xref: /llvm-project/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp (revision 536872a1f7a1f9fa72591e1424eaece39f5edd1a)
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ValueEnumerator.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/Config/llvm-config.h"
16 #include "llvm/IR/Argument.h"
17 #include "llvm/IR/BasicBlock.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/DebugInfoMetadata.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GlobalAlias.h"
23 #include "llvm/IR/GlobalIFunc.h"
24 #include "llvm/IR/GlobalObject.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Metadata.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Use.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/IR/ValueSymbolTable.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <algorithm>
43 #include <cstddef>
44 #include <iterator>
45 #include <tuple>
46 
47 using namespace llvm;
48 
49 namespace {
50 
51 struct OrderMap {
52   DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
53   unsigned LastGlobalConstantID = 0;
54   unsigned LastGlobalValueID = 0;
55 
56   OrderMap() = default;
57 
58   bool isGlobalConstant(unsigned ID) const {
59     return ID <= LastGlobalConstantID;
60   }
61 
62   bool isGlobalValue(unsigned ID) const {
63     return ID <= LastGlobalValueID && !isGlobalConstant(ID);
64   }
65 
66   unsigned size() const { return IDs.size(); }
67   std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
68 
69   std::pair<unsigned, bool> lookup(const Value *V) const {
70     return IDs.lookup(V);
71   }
72 
73   void index(const Value *V) {
74     // Explicitly sequence get-size and insert-value operations to avoid UB.
75     unsigned ID = IDs.size() + 1;
76     IDs[V].first = ID;
77   }
78 };
79 
80 } // end anonymous namespace
81 
82 static void orderValue(const Value *V, OrderMap &OM) {
83   if (OM.lookup(V).first)
84     return;
85 
86   if (const Constant *C = dyn_cast<Constant>(V)) {
87     if (C->getNumOperands() && !isa<GlobalValue>(C)) {
88       for (const Value *Op : C->operands())
89         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
90           orderValue(Op, OM);
91       if (auto *CE = dyn_cast<ConstantExpr>(C))
92         if (CE->getOpcode() == Instruction::ShuffleVector)
93           orderValue(CE->getShuffleMaskForBitcode(), OM);
94     }
95   }
96 
97   // Note: we cannot cache this lookup above, since inserting into the map
98   // changes the map's size, and thus affects the other IDs.
99   OM.index(V);
100 }
101 
102 static OrderMap orderModule(const Module &M) {
103   // This needs to match the order used by ValueEnumerator::ValueEnumerator()
104   // and ValueEnumerator::incorporateFunction().
105   OrderMap OM;
106 
107   // In the reader, initializers of GlobalValues are set *after* all the
108   // globals have been read.  Rather than awkwardly modeling this behaviour
109   // directly in predictValueUseListOrderImpl(), just assign IDs to
110   // initializers of GlobalValues before GlobalValues themselves to model this
111   // implicitly.
112   for (const GlobalVariable &G : M.globals())
113     if (G.hasInitializer())
114       if (!isa<GlobalValue>(G.getInitializer()))
115         orderValue(G.getInitializer(), OM);
116   for (const GlobalAlias &A : M.aliases())
117     if (!isa<GlobalValue>(A.getAliasee()))
118       orderValue(A.getAliasee(), OM);
119   for (const GlobalIFunc &I : M.ifuncs())
120     if (!isa<GlobalValue>(I.getResolver()))
121       orderValue(I.getResolver(), OM);
122   for (const Function &F : M) {
123     for (const Use &U : F.operands())
124       if (!isa<GlobalValue>(U.get()))
125         orderValue(U.get(), OM);
126   }
127 
128   // As constants used in metadata operands are emitted as module-level
129   // constants, we must order them before other operands. Also, we must order
130   // these before global values, as these will be read before setting the
131   // global values' initializers. The latter matters for constants which have
132   // uses towards other constants that are used as initializers.
133   auto orderConstantValue = [&OM](const Value *V) {
134     if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
135       orderValue(V, OM);
136   };
137   for (const Function &F : M) {
138     if (F.isDeclaration())
139       continue;
140     for (const BasicBlock &BB : F)
141       for (const Instruction &I : BB)
142         for (const Value *V : I.operands()) {
143           if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
144             if (const auto *VAM =
145                     dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
146               orderConstantValue(VAM->getValue());
147             } else if (const auto *AL =
148                            dyn_cast<DIArgList>(MAV->getMetadata())) {
149               for (const auto *VAM : AL->getArgs())
150                 orderConstantValue(VAM->getValue());
151             }
152           }
153         }
154   }
155   OM.LastGlobalConstantID = OM.size();
156 
157   // Initializers of GlobalValues are processed in
158   // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
159   // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
160   // by giving IDs in reverse order.
161   //
162   // Since GlobalValues never reference each other directly (just through
163   // initializers), their relative IDs only matter for determining order of
164   // uses in their initializers.
