1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 43 #include "llvm/DebugInfo/CodeView/CodeView.h" 44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 46 #include "llvm/DebugInfo/CodeView/Line.h" 47 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 48 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 49 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 50 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 51 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugInfoMetadata.h" 55 #include "llvm/IR/DebugLoc.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalValue.h" 58 #include "llvm/IR/GlobalVariable.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/MC/MCAsmInfo.h" 62 #include "llvm/MC/MCContext.h" 63 #include "llvm/MC/MCSectionCOFF.h" 64 #include "llvm/MC/MCStreamer.h" 65 #include "llvm/MC/MCSymbol.h" 66 #include "llvm/Support/BinaryByteStream.h" 67 #include "llvm/Support/BinaryStreamReader.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/Compiler.h" 71 #include "llvm/Support/Endian.h" 72 #include "llvm/Support/Error.h" 73 #include "llvm/Support/ErrorHandling.h" 74 #include "llvm/Support/FormatVariadic.h" 75 #include "llvm/Support/SMLoc.h" 76 #include "llvm/Support/ScopedPrinter.h" 77 #include "llvm/Target/TargetLoweringObjectFile.h" 78 #include "llvm/Target/TargetMachine.h" 79 #include <algorithm> 80 #include <cassert> 81 #include <cctype> 82 #include <cstddef> 83 #include <cstdint> 84 #include <iterator> 85 #include <limits> 86 #include <string> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 using namespace llvm::codeview; 92 93 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 94 cl::ReallyHidden, cl::init(false)); 95 96 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 97 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 98 // If module doesn't have named metadata anchors or COFF debug section 99 // is not available, skip any debug info related stuff. 100 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 101 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 102 Asm = nullptr; 103 return; 104 } 105 106 // Tell MMI that we have debug info. 107 MMI->setDebugInfoAvailability(true); 108 } 109 110 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 111 std::string &Filepath = FileToFilepathMap[File]; 112 if (!Filepath.empty()) 113 return Filepath; 114 115 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 116 117 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 118 // it textually because one of the path components could be a symlink. 119 if (!Dir.empty() && Dir[0] == '/') { 120 Filepath = Dir; 121 if (Dir.back() != '/') 122 Filepath += '/'; 123 Filepath += Filename; 124 return Filepath; 125 } 126 127 // Clang emits directory and relative filename info into the IR, but CodeView 128 // operates on full paths. We could change Clang to emit full paths too, but 129 // that would increase the IR size and probably not needed for other users. 130 // For now, just concatenate and canonicalize the path here. 131 if (Filename.find(':') == 1) 132 Filepath = Filename; 133 else 134 Filepath = (Dir + "\\" + Filename).str(); 135 136 // Canonicalize the path. We have to do it textually because we may no longer 137 // have access the file in the filesystem. 138 // First, replace all slashes with backslashes. 139 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 140 141 // Remove all "\.\" with "\". 142 size_t Cursor = 0; 143 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 144 Filepath.erase(Cursor, 2); 145 146 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 147 // path should be well-formatted, e.g. start with a drive letter, etc. 148 Cursor = 0; 149 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 150 // Something's wrong if the path starts with "\..\", abort. 151 if (Cursor == 0) 152 break; 153 154 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 155 if (PrevSlash == std::string::npos) 156 // Something's wrong, abort. 157 break; 158 159 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 160 // The next ".." might be following the one we've just erased. 161 Cursor = PrevSlash; 162 } 163 164 // Remove all duplicate backslashes. 165 Cursor = 0; 166 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 167 Filepath.erase(Cursor, 1); 168 169 return Filepath; 170 } 171 172 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 173 StringRef FullPath = getFullFilepath(F); 174 unsigned NextId = FileIdMap.size() + 1; 175 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 176 if (Insertion.second) { 177 // We have to compute the full filepath and emit a .cv_file directive. 178 ArrayRef<uint8_t> ChecksumAsBytes; 179 FileChecksumKind CSKind = FileChecksumKind::None; 180 if (F->getChecksum()) { 181 std::string Checksum = fromHex(F->getChecksum()->Value); 182 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 183 memcpy(CKMem, Checksum.data(), Checksum.size()); 184 ChecksumAsBytes = ArrayRef<uint8_t>( 185 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 186 switch (F->getChecksum()->Kind) { 187 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 188 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 189 } 190 } 191 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 192 static_cast<unsigned>(CSKind)); 193 (void)Success; 194 assert(Success && ".cv_file directive failed"); 195 } 196 return Insertion.first->second; 197 } 198 199 CodeViewDebug::InlineSite & 200 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 201 const DISubprogram *Inlinee) { 202 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 203 InlineSite *Site = &SiteInsertion.first->second; 204 if (SiteInsertion.second) { 205 unsigned ParentFuncId = CurFn->FuncId; 206 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 207 ParentFuncId = 208 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 209 .SiteFuncId; 210 211 Site->SiteFuncId = NextFuncId++; 212 OS.EmitCVInlineSiteIdDirective( 213 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 214 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 215 Site->Inlinee = Inlinee; 216 InlinedSubprograms.insert(Inlinee); 217 getFuncIdForSubprogram(Inlinee); 218 } 219 return *Site; 220 } 221 222 static StringRef getPrettyScopeName(const DIScope *Scope) { 223 StringRef ScopeName = Scope->getName(); 224 if (!ScopeName.empty()) 225 return ScopeName; 226 227 switch (Scope->getTag()) { 228 case dwarf::DW_TAG_enumeration_type: 229 case dwarf::DW_TAG_class_type: 230 case dwarf::DW_TAG_structure_type: 231 case dwarf::DW_TAG_union_type: 232 return "<unnamed-tag>"; 233 case dwarf::DW_TAG_namespace: 234 return "`anonymous namespace'"; 235 } 236 237 return StringRef(); 238 } 239 240 static const DISubprogram *getQualifiedNameComponents( 241 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 242 const DISubprogram *ClosestSubprogram = nullptr; 243 while (Scope != nullptr) { 244 if (ClosestSubprogram == nullptr) 245 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 246 StringRef ScopeName = getPrettyScopeName(Scope); 247 if (!ScopeName.empty()) 248 QualifiedNameComponents.push_back(ScopeName); 249 Scope = Scope->getScope().resolve(); 250 } 251 return ClosestSubprogram; 252 } 253 254 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 255 StringRef TypeName) { 256 std::string FullyQualifiedName; 257 for (StringRef QualifiedNameComponent : 258 llvm::reverse(QualifiedNameComponents)) { 259 FullyQualifiedName.append(QualifiedNameComponent); 260 FullyQualifiedName.append("::"); 261 } 262 FullyQualifiedName.append(TypeName); 263 return FullyQualifiedName; 264 } 265 266 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 267 SmallVector<StringRef, 5> QualifiedNameComponents; 268 getQualifiedNameComponents(Scope, QualifiedNameComponents); 269 return getQualifiedName(QualifiedNameComponents, Name); 270 } 271 272 struct CodeViewDebug::TypeLoweringScope { 273 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 274 ~TypeLoweringScope() { 275 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 276 // inner TypeLoweringScopes don't attempt to emit deferred types. 277 if (CVD.TypeEmissionLevel == 1) 278 CVD.emitDeferredCompleteTypes(); 279 --CVD.TypeEmissionLevel; 280 } 281 CodeViewDebug &CVD; 282 }; 283 284 static std::string getFullyQualifiedName(const DIScope *Ty) { 285 const DIScope *Scope = Ty->getScope().resolve(); 286 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 287 } 288 289 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 290 // No scope means global scope and that uses the zero index. 291 if (!Scope || isa<DIFile>(Scope)) 292 return TypeIndex(); 293 294 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 295 296 // Check if we've already translated this scope. 297 auto I = TypeIndices.find({Scope, nullptr}); 298 if (I != TypeIndices.end()) 299 return I->second; 300 301 // Build the fully qualified name of the scope. 302 std::string ScopeName = getFullyQualifiedName(Scope); 303 StringIdRecord SID(TypeIndex(), ScopeName); 304 auto TI = TypeTable.writeLeafType(SID); 305 return recordTypeIndexForDINode(Scope, TI); 306 } 307 308 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 309 assert(SP); 310 311 // Check if we've already translated this subprogram. 312 auto I = TypeIndices.find({SP, nullptr}); 313 if (I != TypeIndices.end()) 314 return I->second; 315 316 // The display name includes function template arguments. Drop them to match 317 // MSVC. 318 StringRef DisplayName = SP->getName().split('<').first; 319 320 const DIScope *Scope = SP->getScope().resolve(); 321 TypeIndex TI; 322 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 323 // If the scope is a DICompositeType, then this must be a method. Member 324 // function types take some special handling, and require access to the 325 // subprogram. 326 TypeIndex ClassType = getTypeIndex(Class); 327 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 328 DisplayName); 329 TI = TypeTable.writeLeafType(MFuncId); 330 } else { 331 // Otherwise, this must be a free function. 332 TypeIndex ParentScope = getScopeIndex(Scope); 333 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 334 TI = TypeTable.writeLeafType(FuncId); 335 } 336 337 return recordTypeIndexForDINode(SP, TI); 338 } 339 340 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 341 const DICompositeType *Class) { 342 // Always use the method declaration as the key for the function type. The 343 // method declaration contains the this adjustment. 344 if (SP->getDeclaration()) 345 SP = SP->getDeclaration(); 346 assert(!SP->getDeclaration() && "should use declaration as key"); 347 348 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 349 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 350 auto I = TypeIndices.find({SP, Class}); 351 if (I != TypeIndices.end()) 352 return I->second; 353 354 // Make sure complete type info for the class is emitted *after* the member 355 // function type, as the complete class type is likely to reference this 356 // member function type. 357 TypeLoweringScope S(*this); 358 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 359 TypeIndex TI = lowerTypeMemberFunction( 360 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod); 361 return recordTypeIndexForDINode(SP, TI, Class); 362 } 363 364 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 365 TypeIndex TI, 366 const DIType *ClassTy) { 367 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 368 (void)InsertResult; 369 assert(InsertResult.second && "DINode was already assigned a type index"); 370 return TI; 371 } 372 373 unsigned CodeViewDebug::getPointerSizeInBytes() { 374 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 375 } 376 377 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 378 const LexicalScope *LS) { 379 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 380 // This variable was inlined. Associate it with the InlineSite. 381 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 382 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 383 Site.InlinedLocals.emplace_back(Var); 384 } else { 385 // This variable goes into the corresponding lexical scope. 