294 case dwarf::DW_TAG_unspecified_type: 1295 return TypeIndex::None(); 1296 default: 1297 // Use the null type index. 1298 return TypeIndex(); 1299 } 1300 } 1301 1302 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1303 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1304 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1305 StringRef TypeName = Ty->getName(); 1306 1307 addToUDTs(Ty); 1308 1309 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1310 TypeName == "HRESULT") 1311 return TypeIndex(SimpleTypeKind::HResult); 1312 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1313 TypeName == "wchar_t") 1314 return TypeIndex(SimpleTypeKind::WideCharacter); 1315 1316 return UnderlyingTypeIndex; 1317 } 1318 1319 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1320 DITypeRef ElementTypeRef = Ty->getBaseType(); 1321 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1322 // IndexType is size_t, which depends on the bitness of the target. 1323 TypeIndex IndexType = getPointerSizeInBytes() == 8 1324 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1325 : TypeIndex(SimpleTypeKind::UInt32Long); 1326 1327 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1328 1329 // Add subranges to array type. 1330 DINodeArray Elements = Ty->getElements(); 1331 for (int i = Elements.size() - 1; i >= 0; --i) { 1332 const DINode *Element = Elements[i]; 1333 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1334 1335 const DISubrange *Subrange = cast<DISubrange>(Element); 1336 assert(Subrange->getLowerBound() == 0 && 1337 "codeview doesn't support subranges with lower bounds"); 1338 int64_t Count = -1; 1339 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1340 Count = CI->getSExtValue(); 1341 1342 // Forward declarations of arrays without a size and VLAs use a count of -1. 1343 // Emit a count of zero in these cases to match what MSVC does for arrays 1344 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1345 // should do for them even if we could distinguish them. 1346 if (Count == -1) 1347 Count = 0; 1348 1349 // Update the element size and element type index for subsequent subranges. 1350 ElementSize *= Count; 1351 1352 // If this is the outermost array, use the size from the array. It will be 1353 // more accurate if we had a VLA or an incomplete element type size. 1354 uint64_t ArraySize = 1355 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1356 1357 StringRef Name = (i == 0) ? Ty->getName() : ""; 1358 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1359 ElementTypeIndex = TypeTable.writeLeafType(AR); 1360 } 1361 1362 return ElementTypeIndex; 1363 } 1364 1365 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1366 TypeIndex Index; 1367 dwarf::TypeKind Kind; 1368 uint32_t ByteSize; 1369 1370 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1371 ByteSize = Ty->getSizeInBits() / 8; 1372 1373 SimpleTypeKind STK = SimpleTypeKind::None; 1374 switch (Kind) { 1375 case dwarf::DW_ATE_address: 1376 // FIXME: Translate 1377 break; 1378 case dwarf::DW_ATE_boolean: 1379 switch (ByteSize) { 1380 case 1: STK = SimpleTypeKind::Boolean8; break; 1381 case 2: STK = SimpleTypeKind::Boolean16; break; 1382 case 4: STK = SimpleTypeKind::Boolean32; break; 1383 case 8: STK = SimpleTypeKind::Boolean64; break; 1384 case 16: STK = SimpleTypeKind::Boolean128; break; 1385 } 1386 break; 1387 case dwarf::DW_ATE_complex_float: 1388 switch (ByteSize) { 1389 case 2: STK = SimpleTypeKind::Complex16; break; 1390 case 4: STK = SimpleTypeKind::Complex32; break; 1391 case 8: STK = SimpleTypeKind::Complex64; break; 1392 case 10: STK = SimpleTypeKind::Complex80; break; 1393 case 16: STK = SimpleTypeKind::Complex128; break; 1394 } 1395 break; 1396 case dwarf::DW_ATE_float: 1397 switch (ByteSize) { 1398 case 2: STK = SimpleTypeKind::Float16; break; 1399 case 4: STK = SimpleTypeKind::Float32; break; 1400 case 6: STK = SimpleTypeKind::Float48; break; 1401 case 8: STK = SimpleTypeKind::Float64; break; 1402 case 10: STK = SimpleTypeKind::Float80; break; 1403 case 16: STK = SimpleTypeKind::Float128; break; 1404 } 1405 break; 1406 case dwarf::DW_ATE_signed: 1407 switch (ByteSize) { 1408 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1409 case 2: STK = SimpleTypeKind::Int16Short; break; 1410 case 4: STK = SimpleTypeKind::Int32; break; 1411 case 8: STK = SimpleTypeKind::Int64Quad; break; 1412 case 16: STK = SimpleTypeKind::Int128Oct; break; 1413 } 1414 break; 1415 case dwarf::DW_ATE_unsigned: 1416 switch (ByteSize) { 1417 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1418 case 2: STK = SimpleTypeKind::UInt16Short; break; 1419 case 4: STK = SimpleTypeKind::UInt32; break; 1420 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1421 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1422 } 1423 break; 1424 case dwarf::DW_ATE_UTF: 1425 switch (ByteSize) { 1426 case 2: STK = SimpleTypeKind::Character16; break; 1427 case 4: STK = SimpleTypeKind::Character32; break; 1428 } 1429 break; 1430 case dwarf::DW_ATE_signed_char: 1431 if (ByteSize == 1) 1432 STK = SimpleTypeKind::SignedCharacter; 1433 break; 1434 case dwarf::DW_ATE_unsigned_char: 1435 if (ByteSize == 1) 1436 STK = SimpleTypeKind::UnsignedCharacter; 1437 break; 1438 default: 1439 break; 1440 } 1441 1442 // Apply some fixups based on the source-level type name. 1443 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1444 STK = SimpleTypeKind::Int32Long; 1445 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1446 STK = SimpleTypeKind::UInt32Long; 1447 if (STK == SimpleTypeKind::UInt16Short && 1448 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1449 STK = SimpleTypeKind::WideCharacter; 1450 if ((STK == SimpleTypeKind::SignedCharacter || 1451 STK == SimpleTypeKind::UnsignedCharacter) && 1452 Ty->getName() == "char") 1453 STK = SimpleTypeKind::NarrowCharacter; 1454 1455 return TypeIndex(STK); 1456 } 1457 1458 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1459 PointerOptions PO) { 1460 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1461 1462 // Pointers to simple types without any options can use SimpleTypeMode, rather 1463 // than having a dedicated pointer type record. 