1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the ValueEnumerator class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ValueEnumerator.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/Config/llvm-config.h" 16 #include "llvm/IR/Argument.h" 17 #include "llvm/IR/BasicBlock.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/GlobalAlias.h" 23 #include "llvm/IR/GlobalIFunc.h" 24 #include "llvm/IR/GlobalObject.h" 25 #include "llvm/IR/GlobalValue.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instruction.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/Operator.h" 32 #include "llvm/IR/Type.h" 33 #include "llvm/IR/Use.h" 34 #include "llvm/IR/User.h" 35 #include "llvm/IR/Value.h" 36 #include "llvm/IR/ValueSymbolTable.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/Compiler.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <algorithm> 43 #include <cstddef> 44 #include <iterator> 45 #include <tuple> 46 47 using namespace llvm; 48 49 namespace { 50 51 struct OrderMap { 52 DenseMap<const Value *, std::pair<unsigned, bool>> IDs; 53 unsigned LastGlobalConstantID = 0; 54 unsigned LastGlobalValueID = 0; 55 56 OrderMap() = default; 57 58 bool isGlobalConstant(unsigned ID) const { 59 return ID <= LastGlobalConstantID; 60 } 61 62 bool isGlobalValue(unsigned ID) const { 63 return ID <= LastGlobalValueID && !isGlobalConstant(ID); 64 } 65 66 unsigned size() const { return IDs.size(); } 67 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } 68 69 std::pair<unsigned, bool> lookup(const Value *V) const { 70 return IDs.lookup(V); 71 } 72 73 void index(const Value *V) { 74 // Explicitly sequence get-size and insert-value operations to avoid UB. 75 unsigned ID = IDs.size() + 1; 76 IDs[V].first = ID; 77 } 78 }; 79 80 } // end anonymous namespace 81 82 static void orderValue(const Value *V, OrderMap &OM) { 83 if (OM.lookup(V).first) 84 return; 85 86 if (const Constant *C = dyn_cast<Constant>(V)) { 87 if (C->getNumOperands() && !isa<GlobalValue>(C)) { 88 for (const Value *Op : C->operands()) 89 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) 90 orderValue(Op, OM); 91 if (auto *CE = dyn_cast<ConstantExpr>(C)) 92 if (CE->getOpcode() == Instruction::ShuffleVector) 93 orderValue(CE->getShuffleMaskForBitcode(), OM); 94 } 95 } 96 97 // Note: we cannot cache this lookup above, since inserting into the map 98 // changes the map's size, and thus affects the other IDs. 99 OM.index(V); 100 } 101 102 static OrderMap orderModule(const Module &M) { 103 // This needs to match the order used by ValueEnumerator::ValueEnumerator() 104 // and ValueEnumerator::incorporateFunction(). 105 OrderMap OM; 106 107 // In the reader, initializers of GlobalValues are set *after* all the 108 // globals have been read. Rather than awkwardly modeling this behaviour 109 // directly in predictValueUseListOrderImpl(), just assign IDs to 110 // initializers of GlobalValues before GlobalValues themselves to model this 111 // implicitly. 112 for (const GlobalVariable &G : M.globals()) 113 if (G.hasInitializer()) 114 if (!isa<GlobalValue>(G.getInitializer())) 115 orderValue(G.getInitializer(), OM); 116 for (const GlobalAlias &A : M.aliases()) 117 if (!isa<GlobalValue>(A.getAliasee())) 118 orderValue(A.getAliasee(), OM); 119 for (const GlobalIFunc &I : M.ifuncs()) 120 if (!isa<GlobalValue>(I.getResolver())) 121 orderValue(I.getResolver(), OM); 122 for (const Function &F : M) { 123 for (const Use &U : F.operands()) 124 if (!isa<GlobalValue>(U.get())) 125 orderValue(U.get(), OM); 126 } 127 128 // As constants used in metadata operands are emitted as module-level 129 // constants, we must order them before other operands. Also, we must order 130 // these before global values, as these will be read before setting the 131 // global values' initializers. The latter matters for constants which have 132 // uses towards other constants that are used as initializers. 133 auto orderConstantValue = [&OM](const Value *V) { 134 if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V)) 135 orderValue(V, OM); 136 }; 137 for (const Function &F : M) { 138 if (F.isDeclaration()) 139 continue; 140 for (const BasicBlock &BB : F) 141 for (const Instruction &I : BB) 142 for (const Value *V : I.operands()) { 143 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) { 144 if (const auto *VAM = 145 dyn_cast<ValueAsMetadata>(MAV->getMetadata())) { 146 orderConstantValue(VAM->getValue()); 147 } else if (const auto *AL = 148 dyn_cast<DIArgList>(MAV->getMetadata())) { 149 for (const auto *VAM : AL->getArgs()) 150 orderConstantValue(VAM->getValue()); 151 } 152 } 153 } 154 } 155 OM.LastGlobalConstantID = OM.size(); 156 157 // Initializers of GlobalValues are processed in 158 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather 159 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() 160 // by giving IDs in reverse order. 