xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision d9e96741c464f35722bbbb4d11bb7fa7c6f4fb21)
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
46 #include "llvm/DebugInfo/CodeView/Line.h"
47 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
48 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
49 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
50 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
51 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugInfoMetadata.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/GlobalVariable.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/MC/MCAsmInfo.h"
62 #include "llvm/MC/MCContext.h"
63 #include "llvm/MC/MCSectionCOFF.h"
64 #include "llvm/MC/MCStreamer.h"
65 #include "llvm/MC/MCSymbol.h"
66 #include "llvm/Support/BinaryByteStream.h"
67 #include "llvm/Support/BinaryStreamReader.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Endian.h"
72 #include "llvm/Support/Error.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/FormatVariadic.h"
75 #include "llvm/Support/SMLoc.h"
76 #include "llvm/Support/ScopedPrinter.h"
77 #include "llvm/Target/TargetLoweringObjectFile.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cctype>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <limits>
86 #include <string>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace llvm::codeview;
92 
93 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section",
94                                            cl::ReallyHidden, cl::init(false));
95 
96 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
97     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
98   // If module doesn't have named metadata anchors or COFF debug section
99   // is not available, skip any debug info related stuff.
100   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
101       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
102     Asm = nullptr;
103     return;
104   }
105 
106   // Tell MMI that we have debug info.
107   MMI->setDebugInfoAvailability(true);
108 }
109 
110 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
111   std::string &Filepath = FileToFilepathMap[File];
112   if (!Filepath.empty())
113     return Filepath;
114 
115   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
116 
117   // Clang emits directory and relative filename info into the IR, but CodeView
118   // operates on full paths.  We could change Clang to emit full paths too, but
119   // that would increase the IR size and probably not needed for other users.
120   // For now, just concatenate and canonicalize the path here.
121   if (Filename.find(':') == 1)
122     Filepath = Filename;
123   else
124     Filepath = (Dir + "\\" + Filename).str();
125 
126   // Canonicalize the path.  We have to do it textually because we may no longer
127   // have access the file in the filesystem.
128   // First, replace all slashes with backslashes.
129   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
130 
131   // Remove all "\.\" with "\".
132   size_t Cursor = 0;
133   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
134     Filepath.erase(Cursor, 2);
135 
136   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
137   // path should be well-formatted, e.g. start with a drive letter, etc.
138   Cursor = 0;
139   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
140     // Something's wrong if the path starts with "\..\", abort.
141     if (Cursor == 0)
142       break;
143 
144     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
145     if (PrevSlash == std::string::npos)
146       // Something's wrong, abort.
147       break;
148 
149     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
150     // The next ".." might be following the one we've just erased.
151     Cursor = PrevSlash;
152   }
153 
154   // Remove all duplicate backslashes.
155   Cursor = 0;
156   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
157     Filepath.erase(Cursor, 1);
158 
159   return Filepath;
160 }
161 
162 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
163   StringRef FullPath = getFullFilepath(F);
164   unsigned NextId = FileIdMap.size() + 1;
165   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
166   if (Insertion.second) {
167     // We have to compute the full filepath and emit a .cv_file directive.
168     ArrayRef<uint8_t> ChecksumAsBytes;
169     FileChecksumKind CSKind = FileChecksumKind::None;
170     if (F->getChecksum()) {
171       std::string Checksum = fromHex(F->getChecksum()->Value);
172       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
173       memcpy(CKMem, Checksum.data(), Checksum.size());
174       ChecksumAsBytes = ArrayRef<uint8_t>(
175           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
176       switch (F->getChecksum()->Kind) {
177       case DIFile::CSK_MD5:  CSKind = FileChecksumKind::MD5; break;
178       case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
179       }
180     }
181     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
182                                           static_cast<unsigned>(CSKind));
183     (void)Success;
184     assert(Success && ".cv_file directive failed");
185   }
186   return Insertion.first->second;
187 }
188 
189 CodeViewDebug::InlineSite &
190 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
191                              const DISubprogram *Inlinee) {
192   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
193   InlineSite *Site = &SiteInsertion.first->second;
194   if (SiteInsertion.second) {
195     unsigned ParentFuncId = CurFn->FuncId;
196     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
197       ParentFuncId =
198           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
199               .SiteFuncId;
200 
201     Site->SiteFuncId = NextFuncId++;
202     OS.EmitCVInlineSiteIdDirective(
203         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
204         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
205     Site->Inlinee = Inlinee;
206     InlinedSubprograms.insert(Inlinee);
207     getFuncIdForSubprogram(Inlinee);
208   }
209   return *Site;
210 }
211 
212 static StringRef getPrettyScopeName(const DIScope *Scope) {
213   StringRef ScopeName = Scope->getName();
214   if (!ScopeName.empty())
215     return ScopeName;
216 
217   switch (Scope->getTag()) {
218   case dwarf::DW_TAG_enumeration_type:
219   case dwarf::DW_TAG_class_type:
220   case dwarf::DW_TAG_structure_type:
221   case dwarf::DW_TAG_union_type:
222     return "<unnamed-tag>";
223   case dwarf::DW_TAG_namespace:
224     return "`anonymous namespace'";
225   }
226 
227   return StringRef();
228 }
229 
230 static const DISubprogram *getQualifiedNameComponents(
231     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
232   const DISubprogram *ClosestSubprogram = nullptr;
233   while (Scope != nullptr) {
234     if (ClosestSubprogram == nullptr)
235       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
236     StringRef ScopeName = getPrettyScopeName(Scope);
237     if (!ScopeName.empty())
238       QualifiedNameComponents.push_back(ScopeName);
239     Scope = Scope->getScope().resolve();
240   }
241   return ClosestSubprogram;
242 }
243 
244 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
245                                     StringRef TypeName) {
246   std::string FullyQualifiedName;
247   for (StringRef QualifiedNameComponent :
248        llvm::reverse(QualifiedNameComponents)) {
249     FullyQualifiedName.append(QualifiedNameComponent);
250     FullyQualifiedName.append("::");
251   }
252   FullyQualifiedName.append(TypeName);
253   return FullyQualifiedName;
254 }
255 
256 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
257   SmallVector<StringRef, 5> QualifiedNameComponents;
258   getQualifiedNameComponents(Scope, QualifiedNameComponents);
259   return getQualifiedName(QualifiedNameComponents, Name);
260 }
261 
262 struct CodeViewDebug::TypeLoweringScope {
263   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
264   ~TypeLoweringScope() {
265     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
266     // inner TypeLoweringScopes don't attempt to emit deferred types.
267     if (CVD.TypeEmissionLevel == 1)
268       CVD.emitDeferredCompleteTypes();
269     --CVD.TypeEmissionLevel;
270   }
271   CodeViewDebug &CVD;
272 };
273 
274 static std::string getFullyQualifiedName(const DIScope *Ty) {
275   const DIScope *Scope = Ty->getScope().resolve();
276   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
277 }
278 
279 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
280   // No scope means global scope and that uses the zero index.
281   if (!Scope || isa<DIFile>(Scope))
282     return TypeIndex();
283 
284   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
285 
286   // Check if we've already translated this scope.
287   auto I = TypeIndices.find({Scope, nullptr});
288   if (I != TypeIndices.end())
289     return I->second;
290 
291   // Build the fully qualified name of the scope.
292   std::string ScopeName = getFullyQualifiedName(Scope);
293   StringIdRecord SID(TypeIndex(), ScopeName);
294   auto TI = TypeTable.writeLeafType(SID);
295   return recordTypeIndexForDINode(Scope, TI);
296 }
297 
298 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
299   assert(SP);
300 
301   // Check if we've already translated this subprogram.
302   auto I = TypeIndices.find({SP, nullptr});
303   if (I != TypeIndices.end())
304     return I->second;
305 
306   // The display name includes function template arguments. Drop them to match
307   // MSVC.
308   StringRef DisplayName = SP->getName().split('<').first;
309 
310   const DIScope *Scope = SP->getScope().resolve();
311   TypeIndex TI;
312   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
313     // If the scope is a DICompositeType, then this must be a method. Member
314     // function types take some special handling, and require access to the
315     // subprogram.
316     TypeIndex ClassType = getTypeIndex(Class);
317     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
318                                DisplayName);
319     TI = TypeTable.writeLeafType(MFuncId);
320   } else {
321     // Otherwise, this must be a free function.
322     TypeIndex ParentScope = getScopeIndex(Scope);
323     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
324     TI = TypeTable.writeLeafType(FuncId);
325   }
326 
327   return recordTypeIndexForDINode(SP, TI);
328 }
329 
330 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
331                                                const DICompositeType *Class) {
332   // Always use the method declaration as the key for the function type. The
333   // method declaration contains the this adjustment.
334   if (SP->getDeclaration())
335     SP = SP->getDeclaration();
336   assert(!SP->getDeclaration() && "should use declaration as key");
337 
338   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
339   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
340   auto I = TypeIndices.find({SP, Class});
341   if (I != TypeIndices.end())
342     return I->second;
343 
344   // Make sure complete type info for the class is emitted *after* the member
345   // function type, as the complete class type is likely to reference this
346   // member function type.
347   TypeLoweringScope S(*this);
348   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
349   TypeIndex TI = lowerTypeMemberFunction(
350       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod);
351   return recordTypeIndexForDINode(SP, TI, Class);
352 }
353 
354 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
355                                                   TypeIndex TI,
356                                                   const DIType *ClassTy) {
357   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
358   (void)InsertResult;
359   assert(InsertResult.second && "DINode was already assigned a type index");
360   return TI;
361 }
362 
363 unsigned CodeViewDebug::getPointerSizeInBytes() {
364   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
365 }
366 
367 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
368                                         const LexicalScope *LS) {
369   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
370     // This variable was inlined. Associate it with the InlineSite.
371     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
372     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
373     Site.InlinedLocals.emplace_back(Var);
374   } else {
375     // This variable goes into the corresponding lexical scope.
376     ScopeVariables[LS].emplace_back(Var);
377   }
378 }
379 
380 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
381                                const DILocation *Loc) {
382   auto B = Locs.begin(), E = Locs.end();
383   if (std::find(B, E, Loc) == E)
384     Locs.push_back(Loc);
385 }
386 
387 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
388                                         const MachineFunction *MF) {
389   // Skip this instruction if it has the same location as the previous one.
390   if (!DL || DL == PrevInstLoc)
391     return;
392 
393   const DIScope *Scope = DL.get()->getScope();
394   if (!Scope)
395     return;
396 
397   // Skip this line if it is longer than the maximum we can record.
398   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
399   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
400       LI.isNeverStepInto())
401     return;
402 
403   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
404   if (CI.getStartColumn() != DL.getCol())
405     return;
406 
407   if (!CurFn->HaveLineInfo)
408     CurFn->HaveLineInfo = true;
409   unsigned FileId = 0;
410   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
411     FileId = CurFn->LastFileId;
412   else
413     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
414   PrevInstLoc = DL;
415 
416   unsigned FuncId = CurFn->FuncId;
417   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
418     const DILocation *Loc = DL.get();
419 
420     // If this location was actually inlined from somewhere else, give it the ID
421     // of the inline call site.
