xref: /llvm-project/llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp (revision 2fccd5c576f2e056954996c3071163fc5c1eb4d4)
1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeViewDebug.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallBitVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/TinyPtrVector.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/BinaryFormat/COFF.h"
22 #include "llvm/BinaryFormat/Dwarf.h"
23 #include "llvm/CodeGen/AsmPrinter.h"
24 #include "llvm/CodeGen/LexicalScopes.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/TargetFrameLowering.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/CodeGen/TargetRegisterInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/Config/llvm-config.h"
34 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
35 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
36 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
37 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
38 #include "llvm/DebugInfo/CodeView/EnumTables.h"
39 #include "llvm/DebugInfo/CodeView/Line.h"
40 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
41 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
42 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
43 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/MC/MCAsmInfo.h"
53 #include "llvm/MC/MCContext.h"
54 #include "llvm/MC/MCSectionCOFF.h"
55 #include "llvm/MC/MCStreamer.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/Support/BinaryStreamWriter.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Error.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/FormatVariadic.h"
62 #include "llvm/Support/Path.h"
63 #include "llvm/Support/SMLoc.h"
64 #include "llvm/Support/ScopedPrinter.h"
65 #include "llvm/Target/TargetLoweringObjectFile.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include "llvm/TargetParser/Triple.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cctype>
71 #include <cstddef>
72 #include <limits>
73 
74 using namespace llvm;
75 using namespace llvm::codeview;
76 
77 namespace {
78 class CVMCAdapter : public CodeViewRecordStreamer {
79 public:
80   CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
81       : OS(&OS), TypeTable(TypeTable) {}
82 
83   void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
84 
85   void emitIntValue(uint64_t Value, unsigned Size) override {
86     OS->emitIntValueInHex(Value, Size);
87   }
88 
89   void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
90 
91   void AddComment(const Twine &T) override { OS->AddComment(T); }
92 
93   void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
94 
95   bool isVerboseAsm() override { return OS->isVerboseAsm(); }
96 
97   std::string getTypeName(TypeIndex TI) override {
98     std::string TypeName;
99     if (!TI.isNoneType()) {
100       if (TI.isSimple())
101         TypeName = std::string(TypeIndex::simpleTypeName(TI));
102       else
103         TypeName = std::string(TypeTable.getTypeName(TI));
104     }
105     return TypeName;
106   }
107 
108 private:
109   MCStreamer *OS = nullptr;
110   TypeCollection &TypeTable;
111 };
112 } // namespace
113 
114 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
115   switch (Type) {
116   case Triple::ArchType::x86:
117     return CPUType::Pentium3;
118   case Triple::ArchType::x86_64:
119     return CPUType::X64;
120   case Triple::ArchType::thumb:
121     // LLVM currently doesn't support Windows CE and so thumb
122     // here is indiscriminately mapped to ARMNT specifically.
123     return CPUType::ARMNT;
124   case Triple::ArchType::aarch64:
125     return CPUType::ARM64;
126   default:
127     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
128   }
129 }
130 
131 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
132     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {}
133 
134 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
135   std::string &Filepath = FileToFilepathMap[File];
136   if (!Filepath.empty())
137     return Filepath;
138 
139   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
140 
141   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
142   // it textually because one of the path components could be a symlink.
143   if (Dir.starts_with("/") || Filename.starts_with("/")) {
144     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
145       return Filename;
146     Filepath = std::string(Dir);
147     if (Dir.back() != '/')
148       Filepath += '/';
149     Filepath += Filename;
150     return Filepath;
151   }
152 
153   // Clang emits directory and relative filename info into the IR, but CodeView
154   // operates on full paths.  We could change Clang to emit full paths too, but
155   // that would increase the IR size and probably not needed for other users.
156   // For now, just concatenate and canonicalize the path here.
157   if (Filename.find(':') == 1)
158     Filepath = std::string(Filename);
159   else
160     Filepath = (Dir + "\\" + Filename).str();
161 
162   // Canonicalize the path.  We have to do it textually because we may no longer
163   // have access the file in the filesystem.
164   // First, replace all slashes with backslashes.
165   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
166 
167   // Remove all "\.\" with "\".
168   size_t Cursor = 0;
169   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
170     Filepath.erase(Cursor, 2);
171 
172   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
173   // path should be well-formatted, e.g. start with a drive letter, etc.
174   Cursor = 0;
175   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
176     // Something's wrong if the path starts with "\..\", abort.
177     if (Cursor == 0)
178       break;
179 
180     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
181     if (PrevSlash == std::string::npos)
182       // Something's wrong, abort.
183       break;
184 
185     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
186     // The next ".." might be following the one we've just erased.
187     Cursor = PrevSlash;
188   }
189 
190   // Remove all duplicate backslashes.
191   Cursor = 0;
192   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
193     Filepath.erase(Cursor, 1);
194 
195   return Filepath;
196 }
197 
198 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
199   StringRef FullPath = getFullFilepath(F);
200   unsigned NextId = FileIdMap.size() + 1;
201   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
202   if (Insertion.second) {
203     // We have to compute the full filepath and emit a .cv_file directive.
204     ArrayRef<uint8_t> ChecksumAsBytes;
205     FileChecksumKind CSKind = FileChecksumKind::None;
206     if (F->getChecksum()) {
207       std::string Checksum = fromHex(F->getChecksum()->Value);
208       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
209       memcpy(CKMem, Checksum.data(), Checksum.size());
210       ChecksumAsBytes = ArrayRef<uint8_t>(
211           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
212       switch (F->getChecksum()->Kind) {
213       case DIFile::CSK_MD5:
214         CSKind = FileChecksumKind::MD5;
215         break;
216       case DIFile::CSK_SHA1:
217         CSKind = FileChecksumKind::SHA1;
218         break;
219       case DIFile::CSK_SHA256:
220         CSKind = FileChecksumKind::SHA256;
221         break;
222       }
223     }
224     bool Success = OS.emitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
225                                           static_cast<unsigned>(CSKind));
226     (void)Success;
227     assert(Success && ".cv_file directive failed");
228   }
229   return Insertion.first->second;
230 }
231 
232 CodeViewDebug::InlineSite &
233 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
234                              const DISubprogram *Inlinee) {
235   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
236   InlineSite *Site = &SiteInsertion.first->second;
237   if (SiteInsertion.second) {
238     unsigned ParentFuncId = CurFn->FuncId;
239     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
240       ParentFuncId =
241           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
242               .SiteFuncId;
243 
244     Site->SiteFuncId = NextFuncId++;
245     OS.emitCVInlineSiteIdDirective(
246         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
247         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
248     Site->Inlinee = Inlinee;
249     InlinedSubprograms.insert(Inlinee);
250     auto InlineeIdx = getFuncIdForSubprogram(Inlinee);
251 
252     if (InlinedAt->getInlinedAt() == nullptr)
253       CurFn->Inlinees.insert(InlineeIdx);
254   }
255   return *Site;
256 }
257 
258 static StringRef getPrettyScopeName(const DIScope *Scope) {
259   StringRef ScopeName = Scope->getName();
260   if (!ScopeName.empty())
261     return ScopeName;
262 
263   switch (Scope->getTag()) {
264   case dwarf::DW_TAG_enumeration_type:
265   case dwarf::DW_TAG_class_type:
266   case dwarf::DW_TAG_structure_type:
267   case dwarf::DW_TAG_union_type:
268     return "<unnamed-tag>";
269   case dwarf::DW_TAG_namespace:
270     return "`anonymous namespace'";
271   default:
272     return StringRef();
273   }
274 }
275 
276 const DISubprogram *CodeViewDebug::collectParentScopeNames(
277     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
278   const DISubprogram *ClosestSubprogram = nullptr;
279   while (Scope != nullptr) {
280     if (ClosestSubprogram == nullptr)
281       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
282 
283     // If a type appears in a scope chain, make sure it gets emitted. The
284     // frontend will be responsible for deciding if this should be a forward
285     // declaration or a complete type.
286     if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
287       DeferredCompleteTypes.push_back(Ty);
288 
289     StringRef ScopeName = getPrettyScopeName(Scope);
290     if (!ScopeName.empty())
291       QualifiedNameComponents.push_back(ScopeName);
292     Scope = Scope->getScope();
293   }
294   return ClosestSubprogram;
295 }
296 
297 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
298                                     StringRef TypeName) {
299   std::string FullyQualifiedName;
300   for (StringRef QualifiedNameComponent :
301        llvm::reverse(QualifiedNameComponents)) {
302     FullyQualifiedName.append(std::string(QualifiedNameComponent));
303     FullyQualifiedName.append("::");
304   }
305   FullyQualifiedName.append(std::string(TypeName));
306   return FullyQualifiedName;
307 }
308 
309 struct CodeViewDebug::TypeLoweringScope {
310   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
311   ~TypeLoweringScope() {
312     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
313     // inner TypeLoweringScopes don't attempt to emit deferred types.
314     if (CVD.TypeEmissionLevel == 1)
315       CVD.emitDeferredCompleteTypes();
316     --CVD.TypeEmissionLevel;
317   }
318   CodeViewDebug &CVD;
319 };
320 
321 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
322                                                  StringRef Name) {
323   // Ensure types in the scope chain are emitted as soon as possible.
324   // This can create otherwise a situation where S_UDTs are emitted while
325   // looping in emitDebugInfoForUDTs.
326   TypeLoweringScope S(*this);
327   SmallVector<StringRef, 5> QualifiedNameComponents;
328   collectParentScopeNames(Scope, QualifiedNameComponents);
329   return formatNestedName(QualifiedNameComponents, Name);
330 }
331 
332 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
333   const DIScope *Scope = Ty->getScope();
334   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
335 }
336 
337 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
338   // No scope means global scope and that uses the zero index.
339   //
340   // We also use zero index when the scope is a DISubprogram
341   // to suppress the emission of LF_STRING_ID for the function,
342   // which can trigger a link-time error with the linker in
343   // VS2019 version 16.11.2 or newer.
344   // Note, however, skipping the debug info emission for the DISubprogram
345   // is a temporary fix. The root issue here is that we need to figure out
346   // the proper way to encode a function nested in another function
347   // (as introduced by the Fortran 'contains' keyword) in CodeView.
348   if (!Scope || isa<DIFile>(Scope) || isa<DISubprogram>(Scope))
349     return TypeIndex();
350 
351   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
352 
353   // Check if we've already translated this scope.
354   auto I = TypeIndices.find({Scope, nullptr});
355   if (I != TypeIndices.end())
356     return I->second;
357 
358   // Build the fully qualified name of the scope.
359   std::string ScopeName = getFullyQualifiedName(Scope);
360   StringIdRecord SID(TypeIndex(), ScopeName);
361   auto TI = TypeTable.writeLeafType(SID);
362   return recordTypeIndexForDINode(Scope, TI);
363 }
364 
365 static StringRef removeTemplateArgs(StringRef Name) {
366   // Remove template args from the display name. Assume that the template args
367   // are the last thing in the name.
368   if (Name.empty() || Name.back() != '>')
369     return Name;
370 
371   int OpenBrackets = 0;
372   for (int i = Name.size() - 1; i >= 0; --i) {
373     if (Name[i] == '>')
374       ++OpenBrackets;
375     else if (Name[i] == '<') {
376       --OpenBrackets;
377       if (OpenBrackets == 0)
378         return Name.substr(0, i);
379     }
380   }
381   return Name;
382 }
383 
384 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
385   assert(SP);
386 
387   // Check if we've already translated this subprogram.
388   auto I = TypeIndices.find({SP, nullptr});
389   if (I != TypeIndices.end())
390     return I->second;
391 
392   // The display name includes function template arguments. Drop them to match
393   // MSVC. We need to have the template arguments in the DISubprogram name
394   // because they are used in other symbol records, such as S_GPROC32_IDs.
395   StringRef DisplayName = removeTemplateArgs(SP->getName());
396 
397   const DIScope *Scope = SP->getScope();
398   TypeIndex TI;
399   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
400     // If the scope is a DICompositeType, then this must be a method. Member
401     // function types take some special handling, and require access to the
402     // subprogram.
403     TypeIndex ClassType = getTypeIndex(Class);
404     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
405                                DisplayName);
406     TI = TypeTable.writeLeafType(MFuncId);
407   } else {
408     // Otherwise, this must be a free function.
409     TypeIndex ParentScope = getScopeIndex(Scope);
410     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
411     TI = TypeTable.writeLeafType(FuncId);
412   }
413 
414   return recordTypeIndexForDINode(SP, TI);
415 }
416 
417 static bool isNonTrivial(const DICompositeType *DCTy) {
418   return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
419 }
420 
421 static FunctionOptions
422 getFunctionOptions(const DISubroutineType *Ty,
423                    const DICompositeType *ClassTy = nullptr,
424                    StringRef SPName = StringRef("")) {
425   FunctionOptions FO = FunctionOptions::None;
426   const DIType *ReturnTy = nullptr;
427   if (auto TypeArray = Ty->getTypeArray()) {
428     if (TypeArray.size())
429       ReturnTy = TypeArray[0];
430   }
431 
432   // Add CxxReturnUdt option to functions that return nontrivial record types
433   // or methods that return record types.
434   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
435     if (isNonTrivial(ReturnDCTy) || ClassTy)
436       FO |= FunctionOptions::CxxReturnUdt;
437 
438   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
439   if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
440     FO |= FunctionOptions::Constructor;
441 
442   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
443 
444   }
445   return FO;
446 }
447 
448 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
449                                                const DICompositeType *Class) {
450   // Always use the method declaration as the key for the function type. The
451   // method declaration contains the this adjustment.
452   if (SP->getDeclaration())
453     SP = SP->getDeclaration();
454   assert(!SP->getDeclaration() && "should use declaration as key");
455 
456   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
457   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
458   auto I = TypeIndices.find({SP, Class});
459   if (I != TypeIndices.end())
460     return I->second;
461 
462   // Make sure complete type info for the class is emitted *after* the member
463   // function type, as the complete class type is likely to reference this
464   // member function type.
465   TypeLoweringScope S(*this);
466   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
467 
468   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
469   TypeIndex TI = lowerTypeMemberFunction(
470       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
471   return recordTypeIndexForDINode(SP, TI, Class);
472 }
473 
474 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
475                                                   TypeIndex TI,
476                                                   const DIType *ClassTy) {
477   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
478   (void)InsertResult;
479   assert(InsertResult.second && "DINode was already assigned a type index");
480   return TI;
481 }
482 
483 unsigned CodeViewDebug::getPointerSizeInBytes() {
484   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
485 }
486 
487 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
488                                         const LexicalScope *LS) {
489   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
490     // This variable was inlined. Associate it with the InlineSite.
491     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
492     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
493     Site.InlinedLocals.emplace_back(std::move(Var));
494   } else {
495     // This variable goes into the corresponding lexical scope.
496     ScopeVariables[LS].emplace_back(std::move(Var));
497   }
498 }
499 
500 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
501                                const DILocation *Loc) {
502   if (!llvm::is_contained(Locs, Loc))
503     Locs.push_back(Loc);
504 }
505 
506 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
507                                         const MachineFunction *MF) {
508   // Skip this instruction if it has the same location as the previous one.
509   if (!DL || DL == PrevInstLoc)
510     return;
511 
512   const DIScope *Scope = DL->getScope();
513   if (!Scope)
514     return;
515 
516   // Skip this line if it is longer than the maximum we can record.
517   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
518   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
519       LI.isNeverStepInto())
520     return;
521 
522   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
523   if (CI.getStartColumn() != DL.getCol())
524     return;
525 
526   if (!CurFn->HaveLineInfo)
527     CurFn->HaveLineInfo = true;
528   unsigned FileId = 0;
529   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
530     FileId = CurFn->LastFileId;
531   else
532     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
533   PrevInstLoc = DL;
534 
535   unsigned FuncId = CurFn->FuncId;
536   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
537     const DILocation *Loc = DL.get();
538 
539     // If this location was actually inlined from somewhere else, give it the ID
540     // of the inline call site.
