1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ValueEnumerator.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/Config/llvm-config.h" 16 #include "llvm/IR/Argument.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GlobalAlias.h" 23 #include "llvm/IR/GlobalIFunc.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Use.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/ValueSymbolTable.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cstddef> 44 #include <iterator> 45 #include <tuple> 46 47 using namespace llvm; 48 49 namespace { 50 51 struct OrderMap { 52 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 53 unsigned LastGlobalConstantID = 0; 54 unsigned LastGlobalValueID = 0; 55 56 OrderMap() = default; 57 58 bool isGlobalConstant(unsigned ID) const { 59 return ID <= LastGlobalConstantID; 60 } 61 62 bool isGlobalValue(unsigned ID) const { 63 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 64 } 65 66 unsigned size() const { return IDs.size(); } 67 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 68 69 std::pair<unsigned, bool> lookup(const Value *V) const { 70 return IDs.lookup(V); 71 } 72 73 void index(const Value *V) { 74 // Explicitly sequence get-size and insert-value operations to avoid UB. 75 unsigned ID = IDs.size() + 1; 76 IDs[V].first = ID; 77 } 78 }; 79 80 } // end anonymous namespace 81 82 static void orderValue(const Value *V, OrderMap &OM) { 83 if (OM.lookup(V).first) 84 return; 85 86 if (const Constant *C = dyn_cast<Constant>(V)) { 87 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 88 for (const Value *Op : C->operands()) 89 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 90 orderValue(Op, OM); 91 if (auto *CE = dyn_cast<ConstantExpr>(C)) 92 if (CE->getOpcode() == Instruction::ShuffleVector) 93 orderValue(CE->getShuffleMaskForBitcode(), OM); 94 } 95 } 96 97 // Note: we cannot cache this lookup above, since inserting into the map 98 // changes the map's size, and thus affects the other IDs. 99 OM.index(V); 100 } 101 102 static OrderMap orderModule(const Module &M) { 103 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 104 // and ValueEnumerator::incorporateFunction(). 105 OrderMap OM; 106 107 // In the reader, initializers of GlobalValues are set *after* all the 108 // globals have been read. Rather than awkwardly modeling this behaviour 109 // directly in predictValueUseListOrderImpl(), just assign IDs to 110 // initializers of GlobalValues before GlobalValues themselves to model this 111 // implicitly. 112 for (const GlobalVariable &G : M.globals()) 113 if (G.hasInitializer()) 114 if (!isa<GlobalValue>(G.getInitializer())) 115 orderValue(G.getInitializer(), OM); 116 for (const GlobalAlias &A : M.aliases()) 117 if (!isa<GlobalValue>(A.getAliasee())) 118 orderValue(A.getAliasee(), OM); 119 for (const GlobalIFunc &I : M.ifuncs()) 120 if (!isa<GlobalValue>(I.getResolver())) 121 orderValue(I.getResolver(), OM); 122 for (const Function &F : M) { 123 for (const Use &U : F.operands()) 124 if (!isa<GlobalValue>(U.get())) 125 orderValue(U.get(), OM); 126 } 127 128 // As constants used in metadata operands are emitted as module-level 129 // constants, we must order them before other operands. Also, we must order 130 // these before global values, as these will be read before setting the 131 // global values' initializers. The latter matters for constants which have 132 // uses towards other constants that are used as initializers. 133 auto orderConstantValue = [&OM](const Value *V) { 134 if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V)) 135 orderValue(V, OM); 136 }; 137 for (const Function &F : M) { 138 if (F.isDeclaration()) 139 continue; 140 for (const BasicBlock &BB : F) 141 for (const Instruction &I : BB) 142 for (const Value *V : I.operands()) { 143 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 144 if (const auto *VAM = 145 dyn_cast<ValueAsMetadata>(MAV->getMetadata())) { 146 orderConstantValue(VAM->getValue()); 147 } else if (const auto *AL = 148 dyn_cast<DIArgList>(MAV->getMetadata())) { 149 for (const auto *VAM : AL->getArgs()) 150 orderConstantValue(VAM->getValue()); 151 } 152 } 153 } 154 } 155 OM.LastGlobalConstantID = OM.size(); 156 157 // Initializers of GlobalValues are processed in 158 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 159 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 160 // by giving IDs in reverse order. 161 // 162 // Since GlobalValues never reference each other directly (just through 163 // initializers), their relative IDs only matter for determining order of 164 // uses in their initializers. 