1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 extern bool WriteNewDbgInfoFormatToBitcode; 103 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 104 105 namespace { 106 107 /// These are manifest constants used by the bitcode writer. They do not need to 108 /// be kept in sync with the reader, but need to be consistent within this file. 109 enum { 110 // VALUE_SYMTAB_BLOCK abbrev id's. 111 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 VST_ENTRY_7_ABBREV, 113 VST_ENTRY_6_ABBREV, 114 VST_BBENTRY_6_ABBREV, 115 116 // CONSTANTS_BLOCK abbrev id's. 117 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 CONSTANTS_INTEGER_ABBREV, 119 CONSTANTS_CE_CAST_Abbrev, 120 CONSTANTS_NULL_Abbrev, 121 122 // FUNCTION_BLOCK abbrev id's. 123 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 124 FUNCTION_INST_UNOP_ABBREV, 125 FUNCTION_INST_UNOP_FLAGS_ABBREV, 126 FUNCTION_INST_BINOP_ABBREV, 127 FUNCTION_INST_BINOP_FLAGS_ABBREV, 128 FUNCTION_INST_CAST_ABBREV, 129 FUNCTION_INST_CAST_FLAGS_ABBREV, 130 FUNCTION_INST_RET_VOID_ABBREV, 131 FUNCTION_INST_RET_VAL_ABBREV, 132 FUNCTION_INST_UNREACHABLE_ABBREV, 133 FUNCTION_INST_GEP_ABBREV, 134 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 135 }; 136 137 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 138 /// file type. 139 class BitcodeWriterBase { 140 protected: 141 /// The stream created and owned by the client. 142 BitstreamWriter &Stream; 143 144 StringTableBuilder &StrtabBuilder; 145 146 public: 147 /// Constructs a BitcodeWriterBase object that writes to the provided 148 /// \p Stream. 149 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 150 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 151 152 protected: 153 void writeModuleVersion(); 154 }; 155 156 void BitcodeWriterBase::writeModuleVersion() { 157 // VERSION: [version#] 158 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 159 } 160 161 /// Base class to manage the module bitcode writing, currently subclassed for 162 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 163 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 164 protected: 165 /// The Module to write to bitcode. 166 const Module &M; 167 168 /// Enumerates ids for all values in the module. 169 ValueEnumerator VE; 170 171 /// Optional per-module index to write for ThinLTO. 172 const ModuleSummaryIndex *Index; 173 174 /// Map that holds the correspondence between GUIDs in the summary index, 175 /// that came from indirect call profiles, and a value id generated by this 176 /// class to use in the VST and summary block records. 177 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 178 179 /// Tracks the last value id recorded in the GUIDToValueMap. 180 unsigned GlobalValueId; 181 182 /// Saves the offset of the VSTOffset record that must eventually be 183 /// backpatched with the offset of the actual VST. 184 uint64_t VSTOffsetPlaceholder = 0; 185 186 public: 187 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 188 /// writing to the provided \p Buffer. 189 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 190 BitstreamWriter &Stream, 191 bool ShouldPreserveUseListOrder, 192 const ModuleSummaryIndex *Index) 193 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 194 VE(M, ShouldPreserveUseListOrder), Index(Index) { 195 // Assign ValueIds to any callee values in the index that came from 196 // indirect call profiles and were recorded as a GUID not a Value* 197 // (which would have been assigned an ID by the ValueEnumerator). 198 // The starting ValueId is just after the number of values in the 199 // ValueEnumerator, so that they can be emitted in the VST. 200 GlobalValueId = VE.getValues().size(); 201 if (!Index) 202 return; 203 for (const auto &GUIDSummaryLists : *Index) 204 // Examine all summaries for this GUID. 205 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 206 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 207 // For each call in the function summary, see if the call 208 // is to a GUID (which means it is for an indirect call, 209 // otherwise we would have a Value for it). If so, synthesize 210 // a value id. 211 for (auto &CallEdge : FS->calls()) 212 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 213 assignValueId(CallEdge.first.getGUID()); 214 } 215 216 protected: 217 void writePerModuleGlobalValueSummary(); 218 219 private: 220 void writePerModuleFunctionSummaryRecord( 221 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 222 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 223 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 224 void writeModuleLevelReferences(const GlobalVariable &V, 225 SmallVector<uint64_t, 64> &NameVals, 226 unsigned FSModRefsAbbrev, 227 unsigned FSModVTableRefsAbbrev); 228 229 void assignValueId(GlobalValue::GUID ValGUID) { 230 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 231 } 232 233 unsigned getValueId(GlobalValue::GUID ValGUID) { 234 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 235 // Expect that any GUID value had a value Id assigned by an 236 // earlier call to assignValueId. 237 assert(VMI != GUIDToValueIdMap.end() && 238 "GUID does not have assigned value Id"); 239 return VMI->second; 240 } 241 242 // Helper to get the valueId for the type of value recorded in VI. 243 unsigned getValueId(ValueInfo VI) { 244 if (!VI.haveGVs() || !VI.getValue()) 245 return getValueId(VI.getGUID()); 246 return VE.getValueID(VI.getValue()); 247 } 248 249 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 250 }; 251 252 /// Class to manage the bitcode writing for a module. 253 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 254 /// Pointer to the buffer allocated by caller for bitcode writing. 255 const SmallVectorImpl<char> &Buffer; 256 257 /// True if a module hash record should be written. 258 bool GenerateHash; 259 260 /// If non-null, when GenerateHash is true, the resulting hash is written 261 /// into ModHash. 262 ModuleHash *ModHash; 263 264 SHA1 Hasher; 265 266 /// The start bit of the identification block. 267 uint64_t BitcodeStartBit; 268 269 public: 270 /// Constructs a ModuleBitcodeWriter object for the given Module, 271 /// writing to the provided \p Buffer. 