161 // 162 // Since GlobalValues never reference each other directly (just through 163 // initializers), their relative IDs only matter for determining order of 164 // uses in their initializers. 165 for (const Function &F : M) 166 orderValue(&F, OM); 167 for (const GlobalAlias &A : M.aliases()) 168 orderValue(&A, OM); 169 for (const GlobalIFunc &I : M.ifuncs()) 170 orderValue(&I, OM); 171 for (const GlobalVariable &G : M.globals()) 172 orderValue(&G, OM); 173 OM.LastGlobalValueID = OM.size(); 174 175 for (const Function &F : M) { 176 if (F.isDeclaration()) 177 continue; 178 // Here we need to match the union of ValueEnumerator::incorporateFunction() 179 // and WriteFunction(). Basic blocks are implicitly declared before 180 // anything else (by declaring their size). 181 for (const BasicBlock &BB : F) 182 orderValue(&BB, OM); 183 for (const Argument &A : F.args()) 184 orderValue(&A, OM); 185 for (const BasicBlock &BB : F) 186 for (const Instruction &I : BB) { 187 for (const Value *Op : I.operands()) 188 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || 189 isa<InlineAsm>(*Op)) 190 orderValue(Op, OM); 191 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 192 orderValue(SVI->getShuffleMaskForBitcode(), OM); 193 } 194 for (const BasicBlock &BB : F) 195 for (const Instruction &I : BB) 196 orderValue(&I, OM); 197 } 198 return OM; 199 } 200 201 static void predictValueUseListOrderImpl(const Value *V, const Function *F, 202 unsigned ID, const OrderMap &OM, 203 UseListOrderStack &Stack) { 204 // Predict use-list order for this one. 205 using Entry = std::pair<const Use *, unsigned>; 206 SmallVector<Entry, 64> List; 207 for (const Use &U : V->uses()) 208 // Check if this user will be serialized. 209 if (OM.lookup(U.getUser()).first) 210 List.push_back(std::make_pair(&U, List.size())); 211 212 if (List.size() < 2) 213 // We may have lost some users. 214 return; 215 216 bool IsGlobalValue = OM.isGlobalValue(ID); 217 llvm::sort(List, [&](const Entry &L, const Entry &R) { 218 const Use *LU = L.first; 219 const Use *RU = R.first; 220 if (LU == RU) 221 return false; 222 223 auto LID = OM.lookup(LU->getUser()).first; 224 auto RID = OM.lookup(RU->getUser()).first; 225 226 // Global values are processed in reverse order. 227 // 228 // Moreover, initializers of GlobalValues are set *after* all the globals 229 // have been read (despite having earlier IDs). Rather than awkwardly 230 // modeling this behaviour here, orderModule() has assigned IDs to 231 // initializers of GlobalValues before GlobalValues themselves. 232 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) 233 return LID < RID; 234 235 // If ID is 4, then expect: 7 6 5 1 2 3. 236 if (LID < RID) { 237 if (RID <= ID) 238 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 239 return true; 240 return false; 241 } 242 if (RID < LID) { 243 if (LID <= ID) 244 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 245 return false; 246 return true; 247 } 248 249 // LID and RID are equal, so we have different operands of the same user. 250 // Assume operands are added in order for all instructions. 251 if (LID <= ID) 252 if (!IsGlobalValue) // GlobalValue uses don't get reversed. 253 return LU->getOperandNo() < RU->getOperandNo(); 254 return LU->getOperandNo() > RU->getOperandNo(); 255 }); 256 257 if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) { 258 return L.second < R.second; 259 })) 260 // Order is already correct. 261 return; 262 263 // Store the shuffle. 264 Stack.emplace_back(V, F, List.size()); 265 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); 266 for (size_t I = 0, E = List.size(); I != E; ++I) 267 Stack.back().Shuffle[I] = List[I].second; 268 } 269 270 static void predictValueUseListOrder(const Value *V, const Function *F, 271 OrderMap &OM, UseListOrderStack &Stack) { 272 auto &IDPair = OM[V]; 273 assert(IDPair.first && "Unmapped value"); 274 if (IDPair.second) 275 // Already predicted. 276 return; 277 278 // Do the actual prediction. 279 IDPair.second = true; 280 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) 281 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); 282 283 // Recursive descent into constants. 284 if (const Constant *C = dyn_cast<Constant>(V)) { 285 if (C->getNumOperands()) { // Visit GlobalValues. 286 for (const Value *Op : C->operands()) 287 if (isa<Constant>(Op)) // Visit GlobalValues. 288 predictValueUseListOrder(Op, F, OM, Stack); 289 if (auto *CE = dyn_cast<ConstantExpr>(C)) 290 if (CE->getOpcode() == Instruction::ShuffleVector) 291 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM, 292 Stack); 293 } 294 } 295 } 296 297 static UseListOrderStack predictUseListOrder(const Module &M) { 298 OrderMap OM = orderModule(M); 299 300 // Use-list orders need to be serialized after all the users have been added 301 // to a value, or else the shuffles will be incomplete. Store them per 302 // function in a stack. 