165 for (const Function &F : M) 166 orderValue(&F, OM); 167 for (const GlobalAlias &A : M.aliases()) 168 orderValue(&A, OM); 169 for (const GlobalIFunc &I : M.ifuncs()) 170 orderValue(&I, OM); 171 for (const GlobalVariable &G : M.globals()) 172 orderValue(&G, OM); 173 OM.LastGlobalValueID = OM.size(); 174 175 for (const Function &F : M) { 176 if (F.isDeclaration()) 177 continue; 178 // Here we need to match the union of ValueEnumerator::incorporateFunction() 179 // and WriteFunction(). Basic blocks are implicitly declared before 180 // anything else (by declaring their size). 181 for (const BasicBlock &BB : F) 182 orderValue(&BB, OM); 183 for (const Argument &A : F.args()) 184 orderValue(&A, OM); 185 for (const BasicBlock &BB : F) 186 for (const Instruction &I : BB) { 187 for (const Value *Op : I.operands()) 188 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 189 isa<InlineAsm>(*Op)) 190 orderValue(Op, OM); 191 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 192 orderValue(SVI->getShuffleMaskForBitcode(), OM); 193 } 194 for (const BasicBlock &BB : F) 195 for (const Instruction &I : BB) 196 orderValue(&I, OM); 197 } 198 return OM; 199 } 200 201 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 202 unsigned ID, const OrderMap &OM, 203 UseListOrderStack &Stack) { 204 // Predict use-list order for this one. 205 using Entry = std::pair<const Use *, unsigned>; 206 SmallVector<Entry, 64> List; 207 for (const Use &U : V->uses()) 208 // Check if this user will be serialized. 209 if (OM.lookup(U.getUser()).first) 210 List.push_back(std::make_pair(&U, List.size())); 211 212 if (List.size() < 2) 213 // We may have lost some users. 214 return; 215 216 bool IsGlobalValue = OM.isGlobalValue(ID); 217 llvm::sort(List, [&](const Entry &L, const Entry &R) { 218 const Use *LU = L.first; 219 const Use *RU = R.first; 220 if (LU == RU) 221 return false; 222 223 auto LID = OM.lookup(LU->getUser()).first; 224 auto RID = OM.lookup(RU->getUser()).first; 225 226 // Global values are processed in reverse order. 227 // 228 // Moreover, initializers of GlobalValues are set *after* all the globals 229 // have been read (despite having earlier IDs). Rather than awkwardly 230 // modeling this behaviour here, orderModule() has assigned IDs to 231 // initializers of GlobalValues before GlobalValues themselves. 232 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 233 return LID < RID; 234 235 // If ID is 4, then expect: 7 6 5 1 2 3. 236 if (LID < RID) { 237 if (RID <= ID) 238 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 239 return true; 240 return false; 241 } 242 if (RID < LID) { 243 if (LID <= ID) 244 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 245 return false; 246 return true; 247 } 248 249 // LID and RID are equal, so we have different operands of the same user. 250 // Assume operands are added in order for all instructions. 251 if (LID <= ID) 252 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 253 return LU->getOperandNo() < RU->getOperandNo(); 254 return LU->getOperandNo() > RU->getOperandNo(); 255 }); 256 257 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 258 return L.second < R.second; 259 })) 260 // Order is already correct. 261 return; 262 263 // Store the shuffle. 264 Stack.emplace_back(V, F, List.size()); 265 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 266 for (size_t I = 0, E = List.size(); I != E; ++I) 267 Stack.back().Shuffle[I] = List[I].second; 268 } 269 270 static void predictValueUseListOrder(const Value *V, const Function *F, 271 OrderMap &OM, UseListOrderStack &Stack) { 272 auto &IDPair = OM[V]; 273 assert(IDPair.first && "Unmapped value"); 274 if (IDPair.second) 275 // Already predicted. 276 return; 277 278 // Do the actual prediction. 279 IDPair.second = true; 280 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 281 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 282 283 // Recursive descent into constants. 284 if (const Constant *C = dyn_cast<Constant>(V)) { 285 if (C->getNumOperands()) { // Visit GlobalValues. 286 for (const Value *Op : C->operands()) 287 if (isa<Constant>(Op)) // Visit GlobalValues. 288 predictValueUseListOrder(Op, F, OM, Stack); 289 if (auto *CE = dyn_cast<ConstantExpr>(C)) 290 if (CE->getOpcode() == Instruction::ShuffleVector) 291 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 292 Stack); 293 } 294 } 295 } 296 297 static UseListOrderStack predictUseListOrder(const Module &M) { 298 OrderMap OM = orderModule(M); 299 300 // Use-list orders need to be serialized after all the users have been added 301 // to a value, or else the shuffles will be incomplete. Store them per 302 // function in a stack. 303 // 304 // Aside from function order, the order of values doesn't matter much here. 305 UseListOrderStack Stack; 306 307 // We want to visit the functions backward now so we can list function-local 308 // constants in the last Function they're used in. Module-level constants 309 // have already been visited above. 