272 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 273 StringTableBuilder &StrtabBuilder, 274 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 275 const ModuleSummaryIndex *Index, bool GenerateHash, 276 ModuleHash *ModHash = nullptr) 277 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 278 ShouldPreserveUseListOrder, Index), 279 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 280 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 281 282 /// Emit the current module to the bitstream. 283 void write(); 284 285 private: 286 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 287 288 size_t addToStrtab(StringRef Str); 289 290 void writeAttributeGroupTable(); 291 void writeAttributeTable(); 292 void writeTypeTable(); 293 void writeComdats(); 294 void writeValueSymbolTableForwardDecl(); 295 void writeModuleInfo(); 296 void writeValueAsMetadata(const ValueAsMetadata *MD, 297 SmallVectorImpl<uint64_t> &Record); 298 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 unsigned createDILocationAbbrev(); 301 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned &Abbrev); 303 unsigned createGenericDINodeAbbrev(); 304 void writeGenericDINode(const GenericDINode *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 306 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 307 unsigned Abbrev); 308 void writeDIGenericSubrange(const DIGenericSubrange *N, 309 SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIEnumerator(const DIEnumerator *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 314 unsigned Abbrev); 315 void writeDIStringType(const DIStringType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDIDerivedType(const DIDerivedType *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDICompositeType(const DICompositeType *N, 320 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 321 void writeDISubroutineType(const DISubroutineType *N, 322 SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDICompileUnit(const DICompileUnit *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDISubprogram(const DISubprogram *N, 329 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 330 void writeDILexicalBlock(const DILexicalBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 333 SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDICommonBlock(const DICommonBlock *N, 336 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 337 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 344 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDIGlobalVariable(const DIGlobalVariable *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDILocalVariable(const DILocalVariable *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDILabel(const DILabel *N, 360 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 361 void writeDIExpression(const DIExpression *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 void writeDIObjCProperty(const DIObjCProperty *N, 367 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 368 void writeDIImportedEntity(const DIImportedEntity *N, 369 SmallVectorImpl<uint64_t> &Record, 370 unsigned Abbrev); 371 unsigned createNamedMetadataAbbrev(); 372 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 373 unsigned createMetadataStringsAbbrev(); 374 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 375 SmallVectorImpl<uint64_t> &Record); 376 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 377 SmallVectorImpl<uint64_t> &Record, 378 std::vector<unsigned> *MDAbbrevs = nullptr, 379 std::vector<uint64_t> *IndexPos = nullptr); 380 void writeModuleMetadata(); 381 void writeFunctionMetadata(const Function &F); 382 void writeFunctionMetadataAttachment(const Function &F); 383 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 384 const GlobalObject &GO); 385 void writeModuleMetadataKinds(); 386 void writeOperandBundleTags(); 387 void writeSyncScopeNames(); 388 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 389 void writeModuleConstants(); 390 bool pushValueAndType(const Value *V, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void writeOperandBundles(const CallBase &CB, unsigned InstID); 393 void pushValue(const Value *V, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void pushValueSigned(const Value *V, unsigned InstID, 396 SmallVectorImpl<uint64_t> &Vals); 397 void writeInstruction(const Instruction &I, unsigned InstID, 398 SmallVectorImpl<unsigned> &Vals); 399 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 400 void writeGlobalValueSymbolTable( 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeUseList(UseListOrder &&Order); 403 void writeUseListBlock(const Function *F); 404 void 405 writeFunction(const Function &F, 406 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 407 void writeBlockInfo(); 408 void writeModuleHash(size_t BlockStartPos); 409 410 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 411 return unsigned(SSID); 412 } 413 414 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 415 }; 416 417 /// Class to manage the bitcode writing for a combined index. 418 class IndexBitcodeWriter : public BitcodeWriterBase { 419 /// The combined index to write to bitcode. 420 const ModuleSummaryIndex &Index; 421 422 /// When writing a subset of the index for distributed backends, client 423 /// provides a map of modules to the corresponding GUIDs/summaries to write. 424 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 425 426 /// Map that holds the correspondence between the GUID used in the combined 427 /// index and a value id generated by this class to use in references. 428 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 429 430 // The sorted stack id indices actually used in the summary entries being 431 // written, which will be a subset of those in the full index in the case of 432 // distributed indexes. 433 std::vector<unsigned> StackIdIndices; 434 435 /// Tracks the last value id recorded in the GUIDToValueMap. 