1464 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1465 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1466 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1467 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1468 ? SimpleTypeMode::NearPointer64 1469 : SimpleTypeMode::NearPointer32; 1470 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1471 } 1472 1473 PointerKind PK = 1474 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1475 PointerMode PM = PointerMode::Pointer; 1476 switch (Ty->getTag()) { 1477 default: llvm_unreachable("not a pointer tag type"); 1478 case dwarf::DW_TAG_pointer_type: 1479 PM = PointerMode::Pointer; 1480 break; 1481 case dwarf::DW_TAG_reference_type: 1482 PM = PointerMode::LValueReference; 1483 break; 1484 case dwarf::DW_TAG_rvalue_reference_type: 1485 PM = PointerMode::RValueReference; 1486 break; 1487 } 1488 1489 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1490 return TypeTable.writeLeafType(PR); 1491 } 1492 1493 static PointerToMemberRepresentation 1494 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1495 // SizeInBytes being zero generally implies that the member pointer type was 1496 // incomplete, which can happen if it is part of a function prototype. In this 1497 // case, use the unknown model instead of the general model. 1498 if (IsPMF) { 1499 switch (Flags & DINode::FlagPtrToMemberRep) { 1500 case 0: 1501 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1502 : PointerToMemberRepresentation::GeneralFunction; 1503 case DINode::FlagSingleInheritance: 1504 return PointerToMemberRepresentation::SingleInheritanceFunction; 1505 case DINode::FlagMultipleInheritance: 1506 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1507 case DINode::FlagVirtualInheritance: 1508 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1509 } 1510 } else { 1511 switch (Flags & DINode::FlagPtrToMemberRep) { 1512 case 0: 1513 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1514 : PointerToMemberRepresentation::GeneralData; 1515 case DINode::FlagSingleInheritance: 1516 return PointerToMemberRepresentation::SingleInheritanceData; 1517 case DINode::FlagMultipleInheritance: 1518 return PointerToMemberRepresentation::MultipleInheritanceData; 1519 case DINode::FlagVirtualInheritance: 1520 return PointerToMemberRepresentation::VirtualInheritanceData; 1521 } 1522 } 1523 llvm_unreachable("invalid ptr to member representation"); 1524 } 1525 1526 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1527 PointerOptions PO) { 1528 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1529 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1530 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1531 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1532 : PointerKind::Near32; 1533 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1534 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1535 : PointerMode::PointerToDataMember; 1536 1537 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1538 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1539 MemberPointerInfo MPI( 1540 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1541 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1542 return TypeTable.writeLeafType(PR); 1543 } 1544 1545 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1546 /// have a translation, use the NearC convention. 1547 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1548 switch (DwarfCC) { 1549 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1550 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1551 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1552 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1553 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1554 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1555 } 1556 return CallingConvention::NearC; 1557 } 1558 1559 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1560 ModifierOptions Mods = ModifierOptions::None; 1561 PointerOptions PO = PointerOptions::None; 1562 bool IsModifier = true; 1563 const DIType *BaseTy = Ty; 1564 while (IsModifier && BaseTy) { 1565 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1566 switch (BaseTy->getTag()) { 1567 case dwarf::DW_TAG_const_type: 1568 Mods |= ModifierOptions::Const; 1569 PO |= PointerOptions::Const; 1570 break; 1571 case dwarf::DW_TAG_volatile_type: 1572 Mods |= ModifierOptions::Volatile; 1573 PO |= PointerOptions::Volatile; 1574 break; 1575 case dwarf::DW_TAG_restrict_type: 1576 // Only pointer types be marked with __restrict. There is no known flag 1577 // for __restrict in LF_MODIFIER records. 1578 PO |= PointerOptions::Restrict; 1579 break; 1580 default: 1581 IsModifier = false; 1582 break; 1583 } 1584 if (IsModifier) 1585 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1586 } 1587 1588 // Check if the inner type will use an LF_POINTER record. If so, the 1589 // qualifiers will go in the LF_POINTER record. This comes up for types like 1590 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1591 // char *'. 1592 if (BaseTy) { 1593 switch (BaseTy->getTag()) { 1594 case dwarf::DW_TAG_pointer_type: 1595 case dwarf::DW_TAG_reference_type: 1596 case dwarf::DW_TAG_rvalue_reference_type: 1597 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1598 case dwarf::DW_TAG_ptr_to_member_type: 1599 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1600 default: 1601 break; 1602 } 1603 } 1604 1605 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1606 1607 // Return the base type index if there aren't any modifiers. For example, the 1608 // metadata could contain restrict wrappers around non-pointer types. 1609 if (Mods == ModifierOptions::None) 1610 return ModifiedTI; 1611 1612 ModifierRecord MR(ModifiedTI, Mods); 1613 return TypeTable.writeLeafType(MR); 1614 } 1615 1616 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1617 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1618 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1619 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1620 1621 // MSVC uses type none for variadic argument. 