386 ScopeVariables[LS].emplace_back(Var); 387 } 388 } 389 390 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 391 const DILocation *Loc) { 392 auto B = Locs.begin(), E = Locs.end(); 393 if (std::find(B, E, Loc) == E) 394 Locs.push_back(Loc); 395 } 396 397 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 398 const MachineFunction *MF) { 399 // Skip this instruction if it has the same location as the previous one. 400 if (!DL || DL == PrevInstLoc) 401 return; 402 403 const DIScope *Scope = DL.get()->getScope(); 404 if (!Scope) 405 return; 406 407 // Skip this line if it is longer than the maximum we can record. 408 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 409 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 410 LI.isNeverStepInto()) 411 return; 412 413 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 414 if (CI.getStartColumn() != DL.getCol()) 415 return; 416 417 if (!CurFn->HaveLineInfo) 418 CurFn->HaveLineInfo = true; 419 unsigned FileId = 0; 420 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 421 FileId = CurFn->LastFileId; 422 else 423 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 424 PrevInstLoc = DL; 425 426 unsigned FuncId = CurFn->FuncId; 427 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 428 const DILocation *Loc = DL.get(); 429 430 // If this location was actually inlined from somewhere else, give it the ID 431 // of the inline call site. 432 FuncId = 433 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 434 435 // Ensure we have links in the tree of inline call sites. 436 bool FirstLoc = true; 437 while ((SiteLoc = Loc->getInlinedAt())) { 438 InlineSite &Site = 439 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 440 if (!FirstLoc) 441 addLocIfNotPresent(Site.ChildSites, Loc); 442 FirstLoc = false; 443 Loc = SiteLoc; 444 } 445 addLocIfNotPresent(CurFn->ChildSites, Loc); 446 } 447 448 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 449 /*PrologueEnd=*/false, /*IsStmt=*/false, 450 DL->getFilename(), SMLoc()); 451 } 452 453 void CodeViewDebug::emitCodeViewMagicVersion() { 454 OS.EmitValueToAlignment(4); 455 OS.AddComment("Debug section magic"); 456 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 457 } 458 459 void CodeViewDebug::endModule() { 460 if (!Asm || !MMI->hasDebugInfo()) 461 return; 462 463 assert(Asm != nullptr); 464 465 // The COFF .debug$S section consists of several subsections, each starting 466 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 467 // of the payload followed by the payload itself. The subsections are 4-byte 468 // aligned. 469 470 // Use the generic .debug$S section, and make a subsection for all the inlined 471 // subprograms. 472 switchToDebugSectionForSymbol(nullptr); 473 474 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 475 emitCompilerInformation(); 476 endCVSubsection(CompilerInfo); 477 478 emitInlineeLinesSubsection(); 479 480 // Emit per-function debug information. 481 for (auto &P : FnDebugInfo) 482 if (!P.first->isDeclarationForLinker()) 483 emitDebugInfoForFunction(P.first, *P.second); 484 485 // Emit global variable debug information. 486 setCurrentSubprogram(nullptr); 487 emitDebugInfoForGlobals(); 488 489 // Emit retained types. 490 emitDebugInfoForRetainedTypes(); 491 492 // Switch back to the generic .debug$S section after potentially processing 493 // comdat symbol sections. 494 switchToDebugSectionForSymbol(nullptr); 495 496 // Emit UDT records for any types used by global variables. 497 if (!GlobalUDTs.empty()) { 498 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 499 emitDebugInfoForUDTs(GlobalUDTs); 500 endCVSubsection(SymbolsEnd); 501 } 502 503 // This subsection holds a file index to offset in string table table. 504 OS.AddComment("File index to string table offset subsection"); 505 OS.EmitCVFileChecksumsDirective(); 506 507 // This subsection holds the string table. 508 OS.AddComment("String table"); 509 OS.EmitCVStringTableDirective(); 510 511 // Emit type information and hashes last, so that any types we translate while 512 // emitting function info are included. 513 emitTypeInformation(); 514 515 if (EmitDebugGlobalHashes) 516 emitTypeGlobalHashes(); 517 518 clear(); 519 } 520 521 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 522 unsigned MaxFixedRecordLength = 0xF00) { 523 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 524 // after a fixed length portion of the record. The fixed length portion should 525 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 526 // overall record size is less than the maximum allowed. 527 SmallString<32> NullTerminatedString( 528 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 529 NullTerminatedString.push_back('\0'); 530 OS.EmitBytes(NullTerminatedString); 531 } 532 533 void CodeViewDebug::emitTypeInformation() { 534 if (TypeTable.empty()) 535 return; 536 537 // Start the .debug$T or .debug$P section with 0x4. 538 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 539 emitCodeViewMagicVersion(); 540 541 SmallString<8> CommentPrefix; 542 if (OS.isVerboseAsm()) { 543 CommentPrefix += '\t'; 544 CommentPrefix += Asm->MAI->getCommentString(); 545 CommentPrefix += ' '; 546 } 547 548 TypeTableCollection Table(TypeTable.records()); 549 Optional<TypeIndex> B = Table.getFirst(); 550 while (B) { 551 // This will fail if the record data is invalid. 552 CVType Record = Table.getType(*B); 553 554 if (OS.isVerboseAsm()) { 555 // Emit a block comment describing the type record for readability. 556 SmallString<512> CommentBlock; 557 raw_svector_ostream CommentOS(CommentBlock); 558 ScopedPrinter SP(CommentOS); 559 SP.setPrefix(CommentPrefix); 560 TypeDumpVisitor TDV(Table, &SP, false); 561 562 Error E = codeview::visitTypeRecord(Record, *B, TDV); 563 if (E) { 564 logAllUnhandledErrors(std::move(E), errs(), "error: "); 565 llvm_unreachable("produced malformed type record"); 566 } 567 // emitRawComment will insert its own tab and comment string before 568 // the first line, so strip off our first one. It also prints its own 569 // newline. 570 OS.emitRawComment( 571 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 572 } 573 OS.EmitBinaryData(Record.str_data()); 574 B = Table.getNext(*B); 575 } 576 } 577 578 void CodeViewDebug::emitTypeGlobalHashes() { 579 if (TypeTable.empty()) 580 return; 581 582 // Start the .debug$H section with the version and hash algorithm, currently 583 // hardcoded to version 0, SHA1. 584 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 585 586 OS.EmitValueToAlignment(4); 587 OS.AddComment("Magic"); 588 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 589 OS.AddComment("Section Version"); 590 OS.EmitIntValue(0, 2); 591 OS.AddComment("Hash Algorithm"); 592 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 593 594 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 595 for (const auto &GHR : TypeTable.hashes()) { 596 if (OS.isVerboseAsm()) { 597 // Emit an EOL-comment describing which TypeIndex this hash corresponds 598 // to, as well as the stringified SHA1 hash. 599 SmallString<32> Comment; 600 raw_svector_ostream CommentOS(Comment); 601 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 602 OS.AddComment(Comment); 603 ++TI; 604 } 605 assert(GHR.Hash.size() == 8); 606 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 607 GHR.Hash.size()); 608 OS.EmitBinaryData(S); 609 } 610 } 611 612 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 613 switch (DWLang) { 614 case dwarf::DW_LANG_C: 615 case dwarf::DW_LANG_C89: 616 case dwarf::DW_LANG_C99: 617 case dwarf::DW_LANG_C11: 618 case dwarf::DW_LANG_ObjC: 619 return SourceLanguage::C; 620 case dwarf::DW_LANG_C_plus_plus: 621 case dwarf::DW_LANG_C_plus_plus_03: 622 case dwarf::DW_LANG_C_plus_plus_11: 623 case dwarf::DW_LANG_C_plus_plus_14: 624 return SourceLanguage::Cpp; 625 case dwarf::DW_LANG_Fortran77: 626 case dwarf::DW_LANG_Fortran90: 627 case dwarf::DW_LANG_Fortran03: 628 case dwarf::DW_LANG_Fortran08: 629 return SourceLanguage::Fortran; 630 case dwarf::DW_LANG_Pascal83: 631 return SourceLanguage::Pascal; 632 case dwarf::DW_LANG_Cobol74: 633 case dwarf::DW_LANG_Cobol85: 634 return SourceLanguage::Cobol; 635 case dwarf::DW_LANG_Java: 636 return SourceLanguage::Java; 637 case dwarf::DW_LANG_D: 638 return SourceLanguage::D; 639 default: 640 // There's no CodeView representation for this language, and CV doesn't 641 // have an "unknown" option for the language field, so we'll use MASM, 642 // as it's very low level. 643 return SourceLanguage::Masm; 644 } 645 } 646 647 namespace { 648 struct Version { 649 int Part[4]; 650 }; 651 } // end anonymous namespace 652 653 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 654 // the version number. 655 static Version parseVersion(StringRef Name) { 656 Version V = {{0}}; 657 int N = 0; 658 for (const char C : Name) { 659 if (isdigit(C)) { 660 V.Part[N] *= 10; 661 V.Part[N] += C - '0'; 662 } else if (C == '.') { 663 ++N; 664 if (N >= 4) 665 return V; 666 } else if (N > 0) 667 return V; 668 } 669 return V; 670 } 671 672 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 673 switch (Type) { 674 case Triple::ArchType::x86: 675 return CPUType::Pentium3; 676 case Triple::ArchType::x86_64: 677 return CPUType::X64; 678 case Triple::ArchType::thumb: 679 return CPUType::Thumb; 680 case Triple::ArchType::aarch64: 681 return CPUType::ARM64; 682 default: 683 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 684 } 685 } 686 687 void CodeViewDebug::emitCompilerInformation() { 688 MCContext &Context = MMI->getContext(); 689 MCSymbol *CompilerBegin = Context.createTempSymbol(), 690 *CompilerEnd = Context.createTempSymbol(); 691 OS.AddComment("Record length"); 692 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 693 OS.EmitLabel(CompilerBegin); 694 OS.AddComment("Record kind: S_COMPILE3"); 695 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 696 uint32_t Flags = 0; 697 698 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 699 const MDNode *Node = *CUs->operands().begin(); 700 const auto *CU = cast<DICompileUnit>(Node); 701 702 // The low byte of the flags indicates the source language. 703 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 704 // TODO: Figure out which other flags need to be set. 705 706 OS.AddComment("Flags and language"); 707 OS.EmitIntValue(Flags, 4); 708 709 OS.AddComment("CPUType"); 710 CPUType CPU = 711 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 712 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 713 714 StringRef CompilerVersion = CU->getProducer(); 715 Version FrontVer = parseVersion(CompilerVersion); 716 OS.AddComment("Frontend version"); 717 for (int N = 0; N < 4; ++N) 718 OS.EmitIntValue(FrontVer.Part[N], 2); 719 720 // Some Microsoft tools, like Binscope, expect a backend version number of at 721 // least 8.something, so we'll coerce the LLVM version into a form that 722 // guarantees it'll be big enough without really lying about the version. 723 int Major = 1000 * LLVM_VERSION_MAJOR + 724 10 * LLVM_VERSION_MINOR + 725 LLVM_VERSION_PATCH; 726 // Clamp it for builds that use unusually large version numbers. 727 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 728 Version BackVer = {{ Major, 0, 0, 0 }}; 729 OS.AddComment("Backend version"); 730 for (int N = 0; N < 4; ++N) 731 OS.EmitIntValue(BackVer.Part[N], 2); 732 733 OS.AddComment("Null-terminated compiler version string"); 734 emitNullTerminatedSymbolName(OS, CompilerVersion); 735 736 OS.EmitLabel(CompilerEnd); 737 } 738 739 void CodeViewDebug::emitInlineeLinesSubsection() { 740 if (InlinedSubprograms.empty()) 741 return; 742 743 OS.AddComment("Inlinee lines subsection"); 744 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 745 746 // We emit the checksum info for files. This is used by debuggers to 747 // determine if a pdb matches the source before loading it. Visual Studio, 748 // for instance, will display a warning that the breakpoints are not valid if 749 // the pdb does not match the source. 