422     FuncId =
423         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
424 
425     // Ensure we have links in the tree of inline call sites.
426     bool FirstLoc = true;
427     while ((SiteLoc = Loc->getInlinedAt())) {
428       InlineSite &Site =
429           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
430       if (!FirstLoc)
431         addLocIfNotPresent(Site.ChildSites, Loc);
432       FirstLoc = false;
433       Loc = SiteLoc;
434     }
435     addLocIfNotPresent(CurFn->ChildSites, Loc);
436   }
437 
438   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
439                         /*PrologueEnd=*/false, /*IsStmt=*/false,
440                         DL->getFilename(), SMLoc());
441 }
442 
443 void CodeViewDebug::emitCodeViewMagicVersion() {
444   OS.EmitValueToAlignment(4);
445   OS.AddComment("Debug section magic");
446   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
447 }
448 
449 void CodeViewDebug::endModule() {
450   if (!Asm || !MMI->hasDebugInfo())
451     return;
452 
453   assert(Asm != nullptr);
454 
455   // The COFF .debug$S section consists of several subsections, each starting
456   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
457   // of the payload followed by the payload itself.  The subsections are 4-byte
458   // aligned.
459 
460   // Use the generic .debug$S section, and make a subsection for all the inlined
461   // subprograms.
462   switchToDebugSectionForSymbol(nullptr);
463 
464   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
465   emitCompilerInformation();
466   endCVSubsection(CompilerInfo);
467 
468   emitInlineeLinesSubsection();
469 
470   // Emit per-function debug information.
471   for (auto &P : FnDebugInfo)
472     if (!P.first->isDeclarationForLinker())
473       emitDebugInfoForFunction(P.first, *P.second);
474 
475   // Emit global variable debug information.
476   setCurrentSubprogram(nullptr);
477   emitDebugInfoForGlobals();
478 
479   // Emit retained types.
480   emitDebugInfoForRetainedTypes();
481 
482   // Switch back to the generic .debug$S section after potentially processing
483   // comdat symbol sections.
484   switchToDebugSectionForSymbol(nullptr);
485 
486   // Emit UDT records for any types used by global variables.
487   if (!GlobalUDTs.empty()) {
488     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
489     emitDebugInfoForUDTs(GlobalUDTs);
490     endCVSubsection(SymbolsEnd);
491   }
492 
493   // This subsection holds a file index to offset in string table table.
494   OS.AddComment("File index to string table offset subsection");
495   OS.EmitCVFileChecksumsDirective();
496 
497   // This subsection holds the string table.
498   OS.AddComment("String table");
499   OS.EmitCVStringTableDirective();
500 
501   // Emit type information and hashes last, so that any types we translate while
502   // emitting function info are included.
503   emitTypeInformation();
504 
505   if (EmitDebugGlobalHashes)
506     emitTypeGlobalHashes();
507 
508   clear();
509 }
510 
511 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
512     unsigned MaxFixedRecordLength = 0xF00) {
513   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
514   // after a fixed length portion of the record. The fixed length portion should
515   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
516   // overall record size is less than the maximum allowed.
517   SmallString<32> NullTerminatedString(
518       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
519   NullTerminatedString.push_back('\0');
520   OS.EmitBytes(NullTerminatedString);
521 }
522 
523 void CodeViewDebug::emitTypeInformation() {
524   if (TypeTable.empty())
525     return;
526 
527   // Start the .debug$T or .debug$P section with 0x4.
528   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
529   emitCodeViewMagicVersion();
530 
531   SmallString<8> CommentPrefix;
532   if (OS.isVerboseAsm()) {
533     CommentPrefix += '\t';
534     CommentPrefix += Asm->MAI->getCommentString();
535     CommentPrefix += ' ';
536   }
537 
538   TypeTableCollection Table(TypeTable.records());
539   Optional<TypeIndex> B = Table.getFirst();
540   while (B) {
541     // This will fail if the record data is invalid.
542     CVType Record = Table.getType(*B);
543 
544     if (OS.isVerboseAsm()) {
545       // Emit a block comment describing the type record for readability.
546       SmallString<512> CommentBlock;
547       raw_svector_ostream CommentOS(CommentBlock);
548       ScopedPrinter SP(CommentOS);
549       SP.setPrefix(CommentPrefix);
550       TypeDumpVisitor TDV(Table, &SP, false);
551 
552       Error E = codeview::visitTypeRecord(Record, *B, TDV);
553       if (E) {
554         logAllUnhandledErrors(std::move(E), errs(), "error: ");
555         llvm_unreachable("produced malformed type record");
556       }
557       // emitRawComment will insert its own tab and comment string before
558       // the first line, so strip off our first one. It also prints its own
559       // newline.
560       OS.emitRawComment(
561           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
562     }
563     OS.EmitBinaryData(Record.str_data());
564     B = Table.getNext(*B);
565   }
566 }
567 
568 void CodeViewDebug::emitTypeGlobalHashes() {
569   if (TypeTable.empty())
570     return;
571 
572   // Start the .debug$H section with the version and hash algorithm, currently
573   // hardcoded to version 0, SHA1.
574   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
575 
576   OS.EmitValueToAlignment(4);
577   OS.AddComment("Magic");
578   OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
579   OS.AddComment("Section Version");
580   OS.EmitIntValue(0, 2);
581   OS.AddComment("Hash Algorithm");
582   OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1), 2);
583 
584   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
585   for (const auto &GHR : TypeTable.hashes()) {
586     if (OS.isVerboseAsm()) {
587       // Emit an EOL-comment describing which TypeIndex this hash corresponds
588       // to, as well as the stringified SHA1 hash.
589       SmallString<32> Comment;
590       raw_svector_ostream CommentOS(Comment);
591       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
592       OS.AddComment(Comment);
593       ++TI;
594     }
595     assert(GHR.Hash.size() % 20 == 0);
596     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
597                 GHR.Hash.size());
598     OS.EmitBinaryData(S);
599   }
600 }
601 
602 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
603   switch (DWLang) {
604   case dwarf::DW_LANG_C:
605   case dwarf::DW_LANG_C89:
606   case dwarf::DW_LANG_C99:
607   case dwarf::DW_LANG_C11:
608   case dwarf::DW_LANG_ObjC:
609     return SourceLanguage::C;
610   case dwarf::DW_LANG_C_plus_plus:
611   case dwarf::DW_LANG_C_plus_plus_03:
612   case dwarf::DW_LANG_C_plus_plus_11:
613   case dwarf::DW_LANG_C_plus_plus_14:
614     return SourceLanguage::Cpp;
615   case dwarf::DW_LANG_Fortran77:
616   case dwarf::DW_LANG_Fortran90:
617   case dwarf::DW_LANG_Fortran03:
618   case dwarf::DW_LANG_Fortran08:
619     return SourceLanguage::Fortran;
620   case dwarf::DW_LANG_Pascal83:
621     return SourceLanguage::Pascal;
622   case dwarf::DW_LANG_Cobol74:
623   case dwarf::DW_LANG_Cobol85:
624     return SourceLanguage::Cobol;
625   case dwarf::DW_LANG_Java:
626     return SourceLanguage::Java;
627   case dwarf::DW_LANG_D:
628     return SourceLanguage::D;
629   default:
630     // There's no CodeView representation for this language, and CV doesn't
631     // have an "unknown" option for the language field, so we'll use MASM,
632     // as it's very low level.
633     return SourceLanguage::Masm;
634   }
635 }
636 
637 namespace {
638 struct Version {
639   int Part[4];
640 };
641 } // end anonymous namespace
642 
643 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
644 // the version number.
645 static Version parseVersion(StringRef Name) {
646   Version V = {{0}};
647   int N = 0;
648   for (const char C : Name) {
649     if (isdigit(C)) {
650       V.Part[N] *= 10;
651       V.Part[N] += C - '0';
652     } else if (C == '.') {
653       ++N;
654       if (N >= 4)
655         return V;
656     } else if (N > 0)
657       return V;
658   }
659   return V;
660 }
661 
662 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
663   switch (Type) {
664   case Triple::ArchType::x86:
665     return CPUType::Pentium3;
666   case Triple::ArchType::x86_64:
667     return CPUType::X64;
668   case Triple::ArchType::thumb:
669     return CPUType::Thumb;
670   case Triple::ArchType::aarch64:
671     return CPUType::ARM64;
672   default:
673     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
674   }
675 }
676 
677 void CodeViewDebug::emitCompilerInformation() {
678   MCContext &Context = MMI->getContext();
679   MCSymbol *CompilerBegin = Context.createTempSymbol(),
680            *CompilerEnd = Context.createTempSymbol();
681   OS.AddComment("Record length");
682   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
683   OS.EmitLabel(CompilerBegin);
684   OS.AddComment("Record kind: S_COMPILE3");
685   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
686   uint32_t Flags = 0;
687 
688   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
689   const MDNode *Node = *CUs->operands().begin();
690   const auto *CU = cast<DICompileUnit>(Node);
691 
692   // The low byte of the flags indicates the source language.
693   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
694   // TODO:  Figure out which other flags need to be set.
695 
696   OS.AddComment("Flags and language");
697   OS.EmitIntValue(Flags, 4);
698 
699   OS.AddComment("CPUType");
700   CPUType CPU =
701       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
702   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
703 
704   StringRef CompilerVersion = CU->getProducer();
705   Version FrontVer = parseVersion(CompilerVersion);
706   OS.AddComment("Frontend version");
707   for (int N = 0; N < 4; ++N)
708     OS.EmitIntValue(FrontVer.Part[N], 2);
709 
710   // Some Microsoft tools, like Binscope, expect a backend version number of at
711   // least 8.something, so we'll coerce the LLVM version into a form that
712   // guarantees it'll be big enough without really lying about the version.
713   int Major = 1000 * LLVM_VERSION_MAJOR +
714               10 * LLVM_VERSION_MINOR +
715               LLVM_VERSION_PATCH;
716   // Clamp it for builds that use unusually large version numbers.
717   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
718   Version BackVer = {{ Major, 0, 0, 0 }};
719   OS.AddComment("Backend version");
720   for (int N = 0; N < 4; ++N)
721     OS.EmitIntValue(BackVer.Part[N], 2);
722 
723   OS.AddComment("Null-terminated compiler version string");
724   emitNullTerminatedSymbolName(OS, CompilerVersion);
725 
726   OS.EmitLabel(CompilerEnd);
727 }
728 
729 void CodeViewDebug::emitInlineeLinesSubsection() {
730   if (InlinedSubprograms.empty())
731     return;
732 
733   OS.AddComment("Inlinee lines subsection");
734   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
735 
736   // We emit the checksum info for files.  This is used by debuggers to
737   // determine if a pdb matches the source before loading it.  Visual Studio,
738   // for instance, will display a warning that the breakpoints are not valid if
739   // the pdb does not match the source.