165   for (const Function &F : M)
166     orderValue(&F, OM);
167   for (const GlobalAlias &A : M.aliases())
168     orderValue(&A, OM);
169   for (const GlobalIFunc &I : M.ifuncs())
170     orderValue(&I, OM);
171   for (const GlobalVariable &G : M.globals())
172     orderValue(&G, OM);
173   OM.LastGlobalValueID = OM.size();
174 
175   for (const Function &F : M) {
176     if (F.isDeclaration())
177       continue;
178     // Here we need to match the union of ValueEnumerator::incorporateFunction()
179     // and WriteFunction().  Basic blocks are implicitly declared before
180     // anything else (by declaring their size).
181     for (const BasicBlock &BB : F)
182       orderValue(&BB, OM);
183     for (const Argument &A : F.args())
184       orderValue(&A, OM);
185     for (const BasicBlock &BB : F)
186       for (const Instruction &I : BB) {
187         for (const Value *Op : I.operands())
188           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
189               isa<InlineAsm>(*Op))
190             orderValue(Op, OM);
191         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
192           orderValue(SVI->getShuffleMaskForBitcode(), OM);
193       }
194     for (const BasicBlock &BB : F)
195       for (const Instruction &I : BB)
196         orderValue(&I, OM);
197   }
198   return OM;
199 }
200 
201 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
202                                          unsigned ID, const OrderMap &OM,
203                                          UseListOrderStack &Stack) {
204   // Predict use-list order for this one.
205   using Entry = std::pair<const Use *, unsigned>;
206   SmallVector<Entry, 64> List;
207   for (const Use &U : V->uses())
208     // Check if this user will be serialized.
209     if (OM.lookup(U.getUser()).first)
210       List.push_back(std::make_pair(&U, List.size()));
211 
212   if (List.size() < 2)
213     // We may have lost some users.
214     return;
215 
216   bool IsGlobalValue = OM.isGlobalValue(ID);
217   llvm::sort(List, [&](const Entry &L, const Entry &R) {
218     const Use *LU = L.first;
219     const Use *RU = R.first;
220     if (LU == RU)
221       return false;
222 
223     auto LID = OM.lookup(LU->getUser()).first;
224     auto RID = OM.lookup(RU->getUser()).first;
225 
226     // Global values are processed in reverse order.
227     //
228     // Moreover, initializers of GlobalValues are set *after* all the globals
229     // have been read (despite having earlier IDs).  Rather than awkwardly
230     // modeling this behaviour here, orderModule() has assigned IDs to
231     // initializers of GlobalValues before GlobalValues themselves.
232     if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
233       return LID < RID;
234 
235     // If ID is 4, then expect: 7 6 5 1 2 3.
236     if (LID < RID) {
237       if (RID <= ID)
238         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
239           return true;
240       return false;
241     }
242     if (RID < LID) {
243       if (LID <= ID)
244         if (!IsGlobalValue) // GlobalValue uses don't get reversed.
245           return false;
246       return true;
247     }
248 
249     // LID and RID are equal, so we have different operands of the same user.
250     // Assume operands are added in order for all instructions.
251     if (LID <= ID)
252       if (!IsGlobalValue) // GlobalValue uses don't get reversed.
253         return LU->getOperandNo() < RU->getOperandNo();
254     return LU->getOperandNo() > RU->getOperandNo();
255   });
256 
257   if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
258         return L.second < R.second;
259       }))
260     // Order is already correct.
261     return;
262 
263   // Store the shuffle.
264   Stack.emplace_back(V, F, List.size());
265   assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
266   for (size_t I = 0, E = List.size(); I != E; ++I)
267     Stack.back().Shuffle[I] = List[I].second;
268 }
269 
270 static void predictValueUseListOrder(const Value *V, const Function *F,
271                                      OrderMap &OM, UseListOrderStack &Stack) {
272   auto &IDPair = OM[V];
273   assert(IDPair.first && "Unmapped value");
274   if (IDPair.second)
275     // Already predicted.
276     return;
277 
278   // Do the actual prediction.
279   IDPair.second = true;
280   if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
281     predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
282 
283   // Recursive descent into constants.
284   if (const Constant *C = dyn_cast<Constant>(V)) {
285     if (C->getNumOperands()) { // Visit GlobalValues.
286       for (const Value *Op : C->operands())
287         if (isa<Constant>(Op)) // Visit GlobalValues.
288           predictValueUseListOrder(Op, F, OM, Stack);
289       if (auto *CE = dyn_cast<ConstantExpr>(C))
290         if (CE->getOpcode() == Instruction::ShuffleVector)
291           predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
292                                    Stack);
293     }
294   }
295 }
296 
297 static UseListOrderStack predictUseListOrder(const Module &M) {
298   OrderMap OM = orderModule(M);
299 
300   // Use-list orders need to be serialized after all the users have been added
301   // to a value, or else the shuffles will be incomplete.  Store them per
302   // function in a stack.