436 unsigned GlobalValueId = 0; 437 438 /// Tracks the assignment of module paths in the module path string table to 439 /// an id assigned for use in summary references to the module path. 440 DenseMap<StringRef, uint64_t> ModuleIdMap; 441 442 public: 443 /// Constructs a IndexBitcodeWriter object for the given combined index, 444 /// writing to the provided \p Buffer. When writing a subset of the index 445 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 446 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 447 const ModuleSummaryIndex &Index, 448 const std::map<std::string, GVSummaryMapTy> 449 *ModuleToSummariesForIndex = nullptr) 450 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 451 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 452 // Assign unique value ids to all summaries to be written, for use 453 // in writing out the call graph edges. Save the mapping from GUID 454 // to the new global value id to use when writing those edges, which 455 // are currently saved in the index in terms of GUID. 456 forEachSummary([&](GVInfo I, bool IsAliasee) { 457 GUIDToValueIdMap[I.first] = ++GlobalValueId; 458 if (IsAliasee) 459 return; 460 auto *FS = dyn_cast<FunctionSummary>(I.second); 461 if (!FS) 462 return; 463 // Record all stack id indices actually used in the summary entries being 464 // written, so that we can compact them in the case of distributed ThinLTO 465 // indexes. 466 for (auto &CI : FS->callsites()) { 467 // If the stack id list is empty, this callsite info was synthesized for 468 // a missing tail call frame. Ensure that the callee's GUID gets a value 469 // id. Normally we only generate these for defined summaries, which in 470 // the case of distributed ThinLTO is only the functions already defined 471 // in the module or that we want to import. We don't bother to include 472 // all the callee symbols as they aren't normally needed in the backend. 473 // However, for the synthesized callsite infos we do need the callee 474 // GUID in the backend so that we can correlate the identified callee 475 // with this callsite info (which for non-tail calls is done by the 476 // ordering of the callsite infos and verified via stack ids). 477 if (CI.StackIdIndices.empty()) { 478 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 479 continue; 480 } 481 for (auto Idx : CI.StackIdIndices) 482 StackIdIndices.push_back(Idx); 483 } 484 for (auto &AI : FS->allocs()) 485 for (auto &MIB : AI.MIBs) 486 for (auto Idx : MIB.StackIdIndices) 487 StackIdIndices.push_back(Idx); 488 }); 489 llvm::sort(StackIdIndices); 490 StackIdIndices.erase( 491 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 492 StackIdIndices.end()); 493 } 494 495 /// The below iterator returns the GUID and associated summary. 496 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 497 498 /// Calls the callback for each value GUID and summary to be written to 499 /// bitcode. This hides the details of whether they are being pulled from the 500 /// entire index or just those in a provided ModuleToSummariesForIndex map. 501 template<typename Functor> 502 void forEachSummary(Functor Callback) { 503 if (ModuleToSummariesForIndex) { 504 for (auto &M : *ModuleToSummariesForIndex) 505 for (auto &Summary : M.second) { 506 Callback(Summary, false); 507 // Ensure aliasee is handled, e.g. for assigning a valueId, 508 // even if we are not importing the aliasee directly (the 509 // imported alias will contain a copy of aliasee). 510 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 511 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 512 } 513 } else { 514 for (auto &Summaries : Index) 515 for (auto &Summary : Summaries.second.SummaryList) 516 Callback({Summaries.first, Summary.get()}, false); 517 } 518 } 519 520 /// Calls the callback for each entry in the modulePaths StringMap that 521 /// should be written to the module path string table. This hides the details 522 /// of whether they are being pulled from the entire index or just those in a 523 /// provided ModuleToSummariesForIndex map. 524 template <typename Functor> void forEachModule(Functor Callback) { 525 if (ModuleToSummariesForIndex) { 526 for (const auto &M : *ModuleToSummariesForIndex) { 527 const auto &MPI = Index.modulePaths().find(M.first); 528 if (MPI == Index.modulePaths().end()) { 529 // This should only happen if the bitcode file was empty, in which 530 // case we shouldn't be importing (the ModuleToSummariesForIndex 531 // would only include the module we are writing and index for). 532 assert(ModuleToSummariesForIndex->size() == 1); 533 continue; 534 } 535 Callback(*MPI); 536 } 537 } else { 538 // Since StringMap iteration order isn't guaranteed, order by path string 539 // first. 540 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 541 // map lookup. 542 std::vector<StringRef> ModulePaths; 543 for (auto &[ModPath, _] : Index.modulePaths()) 544 ModulePaths.push_back(ModPath); 545 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 546 for (auto &ModPath : ModulePaths) 547 Callback(*Index.modulePaths().find(ModPath)); 548 } 549 } 550 551 /// Main entry point for writing a combined index to bitcode. 552 void write(); 553 554 private: 555 void writeModStrings(); 556 void writeCombinedGlobalValueSummary(); 557 558 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 559 auto VMI = GUIDToValueIdMap.find(ValGUID); 560 if (VMI == GUIDToValueIdMap.end()) 561 return std::nullopt; 562 return VMI->second; 563 } 564 565 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 566 }; 567 568 } // end anonymous namespace 569 570 static unsigned getEncodedCastOpcode(unsigned Opcode) { 571 switch (Opcode) { 572 default: llvm_unreachable("Unknown cast instruction!"); 573 case Instruction::Trunc : return bitc::CAST_TRUNC; 574 case Instruction::ZExt : return bitc::CAST_ZEXT; 575 case Instruction::SExt : return bitc::CAST_SEXT; 576 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 577 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 578 case Instruction::UIToFP : return bitc::CAST_UITOFP; 579 case Instruction::SIToFP : return bitc::CAST_SITOFP; 580 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 581 case Instruction::FPExt : return bitc::CAST_FPEXT; 582 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 583 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 584 case Instruction::BitCast : return bitc::CAST_BITCAST; 585 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 586 } 587 } 588 589 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 590 switch (Opcode) { 591 default: llvm_unreachable("Unknown binary instruction!"); 