541     FuncId =
542         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
543 
544     // Ensure we have links in the tree of inline call sites.
545     bool FirstLoc = true;
546     while ((SiteLoc = Loc->getInlinedAt())) {
547       InlineSite &Site =
548           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
549       if (!FirstLoc)
550         addLocIfNotPresent(Site.ChildSites, Loc);
551       FirstLoc = false;
552       Loc = SiteLoc;
553     }
554     addLocIfNotPresent(CurFn->ChildSites, Loc);
555   }
556 
557   OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
558                         /*PrologueEnd=*/false, /*IsStmt=*/false,
559                         DL->getFilename(), SMLoc());
560 }
561 
562 void CodeViewDebug::emitCodeViewMagicVersion() {
563   OS.emitValueToAlignment(Align(4));
564   OS.AddComment("Debug section magic");
565   OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
566 }
567 
568 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
569   switch (DWLang) {
570   case dwarf::DW_LANG_C:
571   case dwarf::DW_LANG_C89:
572   case dwarf::DW_LANG_C99:
573   case dwarf::DW_LANG_C11:
574     return SourceLanguage::C;
575   case dwarf::DW_LANG_C_plus_plus:
576   case dwarf::DW_LANG_C_plus_plus_03:
577   case dwarf::DW_LANG_C_plus_plus_11:
578   case dwarf::DW_LANG_C_plus_plus_14:
579     return SourceLanguage::Cpp;
580   case dwarf::DW_LANG_Fortran77:
581   case dwarf::DW_LANG_Fortran90:
582   case dwarf::DW_LANG_Fortran95:
583   case dwarf::DW_LANG_Fortran03:
584   case dwarf::DW_LANG_Fortran08:
585     return SourceLanguage::Fortran;
586   case dwarf::DW_LANG_Pascal83:
587     return SourceLanguage::Pascal;
588   case dwarf::DW_LANG_Cobol74:
589   case dwarf::DW_LANG_Cobol85:
590     return SourceLanguage::Cobol;
591   case dwarf::DW_LANG_Java:
592     return SourceLanguage::Java;
593   case dwarf::DW_LANG_D:
594     return SourceLanguage::D;
595   case dwarf::DW_LANG_Swift:
596     return SourceLanguage::Swift;
597   case dwarf::DW_LANG_Rust:
598     return SourceLanguage::Rust;
599   case dwarf::DW_LANG_ObjC:
600     return SourceLanguage::ObjC;
601   case dwarf::DW_LANG_ObjC_plus_plus:
602     return SourceLanguage::ObjCpp;
603   default:
604     // There's no CodeView representation for this language, and CV doesn't
605     // have an "unknown" option for the language field, so we'll use MASM,
606     // as it's very low level.
607     return SourceLanguage::Masm;
608   }
609 }
610 
611 void CodeViewDebug::beginModule(Module *M) {
612   // If module doesn't have named metadata anchors or COFF debug section
613   // is not available, skip any debug info related stuff.
614   if (!Asm->hasDebugInfo() ||
615       !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) {
616     Asm = nullptr;
617     return;
618   }
619 
620   TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch());
621 
622   // Get the current source language.
623   const MDNode *Node = *M->debug_compile_units_begin();
624   const auto *CU = cast<DICompileUnit>(Node);
625 
626   CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage());
627 
628   collectGlobalVariableInfo();
629 
630   // Check if we should emit type record hashes.
631   ConstantInt *GH =
632       mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash"));
633   EmitDebugGlobalHashes = GH && !GH->isZero();
634 }
635 
636 void CodeViewDebug::endModule() {
637   if (!Asm || !Asm->hasDebugInfo())
638     return;
639 
640   // The COFF .debug$S section consists of several subsections, each starting
641   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
642   // of the payload followed by the payload itself.  The subsections are 4-byte
643   // aligned.
644 
645   // Use the generic .debug$S section, and make a subsection for all the inlined
646   // subprograms.
647   switchToDebugSectionForSymbol(nullptr);
648 
649   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
650   emitObjName();
651   emitCompilerInformation();
652   endCVSubsection(CompilerInfo);
653 
654   emitInlineeLinesSubsection();
655 
656   // Emit per-function debug information.
657   for (auto &P : FnDebugInfo)
658     if (!P.first->isDeclarationForLinker())
659       emitDebugInfoForFunction(P.first, *P.second);
660 
661   // Get types used by globals without emitting anything.
662   // This is meant to collect all static const data members so they can be
663   // emitted as globals.
664   collectDebugInfoForGlobals();
665 
666   // Emit retained types.
667   emitDebugInfoForRetainedTypes();
668 
669   // Emit global variable debug information.
670   setCurrentSubprogram(nullptr);
671   emitDebugInfoForGlobals();
672 
673   // Switch back to the generic .debug$S section after potentially processing
674   // comdat symbol sections.
675   switchToDebugSectionForSymbol(nullptr);
676 
677   // Emit UDT records for any types used by global variables.
678   if (!GlobalUDTs.empty()) {
679     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
680     emitDebugInfoForUDTs(GlobalUDTs);
681     endCVSubsection(SymbolsEnd);
682   }
683 
684   // This subsection holds a file index to offset in string table table.
685   OS.AddComment("File index to string table offset subsection");
686   OS.emitCVFileChecksumsDirective();
687 
688   // This subsection holds the string table.
689   OS.AddComment("String table");
690   OS.emitCVStringTableDirective();
691 
692   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
693   // subsection in the generic .debug$S section at the end. There is no
694   // particular reason for this ordering other than to match MSVC.
695   emitBuildInfo();
696 
697   // Emit type information and hashes last, so that any types we translate while
698   // emitting function info are included.
699   emitTypeInformation();
700 
701   if (EmitDebugGlobalHashes)
702     emitTypeGlobalHashes();
703 
704   clear();
705 }
706 
707 static void
708 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
709                              unsigned MaxFixedRecordLength = 0xF00) {
710   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
711   // after a fixed length portion of the record. The fixed length portion should
712   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
713   // overall record size is less than the maximum allowed.
714   SmallString<32> NullTerminatedString(
715       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
716   NullTerminatedString.push_back('\0');
717   OS.emitBytes(NullTerminatedString);
718 }
719 
720 void CodeViewDebug::emitTypeInformation() {
721   if (TypeTable.empty())
722     return;
723 
724   // Start the .debug$T or .debug$P section with 0x4.
725   OS.switchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
726   emitCodeViewMagicVersion();
727 
728   TypeTableCollection Table(TypeTable.records());
729   TypeVisitorCallbackPipeline Pipeline;
730 
731   // To emit type record using Codeview MCStreamer adapter
732   CVMCAdapter CVMCOS(OS, Table);
733   TypeRecordMapping typeMapping(CVMCOS);
734   Pipeline.addCallbackToPipeline(typeMapping);
735 
736   std::optional<TypeIndex> B = Table.getFirst();
737   while (B) {
738     // This will fail if the record data is invalid.
739     CVType Record = Table.getType(*B);
740 
741     Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
742 
743     if (E) {
744       logAllUnhandledErrors(std::move(E), errs(), "error: ");
745       llvm_unreachable("produced malformed type record");
746     }
747 
748     B = Table.getNext(*B);
749   }
750 }
751 
752 void CodeViewDebug::emitTypeGlobalHashes() {
753   if (TypeTable.empty())
754     return;
755 
756   // Start the .debug$H section with the version and hash algorithm, currently
757   // hardcoded to version 0, SHA1.
758   OS.switchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
759 
760   OS.emitValueToAlignment(Align(4));
761   OS.AddComment("Magic");
762   OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
763   OS.AddComment("Section Version");
764   OS.emitInt16(0);
765   OS.AddComment("Hash Algorithm");
766   OS.emitInt16(uint16_t(GlobalTypeHashAlg::BLAKE3));
767 
768   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
769   for (const auto &GHR : TypeTable.hashes()) {
770     if (OS.isVerboseAsm()) {
771       // Emit an EOL-comment describing which TypeIndex this hash corresponds
772       // to, as well as the stringified SHA1 hash.
773       SmallString<32> Comment;
774       raw_svector_ostream CommentOS(Comment);
775       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
776       OS.AddComment(Comment);
777       ++TI;
778     }
779     assert(GHR.Hash.size() == 8);
780     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
781                 GHR.Hash.size());
782     OS.emitBinaryData(S);
783   }
784 }
785 
786 void CodeViewDebug::emitObjName() {
787   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_OBJNAME);
788 
789   StringRef PathRef(Asm->TM.Options.ObjectFilenameForDebug);
790   llvm::SmallString<256> PathStore(PathRef);
791 
792   if (PathRef.empty() || PathRef == "-") {
793     // Don't emit the filename if we're writing to stdout or to /dev/null.
794     PathRef = {};
795   } else {
796     PathRef = PathStore;
797   }
798 
799   OS.AddComment("Signature");
800   OS.emitIntValue(0, 4);
801 
802   OS.AddComment("Object name");
803   emitNullTerminatedSymbolName(OS, PathRef);
804 
805   endSymbolRecord(CompilerEnd);
806 }
807 
808 namespace {
809 struct Version {
810   int Part[4];
811 };
812 } // end anonymous namespace
813 
814 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
815 // the version number.
816 static Version parseVersion(StringRef Name) {
817   Version V = {{0}};
818   int N = 0;
819   for (const char C : Name) {
820     if (isdigit(C)) {
821       V.Part[N] *= 10;
822       V.Part[N] += C - '0';
823       V.Part[N] =
824           std::min<int>(V.Part[N], std::numeric_limits<uint16_t>::max());
825     } else if (C == '.') {
826       ++N;
827       if (N >= 4)
828         return V;
829     } else if (N > 0)
830       return V;
831   }
832   return V;
833 }
834 
835 void CodeViewDebug::emitCompilerInformation() {
836   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
837   uint32_t Flags = 0;
838 
839   // The low byte of the flags indicates the source language.
840   Flags = CurrentSourceLanguage;
841   // TODO:  Figure out which other flags need to be set.
842   if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
843     Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO);
844   }
845   using ArchType = llvm::Triple::ArchType;
846   ArchType Arch = Triple(MMI->getModule()->getTargetTriple()).getArch();
847   if (Asm->TM.Options.Hotpatch || Arch == ArchType::thumb ||
848       Arch == ArchType::aarch64) {
849     Flags |= static_cast<uint32_t>(CompileSym3Flags::HotPatch);
850   }
851 
852   OS.AddComment("Flags and language");
853   OS.emitInt32(Flags);
854 
855   OS.AddComment("CPUType");
856   OS.emitInt16(static_cast<uint64_t>(TheCPU));
857 
858   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
859   const MDNode *Node = *CUs->operands().begin();
860   const auto *CU = cast<DICompileUnit>(Node);
861 
862   StringRef CompilerVersion = CU->getProducer();
863   Version FrontVer = parseVersion(CompilerVersion);
864   OS.AddComment("Frontend version");
865   for (int N : FrontVer.Part) {
866     OS.emitInt16(N);
867   }
868 
869   // Some Microsoft tools, like Binscope, expect a backend version number of at
870   // least 8.something, so we'll coerce the LLVM version into a form that
871   // guarantees it'll be big enough without really lying about the version.
872   int Major = 1000 * LLVM_VERSION_MAJOR +
873               10 * LLVM_VERSION_MINOR +
874               LLVM_VERSION_PATCH;
875   // Clamp it for builds that use unusually large version numbers.
876   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
877   Version BackVer = {{ Major, 0, 0, 0 }};
878   OS.AddComment("Backend version");
879   for (int N : BackVer.Part)
880     OS.emitInt16(N);
881 
882   OS.AddComment("Null-terminated compiler version string");
883   emitNullTerminatedSymbolName(OS, CompilerVersion);
884 
885   endSymbolRecord(CompilerEnd);
886 }
887 
888 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
889                                     StringRef S) {
890   StringIdRecord SIR(TypeIndex(0x0), S);
891   return TypeTable.writeLeafType(SIR);
892 }
893 
894 void CodeViewDebug::emitBuildInfo() {
895   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
896   // build info. The known prefix is:
897   // - Absolute path of current directory
898   // - Compiler path
899   // - Main source file path, relative to CWD or absolute
900   // - Type server PDB file
901   // - Canonical compiler command line
902   // If frontend and backend compilation are separated (think llc or LTO), it's
903   // not clear if the compiler path should refer to the executable for the
904   // frontend or the backend. Leave it blank for now.
905   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
906   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
907   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
908   const auto *CU = cast<DICompileUnit>(Node);
909   const DIFile *MainSourceFile = CU->getFile();
910   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
911       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
912   BuildInfoArgs[BuildInfoRecord::SourceFile] =
913       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
914   // FIXME: PDB is intentionally blank unless we implement /Zi type servers.
915   BuildInfoArgs[BuildInfoRecord::TypeServerPDB] =
916       getStringIdTypeIdx(TypeTable, "");
917   BuildInfoArgs[BuildInfoRecord::BuildTool] =
918       getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0);
919   BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx(
920       TypeTable, Asm->TM.Options.MCOptions.CommandlineArgs);
921 
922   BuildInfoRecord BIR(BuildInfoArgs);
923   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
924 
925   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
926   // from the module symbols into the type stream.
927   MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
928   MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
929   OS.AddComment("LF_BUILDINFO index");
930   OS.emitInt32(BuildInfoIndex.getIndex());
931   endSymbolRecord(BIEnd);
932   endCVSubsection(BISubsecEnd);
933 }
934 
935 void CodeViewDebug::emitInlineeLinesSubsection() {
936   if (InlinedSubprograms.empty())
937     return;
938 
939   OS.AddComment("Inlinee lines subsection");
940   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
941 
942   // We emit the checksum info for files.  This is used by debuggers to
943   // determine if a pdb matches the source before loading it.  Visual Studio,
944   // for instance, will display a warning that the breakpoints are not valid if
945   // the pdb does not match the source.
946   OS.AddComment("Inlinee lines signature");
947   OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
948 
949   for (const DISubprogram *SP : InlinedSubprograms) {
950     assert(TypeIndices.count({SP, nullptr}));
951     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
952 
953     OS.addBlankLine();
954     unsigned FileId = maybeRecordFile(SP->getFile());
955     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
956                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
957     OS.addBlankLine();
958     OS.AddComment("Type index of inlined function");
959     OS.emitInt32(InlineeIdx.getIndex());
960     OS.AddComment("Offset into filechecksum table");
961     OS.emitCVFileChecksumOffsetDirective(FileId);
962     OS.AddComment("Starting line number");
963     OS.emitInt32(SP->getLine());
964   }
965 
966   endCVSubsection(InlineEnd);
967 }
968 
969 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
970                                         const DILocation *InlinedAt,
971                                         const InlineSite &Site) {
972   assert(TypeIndices.count({Site.Inlinee, nullptr}));
973   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
974 
975   // SymbolRecord
976   MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
977 
978   OS.AddComment("PtrParent");
979   OS.emitInt32(0);
980   OS.AddComment("PtrEnd");
981   OS.emitInt32(0);
982   OS.AddComment("Inlinee type index");
983   OS.emitInt32(InlineeIdx.getIndex());
984 
985   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
986   unsigned StartLineNum = Site.Inlinee->getLine();
987 
988   OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
989                                     FI.Begin, FI.End);
990 
991   endSymbolRecord(InlineEnd);
992 
993   emitLocalVariableList(FI, Site.InlinedLocals);
994 
995   // Recurse on child inlined call sites before closing the scope.
996   for (const DILocation *ChildSite : Site.ChildSites) {
997     auto I = FI.InlineSites.find(ChildSite);
998     assert(I != FI.InlineSites.end() &&
999            "child site not in function inline site map");
1000     emitInlinedCallSite(FI, ChildSite, I->second);
1001   }
1002 
1003   // Close the scope.