303 // 304 // Aside from function order, the order of values doesn't matter much here. 305 UseListOrderStack Stack; 306 307 // We want to visit the functions backward now so we can list function-local 308 // constants in the last Function they're used in. Module-level constants 309 // have already been visited above. 310 for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { 311 const Function &F = *I; 312 if (F.isDeclaration()) 313 continue; 314 for (const BasicBlock &BB : F) 315 predictValueUseListOrder(&BB, &F, OM, Stack); 316 for (const Argument &A : F.args()) 317 predictValueUseListOrder(&A, &F, OM, Stack); 318 for (const BasicBlock &BB : F) 319 for (const Instruction &I : BB) { 320 for (const Value *Op : I.operands()) 321 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. 322 predictValueUseListOrder(Op, &F, OM, Stack); 323 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 324 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM, 325 Stack); 326 } 327 for (const BasicBlock &BB : F) 328 for (const Instruction &I : BB) 329 predictValueUseListOrder(&I, &F, OM, Stack); 330 } 331 332 // Visit globals last, since the module-level use-list block will be seen 333 // before the function bodies are processed. 334 for (const GlobalVariable &G : M.globals()) 335 predictValueUseListOrder(&G, nullptr, OM, Stack); 336 for (const Function &F : M) 337 predictValueUseListOrder(&F, nullptr, OM, Stack); 338 for (const GlobalAlias &A : M.aliases()) 339 predictValueUseListOrder(&A, nullptr, OM, Stack); 340 for (const GlobalIFunc &I : M.ifuncs()) 341 predictValueUseListOrder(&I, nullptr, OM, Stack); 342 for (const GlobalVariable &G : M.globals()) 343 if (G.hasInitializer()) 344 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); 345 for (const GlobalAlias &A : M.aliases()) 346 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); 347 for (const GlobalIFunc &I : M.ifuncs()) 348 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); 349 for (const Function &F : M) { 350 for (const Use &U : F.operands()) 351 predictValueUseListOrder(U.get(), nullptr, OM, Stack); 352 } 353 354 return Stack; 355 } 356 357 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { 358 return V.first->getType()->isIntOrIntVectorTy(); 359 } 360 361 ValueEnumerator::ValueEnumerator(const Module &M, 362 bool ShouldPreserveUseListOrder) 363 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { 364 if (ShouldPreserveUseListOrder) 365 UseListOrders = predictUseListOrder(M); 366 367 // Enumerate the global variables. 368 for (const GlobalVariable &GV : M.globals()) { 369 EnumerateValue(&GV); 370 EnumerateType(GV.getValueType()); 371 } 372 373 // Enumerate the functions. 374 for (const Function & F : M) { 375 EnumerateValue(&F); 376 EnumerateType(F.getValueType()); 377 EnumerateAttributes(F.getAttributes()); 378 } 379 380 // Enumerate the aliases. 381 for (const GlobalAlias &GA : M.aliases()) 382 EnumerateValue(&GA); 383 384 // Enumerate the ifuncs. 385 for (const GlobalIFunc &GIF : M.ifuncs()) 386 EnumerateValue(&GIF); 387 388 // Remember what is the cutoff between globalvalue's and other constants. 389 unsigned FirstConstant = Values.size(); 390 391 // Enumerate the global variable initializers and attributes. 392 for (const GlobalVariable &GV : M.globals()) { 393 if (GV.hasInitializer()) 394 EnumerateValue(GV.getInitializer()); 395 if (GV.hasAttributes()) 396 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); 397 } 398 399 // Enumerate the aliasees. 400 for (const GlobalAlias &GA : M.aliases()) 401 EnumerateValue(GA.getAliasee()); 402 403 // Enumerate the ifunc resolvers. 404 for (const GlobalIFunc &GIF : M.ifuncs()) 405 EnumerateValue(GIF.getResolver()); 406 407 // Enumerate any optional Function data. 408 for (const Function &F : M) 409 for (const Use &U : F.operands()) 410 EnumerateValue(U.get()); 411 412 // Enumerate the metadata type. 413 // 414 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode 415 // only encodes the metadata type when it's used as a value. 416 EnumerateType(Type::getMetadataTy(M.getContext())); 417 418 // Insert constants and metadata that are named at module level into the slot 419 // pool so that the module symbol table can refer to them... 420 EnumerateValueSymbolTable(M.getValueSymbolTable()); 421 EnumerateNamedMetadata(M); 422 423 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 424 for (const GlobalVariable &GV : M.globals()) { 425 MDs.clear(); 426 GV.getAllMetadata(MDs); 427 for (const auto &I : MDs) 428 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer 429 // to write metadata to the global variable's own metadata block 430 // (PR28134). 431 EnumerateMetadata(nullptr, I.second); 432 } 433 434 // Enumerate types used by function bodies and argument lists. 435 for (const Function &F : M) { 436 for (const Argument &A : F.args()) 437 EnumerateType(A.getType()); 438 439 // Enumerate metadata attached to this function. 