1622 if (ReturnAndArgTypeIndices.size() > 1 && 1623 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1624 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1625 } 1626 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1627 ArrayRef<TypeIndex> ArgTypeIndices = None; 1628 if (!ReturnAndArgTypeIndices.empty()) { 1629 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1630 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1631 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1632 } 1633 1634 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1635 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1636 1637 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1638 1639 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1640 ArgTypeIndices.size(), ArgListIndex); 1641 return TypeTable.writeLeafType(Procedure); 1642 } 1643 1644 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1645 const DIType *ClassTy, 1646 int ThisAdjustment, 1647 bool IsStaticMethod) { 1648 // Lower the containing class type. 1649 TypeIndex ClassType = getTypeIndex(ClassTy); 1650 1651 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1652 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1653 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1654 1655 // MSVC uses type none for variadic argument. 1656 if (ReturnAndArgTypeIndices.size() > 1 && 1657 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1658 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1659 } 1660 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1661 ArrayRef<TypeIndex> ArgTypeIndices = None; 1662 if (!ReturnAndArgTypeIndices.empty()) { 1663 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1664 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1665 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1666 } 1667 TypeIndex ThisTypeIndex; 1668 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1669 ThisTypeIndex = ArgTypeIndices.front(); 1670 ArgTypeIndices = ArgTypeIndices.drop_front(); 1671 } 1672 1673 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1674 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1675 1676 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1677 1678 // TODO: Need to use the correct values for FunctionOptions. 1679 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1680 FunctionOptions::None, ArgTypeIndices.size(), 1681 ArgListIndex, ThisAdjustment); 1682 return TypeTable.writeLeafType(MFR); 1683 } 1684 1685 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1686 unsigned VSlotCount = 1687 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1688 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1689 1690 VFTableShapeRecord VFTSR(Slots); 1691 return TypeTable.writeLeafType(VFTSR); 1692 } 1693 1694 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1695 switch (Flags & DINode::FlagAccessibility) { 1696 case DINode::FlagPrivate: return MemberAccess::Private; 1697 case DINode::FlagPublic: return MemberAccess::Public; 1698 case DINode::FlagProtected: return MemberAccess::Protected; 1699 case 0: 1700 // If there was no explicit access control, provide the default for the tag. 1701 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1702 : MemberAccess::Public; 1703 } 1704 llvm_unreachable("access flags are exclusive"); 1705 } 1706 1707 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1708 if (SP->isArtificial()) 1709 return MethodOptions::CompilerGenerated; 1710 1711 // FIXME: Handle other MethodOptions. 1712 1713 return MethodOptions::None; 1714 } 1715 1716 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1717 bool Introduced) { 1718 if (SP->getFlags() & DINode::FlagStaticMember) 1719 return MethodKind::Static; 1720 1721 switch (SP->getVirtuality()) { 1722 case dwarf::DW_VIRTUALITY_none: 1723 break; 1724 case dwarf::DW_VIRTUALITY_virtual: 1725 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1726 case dwarf::DW_VIRTUALITY_pure_virtual: 1727 return Introduced ? MethodKind::PureIntroducingVirtual 1728 : MethodKind::PureVirtual; 1729 default: 1730 llvm_unreachable("unhandled virtuality case"); 1731 } 1732 1733 return MethodKind::Vanilla; 1734 } 1735 1736 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1737 switch (Ty->getTag()) { 1738 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1739 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1740 } 1741 llvm_unreachable("unexpected tag"); 1742 } 1743 1744 /// Return ClassOptions that should be present on both the forward declaration 1745 /// and the defintion of a tag type. 1746 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1747 ClassOptions CO = ClassOptions::None; 1748 1749 // MSVC always sets this flag, even for local types. Clang doesn't always 1750 // appear to give every type a linkage name, which may be problematic for us. 1751 // FIXME: Investigate the consequences of not following them here. 1752 if (!Ty->getIdentifier().empty()) 1753 CO |= ClassOptions::HasUniqueName; 1754 1755 // Put the Nested flag on a type if it appears immediately inside a tag type. 1756 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1757 // here. That flag is only set on definitions, and not forward declarations. 1758 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1759 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1760 CO |= ClassOptions::Nested; 1761 1762 // Put the Scoped flag on function-local types. 1763 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1764 Scope = Scope->getScope().resolve()) { 1765 if (isa<DISubprogram>(Scope)) { 1766 CO |= ClassOptions::Scoped; 1767 break; 1768 } 1769 } 1770 1771 return CO; 1772 } 1773 1774 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1775 switch (Ty->getTag()) { 1776 case dwarf::DW_TAG_class_type: 1777 case dwarf::DW_TAG_structure_type: 1778 case dwarf::DW_TAG_union_type: 1779 case dwarf::DW_TAG_enumeration_type: 1780 break; 1781 default: 1782 return; 1783 } 1784 1785 if (const auto *File = Ty->getFile()) { 1786 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1787 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1788 1789 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1790 TypeTable.writeLeafType(USLR); 1791 } 1792 } 1793 1794 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1795 ClassOptions CO = getCommonClassOptions(Ty); 1796 TypeIndex FTI; 1797 unsigned EnumeratorCount = 0; 1798 1799 if (Ty->isForwardDecl()) { 1800 CO |= ClassOptions::ForwardReference; 1801 } else { 1802 ContinuationRecordBuilder ContinuationBuilder; 1803 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1804 for (const DINode *Element : Ty->getElements()) { 1805 // We assume that the frontend provides all members in source declaration 1806 // order, which is what MSVC does. 1807 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1808 EnumeratorRecord ER(MemberAccess::Public, 1809 APSInt::getUnsigned(Enumerator->getValue()), 1810 Enumerator->getName()); 1811 ContinuationBuilder.writeMemberType(ER); 