310 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 311 const Function &F = *I; 312 if (F.isDeclaration()) 313 continue; 314 for (const BasicBlock &BB : F) 315 predictValueUseListOrder(&BB, &F, OM, Stack); 316 for (const Argument &A : F.args()) 317 predictValueUseListOrder(&A, &F, OM, Stack); 318 for (const BasicBlock &BB : F) 319 for (const Instruction &I : BB) { 320 for (const Value *Op : I.operands()) 321 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 322 predictValueUseListOrder(Op, &F, OM, Stack); 323 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 324 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 325 Stack); 326 } 327 for (const BasicBlock &BB : F) 328 for (const Instruction &I : BB) 329 predictValueUseListOrder(&I, &F, OM, Stack); 330 } 331 332 // Visit globals last, since the module-level use-list block will be seen 333 // before the function bodies are processed. 334 for (const GlobalVariable &G : M.globals()) 335 predictValueUseListOrder(&G, nullptr, OM, Stack); 336 for (const Function &F : M) 337 predictValueUseListOrder(&F, nullptr, OM, Stack); 338 for (const GlobalAlias &A : M.aliases()) 339 predictValueUseListOrder(&A, nullptr, OM, Stack); 340 for (const GlobalIFunc &I : M.ifuncs()) 341 predictValueUseListOrder(&I, nullptr, OM, Stack); 342 for (const GlobalVariable &G : M.globals()) 343 if (G.hasInitializer()) 344 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 345 for (const GlobalAlias &A : M.aliases()) 346 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 347 for (const GlobalIFunc &I : M.ifuncs()) 348 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 349 for (const Function &F : M) { 350 for (const Use &U : F.operands()) 351 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 352 } 353 354 return Stack; 355 } 356 357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 358 return V.first->getType()->isIntOrIntVectorTy(); 359 } 360 361 ValueEnumerator::ValueEnumerator(const Module &M, 362 bool ShouldPreserveUseListOrder) 363 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 364 if (ShouldPreserveUseListOrder) 365 UseListOrders = predictUseListOrder(M); 366 367 // Enumerate the global variables. 368 for (const GlobalVariable &GV : M.globals()) 369 EnumerateValue(&GV); 370 371 // Enumerate the functions. 372 for (const Function & F : M) { 373 EnumerateValue(&F); 374 EnumerateAttributes(F.getAttributes()); 375 } 376 377 // Enumerate the aliases. 378 for (const GlobalAlias &GA : M.aliases()) 379 EnumerateValue(&GA); 380 381 // Enumerate the ifuncs. 382 for (const GlobalIFunc &GIF : M.ifuncs()) 383 EnumerateValue(&GIF); 384 385 // Remember what is the cutoff between globalvalue's and other constants. 386 unsigned FirstConstant = Values.size(); 387 388 // Enumerate the global variable initializers and attributes. 389 for (const GlobalVariable &GV : M.globals()) { 390 if (GV.hasInitializer()) 391 EnumerateValue(GV.getInitializer()); 392 if (GV.hasAttributes()) 393 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 394 } 395 396 // Enumerate the aliasees. 397 for (const GlobalAlias &GA : M.aliases()) 398 EnumerateValue(GA.getAliasee()); 399 400 // Enumerate the ifunc resolvers. 401 for (const GlobalIFunc &GIF : M.ifuncs()) 402 EnumerateValue(GIF.getResolver()); 403 404 // Enumerate any optional Function data. 405 for (const Function &F : M) 406 for (const Use &U : F.operands()) 407 EnumerateValue(U.get()); 408 409 // Enumerate the metadata type. 410 // 411 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 412 // only encodes the metadata type when it's used as a value. 413 EnumerateType(Type::getMetadataTy(M.getContext())); 414 415 // Insert constants and metadata that are named at module level into the slot 416 // pool so that the module symbol table can refer to them... 417 EnumerateValueSymbolTable(M.getValueSymbolTable()); 418 EnumerateNamedMetadata(M); 419 420 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 421 for (const GlobalVariable &GV : M.globals()) { 422 MDs.clear(); 423 GV.getAllMetadata(MDs); 424 for (const auto &I : MDs) 425 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 426 // to write metadata to the global variable's own metadata block 427 // (PR28134). 428 EnumerateMetadata(nullptr, I.second); 429 } 430 431 // Enumerate types used by function bodies and argument lists. 432 for (const Function &F : M) { 433 for (const Argument &A : F.args()) 434 EnumerateType(A.getType()); 435 436 // Enumerate metadata attached to this function. 