303   //
304   // Aside from function order, the order of values doesn't matter much here.
305   UseListOrderStack Stack;
306 
307   // We want to visit the functions backward now so we can list function-local
308   // constants in the last Function they're used in.  Module-level constants
309   // have already been visited above.
310   for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
311     const Function &F = *I;
312     if (F.isDeclaration())
313       continue;
314     for (const BasicBlock &BB : F)
315       predictValueUseListOrder(&BB, &F, OM, Stack);
316     for (const Argument &A : F.args())
317       predictValueUseListOrder(&A, &F, OM, Stack);
318     for (const BasicBlock &BB : F)
319       for (const Instruction &I : BB) {
320         for (const Value *Op : I.operands())
321           if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
322             predictValueUseListOrder(Op, &F, OM, Stack);
323         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
324           predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
325                                    Stack);
326       }
327     for (const BasicBlock &BB : F)
328       for (const Instruction &I : BB)
329         predictValueUseListOrder(&I, &F, OM, Stack);
330   }
331 
332   // Visit globals last, since the module-level use-list block will be seen
333   // before the function bodies are processed.
334   for (const GlobalVariable &G : M.globals())
335     predictValueUseListOrder(&G, nullptr, OM, Stack);
336   for (const Function &F : M)
337     predictValueUseListOrder(&F, nullptr, OM, Stack);
338   for (const GlobalAlias &A : M.aliases())
339     predictValueUseListOrder(&A, nullptr, OM, Stack);
340   for (const GlobalIFunc &I : M.ifuncs())
341     predictValueUseListOrder(&I, nullptr, OM, Stack);
342   for (const GlobalVariable &G : M.globals())
343     if (G.hasInitializer())
344       predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
345   for (const GlobalAlias &A : M.aliases())
346     predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
347   for (const GlobalIFunc &I : M.ifuncs())
348     predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
349   for (const Function &F : M) {
350     for (const Use &U : F.operands())
351       predictValueUseListOrder(U.get(), nullptr, OM, Stack);
352   }
353 
354   return Stack;
355 }
356 
357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
358   return V.first->getType()->isIntOrIntVectorTy();
359 }
360 
361 ValueEnumerator::ValueEnumerator(const Module &M,
362                                  bool ShouldPreserveUseListOrder)
363     : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
364   if (ShouldPreserveUseListOrder)
365     UseListOrders = predictUseListOrder(M);
366 
367   // Enumerate the global variables.
368   for (const GlobalVariable &GV : M.globals()) {
369     EnumerateValue(&GV);
370     EnumerateType(GV.getValueType());
371   }
372 
373   // Enumerate the functions.
374   for (const Function & F : M) {
375     EnumerateValue(&F);
376     EnumerateType(F.getValueType());
377     EnumerateAttributes(F.getAttributes());
378   }
379 
380   // Enumerate the aliases.
381   for (const GlobalAlias &GA : M.aliases())
382     EnumerateValue(&GA);
383 
384   // Enumerate the ifuncs.
385   for (const GlobalIFunc &GIF : M.ifuncs())
386     EnumerateValue(&GIF);
387 
388   // Remember what is the cutoff between globalvalue's and other constants.
389   unsigned FirstConstant = Values.size();
390 
391   // Enumerate the global variable initializers and attributes.
392   for (const GlobalVariable &GV : M.globals()) {
393     if (GV.hasInitializer())
394       EnumerateValue(GV.getInitializer());
395     if (GV.hasAttributes())
396       EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
397   }
398 
399   // Enumerate the aliasees.
400   for (const GlobalAlias &GA : M.aliases())
401     EnumerateValue(GA.getAliasee());
402 
403   // Enumerate the ifunc resolvers.
404   for (const GlobalIFunc &GIF : M.ifuncs())
405     EnumerateValue(GIF.getResolver());
406 
407   // Enumerate any optional Function data.
408   for (const Function &F : M)
409     for (const Use &U : F.operands())
410       EnumerateValue(U.get());
411 
412   // Enumerate the metadata type.
413   //
414   // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
415   // only encodes the metadata type when it's used as a value.
416   EnumerateType(Type::getMetadataTy(M.getContext()));
417 
418   // Insert constants and metadata that are named at module level into the slot
419   // pool so that the module symbol table can refer to them...
420   EnumerateValueSymbolTable(M.getValueSymbolTable());
421   EnumerateNamedMetadata(M);
422 
423   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
424   for (const GlobalVariable &GV : M.globals()) {
425     MDs.clear();
426     GV.getAllMetadata(MDs);
427     for (const auto &I : MDs)
428       // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
429       // to write metadata to the global variable's own metadata block
430       // (PR28134).
431       EnumerateMetadata(nullptr, I.second);
432   }
433 
434   // Enumerate types used by function bodies and argument lists.