1812 EnumeratorCount++; 1813 } 1814 } 1815 FTI = TypeTable.insertRecord(ContinuationBuilder); 1816 } 1817 1818 std::string FullName = getFullyQualifiedName(Ty); 1819 1820 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1821 getTypeIndex(Ty->getBaseType())); 1822 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 1823 1824 addUDTSrcLine(Ty, EnumTI); 1825 1826 return EnumTI; 1827 } 1828 1829 //===----------------------------------------------------------------------===// 1830 // ClassInfo 1831 //===----------------------------------------------------------------------===// 1832 1833 struct llvm::ClassInfo { 1834 struct MemberInfo { 1835 const DIDerivedType *MemberTypeNode; 1836 uint64_t BaseOffset; 1837 }; 1838 // [MemberInfo] 1839 using MemberList = std::vector<MemberInfo>; 1840 1841 using MethodsList = TinyPtrVector<const DISubprogram *>; 1842 // MethodName -> MethodsList 1843 using MethodsMap = MapVector<MDString *, MethodsList>; 1844 1845 /// Base classes. 1846 std::vector<const DIDerivedType *> Inheritance; 1847 1848 /// Direct members. 1849 MemberList Members; 1850 // Direct overloaded methods gathered by name. 1851 MethodsMap Methods; 1852 1853 TypeIndex VShapeTI; 1854 1855 std::vector<const DIType *> NestedTypes; 1856 }; 1857 1858 void CodeViewDebug::clear() { 1859 assert(CurFn == nullptr); 1860 FileIdMap.clear(); 1861 FnDebugInfo.clear(); 1862 FileToFilepathMap.clear(); 1863 LocalUDTs.clear(); 1864 GlobalUDTs.clear(); 1865 TypeIndices.clear(); 1866 CompleteTypeIndices.clear(); 1867 } 1868 1869 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1870 const DIDerivedType *DDTy) { 1871 if (!DDTy->getName().empty()) { 1872 Info.Members.push_back({DDTy, 0}); 1873 return; 1874 } 1875 1876 // An unnamed member may represent a nested struct or union. Attempt to 1877 // interpret the unnamed member as a DICompositeType possibly wrapped in 1878 // qualifier types. Add all the indirect fields to the current record if that 1879 // succeeds, and drop the member if that fails. 1880 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1881 uint64_t Offset = DDTy->getOffsetInBits(); 1882 const DIType *Ty = DDTy->getBaseType().resolve(); 1883 bool FullyResolved = false; 1884 while (!FullyResolved) { 1885 switch (Ty->getTag()) { 1886 case dwarf::DW_TAG_const_type: 1887 case dwarf::DW_TAG_volatile_type: 1888 // FIXME: we should apply the qualifier types to the indirect fields 1889 // rather than dropping them. 1890 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 1891 break; 1892 default: 1893 FullyResolved = true; 1894 break; 1895 } 1896 } 1897 1898 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 1899 if (!DCTy) 1900 return; 1901 1902 ClassInfo NestedInfo = collectClassInfo(DCTy); 1903 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1904 Info.Members.push_back( 1905 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1906 } 1907 1908 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1909 ClassInfo Info; 1910 // Add elements to structure type. 1911 DINodeArray Elements = Ty->getElements(); 1912 for (auto *Element : Elements) { 1913 // We assume that the frontend provides all members in source declaration 1914 // order, which is what MSVC does. 1915 if (!Element) 1916 continue; 1917 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1918 Info.Methods[SP->getRawName()].push_back(SP); 1919 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1920 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1921 collectMemberInfo(Info, DDTy); 1922 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1923 Info.Inheritance.push_back(DDTy); 1924 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1925 DDTy->getName() == "__vtbl_ptr_type") { 1926 Info.VShapeTI = getTypeIndex(DDTy); 1927 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1928 Info.NestedTypes.push_back(DDTy); 1929 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1930 // Ignore friend members. It appears that MSVC emitted info about 1931 // friends in the past, but modern versions do not. 1932 } 1933 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1934 Info.NestedTypes.push_back(Composite); 1935 } 1936 // Skip other unrecognized kinds of elements. 1937 } 1938 return Info; 1939 } 1940 1941 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1942 // First, construct the forward decl. Don't look into Ty to compute the 1943 // forward decl options, since it might not be available in all TUs. 1944 TypeRecordKind Kind = getRecordKind(Ty); 1945 ClassOptions CO = 1946 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1947 std::string FullName = getFullyQualifiedName(Ty); 1948 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1949 FullName, Ty->getIdentifier()); 1950 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 1951 if (!Ty->isForwardDecl()) 1952 DeferredCompleteTypes.push_back(Ty); 1953 return FwdDeclTI; 1954 } 1955 1956 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1957 // Construct the field list and complete type record. 1958 TypeRecordKind Kind = getRecordKind(Ty); 1959 ClassOptions CO = getCommonClassOptions(Ty); 1960 TypeIndex FieldTI; 1961 TypeIndex VShapeTI; 1962 unsigned FieldCount; 1963 bool ContainsNestedClass; 1964 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1965 lowerRecordFieldList(Ty); 1966 1967 if (ContainsNestedClass) 1968 CO |= ClassOptions::ContainsNestedClass; 1969 1970 std::string FullName = getFullyQualifiedName(Ty); 1971 1972 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1973 1974 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1975 SizeInBytes, FullName, Ty->getIdentifier()); 1976 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 1977 1978 addUDTSrcLine(Ty, ClassTI); 1979 1980 addToUDTs(Ty); 1981 1982 return ClassTI; 1983 } 1984 1985 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1986 ClassOptions CO = 1987 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1988 std::string FullName = getFullyQualifiedName(Ty); 1989 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1990 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 1991 if (!Ty->isForwardDecl()) 1992 DeferredCompleteTypes.push_back(Ty); 1993 return FwdDeclTI; 1994 } 1995 1996 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1997 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1998 TypeIndex FieldTI; 1999 unsigned FieldCount; 2000 bool ContainsNestedClass; 2001 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2002 lowerRecordFieldList(Ty); 2003 2004 if (ContainsNestedClass) 2005 CO |= ClassOptions::ContainsNestedClass; 2006 2007 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2008 std::string FullName = getFullyQualifiedName(Ty); 2009 2010 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2011 Ty->getIdentifier()); 2012 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2013 2014 addUDTSrcLine(Ty, UnionTI); 2015 2016 addToUDTs(Ty); 2017 2018 return UnionTI; 2019 } 2020 2021 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2022 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2023 // Manually count members. MSVC appears to count everything that generates a 2024 // field list record. Each individual overload in a method overload group 2025 // contributes to this count, even though the overload group is a single field 2026 // list record. 