740   OS.AddComment("Inlinee lines signature");
741   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
742 
743   for (const DISubprogram *SP : InlinedSubprograms) {
744     assert(TypeIndices.count({SP, nullptr}));
745     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
746 
747     OS.AddBlankLine();
748     unsigned FileId = maybeRecordFile(SP->getFile());
749     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
750                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
751     OS.AddBlankLine();
752     OS.AddComment("Type index of inlined function");
753     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
754     OS.AddComment("Offset into filechecksum table");
755     OS.EmitCVFileChecksumOffsetDirective(FileId);
756     OS.AddComment("Starting line number");
757     OS.EmitIntValue(SP->getLine(), 4);
758   }
759 
760   endCVSubsection(InlineEnd);
761 }
762 
763 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
764                                         const DILocation *InlinedAt,
765                                         const InlineSite &Site) {
766   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
767            *InlineEnd = MMI->getContext().createTempSymbol();
768 
769   assert(TypeIndices.count({Site.Inlinee, nullptr}));
770   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
771 
772   // SymbolRecord
773   OS.AddComment("Record length");
774   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
775   OS.EmitLabel(InlineBegin);
776   OS.AddComment("Record kind: S_INLINESITE");
777   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
778 
779   OS.AddComment("PtrParent");
780   OS.EmitIntValue(0, 4);
781   OS.AddComment("PtrEnd");
782   OS.EmitIntValue(0, 4);
783   OS.AddComment("Inlinee type index");
784   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
785 
786   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
787   unsigned StartLineNum = Site.Inlinee->getLine();
788 
789   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
790                                     FI.Begin, FI.End);
791 
792   OS.EmitLabel(InlineEnd);
793 
794   emitLocalVariableList(Site.InlinedLocals);
795 
796   // Recurse on child inlined call sites before closing the scope.
797   for (const DILocation *ChildSite : Site.ChildSites) {
798     auto I = FI.InlineSites.find(ChildSite);
799     assert(I != FI.InlineSites.end() &&
800            "child site not in function inline site map");
801     emitInlinedCallSite(FI, ChildSite, I->second);
802   }
803 
804   // Close the scope.
805   OS.AddComment("Record length");
806   OS.EmitIntValue(2, 2);                                  // RecordLength
807   OS.AddComment("Record kind: S_INLINESITE_END");
808   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
809 }
810 
811 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
812   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
813   // comdat key. A section may be comdat because of -ffunction-sections or
814   // because it is comdat in the IR.
815   MCSectionCOFF *GVSec =
816       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
817   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
818 
819   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
820       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
821   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
822 
823   OS.SwitchSection(DebugSec);
824 
825   // Emit the magic version number if this is the first time we've switched to
826   // this section.
827   if (ComdatDebugSections.insert(DebugSec).second)
828     emitCodeViewMagicVersion();
829 }
830 
831 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
832                                              FunctionInfo &FI) {
833   // For each function there is a separate subsection which holds the PC to
834   // file:line table.
835   const MCSymbol *Fn = Asm->getSymbol(GV);
836   assert(Fn);
837 
838   // Switch to the to a comdat section, if appropriate.
839   switchToDebugSectionForSymbol(Fn);
840 
841   std::string FuncName;
842   auto *SP = GV->getSubprogram();
843   assert(SP);
844   setCurrentSubprogram(SP);
845 
846   // If we have a display name, build the fully qualified name by walking the
847   // chain of scopes.
848   if (!SP->getName().empty())
849     FuncName =
850         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
851 
852   // If our DISubprogram name is empty, use the mangled name.
853   if (FuncName.empty())
854     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
855 
856   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
857   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
858     OS.EmitCVFPOData(Fn);
859 
860   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
861   OS.AddComment("Symbol subsection for " + Twine(FuncName));
862   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
863   {
864     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
865              *ProcRecordEnd = MMI->getContext().createTempSymbol();
866     OS.AddComment("Record length");
867     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
868     OS.EmitLabel(ProcRecordBegin);
869 
870     if (GV->hasLocalLinkage()) {
871       OS.AddComment("Record kind: S_LPROC32_ID");
872       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
873     } else {
874       OS.AddComment("Record kind: S_GPROC32_ID");
875       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
876     }
877 
878     // These fields are filled in by tools like CVPACK which run after the fact.
879     OS.AddComment("PtrParent");
880     OS.EmitIntValue(0, 4);
881     OS.AddComment("PtrEnd");
882     OS.EmitIntValue(0, 4);
883     OS.AddComment("PtrNext");
884     OS.EmitIntValue(0, 4);
885     // This is the important bit that tells the debugger where the function
886     // code is located and what's its size:
887     OS.AddComment("Code size");
888     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
889     OS.AddComment("Offset after prologue");
890     OS.EmitIntValue(0, 4);
891     OS.AddComment("Offset before epilogue");
892     OS.EmitIntValue(0, 4);
893     OS.AddComment("Function type index");
894     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
895     OS.AddComment("Function section relative address");
896     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
897     OS.AddComment("Function section index");
898     OS.EmitCOFFSectionIndex(Fn);
899     OS.AddComment("Flags");
900     OS.EmitIntValue(0, 1);
901     // Emit the function display name as a null-terminated string.
902     OS.AddComment("Function name");
903     // Truncate the name so we won't overflow the record length field.
904     emitNullTerminatedSymbolName(OS, FuncName);
905     OS.EmitLabel(ProcRecordEnd);
906 
907     emitLocalVariableList(FI.Locals);
908     emitLexicalBlockList(FI.ChildBlocks, FI);
909 
910     // Emit inlined call site information. Only emit functions inlined directly
911     // into the parent function. We'll emit the other sites recursively as part
912     // of their parent inline site.
913     for (const DILocation *InlinedAt : FI.ChildSites) {
914       auto I = FI.InlineSites.find(InlinedAt);
915       assert(I != FI.InlineSites.end() &&
916              "child site not in function inline site map");
917       emitInlinedCallSite(FI, InlinedAt, I->second);
918     }
919 
920     for (auto Annot : FI.Annotations) {
921       MCSymbol *Label = Annot.first;
922       MDTuple *Strs = cast<MDTuple>(Annot.second);
923       MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
924                *AnnotEnd = MMI->getContext().createTempSymbol();
925       OS.AddComment("Record length");
926       OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
927       OS.EmitLabel(AnnotBegin);
928       OS.AddComment("Record kind: S_ANNOTATION");
929       OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
930       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
931       // FIXME: Make sure we don't overflow the max record size.
932       OS.EmitCOFFSectionIndex(Label);
933       OS.EmitIntValue(Strs->getNumOperands(), 2);
934       for (Metadata *MD : Strs->operands()) {
935         // MDStrings are null terminated, so we can do EmitBytes and get the
936         // nice .asciz directive.
937         StringRef Str = cast<MDString>(MD)->getString();
938         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
939         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
940       }
941       OS.EmitLabel(AnnotEnd);
942     }
943 
944     if (SP != nullptr)
945       emitDebugInfoForUDTs(LocalUDTs);
946 
947     // We're done with this function.
948     OS.AddComment("Record length");
949     OS.EmitIntValue(0x0002, 2);
950     OS.AddComment("Record kind: S_PROC_ID_END");
951     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
952   }
953   endCVSubsection(SymbolsEnd);
954 
955   // We have an assembler directive that takes care of the whole line table.
956   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
957 }
958 
959 CodeViewDebug::LocalVarDefRange
960 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
961   LocalVarDefRange DR;
962   DR.InMemory = -1;
963   DR.DataOffset = Offset;
964   assert(DR.DataOffset == Offset && "truncation");
965   DR.IsSubfield = 0;
966   DR.StructOffset = 0;
967   DR.CVRegister = CVRegister;
968   return DR;
969 }
970 
971 CodeViewDebug::LocalVarDefRange
972 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
973                                      int Offset, bool IsSubfield,
974                                      uint16_t StructOffset) {
975   LocalVarDefRange DR;
976   DR.InMemory = InMemory;
977   DR.DataOffset = Offset;
978   DR.IsSubfield = IsSubfield;
979   DR.StructOffset = StructOffset;
980   DR.CVRegister = CVRegister;
981   return DR;
982 }
983 
984 void CodeViewDebug::collectVariableInfoFromMFTable(
985     DenseSet<InlinedVariable> &Processed) {
986   const MachineFunction &MF = *Asm->MF;
987   const TargetSubtargetInfo &TSI = MF.getSubtarget();
988   const TargetFrameLowering *TFI = TSI.getFrameLowering();
989   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
990 
991   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
992     if (!VI.Var)
993       continue;
994     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
995            "Expected inlined-at fields to agree");
996 
997     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
998     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
999 
1000     // If variable scope is not found then skip this variable.
1001     if (!Scope)
1002       continue;
1003 
1004     // If the variable has an attached offset expression, extract it.
1005     // FIXME: Try to handle DW_OP_deref as well.
1006     int64_t ExprOffset = 0;
1007     if (VI.Expr)
1008       if (!VI.Expr->extractIfOffset(ExprOffset))
1009         continue;
1010 
1011     // Get the frame register used and the offset.
1012     unsigned FrameReg = 0;
1013     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1014     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1015 
1016     // Calculate the label ranges.
1017     LocalVarDefRange DefRange =
1018         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1019     for (const InsnRange &Range : Scope->getRanges()) {
1020       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1021       const MCSymbol *End = getLabelAfterInsn(Range.second);
1022       End = End ? End : Asm->getFunctionEnd();
1023       DefRange.Ranges.emplace_back(Begin, End);
1024     }
1025 
1026     LocalVariable Var;
1027     Var.DIVar = VI.Var;
1028     Var.DefRanges.emplace_back(std::move(DefRange));
1029     recordLocalVariable(std::move(Var), Scope);
1030   }
1031 }
1032 
1033 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1034   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1035 }
1036 
1037 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1038   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1039 }
1040 
1041 void CodeViewDebug::calculateRanges(
1042     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
1043   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1044 
1045   // Calculate the definition ranges.
1046   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1047     const InsnRange &Range = *I;
1048     const MachineInstr *DVInst = Range.first;
1049     assert(DVInst->isDebugValue() && "Invalid History entry");
1050     // FIXME: Find a way to represent constant variables, since they are
1051     // relatively common.
1052     Optional<DbgVariableLocation> Location =
1053         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1054     if (!Location)
1055       continue;
1056 
1057     // CodeView can only express variables in register and variables in memory
1058     // at a constant offset from a register. However, for variables passed
1059     // indirectly by pointer, it is common for that pointer to be spilled to a
1060     // stack location. For the special case of one offseted load followed by a
1061     // zero offset load (a pointer spilled to the stack), we change the type of
1062     // the local variable from a value type to a reference type. This tricks the
1063     // debugger into doing the load for us.