592 case Instruction::FNeg: return bitc::UNOP_FNEG; 593 } 594 } 595 596 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 597 switch (Opcode) { 598 default: llvm_unreachable("Unknown binary instruction!"); 599 case Instruction::Add: 600 case Instruction::FAdd: return bitc::BINOP_ADD; 601 case Instruction::Sub: 602 case Instruction::FSub: return bitc::BINOP_SUB; 603 case Instruction::Mul: 604 case Instruction::FMul: return bitc::BINOP_MUL; 605 case Instruction::UDiv: return bitc::BINOP_UDIV; 606 case Instruction::FDiv: 607 case Instruction::SDiv: return bitc::BINOP_SDIV; 608 case Instruction::URem: return bitc::BINOP_UREM; 609 case Instruction::FRem: 610 case Instruction::SRem: return bitc::BINOP_SREM; 611 case Instruction::Shl: return bitc::BINOP_SHL; 612 case Instruction::LShr: return bitc::BINOP_LSHR; 613 case Instruction::AShr: return bitc::BINOP_ASHR; 614 case Instruction::And: return bitc::BINOP_AND; 615 case Instruction::Or: return bitc::BINOP_OR; 616 case Instruction::Xor: return bitc::BINOP_XOR; 617 } 618 } 619 620 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 621 switch (Op) { 622 default: llvm_unreachable("Unknown RMW operation!"); 623 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 624 case AtomicRMWInst::Add: return bitc::RMW_ADD; 625 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 626 case AtomicRMWInst::And: return bitc::RMW_AND; 627 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 628 case AtomicRMWInst::Or: return bitc::RMW_OR; 629 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 630 case AtomicRMWInst::Max: return bitc::RMW_MAX; 631 case AtomicRMWInst::Min: return bitc::RMW_MIN; 632 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 633 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 634 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 635 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 636 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 637 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 638 case AtomicRMWInst::UIncWrap: 639 return bitc::RMW_UINC_WRAP; 640 case AtomicRMWInst::UDecWrap: 641 return bitc::RMW_UDEC_WRAP; 642 } 643 } 644 645 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 646 switch (Ordering) { 647 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 648 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 649 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 650 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 651 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 652 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 653 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 654 } 655 llvm_unreachable("Invalid ordering"); 656 } 657 658 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 659 StringRef Str, unsigned AbbrevToUse) { 660 SmallVector<unsigned, 64> Vals; 661 662 // Code: [strchar x N] 663 for (char C : Str) { 664 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 665 AbbrevToUse = 0; 666 Vals.push_back(C); 667 } 668 669 // Emit the finished record. 670 Stream.EmitRecord(Code, Vals, AbbrevToUse); 671 } 672 673 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 674 switch (Kind) { 675 case Attribute::Alignment: 676 return bitc::ATTR_KIND_ALIGNMENT; 677 case Attribute::AllocAlign: 678 return bitc::ATTR_KIND_ALLOC_ALIGN; 679 case Attribute::AllocSize: 680 return bitc::ATTR_KIND_ALLOC_SIZE; 681 case Attribute::AlwaysInline: 682 return bitc::ATTR_KIND_ALWAYS_INLINE; 683 case Attribute::Builtin: 684 return bitc::ATTR_KIND_BUILTIN; 685 case Attribute::ByVal: 686 return bitc::ATTR_KIND_BY_VAL; 687 case Attribute::Convergent: 688 return bitc::ATTR_KIND_CONVERGENT; 689 case Attribute::InAlloca: 690 return bitc::ATTR_KIND_IN_ALLOCA; 691 case Attribute::Cold: 692 return bitc::ATTR_KIND_COLD; 693 case Attribute::DisableSanitizerInstrumentation: 694 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 695 case Attribute::FnRetThunkExtern: 696 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 697 case Attribute::Hot: 698 return bitc::ATTR_KIND_HOT; 699 case Attribute::ElementType: 700 return bitc::ATTR_KIND_ELEMENTTYPE; 701 case Attribute::InlineHint: 702 return bitc::ATTR_KIND_INLINE_HINT; 703 case Attribute::InReg: 704 return bitc::ATTR_KIND_IN_REG; 705 case Attribute::JumpTable: 706 return bitc::ATTR_KIND_JUMP_TABLE; 707 case Attribute::MinSize: 708 return bitc::ATTR_KIND_MIN_SIZE; 709 case Attribute::AllocatedPointer: 710 return bitc::ATTR_KIND_ALLOCATED_POINTER; 711 case Attribute::AllocKind: 712 return bitc::ATTR_KIND_ALLOC_KIND; 713 case Attribute::Memory: 714 return bitc::ATTR_KIND_MEMORY; 715 case Attribute::NoFPClass: 716 return bitc::ATTR_KIND_NOFPCLASS; 717 case Attribute::Naked: 718 return bitc::ATTR_KIND_NAKED; 719 case Attribute::Nest: 720 return bitc::ATTR_KIND_NEST; 721 case Attribute::NoAlias: 722 return bitc::ATTR_KIND_NO_ALIAS; 723 case Attribute::NoBuiltin: 724 return bitc::ATTR_KIND_NO_BUILTIN; 725 case Attribute::NoCallback: 726 return bitc::ATTR_KIND_NO_CALLBACK; 727 case Attribute::NoCapture: 728 return bitc::ATTR_KIND_NO_CAPTURE; 729 case Attribute::NoDuplicate: 730 return bitc::ATTR_KIND_NO_DUPLICATE; 731 case Attribute::NoFree: 732 return bitc::ATTR_KIND_NOFREE; 733 case Attribute::NoImplicitFloat: 734 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 735 case Attribute::NoInline: 736 return bitc::ATTR_KIND_NO_INLINE; 737 case Attribute::NoRecurse: 738 return bitc::ATTR_KIND_NO_RECURSE; 739 case Attribute::NoMerge: 740 return bitc::ATTR_KIND_NO_MERGE; 741 case Attribute::NonLazyBind: 742 return bitc::ATTR_KIND_NON_LAZY_BIND; 743 case Attribute::NonNull: 744 return bitc::ATTR_KIND_NON_NULL; 745 case Attribute::Dereferenceable: 746 return bitc::ATTR_KIND_DEREFERENCEABLE; 747 case Attribute::DereferenceableOrNull: 748 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 749 case Attribute::NoRedZone: 750 return bitc::ATTR_KIND_NO_RED_ZONE; 751 case Attribute::NoReturn: 752 return bitc::ATTR_KIND_NO_RETURN; 753 case Attribute::NoSync: 754 return bitc::ATTR_KIND_NOSYNC; 755 case Attribute::NoCfCheck: 756 return bitc::ATTR_KIND_NOCF_CHECK; 757 case Attribute::NoProfile: 758 return bitc::ATTR_KIND_NO_PROFILE; 759 case Attribute::SkipProfile: 760 return bitc::ATTR_KIND_SKIP_PROFILE; 