435   for (const Function &F : M) {
436     for (const Argument &A : F.args())
437       EnumerateType(A.getType());
438 
439     // Enumerate metadata attached to this function.
440     MDs.clear();
441     F.getAllMetadata(MDs);
442     for (const auto &I : MDs)
443       EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
444 
445     for (const BasicBlock &BB : F)
446       for (const Instruction &I : BB) {
447         for (const Use &Op : I.operands()) {
448           auto *MD = dyn_cast<MetadataAsValue>(&Op);
449           if (!MD) {
450             EnumerateOperandType(Op);
451             continue;
452           }
453 
454           // Local metadata is enumerated during function-incorporation, but
455           // any ConstantAsMetadata arguments in a DIArgList should be examined
456           // now.
457           if (isa<LocalAsMetadata>(MD->getMetadata()))
458             continue;
459           if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
460             for (auto *VAM : AL->getArgs())
461               if (isa<ConstantAsMetadata>(VAM))
462                 EnumerateMetadata(&F, VAM);
463             continue;
464           }
465 
466           EnumerateMetadata(&F, MD->getMetadata());
467         }
468         if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
469           EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
470         if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
471           EnumerateType(GEP->getSourceElementType());
472         EnumerateType(I.getType());
473         if (const auto *Call = dyn_cast<CallBase>(&I)) {
474           EnumerateAttributes(Call->getAttributes());
475           EnumerateType(Call->getFunctionType());
476         }
477 
478         // Enumerate metadata attached with this instruction.
479         MDs.clear();
480         I.getAllMetadataOtherThanDebugLoc(MDs);
481         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
482           EnumerateMetadata(&F, MDs[i].second);
483 
484         // Don't enumerate the location directly -- it has a special record
485         // type -- but enumerate its operands.
486         if (DILocation *L = I.getDebugLoc())
487           for (const Metadata *Op : L->operands())
488             EnumerateMetadata(&F, Op);
489       }
490   }
491 
492   // Optimize constant ordering.
493   OptimizeConstants(FirstConstant, Values.size());
494 
495   // Organize metadata ordering.
496   organizeMetadata();
497 }
498 
499 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
500   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
501   assert(I != InstructionMap.end() && "Instruction is not mapped!");
502   return I->second;
503 }
504 
505 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
506   unsigned ComdatID = Comdats.idFor(C);
507   assert(ComdatID && "Comdat not found!");
508   return ComdatID;
509 }
510 
511 void ValueEnumerator::setInstructionID(const Instruction *I) {
512   InstructionMap[I] = InstructionCount++;
513 }
514 
515 unsigned ValueEnumerator::getValueID(const Value *V) const {
516   if (auto *MD = dyn_cast<MetadataAsValue>(V))
517     return getMetadataID(MD->getMetadata());
518 
519   ValueMapType::const_iterator I = ValueMap.find(V);
520   assert(I != ValueMap.end() && "Value not in slotcalculator!");
521   return I->second-1;
522 }
523 
524 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
525 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
526   print(dbgs(), ValueMap, "Default");
527   dbgs() << '\n';
528   print(dbgs(), MetadataMap, "MetaData");
529   dbgs() << '\n';
530 }
531 #endif
532 
533 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
534                             const char *Name) const {
535   OS << "Map Name: " << Name << "\n";
536   OS << "Size: " << Map.size() << "\n";
537   for (ValueMapType::const_iterator I = Map.begin(),
538          E = Map.end(); I != E; ++I) {
539     const Value *V = I->first;
540     if (V->hasName())
541       OS << "Value: " << V->getName();
542     else
543       OS << "Value: [null]\n";
544     V->print(errs());
545     errs() << '\n';
546 
547     OS << " Uses(" << V->getNumUses() << "):";
548     for (const Use &U : V->uses()) {
549       if (&U != &*V->use_begin())
550         OS << ",";
551       if(U->hasName())
552         OS << " " << U->getName();
553       else
554         OS << " [null]";
555 
556     }
557     OS <<  "\n\n";
558   }
559 }
560 
561 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
562                             const char *Name) const {
563   OS << "Map Name: " << Name << "\n";
564   OS << "Size: " << Map.size() << "\n";
565   for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
566     const Metadata *MD = I->first;
567     OS << "Metadata: slot = " << I->second.ID << "\n";
568     OS << "Metadata: function = " << I->second.F << "\n";
569     MD->print(OS);
570     OS << "\n";
571   }
572 }
573 
574 /// OptimizeConstants - Reorder constant pool for denser encoding.
575 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
576   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
577 
578   if (ShouldPreserveUseListOrder)
579     // Optimizing constants makes the use-list order difficult to predict.
580     // Disable it for now when trying to preserve the order.
581     return;
582 
583   std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
584                    [this](const std::pair<const Value *, unsigned> &LHS,
585                           const std::pair<const Value *, unsigned> &RHS) {
586     // Sort by plane.