2027 unsigned MemberCount = 0; 2028 ClassInfo Info = collectClassInfo(Ty); 2029 ContinuationRecordBuilder ContinuationBuilder; 2030 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2031 2032 // Create base classes. 2033 for (const DIDerivedType *I : Info.Inheritance) { 2034 if (I->getFlags() & DINode::FlagVirtual) { 2035 // Virtual base. 2036 // FIXME: Emit VBPtrOffset when the frontend provides it. 2037 unsigned VBPtrOffset = 0; 2038 // FIXME: Despite the accessor name, the offset is really in bytes. 2039 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2040 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2041 ? TypeRecordKind::IndirectVirtualBaseClass 2042 : TypeRecordKind::VirtualBaseClass; 2043 VirtualBaseClassRecord VBCR( 2044 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2045 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2046 VBTableIndex); 2047 2048 ContinuationBuilder.writeMemberType(VBCR); 2049 MemberCount++; 2050 } else { 2051 assert(I->getOffsetInBits() % 8 == 0 && 2052 "bases must be on byte boundaries"); 2053 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2054 getTypeIndex(I->getBaseType()), 2055 I->getOffsetInBits() / 8); 2056 ContinuationBuilder.writeMemberType(BCR); 2057 MemberCount++; 2058 } 2059 } 2060 2061 // Create members. 2062 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2063 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2064 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2065 StringRef MemberName = Member->getName(); 2066 MemberAccess Access = 2067 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2068 2069 if (Member->isStaticMember()) { 2070 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2071 ContinuationBuilder.writeMemberType(SDMR); 2072 MemberCount++; 2073 continue; 2074 } 2075 2076 // Virtual function pointer member. 2077 if ((Member->getFlags() & DINode::FlagArtificial) && 2078 Member->getName().startswith("_vptr$")) { 2079 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2080 ContinuationBuilder.writeMemberType(VFPR); 2081 MemberCount++; 2082 continue; 2083 } 2084 2085 // Data member. 2086 uint64_t MemberOffsetInBits = 2087 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2088 if (Member->isBitField()) { 2089 uint64_t StartBitOffset = MemberOffsetInBits; 2090 if (const auto *CI = 2091 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2092 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2093 } 2094 StartBitOffset -= MemberOffsetInBits; 2095 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2096 StartBitOffset); 2097 MemberBaseType = TypeTable.writeLeafType(BFR); 2098 } 2099 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2100 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2101 MemberName); 2102 ContinuationBuilder.writeMemberType(DMR); 2103 MemberCount++; 2104 } 2105 2106 // Create methods 2107 for (auto &MethodItr : Info.Methods) { 2108 StringRef Name = MethodItr.first->getString(); 2109 2110 std::vector<OneMethodRecord> Methods; 2111 for (const DISubprogram *SP : MethodItr.second) { 2112 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2113 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2114 2115 unsigned VFTableOffset = -1; 2116 if (Introduced) 2117 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2118 2119 Methods.push_back(OneMethodRecord( 2120 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2121 translateMethodKindFlags(SP, Introduced), 2122 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2123 MemberCount++; 2124 } 2125 assert(!Methods.empty() && "Empty methods map entry"); 2126 if (Methods.size() == 1) 2127 ContinuationBuilder.writeMemberType(Methods[0]); 2128 else { 2129 // FIXME: Make this use its own ContinuationBuilder so that 2130 // MethodOverloadList can be split correctly. 2131 MethodOverloadListRecord MOLR(Methods); 2132 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2133 2134 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2135 ContinuationBuilder.writeMemberType(OMR); 2136 } 2137 } 2138 2139 // Create nested classes. 2140 for (const DIType *Nested : Info.NestedTypes) { 2141 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2142 ContinuationBuilder.writeMemberType(R); 2143 MemberCount++; 2144 } 2145 2146 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2147 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2148 !Info.NestedTypes.empty()); 2149 } 2150 2151 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2152 if (!VBPType.getIndex()) { 2153 // Make a 'const int *' type. 2154 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2155 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2156 2157 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2158 : PointerKind::Near32; 2159 PointerMode PM = PointerMode::Pointer; 2160 PointerOptions PO = PointerOptions::None; 2161 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2162 VBPType = TypeTable.writeLeafType(PR); 2163 } 2164 2165 return VBPType; 2166 } 2167 2168 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2169 const DIType *Ty = TypeRef.resolve(); 2170 const DIType *ClassTy = ClassTyRef.resolve(); 2171 2172 // The null DIType is the void type. Don't try to hash it. 2173 if (!Ty) 2174 return TypeIndex::Void(); 2175 2176 // Check if we've already translated this type. Don't try to do a 2177 // get-or-create style insertion that caches the hash lookup across the 2178 // lowerType call. It will update the TypeIndices map. 2179 auto I = TypeIndices.find({Ty, ClassTy}); 2180 if (I != TypeIndices.end()) 2181 return I->second; 2182 2183 TypeLoweringScope S(*this); 2184 TypeIndex TI = lowerType(Ty, ClassTy); 2185 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2186 } 2187 2188 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2189 DIType *Ty = TypeRef.resolve(); 2190 PointerRecord PR(getTypeIndex(Ty), 2191 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2192 : PointerKind::Near32, 2193 PointerMode::LValueReference, PointerOptions::None, 2194 Ty->getSizeInBits() / 8); 2195 return TypeTable.writeLeafType(PR); 2196 } 2197 2198 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2199 const DIType *Ty = TypeRef.resolve(); 2200 2201 // The null DIType is the void type. Don't try to hash it. 2202 if (!Ty) 2203 return TypeIndex::Void(); 2204 2205 // If this is a non-record type, the complete type index is the same as the 2206 // normal type index. Just call getTypeIndex. 