761 case Attribute::NoUnwind: 762 return bitc::ATTR_KIND_NO_UNWIND; 763 case Attribute::NoSanitizeBounds: 764 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 765 case Attribute::NoSanitizeCoverage: 766 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 767 case Attribute::NullPointerIsValid: 768 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 769 case Attribute::OptimizeForDebugging: 770 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 771 case Attribute::OptForFuzzing: 772 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 773 case Attribute::OptimizeForSize: 774 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 775 case Attribute::OptimizeNone: 776 return bitc::ATTR_KIND_OPTIMIZE_NONE; 777 case Attribute::ReadNone: 778 return bitc::ATTR_KIND_READ_NONE; 779 case Attribute::ReadOnly: 780 return bitc::ATTR_KIND_READ_ONLY; 781 case Attribute::Returned: 782 return bitc::ATTR_KIND_RETURNED; 783 case Attribute::ReturnsTwice: 784 return bitc::ATTR_KIND_RETURNS_TWICE; 785 case Attribute::SExt: 786 return bitc::ATTR_KIND_S_EXT; 787 case Attribute::Speculatable: 788 return bitc::ATTR_KIND_SPECULATABLE; 789 case Attribute::StackAlignment: 790 return bitc::ATTR_KIND_STACK_ALIGNMENT; 791 case Attribute::StackProtect: 792 return bitc::ATTR_KIND_STACK_PROTECT; 793 case Attribute::StackProtectReq: 794 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 795 case Attribute::StackProtectStrong: 796 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 797 case Attribute::SafeStack: 798 return bitc::ATTR_KIND_SAFESTACK; 799 case Attribute::ShadowCallStack: 800 return bitc::ATTR_KIND_SHADOWCALLSTACK; 801 case Attribute::StrictFP: 802 return bitc::ATTR_KIND_STRICT_FP; 803 case Attribute::StructRet: 804 return bitc::ATTR_KIND_STRUCT_RET; 805 case Attribute::SanitizeAddress: 806 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 807 case Attribute::SanitizeHWAddress: 808 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 809 case Attribute::SanitizeThread: 810 return bitc::ATTR_KIND_SANITIZE_THREAD; 811 case Attribute::SanitizeMemory: 812 return bitc::ATTR_KIND_SANITIZE_MEMORY; 813 case Attribute::SpeculativeLoadHardening: 814 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 815 case Attribute::SwiftError: 816 return bitc::ATTR_KIND_SWIFT_ERROR; 817 case Attribute::SwiftSelf: 818 return bitc::ATTR_KIND_SWIFT_SELF; 819 case Attribute::SwiftAsync: 820 return bitc::ATTR_KIND_SWIFT_ASYNC; 821 case Attribute::UWTable: 822 return bitc::ATTR_KIND_UW_TABLE; 823 case Attribute::VScaleRange: 824 return bitc::ATTR_KIND_VSCALE_RANGE; 825 case Attribute::WillReturn: 826 return bitc::ATTR_KIND_WILLRETURN; 827 case Attribute::WriteOnly: 828 return bitc::ATTR_KIND_WRITEONLY; 829 case Attribute::ZExt: 830 return bitc::ATTR_KIND_Z_EXT; 831 case Attribute::ImmArg: 832 return bitc::ATTR_KIND_IMMARG; 833 case Attribute::SanitizeMemTag: 834 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 835 case Attribute::Preallocated: 836 return bitc::ATTR_KIND_PREALLOCATED; 837 case Attribute::NoUndef: 838 return bitc::ATTR_KIND_NOUNDEF; 839 case Attribute::ByRef: 840 return bitc::ATTR_KIND_BYREF; 841 case Attribute::MustProgress: 842 return bitc::ATTR_KIND_MUSTPROGRESS; 843 case Attribute::PresplitCoroutine: 844 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 845 case Attribute::Writable: 846 return bitc::ATTR_KIND_WRITABLE; 847 case Attribute::CoroDestroyOnlyWhenComplete: 848 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 849 case Attribute::DeadOnUnwind: 850 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 851 case Attribute::Range: 852 return bitc::ATTR_KIND_RANGE; 853 case Attribute::EndAttrKinds: 854 llvm_unreachable("Can not encode end-attribute kinds marker."); 855 case Attribute::None: 856 llvm_unreachable("Can not encode none-attribute."); 857 case Attribute::EmptyKey: 858 case Attribute::TombstoneKey: 859 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 860 } 861 862 llvm_unreachable("Trying to encode unknown attribute"); 863 } 864 865 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 866 if ((int64_t)V >= 0) 867 Vals.push_back(V << 1); 868 else 869 Vals.push_back((-V << 1) | 1); 870 } 871 872 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 873 // We have an arbitrary precision integer value to write whose 874 // bit width is > 64. However, in canonical unsigned integer 875 // format it is likely that the high bits are going to be zero. 876 // So, we only write the number of active words. 877 unsigned NumWords = A.getActiveWords(); 878 const uint64_t *RawData = A.getRawData(); 879 for (unsigned i = 0; i < NumWords; i++) 880 emitSignedInt64(Vals, RawData[i]); 881 } 882 883 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 884 const ConstantRange &CR) { 885 unsigned BitWidth = CR.getBitWidth(); 886 Record.push_back(BitWidth); 887 if (BitWidth > 64) { 888 Record.push_back(CR.getLower().getActiveWords() | 889 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 890 emitWideAPInt(Record, CR.getLower()); 891 emitWideAPInt(Record, CR.getUpper()); 892 } else { 893 emitSignedInt64(Record, CR.getLower().getSExtValue()); 894 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 895 } 896 } 897 898 void ModuleBitcodeWriter::writeAttributeGroupTable() { 899 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 900 VE.getAttributeGroups(); 901 if (AttrGrps.empty()) return; 902 903 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 904 905 SmallVector<uint64_t, 64> Record; 906 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 907 unsigned AttrListIndex = Pair.first; 908 AttributeSet AS = Pair.second; 909 Record.push_back(VE.getAttributeGroupID(Pair)); 910 Record.push_back(AttrListIndex); 911 912 for (Attribute Attr : AS) { 913 if (Attr.isEnumAttribute()) { 914 Record.push_back(0); 915 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 916 } else if (Attr.isIntAttribute()) { 917 Record.push_back(1); 918 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 919 Record.push_back(Attr.getValueAsInt()); 920 } else if (Attr.isStringAttribute()) { 921 StringRef Kind = Attr.getKindAsString(); 922 StringRef Val = Attr.getValueAsString(); 923 924 Record.push_back(Val.empty() ? 