437 MDs.clear(); 438 F.getAllMetadata(MDs); 439 for (const auto &I : MDs) 440 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 441 442 for (const BasicBlock &BB : F) 443 for (const Instruction &I : BB) { 444 for (const Use &Op : I.operands()) { 445 auto *MD = dyn_cast<MetadataAsValue>(&Op); 446 if (!MD) { 447 EnumerateOperandType(Op); 448 continue; 449 } 450 451 // Local metadata is enumerated during function-incorporation, but 452 // any ConstantAsMetadata arguments in a DIArgList should be examined 453 // now. 454 if (isa<LocalAsMetadata>(MD->getMetadata())) 455 continue; 456 if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) { 457 for (auto *VAM : AL->getArgs()) 458 if (isa<ConstantAsMetadata>(VAM)) 459 EnumerateMetadata(&F, VAM); 460 continue; 461 } 462 463 EnumerateMetadata(&F, MD->getMetadata()); 464 } 465 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 466 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 467 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 468 EnumerateType(GEP->getSourceElementType()); 469 EnumerateType(I.getType()); 470 if (const auto *Call = dyn_cast<CallBase>(&I)) 471 EnumerateAttributes(Call->getAttributes()); 472 473 // Enumerate metadata attached with this instruction. 474 MDs.clear(); 475 I.getAllMetadataOtherThanDebugLoc(MDs); 476 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 477 EnumerateMetadata(&F, MDs[i].second); 478 479 // Don't enumerate the location directly -- it has a special record 480 // type -- but enumerate its operands. 481 if (DILocation *L = I.getDebugLoc()) 482 for (const Metadata *Op : L->operands()) 483 EnumerateMetadata(&F, Op); 484 } 485 } 486 487 // Optimize constant ordering. 488 OptimizeConstants(FirstConstant, Values.size()); 489 490 // Organize metadata ordering. 491 organizeMetadata(); 492 } 493 494 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 495 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 496 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 497 return I->second; 498 } 499 500 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 501 unsigned ComdatID = Comdats.idFor(C); 502 assert(ComdatID && "Comdat not found!"); 503 return ComdatID; 504 } 505 506 void ValueEnumerator::setInstructionID(const Instruction *I) { 507 InstructionMap[I] = InstructionCount++; 508 } 509 510 unsigned ValueEnumerator::getValueID(const Value *V) const { 511 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 512 return getMetadataID(MD->getMetadata()); 513 514 ValueMapType::const_iterator I = ValueMap.find(V); 515 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 516 return I->second-1; 517 } 518 519 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 520 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 521 print(dbgs(), ValueMap, "Default"); 522 dbgs() << '\n'; 523 print(dbgs(), MetadataMap, "MetaData"); 524 dbgs() << '\n'; 525 } 526 #endif 527 528 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 529 const char *Name) const { 530 OS << "Map Name: " << Name << "\n"; 531 OS << "Size: " << Map.size() << "\n"; 532 for (ValueMapType::const_iterator I = Map.begin(), 533 E = Map.end(); I != E; ++I) { 534 const Value *V = I->first; 535 if (V->hasName()) 536 OS << "Value: " << V->getName(); 537 else 538 OS << "Value: [null]\n"; 539 V->print(errs()); 540 errs() << '\n'; 541 542 OS << " Uses(" << V->getNumUses() << "):"; 543 for (const Use &U : V->uses()) { 544 if (&U != &*V->use_begin()) 545 OS << ","; 546 if(U->hasName()) 547 OS << " " << U->getName(); 548 else 549 OS << " [null]"; 550 551 } 552 OS << "\n\n"; 553 } 554 } 555 556 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 557 const char *Name) const { 558 OS << "Map Name: " << Name << "\n"; 559 OS << "Size: " << Map.size() << "\n"; 560 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 561 const Metadata *MD = I->first; 562 OS << "Metadata: slot = " << I->second.ID << "\n"; 563 OS << "Metadata: function = " << I->second.F << "\n"; 564 MD->print(OS); 565 OS << "\n"; 566 } 567 } 568 569 /// OptimizeConstants - Reorder constant pool for denser encoding. 570 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 571 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 572 573 if (ShouldPreserveUseListOrder) 574 // Optimizing constants makes the use-list order difficult to predict. 575 // Disable it for now when trying to preserve the order. 576 return; 577 578 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 579 [this](const std::pair<const Value *, unsigned> &LHS, 580 const std::pair<const Value *, unsigned> &RHS) { 581 // Sort by plane. 582 if (LHS.first->getType() != RHS.first->getType()) 583 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 584 // Then by frequency. 585 return LHS.second > RHS.second; 586 }); 587 588 // Ensure that integer and vector of integer constants are at the start of the 589 // constant pool. This is important so that GEP structure indices come before 590 // gep constant exprs. 