2207 switch (Ty->getTag()) { 2208 case dwarf::DW_TAG_class_type: 2209 case dwarf::DW_TAG_structure_type: 2210 case dwarf::DW_TAG_union_type: 2211 break; 2212 default: 2213 return getTypeIndex(Ty); 2214 } 2215 2216 // Check if we've already translated the complete record type. Lowering a 2217 // complete type should never trigger lowering another complete type, so we 2218 // can reuse the hash table lookup result. 2219 const auto *CTy = cast<DICompositeType>(Ty); 2220 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2221 if (!InsertResult.second) 2222 return InsertResult.first->second; 2223 2224 TypeLoweringScope S(*this); 2225 2226 // Make sure the forward declaration is emitted first. It's unclear if this 2227 // is necessary, but MSVC does it, and we should follow suit until we can show 2228 // otherwise. 2229 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2230 2231 // Just use the forward decl if we don't have complete type info. This might 2232 // happen if the frontend is using modules and expects the complete definition 2233 // to be emitted elsewhere. 2234 if (CTy->isForwardDecl()) 2235 return FwdDeclTI; 2236 2237 TypeIndex TI; 2238 switch (CTy->getTag()) { 2239 case dwarf::DW_TAG_class_type: 2240 case dwarf::DW_TAG_structure_type: 2241 TI = lowerCompleteTypeClass(CTy); 2242 break; 2243 case dwarf::DW_TAG_union_type: 2244 TI = lowerCompleteTypeUnion(CTy); 2245 break; 2246 default: 2247 llvm_unreachable("not a record"); 2248 } 2249 2250 InsertResult.first->second = TI; 2251 return TI; 2252 } 2253 2254 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2255 /// and do this until fixpoint, as each complete record type typically 2256 /// references 2257 /// many other record types. 2258 void CodeViewDebug::emitDeferredCompleteTypes() { 2259 SmallVector<const DICompositeType *, 4> TypesToEmit; 2260 while (!DeferredCompleteTypes.empty()) { 2261 std::swap(DeferredCompleteTypes, TypesToEmit); 2262 for (const DICompositeType *RecordTy : TypesToEmit) 2263 getCompleteTypeIndex(RecordTy); 2264 TypesToEmit.clear(); 2265 } 2266 } 2267 2268 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2269 // Get the sorted list of parameters and emit them first. 2270 SmallVector<const LocalVariable *, 6> Params; 2271 for (const LocalVariable &L : Locals) 2272 if (L.DIVar->isParameter()) 2273 Params.push_back(&L); 2274 llvm::sort(Params.begin(), Params.end(), 2275 [](const LocalVariable *L, const LocalVariable *R) { 2276 return L->DIVar->getArg() < R->DIVar->getArg(); 2277 }); 2278 for (const LocalVariable *L : Params) 2279 emitLocalVariable(*L); 2280 2281 // Next emit all non-parameters in the order that we found them. 2282 for (const LocalVariable &L : Locals) 2283 if (!L.DIVar->isParameter()) 2284 emitLocalVariable(L); 2285 } 2286 2287 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2288 // LocalSym record, see SymbolRecord.h for more info. 2289 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2290 *LocalEnd = MMI->getContext().createTempSymbol(); 2291 OS.AddComment("Record length"); 2292 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2293 OS.EmitLabel(LocalBegin); 2294 2295 OS.AddComment("Record kind: S_LOCAL"); 2296 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2297 2298 LocalSymFlags Flags = LocalSymFlags::None; 2299 if (Var.DIVar->isParameter()) 2300 Flags |= LocalSymFlags::IsParameter; 2301 if (Var.DefRanges.empty()) 2302 Flags |= LocalSymFlags::IsOptimizedOut; 2303 2304 OS.AddComment("TypeIndex"); 2305 TypeIndex TI = Var.UseReferenceType 2306 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2307 : getCompleteTypeIndex(Var.DIVar->getType()); 2308 OS.EmitIntValue(TI.getIndex(), 4); 2309 OS.AddComment("Flags"); 2310 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2311 // Truncate the name so we won't overflow the record length field. 2312 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2313 OS.EmitLabel(LocalEnd); 2314 2315 // Calculate the on disk prefix of the appropriate def range record. The 2316 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2317 // should be big enough to hold all forms without memory allocation. 2318 SmallString<20> BytePrefix; 2319 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2320 BytePrefix.clear(); 2321 if (DefRange.InMemory) { 2322 uint16_t RegRelFlags = 0; 2323 if (DefRange.IsSubfield) { 2324 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2325 (DefRange.StructOffset 2326 << DefRangeRegisterRelSym::OffsetInParentShift); 2327 } 2328 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2329 Sym.Hdr.Register = DefRange.CVRegister; 2330 Sym.Hdr.Flags = RegRelFlags; 2331 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2332 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2333 BytePrefix += 2334 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2335 BytePrefix += 2336 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2337 } else { 2338 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2339 if (DefRange.IsSubfield) { 2340 // Unclear what matters here. 2341 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2342 Sym.Hdr.Register = DefRange.CVRegister; 2343 Sym.Hdr.MayHaveNoName = 0; 2344 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2345 2346 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2347 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2348 sizeof(SymKind)); 2349 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2350 sizeof(Sym.Hdr)); 2351 } else { 2352 // Unclear what matters here. 2353 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2354 Sym.Hdr.Register = DefRange.CVRegister; 2355 Sym.Hdr.MayHaveNoName = 0; 2356 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2357 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2358 sizeof(SymKind)); 2359 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2360 sizeof(Sym.Hdr)); 2361 } 2362 } 2363 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2364 } 2365 } 2366 2367 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2368 const FunctionInfo& FI) { 2369 for (LexicalBlock *Block : Blocks) 2370 emitLexicalBlock(*Block, FI); 2371 } 2372 2373 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2374 /// lexical block scope. 