1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineModuleInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/Line.h" 48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 50 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 51 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCContext.h" 64 #include "llvm/MC/MCSectionCOFF.h" 65 #include "llvm/MC/MCStreamer.h" 66 #include "llvm/MC/MCSymbol.h" 67 #include "llvm/Support/BinaryByteStream.h" 68 #include "llvm/Support/BinaryStreamReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Endian.h" 73 #include "llvm/Support/Error.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/SMLoc.h" 77 #include "llvm/Support/ScopedPrinter.h" 78 #include "llvm/Target/TargetLoweringObjectFile.h" 79 #include "llvm/Target/TargetMachine.h" 80 #include <algorithm> 81 #include <cassert> 82 #include <cctype> 83 #include <cstddef> 84 #include <cstdint> 85 #include <iterator> 86 #include <limits> 87 #include <string> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 using namespace llvm::codeview; 93 94 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 95 cl::ReallyHidden, cl::init(false)); 96 97 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 98 switch (Type) { 99 case Triple::ArchType::x86: 100 return CPUType::Pentium3; 101 case Triple::ArchType::x86_64: 102 return CPUType::X64; 103 case Triple::ArchType::thumb: 104 return CPUType::Thumb; 105 case Triple::ArchType::aarch64: 106 return CPUType::ARM64; 107 default: 108 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 109 } 110 } 111 112 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 113 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 114 // If module doesn't have named metadata anchors or COFF debug section 115 // is not available, skip any debug info related stuff. 116 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 117 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 118 Asm = nullptr; 119 return; 120 } 121 // Tell MMI that we have debug info. 122 MMI->setDebugInfoAvailability(true); 123 124 TheCPU = 125 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 126 } 127 128 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 129 std::string &Filepath = FileToFilepathMap[File]; 130 if (!Filepath.empty()) 131 return Filepath; 132 133 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 134 135 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 136 // it textually because one of the path components could be a symlink. 137 if (!Dir.empty() && Dir[0] == '/') { 138 Filepath = Dir; 139 if (Dir.back() != '/') 140 Filepath += '/'; 141 Filepath += Filename; 142 return Filepath; 143 } 144 145 // Clang emits directory and relative filename info into the IR, but CodeView 146 // operates on full paths. We could change Clang to emit full paths too, but 147 // that would increase the IR size and probably not needed for other users. 148 // For now, just concatenate and canonicalize the path here. 149 if (Filename.find(':') == 1) 150 Filepath = Filename; 151 else 152 Filepath = (Dir + "\\" + Filename).str(); 153 154 // Canonicalize the path. We have to do it textually because we may no longer 155 // have access the file in the filesystem. 156 // First, replace all slashes with backslashes. 157 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 158 159 // Remove all "\.\" with "\". 160 size_t Cursor = 0; 161 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 162 Filepath.erase(Cursor, 2); 163 164 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 165 // path should be well-formatted, e.g. start with a drive letter, etc. 166 Cursor = 0; 167 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 168 // Something's wrong if the path starts with "\..\", abort. 169 if (Cursor == 0) 170 break; 171 172 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 173 if (PrevSlash == std::string::npos) 174 // Something's wrong, abort. 175 break; 176 177 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 178 // The next ".." might be following the one we've just erased. 179 Cursor = PrevSlash; 180 } 181 182 // Remove all duplicate backslashes. 183 Cursor = 0; 184 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 185 Filepath.erase(Cursor, 1); 186 187 return Filepath; 188 } 189 190 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 191 StringRef FullPath = getFullFilepath(F); 192 unsigned NextId = FileIdMap.size() + 1; 193 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 194 if (Insertion.second) { 195 // We have to compute the full filepath and emit a .cv_file directive. 196 ArrayRef<uint8_t> ChecksumAsBytes; 197 FileChecksumKind CSKind = FileChecksumKind::None; 198 if (F->getChecksum()) { 199 std::string Checksum = fromHex(F->getChecksum()->Value); 200 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 201 memcpy(CKMem, Checksum.data(), Checksum.size()); 202 ChecksumAsBytes = ArrayRef<uint8_t>( 203 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 204 switch (F->getChecksum()->Kind) { 205 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 206 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 207 } 208 } 209 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 210 static_cast<unsigned>(CSKind)); 211 (void)Success; 212 assert(Success && ".cv_file directive failed"); 213 } 214 return Insertion.first->second; 215 } 216 217 CodeViewDebug::InlineSite & 218 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 219 const DISubprogram *Inlinee) { 220 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 221 InlineSite *Site = &SiteInsertion.first->second; 222 if (SiteInsertion.second) { 223 unsigned ParentFuncId = CurFn->FuncId; 224 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 225 ParentFuncId = 226 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 227 .SiteFuncId; 228 229 Site->SiteFuncId = NextFuncId++; 230 OS.EmitCVInlineSiteIdDirective( 231 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 232 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 233 Site->Inlinee = Inlinee; 234 InlinedSubprograms.insert(Inlinee); 235 getFuncIdForSubprogram(Inlinee); 236 } 237 return *Site; 238 } 239 240 static StringRef getPrettyScopeName(const DIScope *Scope) { 241 StringRef ScopeName = Scope->getName(); 242 if (!ScopeName.empty()) 243 return ScopeName; 244 245 switch (Scope->getTag()) { 246 case dwarf::DW_TAG_enumeration_type: 247 case dwarf::DW_TAG_class_type: 248 case dwarf::DW_TAG_structure_type: 249 case dwarf::DW_TAG_union_type: 250 return "<unnamed-tag>"; 251 case dwarf::DW_TAG_namespace: 252 return "`anonymous namespace'"; 253 } 254 255 return StringRef(); 256 } 257 258 static const DISubprogram *getQualifiedNameComponents( 259 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 260 const DISubprogram *ClosestSubprogram = nullptr; 261 while (Scope != nullptr) { 262 if (ClosestSubprogram == nullptr) 263 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 264 StringRef ScopeName = getPrettyScopeName(Scope); 265 if (!ScopeName.empty()) 266 QualifiedNameComponents.push_back(ScopeName); 267 Scope = Scope->getScope().resolve(); 268 } 269 return ClosestSubprogram; 270 } 271 272 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 273 StringRef TypeName) { 274 std::string FullyQualifiedName; 275 for (StringRef QualifiedNameComponent : 276 llvm::reverse(QualifiedNameComponents)) { 277 FullyQualifiedName.append(QualifiedNameComponent); 278 FullyQualifiedName.append("::"); 279 } 280 FullyQualifiedName.append(TypeName); 281 return FullyQualifiedName; 282 } 283 284 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 285 SmallVector<StringRef, 5> QualifiedNameComponents; 286 getQualifiedNameComponents(Scope, QualifiedNameComponents); 287 return getQualifiedName(QualifiedNameComponents, Name); 288 } 289 290 struct CodeViewDebug::TypeLoweringScope { 291 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 292 ~TypeLoweringScope() { 293 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 294 // inner TypeLoweringScopes don't attempt to emit deferred types. 295 if (CVD.TypeEmissionLevel == 1) 296 CVD.emitDeferredCompleteTypes(); 297 --CVD.TypeEmissionLevel; 298 } 299 CodeViewDebug &CVD; 300 }; 301 302 static std::string getFullyQualifiedName(const DIScope *Ty) { 303 const DIScope *Scope = Ty->getScope().resolve(); 304 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 305 } 306 307 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 308 // No scope means global scope and that uses the zero index. 309 if (!Scope || isa<DIFile>(Scope)) 310 return TypeIndex(); 311 312 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 313 314 // Check if we've already translated this scope. 315 auto I = TypeIndices.find({Scope, nullptr}); 316 if (I != TypeIndices.end()) 317 return I->second; 318 319 // Build the fully qualified name of the scope. 320 std::string ScopeName = getFullyQualifiedName(Scope); 321 StringIdRecord SID(TypeIndex(), ScopeName); 322 auto TI = TypeTable.writeLeafType(SID); 323 return recordTypeIndexForDINode(Scope, TI); 324 } 325 326 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 327 assert(SP); 328 329 // Check if we've already translated this subprogram. 330 auto I = TypeIndices.find({SP, nullptr}); 331 if (I != TypeIndices.end()) 332 return I->second; 333 334 // The display name includes function template arguments. Drop them to match 335 // MSVC. 336 StringRef DisplayName = SP->getName().split('<').first; 337 338 const DIScope *Scope = SP->getScope().resolve(); 339 TypeIndex TI; 340 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 341 // If the scope is a DICompositeType, then this must be a method. Member 342 // function types take some special handling, and require access to the 343 // subprogram. 344 TypeIndex ClassType = getTypeIndex(Class); 345 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 346 DisplayName); 347 TI = TypeTable.writeLeafType(MFuncId); 348 } else { 349 // Otherwise, this must be a free function. 350 TypeIndex ParentScope = getScopeIndex(Scope); 351 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 352 TI = TypeTable.writeLeafType(FuncId); 353 } 354 355 return recordTypeIndexForDINode(SP, TI); 356 } 357 358 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 359 const DICompositeType *Class) { 360 // Always use the method declaration as the key for the function type. The 361 // method declaration contains the this adjustment. 362 if (SP->getDeclaration()) 363 SP = SP->getDeclaration(); 364 assert(!SP->getDeclaration() && "should use declaration as key"); 365 366 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 367 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 368 auto I = TypeIndices.find({SP, Class}); 369 if (I != TypeIndices.end()) 370 return I->second; 371 372 // Make sure complete type info for the class is emitted *after* the member 373 // function type, as the complete class type is likely to reference this 374 // member function type. 375 TypeLoweringScope S(*this); 376 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 377 TypeIndex TI = lowerTypeMemberFunction( 378 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod); 379 return recordTypeIndexForDINode(SP, TI, Class); 380 } 381 382 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 383 TypeIndex TI, 384 const DIType *ClassTy) { 385 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 386 (void)InsertResult; 387 assert(InsertResult.second && "DINode was already assigned a type index"); 388 return TI; 389 } 390 391 unsigned CodeViewDebug::getPointerSizeInBytes() { 392 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 393 } 394 395 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 396 const LexicalScope *LS) { 397 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 398 // This variable was inlined. Associate it with the InlineSite. 399 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 400 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 401 Site.InlinedLocals.emplace_back(Var); 402 } else { 403 // This variable goes into the corresponding lexical scope. 404 ScopeVariables[LS].emplace_back(Var); 405 } 406 } 407 408 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 409 const DILocation *Loc) { 410 auto B = Locs.begin(), E = Locs.end(); 411 if (std::find(B, E, Loc) == E) 412 Locs.push_back(Loc); 413 } 414 415 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 416 const MachineFunction *MF) { 417 // Skip this instruction if it has the same location as the previous one. 418 if (!DL || DL == PrevInstLoc) 419 return; 420 421 const DIScope *Scope = DL.get()->getScope(); 422 if (!Scope) 423 return; 424 425 // Skip this line if it is longer than the maximum we can record. 