591 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 592 isIntOrIntVectorValue); 593 594 // Rebuild the modified portion of ValueMap. 595 for (; CstStart != CstEnd; ++CstStart) 596 ValueMap[Values[CstStart].first] = CstStart+1; 597 } 598 599 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 600 /// table into the values table. 601 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 602 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 603 VI != VE; ++VI) 604 EnumerateValue(VI->getValue()); 605 } 606 607 /// Insert all of the values referenced by named metadata in the specified 608 /// module. 609 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 610 for (const auto &I : M.named_metadata()) 611 EnumerateNamedMDNode(&I); 612 } 613 614 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 615 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 616 EnumerateMetadata(nullptr, MD->getOperand(i)); 617 } 618 619 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 620 return F ? getValueID(F) + 1 : 0; 621 } 622 623 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 624 EnumerateMetadata(getMetadataFunctionID(F), MD); 625 } 626 627 void ValueEnumerator::EnumerateFunctionLocalMetadata( 628 const Function &F, const LocalAsMetadata *Local) { 629 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 630 } 631 632 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 633 const Function &F, const DIArgList *ArgList) { 634 EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList); 635 } 636 637 void ValueEnumerator::dropFunctionFromMetadata( 638 MetadataMapType::value_type &FirstMD) { 639 SmallVector<const MDNode *, 64> Worklist; 640 auto push = [&Worklist](MetadataMapType::value_type &MD) { 641 auto &Entry = MD.second; 642 643 // Nothing to do if this metadata isn't tagged. 644 if (!Entry.F) 645 return; 646 647 // Drop the function tag. 648 Entry.F = 0; 649 650 // If this is has an ID and is an MDNode, then its operands have entries as 651 // well. We need to drop the function from them too. 652 if (Entry.ID) 653 if (auto *N = dyn_cast<MDNode>(MD.first)) 654 Worklist.push_back(N); 655 }; 656 push(FirstMD); 657 while (!Worklist.empty()) 658 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 659 if (!Op) 660 continue; 661 auto MD = MetadataMap.find(Op); 662 if (MD != MetadataMap.end()) 663 push(*MD); 664 } 665 } 666 667 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 668 // It's vital for reader efficiency that uniqued subgraphs are done in 669 // post-order; it's expensive when their operands have forward references. 670 // If a distinct node is referenced from a uniqued node, it'll be delayed 671 // until the uniqued subgraph has been completely traversed. 672 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 673 674 // Start by enumerating MD, and then work through its transitive operands in 675 // post-order. This requires a depth-first search. 676 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 677 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 678 Worklist.push_back(std::make_pair(N, N->op_begin())); 679 680 while (!Worklist.empty()) { 681 const MDNode *N = Worklist.back().first; 682 683 // Enumerate operands until we hit a new node. We need to traverse these 684 // nodes' operands before visiting the rest of N's operands. 685 MDNode::op_iterator I = std::find_if( 686 Worklist.back().second, N->op_end(), 687 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 688 if (I != N->op_end()) { 689 auto *Op = cast<MDNode>(*I); 690 Worklist.back().second = ++I; 691 692 // Delay traversing Op if it's a distinct node and N is uniqued. 693 if (Op->isDistinct() && !N->isDistinct()) 694 DelayedDistinctNodes.push_back(Op); 695 else 696 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 697 continue; 698 } 699 700 // All the operands have been visited. Now assign an ID. 701 Worklist.pop_back(); 702 MDs.push_back(N); 703 MetadataMap[N].ID = MDs.size(); 704 705 // Flush out any delayed distinct nodes; these are all the distinct nodes 706 // that are leaves in last uniqued subgraph. 707 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 708 for (const MDNode *N : DelayedDistinctNodes) 709 Worklist.push_back(std::make_pair(N, N->op_begin())); 710 DelayedDistinctNodes.clear(); 711 } 712 } 713 } 714 715 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 716 if (!MD) 717 return nullptr; 718 719 assert( 720 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 721 "Invalid metadata kind"); 722 723 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 724 MDIndex &Entry = Insertion.first->second; 725 if (!Insertion.second) { 726 // Already mapped. If F doesn't match the function tag, drop it. 727 if (Entry.hasDifferentFunction(F)) 728 dropFunctionFromMetadata(*Insertion.first); 729 return nullptr; 730 } 731 732 // Don't assign IDs to metadata nodes. 