750 OS.AddComment("Inlinee lines signature"); 751 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 752 753 for (const DISubprogram *SP : InlinedSubprograms) { 754 assert(TypeIndices.count({SP, nullptr})); 755 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 756 757 OS.AddBlankLine(); 758 unsigned FileId = maybeRecordFile(SP->getFile()); 759 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 760 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 761 OS.AddBlankLine(); 762 OS.AddComment("Type index of inlined function"); 763 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 764 OS.AddComment("Offset into filechecksum table"); 765 OS.EmitCVFileChecksumOffsetDirective(FileId); 766 OS.AddComment("Starting line number"); 767 OS.EmitIntValue(SP->getLine(), 4); 768 } 769 770 endCVSubsection(InlineEnd); 771 } 772 773 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 774 const DILocation *InlinedAt, 775 const InlineSite &Site) { 776 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 777 *InlineEnd = MMI->getContext().createTempSymbol(); 778 779 assert(TypeIndices.count({Site.Inlinee, nullptr})); 780 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 781 782 // SymbolRecord 783 OS.AddComment("Record length"); 784 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 785 OS.EmitLabel(InlineBegin); 786 OS.AddComment("Record kind: S_INLINESITE"); 787 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 788 789 OS.AddComment("PtrParent"); 790 OS.EmitIntValue(0, 4); 791 OS.AddComment("PtrEnd"); 792 OS.EmitIntValue(0, 4); 793 OS.AddComment("Inlinee type index"); 794 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 795 796 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 797 unsigned StartLineNum = Site.Inlinee->getLine(); 798 799 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 800 FI.Begin, FI.End); 801 802 OS.EmitLabel(InlineEnd); 803 804 emitLocalVariableList(Site.InlinedLocals); 805 806 // Recurse on child inlined call sites before closing the scope. 807 for (const DILocation *ChildSite : Site.ChildSites) { 808 auto I = FI.InlineSites.find(ChildSite); 809 assert(I != FI.InlineSites.end() && 810 "child site not in function inline site map"); 811 emitInlinedCallSite(FI, ChildSite, I->second); 812 } 813 814 // Close the scope. 815 OS.AddComment("Record length"); 816 OS.EmitIntValue(2, 2); // RecordLength 817 OS.AddComment("Record kind: S_INLINESITE_END"); 818 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 819 } 820 821 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 822 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 823 // comdat key. A section may be comdat because of -ffunction-sections or 824 // because it is comdat in the IR. 825 MCSectionCOFF *GVSec = 826 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 827 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 828 829 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 830 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 831 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 832 833 OS.SwitchSection(DebugSec); 834 835 // Emit the magic version number if this is the first time we've switched to 836 // this section. 837 if (ComdatDebugSections.insert(DebugSec).second) 838 emitCodeViewMagicVersion(); 839 } 840 841 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 842 // The only supported thunk ordinal is currently the standard type. 843 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 844 FunctionInfo &FI, 845 const MCSymbol *Fn) { 846 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 847 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 848 849 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 850 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 851 852 // Emit S_THUNK32 853 MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(), 854 *ThunkRecordEnd = MMI->getContext().createTempSymbol(); 855 OS.AddComment("Record length"); 856 OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2); 857 OS.EmitLabel(ThunkRecordBegin); 858 OS.AddComment("Record kind: S_THUNK32"); 859 OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2); 860 OS.AddComment("PtrParent"); 861 OS.EmitIntValue(0, 4); 862 OS.AddComment("PtrEnd"); 863 OS.EmitIntValue(0, 4); 864 OS.AddComment("PtrNext"); 865 OS.EmitIntValue(0, 4); 866 OS.AddComment("Thunk section relative address"); 867 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 868 OS.AddComment("Thunk section index"); 869 OS.EmitCOFFSectionIndex(Fn); 870 OS.AddComment("Code size"); 871 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 872 OS.AddComment("Ordinal"); 873 OS.EmitIntValue(unsigned(ordinal), 1); 874 OS.AddComment("Function name"); 875 emitNullTerminatedSymbolName(OS, FuncName); 876 // Additional fields specific to the thunk ordinal would go here. 877 OS.EmitLabel(ThunkRecordEnd); 878 879 // Local variables/inlined routines are purposely omitted here. The point of 880 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 881 882 // Emit S_PROC_ID_END 883 const unsigned RecordLengthForSymbolEnd = 2; 884 OS.AddComment("Record length"); 885 OS.EmitIntValue(RecordLengthForSymbolEnd, 2); 886 OS.AddComment("Record kind: S_PROC_ID_END"); 887 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 888 889 endCVSubsection(SymbolsEnd); 890 } 891 892 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 893 FunctionInfo &FI) { 894 // For each function there is a separate subsection which holds the PC to 895 // file:line table. 896 const MCSymbol *Fn = Asm->getSymbol(GV); 897 assert(Fn); 898 899 // Switch to the to a comdat section, if appropriate. 900 switchToDebugSectionForSymbol(Fn); 901 902 std::string FuncName; 903 auto *SP = GV->getSubprogram(); 904 assert(SP); 905 setCurrentSubprogram(SP); 906 907 if (SP->isThunk()) { 908 emitDebugInfoForThunk(GV, FI, Fn); 909 return; 910 } 911 912 // If we have a display name, build the fully qualified name by walking the 913 // chain of scopes. 914 if (!SP->getName().empty()) 915 FuncName = 916 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 917 918 // If our DISubprogram name is empty, use the mangled name. 919 if (FuncName.empty()) 920 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 921 922 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 923 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 924 OS.EmitCVFPOData(Fn); 925 926 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 927 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 928 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 929 { 930 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 931 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 932 OS.AddComment("Record length"); 933 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 934 OS.EmitLabel(ProcRecordBegin); 935 936 if (GV->hasLocalLinkage()) { 937 OS.AddComment("Record kind: S_LPROC32_ID"); 938 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 939 } else { 940 OS.AddComment("Record kind: S_GPROC32_ID"); 941 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 942 } 943 944 // These fields are filled in by tools like CVPACK which run after the fact. 945 OS.AddComment("PtrParent"); 946 OS.EmitIntValue(0, 4); 947 OS.AddComment("PtrEnd"); 948 OS.EmitIntValue(0, 4); 949 OS.AddComment("PtrNext"); 950 OS.EmitIntValue(0, 4); 951 // This is the important bit that tells the debugger where the function 952 // code is located and what's its size: 953 OS.AddComment("Code size"); 954 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 955 OS.AddComment("Offset after prologue"); 956 OS.EmitIntValue(0, 4); 957 OS.AddComment("Offset before epilogue"); 958 OS.EmitIntValue(0, 4); 959 OS.AddComment("Function type index"); 960 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 961 OS.AddComment("Function section relative address"); 962 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 963 OS.AddComment("Function section index"); 964 OS.EmitCOFFSectionIndex(Fn); 965 OS.AddComment("Flags"); 966 OS.EmitIntValue(0, 1); 967 // Emit the function display name as a null-terminated string. 968 OS.AddComment("Function name"); 969 // Truncate the name so we won't overflow the record length field. 970 emitNullTerminatedSymbolName(OS, FuncName); 971 OS.EmitLabel(ProcRecordEnd); 972 973 emitLocalVariableList(FI.Locals); 974 emitLexicalBlockList(FI.ChildBlocks, FI); 975 976 // Emit inlined call site information. Only emit functions inlined directly 977 // into the parent function. We'll emit the other sites recursively as part 978 // of their parent inline site. 979 for (const DILocation *InlinedAt : FI.ChildSites) { 980 auto I = FI.InlineSites.find(InlinedAt); 981 assert(I != FI.InlineSites.end() && 982 "child site not in function inline site map"); 983 emitInlinedCallSite(FI, InlinedAt, I->second); 984 } 985 986 for (auto Annot : FI.Annotations) { 987 MCSymbol *Label = Annot.first; 988 MDTuple *Strs = cast<MDTuple>(Annot.second); 989 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 990 *AnnotEnd = MMI->getContext().createTempSymbol(); 991 OS.AddComment("Record length"); 992 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 993 OS.EmitLabel(AnnotBegin); 994 OS.AddComment("Record kind: S_ANNOTATION"); 995 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 996 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 997 // FIXME: Make sure we don't overflow the max record size. 998 OS.EmitCOFFSectionIndex(Label); 999 OS.EmitIntValue(Strs->getNumOperands(), 2); 1000 for (Metadata *MD : Strs->operands()) { 1001 // MDStrings are null terminated, so we can do EmitBytes and get the 1002 // nice .asciz directive. 1003 StringRef Str = cast<MDString>(MD)->getString(); 1004 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1005 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1006 } 1007 OS.EmitLabel(AnnotEnd); 1008 } 1009 1010 if (SP != nullptr) 1011 emitDebugInfoForUDTs(LocalUDTs); 1012 1013 // We're done with this function. 1014 OS.AddComment("Record length"); 1015 OS.EmitIntValue(0x0002, 2); 1016 OS.AddComment("Record kind: S_PROC_ID_END"); 1017 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 1018 } 1019 endCVSubsection(SymbolsEnd); 1020 1021 // We have an assembler directive that takes care of the whole line table. 1022 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1023 } 1024 1025 CodeViewDebug::LocalVarDefRange 1026 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1027 LocalVarDefRange DR; 1028 DR.InMemory = -1; 1029 DR.DataOffset = Offset; 1030 assert(DR.DataOffset == Offset && "truncation"); 1031 DR.IsSubfield = 0; 1032 DR.StructOffset = 0; 1033 DR.CVRegister = CVRegister; 1034 return DR; 1035 } 1036 1037 CodeViewDebug::LocalVarDefRange 1038 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 1039 int Offset, bool IsSubfield, 1040 uint16_t StructOffset) { 1041 LocalVarDefRange DR; 1042 DR.InMemory = InMemory; 1043 DR.DataOffset = Offset; 1044 DR.IsSubfield = IsSubfield; 1045 DR.StructOffset = StructOffset; 1046 DR.CVRegister = CVRegister; 1047 return DR; 1048 } 1049 1050 void CodeViewDebug::collectVariableInfoFromMFTable( 1051 DenseSet<InlinedEntity> &Processed) { 1052 const MachineFunction &MF = *Asm->MF; 1053 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1054 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1055 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1056 1057 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1058 if (!VI.Var) 1059 continue; 1060 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1061 "Expected inlined-at fields to agree"); 1062 1063 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1064 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1065 1066 // If variable scope is not found then skip this variable. 1067 if (!Scope) 1068 continue; 1069 1070 // If the variable has an attached offset expression, extract it. 1071 // FIXME: Try to handle DW_OP_deref as well. 1072 int64_t ExprOffset = 0; 1073 if (VI.Expr) 1074 if (!VI.Expr->extractIfOffset(ExprOffset)) 1075 continue; 1076 1077 // Get the frame register used and the offset. 1078 unsigned FrameReg = 0; 1079 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1080 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1081 1082 // Calculate the label ranges. 1083 LocalVarDefRange DefRange = 1084 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1085 for (const InsnRange &Range : Scope->getRanges()) { 1086 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1087 const MCSymbol *End = getLabelAfterInsn(Range.second); 1088 End = End ? End : Asm->getFunctionEnd(); 1089 DefRange.Ranges.emplace_back(Begin, End); 1090 } 1091 1092 LocalVariable Var; 1093 Var.DIVar = VI.Var; 1094 Var.DefRanges.emplace_back(std::move(DefRange)); 1095 recordLocalVariable(std::move(Var), Scope); 1096 } 1097 } 1098 1099 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1100 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1101 } 1102 1103 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1104 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1105 } 1106 1107 void CodeViewDebug::calculateRanges( 1108 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1109 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1110 1111 // Calculate the definition ranges. 