587     if (LHS.first->getType() != RHS.first->getType())
588       return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
589     // Then by frequency.
590     return LHS.second > RHS.second;
591   });
592 
593   // Ensure that integer and vector of integer constants are at the start of the
594   // constant pool.  This is important so that GEP structure indices come before
595   // gep constant exprs.
596   std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
597                         isIntOrIntVectorValue);
598 
599   // Rebuild the modified portion of ValueMap.
600   for (; CstStart != CstEnd; ++CstStart)
601     ValueMap[Values[CstStart].first] = CstStart+1;
602 }
603 
604 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
605 /// table into the values table.
606 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
607   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
608        VI != VE; ++VI)
609     EnumerateValue(VI->getValue());
610 }
611 
612 /// Insert all of the values referenced by named metadata in the specified
613 /// module.
614 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
615   for (const auto &I : M.named_metadata())
616     EnumerateNamedMDNode(&I);
617 }
618 
619 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
620   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
621     EnumerateMetadata(nullptr, MD->getOperand(i));
622 }
623 
624 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
625   return F ? getValueID(F) + 1 : 0;
626 }
627 
628 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
629   EnumerateMetadata(getMetadataFunctionID(F), MD);
630 }
631 
632 void ValueEnumerator::EnumerateFunctionLocalMetadata(
633     const Function &F, const LocalAsMetadata *Local) {
634   EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
635 }
636 
637 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
638     const Function &F, const DIArgList *ArgList) {
639   EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
640 }
641 
642 void ValueEnumerator::dropFunctionFromMetadata(
643     MetadataMapType::value_type &FirstMD) {
644   SmallVector<const MDNode *, 64> Worklist;
645   auto push = [&Worklist](MetadataMapType::value_type &MD) {
646     auto &Entry = MD.second;
647 
648     // Nothing to do if this metadata isn't tagged.
649     if (!Entry.F)
650       return;
651 
652     // Drop the function tag.
653     Entry.F = 0;
654 
655     // If this is has an ID and is an MDNode, then its operands have entries as
656     // well.  We need to drop the function from them too.
657     if (Entry.ID)
658       if (auto *N = dyn_cast<MDNode>(MD.first))
659         Worklist.push_back(N);
660   };
661   push(FirstMD);
662   while (!Worklist.empty())
663     for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
664       if (!Op)
665         continue;
666       auto MD = MetadataMap.find(Op);
667       if (MD != MetadataMap.end())
668         push(*MD);
669     }
670 }
671 
672 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
673   // It's vital for reader efficiency that uniqued subgraphs are done in
674   // post-order; it's expensive when their operands have forward references.
675   // If a distinct node is referenced from a uniqued node, it'll be delayed
676   // until the uniqued subgraph has been completely traversed.
677   SmallVector<const MDNode *, 32> DelayedDistinctNodes;
678 
679   // Start by enumerating MD, and then work through its transitive operands in
680   // post-order.  This requires a depth-first search.
681   SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
682   if (const MDNode *N = enumerateMetadataImpl(F, MD))
683     Worklist.push_back(std::make_pair(N, N->op_begin()));
684 
685   while (!Worklist.empty()) {
686     const MDNode *N = Worklist.back().first;
687 
688     // Enumerate operands until we hit a new node.  We need to traverse these
689     // nodes' operands before visiting the rest of N's operands.
690     MDNode::op_iterator I = std::find_if(
691         Worklist.back().second, N->op_end(),
692         [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
693     if (I != N->op_end()) {
694       auto *Op = cast<MDNode>(*I);
695       Worklist.back().second = ++I;
696 
697       // Delay traversing Op if it's a distinct node and N is uniqued.
698       if (Op->isDistinct() && !N->isDistinct())
699         DelayedDistinctNodes.push_back(Op);
700       else
701         Worklist.push_back(std::make_pair(Op, Op->op_begin()));
702       continue;
703     }
704 
705     // All the operands have been visited.  Now assign an ID.
706     Worklist.pop_back();
707     MDs.push_back(N);
708     MetadataMap[N].ID = MDs.size();
709 
710     // Flush out any delayed distinct nodes; these are all the distinct nodes
711     // that are leaves in last uniqued subgraph.
712     if (Worklist.empty() || Worklist.back().first->isDistinct()) {
713       for (const MDNode *N : DelayedDistinctNodes)
714         Worklist.push_back(std::make_pair(N, N->op_begin()));
715       DelayedDistinctNodes.clear();
716     }
717   }
718 }
719 
720 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
721   if (!MD)
722     return nullptr;
723 
724   assert(
725       (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
726       "Invalid metadata kind");
727 
728   auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
729   MDIndex &Entry = Insertion.first->second;
730   if (!Insertion.second) {
731     // Already mapped.  If F doesn't match the function tag, drop it.
732     if (Entry.hasDifferentFunction(F))
733       dropFunctionFromMetadata(*Insertion.first);
734     return nullptr;
735   }
736 
737   // Don't assign IDs to metadata nodes.