440 MDs.clear(); 441 F.getAllMetadata(MDs); 442 for (const auto &I : MDs) 443 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); 444 445 for (const BasicBlock &BB : F) 446 for (const Instruction &I : BB) { 447 for (const Use &Op : I.operands()) { 448 auto *MD = dyn_cast<MetadataAsValue>(&Op); 449 if (!MD) { 450 EnumerateOperandType(Op); 451 continue; 452 } 453 454 // Local metadata is enumerated during function-incorporation, but 455 // any ConstantAsMetadata arguments in a DIArgList should be examined 456 // now. 457 if (isa<LocalAsMetadata>(MD->getMetadata())) 458 continue; 459 if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) { 460 for (auto *VAM : AL->getArgs()) 461 if (isa<ConstantAsMetadata>(VAM)) 462 EnumerateMetadata(&F, VAM); 463 continue; 464 } 465 466 EnumerateMetadata(&F, MD->getMetadata()); 467 } 468 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 469 EnumerateType(SVI->getShuffleMaskForBitcode()->getType()); 470 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) 471 EnumerateType(GEP->getSourceElementType()); 472 EnumerateType(I.getType()); 473 if (const auto *Call = dyn_cast<CallBase>(&I)) { 474 EnumerateAttributes(Call->getAttributes()); 475 EnumerateType(Call->getFunctionType()); 476 } 477 478 // Enumerate metadata attached with this instruction. 479 MDs.clear(); 480 I.getAllMetadataOtherThanDebugLoc(MDs); 481 for (unsigned i = 0, e = MDs.size(); i != e; ++i) 482 EnumerateMetadata(&F, MDs[i].second); 483 484 // Don't enumerate the location directly -- it has a special record 485 // type -- but enumerate its operands. 486 if (DILocation *L = I.getDebugLoc()) 487 for (const Metadata *Op : L->operands()) 488 EnumerateMetadata(&F, Op); 489 } 490 } 491 492 // Optimize constant ordering. 493 OptimizeConstants(FirstConstant, Values.size()); 494 495 // Organize metadata ordering. 496 organizeMetadata(); 497 } 498 499 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { 500 InstructionMapType::const_iterator I = InstructionMap.find(Inst); 501 assert(I != InstructionMap.end() && "Instruction is not mapped!"); 502 return I->second; 503 } 504 505 unsigned ValueEnumerator::getComdatID(const Comdat *C) const { 506 unsigned ComdatID = Comdats.idFor(C); 507 assert(ComdatID && "Comdat not found!"); 508 return ComdatID; 509 } 510 511 void ValueEnumerator::setInstructionID(const Instruction *I) { 512 InstructionMap[I] = InstructionCount++; 513 } 514 515 unsigned ValueEnumerator::getValueID(const Value *V) const { 516 if (auto *MD = dyn_cast<MetadataAsValue>(V)) 517 return getMetadataID(MD->getMetadata()); 518 519 ValueMapType::const_iterator I = ValueMap.find(V); 520 assert(I != ValueMap.end() && "Value not in slotcalculator!"); 521 return I->second-1; 522 } 523 524 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 525 LLVM_DUMP_METHOD void ValueEnumerator::dump() const { 526 print(dbgs(), ValueMap, "Default"); 527 dbgs() << '\n'; 528 print(dbgs(), MetadataMap, "MetaData"); 529 dbgs() << '\n'; 530 } 531 #endif 532 533 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, 534 const char *Name) const { 535 OS << "Map Name: " << Name << "\n"; 536 OS << "Size: " << Map.size() << "\n"; 537 for (ValueMapType::const_iterator I = Map.begin(), 538 E = Map.end(); I != E; ++I) { 539 const Value *V = I->first; 540 if (V->hasName()) 541 OS << "Value: " << V->getName(); 542 else 543 OS << "Value: [null]\n"; 544 V->print(errs()); 545 errs() << '\n'; 546 547 OS << " Uses(" << V->getNumUses() << "):"; 548 for (const Use &U : V->uses()) { 549 if (&U != &*V->use_begin()) 550 OS << ","; 551 if(U->hasName()) 552 OS << " " << U->getName(); 553 else 554 OS << " [null]"; 555 556 } 557 OS << "\n\n"; 558 } 559 } 560 561 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, 562 const char *Name) const { 563 OS << "Map Name: " << Name << "\n"; 564 OS << "Size: " << Map.size() << "\n"; 565 for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { 566 const Metadata *MD = I->first; 567 OS << "Metadata: slot = " << I->second.ID << "\n"; 568 OS << "Metadata: function = " << I->second.F << "\n"; 569 MD->print(OS); 570 OS << "\n"; 571 } 572 } 573 574 /// OptimizeConstants - Reorder constant pool for denser encoding. 575 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { 576 if (CstStart == CstEnd || CstStart+1 == CstEnd) return; 577 578 if (ShouldPreserveUseListOrder) 579 // Optimizing constants makes the use-list order difficult to predict. 580 // Disable it for now when trying to preserve the order. 581 return; 582 583 std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, 584 [this](const std::pair<const Value *, unsigned> &LHS, 585 const std::pair<const Value *, unsigned> &RHS) { 586 // Sort by plane. 587 if (LHS.first->getType() != RHS.first->getType()) 588 return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); 589 // Then by frequency. 