1064     if (Var.UseReferenceType) {
1065       // We're using a reference type. Drop the last zero offset load.
1066       if (canUseReferenceType(*Location))
1067         Location->LoadChain.pop_back();
1068       else
1069         continue;
1070     } else if (needsReferenceType(*Location)) {
1071       // This location can't be expressed without switching to a reference type.
1072       // Start over using that.
1073       Var.UseReferenceType = true;
1074       Var.DefRanges.clear();
1075       calculateRanges(Var, Ranges);
1076       return;
1077     }
1078 
1079     // We can only handle a register or an offseted load of a register.
1080     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1081       continue;
1082     {
1083       LocalVarDefRange DR;
1084       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1085       DR.InMemory = !Location->LoadChain.empty();
1086       DR.DataOffset =
1087           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1088       if (Location->FragmentInfo) {
1089         DR.IsSubfield = true;
1090         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1091       } else {
1092         DR.IsSubfield = false;
1093         DR.StructOffset = 0;
1094       }
1095 
1096       if (Var.DefRanges.empty() ||
1097           Var.DefRanges.back().isDifferentLocation(DR)) {
1098         Var.DefRanges.emplace_back(std::move(DR));
1099       }
1100     }
1101 
1102     // Compute the label range.
1103     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1104     const MCSymbol *End = getLabelAfterInsn(Range.second);
1105     if (!End) {
1106       // This range is valid until the next overlapping bitpiece. In the
1107       // common case, ranges will not be bitpieces, so they will overlap.
1108       auto J = std::next(I);
1109       const DIExpression *DIExpr = DVInst->getDebugExpression();
1110       while (J != E &&
1111              !DIExpr->fragmentsOverlap(J->first->getDebugExpression()))
1112         ++J;
1113       if (J != E)
1114         End = getLabelBeforeInsn(J->first);
1115       else
1116         End = Asm->getFunctionEnd();
1117     }
1118 
1119     // If the last range end is our begin, just extend the last range.
1120     // Otherwise make a new range.
1121     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1122         Var.DefRanges.back().Ranges;
1123     if (!R.empty() && R.back().second == Begin)
1124       R.back().second = End;
1125     else
1126       R.emplace_back(Begin, End);
1127 
1128     // FIXME: Do more range combining.
1129   }
1130 }
1131 
1132 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1133   DenseSet<InlinedVariable> Processed;
1134   // Grab the variable info that was squirreled away in the MMI side-table.
1135   collectVariableInfoFromMFTable(Processed);
1136 
1137   for (const auto &I : DbgValues) {
1138     InlinedVariable IV = I.first;
1139     if (Processed.count(IV))
1140       continue;
1141     const DILocalVariable *DIVar = IV.first;
1142     const DILocation *InlinedAt = IV.second;
1143 
1144     // Instruction ranges, specifying where IV is accessible.
1145     const auto &Ranges = I.second;
1146 
1147     LexicalScope *Scope = nullptr;
1148     if (InlinedAt)
1149       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1150     else
1151       Scope = LScopes.findLexicalScope(DIVar->getScope());
1152     // If variable scope is not found then skip this variable.
1153     if (!Scope)
1154       continue;
1155 
1156     LocalVariable Var;
1157     Var.DIVar = DIVar;
1158 
1159     calculateRanges(Var, Ranges);
1160     recordLocalVariable(std::move(Var), Scope);
1161   }
1162 }
1163 
1164 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1165   const Function &GV = MF->getFunction();
1166   auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()});
1167   assert(Insertion.second && "function already has info");
1168   CurFn = Insertion.first->second.get();
1169   CurFn->FuncId = NextFuncId++;
1170   CurFn->Begin = Asm->getFunctionBegin();
1171 
1172   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1173 
1174   // Find the end of the function prolog.  First known non-DBG_VALUE and
1175   // non-frame setup location marks the beginning of the function body.
1176   // FIXME: is there a simpler a way to do this? Can we just search
1177   // for the first instruction of the function, not the last of the prolog?
1178   DebugLoc PrologEndLoc;
1179   bool EmptyPrologue = true;
1180   for (const auto &MBB : *MF) {
1181     for (const auto &MI : MBB) {
1182       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1183           MI.getDebugLoc()) {
1184         PrologEndLoc = MI.getDebugLoc();
1185         break;
1186       } else if (!MI.isMetaInstruction()) {
1187         EmptyPrologue = false;
1188       }
1189     }
1190   }
1191 
1192   // Record beginning of function if we have a non-empty prologue.
1193   if (PrologEndLoc && !EmptyPrologue) {
1194     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1195     maybeRecordLocation(FnStartDL, MF);
1196   }
1197 }
1198 
1199 static bool shouldEmitUdt(const DIType *T) {
1200   if (!T)
1201     return false;
1202 
1203   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1204   if (T->getTag() == dwarf::DW_TAG_typedef) {
1205     if (DIScope *Scope = T->getScope().resolve()) {
1206       switch (Scope->getTag()) {
1207       case dwarf::DW_TAG_structure_type:
1208       case dwarf::DW_TAG_class_type:
1209       case dwarf::DW_TAG_union_type:
1210         return false;
1211       }
1212     }
1213   }
1214 
1215   while (true) {
1216     if (!T || T->isForwardDecl())
1217       return false;
1218 
1219     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1220     if (!DT)
1221       return true;
1222     T = DT->getBaseType().resolve();
1223   }
1224   return true;
1225 }
1226 
1227 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1228   // Don't record empty UDTs.
1229   if (Ty->getName().empty())
1230     return;
1231   if (!shouldEmitUdt(Ty))
1232     return;
1233 
1234   SmallVector<StringRef, 5> QualifiedNameComponents;
1235   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1236       Ty->getScope().resolve(), QualifiedNameComponents);
1237 
1238   std::string FullyQualifiedName =
1239       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1240 
1241   if (ClosestSubprogram == nullptr) {
1242     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1243   } else if (ClosestSubprogram == CurrentSubprogram) {
1244     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1245   }
1246 
1247   // TODO: What if the ClosestSubprogram is neither null or the current
1248   // subprogram?  Currently, the UDT just gets dropped on the floor.
1249   //
1250   // The current behavior is not desirable.  To get maximal fidelity, we would
1251   // need to perform all type translation before beginning emission of .debug$S
1252   // and then make LocalUDTs a member of FunctionInfo
1253 }
1254 
1255 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1256   // Generic dispatch for lowering an unknown type.
1257   switch (Ty->getTag()) {
1258   case dwarf::DW_TAG_array_type:
1259     return lowerTypeArray(cast<DICompositeType>(Ty));
1260   case dwarf::DW_TAG_typedef:
1261     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1262   case dwarf::DW_TAG_base_type:
1263     return lowerTypeBasic(cast<DIBasicType>(Ty));
1264   case dwarf::DW_TAG_pointer_type:
1265     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1266       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1267     LLVM_FALLTHROUGH;
1268   case dwarf::DW_TAG_reference_type:
1269   case dwarf::DW_TAG_rvalue_reference_type:
1270     return lowerTypePointer(cast<DIDerivedType>(Ty));
1271   case dwarf::DW_TAG_ptr_to_member_type:
1272     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1273   case dwarf::DW_TAG_restrict_type:
1274   case dwarf::DW_TAG_const_type:
1275   case dwarf::DW_TAG_volatile_type:
1276   // TODO: add support for DW_TAG_atomic_type here
1277     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1278   case dwarf::DW_TAG_subroutine_type:
1279     if (ClassTy) {
1280       // The member function type of a member function pointer has no
1281       // ThisAdjustment.
1282       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1283                                      /*ThisAdjustment=*/0,
1284                                      /*IsStaticMethod=*/false);
1285     }
1286     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1287   case dwarf::DW_TAG_enumeration_type:
1288     return lowerTypeEnum(cast<DICompositeType>(Ty));
1289   case dwarf::DW_TAG_class_type:
1290   case dwarf::DW_TAG_structure_type:
1291     return lowerTypeClass(cast<DICompositeType>(Ty));
1292   case dwarf::DW_TAG_union_type:
1293     return lowerTypeUnion(cast<DICompositeType>(Ty));
1294   case dwarf::DW_TAG_unspecified_type:
1295     return TypeIndex::None();
1296   default:
1297     // Use the null type index.
1298     return TypeIndex();
1299   }
1300 }
1301 
1302 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1303   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1304   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1305   StringRef TypeName = Ty->getName();
1306 
1307   addToUDTs(Ty);
1308 
1309   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1310       TypeName == "HRESULT")
1311     return TypeIndex(SimpleTypeKind::HResult);
1312   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1313       TypeName == "wchar_t")
1314     return TypeIndex(SimpleTypeKind::WideCharacter);
1315 
1316   return UnderlyingTypeIndex;
1317 }
1318 
1319 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1320   DITypeRef ElementTypeRef = Ty->getBaseType();
1321   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1322   // IndexType is size_t, which depends on the bitness of the target.
1323   TypeIndex IndexType = getPointerSizeInBytes() == 8
1324                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1325                             : TypeIndex(SimpleTypeKind::UInt32Long);
1326 
1327   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1328 
1329   // Add subranges to array type.
1330   DINodeArray Elements = Ty->getElements();
1331   for (int i = Elements.size() - 1; i >= 0; --i) {
1332     const DINode *Element = Elements[i];
1333     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1334 
1335     const DISubrange *Subrange = cast<DISubrange>(Element);
1336     assert(Subrange->getLowerBound() == 0 &&
1337            "codeview doesn't support subranges with lower bounds");
1338     int64_t Count = -1;
1339     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1340       Count = CI->getSExtValue();
1341 
1342     // Forward declarations of arrays without a size and VLAs use a count of -1.
1343     // Emit a count of zero in these cases to match what MSVC does for arrays
1344     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1345     // should do for them even if we could distinguish them.
1346     if (Count == -1)
1347       Count = 0;
1348 
1349     // Update the element size and element type index for subsequent subranges.
1350     ElementSize *= Count;
1351 
1352     // If this is the outermost array, use the size from the array. It will be
1353     // more accurate if we had a VLA or an incomplete element type size.