1004   emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
1005 }
1006 
1007 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
1008   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
1009   // comdat key. A section may be comdat because of -ffunction-sections or
1010   // because it is comdat in the IR.
1011   MCSectionCOFF *GVSec =
1012       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
1013   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
1014 
1015   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
1016       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
1017   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
1018 
1019   OS.switchSection(DebugSec);
1020 
1021   // Emit the magic version number if this is the first time we've switched to
1022   // this section.
1023   if (ComdatDebugSections.insert(DebugSec).second)
1024     emitCodeViewMagicVersion();
1025 }
1026 
1027 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
1028 // The only supported thunk ordinal is currently the standard type.
1029 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
1030                                           FunctionInfo &FI,
1031                                           const MCSymbol *Fn) {
1032   std::string FuncName =
1033       std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1034   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
1035 
1036   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1037   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1038 
1039   // Emit S_THUNK32
1040   MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
1041   OS.AddComment("PtrParent");
1042   OS.emitInt32(0);
1043   OS.AddComment("PtrEnd");
1044   OS.emitInt32(0);
1045   OS.AddComment("PtrNext");
1046   OS.emitInt32(0);
1047   OS.AddComment("Thunk section relative address");
1048   OS.emitCOFFSecRel32(Fn, /*Offset=*/0);
1049   OS.AddComment("Thunk section index");
1050   OS.emitCOFFSectionIndex(Fn);
1051   OS.AddComment("Code size");
1052   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1053   OS.AddComment("Ordinal");
1054   OS.emitInt8(unsigned(ordinal));
1055   OS.AddComment("Function name");
1056   emitNullTerminatedSymbolName(OS, FuncName);
1057   // Additional fields specific to the thunk ordinal would go here.
1058   endSymbolRecord(ThunkRecordEnd);
1059 
1060   // Local variables/inlined routines are purposely omitted here.  The point of
1061   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1062 
1063   // Emit S_PROC_ID_END
1064   emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1065 
1066   endCVSubsection(SymbolsEnd);
1067 }
1068 
1069 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1070                                              FunctionInfo &FI) {
1071   // For each function there is a separate subsection which holds the PC to
1072   // file:line table.
1073   const MCSymbol *Fn = Asm->getSymbol(GV);
1074   assert(Fn);
1075 
1076   // Switch to the to a comdat section, if appropriate.
1077   switchToDebugSectionForSymbol(Fn);
1078 
1079   std::string FuncName;
1080   auto *SP = GV->getSubprogram();
1081   assert(SP);
1082   setCurrentSubprogram(SP);
1083 
1084   if (SP->isThunk()) {
1085     emitDebugInfoForThunk(GV, FI, Fn);
1086     return;
1087   }
1088 
1089   // If we have a display name, build the fully qualified name by walking the
1090   // chain of scopes.
1091   if (!SP->getName().empty())
1092     FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1093 
1094   // If our DISubprogram name is empty, use the mangled name.
1095   if (FuncName.empty())
1096     FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1097 
1098   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1099   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1100     OS.emitCVFPOData(Fn);
1101 
1102   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1103   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1104   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1105   {
1106     SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1107                                                 : SymbolKind::S_GPROC32_ID;
1108     MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1109 
1110     // These fields are filled in by tools like CVPACK which run after the fact.
1111     OS.AddComment("PtrParent");
1112     OS.emitInt32(0);
1113     OS.AddComment("PtrEnd");
1114     OS.emitInt32(0);
1115     OS.AddComment("PtrNext");
1116     OS.emitInt32(0);
1117     // This is the important bit that tells the debugger where the function
1118     // code is located and what's its size:
1119     OS.AddComment("Code size");
1120     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1121     OS.AddComment("Offset after prologue");
1122     OS.emitInt32(0);
1123     OS.AddComment("Offset before epilogue");
1124     OS.emitInt32(0);
1125     OS.AddComment("Function type index");
1126     OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1127     OS.AddComment("Function section relative address");
1128     OS.emitCOFFSecRel32(Fn, /*Offset=*/0);
1129     OS.AddComment("Function section index");
1130     OS.emitCOFFSectionIndex(Fn);
1131     OS.AddComment("Flags");
1132     ProcSymFlags ProcFlags = ProcSymFlags::HasOptimizedDebugInfo;
1133     if (FI.HasFramePointer)
1134       ProcFlags |= ProcSymFlags::HasFP;
1135     if (GV->hasFnAttribute(Attribute::NoReturn))
1136       ProcFlags |= ProcSymFlags::IsNoReturn;
1137     if (GV->hasFnAttribute(Attribute::NoInline))
1138       ProcFlags |= ProcSymFlags::IsNoInline;
1139     OS.emitInt8(static_cast<uint8_t>(ProcFlags));
1140     // Emit the function display name as a null-terminated string.
1141     OS.AddComment("Function name");
1142     // Truncate the name so we won't overflow the record length field.
1143     emitNullTerminatedSymbolName(OS, FuncName);
1144     endSymbolRecord(ProcRecordEnd);
1145 
1146     MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1147     // Subtract out the CSR size since MSVC excludes that and we include it.
1148     OS.AddComment("FrameSize");
1149     OS.emitInt32(FI.FrameSize - FI.CSRSize);
1150     OS.AddComment("Padding");
1151     OS.emitInt32(0);
1152     OS.AddComment("Offset of padding");
1153     OS.emitInt32(0);
1154     OS.AddComment("Bytes of callee saved registers");
1155     OS.emitInt32(FI.CSRSize);
1156     OS.AddComment("Exception handler offset");
1157     OS.emitInt32(0);
1158     OS.AddComment("Exception handler section");
1159     OS.emitInt16(0);
1160     OS.AddComment("Flags (defines frame register)");
1161     OS.emitInt32(uint32_t(FI.FrameProcOpts));
1162     endSymbolRecord(FrameProcEnd);
1163 
1164     emitInlinees(FI.Inlinees);
1165     emitLocalVariableList(FI, FI.Locals);
1166     emitGlobalVariableList(FI.Globals);
1167     emitLexicalBlockList(FI.ChildBlocks, FI);
1168 
1169     // Emit inlined call site information. Only emit functions inlined directly
1170     // into the parent function. We'll emit the other sites recursively as part
1171     // of their parent inline site.
1172     for (const DILocation *InlinedAt : FI.ChildSites) {
1173       auto I = FI.InlineSites.find(InlinedAt);
1174       assert(I != FI.InlineSites.end() &&
1175              "child site not in function inline site map");
1176       emitInlinedCallSite(FI, InlinedAt, I->second);
1177     }
1178 
1179     for (auto Annot : FI.Annotations) {
1180       MCSymbol *Label = Annot.first;
1181       MDTuple *Strs = cast<MDTuple>(Annot.second);
1182       MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1183       OS.emitCOFFSecRel32(Label, /*Offset=*/0);
1184       // FIXME: Make sure we don't overflow the max record size.
1185       OS.emitCOFFSectionIndex(Label);
1186       OS.emitInt16(Strs->getNumOperands());
1187       for (Metadata *MD : Strs->operands()) {
1188         // MDStrings are null terminated, so we can do EmitBytes and get the
1189         // nice .asciz directive.
1190         StringRef Str = cast<MDString>(MD)->getString();
1191         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1192         OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1193       }
1194       endSymbolRecord(AnnotEnd);
1195     }
1196 
1197     for (auto HeapAllocSite : FI.HeapAllocSites) {
1198       const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1199       const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1200       const DIType *DITy = std::get<2>(HeapAllocSite);
1201       MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1202       OS.AddComment("Call site offset");
1203       OS.emitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1204       OS.AddComment("Call site section index");
1205       OS.emitCOFFSectionIndex(BeginLabel);
1206       OS.AddComment("Call instruction length");
1207       OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1208       OS.AddComment("Type index");
1209       OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1210       endSymbolRecord(HeapAllocEnd);
1211     }
1212 
1213     if (SP != nullptr)
1214       emitDebugInfoForUDTs(LocalUDTs);
1215 
1216     emitDebugInfoForJumpTables(FI);
1217 
1218     // We're done with this function.
1219     emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1220   }
1221   endCVSubsection(SymbolsEnd);
1222 
1223   // We have an assembler directive that takes care of the whole line table.
1224   OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1225 }
1226 
1227 CodeViewDebug::LocalVarDef
1228 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1229   LocalVarDef DR;
1230   DR.InMemory = -1;
1231   DR.DataOffset = Offset;
1232   assert(DR.DataOffset == Offset && "truncation");
1233   DR.IsSubfield = 0;
1234   DR.StructOffset = 0;
1235   DR.CVRegister = CVRegister;
1236   return DR;
1237 }
1238 
1239 void CodeViewDebug::collectVariableInfoFromMFTable(
1240     DenseSet<InlinedEntity> &Processed) {
1241   const MachineFunction &MF = *Asm->MF;
1242   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1243   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1244   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1245 
1246   for (const MachineFunction::VariableDbgInfo &VI :
1247        MF.getInStackSlotVariableDbgInfo()) {
1248     if (!VI.Var)
1249       continue;
1250     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1251            "Expected inlined-at fields to agree");
1252 
1253     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1254     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1255 
1256     // If variable scope is not found then skip this variable.
1257     if (!Scope)
1258       continue;
1259 
1260     // If the variable has an attached offset expression, extract it.
1261     // FIXME: Try to handle DW_OP_deref as well.
1262     int64_t ExprOffset = 0;
1263     bool Deref = false;
1264     if (VI.Expr) {
1265       // If there is one DW_OP_deref element, use offset of 0 and keep going.
1266       if (VI.Expr->getNumElements() == 1 &&
1267           VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1268         Deref = true;
1269       else if (!VI.Expr->extractIfOffset(ExprOffset))
1270         continue;
1271     }
1272 
1273     // Get the frame register used and the offset.
1274     Register FrameReg;
1275     StackOffset FrameOffset =
1276         TFI->getFrameIndexReference(*Asm->MF, VI.getStackSlot(), FrameReg);
1277     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1278 
1279     assert(!FrameOffset.getScalable() &&
1280            "Frame offsets with a scalable component are not supported");
1281 
1282     // Calculate the label ranges.
1283     LocalVarDef DefRange =
1284         createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset);
1285 
1286     LocalVariable Var;
1287     Var.DIVar = VI.Var;
1288 
1289     for (const InsnRange &Range : Scope->getRanges()) {
1290       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1291       const MCSymbol *End = getLabelAfterInsn(Range.second);
1292       End = End ? End : Asm->getFunctionEnd();
1293       Var.DefRanges[DefRange].emplace_back(Begin, End);
1294     }
1295 
1296     if (Deref)
1297       Var.UseReferenceType = true;
1298 
1299     recordLocalVariable(std::move(Var), Scope);
1300   }
1301 }
1302 
1303 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1304   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1305 }
1306 
1307 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1308   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1309 }
1310 
1311 void CodeViewDebug::calculateRanges(
1312     LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1313   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1314 
1315   // Calculate the definition ranges.
1316   for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1317     const auto &Entry = *I;
1318     if (!Entry.isDbgValue())
1319       continue;
1320     const MachineInstr *DVInst = Entry.getInstr();
1321     assert(DVInst->isDebugValue() && "Invalid History entry");
1322     // FIXME: Find a way to represent constant variables, since they are
1323     // relatively common.
1324     std::optional<DbgVariableLocation> Location =
1325         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1326     if (!Location)
1327     {
1328       // When we don't have a location this is usually because LLVM has
1329       // transformed it into a constant and we only have an llvm.dbg.value. We
1330       // can't represent these well in CodeView since S_LOCAL only works on
1331       // registers and memory locations. Instead, we will pretend this to be a
1332       // constant value to at least have it show up in the debugger.
1333       auto Op = DVInst->getDebugOperand(0);
1334       if (Op.isImm())
1335         Var.ConstantValue = APSInt(APInt(64, Op.getImm()), false);
1336       continue;
1337     }
1338 
1339     // CodeView can only express variables in register and variables in memory
1340     // at a constant offset from a register. However, for variables passed
1341     // indirectly by pointer, it is common for that pointer to be spilled to a
1342     // stack location. For the special case of one offseted load followed by a
1343     // zero offset load (a pointer spilled to the stack), we change the type of
1344     // the local variable from a value type to a reference type. This tricks the
1345     // debugger into doing the load for us.
1346     if (Var.UseReferenceType) {
1347       // We're using a reference type. Drop the last zero offset load.
1348       if (canUseReferenceType(*Location))
1349         Location->LoadChain.pop_back();
1350       else
1351         continue;
1352     } else if (needsReferenceType(*Location)) {
1353       // This location can't be expressed without switching to a reference type.
1354       // Start over using that.
1355       Var.UseReferenceType = true;
1356       Var.DefRanges.clear();
1357       calculateRanges(Var, Entries);
1358       return;
1359     }
1360 
1361     // We can only handle a register or an offseted load of a register.
1362     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1363       continue;
1364 
1365     // Codeview can only express byte-aligned offsets, ensure that we have a
1366     // byte-boundaried location.
1367     if (Location->FragmentInfo)
1368       if (Location->FragmentInfo->OffsetInBits % 8)
1369         continue;
1370 
1371     LocalVarDef DR;
1372     DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1373     DR.InMemory = !Location->LoadChain.empty();
1374     DR.DataOffset =
1375         !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1376     if (Location->FragmentInfo) {
1377       DR.IsSubfield = true;
1378       DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1379     } else {
1380       DR.IsSubfield = false;
1381       DR.StructOffset = 0;
1382     }
1383 
1384     // Compute the label range.
1385     const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1386     const MCSymbol *End;
1387     if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1388       auto &EndingEntry = Entries[Entry.getEndIndex()];
1389       End = EndingEntry.isDbgValue()
1390                 ? getLabelBeforeInsn(EndingEntry.getInstr())
1391                 : getLabelAfterInsn(EndingEntry.getInstr());
1392     } else
1393       End = Asm->getFunctionEnd();
1394 
1395     // If the last range end is our begin, just extend the last range.
1396     // Otherwise make a new range.
1397     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1398         Var.DefRanges[DR];
1399     if (!R.empty() && R.back().second == Begin)
1400       R.back().second = End;
1401     else
1402       R.emplace_back(Begin, End);
1403 
1404     // FIXME: Do more range combining.
1405   }
1406 }
1407 
1408 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1409   DenseSet<InlinedEntity> Processed;
1410   // Grab the variable info that was squirreled away in the MMI side-table.
1411   collectVariableInfoFromMFTable(Processed);
1412 
1413   for (const auto &I : DbgValues) {
1414     InlinedEntity IV = I.first;
1415     if (Processed.count(IV))
1416       continue;
1417     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1418     const DILocation *InlinedAt = IV.second;
1419 
1420     // Instruction ranges, specifying where IV is accessible.
1421     const auto &Entries = I.second;
1422 
1423     LexicalScope *Scope = nullptr;
1424     if (InlinedAt)
1425       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1426     else
1427       Scope = LScopes.findLexicalScope(DIVar->getScope());
1428     // If variable scope is not found then skip this variable.
1429     if (!Scope)
1430       continue;
1431 
1432     LocalVariable Var;
1433     Var.DIVar = DIVar;
1434 
1435     calculateRanges(Var, Entries);
1436     recordLocalVariable(std::move(Var), Scope);
1437   }
1438 }
1439 
1440 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1441   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1442   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1443   const MachineFrameInfo &MFI = MF->getFrameInfo();
1444   const Function &GV = MF->getFunction();
1445   auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1446   assert(Insertion.second && "function already has info");
1447   CurFn = Insertion.first->second.get();
1448   CurFn->FuncId = NextFuncId++;
1449   CurFn->Begin = Asm->getFunctionBegin();
1450 
1451   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1452   // callee-saved registers were used. For targets that don't use a PUSH
1453   // instruction (AArch64), this will be zero.