738   if (auto *N = dyn_cast<MDNode>(MD))
739     return N;
740 
741   // Save the metadata.
742   MDs.push_back(MD);
743   Entry.ID = MDs.size();
744 
745   // Enumerate the constant, if any.
746   if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
747     EnumerateValue(C->getValue());
748 
749   return nullptr;
750 }
751 
752 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
753 /// information reachable from the metadata.
754 void ValueEnumerator::EnumerateFunctionLocalMetadata(
755     unsigned F, const LocalAsMetadata *Local) {
756   assert(F && "Expected a function");
757 
758   // Check to see if it's already in!
759   MDIndex &Index = MetadataMap[Local];
760   if (Index.ID) {
761     assert(Index.F == F && "Expected the same function");
762     return;
763   }
764 
765   MDs.push_back(Local);
766   Index.F = F;
767   Index.ID = MDs.size();
768 
769   EnumerateValue(Local->getValue());
770 }
771 
772 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
773 /// information reachable from the metadata.
774 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
775     unsigned F, const DIArgList *ArgList) {
776   assert(F && "Expected a function");
777 
778   // Check to see if it's already in!
779   MDIndex &Index = MetadataMap[ArgList];
780   if (Index.ID) {
781     assert(Index.F == F && "Expected the same function");
782     return;
783   }
784 
785   for (ValueAsMetadata *VAM : ArgList->getArgs()) {
786     if (isa<LocalAsMetadata>(VAM)) {
787       assert(MetadataMap.count(VAM) &&
788              "LocalAsMetadata should be enumerated before DIArgList");
789       assert(MetadataMap[VAM].F == F &&
790              "Expected LocalAsMetadata in the same function");
791     } else {
792       assert(isa<ConstantAsMetadata>(VAM) &&
793              "Expected LocalAsMetadata or ConstantAsMetadata");
794       assert(ValueMap.count(VAM->getValue()) &&
795              "Constant should be enumerated beforeDIArgList");
796       EnumerateMetadata(F, VAM);
797     }
798   }
799 
800   MDs.push_back(ArgList);
801   Index.F = F;
802   Index.ID = MDs.size();
803 }
804 
805 static unsigned getMetadataTypeOrder(const Metadata *MD) {
806   // Strings are emitted in bulk and must come first.
807   if (isa<MDString>(MD))
808     return 0;
809 
810   // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
811   // to the front since we can detect it.
812   auto *N = dyn_cast<MDNode>(MD);
813   if (!N)
814     return 1;
815 
816   // The reader is fast forward references for distinct node operands, but slow
817   // when uniqued operands are unresolved.
818   return N->isDistinct() ? 2 : 3;
819 }
820 
821 void ValueEnumerator::organizeMetadata() {
822   assert(MetadataMap.size() == MDs.size() &&
823          "Metadata map and vector out of sync");
824 
825   if (MDs.empty())
826     return;
827 
828   // Copy out the index information from MetadataMap in order to choose a new
829   // order.
830   SmallVector<MDIndex, 64> Order;
831   Order.reserve(MetadataMap.size());
832   for (const Metadata *MD : MDs)
833     Order.push_back(MetadataMap.lookup(MD));
834 
835   // Partition:
836   //   - by function, then
837   //   - by isa<MDString>
838   // and then sort by the original/current ID.  Since the IDs are guaranteed to
839   // be unique, the result of std::sort will be deterministic.  There's no need
840   // for std::stable_sort.
841   llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
842     return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
843            std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
844   });
845 
846   // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
847   // and fix up MetadataMap.
848   std::vector<const Metadata *> OldMDs;
849   MDs.swap(OldMDs);
850   MDs.reserve(OldMDs.size());
851   for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
852     auto *MD = Order[I].get(OldMDs);
853     MDs.push_back(MD);
854     MetadataMap[MD].ID = I + 1;
855     if (isa<MDString>(MD))
856       ++NumMDStrings;
857   }
858 
859   // Return early if there's nothing for the functions.
860   if (MDs.size() == Order.size())
861     return;
862 
863   // Build the function metadata ranges.
864   MDRange R;
865   FunctionMDs.reserve(OldMDs.size());
866   unsigned PrevF = 0;
867   for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
868        ++I) {
869     unsigned F = Order[I].F;
870     if (!PrevF) {
871       PrevF = F;
872     } else if (PrevF != F) {
873       R.Last = FunctionMDs.size();
874       std::swap(R, FunctionMDInfo[PrevF]);
875       R.First = FunctionMDs.size();
876 
877       ID = MDs.size();
878       PrevF = F;
879     }
880 
881     auto *MD = Order[I].get(OldMDs);
882     FunctionMDs.push_back(MD);
883     MetadataMap[MD].ID = ++ID;
884     if (isa<MDString>(MD))
885       ++R.NumStrings;
886   }
887   R.Last = FunctionMDs.size();
888   FunctionMDInfo[PrevF] = R;
889 }
890 
891 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
892   NumModuleMDs = MDs.size();
893 
894   auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
895   NumMDStrings = R.NumStrings;
896   MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
897              FunctionMDs.begin() + R.Last);
898 }
899 
900 void ValueEnumerator::EnumerateValue(const Value *V) {
901   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
902   assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
903 
904   // Check to see if it's already in!