426 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 427 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 428 LI.isNeverStepInto()) 429 return; 430 431 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 432 if (CI.getStartColumn() != DL.getCol()) 433 return; 434 435 if (!CurFn->HaveLineInfo) 436 CurFn->HaveLineInfo = true; 437 unsigned FileId = 0; 438 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 439 FileId = CurFn->LastFileId; 440 else 441 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 442 PrevInstLoc = DL; 443 444 unsigned FuncId = CurFn->FuncId; 445 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 446 const DILocation *Loc = DL.get(); 447 448 // If this location was actually inlined from somewhere else, give it the ID 449 // of the inline call site. 450 FuncId = 451 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 452 453 // Ensure we have links in the tree of inline call sites. 454 bool FirstLoc = true; 455 while ((SiteLoc = Loc->getInlinedAt())) { 456 InlineSite &Site = 457 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 458 if (!FirstLoc) 459 addLocIfNotPresent(Site.ChildSites, Loc); 460 FirstLoc = false; 461 Loc = SiteLoc; 462 } 463 addLocIfNotPresent(CurFn->ChildSites, Loc); 464 } 465 466 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 467 /*PrologueEnd=*/false, /*IsStmt=*/false, 468 DL->getFilename(), SMLoc()); 469 } 470 471 void CodeViewDebug::emitCodeViewMagicVersion() { 472 OS.EmitValueToAlignment(4); 473 OS.AddComment("Debug section magic"); 474 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 475 } 476 477 void CodeViewDebug::endModule() { 478 if (!Asm || !MMI->hasDebugInfo()) 479 return; 480 481 assert(Asm != nullptr); 482 483 // The COFF .debug$S section consists of several subsections, each starting 484 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 485 // of the payload followed by the payload itself. The subsections are 4-byte 486 // aligned. 487 488 // Use the generic .debug$S section, and make a subsection for all the inlined 489 // subprograms. 490 switchToDebugSectionForSymbol(nullptr); 491 492 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 493 emitCompilerInformation(); 494 endCVSubsection(CompilerInfo); 495 496 emitInlineeLinesSubsection(); 497 498 // Emit per-function debug information. 499 for (auto &P : FnDebugInfo) 500 if (!P.first->isDeclarationForLinker()) 501 emitDebugInfoForFunction(P.first, *P.second); 502 503 // Emit global variable debug information. 504 setCurrentSubprogram(nullptr); 505 emitDebugInfoForGlobals(); 506 507 // Emit retained types. 508 emitDebugInfoForRetainedTypes(); 509 510 // Switch back to the generic .debug$S section after potentially processing 511 // comdat symbol sections. 512 switchToDebugSectionForSymbol(nullptr); 513 514 // Emit UDT records for any types used by global variables. 515 if (!GlobalUDTs.empty()) { 516 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 517 emitDebugInfoForUDTs(GlobalUDTs); 518 endCVSubsection(SymbolsEnd); 519 } 520 521 // This subsection holds a file index to offset in string table table. 522 OS.AddComment("File index to string table offset subsection"); 523 OS.EmitCVFileChecksumsDirective(); 524 525 // This subsection holds the string table. 526 OS.AddComment("String table"); 527 OS.EmitCVStringTableDirective(); 528 529 // Emit type information and hashes last, so that any types we translate while 530 // emitting function info are included. 531 emitTypeInformation(); 532 533 if (EmitDebugGlobalHashes) 534 emitTypeGlobalHashes(); 535 536 clear(); 537 } 538 539 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 540 unsigned MaxFixedRecordLength = 0xF00) { 541 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 542 // after a fixed length portion of the record. The fixed length portion should 543 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 544 // overall record size is less than the maximum allowed. 545 SmallString<32> NullTerminatedString( 546 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 547 NullTerminatedString.push_back('\0'); 548 OS.EmitBytes(NullTerminatedString); 549 } 550 551 void CodeViewDebug::emitTypeInformation() { 552 if (TypeTable.empty()) 553 return; 554 555 // Start the .debug$T or .debug$P section with 0x4. 556 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 557 emitCodeViewMagicVersion(); 558 559 SmallString<8> CommentPrefix; 560 if (OS.isVerboseAsm()) { 561 CommentPrefix += '\t'; 562 CommentPrefix += Asm->MAI->getCommentString(); 563 CommentPrefix += ' '; 564 } 565 566 TypeTableCollection Table(TypeTable.records()); 567 Optional<TypeIndex> B = Table.getFirst(); 568 while (B) { 569 // This will fail if the record data is invalid. 570 CVType Record = Table.getType(*B); 571 572 if (OS.isVerboseAsm()) { 573 // Emit a block comment describing the type record for readability. 574 SmallString<512> CommentBlock; 575 raw_svector_ostream CommentOS(CommentBlock); 576 ScopedPrinter SP(CommentOS); 577 SP.setPrefix(CommentPrefix); 578 TypeDumpVisitor TDV(Table, &SP, false); 579 580 Error E = codeview::visitTypeRecord(Record, *B, TDV); 581 if (E) { 582 logAllUnhandledErrors(std::move(E), errs(), "error: "); 583 llvm_unreachable("produced malformed type record"); 584 } 585 // emitRawComment will insert its own tab and comment string before 586 // the first line, so strip off our first one. It also prints its own 587 // newline. 588 OS.emitRawComment( 589 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 590 } 591 OS.EmitBinaryData(Record.str_data()); 592 B = Table.getNext(*B); 593 } 594 } 595 596 void CodeViewDebug::emitTypeGlobalHashes() { 597 if (TypeTable.empty()) 598 return; 599 600 // Start the .debug$H section with the version and hash algorithm, currently 601 // hardcoded to version 0, SHA1. 602 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 603 604 OS.EmitValueToAlignment(4); 605 OS.AddComment("Magic"); 606 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 607 OS.AddComment("Section Version"); 608 OS.EmitIntValue(0, 2); 609 OS.AddComment("Hash Algorithm"); 610 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 611 612 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 613 for (const auto &GHR : TypeTable.hashes()) { 614 if (OS.isVerboseAsm()) { 615 // Emit an EOL-comment describing which TypeIndex this hash corresponds 616 // to, as well as the stringified SHA1 hash. 617 SmallString<32> Comment; 618 raw_svector_ostream CommentOS(Comment); 619 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 620 OS.AddComment(Comment); 621 ++TI; 622 } 623 assert(GHR.Hash.size() == 8); 624 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 625 GHR.Hash.size()); 626 OS.EmitBinaryData(S); 627 } 628 } 629 630 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 631 switch (DWLang) { 632 case dwarf::DW_LANG_C: 633 case dwarf::DW_LANG_C89: 634 case dwarf::DW_LANG_C99: 635 case dwarf::DW_LANG_C11: 636 case dwarf::DW_LANG_ObjC: 637 return SourceLanguage::C; 638 case dwarf::DW_LANG_C_plus_plus: 639 case dwarf::DW_LANG_C_plus_plus_03: 640 case dwarf::DW_LANG_C_plus_plus_11: 641 case dwarf::DW_LANG_C_plus_plus_14: 642 return SourceLanguage::Cpp; 643 case dwarf::DW_LANG_Fortran77: 644 case dwarf::DW_LANG_Fortran90: 645 case dwarf::DW_LANG_Fortran03: 646 case dwarf::DW_LANG_Fortran08: 647 return SourceLanguage::Fortran; 648 case dwarf::DW_LANG_Pascal83: 649 return SourceLanguage::Pascal; 650 case dwarf::DW_LANG_Cobol74: 651 case dwarf::DW_LANG_Cobol85: 652 return SourceLanguage::Cobol; 653 case dwarf::DW_LANG_Java: 654 return SourceLanguage::Java; 655 case dwarf::DW_LANG_D: 656 return SourceLanguage::D; 657 default: 658 // There's no CodeView representation for this language, and CV doesn't 659 // have an "unknown" option for the language field, so we'll use MASM, 660 // as it's very low level. 661 return SourceLanguage::Masm; 662 } 663 } 664 665 namespace { 666 struct Version { 667 int Part[4]; 668 }; 669 } // end anonymous namespace 670 671 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 672 // the version number. 673 static Version parseVersion(StringRef Name) { 674 Version V = {{0}}; 675 int N = 0; 676 for (const char C : Name) { 677 if (isdigit(C)) { 678 V.Part[N] *= 10; 679 V.Part[N] += C - '0'; 680 } else if (C == '.') { 681 ++N; 682 if (N >= 4) 683 return V; 684 } else if (N > 0) 685 return V; 686 } 687 return V; 688 } 689 690 void CodeViewDebug::emitCompilerInformation() { 691 MCContext &Context = MMI->getContext(); 692 MCSymbol *CompilerBegin = Context.createTempSymbol(), 693 *CompilerEnd = Context.createTempSymbol(); 694 OS.AddComment("Record length"); 695 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 696 OS.EmitLabel(CompilerBegin); 697 OS.AddComment("Record kind: S_COMPILE3"); 698 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 699 uint32_t Flags = 0; 700 701 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 702 const MDNode *Node = *CUs->operands().begin(); 703 const auto *CU = cast<DICompileUnit>(Node); 704 705 // The low byte of the flags indicates the source language. 706 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 707 // TODO: Figure out which other flags need to be set. 708 709 OS.AddComment("Flags and language"); 710 OS.EmitIntValue(Flags, 4); 711 712 OS.AddComment("CPUType"); 713 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 714 715 StringRef CompilerVersion = CU->getProducer(); 716 Version FrontVer = parseVersion(CompilerVersion); 717 OS.AddComment("Frontend version"); 718 for (int N = 0; N < 4; ++N) 719 OS.EmitIntValue(FrontVer.Part[N], 2); 720 721 // Some Microsoft tools, like Binscope, expect a backend version number of at 722 // least 8.something, so we'll coerce the LLVM version into a form that 723 // guarantees it'll be big enough without really lying about the version. 724 int Major = 1000 * LLVM_VERSION_MAJOR + 725 10 * LLVM_VERSION_MINOR + 726 LLVM_VERSION_PATCH; 727 // Clamp it for builds that use unusually large version numbers. 728 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 729 Version BackVer = {{ Major, 0, 0, 0 }}; 730 OS.AddComment("Backend version"); 731 for (int N = 0; N < 4; ++N) 732 OS.EmitIntValue(BackVer.Part[N], 2); 733 734 OS.AddComment("Null-terminated compiler version string"); 735 emitNullTerminatedSymbolName(OS, CompilerVersion); 736 737 OS.EmitLabel(CompilerEnd); 738 } 739 740 void CodeViewDebug::emitInlineeLinesSubsection() { 741 if (InlinedSubprograms.empty()) 742 return; 743 744 OS.AddComment("Inlinee lines subsection"); 745 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 746 747 // We emit the checksum info for files. This is used by debuggers to 748 // determine if a pdb matches the source before loading it. Visual Studio, 749 // for instance, will display a warning that the breakpoints are not valid if 750 // the pdb does not match the source. 751 OS.AddComment("Inlinee lines signature"); 752 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 753 754 for (const DISubprogram *SP : InlinedSubprograms) { 755 assert(TypeIndices.count({SP, nullptr})); 756 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 757 758 OS.AddBlankLine(); 759 unsigned FileId = maybeRecordFile(SP->getFile()); 760 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 761 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 762 OS.AddBlankLine(); 763 OS.AddComment("Type index of inlined function"); 764 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 765 OS.AddComment("Offset into filechecksum table"); 766 OS.EmitCVFileChecksumOffsetDirective(FileId); 767 OS.AddComment("Starting line number"); 768 OS.EmitIntValue(SP->getLine(), 4); 769 } 770 771 endCVSubsection(InlineEnd); 772 } 773 774 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 775 const DILocation *InlinedAt, 776 const InlineSite &Site) { 777 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 778 *InlineEnd = MMI->getContext().createTempSymbol(); 779 780 assert(TypeIndices.count({Site.Inlinee, nullptr})); 781 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 782 783 // SymbolRecord 784 OS.AddComment("Record length"); 785 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 786 OS.EmitLabel(InlineBegin); 787 OS.AddComment("Record kind: S_INLINESITE"); 788 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 789 790 OS.AddComment("PtrParent"); 791 OS.EmitIntValue(0, 4); 792 OS.AddComment("PtrEnd"); 793 OS.EmitIntValue(0, 4); 794 OS.AddComment("Inlinee type index"); 795 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 796 797 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 798 unsigned StartLineNum = Site.Inlinee->getLine(); 799 800 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 801 FI.Begin, FI.End); 802 803 OS.EmitLabel(InlineEnd); 804 805 emitLocalVariableList(FI, Site.InlinedLocals); 806 807 // Recurse on child inlined call sites before closing the scope. 808 for (const DILocation *ChildSite : Site.ChildSites) { 809 auto I = FI.InlineSites.find(ChildSite); 810 assert(I != FI.InlineSites.end() && 811 "child site not in function inline site map"); 812 emitInlinedCallSite(FI, ChildSite, I->second); 813 } 814 815 // Close the scope. 