1454   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1455   CurFn->FrameSize = MFI.getStackSize();
1456   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1457   CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF);
1458 
1459   // For this function S_FRAMEPROC record, figure out which codeview register
1460   // will be the frame pointer.
1461   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1462   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1463   if (CurFn->FrameSize > 0) {
1464     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1465       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1466       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1467     } else {
1468       CurFn->HasFramePointer = true;
1469       // If there is an FP, parameters are always relative to it.
1470       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1471       if (CurFn->HasStackRealignment) {
1472         // If the stack needs realignment, locals are relative to SP or VFRAME.
1473         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1474       } else {
1475         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1476         // other stack adjustments.
1477         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1478       }
1479     }
1480   }
1481 
1482   // Compute other frame procedure options.
1483   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1484   if (MFI.hasVarSizedObjects())
1485     FPO |= FrameProcedureOptions::HasAlloca;
1486   if (MF->exposesReturnsTwice())
1487     FPO |= FrameProcedureOptions::HasSetJmp;
1488   // FIXME: Set HasLongJmp if we ever track that info.
1489   if (MF->hasInlineAsm())
1490     FPO |= FrameProcedureOptions::HasInlineAssembly;
1491   if (GV.hasPersonalityFn()) {
1492     if (isAsynchronousEHPersonality(
1493             classifyEHPersonality(GV.getPersonalityFn())))
1494       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1495     else
1496       FPO |= FrameProcedureOptions::HasExceptionHandling;
1497   }
1498   if (GV.hasFnAttribute(Attribute::InlineHint))
1499     FPO |= FrameProcedureOptions::MarkedInline;
1500   if (GV.hasFnAttribute(Attribute::Naked))
1501     FPO |= FrameProcedureOptions::Naked;
1502   if (MFI.hasStackProtectorIndex()) {
1503     FPO |= FrameProcedureOptions::SecurityChecks;
1504     if (GV.hasFnAttribute(Attribute::StackProtectStrong) ||
1505         GV.hasFnAttribute(Attribute::StackProtectReq)) {
1506       FPO |= FrameProcedureOptions::StrictSecurityChecks;
1507     }
1508   } else if (!GV.hasStackProtectorFnAttr()) {
1509     // __declspec(safebuffers) disables stack guards.
1510     FPO |= FrameProcedureOptions::SafeBuffers;
1511   }
1512   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1513   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1514   if (Asm->TM.getOptLevel() != CodeGenOptLevel::None && !GV.hasOptSize() &&
1515       !GV.hasOptNone())
1516     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1517   if (GV.hasProfileData()) {
1518     FPO |= FrameProcedureOptions::ValidProfileCounts;
1519     FPO |= FrameProcedureOptions::ProfileGuidedOptimization;
1520   }
1521   // FIXME: Set GuardCfg when it is implemented.
1522   CurFn->FrameProcOpts = FPO;
1523 
1524   OS.emitCVFuncIdDirective(CurFn->FuncId);
1525 
1526   // Find the end of the function prolog.  First known non-DBG_VALUE and
1527   // non-frame setup location marks the beginning of the function body.
1528   // FIXME: is there a simpler a way to do this? Can we just search
1529   // for the first instruction of the function, not the last of the prolog?
1530   DebugLoc PrologEndLoc;
1531   bool EmptyPrologue = true;
1532   for (const auto &MBB : *MF) {
1533     for (const auto &MI : MBB) {
1534       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1535           MI.getDebugLoc()) {
1536         PrologEndLoc = MI.getDebugLoc();
1537         break;
1538       } else if (!MI.isMetaInstruction()) {
1539         EmptyPrologue = false;
1540       }
1541     }
1542   }
1543 
1544   // Record beginning of function if we have a non-empty prologue.
1545   if (PrologEndLoc && !EmptyPrologue) {
1546     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1547     maybeRecordLocation(FnStartDL, MF);
1548   }
1549 
1550   // Find heap alloc sites and emit labels around them.
1551   for (const auto &MBB : *MF) {
1552     for (const auto &MI : MBB) {
1553       if (MI.getHeapAllocMarker()) {
1554         requestLabelBeforeInsn(&MI);
1555         requestLabelAfterInsn(&MI);
1556       }
1557     }
1558   }
1559 
1560   // Mark branches that may potentially be using jump tables with labels.
1561   bool isThumb = Triple(MMI->getModule()->getTargetTriple()).getArch() ==
1562                  llvm::Triple::ArchType::thumb;
1563   discoverJumpTableBranches(MF, isThumb);
1564 }
1565 
1566 static bool shouldEmitUdt(const DIType *T) {
1567   if (!T)
1568     return false;
1569 
1570   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1571   if (T->getTag() == dwarf::DW_TAG_typedef) {
1572     if (DIScope *Scope = T->getScope()) {
1573       switch (Scope->getTag()) {
1574       case dwarf::DW_TAG_structure_type:
1575       case dwarf::DW_TAG_class_type:
1576       case dwarf::DW_TAG_union_type:
1577         return false;
1578       default:
1579           // do nothing.
1580           ;
1581       }
1582     }
1583   }
1584 
1585   while (true) {
1586     if (!T || T->isForwardDecl())
1587       return false;
1588 
1589     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1590     if (!DT)
1591       return true;
1592     T = DT->getBaseType();
1593   }
1594   return true;
1595 }
1596 
1597 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1598   // Don't record empty UDTs.
1599   if (Ty->getName().empty())
1600     return;
1601   if (!shouldEmitUdt(Ty))
1602     return;
1603 
1604   SmallVector<StringRef, 5> ParentScopeNames;
1605   const DISubprogram *ClosestSubprogram =
1606       collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1607 
1608   std::string FullyQualifiedName =
1609       formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1610 
1611   if (ClosestSubprogram == nullptr) {
1612     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1613   } else if (ClosestSubprogram == CurrentSubprogram) {
1614     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1615   }
1616 
1617   // TODO: What if the ClosestSubprogram is neither null or the current
1618   // subprogram?  Currently, the UDT just gets dropped on the floor.
1619   //
1620   // The current behavior is not desirable.  To get maximal fidelity, we would
1621   // need to perform all type translation before beginning emission of .debug$S
1622   // and then make LocalUDTs a member of FunctionInfo
1623 }
1624 
1625 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1626   // Generic dispatch for lowering an unknown type.
1627   switch (Ty->getTag()) {
1628   case dwarf::DW_TAG_array_type:
1629     return lowerTypeArray(cast<DICompositeType>(Ty));
1630   case dwarf::DW_TAG_typedef:
1631     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1632   case dwarf::DW_TAG_base_type:
1633     return lowerTypeBasic(cast<DIBasicType>(Ty));
1634   case dwarf::DW_TAG_pointer_type:
1635     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1636       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1637     [[fallthrough]];
1638   case dwarf::DW_TAG_reference_type:
1639   case dwarf::DW_TAG_rvalue_reference_type:
1640     return lowerTypePointer(cast<DIDerivedType>(Ty));
1641   case dwarf::DW_TAG_ptr_to_member_type:
1642     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1643   case dwarf::DW_TAG_restrict_type:
1644   case dwarf::DW_TAG_const_type:
1645   case dwarf::DW_TAG_volatile_type:
1646   // TODO: add support for DW_TAG_atomic_type here
1647     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1648   case dwarf::DW_TAG_subroutine_type:
1649     if (ClassTy) {
1650       // The member function type of a member function pointer has no
1651       // ThisAdjustment.
1652       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1653                                      /*ThisAdjustment=*/0,
1654                                      /*IsStaticMethod=*/false);
1655     }
1656     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1657   case dwarf::DW_TAG_enumeration_type:
1658     return lowerTypeEnum(cast<DICompositeType>(Ty));
1659   case dwarf::DW_TAG_class_type:
1660   case dwarf::DW_TAG_structure_type:
1661     return lowerTypeClass(cast<DICompositeType>(Ty));
1662   case dwarf::DW_TAG_union_type:
1663     return lowerTypeUnion(cast<DICompositeType>(Ty));
1664   case dwarf::DW_TAG_string_type:
1665     return lowerTypeString(cast<DIStringType>(Ty));
1666   case dwarf::DW_TAG_unspecified_type:
1667     if (Ty->getName() == "decltype(nullptr)")
1668       return TypeIndex::NullptrT();
1669     return TypeIndex::None();
1670   default:
1671     // Use the null type index.
1672     return TypeIndex();
1673   }
1674 }
1675 
1676 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1677   TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1678   StringRef TypeName = Ty->getName();
1679 
1680   addToUDTs(Ty);
1681 
1682   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1683       TypeName == "HRESULT")
1684     return TypeIndex(SimpleTypeKind::HResult);
1685   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1686       TypeName == "wchar_t")
1687     return TypeIndex(SimpleTypeKind::WideCharacter);
1688 
1689   return UnderlyingTypeIndex;
1690 }
1691 
1692 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1693   const DIType *ElementType = Ty->getBaseType();
1694   TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1695   // IndexType is size_t, which depends on the bitness of the target.
1696   TypeIndex IndexType = getPointerSizeInBytes() == 8
1697                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1698                             : TypeIndex(SimpleTypeKind::UInt32Long);
1699 
1700   uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1701 
1702   // Add subranges to array type.
1703   DINodeArray Elements = Ty->getElements();
1704   for (int i = Elements.size() - 1; i >= 0; --i) {
1705     const DINode *Element = Elements[i];
1706     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1707 
1708     const DISubrange *Subrange = cast<DISubrange>(Element);
1709     int64_t Count = -1;
1710 
1711     // If Subrange has a Count field, use it.
1712     // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1),
1713     // where lowerbound is from the LowerBound field of the Subrange,
1714     // or the language default lowerbound if that field is unspecified.
1715     if (auto *CI = dyn_cast_if_present<ConstantInt *>(Subrange->getCount()))
1716       Count = CI->getSExtValue();
1717     else if (auto *UI = dyn_cast_if_present<ConstantInt *>(
1718                  Subrange->getUpperBound())) {
1719       // Fortran uses 1 as the default lowerbound; other languages use 0.
1720       int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0;
1721       auto *LI = dyn_cast_if_present<ConstantInt *>(Subrange->getLowerBound());
1722       Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound;
1723       Count = UI->getSExtValue() - Lowerbound + 1;
1724     }
1725 
1726     // Forward declarations of arrays without a size and VLAs use a count of -1.
1727     // Emit a count of zero in these cases to match what MSVC does for arrays
1728     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1729     // should do for them even if we could distinguish them.
1730     if (Count == -1)
1731       Count = 0;
1732 
1733     // Update the element size and element type index for subsequent subranges.
1734     ElementSize *= Count;
1735 
1736     // If this is the outermost array, use the size from the array. It will be
1737     // more accurate if we had a VLA or an incomplete element type size.
1738     uint64_t ArraySize =
1739         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1740 
1741     StringRef Name = (i == 0) ? Ty->getName() : "";
1742     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1743     ElementTypeIndex = TypeTable.writeLeafType(AR);
1744   }
1745 
1746   return ElementTypeIndex;
1747 }
1748 
1749 // This function lowers a Fortran character type (DIStringType).
1750 // Note that it handles only the character*n variant (using SizeInBits
1751 // field in DIString to describe the type size) at the moment.
1752 // Other variants (leveraging the StringLength and StringLengthExp
1753 // fields in DIStringType) remain TBD.
1754 TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) {
1755   TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter);
1756   uint64_t ArraySize = Ty->getSizeInBits() >> 3;
1757   StringRef Name = Ty->getName();
1758   // IndexType is size_t, which depends on the bitness of the target.
1759   TypeIndex IndexType = getPointerSizeInBytes() == 8
1760                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1761                             : TypeIndex(SimpleTypeKind::UInt32Long);
1762 
1763   // Create a type of character array of ArraySize.
1764   ArrayRecord AR(CharType, IndexType, ArraySize, Name);
1765 
1766   return TypeTable.writeLeafType(AR);
1767 }
1768 
1769 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1770   TypeIndex Index;
1771   dwarf::TypeKind Kind;
1772   uint32_t ByteSize;
1773 
1774   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1775   ByteSize = Ty->getSizeInBits() / 8;
1776 
1777   SimpleTypeKind STK = SimpleTypeKind::None;
1778   switch (Kind) {
1779   case dwarf::DW_ATE_address:
1780     // FIXME: Translate
1781     break;
1782   case dwarf::DW_ATE_boolean:
1783     switch (ByteSize) {
1784     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1785     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1786     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1787     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1788     case 16: STK = SimpleTypeKind::Boolean128; break;
1789     }
1790     break;
1791   case dwarf::DW_ATE_complex_float:
1792     // The CodeView size for a complex represents the size of
1793     // an individual component.
1794     switch (ByteSize) {
1795     case 4:  STK = SimpleTypeKind::Complex16;  break;
1796     case 8:  STK = SimpleTypeKind::Complex32;  break;
1797     case 16: STK = SimpleTypeKind::Complex64;  break;
1798     case 20: STK = SimpleTypeKind::Complex80;  break;
1799     case 32: STK = SimpleTypeKind::Complex128; break;
1800     }
1801     break;
1802   case dwarf::DW_ATE_float:
1803     switch (ByteSize) {
1804     case 2:  STK = SimpleTypeKind::Float16;  break;
1805     case 4:  STK = SimpleTypeKind::Float32;  break;
1806     case 6:  STK = SimpleTypeKind::Float48;  break;
1807     case 8:  STK = SimpleTypeKind::Float64;  break;
1808     case 10: STK = SimpleTypeKind::Float80;  break;
1809     case 16: STK = SimpleTypeKind::Float128; break;
1810     }
1811     break;
1812   case dwarf::DW_ATE_signed:
1813     switch (ByteSize) {
1814     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1815     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1816     case 4:  STK = SimpleTypeKind::Int32;           break;
1817     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1818     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1819     }
1820     break;
1821   case dwarf::DW_ATE_unsigned:
1822     switch (ByteSize) {
1823     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1824     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1825     case 4:  STK = SimpleTypeKind::UInt32;            break;
1826     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1827     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1828     }
1829     break;
1830   case dwarf::DW_ATE_UTF:
1831     switch (ByteSize) {
1832     case 1: STK = SimpleTypeKind::Character8; break;
1833     case 2: STK = SimpleTypeKind::Character16; break;
1834     case 4: STK = SimpleTypeKind::Character32; break;
1835     }
1836     break;
1837   case dwarf::DW_ATE_signed_char:
1838     if (ByteSize == 1)
1839       STK = SimpleTypeKind::SignedCharacter;
1840     break;
1841   case dwarf::DW_ATE_unsigned_char:
1842     if (ByteSize == 1)
1843       STK = SimpleTypeKind::UnsignedCharacter;
1844     break;
1845   default:
1846     break;
1847   }
1848 
1849   // Apply some fixups based on the source-level type name.
1850   // Include some amount of canonicalization from an old naming scheme Clang
1851   // used to use for integer types (in an outdated effort to be compatible with
1852   // GCC's debug info/GDB's behavior, which has since been addressed).
1853   if (STK == SimpleTypeKind::Int32 &&
1854       (Ty->getName() == "long int" || Ty->getName() == "long"))
1855     STK = SimpleTypeKind::Int32Long;
1856   if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" ||
1857                                         Ty->getName() == "unsigned long"))
1858     STK = SimpleTypeKind::UInt32Long;
1859   if (STK == SimpleTypeKind::UInt16Short &&
1860       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1861     STK = SimpleTypeKind::WideCharacter;
1862   if ((STK == SimpleTypeKind::SignedCharacter ||
1863        STK == SimpleTypeKind::UnsignedCharacter) &&
1864       Ty->getName() == "char")
1865     STK = SimpleTypeKind::NarrowCharacter;
1866 
1867   return TypeIndex(STK);
1868 }
1869 
1870 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1871                                           PointerOptions PO) {
1872   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1873 
1874   // Pointers to simple types without any options can use SimpleTypeMode, rather
1875   // than having a dedicated pointer type record.