733 if (auto *N = dyn_cast<MDNode>(MD)) 734 return N; 735 736 // Save the metadata. 737 MDs.push_back(MD); 738 Entry.ID = MDs.size(); 739 740 // Enumerate the constant, if any. 741 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 742 EnumerateValue(C->getValue()); 743 744 return nullptr; 745 } 746 747 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata 748 /// information reachable from the metadata. 749 void ValueEnumerator::EnumerateFunctionLocalMetadata( 750 unsigned F, const LocalAsMetadata *Local) { 751 assert(F && "Expected a function"); 752 753 // Check to see if it's already in! 754 MDIndex &Index = MetadataMap[Local]; 755 if (Index.ID) { 756 assert(Index.F == F && "Expected the same function"); 757 return; 758 } 759 760 MDs.push_back(Local); 761 Index.F = F; 762 Index.ID = MDs.size(); 763 764 EnumerateValue(Local->getValue()); 765 } 766 767 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata 768 /// information reachable from the metadata. 769 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 770 unsigned F, const DIArgList *ArgList) { 771 assert(F && "Expected a function"); 772 773 // Check to see if it's already in! 774 MDIndex &Index = MetadataMap[ArgList]; 775 if (Index.ID) { 776 assert(Index.F == F && "Expected the same function"); 777 return; 778 } 779 780 for (ValueAsMetadata *VAM : ArgList->getArgs()) { 781 if (isa<LocalAsMetadata>(VAM)) { 782 assert(MetadataMap.count(VAM) && 783 "LocalAsMetadata should be enumerated before DIArgList"); 784 assert(MetadataMap[VAM].F == F && 785 "Expected LocalAsMetadata in the same function"); 786 } else { 787 assert(isa<ConstantAsMetadata>(VAM) && 788 "Expected LocalAsMetadata or ConstantAsMetadata"); 789 assert(ValueMap.count(VAM->getValue()) && 790 "Constant should be enumerated beforeDIArgList"); 791 EnumerateMetadata(F, VAM); 792 } 793 } 794 795 MDs.push_back(ArgList); 796 Index.F = F; 797 Index.ID = MDs.size(); 798 } 799 800 static unsigned getMetadataTypeOrder(const Metadata *MD) { 801 // Strings are emitted in bulk and must come first. 802 if (isa<MDString>(MD)) 803 return 0; 804 805 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 806 // to the front since we can detect it. 807 auto *N = dyn_cast<MDNode>(MD); 808 if (!N) 809 return 1; 810 811 // The reader is fast forward references for distinct node operands, but slow 812 // when uniqued operands are unresolved. 813 return N->isDistinct() ? 2 : 3; 814 } 815 816 void ValueEnumerator::organizeMetadata() { 817 assert(MetadataMap.size() == MDs.size() && 818 "Metadata map and vector out of sync"); 819 820 if (MDs.empty()) 821 return; 822 823 // Copy out the index information from MetadataMap in order to choose a new 824 // order. 825 SmallVector<MDIndex, 64> Order; 826 Order.reserve(MetadataMap.size()); 827 for (const Metadata *MD : MDs) 828 Order.push_back(MetadataMap.lookup(MD)); 829 830 // Partition: 831 // - by function, then 832 // - by isa<MDString> 833 // and then sort by the original/current ID. Since the IDs are guaranteed to 834 // be unique, the result of std::sort will be deterministic. There's no need 835 // for std::stable_sort. 836 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 837 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 838 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 839 }); 840 841 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 842 // and fix up MetadataMap. 843 std::vector<const Metadata *> OldMDs; 844 MDs.swap(OldMDs); 845 MDs.reserve(OldMDs.size()); 846 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 847 auto *MD = Order[I].get(OldMDs); 848 MDs.push_back(MD); 849 MetadataMap[MD].ID = I + 1; 850 if (isa<MDString>(MD)) 851 ++NumMDStrings; 852 } 853 854 // Return early if there's nothing for the functions. 855 if (MDs.size() == Order.size()) 856 return; 857 858 // Build the function metadata ranges. 859 MDRange R; 860 FunctionMDs.reserve(OldMDs.size()); 861 unsigned PrevF = 0; 862 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 863 ++I) { 864 unsigned F = Order[I].F; 865 if (!PrevF) { 866 PrevF = F; 867 } else if (PrevF != F) { 868 R.Last = FunctionMDs.size(); 869 std::swap(R, FunctionMDInfo[PrevF]); 870 R.First = FunctionMDs.size(); 871 872 ID = MDs.size(); 873 PrevF = F; 874 } 875 876 auto *MD = Order[I].get(OldMDs); 877 FunctionMDs.push_back(MD); 878 MetadataMap[MD].ID = ++ID; 879 if (isa<MDString>(MD)) 880 ++R.NumStrings; 881 } 882 R.Last = FunctionMDs.size(); 883 FunctionMDInfo[PrevF] = R; 884 } 885 886 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 887 NumModuleMDs = MDs.size(); 888 889 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 890 NumMDStrings = R.NumStrings; 891 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 892 FunctionMDs.begin() + R.Last); 893 } 894 895 void ValueEnumerator::EnumerateValue(const Value *V) { 896 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 897 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 898 899 // Check to see if it's already in! 900 unsigned &ValueID = ValueMap[V]; 901 if (ValueID) { 902 // Increment use count. 