816 OS.AddComment("Record length"); 817 OS.EmitIntValue(2, 2); // RecordLength 818 OS.AddComment("Record kind: S_INLINESITE_END"); 819 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 820 } 821 822 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 823 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 824 // comdat key. A section may be comdat because of -ffunction-sections or 825 // because it is comdat in the IR. 826 MCSectionCOFF *GVSec = 827 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 828 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 829 830 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 831 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 832 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 833 834 OS.SwitchSection(DebugSec); 835 836 // Emit the magic version number if this is the first time we've switched to 837 // this section. 838 if (ComdatDebugSections.insert(DebugSec).second) 839 emitCodeViewMagicVersion(); 840 } 841 842 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 843 // The only supported thunk ordinal is currently the standard type. 844 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 845 FunctionInfo &FI, 846 const MCSymbol *Fn) { 847 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 848 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 849 850 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 851 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 852 853 // Emit S_THUNK32 854 MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(), 855 *ThunkRecordEnd = MMI->getContext().createTempSymbol(); 856 OS.AddComment("Record length"); 857 OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2); 858 OS.EmitLabel(ThunkRecordBegin); 859 OS.AddComment("Record kind: S_THUNK32"); 860 OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2); 861 OS.AddComment("PtrParent"); 862 OS.EmitIntValue(0, 4); 863 OS.AddComment("PtrEnd"); 864 OS.EmitIntValue(0, 4); 865 OS.AddComment("PtrNext"); 866 OS.EmitIntValue(0, 4); 867 OS.AddComment("Thunk section relative address"); 868 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 869 OS.AddComment("Thunk section index"); 870 OS.EmitCOFFSectionIndex(Fn); 871 OS.AddComment("Code size"); 872 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 873 OS.AddComment("Ordinal"); 874 OS.EmitIntValue(unsigned(ordinal), 1); 875 OS.AddComment("Function name"); 876 emitNullTerminatedSymbolName(OS, FuncName); 877 // Additional fields specific to the thunk ordinal would go here. 878 OS.EmitLabel(ThunkRecordEnd); 879 880 // Local variables/inlined routines are purposely omitted here. The point of 881 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 882 883 // Emit S_PROC_ID_END 884 const unsigned RecordLengthForSymbolEnd = 2; 885 OS.AddComment("Record length"); 886 OS.EmitIntValue(RecordLengthForSymbolEnd, 2); 887 OS.AddComment("Record kind: S_PROC_ID_END"); 888 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 889 890 endCVSubsection(SymbolsEnd); 891 } 892 893 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 894 FunctionInfo &FI) { 895 // For each function there is a separate subsection which holds the PC to 896 // file:line table. 897 const MCSymbol *Fn = Asm->getSymbol(GV); 898 assert(Fn); 899 900 // Switch to the to a comdat section, if appropriate. 901 switchToDebugSectionForSymbol(Fn); 902 903 std::string FuncName; 904 auto *SP = GV->getSubprogram(); 905 assert(SP); 906 setCurrentSubprogram(SP); 907 908 if (SP->isThunk()) { 909 emitDebugInfoForThunk(GV, FI, Fn); 910 return; 911 } 912 913 // If we have a display name, build the fully qualified name by walking the 914 // chain of scopes. 915 if (!SP->getName().empty()) 916 FuncName = 917 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 918 919 // If our DISubprogram name is empty, use the mangled name. 920 if (FuncName.empty()) 921 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 922 923 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 924 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 925 OS.EmitCVFPOData(Fn); 926 927 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 928 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 929 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 930 { 931 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 932 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 933 OS.AddComment("Record length"); 934 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 935 OS.EmitLabel(ProcRecordBegin); 936 937 if (GV->hasLocalLinkage()) { 938 OS.AddComment("Record kind: S_LPROC32_ID"); 939 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 940 } else { 941 OS.AddComment("Record kind: S_GPROC32_ID"); 942 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 943 } 944 945 // These fields are filled in by tools like CVPACK which run after the fact. 946 OS.AddComment("PtrParent"); 947 OS.EmitIntValue(0, 4); 948 OS.AddComment("PtrEnd"); 949 OS.EmitIntValue(0, 4); 950 OS.AddComment("PtrNext"); 951 OS.EmitIntValue(0, 4); 952 // This is the important bit that tells the debugger where the function 953 // code is located and what's its size: 954 OS.AddComment("Code size"); 955 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 956 OS.AddComment("Offset after prologue"); 957 OS.EmitIntValue(0, 4); 958 OS.AddComment("Offset before epilogue"); 959 OS.EmitIntValue(0, 4); 960 OS.AddComment("Function type index"); 961 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 962 OS.AddComment("Function section relative address"); 963 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 964 OS.AddComment("Function section index"); 965 OS.EmitCOFFSectionIndex(Fn); 966 OS.AddComment("Flags"); 967 OS.EmitIntValue(0, 1); 968 // Emit the function display name as a null-terminated string. 969 OS.AddComment("Function name"); 970 // Truncate the name so we won't overflow the record length field. 971 emitNullTerminatedSymbolName(OS, FuncName); 972 OS.EmitLabel(ProcRecordEnd); 973 974 MCSymbol *FrameProcBegin = MMI->getContext().createTempSymbol(), 975 *FrameProcEnd = MMI->getContext().createTempSymbol(); 976 OS.AddComment("Record length"); 977 OS.emitAbsoluteSymbolDiff(FrameProcEnd, FrameProcBegin, 2); 978 OS.EmitLabel(FrameProcBegin); 979 OS.AddComment("Record kind: S_FRAMEPROC"); 980 OS.EmitIntValue(unsigned(SymbolKind::S_FRAMEPROC), 2); 981 // Subtract out the CSR size since MSVC excludes that and we include it. 982 OS.AddComment("FrameSize"); 983 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 984 OS.AddComment("Padding"); 985 OS.EmitIntValue(0, 4); 986 OS.AddComment("Offset of padding"); 987 OS.EmitIntValue(0, 4); 988 OS.AddComment("Bytes of callee saved registers"); 989 OS.EmitIntValue(FI.CSRSize, 4); 990 OS.AddComment("Exception handler offset"); 991 OS.EmitIntValue(0, 4); 992 OS.AddComment("Exception handler section"); 993 OS.EmitIntValue(0, 2); 994 OS.AddComment("Flags (defines frame register)"); 995 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 996 OS.EmitLabel(FrameProcEnd); 997 998 emitLocalVariableList(FI, FI.Locals); 999 emitLexicalBlockList(FI.ChildBlocks, FI); 1000 1001 // Emit inlined call site information. Only emit functions inlined directly 1002 // into the parent function. We'll emit the other sites recursively as part 1003 // of their parent inline site. 1004 for (const DILocation *InlinedAt : FI.ChildSites) { 1005 auto I = FI.InlineSites.find(InlinedAt); 1006 assert(I != FI.InlineSites.end() && 1007 "child site not in function inline site map"); 1008 emitInlinedCallSite(FI, InlinedAt, I->second); 1009 } 1010 1011 for (auto Annot : FI.Annotations) { 1012 MCSymbol *Label = Annot.first; 1013 MDTuple *Strs = cast<MDTuple>(Annot.second); 1014 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 1015 *AnnotEnd = MMI->getContext().createTempSymbol(); 1016 OS.AddComment("Record length"); 1017 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 1018 OS.EmitLabel(AnnotBegin); 1019 OS.AddComment("Record kind: S_ANNOTATION"); 1020 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 1021 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1022 // FIXME: Make sure we don't overflow the max record size. 1023 OS.EmitCOFFSectionIndex(Label); 1024 OS.EmitIntValue(Strs->getNumOperands(), 2); 1025 for (Metadata *MD : Strs->operands()) { 1026 // MDStrings are null terminated, so we can do EmitBytes and get the 1027 // nice .asciz directive. 1028 StringRef Str = cast<MDString>(MD)->getString(); 1029 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1030 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1031 } 1032 OS.EmitLabel(AnnotEnd); 1033 } 1034 1035 if (SP != nullptr) 1036 emitDebugInfoForUDTs(LocalUDTs); 1037 1038 // We're done with this function. 1039 OS.AddComment("Record length"); 1040 OS.EmitIntValue(0x0002, 2); 1041 OS.AddComment("Record kind: S_PROC_ID_END"); 1042 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 1043 } 1044 endCVSubsection(SymbolsEnd); 1045 1046 // We have an assembler directive that takes care of the whole line table. 1047 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1048 } 1049 1050 CodeViewDebug::LocalVarDefRange 1051 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1052 LocalVarDefRange DR; 1053 DR.InMemory = -1; 1054 DR.DataOffset = Offset; 1055 assert(DR.DataOffset == Offset && "truncation"); 1056 DR.IsSubfield = 0; 1057 DR.StructOffset = 0; 1058 DR.CVRegister = CVRegister; 1059 return DR; 1060 } 1061 1062 void CodeViewDebug::collectVariableInfoFromMFTable( 1063 DenseSet<InlinedEntity> &Processed) { 1064 const MachineFunction &MF = *Asm->MF; 1065 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1066 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1067 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1068 1069 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1070 if (!VI.Var) 1071 continue; 1072 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1073 "Expected inlined-at fields to agree"); 1074 1075 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1076 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1077 1078 // If variable scope is not found then skip this variable. 1079 if (!Scope) 1080 continue; 1081 1082 // If the variable has an attached offset expression, extract it. 1083 // FIXME: Try to handle DW_OP_deref as well. 1084 int64_t ExprOffset = 0; 1085 if (VI.Expr) 1086 if (!VI.Expr->extractIfOffset(ExprOffset)) 1087 continue; 1088 1089 // Get the frame register used and the offset. 1090 unsigned FrameReg = 0; 1091 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1092 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1093 1094 // Calculate the label ranges. 1095 LocalVarDefRange DefRange = 1096 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1097 for (const InsnRange &Range : Scope->getRanges()) { 1098 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1099 const MCSymbol *End = getLabelAfterInsn(Range.second); 1100 End = End ? End : Asm->getFunctionEnd(); 1101 DefRange.Ranges.emplace_back(Begin, End); 1102 } 1103 1104 LocalVariable Var; 1105 Var.DIVar = VI.Var; 1106 Var.DefRanges.emplace_back(std::move(DefRange)); 1107 recordLocalVariable(std::move(Var), Scope); 1108 } 1109 } 1110 1111 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1112 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1113 } 1114 1115 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1116 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1117 } 1118 1119 void CodeViewDebug::calculateRanges( 1120 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1121 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1122 1123 // Calculate the definition ranges. 1124 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1125 const InsnRange &Range = *I; 1126 const MachineInstr *DVInst = Range.first; 1127 assert(DVInst->isDebugValue() && "Invalid History entry"); 1128 // FIXME: Find a way to represent constant variables, since they are 1129 // relatively common. 1130 Optional<DbgVariableLocation> Location = 1131 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1132 if (!Location) 1133 continue; 1134 1135 // CodeView can only express variables in register and variables in memory 1136 // at a constant offset from a register. However, for variables passed 1137 // indirectly by pointer, it is common for that pointer to be spilled to a 1138 // stack location. For the special case of one offseted load followed by a 1139 // zero offset load (a pointer spilled to the stack), we change the type of 1140 // the local variable from a value type to a reference type. This tricks the 1141 // debugger into doing the load for us. 1142 if (Var.UseReferenceType) { 1143 // We're using a reference type. Drop the last zero offset load. 1144 if (canUseReferenceType(*Location)) 1145 Location->LoadChain.pop_back(); 1146 else 1147 continue; 1148 } else if (needsReferenceType(*Location)) { 1149 // This location can't be expressed without switching to a reference type. 1150 // Start over using that. 1151 Var.UseReferenceType = true; 1152 Var.DefRanges.clear(); 1153 calculateRanges(Var, Ranges); 1154 return; 1155 } 1156 1157 // We can only handle a register or an offseted load of a register. 