3 : 4); 925 Record.append(Kind.begin(), Kind.end()); 926 Record.push_back(0); 927 if (!Val.empty()) { 928 Record.append(Val.begin(), Val.end()); 929 Record.push_back(0); 930 } 931 } else if (Attr.isTypeAttribute()) { 932 Type *Ty = Attr.getValueAsType(); 933 Record.push_back(Ty ? 6 : 5); 934 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 935 if (Ty) 936 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 937 } else { 938 assert(Attr.isConstantRangeAttribute()); 939 Record.push_back(7); 940 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 941 emitConstantRange(Record, Attr.getValueAsConstantRange()); 942 } 943 } 944 945 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 946 Record.clear(); 947 } 948 949 Stream.ExitBlock(); 950 } 951 952 void ModuleBitcodeWriter::writeAttributeTable() { 953 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 954 if (Attrs.empty()) return; 955 956 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 957 958 SmallVector<uint64_t, 64> Record; 959 for (const AttributeList &AL : Attrs) { 960 for (unsigned i : AL.indexes()) { 961 AttributeSet AS = AL.getAttributes(i); 962 if (AS.hasAttributes()) 963 Record.push_back(VE.getAttributeGroupID({i, AS})); 964 } 965 966 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 967 Record.clear(); 968 } 969 970 Stream.ExitBlock(); 971 } 972 973 /// WriteTypeTable - Write out the type table for a module. 974 void ModuleBitcodeWriter::writeTypeTable() { 975 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 976 977 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 978 SmallVector<uint64_t, 64> TypeVals; 979 980 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 981 982 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 983 auto Abbv = std::make_shared<BitCodeAbbrev>(); 984 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 985 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 986 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 987 988 // Abbrev for TYPE_CODE_FUNCTION. 989 Abbv = std::make_shared<BitCodeAbbrev>(); 990 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 994 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 995 996 // Abbrev for TYPE_CODE_STRUCT_ANON. 997 Abbv = std::make_shared<BitCodeAbbrev>(); 998 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1002 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1003 1004 // Abbrev for TYPE_CODE_STRUCT_NAME. 1005 Abbv = std::make_shared<BitCodeAbbrev>(); 1006 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1009 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1010 1011 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1012 Abbv = std::make_shared<BitCodeAbbrev>(); 1013 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1017 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1018 1019 // Abbrev for TYPE_CODE_ARRAY. 1020 Abbv = std::make_shared<BitCodeAbbrev>(); 1021 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1024 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1025 1026 // Emit an entry count so the reader can reserve space. 1027 TypeVals.push_back(TypeList.size()); 1028 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1029 TypeVals.clear(); 1030 1031 // Loop over all of the types, emitting each in turn. 1032 for (Type *T : TypeList) { 1033 int AbbrevToUse = 0; 1034 unsigned Code = 0; 1035 1036 switch (T->getTypeID()) { 1037 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1038 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1039 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1040 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1041 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1042 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1043 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1044 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1045 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1046 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 1047 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 1048 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1049 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1050 case Type::IntegerTyID: 1051 // INTEGER: [width] 1052 Code = bitc::TYPE_CODE_INTEGER; 1053 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1054 break; 1055 case Type::PointerTyID: { 1056 PointerType *PTy = cast<PointerType>(T); 1057 unsigned AddressSpace = PTy->getAddressSpace(); 1058 // OPAQUE_POINTER: [address space] 1059 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1060 TypeVals.push_back(AddressSpace); 1061 if (AddressSpace == 0) 1062 AbbrevToUse = OpaquePtrAbbrev; 1063 break; 1064 } 1065 case Type::FunctionTyID: { 1066 FunctionType *FT = cast<FunctionType>(T); 1067 // FUNCTION: [isvararg, retty, paramty x N] 1068 Code = bitc::TYPE_CODE_FUNCTION; 1069 TypeVals.push_back(FT->isVarArg()); 1070 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1071 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1072 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1073 AbbrevToUse = FunctionAbbrev; 1074 break; 1075 } 1076 case Type::StructTyID: { 1077 StructType *ST = cast<StructType>(T); 1078 // STRUCT: [ispacked, eltty x N] 1079 TypeVals.push_back(ST->isPacked()); 1080 // Output all of the element types. 1081 for (Type *ET : ST->elements()) 1082 TypeVals.push_back(VE.getTypeID(ET)); 1083 1084 if (ST->isLiteral()) { 1085 Code = bitc::TYPE_CODE_STRUCT_ANON; 1086 AbbrevToUse = StructAnonAbbrev; 1087 } else { 1088 if (ST->isOpaque()) { 1089 Code = bitc::TYPE_CODE_OPAQUE; 1090 } else { 1091 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1092 AbbrevToUse = StructNamedAbbrev; 1093 } 1094 1095 // Emit the name if it is present. 