903 Values[ValueID-1].second++; 904 return; 905 } 906 907 if (auto *GO = dyn_cast<GlobalObject>(V)) 908 if (const Comdat *C = GO->getComdat()) 909 Comdats.insert(C); 910 911 // Enumerate the type of this value. 912 EnumerateType(V->getType()); 913 914 if (const Constant *C = dyn_cast<Constant>(V)) { 915 if (isa<GlobalValue>(C)) { 916 // Initializers for globals are handled explicitly elsewhere. 917 } else if (C->getNumOperands()) { 918 // If a constant has operands, enumerate them. This makes sure that if a 919 // constant has uses (for example an array of const ints), that they are 920 // inserted also. 921 922 // We prefer to enumerate them with values before we enumerate the user 923 // itself. This makes it more likely that we can avoid forward references 924 // in the reader. We know that there can be no cycles in the constants 925 // graph that don't go through a global variable. 926 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 927 I != E; ++I) 928 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 929 EnumerateValue(*I); 930 if (auto *CE = dyn_cast<ConstantExpr>(C)) 931 if (CE->getOpcode() == Instruction::ShuffleVector) 932 EnumerateValue(CE->getShuffleMaskForBitcode()); 933 934 // Finally, add the value. Doing this could make the ValueID reference be 935 // dangling, don't reuse it. 936 Values.push_back(std::make_pair(V, 1U)); 937 ValueMap[V] = Values.size(); 938 return; 939 } 940 } 941 942 // Add the value. 943 Values.push_back(std::make_pair(V, 1U)); 944 ValueID = Values.size(); 945 } 946 947 948 void ValueEnumerator::EnumerateType(Type *Ty) { 949 unsigned *TypeID = &TypeMap[Ty]; 950 951 // We've already seen this type. 952 if (*TypeID) 953 return; 954 955 // If it is a non-anonymous struct, mark the type as being visited so that we 956 // don't recursively visit it. This is safe because we allow forward 957 // references of these in the bitcode reader. 958 if (StructType *STy = dyn_cast<StructType>(Ty)) 959 if (!STy->isLiteral()) 960 *TypeID = ~0U; 961 962 // Enumerate all of the subtypes before we enumerate this type. This ensures 963 // that the type will be enumerated in an order that can be directly built. 964 for (Type *SubTy : Ty->subtypes()) 965 EnumerateType(SubTy); 966 967 // Refresh the TypeID pointer in case the table rehashed. 968 TypeID = &TypeMap[Ty]; 969 970 // Check to see if we got the pointer another way. This can happen when 971 // enumerating recursive types that hit the base case deeper than they start. 972 // 973 // If this is actually a struct that we are treating as forward ref'able, 974 // then emit the definition now that all of its contents are available. 975 if (*TypeID && *TypeID != ~0U) 976 return; 977 978 // Add this type now that its contents are all happily enumerated. 979 Types.push_back(Ty); 980 981 *TypeID = Types.size(); 982 } 983 984 // Enumerate the types for the specified value. If the value is a constant, 985 // walk through it, enumerating the types of the constant. 986 void ValueEnumerator::EnumerateOperandType(const Value *V) { 987 EnumerateType(V->getType()); 988 989 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 990 991 const Constant *C = dyn_cast<Constant>(V); 992 if (!C) 993 return; 994 995 // If this constant is already enumerated, ignore it, we know its type must 996 // be enumerated. 997 if (ValueMap.count(C)) 998 return; 999 1000 // This constant may have operands, make sure to enumerate the types in 1001 // them. 1002 for (const Value *Op : C->operands()) { 1003 // Don't enumerate basic blocks here, this happens as operands to 1004 // blockaddress. 1005 if (isa<BasicBlock>(Op)) 1006 continue; 1007 1008 EnumerateOperandType(Op); 1009 } 1010 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1011 if (CE->getOpcode() == Instruction::ShuffleVector) 1012 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 1013 if (CE->getOpcode() == Instruction::GetElementPtr) 1014 EnumerateType(cast<GEPOperator>(CE)->getSourceElementType()); 1015 } 1016 } 1017 1018 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 1019 if (PAL.isEmpty()) return; // null is always 0. 1020 1021 // Do a lookup. 1022 unsigned &Entry = AttributeListMap[PAL]; 1023 if (Entry == 0) { 1024 // Never saw this before, add it. 1025 AttributeLists.push_back(PAL); 1026 Entry = AttributeLists.size(); 1027 } 1028 1029 // Do lookups for all attribute groups. 