590 return LHS.second > RHS.second; 591 }); 592 593 // Ensure that integer and vector of integer constants are at the start of the 594 // constant pool. This is important so that GEP structure indices come before 595 // gep constant exprs. 596 std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, 597 isIntOrIntVectorValue); 598 599 // Rebuild the modified portion of ValueMap. 600 for (; CstStart != CstEnd; ++CstStart) 601 ValueMap[Values[CstStart].first] = CstStart+1; 602 } 603 604 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol 605 /// table into the values table. 606 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { 607 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); 608 VI != VE; ++VI) 609 EnumerateValue(VI->getValue()); 610 } 611 612 /// Insert all of the values referenced by named metadata in the specified 613 /// module. 614 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { 615 for (const auto &I : M.named_metadata()) 616 EnumerateNamedMDNode(&I); 617 } 618 619 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { 620 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) 621 EnumerateMetadata(nullptr, MD->getOperand(i)); 622 } 623 624 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { 625 return F ? getValueID(F) + 1 : 0; 626 } 627 628 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { 629 EnumerateMetadata(getMetadataFunctionID(F), MD); 630 } 631 632 void ValueEnumerator::EnumerateFunctionLocalMetadata( 633 const Function &F, const LocalAsMetadata *Local) { 634 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); 635 } 636 637 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 638 const Function &F, const DIArgList *ArgList) { 639 EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList); 640 } 641 642 void ValueEnumerator::dropFunctionFromMetadata( 643 MetadataMapType::value_type &FirstMD) { 644 SmallVector<const MDNode *, 64> Worklist; 645 auto push = [&Worklist](MetadataMapType::value_type &MD) { 646 auto &Entry = MD.second; 647 648 // Nothing to do if this metadata isn't tagged. 649 if (!Entry.F) 650 return; 651 652 // Drop the function tag. 653 Entry.F = 0; 654 655 // If this is has an ID and is an MDNode, then its operands have entries as 656 // well. We need to drop the function from them too. 657 if (Entry.ID) 658 if (auto *N = dyn_cast<MDNode>(MD.first)) 659 Worklist.push_back(N); 660 }; 661 push(FirstMD); 662 while (!Worklist.empty()) 663 for (const Metadata *Op : Worklist.pop_back_val()->operands()) { 664 if (!Op) 665 continue; 666 auto MD = MetadataMap.find(Op); 667 if (MD != MetadataMap.end()) 668 push(*MD); 669 } 670 } 671 672 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { 673 // It's vital for reader efficiency that uniqued subgraphs are done in 674 // post-order; it's expensive when their operands have forward references. 675 // If a distinct node is referenced from a uniqued node, it'll be delayed 676 // until the uniqued subgraph has been completely traversed. 677 SmallVector<const MDNode *, 32> DelayedDistinctNodes; 678 679 // Start by enumerating MD, and then work through its transitive operands in 680 // post-order. This requires a depth-first search. 681 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; 682 if (const MDNode *N = enumerateMetadataImpl(F, MD)) 683 Worklist.push_back(std::make_pair(N, N->op_begin())); 684 685 while (!Worklist.empty()) { 686 const MDNode *N = Worklist.back().first; 687 688 // Enumerate operands until we hit a new node. We need to traverse these 689 // nodes' operands before visiting the rest of N's operands. 690 MDNode::op_iterator I = std::find_if( 691 Worklist.back().second, N->op_end(), 692 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); 693 if (I != N->op_end()) { 694 auto *Op = cast<MDNode>(*I); 695 Worklist.back().second = ++I; 696 697 // Delay traversing Op if it's a distinct node and N is uniqued. 698 if (Op->isDistinct() && !N->isDistinct()) 699 DelayedDistinctNodes.push_back(Op); 700 else 701 Worklist.push_back(std::make_pair(Op, Op->op_begin())); 702 continue; 703 } 704 705 // All the operands have been visited. Now assign an ID. 706 Worklist.pop_back(); 707 MDs.push_back(N); 708 MetadataMap[N].ID = MDs.size(); 709 710 // Flush out any delayed distinct nodes; these are all the distinct nodes 711 // that are leaves in last uniqued subgraph. 712 if (Worklist.empty() || Worklist.back().first->isDistinct()) { 713 for (const MDNode *N : DelayedDistinctNodes) 714 Worklist.push_back(std::make_pair(N, N->op_begin())); 715 DelayedDistinctNodes.clear(); 716 } 717 } 718 } 719 720 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { 721 if (!MD) 722 return nullptr; 723 724 assert( 725 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && 726 "Invalid metadata kind"); 727 728 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); 729 MDIndex &Entry = Insertion.first->second; 730 if (!Insertion.second) { 731 // Already mapped. If F doesn't match the function tag, drop it. 732 if (Entry.hasDifferentFunction(F)) 733 dropFunctionFromMetadata(*Insertion.first); 734 return nullptr; 735 } 736 737 // Don't assign IDs to metadata nodes. 