1112 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1113 const InsnRange &Range = *I; 1114 const MachineInstr *DVInst = Range.first; 1115 assert(DVInst->isDebugValue() && "Invalid History entry"); 1116 // FIXME: Find a way to represent constant variables, since they are 1117 // relatively common. 1118 Optional<DbgVariableLocation> Location = 1119 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1120 if (!Location) 1121 continue; 1122 1123 // CodeView can only express variables in register and variables in memory 1124 // at a constant offset from a register. However, for variables passed 1125 // indirectly by pointer, it is common for that pointer to be spilled to a 1126 // stack location. For the special case of one offseted load followed by a 1127 // zero offset load (a pointer spilled to the stack), we change the type of 1128 // the local variable from a value type to a reference type. This tricks the 1129 // debugger into doing the load for us. 1130 if (Var.UseReferenceType) { 1131 // We're using a reference type. Drop the last zero offset load. 1132 if (canUseReferenceType(*Location)) 1133 Location->LoadChain.pop_back(); 1134 else 1135 continue; 1136 } else if (needsReferenceType(*Location)) { 1137 // This location can't be expressed without switching to a reference type. 1138 // Start over using that. 1139 Var.UseReferenceType = true; 1140 Var.DefRanges.clear(); 1141 calculateRanges(Var, Ranges); 1142 return; 1143 } 1144 1145 // We can only handle a register or an offseted load of a register. 1146 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1147 continue; 1148 { 1149 LocalVarDefRange DR; 1150 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1151 DR.InMemory = !Location->LoadChain.empty(); 1152 DR.DataOffset = 1153 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1154 if (Location->FragmentInfo) { 1155 DR.IsSubfield = true; 1156 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1157 } else { 1158 DR.IsSubfield = false; 1159 DR.StructOffset = 0; 1160 } 1161 1162 if (Var.DefRanges.empty() || 1163 Var.DefRanges.back().isDifferentLocation(DR)) { 1164 Var.DefRanges.emplace_back(std::move(DR)); 1165 } 1166 } 1167 1168 // Compute the label range. 1169 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1170 const MCSymbol *End = getLabelAfterInsn(Range.second); 1171 if (!End) { 1172 // This range is valid until the next overlapping bitpiece. In the 1173 // common case, ranges will not be bitpieces, so they will overlap. 1174 auto J = std::next(I); 1175 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1176 while (J != E && 1177 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1178 ++J; 1179 if (J != E) 1180 End = getLabelBeforeInsn(J->first); 1181 else 1182 End = Asm->getFunctionEnd(); 1183 } 1184 1185 // If the last range end is our begin, just extend the last range. 1186 // Otherwise make a new range. 1187 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1188 Var.DefRanges.back().Ranges; 1189 if (!R.empty() && R.back().second == Begin) 1190 R.back().second = End; 1191 else 1192 R.emplace_back(Begin, End); 1193 1194 // FIXME: Do more range combining. 1195 } 1196 } 1197 1198 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1199 DenseSet<InlinedEntity> Processed; 1200 // Grab the variable info that was squirreled away in the MMI side-table. 1201 collectVariableInfoFromMFTable(Processed); 1202 1203 for (const auto &I : DbgValues) { 1204 InlinedEntity IV = I.first; 1205 if (Processed.count(IV)) 1206 continue; 1207 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1208 const DILocation *InlinedAt = IV.second; 1209 1210 // Instruction ranges, specifying where IV is accessible. 1211 const auto &Ranges = I.second; 1212 1213 LexicalScope *Scope = nullptr; 1214 if (InlinedAt) 1215 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1216 else 1217 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1218 // If variable scope is not found then skip this variable. 1219 if (!Scope) 1220 continue; 1221 1222 LocalVariable Var; 1223 Var.DIVar = DIVar; 1224 1225 calculateRanges(Var, Ranges); 1226 recordLocalVariable(std::move(Var), Scope); 1227 } 1228 } 1229 1230 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1231 const Function &GV = MF->getFunction(); 1232 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1233 assert(Insertion.second && "function already has info"); 1234 CurFn = Insertion.first->second.get(); 1235 CurFn->FuncId = NextFuncId++; 1236 CurFn->Begin = Asm->getFunctionBegin(); 1237 1238 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1239 1240 // Find the end of the function prolog. First known non-DBG_VALUE and 1241 // non-frame setup location marks the beginning of the function body. 1242 // FIXME: is there a simpler a way to do this? Can we just search 1243 // for the first instruction of the function, not the last of the prolog? 1244 DebugLoc PrologEndLoc; 1245 bool EmptyPrologue = true; 1246 for (const auto &MBB : *MF) { 1247 for (const auto &MI : MBB) { 1248 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1249 MI.getDebugLoc()) { 1250 PrologEndLoc = MI.getDebugLoc(); 1251 break; 1252 } else if (!MI.isMetaInstruction()) { 1253 EmptyPrologue = false; 1254 } 1255 } 1256 } 1257 1258 // Record beginning of function if we have a non-empty prologue. 1259 if (PrologEndLoc && !EmptyPrologue) { 1260 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1261 maybeRecordLocation(FnStartDL, MF); 1262 } 1263 } 1264 1265 static bool shouldEmitUdt(const DIType *T) { 1266 if (!T) 1267 return false; 1268 1269 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1270 if (T->getTag() == dwarf::DW_TAG_typedef) { 1271 if (DIScope *Scope = T->getScope().resolve()) { 1272 switch (Scope->getTag()) { 1273 case dwarf::DW_TAG_structure_type: 1274 case dwarf::DW_TAG_class_type: 1275 case dwarf::DW_TAG_union_type: 1276 return false; 1277 } 1278 } 1279 } 1280 1281 while (true) { 1282 if (!T || T->isForwardDecl()) 1283 return false; 1284 1285 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1286 if (!DT) 1287 return true; 1288 T = DT->getBaseType().resolve(); 1289 } 1290 return true; 1291 } 1292 1293 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1294 // Don't record empty UDTs. 1295 if (Ty->getName().empty()) 1296 return; 1297 if (!shouldEmitUdt(Ty)) 1298 return; 1299 1300 SmallVector<StringRef, 5> QualifiedNameComponents; 1301 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1302 Ty->getScope().resolve(), QualifiedNameComponents); 1303 1304 std::string FullyQualifiedName = 1305 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1306 1307 if (ClosestSubprogram == nullptr) { 1308 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1309 } else if (ClosestSubprogram == CurrentSubprogram) { 1310 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1311 } 1312 1313 // TODO: What if the ClosestSubprogram is neither null or the current 1314 // subprogram? Currently, the UDT just gets dropped on the floor. 1315 // 1316 // The current behavior is not desirable. To get maximal fidelity, we would 1317 // need to perform all type translation before beginning emission of .debug$S 1318 // and then make LocalUDTs a member of FunctionInfo 1319 } 1320 1321 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1322 // Generic dispatch for lowering an unknown type. 1323 switch (Ty->getTag()) { 1324 case dwarf::DW_TAG_array_type: 1325 return lowerTypeArray(cast<DICompositeType>(Ty)); 1326 case dwarf::DW_TAG_typedef: 1327 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1328 case dwarf::DW_TAG_base_type: 1329 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1330 case dwarf::DW_TAG_pointer_type: 1331 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1332 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1333 LLVM_FALLTHROUGH; 1334 case dwarf::DW_TAG_reference_type: 1335 case dwarf::DW_TAG_rvalue_reference_type: 1336 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1337 case dwarf::DW_TAG_ptr_to_member_type: 1338 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1339 case dwarf::DW_TAG_restrict_type: 1340 case dwarf::DW_TAG_const_type: 1341 case dwarf::DW_TAG_volatile_type: 1342 // TODO: add support for DW_TAG_atomic_type here 1343 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1344 case dwarf::DW_TAG_subroutine_type: 1345 if (ClassTy) { 1346 // The member function type of a member function pointer has no 1347 // ThisAdjustment. 1348 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1349 /*ThisAdjustment=*/0, 1350 /*IsStaticMethod=*/false); 1351 } 1352 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1353 case dwarf::DW_TAG_enumeration_type: 1354 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1355 case dwarf::DW_TAG_class_type: 1356 case dwarf::DW_TAG_structure_type: 1357 return lowerTypeClass(cast<DICompositeType>(Ty)); 1358 case dwarf::DW_TAG_union_type: 1359 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1360 case dwarf::DW_TAG_unspecified_type: 1361 return TypeIndex::None(); 1362 default: 1363 // Use the null type index. 1364 return TypeIndex(); 1365 } 1366 } 1367 1368 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1369 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1370 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1371 StringRef TypeName = Ty->getName(); 1372 1373 addToUDTs(Ty); 1374 1375 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1376 TypeName == "HRESULT") 1377 return TypeIndex(SimpleTypeKind::HResult); 1378 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1379 TypeName == "wchar_t") 1380 return TypeIndex(SimpleTypeKind::WideCharacter); 1381 1382 return UnderlyingTypeIndex; 1383 } 1384 1385 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1386 DITypeRef ElementTypeRef = Ty->getBaseType(); 1387 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1388 // IndexType is size_t, which depends on the bitness of the target. 1389 TypeIndex IndexType = getPointerSizeInBytes() == 8 1390 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1391 : TypeIndex(SimpleTypeKind::UInt32Long); 1392 1393 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1394 1395 // Add subranges to array type. 1396 DINodeArray Elements = Ty->getElements(); 1397 for (int i = Elements.size() - 1; i >= 0; --i) { 1398 const DINode *Element = Elements[i]; 1399 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1400 1401 const DISubrange *Subrange = cast<DISubrange>(Element); 1402 assert(Subrange->getLowerBound() == 0 && 1403 "codeview doesn't support subranges with lower bounds"); 1404 int64_t Count = -1; 1405 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1406 Count = CI->getSExtValue(); 1407 1408 // Forward declarations of arrays without a size and VLAs use a count of -1. 1409 // Emit a count of zero in these cases to match what MSVC does for arrays 1410 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1411 // should do for them even if we could distinguish them. 1412 if (Count == -1) 1413 Count = 0; 1414 1415 // Update the element size and element type index for subsequent subranges. 