1158 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1159 continue; 1160 { 1161 LocalVarDefRange DR; 1162 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1163 DR.InMemory = !Location->LoadChain.empty(); 1164 DR.DataOffset = 1165 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1166 if (Location->FragmentInfo) { 1167 DR.IsSubfield = true; 1168 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1169 } else { 1170 DR.IsSubfield = false; 1171 DR.StructOffset = 0; 1172 } 1173 1174 if (Var.DefRanges.empty() || 1175 Var.DefRanges.back().isDifferentLocation(DR)) { 1176 Var.DefRanges.emplace_back(std::move(DR)); 1177 } 1178 } 1179 1180 // Compute the label range. 1181 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1182 const MCSymbol *End = getLabelAfterInsn(Range.second); 1183 if (!End) { 1184 // This range is valid until the next overlapping bitpiece. In the 1185 // common case, ranges will not be bitpieces, so they will overlap. 1186 auto J = std::next(I); 1187 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1188 while (J != E && 1189 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1190 ++J; 1191 if (J != E) 1192 End = getLabelBeforeInsn(J->first); 1193 else 1194 End = Asm->getFunctionEnd(); 1195 } 1196 1197 // If the last range end is our begin, just extend the last range. 1198 // Otherwise make a new range. 1199 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1200 Var.DefRanges.back().Ranges; 1201 if (!R.empty() && R.back().second == Begin) 1202 R.back().second = End; 1203 else 1204 R.emplace_back(Begin, End); 1205 1206 // FIXME: Do more range combining. 1207 } 1208 } 1209 1210 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1211 DenseSet<InlinedEntity> Processed; 1212 // Grab the variable info that was squirreled away in the MMI side-table. 1213 collectVariableInfoFromMFTable(Processed); 1214 1215 for (const auto &I : DbgValues) { 1216 InlinedEntity IV = I.first; 1217 if (Processed.count(IV)) 1218 continue; 1219 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1220 const DILocation *InlinedAt = IV.second; 1221 1222 // Instruction ranges, specifying where IV is accessible. 1223 const auto &Ranges = I.second; 1224 1225 LexicalScope *Scope = nullptr; 1226 if (InlinedAt) 1227 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1228 else 1229 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1230 // If variable scope is not found then skip this variable. 1231 if (!Scope) 1232 continue; 1233 1234 LocalVariable Var; 1235 Var.DIVar = DIVar; 1236 1237 calculateRanges(Var, Ranges); 1238 recordLocalVariable(std::move(Var), Scope); 1239 } 1240 } 1241 1242 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1243 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1244 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1245 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1246 const Function &GV = MF->getFunction(); 1247 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1248 assert(Insertion.second && "function already has info"); 1249 CurFn = Insertion.first->second.get(); 1250 CurFn->FuncId = NextFuncId++; 1251 CurFn->Begin = Asm->getFunctionBegin(); 1252 1253 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1254 // callee-saved registers were used. For targets that don't use a PUSH 1255 // instruction (AArch64), this will be zero. 1256 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1257 CurFn->FrameSize = MFI.getStackSize(); 1258 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1259 1260 // For this function S_FRAMEPROC record, figure out which codeview register 1261 // will be the frame pointer. 1262 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1263 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1264 if (CurFn->FrameSize > 0) { 1265 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1266 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1267 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1268 } else { 1269 // If there is an FP, parameters are always relative to it. 1270 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1271 if (CurFn->HasStackRealignment) { 1272 // If the stack needs realignment, locals are relative to SP or VFRAME. 1273 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1274 } else { 1275 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1276 // other stack adjustments. 1277 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1278 } 1279 } 1280 } 1281 1282 // Compute other frame procedure options. 1283 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1284 if (MFI.hasVarSizedObjects()) 1285 FPO |= FrameProcedureOptions::HasAlloca; 1286 if (MF->exposesReturnsTwice()) 1287 FPO |= FrameProcedureOptions::HasSetJmp; 1288 // FIXME: Set HasLongJmp if we ever track that info. 1289 if (MF->hasInlineAsm()) 1290 FPO |= FrameProcedureOptions::HasInlineAssembly; 1291 if (GV.hasPersonalityFn()) { 1292 if (isAsynchronousEHPersonality( 1293 classifyEHPersonality(GV.getPersonalityFn()))) 1294 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1295 else 1296 FPO |= FrameProcedureOptions::HasExceptionHandling; 1297 } 1298 if (GV.hasFnAttribute(Attribute::InlineHint)) 1299 FPO |= FrameProcedureOptions::MarkedInline; 1300 if (GV.hasFnAttribute(Attribute::Naked)) 1301 FPO |= FrameProcedureOptions::Naked; 1302 if (MFI.hasStackProtectorIndex()) 1303 FPO |= FrameProcedureOptions::SecurityChecks; 1304 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1305 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1306 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && 1307 !GV.hasFnAttribute(Attribute::OptimizeNone)) 1308 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1309 // FIXME: Set GuardCfg when it is implemented. 1310 CurFn->FrameProcOpts = FPO; 1311 1312 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1313 1314 // Find the end of the function prolog. First known non-DBG_VALUE and 1315 // non-frame setup location marks the beginning of the function body. 1316 // FIXME: is there a simpler a way to do this? Can we just search 1317 // for the first instruction of the function, not the last of the prolog? 1318 DebugLoc PrologEndLoc; 1319 bool EmptyPrologue = true; 1320 for (const auto &MBB : *MF) { 1321 for (const auto &MI : MBB) { 1322 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1323 MI.getDebugLoc()) { 1324 PrologEndLoc = MI.getDebugLoc(); 1325 break; 1326 } else if (!MI.isMetaInstruction()) { 1327 EmptyPrologue = false; 1328 } 1329 } 1330 } 1331 1332 // Record beginning of function if we have a non-empty prologue. 1333 if (PrologEndLoc && !EmptyPrologue) { 1334 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1335 maybeRecordLocation(FnStartDL, MF); 1336 } 1337 } 1338 1339 static bool shouldEmitUdt(const DIType *T) { 1340 if (!T) 1341 return false; 1342 1343 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1344 if (T->getTag() == dwarf::DW_TAG_typedef) { 1345 if (DIScope *Scope = T->getScope().resolve()) { 1346 switch (Scope->getTag()) { 1347 case dwarf::DW_TAG_structure_type: 1348 case dwarf::DW_TAG_class_type: 1349 case dwarf::DW_TAG_union_type: 1350 return false; 1351 } 1352 } 1353 } 1354 1355 while (true) { 1356 if (!T || T->isForwardDecl()) 1357 return false; 1358 1359 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1360 if (!DT) 1361 return true; 1362 T = DT->getBaseType().resolve(); 1363 } 1364 return true; 1365 } 1366 1367 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1368 // Don't record empty UDTs. 1369 if (Ty->getName().empty()) 1370 return; 1371 if (!shouldEmitUdt(Ty)) 1372 return; 1373 1374 SmallVector<StringRef, 5> QualifiedNameComponents; 1375 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1376 Ty->getScope().resolve(), QualifiedNameComponents); 1377 1378 std::string FullyQualifiedName = 1379 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1380 1381 if (ClosestSubprogram == nullptr) { 1382 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1383 } else if (ClosestSubprogram == CurrentSubprogram) { 1384 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1385 } 1386 1387 // TODO: What if the ClosestSubprogram is neither null or the current 1388 // subprogram? Currently, the UDT just gets dropped on the floor. 1389 // 1390 // The current behavior is not desirable. To get maximal fidelity, we would 1391 // need to perform all type translation before beginning emission of .debug$S 1392 // and then make LocalUDTs a member of FunctionInfo 1393 } 1394 1395 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1396 // Generic dispatch for lowering an unknown type. 1397 switch (Ty->getTag()) { 1398 case dwarf::DW_TAG_array_type: 1399 return lowerTypeArray(cast<DICompositeType>(Ty)); 1400 case dwarf::DW_TAG_typedef: 1401 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1402 case dwarf::DW_TAG_base_type: 1403 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1404 case dwarf::DW_TAG_pointer_type: 1405 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1406 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1407 LLVM_FALLTHROUGH; 1408 case dwarf::DW_TAG_reference_type: 1409 case dwarf::DW_TAG_rvalue_reference_type: 1410 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1411 case dwarf::DW_TAG_ptr_to_member_type: 1412 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1413 case dwarf::DW_TAG_restrict_type: 1414 case dwarf::DW_TAG_const_type: 1415 case dwarf::DW_TAG_volatile_type: 1416 // TODO: add support for DW_TAG_atomic_type here 1417 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1418 case dwarf::DW_TAG_subroutine_type: 1419 if (ClassTy) { 1420 // The member function type of a member function pointer has no 1421 // ThisAdjustment. 1422 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1423 /*ThisAdjustment=*/0, 1424 /*IsStaticMethod=*/false); 1425 } 1426 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1427 case dwarf::DW_TAG_enumeration_type: 1428 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1429 case dwarf::DW_TAG_class_type: 1430 case dwarf::DW_TAG_structure_type: 1431 return lowerTypeClass(cast<DICompositeType>(Ty)); 1432 case dwarf::DW_TAG_union_type: 1433 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1434 case dwarf::DW_TAG_unspecified_type: 1435 return TypeIndex::None(); 1436 default: 1437 // Use the null type index. 1438 return TypeIndex(); 1439 } 1440 } 1441 1442 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1443 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1444 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1445 StringRef TypeName = Ty->getName(); 1446 1447 addToUDTs(Ty); 1448 1449 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1450 TypeName == "HRESULT") 1451 return TypeIndex(SimpleTypeKind::HResult); 1452 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1453 TypeName == "wchar_t") 1454 return TypeIndex(SimpleTypeKind::WideCharacter); 1455 1456 return UnderlyingTypeIndex; 1457 } 1458 1459 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1460 DITypeRef ElementTypeRef = Ty->getBaseType(); 1461 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1462 // IndexType is size_t, which depends on the bitness of the target. 1463 TypeIndex IndexType = getPointerSizeInBytes() == 8 1464 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1465 : TypeIndex(SimpleTypeKind::UInt32Long); 1466 1467 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1468 1469 // Add subranges to array type. 1470 DINodeArray Elements = Ty->getElements(); 1471 for (int i = Elements.size() - 1; i >= 0; --i) { 1472 const DINode *Element = Elements[i]; 1473 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1474 1475 const DISubrange *Subrange = cast<DISubrange>(Element); 1476 assert(Subrange->getLowerBound() == 0 && 1477 "codeview doesn't support subranges with lower bounds"); 1478 int64_t Count = -1; 1479 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1480 Count = CI->getSExtValue(); 1481 1482 // Forward declarations of arrays without a size and VLAs use a count of -1. 1483 // Emit a count of zero in these cases to match what MSVC does for arrays 1484 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1485 // should do for them even if we could distinguish them. 1486 if (Count == -1) 1487 Count = 0; 1488 1489 // Update the element size and element type index for subsequent subranges. 