738 if (auto *N = dyn_cast<MDNode>(MD)) 739 return N; 740 741 // Save the metadata. 742 MDs.push_back(MD); 743 Entry.ID = MDs.size(); 744 745 // Enumerate the constant, if any. 746 if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) 747 EnumerateValue(C->getValue()); 748 749 return nullptr; 750 } 751 752 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata 753 /// information reachable from the metadata. 754 void ValueEnumerator::EnumerateFunctionLocalMetadata( 755 unsigned F, const LocalAsMetadata *Local) { 756 assert(F && "Expected a function"); 757 758 // Check to see if it's already in! 759 MDIndex &Index = MetadataMap[Local]; 760 if (Index.ID) { 761 assert(Index.F == F && "Expected the same function"); 762 return; 763 } 764 765 MDs.push_back(Local); 766 Index.F = F; 767 Index.ID = MDs.size(); 768 769 EnumerateValue(Local->getValue()); 770 } 771 772 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata 773 /// information reachable from the metadata. 774 void ValueEnumerator::EnumerateFunctionLocalListMetadata( 775 unsigned F, const DIArgList *ArgList) { 776 assert(F && "Expected a function"); 777 778 // Check to see if it's already in! 779 MDIndex &Index = MetadataMap[ArgList]; 780 if (Index.ID) { 781 assert(Index.F == F && "Expected the same function"); 782 return; 783 } 784 785 for (ValueAsMetadata *VAM : ArgList->getArgs()) { 786 if (isa<LocalAsMetadata>(VAM)) { 787 assert(MetadataMap.count(VAM) && 788 "LocalAsMetadata should be enumerated before DIArgList"); 789 assert(MetadataMap[VAM].F == F && 790 "Expected LocalAsMetadata in the same function"); 791 } else { 792 assert(isa<ConstantAsMetadata>(VAM) && 793 "Expected LocalAsMetadata or ConstantAsMetadata"); 794 assert(ValueMap.count(VAM->getValue()) && 795 "Constant should be enumerated beforeDIArgList"); 796 EnumerateMetadata(F, VAM); 797 } 798 } 799 800 MDs.push_back(ArgList); 801 Index.F = F; 802 Index.ID = MDs.size(); 803 } 804 805 static unsigned getMetadataTypeOrder(const Metadata *MD) { 806 // Strings are emitted in bulk and must come first. 807 if (isa<MDString>(MD)) 808 return 0; 809 810 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it 811 // to the front since we can detect it. 812 auto *N = dyn_cast<MDNode>(MD); 813 if (!N) 814 return 1; 815 816 // The reader is fast forward references for distinct node operands, but slow 817 // when uniqued operands are unresolved. 818 return N->isDistinct() ? 2 : 3; 819 } 820 821 void ValueEnumerator::organizeMetadata() { 822 assert(MetadataMap.size() == MDs.size() && 823 "Metadata map and vector out of sync"); 824 825 if (MDs.empty()) 826 return; 827 828 // Copy out the index information from MetadataMap in order to choose a new 829 // order. 830 SmallVector<MDIndex, 64> Order; 831 Order.reserve(MetadataMap.size()); 832 for (const Metadata *MD : MDs) 833 Order.push_back(MetadataMap.lookup(MD)); 834 835 // Partition: 836 // - by function, then 837 // - by isa<MDString> 838 // and then sort by the original/current ID. Since the IDs are guaranteed to 839 // be unique, the result of std::sort will be deterministic. There's no need 840 // for std::stable_sort. 841 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { 842 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < 843 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); 844 }); 845 846 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, 847 // and fix up MetadataMap. 848 std::vector<const Metadata *> OldMDs; 849 MDs.swap(OldMDs); 850 MDs.reserve(OldMDs.size()); 851 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { 852 auto *MD = Order[I].get(OldMDs); 853 MDs.push_back(MD); 854 MetadataMap[MD].ID = I + 1; 855 if (isa<MDString>(MD)) 856 ++NumMDStrings; 857 } 858 859 // Return early if there's nothing for the functions. 860 if (MDs.size() == Order.size()) 861 return; 862 863 // Build the function metadata ranges. 864 MDRange R; 865 FunctionMDs.reserve(OldMDs.size()); 866 unsigned PrevF = 0; 867 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; 868 ++I) { 869 unsigned F = Order[I].F; 870 if (!PrevF) { 871 PrevF = F; 872 } else if (PrevF != F) { 873 R.Last = FunctionMDs.size(); 874 std::swap(R, FunctionMDInfo[PrevF]); 875 R.First = FunctionMDs.size(); 876 877 ID = MDs.size(); 878 PrevF = F; 879 } 880 881 auto *MD = Order[I].get(OldMDs); 882 FunctionMDs.push_back(MD); 883 MetadataMap[MD].ID = ++ID; 884 if (isa<MDString>(MD)) 885 ++R.NumStrings; 886 } 887 R.Last = FunctionMDs.size(); 888 FunctionMDInfo[PrevF] = R; 889 } 890 891 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { 892 NumModuleMDs = MDs.size(); 893 894 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); 895 NumMDStrings = R.NumStrings; 896 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, 897 FunctionMDs.begin() + R.Last); 898 } 899 900 void ValueEnumerator::EnumerateValue(const Value *V) { 901 assert(!V->getType()->isVoidTy() && "Can't insert void values!"); 902 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); 903 904 // Check to see if it's already in! 905 unsigned &ValueID = ValueMap[V]; 906 if (ValueID) { 907 // Increment use count. 