1416 ElementSize *= Count; 1417 1418 // If this is the outermost array, use the size from the array. It will be 1419 // more accurate if we had a VLA or an incomplete element type size. 1420 uint64_t ArraySize = 1421 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1422 1423 StringRef Name = (i == 0) ? Ty->getName() : ""; 1424 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1425 ElementTypeIndex = TypeTable.writeLeafType(AR); 1426 } 1427 1428 return ElementTypeIndex; 1429 } 1430 1431 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1432 TypeIndex Index; 1433 dwarf::TypeKind Kind; 1434 uint32_t ByteSize; 1435 1436 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1437 ByteSize = Ty->getSizeInBits() / 8; 1438 1439 SimpleTypeKind STK = SimpleTypeKind::None; 1440 switch (Kind) { 1441 case dwarf::DW_ATE_address: 1442 // FIXME: Translate 1443 break; 1444 case dwarf::DW_ATE_boolean: 1445 switch (ByteSize) { 1446 case 1: STK = SimpleTypeKind::Boolean8; break; 1447 case 2: STK = SimpleTypeKind::Boolean16; break; 1448 case 4: STK = SimpleTypeKind::Boolean32; break; 1449 case 8: STK = SimpleTypeKind::Boolean64; break; 1450 case 16: STK = SimpleTypeKind::Boolean128; break; 1451 } 1452 break; 1453 case dwarf::DW_ATE_complex_float: 1454 switch (ByteSize) { 1455 case 2: STK = SimpleTypeKind::Complex16; break; 1456 case 4: STK = SimpleTypeKind::Complex32; break; 1457 case 8: STK = SimpleTypeKind::Complex64; break; 1458 case 10: STK = SimpleTypeKind::Complex80; break; 1459 case 16: STK = SimpleTypeKind::Complex128; break; 1460 } 1461 break; 1462 case dwarf::DW_ATE_float: 1463 switch (ByteSize) { 1464 case 2: STK = SimpleTypeKind::Float16; break; 1465 case 4: STK = SimpleTypeKind::Float32; break; 1466 case 6: STK = SimpleTypeKind::Float48; break; 1467 case 8: STK = SimpleTypeKind::Float64; break; 1468 case 10: STK = SimpleTypeKind::Float80; break; 1469 case 16: STK = SimpleTypeKind::Float128; break; 1470 } 1471 break; 1472 case dwarf::DW_ATE_signed: 1473 switch (ByteSize) { 1474 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1475 case 2: STK = SimpleTypeKind::Int16Short; break; 1476 case 4: STK = SimpleTypeKind::Int32; break; 1477 case 8: STK = SimpleTypeKind::Int64Quad; break; 1478 case 16: STK = SimpleTypeKind::Int128Oct; break; 1479 } 1480 break; 1481 case dwarf::DW_ATE_unsigned: 1482 switch (ByteSize) { 1483 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1484 case 2: STK = SimpleTypeKind::UInt16Short; break; 1485 case 4: STK = SimpleTypeKind::UInt32; break; 1486 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1487 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1488 } 1489 break; 1490 case dwarf::DW_ATE_UTF: 1491 switch (ByteSize) { 1492 case 2: STK = SimpleTypeKind::Character16; break; 1493 case 4: STK = SimpleTypeKind::Character32; break; 1494 } 1495 break; 1496 case dwarf::DW_ATE_signed_char: 1497 if (ByteSize == 1) 1498 STK = SimpleTypeKind::SignedCharacter; 1499 break; 1500 case dwarf::DW_ATE_unsigned_char: 1501 if (ByteSize == 1) 1502 STK = SimpleTypeKind::UnsignedCharacter; 1503 break; 1504 default: 1505 break; 1506 } 1507 1508 // Apply some fixups based on the source-level type name. 1509 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1510 STK = SimpleTypeKind::Int32Long; 1511 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1512 STK = SimpleTypeKind::UInt32Long; 1513 if (STK == SimpleTypeKind::UInt16Short && 1514 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1515 STK = SimpleTypeKind::WideCharacter; 1516 if ((STK == SimpleTypeKind::SignedCharacter || 1517 STK == SimpleTypeKind::UnsignedCharacter) && 1518 Ty->getName() == "char") 1519 STK = SimpleTypeKind::NarrowCharacter; 1520 1521 return TypeIndex(STK); 1522 } 1523 1524 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1525 PointerOptions PO) { 1526 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1527 1528 // Pointers to simple types without any options can use SimpleTypeMode, rather 1529 // than having a dedicated pointer type record. 1530 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1531 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1532 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1533 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1534 ? SimpleTypeMode::NearPointer64 1535 : SimpleTypeMode::NearPointer32; 1536 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1537 } 1538 1539 PointerKind PK = 1540 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1541 PointerMode PM = PointerMode::Pointer; 1542 switch (Ty->getTag()) { 1543 default: llvm_unreachable("not a pointer tag type"); 1544 case dwarf::DW_TAG_pointer_type: 1545 PM = PointerMode::Pointer; 1546 break; 1547 case dwarf::DW_TAG_reference_type: 1548 PM = PointerMode::LValueReference; 1549 break; 1550 case dwarf::DW_TAG_rvalue_reference_type: 1551 PM = PointerMode::RValueReference; 1552 break; 1553 } 1554 1555 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1556 return TypeTable.writeLeafType(PR); 1557 } 1558 1559 static PointerToMemberRepresentation 1560 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1561 // SizeInBytes being zero generally implies that the member pointer type was 1562 // incomplete, which can happen if it is part of a function prototype. In this 1563 // case, use the unknown model instead of the general model. 1564 if (IsPMF) { 1565 switch (Flags & DINode::FlagPtrToMemberRep) { 1566 case 0: 1567 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1568 : PointerToMemberRepresentation::GeneralFunction; 1569 case DINode::FlagSingleInheritance: 1570 return PointerToMemberRepresentation::SingleInheritanceFunction; 1571 case DINode::FlagMultipleInheritance: 1572 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1573 case DINode::FlagVirtualInheritance: 1574 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1575 } 1576 } else { 1577 switch (Flags & DINode::FlagPtrToMemberRep) { 1578 case 0: 1579 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1580 : PointerToMemberRepresentation::GeneralData; 1581 case DINode::FlagSingleInheritance: 1582 return PointerToMemberRepresentation::SingleInheritanceData; 1583 case DINode::FlagMultipleInheritance: 1584 return PointerToMemberRepresentation::MultipleInheritanceData; 1585 case DINode::FlagVirtualInheritance: 1586 return PointerToMemberRepresentation::VirtualInheritanceData; 1587 } 1588 } 1589 llvm_unreachable("invalid ptr to member representation"); 1590 } 1591 1592 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1593 PointerOptions PO) { 1594 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1595 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1596 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1597 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1598 : PointerKind::Near32; 1599 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1600 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1601 : PointerMode::PointerToDataMember; 1602 1603 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1604 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1605 MemberPointerInfo MPI( 1606 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1607 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1608 return TypeTable.writeLeafType(PR); 1609 } 1610 1611 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1612 /// have a translation, use the NearC convention. 1613 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1614 switch (DwarfCC) { 1615 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1616 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1617 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1618 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1619 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1620 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1621 } 1622 return CallingConvention::NearC; 1623 } 1624 1625 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1626 ModifierOptions Mods = ModifierOptions::None; 1627 PointerOptions PO = PointerOptions::None; 1628 bool IsModifier = true; 1629 const DIType *BaseTy = Ty; 1630 while (IsModifier && BaseTy) { 1631 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1632 switch (BaseTy->getTag()) { 1633 case dwarf::DW_TAG_const_type: 1634 Mods |= ModifierOptions::Const; 1635 PO |= PointerOptions::Const; 1636 break; 1637 case dwarf::DW_TAG_volatile_type: 1638 Mods |= ModifierOptions::Volatile; 1639 PO |= PointerOptions::Volatile; 1640 break; 1641 case dwarf::DW_TAG_restrict_type: 1642 // Only pointer types be marked with __restrict. There is no known flag 1643 // for __restrict in LF_MODIFIER records. 1644 PO |= PointerOptions::Restrict; 1645 break; 1646 default: 1647 IsModifier = false; 1648 break; 1649 } 1650 if (IsModifier) 1651 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1652 } 1653 1654 // Check if the inner type will use an LF_POINTER record. If so, the 1655 // qualifiers will go in the LF_POINTER record. This comes up for types like 1656 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1657 // char *'. 1658 if (BaseTy) { 1659 switch (BaseTy->getTag()) { 1660 case dwarf::DW_TAG_pointer_type: 1661 case dwarf::DW_TAG_reference_type: 1662 case dwarf::DW_TAG_rvalue_reference_type: 1663 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1664 case dwarf::DW_TAG_ptr_to_member_type: 1665 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1666 default: 1667 break; 1668 } 1669 } 1670 1671 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1672 1673 // Return the base type index if there aren't any modifiers. For example, the 1674 // metadata could contain restrict wrappers around non-pointer types. 1675 if (Mods == ModifierOptions::None) 1676 return ModifiedTI; 1677 1678 ModifierRecord MR(ModifiedTI, Mods); 1679 return TypeTable.writeLeafType(MR); 1680 } 1681 1682 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1683 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1684 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1685 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1686 1687 // MSVC uses type none for variadic argument. 1688 if (ReturnAndArgTypeIndices.size() > 1 && 1689 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1690 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1691 } 1692 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1693 ArrayRef<TypeIndex> ArgTypeIndices = None; 1694 if (!ReturnAndArgTypeIndices.empty()) { 1695 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1696 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1697 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1698 } 1699 1700 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1701 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1702 1703 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1704 1705 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1706 ArgTypeIndices.size(), ArgListIndex); 1707 return TypeTable.writeLeafType(Procedure); 1708 } 1709 1710 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1711 const DIType *ClassTy, 1712 int ThisAdjustment, 1713 bool IsStaticMethod) { 1714 // Lower the containing class type. 1715 TypeIndex ClassType = getTypeIndex(ClassTy); 1716 1717 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1718 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1719 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1720 1721 // MSVC uses type none for variadic argument. 1722 if (ReturnAndArgTypeIndices.size() > 1 && 1723 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1724 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1725 } 1726 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1727 ArrayRef<TypeIndex> ArgTypeIndices = None; 1728 if (!ReturnAndArgTypeIndices.empty()) { 1729 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1730 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1731 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1732 } 1733 TypeIndex ThisTypeIndex; 1734 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1735 ThisTypeIndex = ArgTypeIndices.front(); 1736 ArgTypeIndices = ArgTypeIndices.drop_front(); 1737 } 1738 1739 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1740 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1741 1742 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1743 1744 // TODO: Need to use the correct values for FunctionOptions. 1745 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1746 FunctionOptions::None, ArgTypeIndices.size(), 1747 ArgListIndex, ThisAdjustment); 1748 return TypeTable.writeLeafType(MFR); 1749 } 1750 1751 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1752 unsigned VSlotCount = 1753 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1754 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1755 1756 VFTableShapeRecord VFTSR(Slots); 1757 return TypeTable.writeLeafType(VFTSR); 1758 } 1759 1760 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1761 switch (Flags & DINode::FlagAccessibility) { 1762 case DINode::FlagPrivate: return MemberAccess::Private; 1763 case DINode::FlagPublic: return MemberAccess::Public; 1764 case DINode::FlagProtected: return MemberAccess::Protected; 1765 case 0: 1766 // If there was no explicit access control, provide the default for the tag. 1767 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1768 : MemberAccess::Public; 1769 } 1770 llvm_unreachable("access flags are exclusive"); 1771 } 1772 1773 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1774 if (SP->isArtificial()) 1775 return MethodOptions::CompilerGenerated; 1776 1777 // FIXME: Handle other MethodOptions. 