1354     uint64_t ArraySize =
1355         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1356 
1357     StringRef Name = (i == 0) ? Ty->getName() : "";
1358     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1359     ElementTypeIndex = TypeTable.writeLeafType(AR);
1360   }
1361 
1362   return ElementTypeIndex;
1363 }
1364 
1365 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1366   TypeIndex Index;
1367   dwarf::TypeKind Kind;
1368   uint32_t ByteSize;
1369 
1370   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1371   ByteSize = Ty->getSizeInBits() / 8;
1372 
1373   SimpleTypeKind STK = SimpleTypeKind::None;
1374   switch (Kind) {
1375   case dwarf::DW_ATE_address:
1376     // FIXME: Translate
1377     break;
1378   case dwarf::DW_ATE_boolean:
1379     switch (ByteSize) {
1380     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1381     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1382     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1383     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1384     case 16: STK = SimpleTypeKind::Boolean128; break;
1385     }
1386     break;
1387   case dwarf::DW_ATE_complex_float:
1388     switch (ByteSize) {
1389     case 2:  STK = SimpleTypeKind::Complex16;  break;
1390     case 4:  STK = SimpleTypeKind::Complex32;  break;
1391     case 8:  STK = SimpleTypeKind::Complex64;  break;
1392     case 10: STK = SimpleTypeKind::Complex80;  break;
1393     case 16: STK = SimpleTypeKind::Complex128; break;
1394     }
1395     break;
1396   case dwarf::DW_ATE_float:
1397     switch (ByteSize) {
1398     case 2:  STK = SimpleTypeKind::Float16;  break;
1399     case 4:  STK = SimpleTypeKind::Float32;  break;
1400     case 6:  STK = SimpleTypeKind::Float48;  break;
1401     case 8:  STK = SimpleTypeKind::Float64;  break;
1402     case 10: STK = SimpleTypeKind::Float80;  break;
1403     case 16: STK = SimpleTypeKind::Float128; break;
1404     }
1405     break;
1406   case dwarf::DW_ATE_signed:
1407     switch (ByteSize) {
1408     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1409     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1410     case 4:  STK = SimpleTypeKind::Int32;           break;
1411     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1412     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1413     }
1414     break;
1415   case dwarf::DW_ATE_unsigned:
1416     switch (ByteSize) {
1417     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1418     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1419     case 4:  STK = SimpleTypeKind::UInt32;            break;
1420     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1421     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1422     }
1423     break;
1424   case dwarf::DW_ATE_UTF:
1425     switch (ByteSize) {
1426     case 2: STK = SimpleTypeKind::Character16; break;
1427     case 4: STK = SimpleTypeKind::Character32; break;
1428     }
1429     break;
1430   case dwarf::DW_ATE_signed_char:
1431     if (ByteSize == 1)
1432       STK = SimpleTypeKind::SignedCharacter;
1433     break;
1434   case dwarf::DW_ATE_unsigned_char:
1435     if (ByteSize == 1)
1436       STK = SimpleTypeKind::UnsignedCharacter;
1437     break;
1438   default:
1439     break;
1440   }
1441 
1442   // Apply some fixups based on the source-level type name.
1443   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1444     STK = SimpleTypeKind::Int32Long;
1445   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1446     STK = SimpleTypeKind::UInt32Long;
1447   if (STK == SimpleTypeKind::UInt16Short &&
1448       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1449     STK = SimpleTypeKind::WideCharacter;
1450   if ((STK == SimpleTypeKind::SignedCharacter ||
1451        STK == SimpleTypeKind::UnsignedCharacter) &&
1452       Ty->getName() == "char")
1453     STK = SimpleTypeKind::NarrowCharacter;
1454 
1455   return TypeIndex(STK);
1456 }
1457 
1458 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1459                                           PointerOptions PO) {
1460   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1461 
1462   // Pointers to simple types without any options can use SimpleTypeMode, rather
1463   // than having a dedicated pointer type record.
1464   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1465       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1466       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1467     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1468                               ? SimpleTypeMode::NearPointer64
1469                               : SimpleTypeMode::NearPointer32;
1470     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1471   }
1472 
1473   PointerKind PK =
1474       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1475   PointerMode PM = PointerMode::Pointer;
1476   switch (Ty->getTag()) {
1477   default: llvm_unreachable("not a pointer tag type");
1478   case dwarf::DW_TAG_pointer_type:
1479     PM = PointerMode::Pointer;
1480     break;
1481   case dwarf::DW_TAG_reference_type:
1482     PM = PointerMode::LValueReference;
1483     break;
1484   case dwarf::DW_TAG_rvalue_reference_type:
1485     PM = PointerMode::RValueReference;
1486     break;
1487   }
1488 
1489   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1490   return TypeTable.writeLeafType(PR);
1491 }
1492 
1493 static PointerToMemberRepresentation
1494 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1495   // SizeInBytes being zero generally implies that the member pointer type was
1496   // incomplete, which can happen if it is part of a function prototype. In this
1497   // case, use the unknown model instead of the general model.
1498   if (IsPMF) {
1499     switch (Flags & DINode::FlagPtrToMemberRep) {
1500     case 0:
1501       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1502                               : PointerToMemberRepresentation::GeneralFunction;
1503     case DINode::FlagSingleInheritance:
1504       return PointerToMemberRepresentation::SingleInheritanceFunction;
1505     case DINode::FlagMultipleInheritance:
1506       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1507     case DINode::FlagVirtualInheritance:
1508       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1509     }
1510   } else {
1511     switch (Flags & DINode::FlagPtrToMemberRep) {
1512     case 0:
1513       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1514                               : PointerToMemberRepresentation::GeneralData;
1515     case DINode::FlagSingleInheritance:
1516       return PointerToMemberRepresentation::SingleInheritanceData;
1517     case DINode::FlagMultipleInheritance:
1518       return PointerToMemberRepresentation::MultipleInheritanceData;
1519     case DINode::FlagVirtualInheritance:
1520       return PointerToMemberRepresentation::VirtualInheritanceData;
1521     }
1522   }
1523   llvm_unreachable("invalid ptr to member representation");
1524 }
1525 
1526 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1527                                                 PointerOptions PO) {
1528   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1529   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1530   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1531   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1532                                                 : PointerKind::Near32;
1533   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1534   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1535                          : PointerMode::PointerToDataMember;
1536 
1537   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1538   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1539   MemberPointerInfo MPI(
1540       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1541   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1542   return TypeTable.writeLeafType(PR);
1543 }
1544 
1545 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1546 /// have a translation, use the NearC convention.
1547 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1548   switch (DwarfCC) {
1549   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1550   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1551   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1552   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1553   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1554   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1555   }
1556   return CallingConvention::NearC;
1557 }
1558 
1559 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1560   ModifierOptions Mods = ModifierOptions::None;
1561   PointerOptions PO = PointerOptions::None;
1562   bool IsModifier = true;
1563   const DIType *BaseTy = Ty;
1564   while (IsModifier && BaseTy) {
1565     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1566     switch (BaseTy->getTag()) {
1567     case dwarf::DW_TAG_const_type:
1568       Mods |= ModifierOptions::Const;
1569       PO |= PointerOptions::Const;
1570       break;
1571     case dwarf::DW_TAG_volatile_type:
1572       Mods |= ModifierOptions::Volatile;
1573       PO |= PointerOptions::Volatile;
1574       break;
1575     case dwarf::DW_TAG_restrict_type:
1576       // Only pointer types be marked with __restrict. There is no known flag
1577       // for __restrict in LF_MODIFIER records.
1578       PO |= PointerOptions::Restrict;
1579       break;
1580     default:
1581       IsModifier = false;
1582       break;
1583     }
1584     if (IsModifier)
1585       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1586   }
1587 
1588   // Check if the inner type will use an LF_POINTER record. If so, the
1589   // qualifiers will go in the LF_POINTER record. This comes up for types like
1590   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1591   // char *'.
1592   if (BaseTy) {
1593     switch (BaseTy->getTag()) {
1594     case dwarf::DW_TAG_pointer_type:
1595     case dwarf::DW_TAG_reference_type:
1596     case dwarf::DW_TAG_rvalue_reference_type:
1597       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1598     case dwarf::DW_TAG_ptr_to_member_type:
1599       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1600     default:
1601       break;
1602     }
1603   }
1604 
1605   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1606 
1607   // Return the base type index if there aren't any modifiers. For example, the
1608   // metadata could contain restrict wrappers around non-pointer types.
1609   if (Mods == ModifierOptions::None)
1610     return ModifiedTI;
1611 
1612   ModifierRecord MR(ModifiedTI, Mods);
1613   return TypeTable.writeLeafType(MR);
1614 }
1615 
1616 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1617   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1618   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1619     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1620 
1621   // MSVC uses type none for variadic argument.
1622   if (ReturnAndArgTypeIndices.size() > 1 &&
1623       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1624     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1625   }
1626   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1627   ArrayRef<TypeIndex> ArgTypeIndices = None;
1628   if (!ReturnAndArgTypeIndices.empty()) {
1629     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1630     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1631     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1632   }
1633 
1634   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1635   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1636 
1637   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1638 
1639   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1640                             ArgTypeIndices.size(), ArgListIndex);
1641   return TypeTable.writeLeafType(Procedure);
1642 }
1643 
1644 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1645                                                  const DIType *ClassTy,
1646                                                  int ThisAdjustment,
1647                                                  bool IsStaticMethod) {
1648   // Lower the containing class type.
1649   TypeIndex ClassType = getTypeIndex(ClassTy);
1650 
1651   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1652   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1653     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1654 
1655   // MSVC uses type none for variadic argument.
1656   if (ReturnAndArgTypeIndices.size() > 1 &&
1657       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1658     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1659   }
1660   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1661   ArrayRef<TypeIndex> ArgTypeIndices = None;
1662   if (!ReturnAndArgTypeIndices.empty()) {
1663     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1664     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1665     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1666   }
1667   TypeIndex ThisTypeIndex;
1668   if (!IsStaticMethod && !ArgTypeIndices.empty()) {
1669     ThisTypeIndex = ArgTypeIndices.front();
1670     ArgTypeIndices = ArgTypeIndices.drop_front();
1671   }
1672 
1673   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1674   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1675 
1676   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1677 
1678   // TODO: Need to use the correct values for FunctionOptions.
1679   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1680                            FunctionOptions::None, ArgTypeIndices.size(),
1681                            ArgListIndex, ThisAdjustment);
1682   return TypeTable.writeLeafType(MFR);
1683 }
1684 
1685 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1686   unsigned VSlotCount =
1687       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1688   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1689 
1690   VFTableShapeRecord VFTSR(Slots);
1691   return TypeTable.writeLeafType(VFTSR);
1692 }
1693 
1694 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1695   switch (Flags & DINode::FlagAccessibility) {
1696   case DINode::FlagPrivate:   return MemberAccess::Private;
1697   case DINode::FlagPublic:    return MemberAccess::Public;
1698   case DINode::FlagProtected: return MemberAccess::Protected;
1699   case 0:
1700     // If there was no explicit access control, provide the default for the tag.
1701     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1702                                                  : MemberAccess::Public;
1703   }
1704   llvm_unreachable("access flags are exclusive");
1705 }
1706 
1707 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1708   if (SP->isArtificial())
1709     return MethodOptions::CompilerGenerated;
1710 
1711   // FIXME: Handle other MethodOptions.