908 Values[ValueID-1].second++; 909 return; 910 } 911 912 if (auto *GO = dyn_cast<GlobalObject>(V)) 913 if (const Comdat *C = GO->getComdat()) 914 Comdats.insert(C); 915 916 // Enumerate the type of this value. 917 EnumerateType(V->getType()); 918 919 if (const Constant *C = dyn_cast<Constant>(V)) { 920 if (isa<GlobalValue>(C)) { 921 // Initializers for globals are handled explicitly elsewhere. 922 } else if (C->getNumOperands()) { 923 // If a constant has operands, enumerate them. This makes sure that if a 924 // constant has uses (for example an array of const ints), that they are 925 // inserted also. 926 927 // We prefer to enumerate them with values before we enumerate the user 928 // itself. This makes it more likely that we can avoid forward references 929 // in the reader. We know that there can be no cycles in the constants 930 // graph that don't go through a global variable. 931 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); 932 I != E; ++I) 933 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. 934 EnumerateValue(*I); 935 if (auto *CE = dyn_cast<ConstantExpr>(C)) 936 if (CE->getOpcode() == Instruction::ShuffleVector) 937 EnumerateValue(CE->getShuffleMaskForBitcode()); 938 939 // Finally, add the value. Doing this could make the ValueID reference be 940 // dangling, don't reuse it. 941 Values.push_back(std::make_pair(V, 1U)); 942 ValueMap[V] = Values.size(); 943 return; 944 } 945 } 946 947 // Add the value. 948 Values.push_back(std::make_pair(V, 1U)); 949 ValueID = Values.size(); 950 } 951 952 953 void ValueEnumerator::EnumerateType(Type *Ty) { 954 unsigned *TypeID = &TypeMap[Ty]; 955 956 // We've already seen this type. 957 if (*TypeID) 958 return; 959 960 // If it is a non-anonymous struct, mark the type as being visited so that we 961 // don't recursively visit it. This is safe because we allow forward 962 // references of these in the bitcode reader. 963 if (StructType *STy = dyn_cast<StructType>(Ty)) 964 if (!STy->isLiteral()) 965 *TypeID = ~0U; 966 967 // Enumerate all of the subtypes before we enumerate this type. This ensures 968 // that the type will be enumerated in an order that can be directly built. 969 for (Type *SubTy : Ty->subtypes()) 970 EnumerateType(SubTy); 971 972 // Refresh the TypeID pointer in case the table rehashed. 973 TypeID = &TypeMap[Ty]; 974 975 // Check to see if we got the pointer another way. This can happen when 976 // enumerating recursive types that hit the base case deeper than they start. 977 // 978 // If this is actually a struct that we are treating as forward ref'able, 979 // then emit the definition now that all of its contents are available. 980 if (*TypeID && *TypeID != ~0U) 981 return; 982 983 // Add this type now that its contents are all happily enumerated. 984 Types.push_back(Ty); 985 986 *TypeID = Types.size(); 987 } 988 989 // Enumerate the types for the specified value. If the value is a constant, 990 // walk through it, enumerating the types of the constant. 991 void ValueEnumerator::EnumerateOperandType(const Value *V) { 992 EnumerateType(V->getType()); 993 994 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); 995 996 const Constant *C = dyn_cast<Constant>(V); 997 if (!C) 998 return; 999 1000 // If this constant is already enumerated, ignore it, we know its type must 1001 // be enumerated. 1002 if (ValueMap.count(C)) 1003 return; 1004 1005 // This constant may have operands, make sure to enumerate the types in 1006 // them. 1007 for (const Value *Op : C->operands()) { 1008 // Don't enumerate basic blocks here, this happens as operands to 1009 // blockaddress. 1010 if (isa<BasicBlock>(Op)) 1011 continue; 1012 1013 EnumerateOperandType(Op); 1014 } 1015 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1016 if (CE->getOpcode() == Instruction::ShuffleVector) 1017 EnumerateOperandType(CE->getShuffleMaskForBitcode()); 1018 if (CE->getOpcode() == Instruction::GetElementPtr) 1019 EnumerateType(cast<GEPOperator>(CE)->getSourceElementType()); 1020 } 1021 } 1022 1023 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { 1024 if (PAL.isEmpty()) return; // null is always 0. 1025 1026 // Do a lookup. 1027 unsigned &Entry = AttributeListMap[PAL]; 1028 if (Entry == 0) { 1029 // Never saw this before, add it. 1030 AttributeLists.push_back(PAL); 1031 Entry = AttributeLists.size(); 1032 } 1033 1034 // Do lookups for all attribute groups. 