1876   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1877       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1878       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1879     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1880                               ? SimpleTypeMode::NearPointer64
1881                               : SimpleTypeMode::NearPointer32;
1882     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1883   }
1884 
1885   PointerKind PK =
1886       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1887   PointerMode PM = PointerMode::Pointer;
1888   switch (Ty->getTag()) {
1889   default: llvm_unreachable("not a pointer tag type");
1890   case dwarf::DW_TAG_pointer_type:
1891     PM = PointerMode::Pointer;
1892     break;
1893   case dwarf::DW_TAG_reference_type:
1894     PM = PointerMode::LValueReference;
1895     break;
1896   case dwarf::DW_TAG_rvalue_reference_type:
1897     PM = PointerMode::RValueReference;
1898     break;
1899   }
1900 
1901   if (Ty->isObjectPointer())
1902     PO |= PointerOptions::Const;
1903 
1904   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1905   return TypeTable.writeLeafType(PR);
1906 }
1907 
1908 static PointerToMemberRepresentation
1909 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1910   // SizeInBytes being zero generally implies that the member pointer type was
1911   // incomplete, which can happen if it is part of a function prototype. In this
1912   // case, use the unknown model instead of the general model.
1913   if (IsPMF) {
1914     switch (Flags & DINode::FlagPtrToMemberRep) {
1915     case 0:
1916       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1917                               : PointerToMemberRepresentation::GeneralFunction;
1918     case DINode::FlagSingleInheritance:
1919       return PointerToMemberRepresentation::SingleInheritanceFunction;
1920     case DINode::FlagMultipleInheritance:
1921       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1922     case DINode::FlagVirtualInheritance:
1923       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1924     }
1925   } else {
1926     switch (Flags & DINode::FlagPtrToMemberRep) {
1927     case 0:
1928       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1929                               : PointerToMemberRepresentation::GeneralData;
1930     case DINode::FlagSingleInheritance:
1931       return PointerToMemberRepresentation::SingleInheritanceData;
1932     case DINode::FlagMultipleInheritance:
1933       return PointerToMemberRepresentation::MultipleInheritanceData;
1934     case DINode::FlagVirtualInheritance:
1935       return PointerToMemberRepresentation::VirtualInheritanceData;
1936     }
1937   }
1938   llvm_unreachable("invalid ptr to member representation");
1939 }
1940 
1941 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1942                                                 PointerOptions PO) {
1943   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1944   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1945   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1946   TypeIndex PointeeTI =
1947       getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1948   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1949                                                 : PointerKind::Near32;
1950   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1951                          : PointerMode::PointerToDataMember;
1952 
1953   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1954   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1955   MemberPointerInfo MPI(
1956       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1957   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1958   return TypeTable.writeLeafType(PR);
1959 }
1960 
1961 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1962 /// have a translation, use the NearC convention.
1963 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1964   switch (DwarfCC) {
1965   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1966   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1967   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1968   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1969   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1970   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1971   }
1972   return CallingConvention::NearC;
1973 }
1974 
1975 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1976   ModifierOptions Mods = ModifierOptions::None;
1977   PointerOptions PO = PointerOptions::None;
1978   bool IsModifier = true;
1979   const DIType *BaseTy = Ty;
1980   while (IsModifier && BaseTy) {
1981     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1982     switch (BaseTy->getTag()) {
1983     case dwarf::DW_TAG_const_type:
1984       Mods |= ModifierOptions::Const;
1985       PO |= PointerOptions::Const;
1986       break;
1987     case dwarf::DW_TAG_volatile_type:
1988       Mods |= ModifierOptions::Volatile;
1989       PO |= PointerOptions::Volatile;
1990       break;
1991     case dwarf::DW_TAG_restrict_type:
1992       // Only pointer types be marked with __restrict. There is no known flag
1993       // for __restrict in LF_MODIFIER records.
1994       PO |= PointerOptions::Restrict;
1995       break;
1996     default:
1997       IsModifier = false;
1998       break;
1999     }
2000     if (IsModifier)
2001       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
2002   }
2003 
2004   // Check if the inner type will use an LF_POINTER record. If so, the
2005   // qualifiers will go in the LF_POINTER record. This comes up for types like
2006   // 'int *const' and 'int *__restrict', not the more common cases like 'const
2007   // char *'.
2008   if (BaseTy) {
2009     switch (BaseTy->getTag()) {
2010     case dwarf::DW_TAG_pointer_type:
2011     case dwarf::DW_TAG_reference_type:
2012     case dwarf::DW_TAG_rvalue_reference_type:
2013       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
2014     case dwarf::DW_TAG_ptr_to_member_type:
2015       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
2016     default:
2017       break;
2018     }
2019   }
2020 
2021   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
2022 
2023   // Return the base type index if there aren't any modifiers. For example, the
2024   // metadata could contain restrict wrappers around non-pointer types.
2025   if (Mods == ModifierOptions::None)
2026     return ModifiedTI;
2027 
2028   ModifierRecord MR(ModifiedTI, Mods);
2029   return TypeTable.writeLeafType(MR);
2030 }
2031 
2032 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
2033   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
2034   for (const DIType *ArgType : Ty->getTypeArray())
2035     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
2036 
2037   // MSVC uses type none for variadic argument.
2038   if (ReturnAndArgTypeIndices.size() > 1 &&
2039       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
2040     ReturnAndArgTypeIndices.back() = TypeIndex::None();
2041   }
2042   TypeIndex ReturnTypeIndex = TypeIndex::Void();
2043   ArrayRef<TypeIndex> ArgTypeIndices = {};
2044   if (!ReturnAndArgTypeIndices.empty()) {
2045     auto ReturnAndArgTypesRef = ArrayRef(ReturnAndArgTypeIndices);
2046     ReturnTypeIndex = ReturnAndArgTypesRef.front();
2047     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
2048   }
2049 
2050   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
2051   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
2052 
2053   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
2054 
2055   FunctionOptions FO = getFunctionOptions(Ty);
2056   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
2057                             ArgListIndex);
2058   return TypeTable.writeLeafType(Procedure);
2059 }
2060 
2061 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
2062                                                  const DIType *ClassTy,
2063                                                  int ThisAdjustment,
2064                                                  bool IsStaticMethod,
2065                                                  FunctionOptions FO) {
2066   // Lower the containing class type.
2067   TypeIndex ClassType = getTypeIndex(ClassTy);
2068 
2069   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
2070 
2071   unsigned Index = 0;
2072   SmallVector<TypeIndex, 8> ArgTypeIndices;
2073   TypeIndex ReturnTypeIndex = TypeIndex::Void();
2074   if (ReturnAndArgs.size() > Index) {
2075     ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
2076   }
2077 
2078   // If the first argument is a pointer type and this isn't a static method,
2079   // treat it as the special 'this' parameter, which is encoded separately from
2080   // the arguments.
2081   TypeIndex ThisTypeIndex;
2082   if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
2083     if (const DIDerivedType *PtrTy =
2084             dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
2085       if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
2086         ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
2087         Index++;
2088       }
2089     }
2090   }
2091 
2092   while (Index < ReturnAndArgs.size())
2093     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
2094 
2095   // MSVC uses type none for variadic argument.
2096   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
2097     ArgTypeIndices.back() = TypeIndex::None();
2098 
2099   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
2100   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
2101 
2102   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
2103 
2104   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
2105                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
2106   return TypeTable.writeLeafType(MFR);
2107 }
2108 
2109 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
2110   unsigned VSlotCount =
2111       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
2112   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
2113 
2114   VFTableShapeRecord VFTSR(Slots);
2115   return TypeTable.writeLeafType(VFTSR);
2116 }
2117 
2118 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
2119   switch (Flags & DINode::FlagAccessibility) {
2120   case DINode::FlagPrivate:   return MemberAccess::Private;
2121   case DINode::FlagPublic:    return MemberAccess::Public;
2122   case DINode::FlagProtected: return MemberAccess::Protected;
2123   case 0:
2124     // If there was no explicit access control, provide the default for the tag.
2125     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
2126                                                  : MemberAccess::Public;
2127   }
2128   llvm_unreachable("access flags are exclusive");
2129 }
2130 
2131 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2132   if (SP->isArtificial())
2133     return MethodOptions::CompilerGenerated;
2134 
2135   // FIXME: Handle other MethodOptions.
2136 
2137   return MethodOptions::None;
2138 }
2139 
2140 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2141                                            bool Introduced) {
2142   if (SP->getFlags() & DINode::FlagStaticMember)
2143     return MethodKind::Static;
2144 
2145   switch (SP->getVirtuality()) {
2146   case dwarf::DW_VIRTUALITY_none:
2147     break;
2148   case dwarf::DW_VIRTUALITY_virtual:
2149     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2150   case dwarf::DW_VIRTUALITY_pure_virtual:
2151     return Introduced ? MethodKind::PureIntroducingVirtual
2152                       : MethodKind::PureVirtual;
2153   default:
2154     llvm_unreachable("unhandled virtuality case");
2155   }
2156 
2157   return MethodKind::Vanilla;
2158 }
2159 
2160 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2161   switch (Ty->getTag()) {
2162   case dwarf::DW_TAG_class_type:
2163     return TypeRecordKind::Class;
2164   case dwarf::DW_TAG_structure_type:
2165     return TypeRecordKind::Struct;
2166   default:
2167     llvm_unreachable("unexpected tag");
2168   }
2169 }
2170 
2171 /// Return ClassOptions that should be present on both the forward declaration
2172 /// and the defintion of a tag type.
2173 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2174   ClassOptions CO = ClassOptions::None;
2175 
2176   // MSVC always sets this flag, even for local types. Clang doesn't always
2177   // appear to give every type a linkage name, which may be problematic for us.
2178   // FIXME: Investigate the consequences of not following them here.
2179   if (!Ty->getIdentifier().empty())
2180     CO |= ClassOptions::HasUniqueName;
2181 
2182   // Put the Nested flag on a type if it appears immediately inside a tag type.
2183   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2184   // here. That flag is only set on definitions, and not forward declarations.
2185   const DIScope *ImmediateScope = Ty->getScope();
2186   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2187     CO |= ClassOptions::Nested;
2188 
2189   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2190   // type only when it has an immediate function scope. Clang never puts enums
2191   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2192   // always in function, class, or file scopes.
2193   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2194     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2195       CO |= ClassOptions::Scoped;
2196   } else {
2197     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2198          Scope = Scope->getScope()) {
2199       if (isa<DISubprogram>(Scope)) {
2200         CO |= ClassOptions::Scoped;
2201         break;
2202       }
2203     }
2204   }
2205 
2206   return CO;
2207 }
2208 
2209 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2210   switch (Ty->getTag()) {
2211   case dwarf::DW_TAG_class_type:
2212   case dwarf::DW_TAG_structure_type:
2213   case dwarf::DW_TAG_union_type:
2214   case dwarf::DW_TAG_enumeration_type:
2215     break;
2216   default:
2217     return;
2218   }
2219 
2220   if (const auto *File = Ty->getFile()) {
2221     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2222     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2223 
2224     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2225     TypeTable.writeLeafType(USLR);
2226   }
2227 }
2228 
2229 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2230   ClassOptions CO = getCommonClassOptions(Ty);
2231   TypeIndex FTI;
2232   unsigned EnumeratorCount = 0;
2233 
2234   if (Ty->isForwardDecl()) {
2235     CO |= ClassOptions::ForwardReference;
2236   } else {
2237     ContinuationRecordBuilder ContinuationBuilder;
2238     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2239     for (const DINode *Element : Ty->getElements()) {
2240       // We assume that the frontend provides all members in source declaration
2241       // order, which is what MSVC does.
2242       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2243         // FIXME: Is it correct to always emit these as unsigned here?
2244         EnumeratorRecord ER(MemberAccess::Public,
2245                             APSInt(Enumerator->getValue(), true),
2246                             Enumerator->getName());
2247         ContinuationBuilder.writeMemberType(ER);
2248         EnumeratorCount++;
2249       }
2250     }
2251     FTI = TypeTable.insertRecord(ContinuationBuilder);
2252   }
2253 
2254   std::string FullName = getFullyQualifiedName(Ty);
2255 
2256   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2257                 getTypeIndex(Ty->getBaseType()));
2258   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2259 
2260   addUDTSrcLine(Ty, EnumTI);
2261 
2262   return EnumTI;
2263 }
2264 
2265 //===----------------------------------------------------------------------===//
2266 // ClassInfo
2267 //===----------------------------------------------------------------------===//
2268 
2269 struct llvm::ClassInfo {
2270   struct MemberInfo {
2271     const DIDerivedType *MemberTypeNode;
2272     uint64_t BaseOffset;
2273   };
2274   // [MemberInfo]
2275   using MemberList = std::vector<MemberInfo>;
2276 
2277   using MethodsList = TinyPtrVector<const DISubprogram *>;
2278   // MethodName -> MethodsList
2279   using MethodsMap = MapVector<MDString *, MethodsList>;
2280 
2281   /// Base classes.
2282   std::vector<const DIDerivedType *> Inheritance;
2283 
2284   /// Direct members.
2285   MemberList Members;
2286   // Direct overloaded methods gathered by name.
2287   MethodsMap Methods;
2288 
2289   TypeIndex VShapeTI;
2290 
2291   std::vector<const DIType *> NestedTypes;
2292 };
2293 
2294 void CodeViewDebug::clear() {
2295   assert(CurFn == nullptr);
2296   FileIdMap.clear();
2297   FnDebugInfo.clear();
2298   FileToFilepathMap.clear();
2299   LocalUDTs.clear();
2300   GlobalUDTs.clear();
2301   TypeIndices.clear();
2302   CompleteTypeIndices.clear();
2303   ScopeGlobals.clear();
2304   CVGlobalVariableOffsets.clear();
2305 }
2306 
2307 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2308                                       const DIDerivedType *DDTy) {
2309   if (!DDTy->getName().empty()) {
2310     Info.Members.push_back({DDTy, 0});
2311 
2312     // Collect static const data members with values.
2313     if ((DDTy->getFlags() & DINode::FlagStaticMember) ==
2314         DINode::FlagStaticMember) {
2315       if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) ||
2316                                   isa<ConstantFP>(DDTy->getConstant())))
2317         StaticConstMembers.push_back(DDTy);
2318     }
2319 
2320     return;
2321   }
2322 
2323   // An unnamed member may represent a nested struct or union. Attempt to
2324   // interpret the unnamed member as a DICompositeType possibly wrapped in
2325   // qualifier types. Add all the indirect fields to the current record if that
2326   // succeeds, and drop the member if that fails.
2327   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2328   uint64_t Offset = DDTy->getOffsetInBits();
2329   const DIType *Ty = DDTy->getBaseType();
2330   bool FullyResolved = false;
2331   while (!FullyResolved) {
2332     switch (Ty->getTag()) {
2333     case dwarf::DW_TAG_const_type:
2334     case dwarf::DW_TAG_volatile_type:
2335       // FIXME: we should apply the qualifier types to the indirect fields
2336       // rather than dropping them.
2337       Ty = cast<DIDerivedType>(Ty)->getBaseType();
2338       break;
2339     default:
2340       FullyResolved = true;
2341       break;
2342     }
2343   }
2344 
2345   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2346   if (!DCTy)
2347     return;
2348 
2349   ClassInfo NestedInfo = collectClassInfo(DCTy);
2350   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2351     Info.Members.push_back(
2352         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2353 }
2354 
2355 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2356   ClassInfo Info;
2357   // Add elements to structure type.