1712 
1713   return MethodOptions::None;
1714 }
1715 
1716 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1717                                            bool Introduced) {
1718   if (SP->getFlags() & DINode::FlagStaticMember)
1719     return MethodKind::Static;
1720 
1721   switch (SP->getVirtuality()) {
1722   case dwarf::DW_VIRTUALITY_none:
1723     break;
1724   case dwarf::DW_VIRTUALITY_virtual:
1725     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1726   case dwarf::DW_VIRTUALITY_pure_virtual:
1727     return Introduced ? MethodKind::PureIntroducingVirtual
1728                       : MethodKind::PureVirtual;
1729   default:
1730     llvm_unreachable("unhandled virtuality case");
1731   }
1732 
1733   return MethodKind::Vanilla;
1734 }
1735 
1736 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1737   switch (Ty->getTag()) {
1738   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1739   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1740   }
1741   llvm_unreachable("unexpected tag");
1742 }
1743 
1744 /// Return ClassOptions that should be present on both the forward declaration
1745 /// and the defintion of a tag type.
1746 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1747   ClassOptions CO = ClassOptions::None;
1748 
1749   // MSVC always sets this flag, even for local types. Clang doesn't always
1750   // appear to give every type a linkage name, which may be problematic for us.
1751   // FIXME: Investigate the consequences of not following them here.
1752   if (!Ty->getIdentifier().empty())
1753     CO |= ClassOptions::HasUniqueName;
1754 
1755   // Put the Nested flag on a type if it appears immediately inside a tag type.
1756   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1757   // here. That flag is only set on definitions, and not forward declarations.
1758   const DIScope *ImmediateScope = Ty->getScope().resolve();
1759   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1760     CO |= ClassOptions::Nested;
1761 
1762   // Put the Scoped flag on function-local types.
1763   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1764        Scope = Scope->getScope().resolve()) {
1765     if (isa<DISubprogram>(Scope)) {
1766       CO |= ClassOptions::Scoped;
1767       break;
1768     }
1769   }
1770 
1771   return CO;
1772 }
1773 
1774 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
1775   switch (Ty->getTag()) {
1776   case dwarf::DW_TAG_class_type:
1777   case dwarf::DW_TAG_structure_type:
1778   case dwarf::DW_TAG_union_type:
1779   case dwarf::DW_TAG_enumeration_type:
1780     break;
1781   default:
1782     return;
1783   }
1784 
1785   if (const auto *File = Ty->getFile()) {
1786     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1787     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
1788 
1789     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
1790     TypeTable.writeLeafType(USLR);
1791   }
1792 }
1793 
1794 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1795   ClassOptions CO = getCommonClassOptions(Ty);
1796   TypeIndex FTI;
1797   unsigned EnumeratorCount = 0;
1798 
1799   if (Ty->isForwardDecl()) {
1800     CO |= ClassOptions::ForwardReference;
1801   } else {
1802     ContinuationRecordBuilder ContinuationBuilder;
1803     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
1804     for (const DINode *Element : Ty->getElements()) {
1805       // We assume that the frontend provides all members in source declaration
1806       // order, which is what MSVC does.
1807       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1808         EnumeratorRecord ER(MemberAccess::Public,
1809                             APSInt::getUnsigned(Enumerator->getValue()),
1810                             Enumerator->getName());
1811         ContinuationBuilder.writeMemberType(ER);
1812         EnumeratorCount++;
1813       }
1814     }
1815     FTI = TypeTable.insertRecord(ContinuationBuilder);
1816   }
1817 
1818   std::string FullName = getFullyQualifiedName(Ty);
1819 
1820   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1821                 getTypeIndex(Ty->getBaseType()));
1822   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
1823 
1824   addUDTSrcLine(Ty, EnumTI);
1825 
1826   return EnumTI;
1827 }
1828 
1829 //===----------------------------------------------------------------------===//
1830 // ClassInfo
1831 //===----------------------------------------------------------------------===//
1832 
1833 struct llvm::ClassInfo {
1834   struct MemberInfo {
1835     const DIDerivedType *MemberTypeNode;
1836     uint64_t BaseOffset;
1837   };
1838   // [MemberInfo]
1839   using MemberList = std::vector<MemberInfo>;
1840 
1841   using MethodsList = TinyPtrVector<const DISubprogram *>;
1842   // MethodName -> MethodsList
1843   using MethodsMap = MapVector<MDString *, MethodsList>;
1844 
1845   /// Base classes.
1846   std::vector<const DIDerivedType *> Inheritance;
1847 
1848   /// Direct members.
1849   MemberList Members;
1850   // Direct overloaded methods gathered by name.
1851   MethodsMap Methods;
1852 
1853   TypeIndex VShapeTI;
1854 
1855   std::vector<const DIType *> NestedTypes;
1856 };
1857 
1858 void CodeViewDebug::clear() {
1859   assert(CurFn == nullptr);
1860   FileIdMap.clear();
1861   FnDebugInfo.clear();
1862   FileToFilepathMap.clear();
1863   LocalUDTs.clear();
1864   GlobalUDTs.clear();
1865   TypeIndices.clear();
1866   CompleteTypeIndices.clear();
1867 }
1868 
1869 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1870                                       const DIDerivedType *DDTy) {
1871   if (!DDTy->getName().empty()) {
1872     Info.Members.push_back({DDTy, 0});
1873     return;
1874   }
1875 
1876   // An unnamed member may represent a nested struct or union. Attempt to
1877   // interpret the unnamed member as a DICompositeType possibly wrapped in
1878   // qualifier types. Add all the indirect fields to the current record if that
1879   // succeeds, and drop the member if that fails.
1880   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1881   uint64_t Offset = DDTy->getOffsetInBits();
1882   const DIType *Ty = DDTy->getBaseType().resolve();
1883   bool FullyResolved = false;
1884   while (!FullyResolved) {
1885     switch (Ty->getTag()) {
1886     case dwarf::DW_TAG_const_type:
1887     case dwarf::DW_TAG_volatile_type:
1888       // FIXME: we should apply the qualifier types to the indirect fields
1889       // rather than dropping them.
1890       Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
1891       break;
1892     default:
1893       FullyResolved = true;
1894       break;
1895     }
1896   }
1897 
1898   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
1899   if (!DCTy)
1900     return;
1901 
1902   ClassInfo NestedInfo = collectClassInfo(DCTy);
1903   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1904     Info.Members.push_back(
1905         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1906 }
1907 
1908 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1909   ClassInfo Info;
1910   // Add elements to structure type.
1911   DINodeArray Elements = Ty->getElements();
1912   for (auto *Element : Elements) {
1913     // We assume that the frontend provides all members in source declaration
1914     // order, which is what MSVC does.
1915     if (!Element)
1916       continue;
1917     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1918       Info.Methods[SP->getRawName()].push_back(SP);
1919     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1920       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1921         collectMemberInfo(Info, DDTy);
1922       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1923         Info.Inheritance.push_back(DDTy);
1924       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1925                  DDTy->getName() == "__vtbl_ptr_type") {
1926         Info.VShapeTI = getTypeIndex(DDTy);
1927       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1928         Info.NestedTypes.push_back(DDTy);
1929       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1930         // Ignore friend members. It appears that MSVC emitted info about
1931         // friends in the past, but modern versions do not.
1932       }
1933     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1934       Info.NestedTypes.push_back(Composite);
1935     }
1936     // Skip other unrecognized kinds of elements.
1937   }
1938   return Info;
1939 }
1940 
1941 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1942   // First, construct the forward decl.  Don't look into Ty to compute the
1943   // forward decl options, since it might not be available in all TUs.
1944   TypeRecordKind Kind = getRecordKind(Ty);
1945   ClassOptions CO =
1946       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1947   std::string FullName = getFullyQualifiedName(Ty);
1948   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1949                  FullName, Ty->getIdentifier());
1950   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
1951   if (!Ty->isForwardDecl())
1952     DeferredCompleteTypes.push_back(Ty);
1953   return FwdDeclTI;
1954 }
1955 
1956 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1957   // Construct the field list and complete type record.
1958   TypeRecordKind Kind = getRecordKind(Ty);
1959   ClassOptions CO = getCommonClassOptions(Ty);
1960   TypeIndex FieldTI;
1961   TypeIndex VShapeTI;
1962   unsigned FieldCount;
1963   bool ContainsNestedClass;
1964   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1965       lowerRecordFieldList(Ty);
1966 
1967   if (ContainsNestedClass)
1968     CO |= ClassOptions::ContainsNestedClass;
1969 
1970   std::string FullName = getFullyQualifiedName(Ty);
1971 
1972   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1973 
1974   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1975                  SizeInBytes, FullName, Ty->getIdentifier());
1976   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
1977 
1978   addUDTSrcLine(Ty, ClassTI);
1979 
1980   addToUDTs(Ty);
1981 
1982   return ClassTI;
1983 }
1984 
1985 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1986   ClassOptions CO =
1987       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1988   std::string FullName = getFullyQualifiedName(Ty);
1989   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1990   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
1991   if (!Ty->isForwardDecl())
1992     DeferredCompleteTypes.push_back(Ty);
1993   return FwdDeclTI;
1994 }
1995 
1996 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1997   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1998   TypeIndex FieldTI;
1999   unsigned FieldCount;
2000   bool ContainsNestedClass;
2001   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2002       lowerRecordFieldList(Ty);
2003 
2004   if (ContainsNestedClass)
2005     CO |= ClassOptions::ContainsNestedClass;
2006 
2007   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2008   std::string FullName = getFullyQualifiedName(Ty);
2009 
2010   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2011                  Ty->getIdentifier());
2012   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2013 
2014   addUDTSrcLine(Ty, UnionTI);
2015 
2016   addToUDTs(Ty);
2017 
2018   return UnionTI;
2019 }
2020 
2021 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2022 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2023   // Manually count members. MSVC appears to count everything that generates a
2024   // field list record. Each individual overload in a method overload group
2025   // contributes to this count, even though the overload group is a single field
2026   // list record.
2027   unsigned MemberCount = 0;
2028   ClassInfo Info = collectClassInfo(Ty);
2029   ContinuationRecordBuilder ContinuationBuilder;
2030   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2031 
2032   // Create base classes.
2033   for (const DIDerivedType *I : Info.Inheritance) {
2034     if (I->getFlags() & DINode::FlagVirtual) {
2035       // Virtual base.
2036       // FIXME: Emit VBPtrOffset when the frontend provides it.
2037       unsigned VBPtrOffset = 0;
2038       // FIXME: Despite the accessor name, the offset is really in bytes.
2039       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2040       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2041                             ? TypeRecordKind::IndirectVirtualBaseClass
2042                             : TypeRecordKind::VirtualBaseClass;
2043       VirtualBaseClassRecord VBCR(
2044           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2045           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2046           VBTableIndex);
2047 
2048       ContinuationBuilder.writeMemberType(VBCR);
2049       MemberCount++;
2050     } else {
2051       assert(I->getOffsetInBits() % 8 == 0 &&
2052              "bases must be on byte boundaries");
2053       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2054                           getTypeIndex(I->getBaseType()),
2055                           I->getOffsetInBits() / 8);
2056       ContinuationBuilder.writeMemberType(BCR);
2057       MemberCount++;
2058     }
2059   }
2060 
2061   // Create members.