1035 for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { 1036 AttributeSet AS = PAL.getAttributes(i); 1037 if (!AS.hasAttributes()) 1038 continue; 1039 IndexAndAttrSet Pair = {i, AS}; 1040 unsigned &Entry = AttributeGroupMap[Pair]; 1041 if (Entry == 0) { 1042 AttributeGroups.push_back(Pair); 1043 Entry = AttributeGroups.size(); 1044 } 1045 } 1046 } 1047 1048 void ValueEnumerator::incorporateFunction(const Function &F) { 1049 InstructionCount = 0; 1050 NumModuleValues = Values.size(); 1051 1052 // Add global metadata to the function block. This doesn't include 1053 // LocalAsMetadata. 1054 incorporateFunctionMetadata(F); 1055 1056 // Adding function arguments to the value table. 1057 for (const auto &I : F.args()) { 1058 EnumerateValue(&I); 1059 if (I.hasAttribute(Attribute::ByVal)) 1060 EnumerateType(I.getParamByValType()); 1061 else if (I.hasAttribute(Attribute::StructRet)) 1062 EnumerateType(I.getParamStructRetType()); 1063 else if (I.hasAttribute(Attribute::ByRef)) 1064 EnumerateType(I.getParamByRefType()); 1065 } 1066 FirstFuncConstantID = Values.size(); 1067 1068 // Add all function-level constants to the value table. 1069 for (const BasicBlock &BB : F) { 1070 for (const Instruction &I : BB) { 1071 for (const Use &OI : I.operands()) { 1072 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) 1073 EnumerateValue(OI); 1074 } 1075 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 1076 EnumerateValue(SVI->getShuffleMaskForBitcode()); 1077 } 1078 BasicBlocks.push_back(&BB); 1079 ValueMap[&BB] = BasicBlocks.size(); 1080 } 1081 1082 // Optimize the constant layout. 1083 OptimizeConstants(FirstFuncConstantID, Values.size()); 1084 1085 // Add the function's parameter attributes so they are available for use in 1086 // the function's instruction. 1087 EnumerateAttributes(F.getAttributes()); 1088 1089 FirstInstID = Values.size(); 1090 1091 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; 1092 SmallVector<DIArgList *, 8> ArgListMDVector; 1093 // Add all of the instructions. 1094 for (const BasicBlock &BB : F) { 1095 for (const Instruction &I : BB) { 1096 for (const Use &OI : I.operands()) { 1097 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) { 1098 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) { 1099 // Enumerate metadata after the instructions they might refer to. 1100 FnLocalMDVector.push_back(Local); 1101 } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) { 1102 ArgListMDVector.push_back(ArgList); 1103 for (ValueAsMetadata *VMD : ArgList->getArgs()) { 1104 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) { 1105 // Enumerate metadata after the instructions they might refer 1106 // to. 1107 FnLocalMDVector.push_back(Local); 1108 } 1109 } 1110 } 1111 } 1112 } 1113 1114 if (!I.getType()->isVoidTy()) 1115 EnumerateValue(&I); 1116 } 1117 } 1118 1119 // Add all of the function-local metadata. 1120 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { 1121 // At this point, every local values have been incorporated, we shouldn't 1122 // have a metadata operand that references a value that hasn't been seen. 1123 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && 1124 "Missing value for metadata operand"); 1125 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); 1126 } 1127 // DIArgList entries must come after function-local metadata, as it is not 1128 // possible to forward-reference them. 1129 for (const DIArgList *ArgList : ArgListMDVector) 1130 EnumerateFunctionLocalListMetadata(F, ArgList); 1131 } 1132 1133 void ValueEnumerator::purgeFunction() { 1134 /// Remove purged values from the ValueMap. 1135 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) 1136 ValueMap.erase(Values[i].first); 1137 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) 1138 MetadataMap.erase(MDs[i]); 1139 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) 1140 ValueMap.erase(BasicBlocks[i]); 1141 1142 Values.resize(NumModuleValues); 1143 MDs.resize(NumModuleMDs); 1144 BasicBlocks.clear(); 1145 NumMDStrings = 0; 1146 } 1147 1148 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, 1149 DenseMap<const BasicBlock*, unsigned> &IDMap) { 1150 unsigned Counter = 0; 1151 for (const BasicBlock &BB : *F) 1152 IDMap[&BB] = ++Counter; 1153 } 1154 1155 /// getGlobalBasicBlockID - This returns the function-specific ID for the 1156 /// specified basic block. This is relatively expensive information, so it 1157 /// should only be used by rare constructs such as address-of-label. 1158 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { 1159 unsigned &Idx = GlobalBasicBlockIDs[BB]; 1160 if (Idx != 0) 1161 return Idx-1; 1162 1163 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); 1164 return getGlobalBasicBlockID(BB); 1165 } 1166 1167 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { 1168 return Log2_32_Ceil(getTypes().size() + 1); 1169 } 1170