1490 ElementSize *= Count; 1491 1492 // If this is the outermost array, use the size from the array. It will be 1493 // more accurate if we had a VLA or an incomplete element type size. 1494 uint64_t ArraySize = 1495 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1496 1497 StringRef Name = (i == 0) ? Ty->getName() : ""; 1498 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1499 ElementTypeIndex = TypeTable.writeLeafType(AR); 1500 } 1501 1502 return ElementTypeIndex; 1503 } 1504 1505 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1506 TypeIndex Index; 1507 dwarf::TypeKind Kind; 1508 uint32_t ByteSize; 1509 1510 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1511 ByteSize = Ty->getSizeInBits() / 8; 1512 1513 SimpleTypeKind STK = SimpleTypeKind::None; 1514 switch (Kind) { 1515 case dwarf::DW_ATE_address: 1516 // FIXME: Translate 1517 break; 1518 case dwarf::DW_ATE_boolean: 1519 switch (ByteSize) { 1520 case 1: STK = SimpleTypeKind::Boolean8; break; 1521 case 2: STK = SimpleTypeKind::Boolean16; break; 1522 case 4: STK = SimpleTypeKind::Boolean32; break; 1523 case 8: STK = SimpleTypeKind::Boolean64; break; 1524 case 16: STK = SimpleTypeKind::Boolean128; break; 1525 } 1526 break; 1527 case dwarf::DW_ATE_complex_float: 1528 switch (ByteSize) { 1529 case 2: STK = SimpleTypeKind::Complex16; break; 1530 case 4: STK = SimpleTypeKind::Complex32; break; 1531 case 8: STK = SimpleTypeKind::Complex64; break; 1532 case 10: STK = SimpleTypeKind::Complex80; break; 1533 case 16: STK = SimpleTypeKind::Complex128; break; 1534 } 1535 break; 1536 case dwarf::DW_ATE_float: 1537 switch (ByteSize) { 1538 case 2: STK = SimpleTypeKind::Float16; break; 1539 case 4: STK = SimpleTypeKind::Float32; break; 1540 case 6: STK = SimpleTypeKind::Float48; break; 1541 case 8: STK = SimpleTypeKind::Float64; break; 1542 case 10: STK = SimpleTypeKind::Float80; break; 1543 case 16: STK = SimpleTypeKind::Float128; break; 1544 } 1545 break; 1546 case dwarf::DW_ATE_signed: 1547 switch (ByteSize) { 1548 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1549 case 2: STK = SimpleTypeKind::Int16Short; break; 1550 case 4: STK = SimpleTypeKind::Int32; break; 1551 case 8: STK = SimpleTypeKind::Int64Quad; break; 1552 case 16: STK = SimpleTypeKind::Int128Oct; break; 1553 } 1554 break; 1555 case dwarf::DW_ATE_unsigned: 1556 switch (ByteSize) { 1557 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1558 case 2: STK = SimpleTypeKind::UInt16Short; break; 1559 case 4: STK = SimpleTypeKind::UInt32; break; 1560 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1561 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1562 } 1563 break; 1564 case dwarf::DW_ATE_UTF: 1565 switch (ByteSize) { 1566 case 2: STK = SimpleTypeKind::Character16; break; 1567 case 4: STK = SimpleTypeKind::Character32; break; 1568 } 1569 break; 1570 case dwarf::DW_ATE_signed_char: 1571 if (ByteSize == 1) 1572 STK = SimpleTypeKind::SignedCharacter; 1573 break; 1574 case dwarf::DW_ATE_unsigned_char: 1575 if (ByteSize == 1) 1576 STK = SimpleTypeKind::UnsignedCharacter; 1577 break; 1578 default: 1579 break; 1580 } 1581 1582 // Apply some fixups based on the source-level type name. 1583 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1584 STK = SimpleTypeKind::Int32Long; 1585 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1586 STK = SimpleTypeKind::UInt32Long; 1587 if (STK == SimpleTypeKind::UInt16Short && 1588 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1589 STK = SimpleTypeKind::WideCharacter; 1590 if ((STK == SimpleTypeKind::SignedCharacter || 1591 STK == SimpleTypeKind::UnsignedCharacter) && 1592 Ty->getName() == "char") 1593 STK = SimpleTypeKind::NarrowCharacter; 1594 1595 return TypeIndex(STK); 1596 } 1597 1598 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1599 PointerOptions PO) { 1600 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1601 1602 // Pointers to simple types without any options can use SimpleTypeMode, rather 1603 // than having a dedicated pointer type record. 1604 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1605 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1606 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1607 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1608 ? SimpleTypeMode::NearPointer64 1609 : SimpleTypeMode::NearPointer32; 1610 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1611 } 1612 1613 PointerKind PK = 1614 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1615 PointerMode PM = PointerMode::Pointer; 1616 switch (Ty->getTag()) { 1617 default: llvm_unreachable("not a pointer tag type"); 1618 case dwarf::DW_TAG_pointer_type: 1619 PM = PointerMode::Pointer; 1620 break; 1621 case dwarf::DW_TAG_reference_type: 1622 PM = PointerMode::LValueReference; 1623 break; 1624 case dwarf::DW_TAG_rvalue_reference_type: 1625 PM = PointerMode::RValueReference; 1626 break; 1627 } 1628 1629 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1630 return TypeTable.writeLeafType(PR); 1631 } 1632 1633 static PointerToMemberRepresentation 1634 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1635 // SizeInBytes being zero generally implies that the member pointer type was 1636 // incomplete, which can happen if it is part of a function prototype. In this 1637 // case, use the unknown model instead of the general model. 1638 if (IsPMF) { 1639 switch (Flags & DINode::FlagPtrToMemberRep) { 1640 case 0: 1641 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1642 : PointerToMemberRepresentation::GeneralFunction; 1643 case DINode::FlagSingleInheritance: 1644 return PointerToMemberRepresentation::SingleInheritanceFunction; 1645 case DINode::FlagMultipleInheritance: 1646 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1647 case DINode::FlagVirtualInheritance: 1648 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1649 } 1650 } else { 1651 switch (Flags & DINode::FlagPtrToMemberRep) { 1652 case 0: 1653 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1654 : PointerToMemberRepresentation::GeneralData; 1655 case DINode::FlagSingleInheritance: 1656 return PointerToMemberRepresentation::SingleInheritanceData; 1657 case DINode::FlagMultipleInheritance: 1658 return PointerToMemberRepresentation::MultipleInheritanceData; 1659 case DINode::FlagVirtualInheritance: 1660 return PointerToMemberRepresentation::VirtualInheritanceData; 1661 } 1662 } 1663 llvm_unreachable("invalid ptr to member representation"); 1664 } 1665 1666 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1667 PointerOptions PO) { 1668 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1669 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1670 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1671 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1672 : PointerKind::Near32; 1673 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1674 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1675 : PointerMode::PointerToDataMember; 1676 1677 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1678 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1679 MemberPointerInfo MPI( 1680 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1681 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1682 return TypeTable.writeLeafType(PR); 1683 } 1684 1685 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1686 /// have a translation, use the NearC convention. 1687 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1688 switch (DwarfCC) { 1689 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1690 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1691 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1692 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1693 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1694 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1695 } 1696 return CallingConvention::NearC; 1697 } 1698 1699 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1700 ModifierOptions Mods = ModifierOptions::None; 1701 PointerOptions PO = PointerOptions::None; 1702 bool IsModifier = true; 1703 const DIType *BaseTy = Ty; 1704 while (IsModifier && BaseTy) { 1705 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1706 switch (BaseTy->getTag()) { 1707 case dwarf::DW_TAG_const_type: 1708 Mods |= ModifierOptions::Const; 1709 PO |= PointerOptions::Const; 1710 break; 1711 case dwarf::DW_TAG_volatile_type: 1712 Mods |= ModifierOptions::Volatile; 1713 PO |= PointerOptions::Volatile; 1714 break; 1715 case dwarf::DW_TAG_restrict_type: 1716 // Only pointer types be marked with __restrict. There is no known flag 1717 // for __restrict in LF_MODIFIER records. 1718 PO |= PointerOptions::Restrict; 1719 break; 1720 default: 1721 IsModifier = false; 1722 break; 1723 } 1724 if (IsModifier) 1725 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1726 } 1727 1728 // Check if the inner type will use an LF_POINTER record. If so, the 1729 // qualifiers will go in the LF_POINTER record. This comes up for types like 1730 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1731 // char *'. 1732 if (BaseTy) { 1733 switch (BaseTy->getTag()) { 1734 case dwarf::DW_TAG_pointer_type: 1735 case dwarf::DW_TAG_reference_type: 1736 case dwarf::DW_TAG_rvalue_reference_type: 1737 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1738 case dwarf::DW_TAG_ptr_to_member_type: 1739 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1740 default: 1741 break; 1742 } 1743 } 1744 1745 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1746 1747 // Return the base type index if there aren't any modifiers. For example, the 1748 // metadata could contain restrict wrappers around non-pointer types. 1749 if (Mods == ModifierOptions::None) 1750 return ModifiedTI; 1751 1752 ModifierRecord MR(ModifiedTI, Mods); 1753 return TypeTable.writeLeafType(MR); 1754 } 1755 1756 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1757 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1758 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1759 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1760 1761 // MSVC uses type none for variadic argument. 1762 if (ReturnAndArgTypeIndices.size() > 1 && 1763 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1764 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1765 } 1766 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1767 ArrayRef<TypeIndex> ArgTypeIndices = None; 1768 if (!ReturnAndArgTypeIndices.empty()) { 1769 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1770 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1771 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1772 } 1773 1774 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1775 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1776 1777 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1778 1779 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1780 ArgTypeIndices.size(), ArgListIndex); 1781 return TypeTable.writeLeafType(Procedure); 1782 } 1783 1784 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1785 const DIType *ClassTy, 1786 int ThisAdjustment, 1787 bool IsStaticMethod) { 1788 // Lower the containing class type. 1789 TypeIndex ClassType = getTypeIndex(ClassTy); 1790 1791 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1792 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1793 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1794 1795 // MSVC uses type none for variadic argument. 1796 if (ReturnAndArgTypeIndices.size() > 1 && 1797 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1798 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1799 } 1800 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1801 ArrayRef<TypeIndex> ArgTypeIndices = None; 1802 if (!ReturnAndArgTypeIndices.empty()) { 1803 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1804 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1805 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1806 } 1807 TypeIndex ThisTypeIndex; 1808 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1809 ThisTypeIndex = ArgTypeIndices.front(); 1810 ArgTypeIndices = ArgTypeIndices.drop_front(); 1811 } 1812 1813 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1814 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1815 1816 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1817 1818 // TODO: Need to use the correct values for FunctionOptions. 1819 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1820 FunctionOptions::None, ArgTypeIndices.size(), 1821 ArgListIndex, ThisAdjustment); 1822 return TypeTable.writeLeafType(MFR); 1823 } 1824 1825 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1826 unsigned VSlotCount = 1827 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1828 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1829 1830 VFTableShapeRecord VFTSR(Slots); 1831 return TypeTable.writeLeafType(VFTSR); 1832 } 1833 1834 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1835 switch (Flags & DINode::FlagAccessibility) { 1836 case DINode::FlagPrivate: return MemberAccess::Private; 1837 case DINode::FlagPublic: return MemberAccess::Public; 1838 case DINode::FlagProtected: return MemberAccess::Protected; 1839 case 0: 1840 // If there was no explicit access control, provide the default for the tag. 1841 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1842 : MemberAccess::Public; 1843 } 1844 llvm_unreachable("access flags are exclusive"); 1845 } 1846 1847 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1848 if (SP->isArtificial()) 1849 return MethodOptions::CompilerGenerated; 1850 1851 // FIXME: Handle other MethodOptions. 