1030 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 1031 AttributeSet AS = PAL.getAttributes(i); 1032 if (!AS.hasAttributes()) 1033 continue; 1034 IndexAndAttrSet Pair = {i, AS}; 1035 unsigned &Entry = AttributeGroupMap[Pair]; 1036 if (Entry == 0) { 1037 AttributeGroups.push_back(Pair); 1038 Entry = AttributeGroups.size(); 1039 } 1040 } 1041 } 1042 1043 void ValueEnumerator::incorporateFunction(const Function &F) { 1044 InstructionCount = 0; 1045 NumModuleValues = Values.size(); 1046 1047 // Add global metadata to the function block. This doesn't include 1048 // LocalAsMetadata. 1049 incorporateFunctionMetadata(F); 1050 1051 // Adding function arguments to the value table. 1052 for (const auto &I : F.args()) { 1053 EnumerateValue(&I); 1054 if (I.hasAttribute(Attribute::ByVal)) 1055 EnumerateType(I.getParamByValType()); 1056 else if (I.hasAttribute(Attribute::StructRet)) 1057 EnumerateType(I.getParamStructRetType()); 1058 else if (I.hasAttribute(Attribute::ByRef)) 1059 EnumerateType(I.getParamByRefType()); 1060 } 1061 FirstFuncConstantID = Values.size(); 1062 1063 // Add all function-level constants to the value table. 1064 for (const BasicBlock &BB : F) { 1065 for (const Instruction &I : BB) { 1066 for (const Use &OI : I.operands()) { 1067 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 1068 EnumerateValue(OI); 1069 } 1070 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 1071 EnumerateValue(SVI->getShuffleMaskForBitcode()); 1072 } 1073 BasicBlocks.push_back(&BB); 1074 ValueMap[&BB] = BasicBlocks.size(); 1075 } 1076 1077 // Optimize the constant layout. 1078 OptimizeConstants(FirstFuncConstantID, Values.size()); 1079 1080 // Add the function's parameter attributes so they are available for use in 1081 // the function's instruction. 1082 EnumerateAttributes(F.getAttributes()); 1083 1084 FirstInstID = Values.size(); 1085 1086 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1087 SmallVector<DIArgList *, 8> ArgListMDVector; 1088 // Add all of the instructions. 1089 for (const BasicBlock &BB : F) { 1090 for (const Instruction &I : BB) { 1091 for (const Use &OI : I.operands()) { 1092 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) { 1093 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) { 1094 // Enumerate metadata after the instructions they might refer to. 1095 FnLocalMDVector.push_back(Local); 1096 } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) { 1097 ArgListMDVector.push_back(ArgList); 1098 for (ValueAsMetadata *VMD : ArgList->getArgs()) { 1099 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) { 1100 // Enumerate metadata after the instructions they might refer 1101 // to. 1102 FnLocalMDVector.push_back(Local); 1103 } 1104 } 1105 } 1106 } 1107 } 1108 1109 if (!I.getType()->isVoidTy()) 1110 EnumerateValue(&I); 1111 } 1112 } 1113 1114 // Add all of the function-local metadata. 1115 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1116 // At this point, every local values have been incorporated, we shouldn't 1117 // have a metadata operand that references a value that hasn't been seen. 1118 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1119 "Missing value for metadata operand"); 1120 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1121 } 1122 // DIArgList entries must come after function-local metadata, as it is not 1123 // possible to forward-reference them. 1124 for (const DIArgList *ArgList : ArgListMDVector) 1125 EnumerateFunctionLocalListMetadata(F, ArgList); 1126 } 1127 1128 void ValueEnumerator::purgeFunction() { 1129 /// Remove purged values from the ValueMap. 1130 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1131 ValueMap.erase(Values[i].first); 1132 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1133 MetadataMap.erase(MDs[i]); 1134 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 1135 ValueMap.erase(BasicBlocks[i]); 1136 1137 Values.resize(NumModuleValues); 1138 MDs.resize(NumModuleMDs); 1139 BasicBlocks.clear(); 1140 NumMDStrings = 0; 1141 } 1142 1143 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1144 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1145 unsigned Counter = 0; 1146 for (const BasicBlock &BB : *F) 1147 IDMap[&BB] = ++Counter; 1148 } 1149 1150 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1151 /// specified basic block. This is relatively expensive information, so it 1152 /// should only be used by rare constructs such as address-of-label. 1153 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1154 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1155 if (Idx != 0) 1156 return Idx-1; 1157 1158 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1159 return getGlobalBasicBlockID(BB); 1160 } 1161 1162 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1163 return Log2_32_Ceil(getTypes().size() + 1); 1164 } 1165