2062   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2063     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2064     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2065     StringRef MemberName = Member->getName();
2066     MemberAccess Access =
2067         translateAccessFlags(Ty->getTag(), Member->getFlags());
2068 
2069     if (Member->isStaticMember()) {
2070       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2071       ContinuationBuilder.writeMemberType(SDMR);
2072       MemberCount++;
2073       continue;
2074     }
2075 
2076     // Virtual function pointer member.
2077     if ((Member->getFlags() & DINode::FlagArtificial) &&
2078         Member->getName().startswith("_vptr$")) {
2079       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2080       ContinuationBuilder.writeMemberType(VFPR);
2081       MemberCount++;
2082       continue;
2083     }
2084 
2085     // Data member.
2086     uint64_t MemberOffsetInBits =
2087         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2088     if (Member->isBitField()) {
2089       uint64_t StartBitOffset = MemberOffsetInBits;
2090       if (const auto *CI =
2091               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2092         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2093       }
2094       StartBitOffset -= MemberOffsetInBits;
2095       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2096                          StartBitOffset);
2097       MemberBaseType = TypeTable.writeLeafType(BFR);
2098     }
2099     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2100     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2101                          MemberName);
2102     ContinuationBuilder.writeMemberType(DMR);
2103     MemberCount++;
2104   }
2105 
2106   // Create methods
2107   for (auto &MethodItr : Info.Methods) {
2108     StringRef Name = MethodItr.first->getString();
2109 
2110     std::vector<OneMethodRecord> Methods;
2111     for (const DISubprogram *SP : MethodItr.second) {
2112       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2113       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2114 
2115       unsigned VFTableOffset = -1;
2116       if (Introduced)
2117         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2118 
2119       Methods.push_back(OneMethodRecord(
2120           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2121           translateMethodKindFlags(SP, Introduced),
2122           translateMethodOptionFlags(SP), VFTableOffset, Name));
2123       MemberCount++;
2124     }
2125     assert(!Methods.empty() && "Empty methods map entry");
2126     if (Methods.size() == 1)
2127       ContinuationBuilder.writeMemberType(Methods[0]);
2128     else {
2129       // FIXME: Make this use its own ContinuationBuilder so that
2130       // MethodOverloadList can be split correctly.
2131       MethodOverloadListRecord MOLR(Methods);
2132       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2133 
2134       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2135       ContinuationBuilder.writeMemberType(OMR);
2136     }
2137   }
2138 
2139   // Create nested classes.
2140   for (const DIType *Nested : Info.NestedTypes) {
2141     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2142     ContinuationBuilder.writeMemberType(R);
2143     MemberCount++;
2144   }
2145 
2146   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2147   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2148                          !Info.NestedTypes.empty());
2149 }
2150 
2151 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2152   if (!VBPType.getIndex()) {
2153     // Make a 'const int *' type.
2154     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2155     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2156 
2157     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2158                                                   : PointerKind::Near32;
2159     PointerMode PM = PointerMode::Pointer;
2160     PointerOptions PO = PointerOptions::None;
2161     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2162     VBPType = TypeTable.writeLeafType(PR);
2163   }
2164 
2165   return VBPType;
2166 }
2167 
2168 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2169   const DIType *Ty = TypeRef.resolve();
2170   const DIType *ClassTy = ClassTyRef.resolve();
2171 
2172   // The null DIType is the void type. Don't try to hash it.
2173   if (!Ty)
2174     return TypeIndex::Void();
2175 
2176   // Check if we've already translated this type. Don't try to do a
2177   // get-or-create style insertion that caches the hash lookup across the
2178   // lowerType call. It will update the TypeIndices map.
2179   auto I = TypeIndices.find({Ty, ClassTy});
2180   if (I != TypeIndices.end())
2181     return I->second;
2182 
2183   TypeLoweringScope S(*this);
2184   TypeIndex TI = lowerType(Ty, ClassTy);
2185   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2186 }
2187 
2188 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2189   DIType *Ty = TypeRef.resolve();
2190   PointerRecord PR(getTypeIndex(Ty),
2191                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2192                                                 : PointerKind::Near32,
2193                    PointerMode::LValueReference, PointerOptions::None,
2194                    Ty->getSizeInBits() / 8);
2195   return TypeTable.writeLeafType(PR);
2196 }
2197 
2198 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2199   const DIType *Ty = TypeRef.resolve();
2200 
2201   // The null DIType is the void type. Don't try to hash it.
2202   if (!Ty)
2203     return TypeIndex::Void();
2204 
2205   // If this is a non-record type, the complete type index is the same as the
2206   // normal type index. Just call getTypeIndex.
2207   switch (Ty->getTag()) {
2208   case dwarf::DW_TAG_class_type:
2209   case dwarf::DW_TAG_structure_type:
2210   case dwarf::DW_TAG_union_type:
2211     break;
2212   default:
2213     return getTypeIndex(Ty);
2214   }
2215 
2216   // Check if we've already translated the complete record type.  Lowering a
2217   // complete type should never trigger lowering another complete type, so we
2218   // can reuse the hash table lookup result.
2219   const auto *CTy = cast<DICompositeType>(Ty);
2220   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2221   if (!InsertResult.second)
2222     return InsertResult.first->second;
2223 
2224   TypeLoweringScope S(*this);
2225 
2226   // Make sure the forward declaration is emitted first. It's unclear if this
2227   // is necessary, but MSVC does it, and we should follow suit until we can show
2228   // otherwise.
2229   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2230 
2231   // Just use the forward decl if we don't have complete type info. This might
2232   // happen if the frontend is using modules and expects the complete definition
2233   // to be emitted elsewhere.
2234   if (CTy->isForwardDecl())
2235     return FwdDeclTI;
2236 
2237   TypeIndex TI;
2238   switch (CTy->getTag()) {
2239   case dwarf::DW_TAG_class_type:
2240   case dwarf::DW_TAG_structure_type:
2241     TI = lowerCompleteTypeClass(CTy);
2242     break;
2243   case dwarf::DW_TAG_union_type:
2244     TI = lowerCompleteTypeUnion(CTy);
2245     break;
2246   default:
2247     llvm_unreachable("not a record");
2248   }
2249 
2250   InsertResult.first->second = TI;
2251   return TI;
2252 }
2253 
2254 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2255 /// and do this until fixpoint, as each complete record type typically
2256 /// references
2257 /// many other record types.
2258 void CodeViewDebug::emitDeferredCompleteTypes() {
2259   SmallVector<const DICompositeType *, 4> TypesToEmit;
2260   while (!DeferredCompleteTypes.empty()) {
2261     std::swap(DeferredCompleteTypes, TypesToEmit);
2262     for (const DICompositeType *RecordTy : TypesToEmit)
2263       getCompleteTypeIndex(RecordTy);
2264     TypesToEmit.clear();
2265   }
2266 }
2267 
2268 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2269   // Get the sorted list of parameters and emit them first.
2270   SmallVector<const LocalVariable *, 6> Params;
2271   for (const LocalVariable &L : Locals)
2272     if (L.DIVar->isParameter())
2273       Params.push_back(&L);
2274   llvm::sort(Params.begin(), Params.end(),
2275              [](const LocalVariable *L, const LocalVariable *R) {
2276                return L->DIVar->getArg() < R->DIVar->getArg();
2277              });
2278   for (const LocalVariable *L : Params)
2279     emitLocalVariable(*L);
2280 
2281   // Next emit all non-parameters in the order that we found them.
2282   for (const LocalVariable &L : Locals)
2283     if (!L.DIVar->isParameter())
2284       emitLocalVariable(L);
2285 }
2286 
2287 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2288   // LocalSym record, see SymbolRecord.h for more info.
2289   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2290            *LocalEnd = MMI->getContext().createTempSymbol();
2291   OS.AddComment("Record length");
2292   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2293   OS.EmitLabel(LocalBegin);
2294 
2295   OS.AddComment("Record kind: S_LOCAL");
2296   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2297 
2298   LocalSymFlags Flags = LocalSymFlags::None;
2299   if (Var.DIVar->isParameter())
2300     Flags |= LocalSymFlags::IsParameter;
2301   if (Var.DefRanges.empty())
2302     Flags |= LocalSymFlags::IsOptimizedOut;
2303 
2304   OS.AddComment("TypeIndex");
2305   TypeIndex TI = Var.UseReferenceType
2306                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2307                      : getCompleteTypeIndex(Var.DIVar->getType());
2308   OS.EmitIntValue(TI.getIndex(), 4);
2309   OS.AddComment("Flags");
2310   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2311   // Truncate the name so we won't overflow the record length field.
2312   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2313   OS.EmitLabel(LocalEnd);
2314 
2315   // Calculate the on disk prefix of the appropriate def range record. The
2316   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2317   // should be big enough to hold all forms without memory allocation.
2318   SmallString<20> BytePrefix;
2319   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2320     BytePrefix.clear();
2321     if (DefRange.InMemory) {
2322       uint16_t RegRelFlags = 0;
2323       if (DefRange.IsSubfield) {
2324         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2325                       (DefRange.StructOffset
2326                        << DefRangeRegisterRelSym::OffsetInParentShift);
2327       }
2328       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2329       Sym.Hdr.Register = DefRange.CVRegister;
2330       Sym.Hdr.Flags = RegRelFlags;
2331       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2332       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2333       BytePrefix +=
2334           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2335       BytePrefix +=
2336           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2337     } else {
2338       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2339       if (DefRange.IsSubfield) {
2340         // Unclear what matters here.
2341         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2342         Sym.Hdr.Register = DefRange.CVRegister;
2343         Sym.Hdr.MayHaveNoName = 0;
2344         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2345 
2346         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2347         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2348                                 sizeof(SymKind));
2349         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2350                                 sizeof(Sym.Hdr));
2351       } else {
2352         // Unclear what matters here.
2353         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2354         Sym.Hdr.Register = DefRange.CVRegister;
2355         Sym.Hdr.MayHaveNoName = 0;
2356         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2357         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2358                                 sizeof(SymKind));
2359         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2360                                 sizeof(Sym.Hdr));
2361       }
2362     }
2363     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2364   }
2365 }
2366 
2367 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2368                                          const FunctionInfo& FI) {
2369   for (LexicalBlock *Block : Blocks)
2370     emitLexicalBlock(*Block, FI);
2371 }
2372 
2373 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2374 /// lexical block scope.
2375 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2376                                      const FunctionInfo& FI) {
2377   MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(),
2378            *RecordEnd   = MMI->getContext().createTempSymbol();
2379 
2380   // Lexical block symbol record.