2375 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2376 const FunctionInfo& FI) { 2377 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(), 2378 *RecordEnd = MMI->getContext().createTempSymbol(); 2379 2380 // Lexical block symbol record. 2381 OS.AddComment("Record length"); 2382 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length 2383 OS.EmitLabel(RecordBegin); 2384 OS.AddComment("Record kind: S_BLOCK32"); 2385 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind 2386 OS.AddComment("PtrParent"); 2387 OS.EmitIntValue(0, 4); // PtrParent 2388 OS.AddComment("PtrEnd"); 2389 OS.EmitIntValue(0, 4); // PtrEnd 2390 OS.AddComment("Code size"); 2391 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2392 OS.AddComment("Function section relative address"); 2393 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2394 OS.AddComment("Function section index"); 2395 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2396 OS.AddComment("Lexical block name"); 2397 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2398 OS.EmitLabel(RecordEnd); 2399 2400 // Emit variables local to this lexical block. 2401 emitLocalVariableList(Block.Locals); 2402 2403 // Emit lexical blocks contained within this block. 2404 emitLexicalBlockList(Block.Children, FI); 2405 2406 // Close the lexical block scope. 2407 OS.AddComment("Record length"); 2408 OS.EmitIntValue(2, 2); // Record Length 2409 OS.AddComment("Record kind: S_END"); 2410 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind 2411 } 2412 2413 /// Convenience routine for collecting lexical block information for a list 2414 /// of lexical scopes. 2415 void CodeViewDebug::collectLexicalBlockInfo( 2416 SmallVectorImpl<LexicalScope *> &Scopes, 2417 SmallVectorImpl<LexicalBlock *> &Blocks, 2418 SmallVectorImpl<LocalVariable> &Locals) { 2419 for (LexicalScope *Scope : Scopes) 2420 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2421 } 2422 2423 /// Populate the lexical blocks and local variable lists of the parent with 2424 /// information about the specified lexical scope. 2425 void CodeViewDebug::collectLexicalBlockInfo( 2426 LexicalScope &Scope, 2427 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2428 SmallVectorImpl<LocalVariable> &ParentLocals) { 2429 if (Scope.isAbstractScope()) 2430 return; 2431 2432 auto LocalsIter = ScopeVariables.find(&Scope); 2433 if (LocalsIter == ScopeVariables.end()) { 2434 // This scope does not contain variables and can be eliminated. 2435 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2436 return; 2437 } 2438 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2439 2440 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2441 if (!DILB) { 2442 // This scope is not a lexical block and can be eliminated, but keep any 2443 // local variables it contains. 2444 ParentLocals.append(Locals.begin(), Locals.end()); 2445 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2446 return; 2447 } 2448 2449 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2450 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2451 // This lexical block scope has too many address ranges to represent in the 2452 // current CodeView format or does not have a valid address range. 2453 // Eliminate this lexical scope and promote any locals it contains to the 2454 // parent scope. 2455 // 2456 // For lexical scopes with multiple address ranges you may be tempted to 2457 // construct a single range covering every instruction where the block is 2458 // live and everything in between. Unfortunately, Visual Studio only 2459 // displays variables from the first matching lexical block scope. If the 2460 // first lexical block contains exception handling code or cold code which 2461 // is moved to the bottom of the routine creating a single range covering 2462 // nearly the entire routine, then it will hide all other lexical blocks 2463 // and the variables they contain. 2464 // 2465 ParentLocals.append(Locals.begin(), Locals.end()); 2466 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2467 return; 2468 } 2469 2470 // Create a new CodeView lexical block for this lexical scope. If we've 2471 // seen this DILexicalBlock before then the scope tree is malformed and 2472 // we can handle this gracefully by not processing it a second time. 2473 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2474 if (!BlockInsertion.second) 2475 return; 2476 2477 // Create a lexical block containing the local variables and collect the 2478 // the lexical block information for the children. 2479 const InsnRange &Range = Ranges.front(); 2480 assert(Range.first && Range.second); 2481 LexicalBlock &Block = BlockInsertion.first->second; 2482 Block.Begin = getLabelBeforeInsn(Range.first); 2483 Block.End = getLabelAfterInsn(Range.second); 2484 assert(Block.Begin && "missing label for scope begin"); 2485 assert(Block.End && "missing label for scope end"); 2486 Block.Name = DILB->getName(); 2487 Block.Locals = std::move(Locals); 2488 ParentBlocks.push_back(&Block); 2489 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2490 } 2491 2492 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2493 const Function &GV = MF->getFunction(); 2494 assert(FnDebugInfo.count(&GV)); 2495 assert(CurFn == FnDebugInfo[&GV].get()); 2496 2497 collectVariableInfo(GV.getSubprogram()); 2498 2499 // Build the lexical block structure to emit for this routine. 2500 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2501 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2502 2503 // Clear the scope and variable information from the map which will not be 2504 // valid after we have finished processing this routine. This also prepares 2505 // the map for the subsequent routine. 