905   unsigned &ValueID = ValueMap[V];
906   if (ValueID) {
907     // Increment use count.
908     Values[ValueID-1].second++;
909     return;
910   }
911 
912   if (auto *GO = dyn_cast<GlobalObject>(V))
913     if (const Comdat *C = GO->getComdat())
914       Comdats.insert(C);
915 
916   // Enumerate the type of this value.
917   EnumerateType(V->getType());
918 
919   if (const Constant *C = dyn_cast<Constant>(V)) {
920     if (isa<GlobalValue>(C)) {
921       // Initializers for globals are handled explicitly elsewhere.
922     } else if (C->getNumOperands()) {
923       // If a constant has operands, enumerate them.  This makes sure that if a
924       // constant has uses (for example an array of const ints), that they are
925       // inserted also.
926 
927       // We prefer to enumerate them with values before we enumerate the user
928       // itself.  This makes it more likely that we can avoid forward references
929       // in the reader.  We know that there can be no cycles in the constants
930       // graph that don't go through a global variable.
931       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
932            I != E; ++I)
933         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
934           EnumerateValue(*I);
935       if (auto *CE = dyn_cast<ConstantExpr>(C))
936         if (CE->getOpcode() == Instruction::ShuffleVector)
937           EnumerateValue(CE->getShuffleMaskForBitcode());
938 
939       // Finally, add the value.  Doing this could make the ValueID reference be
940       // dangling, don't reuse it.
941       Values.push_back(std::make_pair(V, 1U));
942       ValueMap[V] = Values.size();
943       return;
944     }
945   }
946 
947   // Add the value.
948   Values.push_back(std::make_pair(V, 1U));
949   ValueID = Values.size();
950 }
951 
952 
953 void ValueEnumerator::EnumerateType(Type *Ty) {
954   unsigned *TypeID = &TypeMap[Ty];
955 
956   // We've already seen this type.
957   if (*TypeID)
958     return;
959 
960   // If it is a non-anonymous struct, mark the type as being visited so that we
961   // don't recursively visit it.  This is safe because we allow forward
962   // references of these in the bitcode reader.
963   if (StructType *STy = dyn_cast<StructType>(Ty))
964     if (!STy->isLiteral())
965       *TypeID = ~0U;
966 
967   // Enumerate all of the subtypes before we enumerate this type.  This ensures
968   // that the type will be enumerated in an order that can be directly built.
969   for (Type *SubTy : Ty->subtypes())
970     EnumerateType(SubTy);
971 
972   // Refresh the TypeID pointer in case the table rehashed.
973   TypeID = &TypeMap[Ty];
974 
975   // Check to see if we got the pointer another way.  This can happen when
976   // enumerating recursive types that hit the base case deeper than they start.
977   //
978   // If this is actually a struct that we are treating as forward ref'able,
979   // then emit the definition now that all of its contents are available.
980   if (*TypeID && *TypeID != ~0U)
981     return;
982 
983   // Add this type now that its contents are all happily enumerated.
984   Types.push_back(Ty);
985 
986   *TypeID = Types.size();
987 }
988 
989 // Enumerate the types for the specified value.  If the value is a constant,
990 // walk through it, enumerating the types of the constant.
991 void ValueEnumerator::EnumerateOperandType(const Value *V) {
992   EnumerateType(V->getType());
993 
994   assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
995 
996   const Constant *C = dyn_cast<Constant>(V);
997   if (!C)
998     return;
999 
1000   // If this constant is already enumerated, ignore it, we know its type must
1001   // be enumerated.
1002   if (ValueMap.count(C))
1003     return;
1004 
1005   // This constant may have operands, make sure to enumerate the types in
1006   // them.
1007   for (const Value *Op : C->operands()) {
1008     // Don't enumerate basic blocks here, this happens as operands to
1009     // blockaddress.
1010     if (isa<BasicBlock>(Op))
1011       continue;
1012 
1013     EnumerateOperandType(Op);
1014   }
1015   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
1016     if (CE->getOpcode() == Instruction::ShuffleVector)
1017       EnumerateOperandType(CE->getShuffleMaskForBitcode());
1018     if (CE->getOpcode() == Instruction::GetElementPtr)
1019       EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
1020   }
1021 }
1022 
1023 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
1024   if (PAL.isEmpty()) return;  // null is always 0.
1025 
1026   // Do a lookup.