2358   DINodeArray Elements = Ty->getElements();
2359   for (auto *Element : Elements) {
2360     // We assume that the frontend provides all members in source declaration
2361     // order, which is what MSVC does.
2362     if (!Element)
2363       continue;
2364     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2365       Info.Methods[SP->getRawName()].push_back(SP);
2366     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2367       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2368         collectMemberInfo(Info, DDTy);
2369       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2370         Info.Inheritance.push_back(DDTy);
2371       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2372                  DDTy->getName() == "__vtbl_ptr_type") {
2373         Info.VShapeTI = getTypeIndex(DDTy);
2374       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2375         Info.NestedTypes.push_back(DDTy);
2376       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2377         // Ignore friend members. It appears that MSVC emitted info about
2378         // friends in the past, but modern versions do not.
2379       }
2380     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2381       Info.NestedTypes.push_back(Composite);
2382     }
2383     // Skip other unrecognized kinds of elements.
2384   }
2385   return Info;
2386 }
2387 
2388 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2389   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2390   // if a complete type should be emitted instead of a forward reference.
2391   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2392       !Ty->isForwardDecl();
2393 }
2394 
2395 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2396   // Emit the complete type for unnamed structs.  C++ classes with methods
2397   // which have a circular reference back to the class type are expected to
2398   // be named by the front-end and should not be "unnamed".  C unnamed
2399   // structs should not have circular references.
2400   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2401     // If this unnamed complete type is already in the process of being defined
2402     // then the description of the type is malformed and cannot be emitted
2403     // into CodeView correctly so report a fatal error.
2404     auto I = CompleteTypeIndices.find(Ty);
2405     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2406       report_fatal_error("cannot debug circular reference to unnamed type");
2407     return getCompleteTypeIndex(Ty);
2408   }
2409 
2410   // First, construct the forward decl.  Don't look into Ty to compute the
2411   // forward decl options, since it might not be available in all TUs.
2412   TypeRecordKind Kind = getRecordKind(Ty);
2413   ClassOptions CO =
2414       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2415   std::string FullName = getFullyQualifiedName(Ty);
2416   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2417                  FullName, Ty->getIdentifier());
2418   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2419   if (!Ty->isForwardDecl())
2420     DeferredCompleteTypes.push_back(Ty);
2421   return FwdDeclTI;
2422 }
2423 
2424 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2425   // Construct the field list and complete type record.
2426   TypeRecordKind Kind = getRecordKind(Ty);
2427   ClassOptions CO = getCommonClassOptions(Ty);
2428   TypeIndex FieldTI;
2429   TypeIndex VShapeTI;
2430   unsigned FieldCount;
2431   bool ContainsNestedClass;
2432   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2433       lowerRecordFieldList(Ty);
2434 
2435   if (ContainsNestedClass)
2436     CO |= ClassOptions::ContainsNestedClass;
2437 
2438   // MSVC appears to set this flag by searching any destructor or method with
2439   // FunctionOptions::Constructor among the emitted members. Clang AST has all
2440   // the members, however special member functions are not yet emitted into
2441   // debug information. For now checking a class's non-triviality seems enough.
2442   // FIXME: not true for a nested unnamed struct.
2443   if (isNonTrivial(Ty))
2444     CO |= ClassOptions::HasConstructorOrDestructor;
2445 
2446   std::string FullName = getFullyQualifiedName(Ty);
2447 
2448   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2449 
2450   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2451                  SizeInBytes, FullName, Ty->getIdentifier());
2452   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2453 
2454   addUDTSrcLine(Ty, ClassTI);
2455 
2456   addToUDTs(Ty);
2457 
2458   return ClassTI;
2459 }
2460 
2461 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2462   // Emit the complete type for unnamed unions.
2463   if (shouldAlwaysEmitCompleteClassType(Ty))
2464     return getCompleteTypeIndex(Ty);
2465 
2466   ClassOptions CO =
2467       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2468   std::string FullName = getFullyQualifiedName(Ty);
2469   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2470   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2471   if (!Ty->isForwardDecl())
2472     DeferredCompleteTypes.push_back(Ty);
2473   return FwdDeclTI;
2474 }
2475 
2476 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2477   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2478   TypeIndex FieldTI;
2479   unsigned FieldCount;
2480   bool ContainsNestedClass;
2481   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2482       lowerRecordFieldList(Ty);
2483 
2484   if (ContainsNestedClass)
2485     CO |= ClassOptions::ContainsNestedClass;
2486 
2487   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2488   std::string FullName = getFullyQualifiedName(Ty);
2489 
2490   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2491                  Ty->getIdentifier());
2492   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2493 
2494   addUDTSrcLine(Ty, UnionTI);
2495 
2496   addToUDTs(Ty);
2497 
2498   return UnionTI;
2499 }
2500 
2501 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2502 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2503   // Manually count members. MSVC appears to count everything that generates a
2504   // field list record. Each individual overload in a method overload group
2505   // contributes to this count, even though the overload group is a single field
2506   // list record.
2507   unsigned MemberCount = 0;
2508   ClassInfo Info = collectClassInfo(Ty);
2509   ContinuationRecordBuilder ContinuationBuilder;
2510   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2511 
2512   // Create base classes.
2513   for (const DIDerivedType *I : Info.Inheritance) {
2514     if (I->getFlags() & DINode::FlagVirtual) {
2515       // Virtual base.
2516       unsigned VBPtrOffset = I->getVBPtrOffset();
2517       // FIXME: Despite the accessor name, the offset is really in bytes.
2518       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2519       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2520                             ? TypeRecordKind::IndirectVirtualBaseClass
2521                             : TypeRecordKind::VirtualBaseClass;
2522       VirtualBaseClassRecord VBCR(
2523           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2524           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2525           VBTableIndex);
2526 
2527       ContinuationBuilder.writeMemberType(VBCR);
2528       MemberCount++;
2529     } else {
2530       assert(I->getOffsetInBits() % 8 == 0 &&
2531              "bases must be on byte boundaries");
2532       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2533                           getTypeIndex(I->getBaseType()),
2534                           I->getOffsetInBits() / 8);
2535       ContinuationBuilder.writeMemberType(BCR);
2536       MemberCount++;
2537     }
2538   }
2539 
2540   // Create members.
2541   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2542     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2543     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2544     StringRef MemberName = Member->getName();
2545     MemberAccess Access =
2546         translateAccessFlags(Ty->getTag(), Member->getFlags());
2547 
2548     if (Member->isStaticMember()) {
2549       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2550       ContinuationBuilder.writeMemberType(SDMR);
2551       MemberCount++;
2552       continue;
2553     }
2554 
2555     // Virtual function pointer member.
2556     if ((Member->getFlags() & DINode::FlagArtificial) &&
2557         Member->getName().starts_with("_vptr$")) {
2558       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2559       ContinuationBuilder.writeMemberType(VFPR);
2560       MemberCount++;
2561       continue;
2562     }
2563 
2564     // Data member.
2565     uint64_t MemberOffsetInBits =
2566         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2567     if (Member->isBitField()) {
2568       uint64_t StartBitOffset = MemberOffsetInBits;
2569       if (const auto *CI =
2570               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2571         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2572       }
2573       StartBitOffset -= MemberOffsetInBits;
2574       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2575                          StartBitOffset);
2576       MemberBaseType = TypeTable.writeLeafType(BFR);
2577     }
2578     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2579     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2580                          MemberName);
2581     ContinuationBuilder.writeMemberType(DMR);
2582     MemberCount++;
2583   }
2584 
2585   // Create methods
2586   for (auto &MethodItr : Info.Methods) {
2587     StringRef Name = MethodItr.first->getString();
2588 
2589     std::vector<OneMethodRecord> Methods;
2590     for (const DISubprogram *SP : MethodItr.second) {
2591       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2592       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2593 
2594       unsigned VFTableOffset = -1;
2595       if (Introduced)
2596         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2597 
2598       Methods.push_back(OneMethodRecord(
2599           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2600           translateMethodKindFlags(SP, Introduced),
2601           translateMethodOptionFlags(SP), VFTableOffset, Name));
2602       MemberCount++;
2603     }
2604     assert(!Methods.empty() && "Empty methods map entry");
2605     if (Methods.size() == 1)
2606       ContinuationBuilder.writeMemberType(Methods[0]);
2607     else {
2608       // FIXME: Make this use its own ContinuationBuilder so that
2609       // MethodOverloadList can be split correctly.
2610       MethodOverloadListRecord MOLR(Methods);
2611       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2612 
2613       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2614       ContinuationBuilder.writeMemberType(OMR);
2615     }
2616   }
2617 
2618   // Create nested classes.
2619   for (const DIType *Nested : Info.NestedTypes) {
2620     NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2621     ContinuationBuilder.writeMemberType(R);
2622     MemberCount++;
2623   }
2624 
2625   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2626   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2627                          !Info.NestedTypes.empty());
2628 }
2629 
2630 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2631   if (!VBPType.getIndex()) {
2632     // Make a 'const int *' type.
2633     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2634     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2635 
2636     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2637                                                   : PointerKind::Near32;
2638     PointerMode PM = PointerMode::Pointer;
2639     PointerOptions PO = PointerOptions::None;
2640     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2641     VBPType = TypeTable.writeLeafType(PR);
2642   }
2643 
2644   return VBPType;
2645 }
2646 
2647 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2648   // The null DIType is the void type. Don't try to hash it.
2649   if (!Ty)
2650     return TypeIndex::Void();
2651 
2652   // Check if we've already translated this type. Don't try to do a
2653   // get-or-create style insertion that caches the hash lookup across the
2654   // lowerType call. It will update the TypeIndices map.
2655   auto I = TypeIndices.find({Ty, ClassTy});
2656   if (I != TypeIndices.end())
2657     return I->second;
2658 
2659   TypeLoweringScope S(*this);
2660   TypeIndex TI = lowerType(Ty, ClassTy);
2661   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2662 }
2663 
2664 codeview::TypeIndex
2665 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2666                                       const DISubroutineType *SubroutineTy) {
2667   assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2668          "this type must be a pointer type");
2669 
2670   PointerOptions Options = PointerOptions::None;
2671   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2672     Options = PointerOptions::LValueRefThisPointer;
2673   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2674     Options = PointerOptions::RValueRefThisPointer;
2675 
2676   // Check if we've already translated this type.  If there is no ref qualifier
2677   // on the function then we look up this pointer type with no associated class
2678   // so that the TypeIndex for the this pointer can be shared with the type
2679   // index for other pointers to this class type.  If there is a ref qualifier
2680   // then we lookup the pointer using the subroutine as the parent type.
2681   auto I = TypeIndices.find({PtrTy, SubroutineTy});
2682   if (I != TypeIndices.end())
2683     return I->second;
2684 
2685   TypeLoweringScope S(*this);
2686   TypeIndex TI = lowerTypePointer(PtrTy, Options);
2687   return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2688 }
2689 
2690 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2691   PointerRecord PR(getTypeIndex(Ty),
2692                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2693                                                 : PointerKind::Near32,
2694                    PointerMode::LValueReference, PointerOptions::None,
2695                    Ty->getSizeInBits() / 8);
2696   return TypeTable.writeLeafType(PR);
2697 }
2698 
2699 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2700   // The null DIType is the void type. Don't try to hash it.
2701   if (!Ty)
2702     return TypeIndex::Void();
2703 
2704   // Look through typedefs when getting the complete type index. Call
2705   // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2706   // emitted only once.
2707   if (Ty->getTag() == dwarf::DW_TAG_typedef)
2708     (void)getTypeIndex(Ty);
2709   while (Ty->getTag() == dwarf::DW_TAG_typedef)
2710     Ty = cast<DIDerivedType>(Ty)->getBaseType();
2711 
2712   // If this is a non-record type, the complete type index is the same as the
2713   // normal type index. Just call getTypeIndex.
2714   switch (Ty->getTag()) {
2715   case dwarf::DW_TAG_class_type:
2716   case dwarf::DW_TAG_structure_type:
2717   case dwarf::DW_TAG_union_type:
2718     break;
2719   default:
2720     return getTypeIndex(Ty);
2721   }
2722 
2723   const auto *CTy = cast<DICompositeType>(Ty);
2724 
2725   TypeLoweringScope S(*this);
2726 
2727   // Make sure the forward declaration is emitted first. It's unclear if this
2728   // is necessary, but MSVC does it, and we should follow suit until we can show
2729   // otherwise.
2730   // We only emit a forward declaration for named types.
2731   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2732     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2733 
2734     // Just use the forward decl if we don't have complete type info. This
2735     // might happen if the frontend is using modules and expects the complete
2736     // definition to be emitted elsewhere.
2737     if (CTy->isForwardDecl())
2738       return FwdDeclTI;
2739   }
2740 
2741   // Check if we've already translated the complete record type.
2742   // Insert the type with a null TypeIndex to signify that the type is currently
2743   // being lowered.
2744   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2745   if (!InsertResult.second)
2746     return InsertResult.first->second;
2747 
2748   TypeIndex TI;
2749   switch (CTy->getTag()) {
2750   case dwarf::DW_TAG_class_type:
2751   case dwarf::DW_TAG_structure_type:
2752     TI = lowerCompleteTypeClass(CTy);
2753     break;
2754   case dwarf::DW_TAG_union_type:
2755     TI = lowerCompleteTypeUnion(CTy);
2756     break;
2757   default:
2758     llvm_unreachable("not a record");
2759   }
2760 
2761   // Update the type index associated with this CompositeType.  This cannot
2762   // use the 'InsertResult' iterator above because it is potentially
2763   // invalidated by map insertions which can occur while lowering the class
2764   // type above.
2765   CompleteTypeIndices[CTy] = TI;
2766   return TI;
2767 }
2768 
2769 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2770 /// and do this until fixpoint, as each complete record type typically
2771 /// references
2772 /// many other record types.
2773 void CodeViewDebug::emitDeferredCompleteTypes() {
2774   SmallVector<const DICompositeType *, 4> TypesToEmit;
2775   while (!DeferredCompleteTypes.empty()) {
2776     std::swap(DeferredCompleteTypes, TypesToEmit);
2777     for (const DICompositeType *RecordTy : TypesToEmit)
2778       getCompleteTypeIndex(RecordTy);
2779     TypesToEmit.clear();
2780   }
2781 }
2782 
2783 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2784                                           ArrayRef<LocalVariable> Locals) {
2785   // Get the sorted list of parameters and emit them first.
2786   SmallVector<const LocalVariable *, 6> Params;
2787   for (const LocalVariable &L : Locals)
2788     if (L.DIVar->isParameter())
2789       Params.push_back(&L);
2790   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2791     return L->DIVar->getArg() < R->DIVar->getArg();
2792   });
2793   for (const LocalVariable *L : Params)
2794     emitLocalVariable(FI, *L);
2795 
2796   // Next emit all non-parameters in the order that we found them.
2797   for (const LocalVariable &L : Locals) {
2798     if (!L.DIVar->isParameter()) {
2799       if (L.ConstantValue) {
2800         // If ConstantValue is set we will emit it as a S_CONSTANT instead of a
2801         // S_LOCAL in order to be able to represent it at all.
2802         const DIType *Ty = L.DIVar->getType();
2803         APSInt Val(*L.ConstantValue);
2804         emitConstantSymbolRecord(Ty, Val, std::string(L.DIVar->getName()));
2805       } else {
2806         emitLocalVariable(FI, L);
2807       }
2808     }
2809   }
2810 }
2811 
2812 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2813                                       const LocalVariable &Var) {
2814   // LocalSym record, see SymbolRecord.h for more info.