1852 1853 return MethodOptions::None; 1854 } 1855 1856 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1857 bool Introduced) { 1858 if (SP->getFlags() & DINode::FlagStaticMember) 1859 return MethodKind::Static; 1860 1861 switch (SP->getVirtuality()) { 1862 case dwarf::DW_VIRTUALITY_none: 1863 break; 1864 case dwarf::DW_VIRTUALITY_virtual: 1865 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1866 case dwarf::DW_VIRTUALITY_pure_virtual: 1867 return Introduced ? MethodKind::PureIntroducingVirtual 1868 : MethodKind::PureVirtual; 1869 default: 1870 llvm_unreachable("unhandled virtuality case"); 1871 } 1872 1873 return MethodKind::Vanilla; 1874 } 1875 1876 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1877 switch (Ty->getTag()) { 1878 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1879 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1880 } 1881 llvm_unreachable("unexpected tag"); 1882 } 1883 1884 /// Return ClassOptions that should be present on both the forward declaration 1885 /// and the defintion of a tag type. 1886 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1887 ClassOptions CO = ClassOptions::None; 1888 1889 // MSVC always sets this flag, even for local types. Clang doesn't always 1890 // appear to give every type a linkage name, which may be problematic for us. 1891 // FIXME: Investigate the consequences of not following them here. 1892 if (!Ty->getIdentifier().empty()) 1893 CO |= ClassOptions::HasUniqueName; 1894 1895 // Put the Nested flag on a type if it appears immediately inside a tag type. 1896 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1897 // here. That flag is only set on definitions, and not forward declarations. 1898 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1899 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1900 CO |= ClassOptions::Nested; 1901 1902 // Put the Scoped flag on function-local types. 1903 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1904 Scope = Scope->getScope().resolve()) { 1905 if (isa<DISubprogram>(Scope)) { 1906 CO |= ClassOptions::Scoped; 1907 break; 1908 } 1909 } 1910 1911 return CO; 1912 } 1913 1914 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1915 switch (Ty->getTag()) { 1916 case dwarf::DW_TAG_class_type: 1917 case dwarf::DW_TAG_structure_type: 1918 case dwarf::DW_TAG_union_type: 1919 case dwarf::DW_TAG_enumeration_type: 1920 break; 1921 default: 1922 return; 1923 } 1924 1925 if (const auto *File = Ty->getFile()) { 1926 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1927 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1928 1929 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1930 TypeTable.writeLeafType(USLR); 1931 } 1932 } 1933 1934 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1935 ClassOptions CO = getCommonClassOptions(Ty); 1936 TypeIndex FTI; 1937 unsigned EnumeratorCount = 0; 1938 1939 if (Ty->isForwardDecl()) { 1940 CO |= ClassOptions::ForwardReference; 1941 } else { 1942 ContinuationRecordBuilder ContinuationBuilder; 1943 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1944 for (const DINode *Element : Ty->getElements()) { 1945 // We assume that the frontend provides all members in source declaration 1946 // order, which is what MSVC does. 1947 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1948 EnumeratorRecord ER(MemberAccess::Public, 1949 APSInt::getUnsigned(Enumerator->getValue()), 1950 Enumerator->getName()); 1951 ContinuationBuilder.writeMemberType(ER); 1952 EnumeratorCount++; 1953 } 1954 } 1955 FTI = TypeTable.insertRecord(ContinuationBuilder); 1956 } 1957 1958 std::string FullName = getFullyQualifiedName(Ty); 1959 1960 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1961 getTypeIndex(Ty->getBaseType())); 1962 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 1963 1964 addUDTSrcLine(Ty, EnumTI); 1965 1966 return EnumTI; 1967 } 1968 1969 //===----------------------------------------------------------------------===// 1970 // ClassInfo 1971 //===----------------------------------------------------------------------===// 1972 1973 struct llvm::ClassInfo { 1974 struct MemberInfo { 1975 const DIDerivedType *MemberTypeNode; 1976 uint64_t BaseOffset; 1977 }; 1978 // [MemberInfo] 1979 using MemberList = std::vector<MemberInfo>; 1980 1981 using MethodsList = TinyPtrVector<const DISubprogram *>; 1982 // MethodName -> MethodsList 1983 using MethodsMap = MapVector<MDString *, MethodsList>; 1984 1985 /// Base classes. 1986 std::vector<const DIDerivedType *> Inheritance; 1987 1988 /// Direct members. 1989 MemberList Members; 1990 // Direct overloaded methods gathered by name. 1991 MethodsMap Methods; 1992 1993 TypeIndex VShapeTI; 1994 1995 std::vector<const DIType *> NestedTypes; 1996 }; 1997 1998 void CodeViewDebug::clear() { 1999 assert(CurFn == nullptr); 2000 FileIdMap.clear(); 2001 FnDebugInfo.clear(); 2002 FileToFilepathMap.clear(); 2003 LocalUDTs.clear(); 2004 GlobalUDTs.clear(); 2005 TypeIndices.clear(); 2006 CompleteTypeIndices.clear(); 2007 } 2008 2009 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2010 const DIDerivedType *DDTy) { 2011 if (!DDTy->getName().empty()) { 2012 Info.Members.push_back({DDTy, 0}); 2013 return; 2014 } 2015 2016 // An unnamed member may represent a nested struct or union. Attempt to 2017 // interpret the unnamed member as a DICompositeType possibly wrapped in 2018 // qualifier types. Add all the indirect fields to the current record if that 2019 // succeeds, and drop the member if that fails. 2020 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2021 uint64_t Offset = DDTy->getOffsetInBits(); 2022 const DIType *Ty = DDTy->getBaseType().resolve(); 2023 bool FullyResolved = false; 2024 while (!FullyResolved) { 2025 switch (Ty->getTag()) { 2026 case dwarf::DW_TAG_const_type: 2027 case dwarf::DW_TAG_volatile_type: 2028 // FIXME: we should apply the qualifier types to the indirect fields 2029 // rather than dropping them. 2030 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2031 break; 2032 default: 2033 FullyResolved = true; 2034 break; 2035 } 2036 } 2037 2038 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2039 if (!DCTy) 2040 return; 2041 2042 ClassInfo NestedInfo = collectClassInfo(DCTy); 2043 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2044 Info.Members.push_back( 2045 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2046 } 2047 2048 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2049 ClassInfo Info; 2050 // Add elements to structure type. 2051 DINodeArray Elements = Ty->getElements(); 2052 for (auto *Element : Elements) { 2053 // We assume that the frontend provides all members in source declaration 2054 // order, which is what MSVC does. 2055 if (!Element) 2056 continue; 2057 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2058 Info.Methods[SP->getRawName()].push_back(SP); 2059 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2060 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2061 collectMemberInfo(Info, DDTy); 2062 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2063 Info.Inheritance.push_back(DDTy); 2064 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2065 DDTy->getName() == "__vtbl_ptr_type") { 2066 Info.VShapeTI = getTypeIndex(DDTy); 2067 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2068 Info.NestedTypes.push_back(DDTy); 2069 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2070 // Ignore friend members. It appears that MSVC emitted info about 2071 // friends in the past, but modern versions do not. 2072 } 2073 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2074 Info.NestedTypes.push_back(Composite); 2075 } 2076 // Skip other unrecognized kinds of elements. 2077 } 2078 return Info; 2079 } 2080 2081 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2082 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2083 // if a complete type should be emitted instead of a forward reference. 2084 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2085 !Ty->isForwardDecl(); 2086 } 2087 2088 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2089 // Emit the complete type for unnamed structs. C++ classes with methods 2090 // which have a circular reference back to the class type are expected to 2091 // be named by the front-end and should not be "unnamed". C unnamed 2092 // structs should not have circular references. 2093 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2094 // If this unnamed complete type is already in the process of being defined 2095 // then the description of the type is malformed and cannot be emitted 2096 // into CodeView correctly so report a fatal error. 2097 auto I = CompleteTypeIndices.find(Ty); 2098 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2099 report_fatal_error("cannot debug circular reference to unnamed type"); 2100 return getCompleteTypeIndex(Ty); 2101 } 2102 2103 // First, construct the forward decl. Don't look into Ty to compute the 2104 // forward decl options, since it might not be available in all TUs. 2105 TypeRecordKind Kind = getRecordKind(Ty); 2106 ClassOptions CO = 2107 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2108 std::string FullName = getFullyQualifiedName(Ty); 2109 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2110 FullName, Ty->getIdentifier()); 2111 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2112 if (!Ty->isForwardDecl()) 2113 DeferredCompleteTypes.push_back(Ty); 2114 return FwdDeclTI; 2115 } 2116 2117 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2118 // Construct the field list and complete type record. 2119 TypeRecordKind Kind = getRecordKind(Ty); 2120 ClassOptions CO = getCommonClassOptions(Ty); 2121 TypeIndex FieldTI; 2122 TypeIndex VShapeTI; 2123 unsigned FieldCount; 2124 bool ContainsNestedClass; 2125 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2126 lowerRecordFieldList(Ty); 2127 2128 if (ContainsNestedClass) 2129 CO |= ClassOptions::ContainsNestedClass; 2130 2131 std::string FullName = getFullyQualifiedName(Ty); 2132 2133 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2134 2135 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2136 SizeInBytes, FullName, Ty->getIdentifier()); 2137 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2138 2139 addUDTSrcLine(Ty, ClassTI); 2140 2141 addToUDTs(Ty); 2142 2143 return ClassTI; 2144 } 2145 2146 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2147 // Emit the complete type for unnamed unions. 2148 if (shouldAlwaysEmitCompleteClassType(Ty)) 2149 return getCompleteTypeIndex(Ty); 2150 2151 ClassOptions CO = 2152 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2153 std::string FullName = getFullyQualifiedName(Ty); 2154 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2155 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2156 if (!Ty->isForwardDecl()) 2157 DeferredCompleteTypes.push_back(Ty); 2158 return FwdDeclTI; 2159 } 2160 2161 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2162 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2163 TypeIndex FieldTI; 2164 unsigned FieldCount; 2165 bool ContainsNestedClass; 2166 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2167 lowerRecordFieldList(Ty); 2168 2169 if (ContainsNestedClass) 2170 CO |= ClassOptions::ContainsNestedClass; 2171 2172 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2173 std::string FullName = getFullyQualifiedName(Ty); 2174 2175 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2176 Ty->getIdentifier()); 2177 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2178 2179 addUDTSrcLine(Ty, UnionTI); 2180 2181 addToUDTs(Ty); 2182 2183 return UnionTI; 2184 } 2185 2186 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2187 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2188 // Manually count members. MSVC appears to count everything that generates a 2189 // field list record. Each individual overload in a method overload group 2190 // contributes to this count, even though the overload group is a single field 2191 // list record. 2192 unsigned MemberCount = 0; 2193 ClassInfo Info = collectClassInfo(Ty); 2194 ContinuationRecordBuilder ContinuationBuilder; 2195 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2196 2197 // Create base classes. 