1096 if (!ST->getName().empty()) 1097 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1098 StructNameAbbrev); 1099 } 1100 break; 1101 } 1102 case Type::ArrayTyID: { 1103 ArrayType *AT = cast<ArrayType>(T); 1104 // ARRAY: [numelts, eltty] 1105 Code = bitc::TYPE_CODE_ARRAY; 1106 TypeVals.push_back(AT->getNumElements()); 1107 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1108 AbbrevToUse = ArrayAbbrev; 1109 break; 1110 } 1111 case Type::FixedVectorTyID: 1112 case Type::ScalableVectorTyID: { 1113 VectorType *VT = cast<VectorType>(T); 1114 // VECTOR [numelts, eltty] or 1115 // [numelts, eltty, scalable] 1116 Code = bitc::TYPE_CODE_VECTOR; 1117 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1118 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1119 if (isa<ScalableVectorType>(VT)) 1120 TypeVals.push_back(true); 1121 break; 1122 } 1123 case Type::TargetExtTyID: { 1124 TargetExtType *TET = cast<TargetExtType>(T); 1125 Code = bitc::TYPE_CODE_TARGET_TYPE; 1126 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1127 StructNameAbbrev); 1128 TypeVals.push_back(TET->getNumTypeParameters()); 1129 for (Type *InnerTy : TET->type_params()) 1130 TypeVals.push_back(VE.getTypeID(InnerTy)); 1131 for (unsigned IntParam : TET->int_params()) 1132 TypeVals.push_back(IntParam); 1133 break; 1134 } 1135 case Type::TypedPointerTyID: 1136 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1137 } 1138 1139 // Emit the finished record. 1140 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1141 TypeVals.clear(); 1142 } 1143 1144 Stream.ExitBlock(); 1145 } 1146 1147 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1148 switch (Linkage) { 1149 case GlobalValue::ExternalLinkage: 1150 return 0; 1151 case GlobalValue::WeakAnyLinkage: 1152 return 16; 1153 case GlobalValue::AppendingLinkage: 1154 return 2; 1155 case GlobalValue::InternalLinkage: 1156 return 3; 1157 case GlobalValue::LinkOnceAnyLinkage: 1158 return 18; 1159 case GlobalValue::ExternalWeakLinkage: 1160 return 7; 1161 case GlobalValue::CommonLinkage: 1162 return 8; 1163 case GlobalValue::PrivateLinkage: 1164 return 9; 1165 case GlobalValue::WeakODRLinkage: 1166 return 17; 1167 case GlobalValue::LinkOnceODRLinkage: 1168 return 19; 1169 case GlobalValue::AvailableExternallyLinkage: 1170 return 12; 1171 } 1172 llvm_unreachable("Invalid linkage"); 1173 } 1174 1175 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1176 return getEncodedLinkage(GV.getLinkage()); 1177 } 1178 1179 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1180 uint64_t RawFlags = 0; 1181 RawFlags |= Flags.ReadNone; 1182 RawFlags |= (Flags.ReadOnly << 1); 1183 RawFlags |= (Flags.NoRecurse << 2); 1184 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1185 RawFlags |= (Flags.NoInline << 4); 1186 RawFlags |= (Flags.AlwaysInline << 5); 1187 RawFlags |= (Flags.NoUnwind << 6); 1188 RawFlags |= (Flags.MayThrow << 7); 1189 RawFlags |= (Flags.HasUnknownCall << 8); 1190 RawFlags |= (Flags.MustBeUnreachable << 9); 1191 return RawFlags; 1192 } 1193 1194 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1195 // in BitcodeReader.cpp. 1196 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1197 uint64_t RawFlags = 0; 1198 1199 RawFlags |= Flags.NotEligibleToImport; // bool 1200 RawFlags |= (Flags.Live << 1); 1201 RawFlags |= (Flags.DSOLocal << 2); 1202 RawFlags |= (Flags.CanAutoHide << 3); 1203 1204 // Linkage don't need to be remapped at that time for the summary. Any future 1205 // change to the getEncodedLinkage() function will need to be taken into 1206 // account here as well. 1207 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1208 1209 RawFlags |= (Flags.Visibility << 8); // 2 bits 1210 1211 return RawFlags; 1212 } 1213 1214 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1215 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1216 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1217 return RawFlags; 1218 } 1219 1220 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1221 uint64_t RawFlags = 0; 1222 1223 RawFlags |= CI.Hotness; // 3 bits 1224 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1225 1226 return RawFlags; 1227 } 1228 1229 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1230 uint64_t RawFlags = 0; 1231 1232 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1233 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1234 1235 return RawFlags; 1236 } 1237 1238 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1239 switch (GV.getVisibility()) { 1240 case GlobalValue::DefaultVisibility: return 0; 1241 case GlobalValue::HiddenVisibility: return 1; 1242 case GlobalValue::ProtectedVisibility: return 2; 1243 } 1244 llvm_unreachable("Invalid visibility"); 1245 } 1246 1247 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1248 switch (GV.getDLLStorageClass()) { 1249 case GlobalValue::DefaultStorageClass: return 0; 1250 case GlobalValue::DLLImportStorageClass: return 1; 1251 case GlobalValue::DLLExportStorageClass: return 2; 1252 } 1253 llvm_unreachable("Invalid DLL storage class"); 1254 } 1255 1256 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1257 switch (GV.getThreadLocalMode()) { 1258 case GlobalVariable::NotThreadLocal: return 0; 1259 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1260 case GlobalVariable::LocalDynamicTLSModel: return 2; 1261 case GlobalVariable::InitialExecTLSModel: return 3; 1262 case GlobalVariable::LocalExecTLSModel: return 4; 1263 } 1264 llvm_unreachable("Invalid TLS model"); 1265 } 1266 1267 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1268 switch (C.getSelectionKind()) { 1269 case Comdat::Any: 1270 return bitc::COMDAT_SELECTION_KIND_ANY; 1271 case Comdat::ExactMatch: 1272 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1273 case Comdat::Largest: 1274 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1275 case Comdat::NoDeduplicate: 1276 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1277 case Comdat::SameSize: 1278 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1279 } 1280 llvm_unreachable("Invalid selection kind"); 1281 } 1282 1283 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1284 switch (GV.getUnnamedAddr()) { 1285 case GlobalValue::UnnamedAddr::None: return 0; 1286 case GlobalValue::UnnamedAddr::Local: return 2; 1287 case GlobalValue::UnnamedAddr::Global: return 1; 1288 } 1289 llvm_unreachable("Invalid unnamed_addr"); 1290 } 1291 1292 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1293 if (GenerateHash) 1294 Hasher.update(Str); 1295 return StrtabBuilder.add(Str); 1296 } 1297 1298 void ModuleBitcodeWriter::writeComdats() { 1299 SmallVector<unsigned, 64> Vals; 1300 for (const Comdat *C : VE.getComdats()) { 1301 // COMDAT: [strtab offset, strtab size, selection_kind] 1302 Vals.push_back(addToStrtab(C->getName())); 1303 Vals.push_back(C->getName().size()); 1304 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1305 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1306 Vals.clear(); 1307 } 1308 } 1309 1310 /// Write a record that will eventually hold the word offset of the 1311 /// module-level VST. For now the offset is 0, which will be backpatched 1312 /// after the real VST is written. Saves the bit offset to backpatch. 