2506 ScopeVariables.clear(); 2507 2508 // Don't emit anything if we don't have any line tables. 2509 if (!CurFn->HaveLineInfo) { 2510 FnDebugInfo.erase(&GV); 2511 CurFn = nullptr; 2512 return; 2513 } 2514 2515 CurFn->Annotations = MF->getCodeViewAnnotations(); 2516 2517 CurFn->End = Asm->getFunctionEnd(); 2518 2519 CurFn = nullptr; 2520 } 2521 2522 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2523 DebugHandlerBase::beginInstruction(MI); 2524 2525 // Ignore DBG_VALUE locations and function prologue. 2526 if (!Asm || !CurFn || MI->isDebugValue() || 2527 MI->getFlag(MachineInstr::FrameSetup)) 2528 return; 2529 2530 // If the first instruction of a new MBB has no location, find the first 2531 // instruction with a location and use that. 2532 DebugLoc DL = MI->getDebugLoc(); 2533 if (!DL && MI->getParent() != PrevInstBB) { 2534 for (const auto &NextMI : *MI->getParent()) { 2535 if (NextMI.isDebugValue()) 2536 continue; 2537 DL = NextMI.getDebugLoc(); 2538 if (DL) 2539 break; 2540 } 2541 } 2542 PrevInstBB = MI->getParent(); 2543 2544 // If we still don't have a debug location, don't record a location. 2545 if (!DL) 2546 return; 2547 2548 maybeRecordLocation(DL, Asm->MF); 2549 } 2550 2551 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2552 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2553 *EndLabel = MMI->getContext().createTempSymbol(); 2554 OS.EmitIntValue(unsigned(Kind), 4); 2555 OS.AddComment("Subsection size"); 2556 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2557 OS.EmitLabel(BeginLabel); 2558 return EndLabel; 2559 } 2560 2561 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2562 OS.EmitLabel(EndLabel); 2563 // Every subsection must be aligned to a 4-byte boundary. 2564 OS.EmitValueToAlignment(4); 2565 } 2566 2567 void CodeViewDebug::emitDebugInfoForUDTs( 2568 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2569 for (const auto &UDT : UDTs) { 2570 const DIType *T = UDT.second; 2571 assert(shouldEmitUdt(T)); 2572 2573 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2574 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2575 OS.AddComment("Record length"); 2576 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2577 OS.EmitLabel(UDTRecordBegin); 2578 2579 OS.AddComment("Record kind: S_UDT"); 2580 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2581 2582 OS.AddComment("Type"); 2583 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2584 2585 emitNullTerminatedSymbolName(OS, UDT.first); 2586 OS.EmitLabel(UDTRecordEnd); 2587 } 2588 } 2589 2590 void CodeViewDebug::emitDebugInfoForGlobals() { 2591 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2592 GlobalMap; 2593 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2594 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2595 GV.getDebugInfo(GVEs); 2596 for (const auto *GVE : GVEs) 2597 GlobalMap[GVE] = &GV; 2598 } 2599 2600 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2601 for (const MDNode *Node : CUs->operands()) { 2602 const auto *CU = cast<DICompileUnit>(Node); 2603 2604 // First, emit all globals that are not in a comdat in a single symbol 2605 // substream. MSVC doesn't like it if the substream is empty, so only open 2606 // it if we have at least one global to emit. 2607 switchToDebugSectionForSymbol(nullptr); 2608 MCSymbol *EndLabel = nullptr; 2609 for (const auto *GVE : CU->getGlobalVariables()) { 2610 if (const auto *GV = GlobalMap.lookup(GVE)) 2611 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2612 if (!EndLabel) { 2613 OS.AddComment("Symbol subsection for globals"); 2614 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2615 } 2616 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2617 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2618 } 2619 } 2620 if (EndLabel) 2621 endCVSubsection(EndLabel); 2622 2623 // Second, emit each global that is in a comdat into its own .debug$S 2624 // section along with its own symbol substream. 2625 for (const auto *GVE : CU->getGlobalVariables()) { 2626 if (const auto *GV = GlobalMap.lookup(GVE)) { 2627 if (GV->hasComdat()) { 2628 MCSymbol *GVSym = Asm->getSymbol(GV); 2629 OS.AddComment("Symbol subsection for " + 2630 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2631 switchToDebugSectionForSymbol(GVSym); 2632 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2633 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2634 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2635 endCVSubsection(EndLabel); 2636 } 2637 } 2638 } 2639 } 2640 } 2641 2642 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2643 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2644 for (const MDNode *Node : CUs->operands()) { 2645 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2646 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2647 getTypeIndex(RT); 2648 // FIXME: Add to global/local DTU list. 2649 } 2650 } 2651 } 2652 } 2653 2654 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2655 const GlobalVariable *GV, 2656 MCSymbol *GVSym) { 2657 // DataSym record, see SymbolRecord.h for more info. 2658 // FIXME: Thread local data, etc 2659 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2660 *DataEnd = MMI->getContext().createTempSymbol(); 2661 const unsigned FixedLengthOfThisRecord = 12; 2662 OS.AddComment("Record length"); 2663 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2664 OS.EmitLabel(DataBegin); 2665 if (DIGV->isLocalToUnit()) { 2666 if (GV->isThreadLocal()) { 2667 OS.AddComment("Record kind: S_LTHREAD32"); 2668 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2669 } else { 2670 OS.AddComment("Record kind: S_LDATA32"); 2671 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2672 } 2673 } else { 2674 if (GV->isThreadLocal()) { 2675 OS.AddComment("Record kind: S_GTHREAD32"); 2676 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2677 } else { 2678 OS.AddComment("Record kind: S_GDATA32"); 2679 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2680 } 2681 } 2682 OS.AddComment("Type"); 2683 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2684 OS.AddComment("DataOffset"); 2685 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2686 OS.AddComment("Segment"); 2687 OS.EmitCOFFSectionIndex(GVSym); 2688 OS.AddComment("Name"); 2689 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord); 2690 OS.EmitLabel(DataEnd); 2691 } 2692