2198 for (const DIDerivedType *I : Info.Inheritance) { 2199 if (I->getFlags() & DINode::FlagVirtual) { 2200 // Virtual base. 2201 unsigned VBPtrOffset = I->getVBPtrOffset(); 2202 // FIXME: Despite the accessor name, the offset is really in bytes. 2203 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2204 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2205 ? TypeRecordKind::IndirectVirtualBaseClass 2206 : TypeRecordKind::VirtualBaseClass; 2207 VirtualBaseClassRecord VBCR( 2208 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2209 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2210 VBTableIndex); 2211 2212 ContinuationBuilder.writeMemberType(VBCR); 2213 MemberCount++; 2214 } else { 2215 assert(I->getOffsetInBits() % 8 == 0 && 2216 "bases must be on byte boundaries"); 2217 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2218 getTypeIndex(I->getBaseType()), 2219 I->getOffsetInBits() / 8); 2220 ContinuationBuilder.writeMemberType(BCR); 2221 MemberCount++; 2222 } 2223 } 2224 2225 // Create members. 2226 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2227 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2228 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2229 StringRef MemberName = Member->getName(); 2230 MemberAccess Access = 2231 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2232 2233 if (Member->isStaticMember()) { 2234 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2235 ContinuationBuilder.writeMemberType(SDMR); 2236 MemberCount++; 2237 continue; 2238 } 2239 2240 // Virtual function pointer member. 2241 if ((Member->getFlags() & DINode::FlagArtificial) && 2242 Member->getName().startswith("_vptr$")) { 2243 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2244 ContinuationBuilder.writeMemberType(VFPR); 2245 MemberCount++; 2246 continue; 2247 } 2248 2249 // Data member. 2250 uint64_t MemberOffsetInBits = 2251 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2252 if (Member->isBitField()) { 2253 uint64_t StartBitOffset = MemberOffsetInBits; 2254 if (const auto *CI = 2255 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2256 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2257 } 2258 StartBitOffset -= MemberOffsetInBits; 2259 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2260 StartBitOffset); 2261 MemberBaseType = TypeTable.writeLeafType(BFR); 2262 } 2263 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2264 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2265 MemberName); 2266 ContinuationBuilder.writeMemberType(DMR); 2267 MemberCount++; 2268 } 2269 2270 // Create methods 2271 for (auto &MethodItr : Info.Methods) { 2272 StringRef Name = MethodItr.first->getString(); 2273 2274 std::vector<OneMethodRecord> Methods; 2275 for (const DISubprogram *SP : MethodItr.second) { 2276 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2277 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2278 2279 unsigned VFTableOffset = -1; 2280 if (Introduced) 2281 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2282 2283 Methods.push_back(OneMethodRecord( 2284 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2285 translateMethodKindFlags(SP, Introduced), 2286 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2287 MemberCount++; 2288 } 2289 assert(!Methods.empty() && "Empty methods map entry"); 2290 if (Methods.size() == 1) 2291 ContinuationBuilder.writeMemberType(Methods[0]); 2292 else { 2293 // FIXME: Make this use its own ContinuationBuilder so that 2294 // MethodOverloadList can be split correctly. 2295 MethodOverloadListRecord MOLR(Methods); 2296 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2297 2298 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2299 ContinuationBuilder.writeMemberType(OMR); 2300 } 2301 } 2302 2303 // Create nested classes. 2304 for (const DIType *Nested : Info.NestedTypes) { 2305 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2306 ContinuationBuilder.writeMemberType(R); 2307 MemberCount++; 2308 } 2309 2310 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2311 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2312 !Info.NestedTypes.empty()); 2313 } 2314 2315 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2316 if (!VBPType.getIndex()) { 2317 // Make a 'const int *' type. 2318 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2319 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2320 2321 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2322 : PointerKind::Near32; 2323 PointerMode PM = PointerMode::Pointer; 2324 PointerOptions PO = PointerOptions::None; 2325 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2326 VBPType = TypeTable.writeLeafType(PR); 2327 } 2328 2329 return VBPType; 2330 } 2331 2332 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2333 const DIType *Ty = TypeRef.resolve(); 2334 const DIType *ClassTy = ClassTyRef.resolve(); 2335 2336 // The null DIType is the void type. Don't try to hash it. 2337 if (!Ty) 2338 return TypeIndex::Void(); 2339 2340 // Check if we've already translated this type. Don't try to do a 2341 // get-or-create style insertion that caches the hash lookup across the 2342 // lowerType call. It will update the TypeIndices map. 2343 auto I = TypeIndices.find({Ty, ClassTy}); 2344 if (I != TypeIndices.end()) 2345 return I->second; 2346 2347 TypeLoweringScope S(*this); 2348 TypeIndex TI = lowerType(Ty, ClassTy); 2349 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2350 } 2351 2352 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2353 DIType *Ty = TypeRef.resolve(); 2354 PointerRecord PR(getTypeIndex(Ty), 2355 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2356 : PointerKind::Near32, 2357 PointerMode::LValueReference, PointerOptions::None, 2358 Ty->getSizeInBits() / 8); 2359 return TypeTable.writeLeafType(PR); 2360 } 2361 2362 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2363 const DIType *Ty = TypeRef.resolve(); 2364 2365 // The null DIType is the void type. Don't try to hash it. 2366 if (!Ty) 2367 return TypeIndex::Void(); 2368 2369 // If this is a non-record type, the complete type index is the same as the 2370 // normal type index. Just call getTypeIndex. 2371 switch (Ty->getTag()) { 2372 case dwarf::DW_TAG_class_type: 2373 case dwarf::DW_TAG_structure_type: 2374 case dwarf::DW_TAG_union_type: 2375 break; 2376 default: 2377 return getTypeIndex(Ty); 2378 } 2379 2380 // Check if we've already translated the complete record type. 2381 const auto *CTy = cast<DICompositeType>(Ty); 2382 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2383 if (!InsertResult.second) 2384 return InsertResult.first->second; 2385 2386 TypeLoweringScope S(*this); 2387 2388 // Make sure the forward declaration is emitted first. It's unclear if this 2389 // is necessary, but MSVC does it, and we should follow suit until we can show 2390 // otherwise. 2391 // We only emit a forward declaration for named types. 2392 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2393 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2394 2395 // Just use the forward decl if we don't have complete type info. This 2396 // might happen if the frontend is using modules and expects the complete 2397 // definition to be emitted elsewhere. 2398 if (CTy->isForwardDecl()) 2399 return FwdDeclTI; 2400 } 2401 2402 TypeIndex TI; 2403 switch (CTy->getTag()) { 2404 case dwarf::DW_TAG_class_type: 2405 case dwarf::DW_TAG_structure_type: 2406 TI = lowerCompleteTypeClass(CTy); 2407 break; 2408 case dwarf::DW_TAG_union_type: 2409 TI = lowerCompleteTypeUnion(CTy); 2410 break; 2411 default: 2412 llvm_unreachable("not a record"); 2413 } 2414 2415 // Update the type index associated with this CompositeType. This cannot 2416 // use the 'InsertResult' iterator above because it is potentially 2417 // invalidated by map insertions which can occur while lowering the class 2418 // type above. 2419 CompleteTypeIndices[CTy] = TI; 2420 return TI; 2421 } 2422 2423 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2424 /// and do this until fixpoint, as each complete record type typically 2425 /// references 2426 /// many other record types. 2427 void CodeViewDebug::emitDeferredCompleteTypes() { 2428 SmallVector<const DICompositeType *, 4> TypesToEmit; 2429 while (!DeferredCompleteTypes.empty()) { 2430 std::swap(DeferredCompleteTypes, TypesToEmit); 2431 for (const DICompositeType *RecordTy : TypesToEmit) 2432 getCompleteTypeIndex(RecordTy); 2433 TypesToEmit.clear(); 2434 } 2435 } 2436 2437 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2438 ArrayRef<LocalVariable> Locals) { 2439 // Get the sorted list of parameters and emit them first. 2440 SmallVector<const LocalVariable *, 6> Params; 2441 for (const LocalVariable &L : Locals) 2442 if (L.DIVar->isParameter()) 2443 Params.push_back(&L); 2444 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2445 return L->DIVar->getArg() < R->DIVar->getArg(); 2446 }); 2447 for (const LocalVariable *L : Params) 2448 emitLocalVariable(FI, *L); 2449 2450 // Next emit all non-parameters in the order that we found them. 2451 for (const LocalVariable &L : Locals) 2452 if (!L.DIVar->isParameter()) 2453 emitLocalVariable(FI, L); 2454 } 2455 2456 /// Only call this on endian-specific types like ulittle16_t and little32_t, or 2457 /// structs composed of them. 2458 template <typename T> 2459 static void copyBytesForDefRange(SmallString<20> &BytePrefix, 2460 SymbolKind SymKind, const T &DefRangeHeader) { 2461 BytePrefix.resize(2 + sizeof(T)); 2462 ulittle16_t SymKindLE = ulittle16_t(SymKind); 2463 memcpy(&BytePrefix[0], &SymKindLE, 2); 2464 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); 2465 } 2466 2467 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2468 const LocalVariable &Var) { 2469 // LocalSym record, see SymbolRecord.h for more info. 2470 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2471 *LocalEnd = MMI->getContext().createTempSymbol(); 2472 OS.AddComment("Record length"); 2473 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2474 OS.EmitLabel(LocalBegin); 2475 2476 OS.AddComment("Record kind: S_LOCAL"); 2477 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2478 2479 LocalSymFlags Flags = LocalSymFlags::None; 2480 if (Var.DIVar->isParameter()) 2481 Flags |= LocalSymFlags::IsParameter; 2482 if (Var.DefRanges.empty()) 2483 Flags |= LocalSymFlags::IsOptimizedOut; 2484 2485 OS.AddComment("TypeIndex"); 2486 TypeIndex TI = Var.UseReferenceType 2487 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2488 : getCompleteTypeIndex(Var.DIVar->getType()); 2489 OS.EmitIntValue(TI.getIndex(), 4); 2490 OS.AddComment("Flags"); 2491 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2492 // Truncate the name so we won't overflow the record length field. 2493 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2494 OS.EmitLabel(LocalEnd); 2495 2496 // Calculate the on disk prefix of the appropriate def range record. The 2497 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2498 // should be big enough to hold all forms without memory allocation. 2499 SmallString<20> BytePrefix; 2500 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2501 BytePrefix.clear(); 2502 if (DefRange.InMemory) { 2503 int Offset = DefRange.DataOffset; 2504 unsigned Reg = DefRange.CVRegister; 2505 2506 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2507 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2508 // instead. In simple cases, $T0 will be the CFA. 2509 if (RegisterId(Reg) == RegisterId::ESP) { 2510 Reg = unsigned(RegisterId::VFRAME); 2511 Offset -= FI.FrameSize; 2512 2513 // If the frame requires realignment, VFRAME will be ESP after it is 2514 // aligned. We have to remove the ESP adjustments made to push CSRs and 2515 // EBP. EBP is not included in CSRSize. 2516 if (FI.HasStackRealignment) 2517 Offset += FI.CSRSize + 4; 2518 } 2519 2520 // If we can use the chosen frame pointer for the frame and this isn't a 2521 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2522 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2523 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2524 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2525 (bool(Flags & LocalSymFlags::IsParameter) 2526 ? (EncFP == FI.EncodedParamFramePtrReg) 2527 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2528 little32_t FPOffset = little32_t(Offset); 2529 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); 2530 } else { 2531 uint16_t RegRelFlags = 0; 2532 if (DefRange.IsSubfield) { 2533 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2534 (DefRange.StructOffset 2535 << DefRangeRegisterRelSym::OffsetInParentShift); 2536 } 2537 DefRangeRegisterRelSym::Header DRHdr; 2538 DRHdr.Register = Reg; 2539 DRHdr.Flags = RegRelFlags; 2540 DRHdr.BasePointerOffset = Offset; 2541 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); 2542 } 2543 } else { 2544 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2545 if (DefRange.IsSubfield) { 2546 DefRangeSubfieldRegisterSym::Header DRHdr; 2547 DRHdr.Register = DefRange.CVRegister; 2548 DRHdr.MayHaveNoName = 0; 2549 DRHdr.OffsetInParent = DefRange.StructOffset; 2550 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); 2551 } else { 2552 DefRangeRegisterSym::Header DRHdr; 2553 DRHdr.Register = DefRange.CVRegister; 2554 DRHdr.MayHaveNoName = 0; 2555 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); 2556 } 2557 } 2558 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2559 } 2560 } 2561 2562 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2563 const FunctionInfo& FI) { 2564 for (LexicalBlock *Block : Blocks) 2565 emitLexicalBlock(*Block, FI); 2566 } 2567 2568 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2569 /// lexical block scope. 