1778 1779 return MethodOptions::None; 1780 } 1781 1782 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1783 bool Introduced) { 1784 if (SP->getFlags() & DINode::FlagStaticMember) 1785 return MethodKind::Static; 1786 1787 switch (SP->getVirtuality()) { 1788 case dwarf::DW_VIRTUALITY_none: 1789 break; 1790 case dwarf::DW_VIRTUALITY_virtual: 1791 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1792 case dwarf::DW_VIRTUALITY_pure_virtual: 1793 return Introduced ? MethodKind::PureIntroducingVirtual 1794 : MethodKind::PureVirtual; 1795 default: 1796 llvm_unreachable("unhandled virtuality case"); 1797 } 1798 1799 return MethodKind::Vanilla; 1800 } 1801 1802 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1803 switch (Ty->getTag()) { 1804 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1805 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1806 } 1807 llvm_unreachable("unexpected tag"); 1808 } 1809 1810 /// Return ClassOptions that should be present on both the forward declaration 1811 /// and the defintion of a tag type. 1812 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1813 ClassOptions CO = ClassOptions::None; 1814 1815 // MSVC always sets this flag, even for local types. Clang doesn't always 1816 // appear to give every type a linkage name, which may be problematic for us. 1817 // FIXME: Investigate the consequences of not following them here. 1818 if (!Ty->getIdentifier().empty()) 1819 CO |= ClassOptions::HasUniqueName; 1820 1821 // Put the Nested flag on a type if it appears immediately inside a tag type. 1822 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1823 // here. That flag is only set on definitions, and not forward declarations. 1824 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1825 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1826 CO |= ClassOptions::Nested; 1827 1828 // Put the Scoped flag on function-local types. 1829 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1830 Scope = Scope->getScope().resolve()) { 1831 if (isa<DISubprogram>(Scope)) { 1832 CO |= ClassOptions::Scoped; 1833 break; 1834 } 1835 } 1836 1837 return CO; 1838 } 1839 1840 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1841 switch (Ty->getTag()) { 1842 case dwarf::DW_TAG_class_type: 1843 case dwarf::DW_TAG_structure_type: 1844 case dwarf::DW_TAG_union_type: 1845 case dwarf::DW_TAG_enumeration_type: 1846 break; 1847 default: 1848 return; 1849 } 1850 1851 if (const auto *File = Ty->getFile()) { 1852 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1853 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1854 1855 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1856 TypeTable.writeLeafType(USLR); 1857 } 1858 } 1859 1860 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1861 ClassOptions CO = getCommonClassOptions(Ty); 1862 TypeIndex FTI; 1863 unsigned EnumeratorCount = 0; 1864 1865 if (Ty->isForwardDecl()) { 1866 CO |= ClassOptions::ForwardReference; 1867 } else { 1868 ContinuationRecordBuilder ContinuationBuilder; 1869 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1870 for (const DINode *Element : Ty->getElements()) { 1871 // We assume that the frontend provides all members in source declaration 1872 // order, which is what MSVC does. 1873 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1874 EnumeratorRecord ER(MemberAccess::Public, 1875 APSInt::getUnsigned(Enumerator->getValue()), 1876 Enumerator->getName()); 1877 ContinuationBuilder.writeMemberType(ER); 1878 EnumeratorCount++; 1879 } 1880 } 1881 FTI = TypeTable.insertRecord(ContinuationBuilder); 1882 } 1883 1884 std::string FullName = getFullyQualifiedName(Ty); 1885 1886 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1887 getTypeIndex(Ty->getBaseType())); 1888 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 1889 1890 addUDTSrcLine(Ty, EnumTI); 1891 1892 return EnumTI; 1893 } 1894 1895 //===----------------------------------------------------------------------===// 1896 // ClassInfo 1897 //===----------------------------------------------------------------------===// 1898 1899 struct llvm::ClassInfo { 1900 struct MemberInfo { 1901 const DIDerivedType *MemberTypeNode; 1902 uint64_t BaseOffset; 1903 }; 1904 // [MemberInfo] 1905 using MemberList = std::vector<MemberInfo>; 1906 1907 using MethodsList = TinyPtrVector<const DISubprogram *>; 1908 // MethodName -> MethodsList 1909 using MethodsMap = MapVector<MDString *, MethodsList>; 1910 1911 /// Base classes. 1912 std::vector<const DIDerivedType *> Inheritance; 1913 1914 /// Direct members. 1915 MemberList Members; 1916 // Direct overloaded methods gathered by name. 1917 MethodsMap Methods; 1918 1919 TypeIndex VShapeTI; 1920 1921 std::vector<const DIType *> NestedTypes; 1922 }; 1923 1924 void CodeViewDebug::clear() { 1925 assert(CurFn == nullptr); 1926 FileIdMap.clear(); 1927 FnDebugInfo.clear(); 1928 FileToFilepathMap.clear(); 1929 LocalUDTs.clear(); 1930 GlobalUDTs.clear(); 1931 TypeIndices.clear(); 1932 CompleteTypeIndices.clear(); 1933 } 1934 1935 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1936 const DIDerivedType *DDTy) { 1937 if (!DDTy->getName().empty()) { 1938 Info.Members.push_back({DDTy, 0}); 1939 return; 1940 } 1941 1942 // An unnamed member may represent a nested struct or union. Attempt to 1943 // interpret the unnamed member as a DICompositeType possibly wrapped in 1944 // qualifier types. Add all the indirect fields to the current record if that 1945 // succeeds, and drop the member if that fails. 1946 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1947 uint64_t Offset = DDTy->getOffsetInBits(); 1948 const DIType *Ty = DDTy->getBaseType().resolve(); 1949 bool FullyResolved = false; 1950 while (!FullyResolved) { 1951 switch (Ty->getTag()) { 1952 case dwarf::DW_TAG_const_type: 1953 case dwarf::DW_TAG_volatile_type: 1954 // FIXME: we should apply the qualifier types to the indirect fields 1955 // rather than dropping them. 1956 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 1957 break; 1958 default: 1959 FullyResolved = true; 1960 break; 1961 } 1962 } 1963 1964 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 1965 if (!DCTy) 1966 return; 1967 1968 ClassInfo NestedInfo = collectClassInfo(DCTy); 1969 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1970 Info.Members.push_back( 1971 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1972 } 1973 1974 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1975 ClassInfo Info; 1976 // Add elements to structure type. 1977 DINodeArray Elements = Ty->getElements(); 1978 for (auto *Element : Elements) { 1979 // We assume that the frontend provides all members in source declaration 1980 // order, which is what MSVC does. 1981 if (!Element) 1982 continue; 1983 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1984 Info.Methods[SP->getRawName()].push_back(SP); 1985 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1986 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1987 collectMemberInfo(Info, DDTy); 1988 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1989 Info.Inheritance.push_back(DDTy); 1990 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1991 DDTy->getName() == "__vtbl_ptr_type") { 1992 Info.VShapeTI = getTypeIndex(DDTy); 1993 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1994 Info.NestedTypes.push_back(DDTy); 1995 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1996 // Ignore friend members. It appears that MSVC emitted info about 1997 // friends in the past, but modern versions do not. 1998 } 1999 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2000 Info.NestedTypes.push_back(Composite); 2001 } 2002 // Skip other unrecognized kinds of elements. 2003 } 2004 return Info; 2005 } 2006 2007 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2008 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2009 // if a complete type should be emitted instead of a forward reference. 2010 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2011 !Ty->isForwardDecl(); 2012 } 2013 2014 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2015 // Emit the complete type for unnamed structs. C++ classes with methods 2016 // which have a circular reference back to the class type are expected to 2017 // be named by the front-end and should not be "unnamed". C unnamed 2018 // structs should not have circular references. 2019 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2020 // If this unnamed complete type is already in the process of being defined 2021 // then the description of the type is malformed and cannot be emitted 2022 // into CodeView correctly so report a fatal error. 2023 auto I = CompleteTypeIndices.find(Ty); 2024 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2025 report_fatal_error("cannot debug circular reference to unnamed type"); 2026 return getCompleteTypeIndex(Ty); 2027 } 2028 2029 // First, construct the forward decl. Don't look into Ty to compute the 2030 // forward decl options, since it might not be available in all TUs. 2031 TypeRecordKind Kind = getRecordKind(Ty); 2032 ClassOptions CO = 2033 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2034 std::string FullName = getFullyQualifiedName(Ty); 2035 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2036 FullName, Ty->getIdentifier()); 2037 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2038 if (!Ty->isForwardDecl()) 2039 DeferredCompleteTypes.push_back(Ty); 2040 return FwdDeclTI; 2041 } 2042 2043 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2044 // Construct the field list and complete type record. 2045 TypeRecordKind Kind = getRecordKind(Ty); 2046 ClassOptions CO = getCommonClassOptions(Ty); 2047 TypeIndex FieldTI; 2048 TypeIndex VShapeTI; 2049 unsigned FieldCount; 2050 bool ContainsNestedClass; 2051 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2052 lowerRecordFieldList(Ty); 2053 2054 if (ContainsNestedClass) 2055 CO |= ClassOptions::ContainsNestedClass; 2056 2057 std::string FullName = getFullyQualifiedName(Ty); 2058 2059 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2060 2061 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2062 SizeInBytes, FullName, Ty->getIdentifier()); 2063 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2064 2065 addUDTSrcLine(Ty, ClassTI); 2066 2067 addToUDTs(Ty); 2068 2069 return ClassTI; 2070 } 2071 2072 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2073 // Emit the complete type for unnamed unions. 2074 if (shouldAlwaysEmitCompleteClassType(Ty)) 2075 return getCompleteTypeIndex(Ty); 2076 2077 ClassOptions CO = 2078 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2079 std::string FullName = getFullyQualifiedName(Ty); 2080 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2081 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2082 if (!Ty->isForwardDecl()) 2083 DeferredCompleteTypes.push_back(Ty); 2084 return FwdDeclTI; 2085 } 2086 2087 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2088 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2089 TypeIndex FieldTI; 2090 unsigned FieldCount; 2091 bool ContainsNestedClass; 2092 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2093 lowerRecordFieldList(Ty); 2094 2095 if (ContainsNestedClass) 2096 CO |= ClassOptions::ContainsNestedClass; 2097 2098 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2099 std::string FullName = getFullyQualifiedName(Ty); 2100 2101 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2102 Ty->getIdentifier()); 2103 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2104 2105 addUDTSrcLine(Ty, UnionTI); 2106 2107 addToUDTs(Ty); 2108 2109 return UnionTI; 2110 } 2111 2112 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2113 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2114 // Manually count members. MSVC appears to count everything that generates a 2115 // field list record. Each individual overload in a method overload group 2116 // contributes to this count, even though the overload group is a single field 2117 // list record. 2118 unsigned MemberCount = 0; 2119 ClassInfo Info = collectClassInfo(Ty); 2120 ContinuationRecordBuilder ContinuationBuilder; 2121 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2122 2123 // Create base classes. 