2815   MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2816 
2817   LocalSymFlags Flags = LocalSymFlags::None;
2818   if (Var.DIVar->isParameter())
2819     Flags |= LocalSymFlags::IsParameter;
2820   if (Var.DefRanges.empty())
2821     Flags |= LocalSymFlags::IsOptimizedOut;
2822 
2823   OS.AddComment("TypeIndex");
2824   TypeIndex TI = Var.UseReferenceType
2825                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2826                      : getCompleteTypeIndex(Var.DIVar->getType());
2827   OS.emitInt32(TI.getIndex());
2828   OS.AddComment("Flags");
2829   OS.emitInt16(static_cast<uint16_t>(Flags));
2830   // Truncate the name so we won't overflow the record length field.
2831   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2832   endSymbolRecord(LocalEnd);
2833 
2834   // Calculate the on disk prefix of the appropriate def range record. The
2835   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2836   // should be big enough to hold all forms without memory allocation.
2837   SmallString<20> BytePrefix;
2838   for (const auto &Pair : Var.DefRanges) {
2839     LocalVarDef DefRange = Pair.first;
2840     const auto &Ranges = Pair.second;
2841     BytePrefix.clear();
2842     if (DefRange.InMemory) {
2843       int Offset = DefRange.DataOffset;
2844       unsigned Reg = DefRange.CVRegister;
2845 
2846       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2847       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2848       // instead. In frames without stack realignment, $T0 will be the CFA.
2849       if (RegisterId(Reg) == RegisterId::ESP) {
2850         Reg = unsigned(RegisterId::VFRAME);
2851         Offset += FI.OffsetAdjustment;
2852       }
2853 
2854       // If we can use the chosen frame pointer for the frame and this isn't a
2855       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2856       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2857       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2858       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2859           (bool(Flags & LocalSymFlags::IsParameter)
2860                ? (EncFP == FI.EncodedParamFramePtrReg)
2861                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2862         DefRangeFramePointerRelHeader DRHdr;
2863         DRHdr.Offset = Offset;
2864         OS.emitCVDefRangeDirective(Ranges, DRHdr);
2865       } else {
2866         uint16_t RegRelFlags = 0;
2867         if (DefRange.IsSubfield) {
2868           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2869                         (DefRange.StructOffset
2870                          << DefRangeRegisterRelSym::OffsetInParentShift);
2871         }
2872         DefRangeRegisterRelHeader DRHdr;
2873         DRHdr.Register = Reg;
2874         DRHdr.Flags = RegRelFlags;
2875         DRHdr.BasePointerOffset = Offset;
2876         OS.emitCVDefRangeDirective(Ranges, DRHdr);
2877       }
2878     } else {
2879       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2880       if (DefRange.IsSubfield) {
2881         DefRangeSubfieldRegisterHeader DRHdr;
2882         DRHdr.Register = DefRange.CVRegister;
2883         DRHdr.MayHaveNoName = 0;
2884         DRHdr.OffsetInParent = DefRange.StructOffset;
2885         OS.emitCVDefRangeDirective(Ranges, DRHdr);
2886       } else {
2887         DefRangeRegisterHeader DRHdr;
2888         DRHdr.Register = DefRange.CVRegister;
2889         DRHdr.MayHaveNoName = 0;
2890         OS.emitCVDefRangeDirective(Ranges, DRHdr);
2891       }
2892     }
2893   }
2894 }
2895 
2896 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2897                                          const FunctionInfo& FI) {
2898   for (LexicalBlock *Block : Blocks)
2899     emitLexicalBlock(*Block, FI);
2900 }
2901 
2902 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2903 /// lexical block scope.
2904 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2905                                      const FunctionInfo& FI) {
2906   MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2907   OS.AddComment("PtrParent");
2908   OS.emitInt32(0); // PtrParent
2909   OS.AddComment("PtrEnd");
2910   OS.emitInt32(0); // PtrEnd
2911   OS.AddComment("Code size");
2912   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2913   OS.AddComment("Function section relative address");
2914   OS.emitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
2915   OS.AddComment("Function section index");
2916   OS.emitCOFFSectionIndex(FI.Begin); // Func Symbol
2917   OS.AddComment("Lexical block name");
2918   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2919   endSymbolRecord(RecordEnd);
2920 
2921   // Emit variables local to this lexical block.
2922   emitLocalVariableList(FI, Block.Locals);
2923   emitGlobalVariableList(Block.Globals);
2924 
2925   // Emit lexical blocks contained within this block.
2926   emitLexicalBlockList(Block.Children, FI);
2927 
2928   // Close the lexical block scope.
2929   emitEndSymbolRecord(SymbolKind::S_END);
2930 }
2931 
2932 /// Convenience routine for collecting lexical block information for a list
2933 /// of lexical scopes.
2934 void CodeViewDebug::collectLexicalBlockInfo(
2935         SmallVectorImpl<LexicalScope *> &Scopes,
2936         SmallVectorImpl<LexicalBlock *> &Blocks,
2937         SmallVectorImpl<LocalVariable> &Locals,
2938         SmallVectorImpl<CVGlobalVariable> &Globals) {
2939   for (LexicalScope *Scope : Scopes)
2940     collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2941 }
2942 
2943 /// Populate the lexical blocks and local variable lists of the parent with
2944 /// information about the specified lexical scope.
2945 void CodeViewDebug::collectLexicalBlockInfo(
2946     LexicalScope &Scope,
2947     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2948     SmallVectorImpl<LocalVariable> &ParentLocals,
2949     SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2950   if (Scope.isAbstractScope())
2951     return;
2952 
2953   // Gather information about the lexical scope including local variables,
2954   // global variables, and address ranges.
2955   bool IgnoreScope = false;
2956   auto LI = ScopeVariables.find(&Scope);
2957   SmallVectorImpl<LocalVariable> *Locals =
2958       LI != ScopeVariables.end() ? &LI->second : nullptr;
2959   auto GI = ScopeGlobals.find(Scope.getScopeNode());
2960   SmallVectorImpl<CVGlobalVariable> *Globals =
2961       GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2962   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2963   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2964 
2965   // Ignore lexical scopes which do not contain variables.
2966   if (!Locals && !Globals)
2967     IgnoreScope = true;
2968 
2969   // Ignore lexical scopes which are not lexical blocks.
2970   if (!DILB)
2971     IgnoreScope = true;
2972 
2973   // Ignore scopes which have too many address ranges to represent in the
2974   // current CodeView format or do not have a valid address range.
2975   //
2976   // For lexical scopes with multiple address ranges you may be tempted to
2977   // construct a single range covering every instruction where the block is
2978   // live and everything in between.  Unfortunately, Visual Studio only
2979   // displays variables from the first matching lexical block scope.  If the
2980   // first lexical block contains exception handling code or cold code which
2981   // is moved to the bottom of the routine creating a single range covering
2982   // nearly the entire routine, then it will hide all other lexical blocks
2983   // and the variables they contain.
2984   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2985     IgnoreScope = true;
2986 
2987   if (IgnoreScope) {
2988     // This scope can be safely ignored and eliminating it will reduce the
2989     // size of the debug information. Be sure to collect any variable and scope
2990     // information from the this scope or any of its children and collapse them
2991     // into the parent scope.
2992     if (Locals)
2993       ParentLocals.append(Locals->begin(), Locals->end());
2994     if (Globals)
2995       ParentGlobals.append(Globals->begin(), Globals->end());
2996     collectLexicalBlockInfo(Scope.getChildren(),
2997                             ParentBlocks,
2998                             ParentLocals,
2999                             ParentGlobals);
3000     return;
3001   }
3002 
3003   // Create a new CodeView lexical block for this lexical scope.  If we've
3004   // seen this DILexicalBlock before then the scope tree is malformed and
3005   // we can handle this gracefully by not processing it a second time.
3006   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
3007   if (!BlockInsertion.second)
3008     return;
3009 
3010   // Create a lexical block containing the variables and collect the
3011   // lexical block information for the children.
3012   const InsnRange &Range = Ranges.front();
3013   assert(Range.first && Range.second);
3014   LexicalBlock &Block = BlockInsertion.first->second;
3015   Block.Begin = getLabelBeforeInsn(Range.first);
3016   Block.End = getLabelAfterInsn(Range.second);
3017   assert(Block.Begin && "missing label for scope begin");
3018   assert(Block.End && "missing label for scope end");
3019   Block.Name = DILB->getName();
3020   if (Locals)
3021     Block.Locals = std::move(*Locals);
3022   if (Globals)
3023     Block.Globals = std::move(*Globals);
3024   ParentBlocks.push_back(&Block);
3025   collectLexicalBlockInfo(Scope.getChildren(),
3026                           Block.Children,
3027                           Block.Locals,
3028                           Block.Globals);
3029 }
3030 
3031 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
3032   const Function &GV = MF->getFunction();
3033   assert(FnDebugInfo.count(&GV));
3034   assert(CurFn == FnDebugInfo[&GV].get());
3035 
3036   collectVariableInfo(GV.getSubprogram());
3037 
3038   // Build the lexical block structure to emit for this routine.
3039   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
3040     collectLexicalBlockInfo(*CFS,
3041                             CurFn->ChildBlocks,
3042                             CurFn->Locals,
3043                             CurFn->Globals);
3044 
3045   // Clear the scope and variable information from the map which will not be
3046   // valid after we have finished processing this routine.  This also prepares
3047   // the map for the subsequent routine.
3048   ScopeVariables.clear();
3049 
3050   // Don't emit anything if we don't have any line tables.
3051   // Thunks are compiler-generated and probably won't have source correlation.
3052   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
3053     FnDebugInfo.erase(&GV);
3054     CurFn = nullptr;
3055     return;
3056   }
3057 
3058   // Find heap alloc sites and add to list.
3059   for (const auto &MBB : *MF) {
3060     for (const auto &MI : MBB) {
3061       if (MDNode *MD = MI.getHeapAllocMarker()) {
3062         CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
3063                                                         getLabelAfterInsn(&MI),
3064                                                         dyn_cast<DIType>(MD)));
3065       }
3066     }
3067   }
3068 
3069   bool isThumb = Triple(MMI->getModule()->getTargetTriple()).getArch() ==
3070                  llvm::Triple::ArchType::thumb;
3071   collectDebugInfoForJumpTables(MF, isThumb);
3072 
3073   CurFn->Annotations = MF->getCodeViewAnnotations();
3074 
3075   CurFn->End = Asm->getFunctionEnd();
3076 
3077   CurFn = nullptr;
3078 }
3079 
3080 // Usable locations are valid with non-zero line numbers. A line number of zero
3081 // corresponds to optimized code that doesn't have a distinct source location.
3082 // In this case, we try to use the previous or next source location depending on
3083 // the context.
3084 static bool isUsableDebugLoc(DebugLoc DL) {
3085   return DL && DL.getLine() != 0;
3086 }
3087 
3088 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
3089   DebugHandlerBase::beginInstruction(MI);
3090 
3091   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
3092   if (!Asm || !CurFn || MI->isDebugInstr() ||
3093       MI->getFlag(MachineInstr::FrameSetup))
3094     return;
3095 
3096   // If the first instruction of a new MBB has no location, find the first
3097   // instruction with a location and use that.
3098   DebugLoc DL = MI->getDebugLoc();
3099   if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
3100     for (const auto &NextMI : *MI->getParent()) {
3101       if (NextMI.isDebugInstr())
3102         continue;
3103       DL = NextMI.getDebugLoc();
3104       if (isUsableDebugLoc(DL))
3105         break;
3106     }
3107     // FIXME: Handle the case where the BB has no valid locations. This would
3108     // probably require doing a real dataflow analysis.
3109   }
3110   PrevInstBB = MI->getParent();
3111 
3112   // If we still don't have a debug location, don't record a location.
3113   if (!isUsableDebugLoc(DL))
3114     return;
3115 
3116   maybeRecordLocation(DL, Asm->MF);
3117 }
3118 
3119 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
3120   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3121            *EndLabel = MMI->getContext().createTempSymbol();
3122   OS.emitInt32(unsigned(Kind));
3123   OS.AddComment("Subsection size");
3124   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
3125   OS.emitLabel(BeginLabel);
3126   return EndLabel;
3127 }
3128 
3129 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
3130   OS.emitLabel(EndLabel);
3131   // Every subsection must be aligned to a 4-byte boundary.
3132   OS.emitValueToAlignment(Align(4));
3133 }
3134 
3135 static StringRef getSymbolName(SymbolKind SymKind) {
3136   for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
3137     if (EE.Value == SymKind)
3138       return EE.Name;
3139   return "";
3140 }
3141 
3142 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
3143   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3144            *EndLabel = MMI->getContext().createTempSymbol();
3145   OS.AddComment("Record length");
3146   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
3147   OS.emitLabel(BeginLabel);
3148   if (OS.isVerboseAsm())
3149     OS.AddComment("Record kind: " + getSymbolName(SymKind));
3150   OS.emitInt16(unsigned(SymKind));
3151   return EndLabel;
3152 }
3153 
3154 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3155   // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3156   // an extra copy of every symbol record in LLD. This increases object file
3157   // size by less than 1% in the clang build, and is compatible with the Visual
3158   // C++ linker.
3159   OS.emitValueToAlignment(Align(4));
3160   OS.emitLabel(SymEnd);
3161 }
3162 
3163 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3164   OS.AddComment("Record length");
3165   OS.emitInt16(2);
3166   if (OS.isVerboseAsm())
3167     OS.AddComment("Record kind: " + getSymbolName(EndKind));
3168   OS.emitInt16(uint16_t(EndKind)); // Record Kind
3169 }
3170 
3171 void CodeViewDebug::emitDebugInfoForUDTs(
3172     const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3173 #ifndef NDEBUG
3174   size_t OriginalSize = UDTs.size();
3175 #endif
3176   for (const auto &UDT : UDTs) {
3177     const DIType *T = UDT.second;
3178     assert(shouldEmitUdt(T));
3179     MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3180     OS.AddComment("Type");
3181     OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3182     assert(OriginalSize == UDTs.size() &&
3183            "getCompleteTypeIndex found new UDTs!");
3184     emitNullTerminatedSymbolName(OS, UDT.first);
3185     endSymbolRecord(UDTRecordEnd);
3186   }
3187 }
3188 
3189 void CodeViewDebug::collectGlobalVariableInfo() {
3190   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3191       GlobalMap;
3192   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3193     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3194     GV.getDebugInfo(GVEs);
3195     for (const auto *GVE : GVEs)
3196       GlobalMap[GVE] = &GV;
3197   }
3198 
3199   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3200   for (const MDNode *Node : CUs->operands()) {
3201     const auto *CU = cast<DICompileUnit>(Node);
3202     for (const auto *GVE : CU->getGlobalVariables()) {
3203       const DIGlobalVariable *DIGV = GVE->getVariable();
3204       const DIExpression *DIE = GVE->getExpression();
3205       // Don't emit string literals in CodeView, as the only useful parts are
3206       // generally the filename and line number, which isn't possible to output
3207       // in CodeView. String literals should be the only unnamed GlobalVariable
3208       // with debug info.
3209       if (DIGV->getName().empty()) continue;
3210 
3211       if ((DIE->getNumElements() == 2) &&
3212           (DIE->getElement(0) == dwarf::DW_OP_plus_uconst))
3213         // Record the constant offset for the variable.
3214         //
3215         // A Fortran common block uses this idiom to encode the offset
3216         // of a variable from the common block's starting address.
3217         CVGlobalVariableOffsets.insert(
3218             std::make_pair(DIGV, DIE->getElement(1)));
3219 
3220       // Emit constant global variables in a global symbol section.
3221       if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3222         CVGlobalVariable CVGV = {DIGV, DIE};
3223         GlobalVariables.emplace_back(std::move(CVGV));
3224       }
3225 
3226       const auto *GV = GlobalMap.lookup(GVE);
3227       if (!GV || GV->isDeclarationForLinker())
3228         continue;
3229 
3230       DIScope *Scope = DIGV->getScope();
3231       SmallVector<CVGlobalVariable, 1> *VariableList;
3232       if (Scope && isa<DILocalScope>(Scope)) {
3233         // Locate a global variable list for this scope, creating one if
3234         // necessary.