2570 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2571 const FunctionInfo& FI) { 2572 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(), 2573 *RecordEnd = MMI->getContext().createTempSymbol(); 2574 2575 // Lexical block symbol record. 2576 OS.AddComment("Record length"); 2577 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length 2578 OS.EmitLabel(RecordBegin); 2579 OS.AddComment("Record kind: S_BLOCK32"); 2580 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind 2581 OS.AddComment("PtrParent"); 2582 OS.EmitIntValue(0, 4); // PtrParent 2583 OS.AddComment("PtrEnd"); 2584 OS.EmitIntValue(0, 4); // PtrEnd 2585 OS.AddComment("Code size"); 2586 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2587 OS.AddComment("Function section relative address"); 2588 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2589 OS.AddComment("Function section index"); 2590 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2591 OS.AddComment("Lexical block name"); 2592 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2593 OS.EmitLabel(RecordEnd); 2594 2595 // Emit variables local to this lexical block. 2596 emitLocalVariableList(FI, Block.Locals); 2597 2598 // Emit lexical blocks contained within this block. 2599 emitLexicalBlockList(Block.Children, FI); 2600 2601 // Close the lexical block scope. 2602 OS.AddComment("Record length"); 2603 OS.EmitIntValue(2, 2); // Record Length 2604 OS.AddComment("Record kind: S_END"); 2605 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind 2606 } 2607 2608 /// Convenience routine for collecting lexical block information for a list 2609 /// of lexical scopes. 2610 void CodeViewDebug::collectLexicalBlockInfo( 2611 SmallVectorImpl<LexicalScope *> &Scopes, 2612 SmallVectorImpl<LexicalBlock *> &Blocks, 2613 SmallVectorImpl<LocalVariable> &Locals) { 2614 for (LexicalScope *Scope : Scopes) 2615 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2616 } 2617 2618 /// Populate the lexical blocks and local variable lists of the parent with 2619 /// information about the specified lexical scope. 2620 void CodeViewDebug::collectLexicalBlockInfo( 2621 LexicalScope &Scope, 2622 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2623 SmallVectorImpl<LocalVariable> &ParentLocals) { 2624 if (Scope.isAbstractScope()) 2625 return; 2626 2627 auto LocalsIter = ScopeVariables.find(&Scope); 2628 if (LocalsIter == ScopeVariables.end()) { 2629 // This scope does not contain variables and can be eliminated. 2630 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2631 return; 2632 } 2633 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2634 2635 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2636 if (!DILB) { 2637 // This scope is not a lexical block and can be eliminated, but keep any 2638 // local variables it contains. 2639 ParentLocals.append(Locals.begin(), Locals.end()); 2640 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2641 return; 2642 } 2643 2644 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2645 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2646 // This lexical block scope has too many address ranges to represent in the 2647 // current CodeView format or does not have a valid address range. 2648 // Eliminate this lexical scope and promote any locals it contains to the 2649 // parent scope. 2650 // 2651 // For lexical scopes with multiple address ranges you may be tempted to 2652 // construct a single range covering every instruction where the block is 2653 // live and everything in between. Unfortunately, Visual Studio only 2654 // displays variables from the first matching lexical block scope. If the 2655 // first lexical block contains exception handling code or cold code which 2656 // is moved to the bottom of the routine creating a single range covering 2657 // nearly the entire routine, then it will hide all other lexical blocks 2658 // and the variables they contain. 2659 // 2660 ParentLocals.append(Locals.begin(), Locals.end()); 2661 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2662 return; 2663 } 2664 2665 // Create a new CodeView lexical block for this lexical scope. If we've 2666 // seen this DILexicalBlock before then the scope tree is malformed and 2667 // we can handle this gracefully by not processing it a second time. 2668 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2669 if (!BlockInsertion.second) 2670 return; 2671 2672 // Create a lexical block containing the local variables and collect the 2673 // the lexical block information for the children. 2674 const InsnRange &Range = Ranges.front(); 2675 assert(Range.first && Range.second); 2676 LexicalBlock &Block = BlockInsertion.first->second; 2677 Block.Begin = getLabelBeforeInsn(Range.first); 2678 Block.End = getLabelAfterInsn(Range.second); 2679 assert(Block.Begin && "missing label for scope begin"); 2680 assert(Block.End && "missing label for scope end"); 2681 Block.Name = DILB->getName(); 2682 Block.Locals = std::move(Locals); 2683 ParentBlocks.push_back(&Block); 2684 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2685 } 2686 2687 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2688 const Function &GV = MF->getFunction(); 2689 assert(FnDebugInfo.count(&GV)); 2690 assert(CurFn == FnDebugInfo[&GV].get()); 2691 2692 collectVariableInfo(GV.getSubprogram()); 2693 2694 // Build the lexical block structure to emit for this routine. 2695 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2696 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2697 2698 // Clear the scope and variable information from the map which will not be 2699 // valid after we have finished processing this routine. This also prepares 2700 // the map for the subsequent routine. 2701 ScopeVariables.clear(); 2702 2703 // Don't emit anything if we don't have any line tables. 2704 // Thunks are compiler-generated and probably won't have source correlation. 2705 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2706 FnDebugInfo.erase(&GV); 2707 CurFn = nullptr; 2708 return; 2709 } 2710 2711 CurFn->Annotations = MF->getCodeViewAnnotations(); 2712 2713 CurFn->End = Asm->getFunctionEnd(); 2714 2715 CurFn = nullptr; 2716 } 2717 2718 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2719 DebugHandlerBase::beginInstruction(MI); 2720 2721 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2722 if (!Asm || !CurFn || MI->isDebugInstr() || 2723 MI->getFlag(MachineInstr::FrameSetup)) 2724 return; 2725 2726 // If the first instruction of a new MBB has no location, find the first 2727 // instruction with a location and use that. 2728 DebugLoc DL = MI->getDebugLoc(); 2729 if (!DL && MI->getParent() != PrevInstBB) { 2730 for (const auto &NextMI : *MI->getParent()) { 2731 if (NextMI.isDebugInstr()) 2732 continue; 2733 DL = NextMI.getDebugLoc(); 2734 if (DL) 2735 break; 2736 } 2737 } 2738 PrevInstBB = MI->getParent(); 2739 2740 // If we still don't have a debug location, don't record a location. 2741 if (!DL) 2742 return; 2743 2744 maybeRecordLocation(DL, Asm->MF); 2745 } 2746 2747 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2748 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2749 *EndLabel = MMI->getContext().createTempSymbol(); 2750 OS.EmitIntValue(unsigned(Kind), 4); 2751 OS.AddComment("Subsection size"); 2752 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2753 OS.EmitLabel(BeginLabel); 2754 return EndLabel; 2755 } 2756 2757 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2758 OS.EmitLabel(EndLabel); 2759 // Every subsection must be aligned to a 4-byte boundary. 2760 OS.EmitValueToAlignment(4); 2761 } 2762 2763 void CodeViewDebug::emitDebugInfoForUDTs( 2764 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2765 for (const auto &UDT : UDTs) { 2766 const DIType *T = UDT.second; 2767 assert(shouldEmitUdt(T)); 2768 2769 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2770 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2771 OS.AddComment("Record length"); 2772 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2773 OS.EmitLabel(UDTRecordBegin); 2774 2775 OS.AddComment("Record kind: S_UDT"); 2776 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2777 2778 OS.AddComment("Type"); 2779 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2780 2781 emitNullTerminatedSymbolName(OS, UDT.first); 2782 OS.EmitLabel(UDTRecordEnd); 2783 } 2784 } 2785 2786 void CodeViewDebug::emitDebugInfoForGlobals() { 2787 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2788 GlobalMap; 2789 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2790 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2791 GV.getDebugInfo(GVEs); 2792 for (const auto *GVE : GVEs) 2793 GlobalMap[GVE] = &GV; 2794 } 2795 2796 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2797 for (const MDNode *Node : CUs->operands()) { 2798 const auto *CU = cast<DICompileUnit>(Node); 2799 2800 // First, emit all globals that are not in a comdat in a single symbol 2801 // substream. MSVC doesn't like it if the substream is empty, so only open 2802 // it if we have at least one global to emit. 2803 switchToDebugSectionForSymbol(nullptr); 2804 MCSymbol *EndLabel = nullptr; 2805 for (const auto *GVE : CU->getGlobalVariables()) { 2806 if (const auto *GV = GlobalMap.lookup(GVE)) 2807 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2808 if (!EndLabel) { 2809 OS.AddComment("Symbol subsection for globals"); 2810 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2811 } 2812 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2813 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2814 } 2815 } 2816 if (EndLabel) 2817 endCVSubsection(EndLabel); 2818 2819 // Second, emit each global that is in a comdat into its own .debug$S 2820 // section along with its own symbol substream. 2821 for (const auto *GVE : CU->getGlobalVariables()) { 2822 if (const auto *GV = GlobalMap.lookup(GVE)) { 2823 if (GV->hasComdat()) { 2824 MCSymbol *GVSym = Asm->getSymbol(GV); 2825 OS.AddComment("Symbol subsection for " + 2826 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2827 switchToDebugSectionForSymbol(GVSym); 2828 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2829 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2830 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2831 endCVSubsection(EndLabel); 2832 } 2833 } 2834 } 2835 } 2836 } 2837 2838 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2839 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2840 for (const MDNode *Node : CUs->operands()) { 2841 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2842 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2843 getTypeIndex(RT); 2844 // FIXME: Add to global/local DTU list. 2845 } 2846 } 2847 } 2848 } 2849 2850 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2851 const GlobalVariable *GV, 2852 MCSymbol *GVSym) { 2853 // DataSym record, see SymbolRecord.h for more info. 2854 // FIXME: Thread local data, etc 2855 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2856 *DataEnd = MMI->getContext().createTempSymbol(); 2857 const unsigned FixedLengthOfThisRecord = 12; 2858 OS.AddComment("Record length"); 2859 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2860 OS.EmitLabel(DataBegin); 2861 if (DIGV->isLocalToUnit()) { 2862 if (GV->isThreadLocal()) { 2863 OS.AddComment("Record kind: S_LTHREAD32"); 2864 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2865 } else { 2866 OS.AddComment("Record kind: S_LDATA32"); 2867 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2868 } 2869 } else { 2870 if (GV->isThreadLocal()) { 2871 OS.AddComment("Record kind: S_GTHREAD32"); 2872 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2873 } else { 2874 OS.AddComment("Record kind: S_GDATA32"); 2875 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2876 } 2877 } 2878 OS.AddComment("Type"); 2879 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2880 OS.AddComment("DataOffset"); 2881 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2882 OS.AddComment("Segment"); 2883 OS.EmitCOFFSectionIndex(GVSym); 2884 OS.AddComment("Name"); 2885 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord); 2886 OS.EmitLabel(DataEnd); 2887 } 2888