2124 for (const DIDerivedType *I : Info.Inheritance) { 2125 if (I->getFlags() & DINode::FlagVirtual) { 2126 // Virtual base. 2127 unsigned VBPtrOffset = I->getVBPtrOffset(); 2128 // FIXME: Despite the accessor name, the offset is really in bytes. 2129 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2130 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2131 ? TypeRecordKind::IndirectVirtualBaseClass 2132 : TypeRecordKind::VirtualBaseClass; 2133 VirtualBaseClassRecord VBCR( 2134 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2135 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2136 VBTableIndex); 2137 2138 ContinuationBuilder.writeMemberType(VBCR); 2139 MemberCount++; 2140 } else { 2141 assert(I->getOffsetInBits() % 8 == 0 && 2142 "bases must be on byte boundaries"); 2143 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2144 getTypeIndex(I->getBaseType()), 2145 I->getOffsetInBits() / 8); 2146 ContinuationBuilder.writeMemberType(BCR); 2147 MemberCount++; 2148 } 2149 } 2150 2151 // Create members. 2152 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2153 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2154 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2155 StringRef MemberName = Member->getName(); 2156 MemberAccess Access = 2157 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2158 2159 if (Member->isStaticMember()) { 2160 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2161 ContinuationBuilder.writeMemberType(SDMR); 2162 MemberCount++; 2163 continue; 2164 } 2165 2166 // Virtual function pointer member. 2167 if ((Member->getFlags() & DINode::FlagArtificial) && 2168 Member->getName().startswith("_vptr$")) { 2169 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2170 ContinuationBuilder.writeMemberType(VFPR); 2171 MemberCount++; 2172 continue; 2173 } 2174 2175 // Data member. 2176 uint64_t MemberOffsetInBits = 2177 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2178 if (Member->isBitField()) { 2179 uint64_t StartBitOffset = MemberOffsetInBits; 2180 if (const auto *CI = 2181 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2182 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2183 } 2184 StartBitOffset -= MemberOffsetInBits; 2185 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2186 StartBitOffset); 2187 MemberBaseType = TypeTable.writeLeafType(BFR); 2188 } 2189 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2190 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2191 MemberName); 2192 ContinuationBuilder.writeMemberType(DMR); 2193 MemberCount++; 2194 } 2195 2196 // Create methods 2197 for (auto &MethodItr : Info.Methods) { 2198 StringRef Name = MethodItr.first->getString(); 2199 2200 std::vector<OneMethodRecord> Methods; 2201 for (const DISubprogram *SP : MethodItr.second) { 2202 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2203 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2204 2205 unsigned VFTableOffset = -1; 2206 if (Introduced) 2207 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2208 2209 Methods.push_back(OneMethodRecord( 2210 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2211 translateMethodKindFlags(SP, Introduced), 2212 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2213 MemberCount++; 2214 } 2215 assert(!Methods.empty() && "Empty methods map entry"); 2216 if (Methods.size() == 1) 2217 ContinuationBuilder.writeMemberType(Methods[0]); 2218 else { 2219 // FIXME: Make this use its own ContinuationBuilder so that 2220 // MethodOverloadList can be split correctly. 2221 MethodOverloadListRecord MOLR(Methods); 2222 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2223 2224 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2225 ContinuationBuilder.writeMemberType(OMR); 2226 } 2227 } 2228 2229 // Create nested classes. 2230 for (const DIType *Nested : Info.NestedTypes) { 2231 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2232 ContinuationBuilder.writeMemberType(R); 2233 MemberCount++; 2234 } 2235 2236 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2237 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2238 !Info.NestedTypes.empty()); 2239 } 2240 2241 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2242 if (!VBPType.getIndex()) { 2243 // Make a 'const int *' type. 2244 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2245 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2246 2247 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2248 : PointerKind::Near32; 2249 PointerMode PM = PointerMode::Pointer; 2250 PointerOptions PO = PointerOptions::None; 2251 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2252 VBPType = TypeTable.writeLeafType(PR); 2253 } 2254 2255 return VBPType; 2256 } 2257 2258 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2259 const DIType *Ty = TypeRef.resolve(); 2260 const DIType *ClassTy = ClassTyRef.resolve(); 2261 2262 // The null DIType is the void type. Don't try to hash it. 2263 if (!Ty) 2264 return TypeIndex::Void(); 2265 2266 // Check if we've already translated this type. Don't try to do a 2267 // get-or-create style insertion that caches the hash lookup across the 2268 // lowerType call. It will update the TypeIndices map. 2269 auto I = TypeIndices.find({Ty, ClassTy}); 2270 if (I != TypeIndices.end()) 2271 return I->second; 2272 2273 TypeLoweringScope S(*this); 2274 TypeIndex TI = lowerType(Ty, ClassTy); 2275 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2276 } 2277 2278 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2279 DIType *Ty = TypeRef.resolve(); 2280 PointerRecord PR(getTypeIndex(Ty), 2281 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2282 : PointerKind::Near32, 2283 PointerMode::LValueReference, PointerOptions::None, 2284 Ty->getSizeInBits() / 8); 2285 return TypeTable.writeLeafType(PR); 2286 } 2287 2288 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2289 const DIType *Ty = TypeRef.resolve(); 2290 2291 // The null DIType is the void type. Don't try to hash it. 2292 if (!Ty) 2293 return TypeIndex::Void(); 2294 2295 // If this is a non-record type, the complete type index is the same as the 2296 // normal type index. Just call getTypeIndex. 2297 switch (Ty->getTag()) { 2298 case dwarf::DW_TAG_class_type: 2299 case dwarf::DW_TAG_structure_type: 2300 case dwarf::DW_TAG_union_type: 2301 break; 2302 default: 2303 return getTypeIndex(Ty); 2304 } 2305 2306 // Check if we've already translated the complete record type. 2307 const auto *CTy = cast<DICompositeType>(Ty); 2308 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2309 if (!InsertResult.second) 2310 return InsertResult.first->second; 2311 2312 TypeLoweringScope S(*this); 2313 2314 // Make sure the forward declaration is emitted first. It's unclear if this 2315 // is necessary, but MSVC does it, and we should follow suit until we can show 2316 // otherwise. 2317 // We only emit a forward declaration for named types. 2318 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2319 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2320 2321 // Just use the forward decl if we don't have complete type info. This 2322 // might happen if the frontend is using modules and expects the complete 2323 // definition to be emitted elsewhere. 2324 if (CTy->isForwardDecl()) 2325 return FwdDeclTI; 2326 } 2327 2328 TypeIndex TI; 2329 switch (CTy->getTag()) { 2330 case dwarf::DW_TAG_class_type: 2331 case dwarf::DW_TAG_structure_type: 2332 TI = lowerCompleteTypeClass(CTy); 2333 break; 2334 case dwarf::DW_TAG_union_type: 2335 TI = lowerCompleteTypeUnion(CTy); 2336 break; 2337 default: 2338 llvm_unreachable("not a record"); 2339 } 2340 2341 // Update the type index associated with this CompositeType. This cannot 2342 // use the 'InsertResult' iterator above because it is potentially 2343 // invalidated by map insertions which can occur while lowering the class 2344 // type above. 2345 CompleteTypeIndices[CTy] = TI; 2346 return TI; 2347 } 2348 2349 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2350 /// and do this until fixpoint, as each complete record type typically 2351 /// references 2352 /// many other record types. 2353 void CodeViewDebug::emitDeferredCompleteTypes() { 2354 SmallVector<const DICompositeType *, 4> TypesToEmit; 2355 while (!DeferredCompleteTypes.empty()) { 2356 std::swap(DeferredCompleteTypes, TypesToEmit); 2357 for (const DICompositeType *RecordTy : TypesToEmit) 2358 getCompleteTypeIndex(RecordTy); 2359 TypesToEmit.clear(); 2360 } 2361 } 2362 2363 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2364 // Get the sorted list of parameters and emit them first. 2365 SmallVector<const LocalVariable *, 6> Params; 2366 for (const LocalVariable &L : Locals) 2367 if (L.DIVar->isParameter()) 2368 Params.push_back(&L); 2369 llvm::sort(Params.begin(), Params.end(), 2370 [](const LocalVariable *L, const LocalVariable *R) { 2371 return L->DIVar->getArg() < R->DIVar->getArg(); 2372 }); 2373 for (const LocalVariable *L : Params) 2374 emitLocalVariable(*L); 2375 2376 // Next emit all non-parameters in the order that we found them. 2377 for (const LocalVariable &L : Locals) 2378 if (!L.DIVar->isParameter()) 2379 emitLocalVariable(L); 2380 } 2381 2382 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2383 // LocalSym record, see SymbolRecord.h for more info. 2384 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2385 *LocalEnd = MMI->getContext().createTempSymbol(); 2386 OS.AddComment("Record length"); 2387 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2388 OS.EmitLabel(LocalBegin); 2389 2390 OS.AddComment("Record kind: S_LOCAL"); 2391 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2392 2393 LocalSymFlags Flags = LocalSymFlags::None; 2394 if (Var.DIVar->isParameter()) 2395 Flags |= LocalSymFlags::IsParameter; 2396 if (Var.DefRanges.empty()) 2397 Flags |= LocalSymFlags::IsOptimizedOut; 2398 2399 OS.AddComment("TypeIndex"); 2400 TypeIndex TI = Var.UseReferenceType 2401 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2402 : getCompleteTypeIndex(Var.DIVar->getType()); 2403 OS.EmitIntValue(TI.getIndex(), 4); 2404 OS.AddComment("Flags"); 2405 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2406 // Truncate the name so we won't overflow the record length field. 2407 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2408 OS.EmitLabel(LocalEnd); 2409 2410 // Calculate the on disk prefix of the appropriate def range record. The 2411 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2412 // should be big enough to hold all forms without memory allocation. 2413 SmallString<20> BytePrefix; 2414 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2415 BytePrefix.clear(); 2416 if (DefRange.InMemory) { 2417 uint16_t RegRelFlags = 0; 2418 if (DefRange.IsSubfield) { 2419 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2420 (DefRange.StructOffset 2421 << DefRangeRegisterRelSym::OffsetInParentShift); 2422 } 2423 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2424 Sym.Hdr.Register = DefRange.CVRegister; 2425 Sym.Hdr.Flags = RegRelFlags; 2426 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2427 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2428 BytePrefix += 2429 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2430 BytePrefix += 2431 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2432 } else { 2433 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2434 if (DefRange.IsSubfield) { 2435 // Unclear what matters here. 2436 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2437 Sym.Hdr.Register = DefRange.CVRegister; 2438 Sym.Hdr.MayHaveNoName = 0; 2439 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2440 2441 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2442 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2443 sizeof(SymKind)); 2444 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2445 sizeof(Sym.Hdr)); 2446 } else { 2447 // Unclear what matters here. 2448 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2449 Sym.Hdr.Register = DefRange.CVRegister; 2450 Sym.Hdr.MayHaveNoName = 0; 2451 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2452 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2453 sizeof(SymKind)); 2454 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2455 sizeof(Sym.Hdr)); 2456 } 2457 } 2458 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2459 } 2460 } 2461 2462 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2463 const FunctionInfo& FI) { 2464 for (LexicalBlock *Block : Blocks) 2465 emitLexicalBlock(*Block, FI); 2466 } 2467 2468 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2469 /// lexical block scope. 