2381   OS.AddComment("Record length");
2382   OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2);   // Record Length
2383   OS.EmitLabel(RecordBegin);
2384   OS.AddComment("Record kind: S_BLOCK32");
2385   OS.EmitIntValue(SymbolKind::S_BLOCK32, 2);              // Record Kind
2386   OS.AddComment("PtrParent");
2387   OS.EmitIntValue(0, 4);                                  // PtrParent
2388   OS.AddComment("PtrEnd");
2389   OS.EmitIntValue(0, 4);                                  // PtrEnd
2390   OS.AddComment("Code size");
2391   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2392   OS.AddComment("Function section relative address");
2393   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2394   OS.AddComment("Function section index");
2395   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2396   OS.AddComment("Lexical block name");
2397   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2398   OS.EmitLabel(RecordEnd);
2399 
2400   // Emit variables local to this lexical block.
2401   emitLocalVariableList(Block.Locals);
2402 
2403   // Emit lexical blocks contained within this block.
2404   emitLexicalBlockList(Block.Children, FI);
2405 
2406   // Close the lexical block scope.
2407   OS.AddComment("Record length");
2408   OS.EmitIntValue(2, 2);                                  // Record Length
2409   OS.AddComment("Record kind: S_END");
2410   OS.EmitIntValue(SymbolKind::S_END, 2);                  // Record Kind
2411 }
2412 
2413 /// Convenience routine for collecting lexical block information for a list
2414 /// of lexical scopes.
2415 void CodeViewDebug::collectLexicalBlockInfo(
2416         SmallVectorImpl<LexicalScope *> &Scopes,
2417         SmallVectorImpl<LexicalBlock *> &Blocks,
2418         SmallVectorImpl<LocalVariable> &Locals) {
2419   for (LexicalScope *Scope : Scopes)
2420     collectLexicalBlockInfo(*Scope, Blocks, Locals);
2421 }
2422 
2423 /// Populate the lexical blocks and local variable lists of the parent with
2424 /// information about the specified lexical scope.
2425 void CodeViewDebug::collectLexicalBlockInfo(
2426     LexicalScope &Scope,
2427     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2428     SmallVectorImpl<LocalVariable> &ParentLocals) {
2429   if (Scope.isAbstractScope())
2430     return;
2431 
2432   auto LocalsIter = ScopeVariables.find(&Scope);
2433   if (LocalsIter == ScopeVariables.end()) {
2434     // This scope does not contain variables and can be eliminated.
2435     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2436     return;
2437   }
2438   SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second;
2439 
2440   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2441   if (!DILB) {
2442     // This scope is not a lexical block and can be eliminated, but keep any
2443     // local variables it contains.
2444     ParentLocals.append(Locals.begin(), Locals.end());
2445     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2446     return;
2447   }
2448 
2449   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2450   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) {
2451     // This lexical block scope has too many address ranges to represent in the
2452     // current CodeView format or does not have a valid address range.
2453     // Eliminate this lexical scope and promote any locals it contains to the
2454     // parent scope.
2455     //
2456     // For lexical scopes with multiple address ranges you may be tempted to
2457     // construct a single range covering every instruction where the block is
2458     // live and everything in between.  Unfortunately, Visual Studio only
2459     // displays variables from the first matching lexical block scope.  If the
2460     // first lexical block contains exception handling code or cold code which
2461     // is moved to the bottom of the routine creating a single range covering
2462     // nearly the entire routine, then it will hide all other lexical blocks
2463     // and the variables they contain.
2464     //
2465     ParentLocals.append(Locals.begin(), Locals.end());
2466     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2467     return;
2468   }
2469 
2470   // Create a new CodeView lexical block for this lexical scope.  If we've
2471   // seen this DILexicalBlock before then the scope tree is malformed and
2472   // we can handle this gracefully by not processing it a second time.
2473   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2474   if (!BlockInsertion.second)
2475     return;
2476 
2477   // Create a lexical block containing the local variables and collect the
2478   // the lexical block information for the children.
2479   const InsnRange &Range = Ranges.front();
2480   assert(Range.first && Range.second);
2481   LexicalBlock &Block = BlockInsertion.first->second;
2482   Block.Begin = getLabelBeforeInsn(Range.first);
2483   Block.End = getLabelAfterInsn(Range.second);
2484   assert(Block.Begin && "missing label for scope begin");
2485   assert(Block.End && "missing label for scope end");
2486   Block.Name = DILB->getName();
2487   Block.Locals = std::move(Locals);
2488   ParentBlocks.push_back(&Block);
2489   collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals);
2490 }
2491 
2492 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2493   const Function &GV = MF->getFunction();
2494   assert(FnDebugInfo.count(&GV));
2495   assert(CurFn == FnDebugInfo[&GV].get());
2496 
2497   collectVariableInfo(GV.getSubprogram());
2498 
2499   // Build the lexical block structure to emit for this routine.
2500   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2501     collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals);
2502 
2503   // Clear the scope and variable information from the map which will not be
2504   // valid after we have finished processing this routine.  This also prepares
2505   // the map for the subsequent routine.
2506   ScopeVariables.clear();
2507 
2508   // Don't emit anything if we don't have any line tables.
2509   if (!CurFn->HaveLineInfo) {
2510     FnDebugInfo.erase(&GV);
2511     CurFn = nullptr;
2512     return;
2513   }
2514 
2515   CurFn->Annotations = MF->getCodeViewAnnotations();
2516 
2517   CurFn->End = Asm->getFunctionEnd();
2518 
2519   CurFn = nullptr;
2520 }
2521 
2522 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2523   DebugHandlerBase::beginInstruction(MI);
2524 
2525   // Ignore DBG_VALUE locations and function prologue.
2526   if (!Asm || !CurFn || MI->isDebugValue() ||
2527       MI->getFlag(MachineInstr::FrameSetup))
2528     return;
2529 
2530   // If the first instruction of a new MBB has no location, find the first
2531   // instruction with a location and use that.
2532   DebugLoc DL = MI->getDebugLoc();
2533   if (!DL && MI->getParent() != PrevInstBB) {
2534     for (const auto &NextMI : *MI->getParent()) {
2535       if (NextMI.isDebugValue())
2536         continue;
2537       DL = NextMI.getDebugLoc();
2538       if (DL)
2539         break;
2540     }
2541   }
2542   PrevInstBB = MI->getParent();
2543 
2544   // If we still don't have a debug location, don't record a location.
2545   if (!DL)
2546     return;
2547 
2548   maybeRecordLocation(DL, Asm->MF);
2549 }
2550 
2551 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2552   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2553            *EndLabel = MMI->getContext().createTempSymbol();
2554   OS.EmitIntValue(unsigned(Kind), 4);
2555   OS.AddComment("Subsection size");
2556   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2557   OS.EmitLabel(BeginLabel);
2558   return EndLabel;
2559 }
2560 
2561 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2562   OS.EmitLabel(EndLabel);
2563   // Every subsection must be aligned to a 4-byte boundary.
2564   OS.EmitValueToAlignment(4);
2565 }
2566 
2567 void CodeViewDebug::emitDebugInfoForUDTs(
2568     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2569   for (const auto &UDT : UDTs) {
2570     const DIType *T = UDT.second;
2571     assert(shouldEmitUdt(T));
2572 
2573     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2574              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2575     OS.AddComment("Record length");
2576     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2577     OS.EmitLabel(UDTRecordBegin);
2578 
2579     OS.AddComment("Record kind: S_UDT");
2580     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2581 
2582     OS.AddComment("Type");
2583     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2584 
2585     emitNullTerminatedSymbolName(OS, UDT.first);
2586     OS.EmitLabel(UDTRecordEnd);
2587   }
2588 }
2589 
2590 void CodeViewDebug::emitDebugInfoForGlobals() {
2591   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2592       GlobalMap;
2593   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2594     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2595     GV.getDebugInfo(GVEs);
2596     for (const auto *GVE : GVEs)
2597       GlobalMap[GVE] = &GV;
2598   }
2599 
2600   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2601   for (const MDNode *Node : CUs->operands()) {
2602     const auto *CU = cast<DICompileUnit>(Node);
2603 
2604     // First, emit all globals that are not in a comdat in a single symbol
2605     // substream. MSVC doesn't like it if the substream is empty, so only open
2606     // it if we have at least one global to emit.
2607     switchToDebugSectionForSymbol(nullptr);
2608     MCSymbol *EndLabel = nullptr;
2609     for (const auto *GVE : CU->getGlobalVariables()) {
2610       if (const auto *GV = GlobalMap.lookup(GVE))
2611         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2612           if (!EndLabel) {
2613             OS.AddComment("Symbol subsection for globals");
2614             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2615           }
2616           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2617           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2618         }
2619     }
2620     if (EndLabel)
2621       endCVSubsection(EndLabel);
2622 
2623     // Second, emit each global that is in a comdat into its own .debug$S
2624     // section along with its own symbol substream.
2625     for (const auto *GVE : CU->getGlobalVariables()) {
2626       if (const auto *GV = GlobalMap.lookup(GVE)) {
2627         if (GV->hasComdat()) {
2628           MCSymbol *GVSym = Asm->getSymbol(GV);
2629           OS.AddComment("Symbol subsection for " +
2630                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2631           switchToDebugSectionForSymbol(GVSym);
2632           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2633           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2634           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2635           endCVSubsection(EndLabel);
2636         }
2637       }
2638     }
2639   }
2640 }
2641 
2642 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2643   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2644   for (const MDNode *Node : CUs->operands()) {
2645     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2646       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2647         getTypeIndex(RT);
2648         // FIXME: Add to global/local DTU list.
2649       }
2650     }
2651   }
2652 }
2653 
2654 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2655                                            const GlobalVariable *GV,
2656                                            MCSymbol *GVSym) {
2657   // DataSym record, see SymbolRecord.h for more info.
2658   // FIXME: Thread local data, etc
2659   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2660            *DataEnd = MMI->getContext().createTempSymbol();
2661   const unsigned FixedLengthOfThisRecord = 12;
2662   OS.AddComment("Record length");
2663   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2664   OS.EmitLabel(DataBegin);
2665   if (DIGV->isLocalToUnit()) {
2666     if (GV->isThreadLocal()) {
2667       OS.AddComment("Record kind: S_LTHREAD32");
2668       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2669     } else {
2670       OS.AddComment("Record kind: S_LDATA32");
2671       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2672     }
2673   } else {
2674     if (GV->isThreadLocal()) {
2675       OS.AddComment("Record kind: S_GTHREAD32");
2676       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2677     } else {
2678       OS.AddComment("Record kind: S_GDATA32");
2679       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2680     }
2681   }
2682   OS.AddComment("Type");
2683   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2684   OS.AddComment("DataOffset");
2685   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2686   OS.AddComment("Segment");
2687   OS.EmitCOFFSectionIndex(GVSym);
2688   OS.AddComment("Name");
2689   emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord);
2690   OS.EmitLabel(DataEnd);
2691 }
2692