3235         auto Insertion = ScopeGlobals.insert(
3236             {Scope, std::unique_ptr<GlobalVariableList>()});
3237         if (Insertion.second)
3238           Insertion.first->second = std::make_unique<GlobalVariableList>();
3239         VariableList = Insertion.first->second.get();
3240       } else if (GV->hasComdat())
3241         // Emit this global variable into a COMDAT section.
3242         VariableList = &ComdatVariables;
3243       else
3244         // Emit this global variable in a single global symbol section.
3245         VariableList = &GlobalVariables;
3246       CVGlobalVariable CVGV = {DIGV, GV};
3247       VariableList->emplace_back(std::move(CVGV));
3248     }
3249   }
3250 }
3251 
3252 void CodeViewDebug::collectDebugInfoForGlobals() {
3253   for (const CVGlobalVariable &CVGV : GlobalVariables) {
3254     const DIGlobalVariable *DIGV = CVGV.DIGV;
3255     const DIScope *Scope = DIGV->getScope();
3256     getCompleteTypeIndex(DIGV->getType());
3257     getFullyQualifiedName(Scope, DIGV->getName());
3258   }
3259 
3260   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3261     const DIGlobalVariable *DIGV = CVGV.DIGV;
3262     const DIScope *Scope = DIGV->getScope();
3263     getCompleteTypeIndex(DIGV->getType());
3264     getFullyQualifiedName(Scope, DIGV->getName());
3265   }
3266 }
3267 
3268 void CodeViewDebug::emitDebugInfoForGlobals() {
3269   // First, emit all globals that are not in a comdat in a single symbol
3270   // substream. MSVC doesn't like it if the substream is empty, so only open
3271   // it if we have at least one global to emit.
3272   switchToDebugSectionForSymbol(nullptr);
3273   if (!GlobalVariables.empty() || !StaticConstMembers.empty()) {
3274     OS.AddComment("Symbol subsection for globals");
3275     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3276     emitGlobalVariableList(GlobalVariables);
3277     emitStaticConstMemberList();
3278     endCVSubsection(EndLabel);
3279   }
3280 
3281   // Second, emit each global that is in a comdat into its own .debug$S
3282   // section along with its own symbol substream.
3283   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3284     const GlobalVariable *GV = cast<const GlobalVariable *>(CVGV.GVInfo);
3285     MCSymbol *GVSym = Asm->getSymbol(GV);
3286     OS.AddComment("Symbol subsection for " +
3287                   Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3288     switchToDebugSectionForSymbol(GVSym);
3289     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3290     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3291     emitDebugInfoForGlobal(CVGV);
3292     endCVSubsection(EndLabel);
3293   }
3294 }
3295 
3296 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3297   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3298   for (const MDNode *Node : CUs->operands()) {
3299     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3300       if (DIType *RT = dyn_cast<DIType>(Ty)) {
3301         getTypeIndex(RT);
3302         // FIXME: Add to global/local DTU list.
3303       }
3304     }
3305   }
3306 }
3307 
3308 // Emit each global variable in the specified array.
3309 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3310   for (const CVGlobalVariable &CVGV : Globals) {
3311     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3312     emitDebugInfoForGlobal(CVGV);
3313   }
3314 }
3315 
3316 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value,
3317                                              const std::string &QualifiedName) {
3318   MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3319   OS.AddComment("Type");
3320   OS.emitInt32(getTypeIndex(DTy).getIndex());
3321 
3322   OS.AddComment("Value");
3323 
3324   // Encoded integers shouldn't need more than 10 bytes.
3325   uint8_t Data[10];
3326   BinaryStreamWriter Writer(Data, llvm::endianness::little);
3327   CodeViewRecordIO IO(Writer);
3328   cantFail(IO.mapEncodedInteger(Value));
3329   StringRef SRef((char *)Data, Writer.getOffset());
3330   OS.emitBinaryData(SRef);
3331 
3332   OS.AddComment("Name");
3333   emitNullTerminatedSymbolName(OS, QualifiedName);
3334   endSymbolRecord(SConstantEnd);
3335 }
3336 
3337 void CodeViewDebug::emitStaticConstMemberList() {
3338   for (const DIDerivedType *DTy : StaticConstMembers) {
3339     const DIScope *Scope = DTy->getScope();
3340 
3341     APSInt Value;
3342     if (const ConstantInt *CI =
3343             dyn_cast_or_null<ConstantInt>(DTy->getConstant()))
3344       Value = APSInt(CI->getValue(),
3345                      DebugHandlerBase::isUnsignedDIType(DTy->getBaseType()));
3346     else if (const ConstantFP *CFP =
3347                  dyn_cast_or_null<ConstantFP>(DTy->getConstant()))
3348       Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true);
3349     else
3350       llvm_unreachable("cannot emit a constant without a value");
3351 
3352     emitConstantSymbolRecord(DTy->getBaseType(), Value,
3353                              getFullyQualifiedName(Scope, DTy->getName()));
3354   }
3355 }
3356 
3357 static bool isFloatDIType(const DIType *Ty) {
3358   if (isa<DICompositeType>(Ty))
3359     return false;
3360 
3361   if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
3362     dwarf::Tag T = (dwarf::Tag)Ty->getTag();
3363     if (T == dwarf::DW_TAG_pointer_type ||
3364         T == dwarf::DW_TAG_ptr_to_member_type ||
3365         T == dwarf::DW_TAG_reference_type ||
3366         T == dwarf::DW_TAG_rvalue_reference_type)
3367       return false;
3368     assert(DTy->getBaseType() && "Expected valid base type");
3369     return isFloatDIType(DTy->getBaseType());
3370   }
3371 
3372   auto *BTy = cast<DIBasicType>(Ty);
3373   return (BTy->getEncoding() == dwarf::DW_ATE_float);
3374 }
3375 
3376 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3377   const DIGlobalVariable *DIGV = CVGV.DIGV;
3378 
3379   const DIScope *Scope = DIGV->getScope();
3380   // For static data members, get the scope from the declaration.
3381   if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3382           DIGV->getRawStaticDataMemberDeclaration()))
3383     Scope = MemberDecl->getScope();
3384   // For static local variables and Fortran, the scoping portion is elided
3385   // in its name so that we can reference the variable in the command line
3386   // of the VS debugger.
3387   std::string QualifiedName =
3388       (moduleIsInFortran() || (Scope && isa<DILocalScope>(Scope)))
3389           ? std::string(DIGV->getName())
3390           : getFullyQualifiedName(Scope, DIGV->getName());
3391 
3392   if (const GlobalVariable *GV =
3393           dyn_cast_if_present<const GlobalVariable *>(CVGV.GVInfo)) {
3394     // DataSym record, see SymbolRecord.h for more info. Thread local data
3395     // happens to have the same format as global data.
3396     MCSymbol *GVSym = Asm->getSymbol(GV);
3397     SymbolKind DataSym = GV->isThreadLocal()
3398                              ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3399                                                       : SymbolKind::S_GTHREAD32)
3400                              : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3401                                                       : SymbolKind::S_GDATA32);
3402     MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3403     OS.AddComment("Type");
3404     OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3405     OS.AddComment("DataOffset");
3406 
3407     // Use the offset seen while collecting info on globals.
3408     uint64_t Offset = CVGlobalVariableOffsets.lookup(DIGV);
3409     OS.emitCOFFSecRel32(GVSym, Offset);
3410 
3411     OS.AddComment("Segment");
3412     OS.emitCOFFSectionIndex(GVSym);
3413     OS.AddComment("Name");
3414     const unsigned LengthOfDataRecord = 12;
3415     emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3416     endSymbolRecord(DataEnd);
3417   } else {
3418     const DIExpression *DIE = cast<const DIExpression *>(CVGV.GVInfo);
3419     assert(DIE->isConstant() &&
3420            "Global constant variables must contain a constant expression.");
3421 
3422     // Use unsigned for floats.
3423     bool isUnsigned = isFloatDIType(DIGV->getType())
3424                           ? true
3425                           : DebugHandlerBase::isUnsignedDIType(DIGV->getType());
3426     APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned);
3427     emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName);
3428   }
3429 }
3430 
3431 void forEachJumpTableBranch(
3432     const MachineFunction *MF, bool isThumb,
3433     const std::function<void(const MachineJumpTableInfo &, const MachineInstr &,
3434                              int64_t)> &Callback) {
3435   auto JTI = MF->getJumpTableInfo();
3436   if (JTI && !JTI->isEmpty()) {
3437 #ifndef NDEBUG
3438     auto UsedJTs = llvm::SmallBitVector(JTI->getJumpTables().size());
3439 #endif
3440     for (const auto &MBB : *MF) {
3441       // Search for indirect branches...
3442       const auto LastMI = MBB.getFirstTerminator();
3443       if (LastMI != MBB.end() && LastMI->isIndirectBranch()) {
3444         if (isThumb) {
3445           // ... that directly use jump table operands.
3446           // NOTE: ARM uses pattern matching to lower its BR_JT SDNode to
3447           // machine instructions, hence inserting a JUMP_TABLE_DEBUG_INFO node
3448           // interferes with this process *but* the resulting pseudo-instruction
3449           // uses a Jump Table operand, so extract the jump table index directly
3450           // from that.
3451           for (const auto &MO : LastMI->operands()) {
3452             if (MO.isJTI()) {
3453               unsigned Index = MO.getIndex();
3454 #ifndef NDEBUG
3455               UsedJTs.set(Index);
3456 #endif
3457               Callback(*JTI, *LastMI, Index);
3458               break;
3459             }
3460           }
3461         } else {
3462           // ... that have jump table debug info.
3463           // NOTE: The debug info is inserted as a JUMP_TABLE_DEBUG_INFO node
3464           // when lowering the BR_JT SDNode to an indirect branch.
3465           for (auto I = MBB.instr_rbegin(), E = MBB.instr_rend(); I != E; ++I) {
3466             if (I->isJumpTableDebugInfo()) {
3467               unsigned Index = I->getOperand(0).getImm();
3468 #ifndef NDEBUG
3469               UsedJTs.set(Index);
3470 #endif
3471               Callback(*JTI, *LastMI, Index);
3472               break;
3473             }
3474           }
3475         }
3476       }
3477     }
3478 #ifndef NDEBUG
3479     assert(UsedJTs.all() &&
3480            "Some of jump tables were not used in a debug info instruction");
3481 #endif
3482   }
3483 }
3484 
3485 void CodeViewDebug::discoverJumpTableBranches(const MachineFunction *MF,
3486                                               bool isThumb) {
3487   forEachJumpTableBranch(
3488       MF, isThumb,
3489       [this](const MachineJumpTableInfo &, const MachineInstr &BranchMI,
3490              int64_t) { requestLabelBeforeInsn(&BranchMI); });
3491 }
3492 
3493 void CodeViewDebug::collectDebugInfoForJumpTables(const MachineFunction *MF,
3494                                                   bool isThumb) {
3495   forEachJumpTableBranch(
3496       MF, isThumb,
3497       [this, MF](const MachineJumpTableInfo &JTI, const MachineInstr &BranchMI,
3498                  int64_t JumpTableIndex) {
3499         // For label-difference jump tables, find the base expression.
3500         // Otherwise the jump table uses an absolute address (so no base
3501         // is required).
3502         const MCSymbol *Base;
3503         uint64_t BaseOffset = 0;
3504         const MCSymbol *Branch = getLabelBeforeInsn(&BranchMI);
3505         JumpTableEntrySize EntrySize;
3506         switch (JTI.getEntryKind()) {
3507         case MachineJumpTableInfo::EK_Custom32:
3508         case MachineJumpTableInfo::EK_GPRel32BlockAddress:
3509         case MachineJumpTableInfo::EK_GPRel64BlockAddress:
3510           llvm_unreachable(
3511               "EK_Custom32, EK_GPRel32BlockAddress, and "
3512               "EK_GPRel64BlockAddress should never be emitted for COFF");
3513         case MachineJumpTableInfo::EK_BlockAddress:
3514           // Each entry is an absolute address.
3515           EntrySize = JumpTableEntrySize::Pointer;
3516           Base = nullptr;
3517           break;
3518         case MachineJumpTableInfo::EK_Inline:
3519         case MachineJumpTableInfo::EK_LabelDifference32:
3520         case MachineJumpTableInfo::EK_LabelDifference64:
3521           // Ask the AsmPrinter.
3522           std::tie(Base, BaseOffset, Branch, EntrySize) =
3523               Asm->getCodeViewJumpTableInfo(JumpTableIndex, &BranchMI, Branch);
3524           break;
3525         }
3526 
3527         CurFn->JumpTables.push_back(
3528             {EntrySize, Base, BaseOffset, Branch,
3529              MF->getJTISymbol(JumpTableIndex, MMI->getContext()),
3530              JTI.getJumpTables()[JumpTableIndex].MBBs.size()});
3531       });
3532 }
3533 
3534 void CodeViewDebug::emitDebugInfoForJumpTables(const FunctionInfo &FI) {
3535   for (auto JumpTable : FI.JumpTables) {
3536     MCSymbol *JumpTableEnd = beginSymbolRecord(SymbolKind::S_ARMSWITCHTABLE);
3537     if (JumpTable.Base) {
3538       OS.AddComment("Base offset");
3539       OS.emitCOFFSecRel32(JumpTable.Base, JumpTable.BaseOffset);
3540       OS.AddComment("Base section index");
3541       OS.emitCOFFSectionIndex(JumpTable.Base);
3542     } else {
3543       OS.AddComment("Base offset");
3544       OS.emitInt32(0);
3545       OS.AddComment("Base section index");
3546       OS.emitInt16(0);
3547     }
3548     OS.AddComment("Switch type");
3549     OS.emitInt16(static_cast<uint16_t>(JumpTable.EntrySize));
3550     OS.AddComment("Branch offset");
3551     OS.emitCOFFSecRel32(JumpTable.Branch, /*Offset=*/0);
3552     OS.AddComment("Table offset");
3553     OS.emitCOFFSecRel32(JumpTable.Table, /*Offset=*/0);
3554     OS.AddComment("Branch section index");
3555     OS.emitCOFFSectionIndex(JumpTable.Branch);
3556     OS.AddComment("Table section index");
3557     OS.emitCOFFSectionIndex(JumpTable.Table);
3558     OS.AddComment("Entries count");
3559     OS.emitInt32(JumpTable.TableSize);
3560     endSymbolRecord(JumpTableEnd);
3561   }
3562 }
3563 
3564 void CodeViewDebug::emitInlinees(
3565     const SmallSet<codeview::TypeIndex, 1> &Inlinees) {
3566   // Divide the list of inlinees into chunks such that each chunk fits within
3567   // one record.
3568   constexpr size_t ChunkSize =
3569       (MaxRecordLength - sizeof(SymbolKind) - sizeof(uint32_t)) /
3570       sizeof(uint32_t);
3571 
3572   SmallVector<TypeIndex> SortedInlinees{Inlinees.begin(), Inlinees.end()};
3573   llvm::sort(SortedInlinees);
3574 
3575   size_t CurrentIndex = 0;
3576   while (CurrentIndex < SortedInlinees.size()) {
3577     auto Symbol = beginSymbolRecord(SymbolKind::S_INLINEES);
3578     auto CurrentChunkSize =
3579         std::min(ChunkSize, SortedInlinees.size() - CurrentIndex);
3580     OS.AddComment("Count");
3581     OS.emitInt32(CurrentChunkSize);
3582 
3583     const size_t CurrentChunkEnd = CurrentIndex + CurrentChunkSize;
3584     for (; CurrentIndex < CurrentChunkEnd; ++CurrentIndex) {
3585       OS.AddComment("Inlinee");
3586       OS.emitInt32(SortedInlinees[CurrentIndex].getIndex());
3587     }
3588     endSymbolRecord(Symbol);
3589   }
3590 }
3591