2470 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2471 const FunctionInfo& FI) { 2472 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(), 2473 *RecordEnd = MMI->getContext().createTempSymbol(); 2474 2475 // Lexical block symbol record. 2476 OS.AddComment("Record length"); 2477 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length 2478 OS.EmitLabel(RecordBegin); 2479 OS.AddComment("Record kind: S_BLOCK32"); 2480 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind 2481 OS.AddComment("PtrParent"); 2482 OS.EmitIntValue(0, 4); // PtrParent 2483 OS.AddComment("PtrEnd"); 2484 OS.EmitIntValue(0, 4); // PtrEnd 2485 OS.AddComment("Code size"); 2486 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2487 OS.AddComment("Function section relative address"); 2488 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2489 OS.AddComment("Function section index"); 2490 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2491 OS.AddComment("Lexical block name"); 2492 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2493 OS.EmitLabel(RecordEnd); 2494 2495 // Emit variables local to this lexical block. 2496 emitLocalVariableList(Block.Locals); 2497 2498 // Emit lexical blocks contained within this block. 2499 emitLexicalBlockList(Block.Children, FI); 2500 2501 // Close the lexical block scope. 2502 OS.AddComment("Record length"); 2503 OS.EmitIntValue(2, 2); // Record Length 2504 OS.AddComment("Record kind: S_END"); 2505 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind 2506 } 2507 2508 /// Convenience routine for collecting lexical block information for a list 2509 /// of lexical scopes. 2510 void CodeViewDebug::collectLexicalBlockInfo( 2511 SmallVectorImpl<LexicalScope *> &Scopes, 2512 SmallVectorImpl<LexicalBlock *> &Blocks, 2513 SmallVectorImpl<LocalVariable> &Locals) { 2514 for (LexicalScope *Scope : Scopes) 2515 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2516 } 2517 2518 /// Populate the lexical blocks and local variable lists of the parent with 2519 /// information about the specified lexical scope. 2520 void CodeViewDebug::collectLexicalBlockInfo( 2521 LexicalScope &Scope, 2522 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2523 SmallVectorImpl<LocalVariable> &ParentLocals) { 2524 if (Scope.isAbstractScope()) 2525 return; 2526 2527 auto LocalsIter = ScopeVariables.find(&Scope); 2528 if (LocalsIter == ScopeVariables.end()) { 2529 // This scope does not contain variables and can be eliminated. 2530 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2531 return; 2532 } 2533 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2534 2535 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2536 if (!DILB) { 2537 // This scope is not a lexical block and can be eliminated, but keep any 2538 // local variables it contains. 2539 ParentLocals.append(Locals.begin(), Locals.end()); 2540 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2541 return; 2542 } 2543 2544 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2545 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2546 // This lexical block scope has too many address ranges to represent in the 2547 // current CodeView format or does not have a valid address range. 2548 // Eliminate this lexical scope and promote any locals it contains to the 2549 // parent scope. 2550 // 2551 // For lexical scopes with multiple address ranges you may be tempted to 2552 // construct a single range covering every instruction where the block is 2553 // live and everything in between. Unfortunately, Visual Studio only 2554 // displays variables from the first matching lexical block scope. If the 2555 // first lexical block contains exception handling code or cold code which 2556 // is moved to the bottom of the routine creating a single range covering 2557 // nearly the entire routine, then it will hide all other lexical blocks 2558 // and the variables they contain. 2559 // 2560 ParentLocals.append(Locals.begin(), Locals.end()); 2561 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2562 return; 2563 } 2564 2565 // Create a new CodeView lexical block for this lexical scope. If we've 2566 // seen this DILexicalBlock before then the scope tree is malformed and 2567 // we can handle this gracefully by not processing it a second time. 2568 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2569 if (!BlockInsertion.second) 2570 return; 2571 2572 // Create a lexical block containing the local variables and collect the 2573 // the lexical block information for the children. 2574 const InsnRange &Range = Ranges.front(); 2575 assert(Range.first && Range.second); 2576 LexicalBlock &Block = BlockInsertion.first->second; 2577 Block.Begin = getLabelBeforeInsn(Range.first); 2578 Block.End = getLabelAfterInsn(Range.second); 2579 assert(Block.Begin && "missing label for scope begin"); 2580 assert(Block.End && "missing label for scope end"); 2581 Block.Name = DILB->getName(); 2582 Block.Locals = std::move(Locals); 2583 ParentBlocks.push_back(&Block); 2584 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2585 } 2586 2587 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2588 const Function &GV = MF->getFunction(); 2589 assert(FnDebugInfo.count(&GV)); 2590 assert(CurFn == FnDebugInfo[&GV].get()); 2591 2592 collectVariableInfo(GV.getSubprogram()); 2593 2594 // Build the lexical block structure to emit for this routine. 2595 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2596 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2597 2598 // Clear the scope and variable information from the map which will not be 2599 // valid after we have finished processing this routine. This also prepares 2600 // the map for the subsequent routine. 2601 ScopeVariables.clear(); 2602 2603 // Don't emit anything if we don't have any line tables. 2604 // Thunks are compiler-generated and probably won't have source correlation. 2605 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2606 FnDebugInfo.erase(&GV); 2607 CurFn = nullptr; 2608 return; 2609 } 2610 2611 CurFn->Annotations = MF->getCodeViewAnnotations(); 2612 2613 CurFn->End = Asm->getFunctionEnd(); 2614 2615 CurFn = nullptr; 2616 } 2617 2618 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2619 DebugHandlerBase::beginInstruction(MI); 2620 2621 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2622 if (!Asm || !CurFn || MI->isDebugInstr() || 2623 MI->getFlag(MachineInstr::FrameSetup)) 2624 return; 2625 2626 // If the first instruction of a new MBB has no location, find the first 2627 // instruction with a location and use that. 2628 DebugLoc DL = MI->getDebugLoc(); 2629 if (!DL && MI->getParent() != PrevInstBB) { 2630 for (const auto &NextMI : *MI->getParent()) { 2631 if (NextMI.isDebugInstr()) 2632 continue; 2633 DL = NextMI.getDebugLoc(); 2634 if (DL) 2635 break; 2636 } 2637 } 2638 PrevInstBB = MI->getParent(); 2639 2640 // If we still don't have a debug location, don't record a location. 2641 if (!DL) 2642 return; 2643 2644 maybeRecordLocation(DL, Asm->MF); 2645 } 2646 2647 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2648 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2649 *EndLabel = MMI->getContext().createTempSymbol(); 2650 OS.EmitIntValue(unsigned(Kind), 4); 2651 OS.AddComment("Subsection size"); 2652 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2653 OS.EmitLabel(BeginLabel); 2654 return EndLabel; 2655 } 2656 2657 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2658 OS.EmitLabel(EndLabel); 2659 // Every subsection must be aligned to a 4-byte boundary. 2660 OS.EmitValueToAlignment(4); 2661 } 2662 2663 void CodeViewDebug::emitDebugInfoForUDTs( 2664 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2665 for (const auto &UDT : UDTs) { 2666 const DIType *T = UDT.second; 2667 assert(shouldEmitUdt(T)); 2668 2669 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2670 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2671 OS.AddComment("Record length"); 2672 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2673 OS.EmitLabel(UDTRecordBegin); 2674 2675 OS.AddComment("Record kind: S_UDT"); 2676 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2677 2678 OS.AddComment("Type"); 2679 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2680 2681 emitNullTerminatedSymbolName(OS, UDT.first); 2682 OS.EmitLabel(UDTRecordEnd); 2683 } 2684 } 2685 2686 void CodeViewDebug::emitDebugInfoForGlobals() { 2687 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2688 GlobalMap; 2689 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2690 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2691 GV.getDebugInfo(GVEs); 2692 for (const auto *GVE : GVEs) 2693 GlobalMap[GVE] = &GV; 2694 } 2695 2696 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2697 for (const MDNode *Node : CUs->operands()) { 2698 const auto *CU = cast<DICompileUnit>(Node); 2699 2700 // First, emit all globals that are not in a comdat in a single symbol 2701 // substream. MSVC doesn't like it if the substream is empty, so only open 2702 // it if we have at least one global to emit. 2703 switchToDebugSectionForSymbol(nullptr); 2704 MCSymbol *EndLabel = nullptr; 2705 for (const auto *GVE : CU->getGlobalVariables()) { 2706 if (const auto *GV = GlobalMap.lookup(GVE)) 2707 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2708 if (!EndLabel) { 2709 OS.AddComment("Symbol subsection for globals"); 2710 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2711 } 2712 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2713 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2714 } 2715 } 2716 if (EndLabel) 2717 endCVSubsection(EndLabel); 2718 2719 // Second, emit each global that is in a comdat into its own .debug$S 2720 // section along with its own symbol substream. 2721 for (const auto *GVE : CU->getGlobalVariables()) { 2722 if (const auto *GV = GlobalMap.lookup(GVE)) { 2723 if (GV->hasComdat()) { 2724 MCSymbol *GVSym = Asm->getSymbol(GV); 2725 OS.AddComment("Symbol subsection for " + 2726 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2727 switchToDebugSectionForSymbol(GVSym); 2728 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2729 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2730 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2731 endCVSubsection(EndLabel); 2732 } 2733 } 2734 } 2735 } 2736 } 2737 2738 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2739 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2740 for (const MDNode *Node : CUs->operands()) { 2741 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2742 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2743 getTypeIndex(RT); 2744 // FIXME: Add to global/local DTU list. 2745 } 2746 } 2747 } 2748 } 2749 2750 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2751 const GlobalVariable *GV, 2752 MCSymbol *GVSym) { 2753 // DataSym record, see SymbolRecord.h for more info. 2754 // FIXME: Thread local data, etc 2755 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2756 *DataEnd = MMI->getContext().createTempSymbol(); 2757 const unsigned FixedLengthOfThisRecord = 12; 2758 OS.AddComment("Record length"); 2759 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2760 OS.EmitLabel(DataBegin); 2761 if (DIGV->isLocalToUnit()) { 2762 if (GV->isThreadLocal()) { 2763 OS.AddComment("Record kind: S_LTHREAD32"); 2764 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2765 } else { 2766 OS.AddComment("Record kind: S_LDATA32"); 2767 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2768 } 2769 } else { 2770 if (GV->isThreadLocal()) { 2771 OS.AddComment("Record kind: S_GTHREAD32"); 2772 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2773 } else { 2774 OS.AddComment("Record kind: S_GDATA32"); 2775 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2776 } 2777 } 2778 OS.AddComment("Type"); 2779 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2780 OS.AddComment("DataOffset"); 2781 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2782 OS.AddComment("Segment"); 2783 OS.EmitCOFFSectionIndex(GVSym); 2784 OS.AddComment("Name"); 2785 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord); 2786 OS.EmitLabel(DataEnd); 2787 } 2788