1027   unsigned &Entry = AttributeListMap[PAL];
1028   if (Entry == 0) {
1029     // Never saw this before, add it.
1030     AttributeLists.push_back(PAL);
1031     Entry = AttributeLists.size();
1032   }
1033 
1034   // Do lookups for all attribute groups.
1035   for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
1036     AttributeSet AS = PAL.getAttributes(i);
1037     if (!AS.hasAttributes())
1038       continue;
1039     IndexAndAttrSet Pair = {i, AS};
1040     unsigned &Entry = AttributeGroupMap[Pair];
1041     if (Entry == 0) {
1042       AttributeGroups.push_back(Pair);
1043       Entry = AttributeGroups.size();
1044     }
1045   }
1046 }
1047 
1048 void ValueEnumerator::incorporateFunction(const Function &F) {
1049   InstructionCount = 0;
1050   NumModuleValues = Values.size();
1051 
1052   // Add global metadata to the function block.  This doesn't include
1053   // LocalAsMetadata.
1054   incorporateFunctionMetadata(F);
1055 
1056   // Adding function arguments to the value table.
1057   for (const auto &I : F.args()) {
1058     EnumerateValue(&I);
1059     if (I.hasAttribute(Attribute::ByVal))
1060       EnumerateType(I.getParamByValType());
1061     else if (I.hasAttribute(Attribute::StructRet))
1062       EnumerateType(I.getParamStructRetType());
1063     else if (I.hasAttribute(Attribute::ByRef))
1064       EnumerateType(I.getParamByRefType());
1065   }
1066   FirstFuncConstantID = Values.size();
1067 
1068   // Add all function-level constants to the value table.
1069   for (const BasicBlock &BB : F) {
1070     for (const Instruction &I : BB) {
1071       for (const Use &OI : I.operands()) {
1072         if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1073           EnumerateValue(OI);
1074       }
1075       if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1076         EnumerateValue(SVI->getShuffleMaskForBitcode());
1077     }
1078     BasicBlocks.push_back(&BB);
1079     ValueMap[&BB] = BasicBlocks.size();
1080   }
1081 
1082   // Optimize the constant layout.
1083   OptimizeConstants(FirstFuncConstantID, Values.size());
1084 
1085   // Add the function's parameter attributes so they are available for use in
1086   // the function's instruction.
1087   EnumerateAttributes(F.getAttributes());
1088 
1089   FirstInstID = Values.size();
1090 
1091   SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1092   SmallVector<DIArgList *, 8> ArgListMDVector;
1093   // Add all of the instructions.
1094   for (const BasicBlock &BB : F) {
1095     for (const Instruction &I : BB) {
1096       for (const Use &OI : I.operands()) {
1097         if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1098           if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1099             // Enumerate metadata after the instructions they might refer to.
1100             FnLocalMDVector.push_back(Local);
1101           } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1102             ArgListMDVector.push_back(ArgList);
1103             for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1104               if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1105                 // Enumerate metadata after the instructions they might refer
1106                 // to.
1107                 FnLocalMDVector.push_back(Local);
1108               }
1109             }
1110           }
1111         }
1112       }
1113 
1114       if (!I.getType()->isVoidTy())
1115         EnumerateValue(&I);
1116     }
1117   }
1118 
1119   // Add all of the function-local metadata.
1120   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1121     // At this point, every local values have been incorporated, we shouldn't
1122     // have a metadata operand that references a value that hasn't been seen.
1123     assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1124            "Missing value for metadata operand");
1125     EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1126   }
1127   // DIArgList entries must come after function-local metadata, as it is not
1128   // possible to forward-reference them.
1129   for (const DIArgList *ArgList : ArgListMDVector)
1130     EnumerateFunctionLocalListMetadata(F, ArgList);
1131 }
1132 
1133 void ValueEnumerator::purgeFunction() {
1134   /// Remove purged values from the ValueMap.
1135   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1136     ValueMap.erase(Values[i].first);
1137   for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1138     MetadataMap.erase(MDs[i]);
1139   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
1140     ValueMap.erase(BasicBlocks[i]);
1141 
1142   Values.resize(NumModuleValues);
1143   MDs.resize(NumModuleMDs);
1144   BasicBlocks.clear();
1145   NumMDStrings = 0;
1146 }
1147 
1148 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
1149                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
1150   unsigned Counter = 0;
1151   for (const BasicBlock &BB : *F)
1152     IDMap[&BB] = ++Counter;
1153 }
1154 
1155 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1156 /// specified basic block.  This is relatively expensive information, so it
1157 /// should only be used by rare constructs such as address-of-label.
1158 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1159   unsigned &Idx = GlobalBasicBlockIDs[BB];
1160   if (Idx != 0)
1161     return Idx-1;
1162 
1163   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1164   return getGlobalBasicBlockID(BB);
1165 }
1166 
1167 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
1168   return Log2_32_Ceil(getTypes().size() + 1);
1169 }
1170