1313 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1314 // Write a placeholder value in for the offset of the real VST, 1315 // which is written after the function blocks so that it can include 1316 // the offset of each function. The placeholder offset will be 1317 // updated when the real VST is written. 1318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1319 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1320 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1321 // hold the real VST offset. Must use fixed instead of VBR as we don't 1322 // know how many VBR chunks to reserve ahead of time. 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1324 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1325 1326 // Emit the placeholder 1327 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1328 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1329 1330 // Compute and save the bit offset to the placeholder, which will be 1331 // patched when the real VST is written. We can simply subtract the 32-bit 1332 // fixed size from the current bit number to get the location to backpatch. 1333 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1334 } 1335 1336 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1337 1338 /// Determine the encoding to use for the given string name and length. 1339 static StringEncoding getStringEncoding(StringRef Str) { 1340 bool isChar6 = true; 1341 for (char C : Str) { 1342 if (isChar6) 1343 isChar6 = BitCodeAbbrevOp::isChar6(C); 1344 if ((unsigned char)C & 128) 1345 // don't bother scanning the rest. 1346 return SE_Fixed8; 1347 } 1348 if (isChar6) 1349 return SE_Char6; 1350 return SE_Fixed7; 1351 } 1352 1353 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1354 "Sanitizer Metadata is too large for naive serialization."); 1355 static unsigned 1356 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1357 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1358 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1359 } 1360 1361 /// Emit top-level description of module, including target triple, inline asm, 1362 /// descriptors for global variables, and function prototype info. 1363 /// Returns the bit offset to backpatch with the location of the real VST. 1364 void ModuleBitcodeWriter::writeModuleInfo() { 1365 // Emit various pieces of data attached to a module. 1366 if (!M.getTargetTriple().empty()) 1367 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1368 0 /*TODO*/); 1369 const std::string &DL = M.getDataLayoutStr(); 1370 if (!DL.empty()) 1371 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1372 if (!M.getModuleInlineAsm().empty()) 1373 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1374 0 /*TODO*/); 1375 1376 // Emit information about sections and GC, computing how many there are. Also 1377 // compute the maximum alignment value. 1378 std::map<std::string, unsigned> SectionMap; 1379 std::map<std::string, unsigned> GCMap; 1380 MaybeAlign MaxAlignment; 1381 unsigned MaxGlobalType = 0; 1382 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1383 if (A) 1384 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1385 }; 1386 for (const GlobalVariable &GV : M.globals()) { 1387 UpdateMaxAlignment(GV.getAlign()); 1388 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1389 if (GV.hasSection()) { 1390 // Give section names unique ID's. 1391 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1392 if (!Entry) { 1393 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1394 0 /*TODO*/); 1395 Entry = SectionMap.size(); 1396 } 1397 } 1398 } 1399 for (const Function &F : M) { 1400 UpdateMaxAlignment(F.getAlign()); 1401 if (F.hasSection()) { 1402 // Give section names unique ID's. 1403 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1404 if (!Entry) { 1405 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1406 0 /*TODO*/); 1407 Entry = SectionMap.size(); 1408 } 1409 } 1410 if (F.hasGC()) { 1411 // Same for GC names. 1412 unsigned &Entry = GCMap[F.getGC()]; 1413 if (!Entry) { 1414 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1415 0 /*TODO*/); 1416 Entry = GCMap.size(); 1417 } 1418 } 1419 } 1420 1421 // Emit abbrev for globals, now that we know # sections and max alignment. 1422 unsigned SimpleGVarAbbrev = 0; 1423 if (!M.global_empty()) { 1424 // Add an abbrev for common globals with no visibility or thread localness. 1425 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1426 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1430 Log2_32_Ceil(MaxGlobalType+1))); 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1432 //| explicitType << 1 1433 //| constant 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1436 if (!MaxAlignment) // Alignment. 1437 Abbv->Add(BitCodeAbbrevOp(0)); 1438 else { 1439 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1441 Log2_32_Ceil(MaxEncAlignment+1))); 1442 } 1443 if (SectionMap.empty()) // Section. 1444 Abbv->Add(BitCodeAbbrevOp(0)); 1445 else 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1447 Log2_32_Ceil(SectionMap.size()+1))); 1448 // Don't bother emitting vis + thread local. 1449 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1450 } 1451 1452 SmallVector<unsigned, 64> Vals; 1453 // Emit the module's source file name. 1454 { 1455 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1456 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1457 if (Bits == SE_Char6) 1458 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1459 else if (Bits == SE_Fixed7) 1460 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1461 1462 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1464 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1466 Abbv->Add(AbbrevOpToUse); 1467 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1468 1469 for (const auto P : M.getSourceFileName()) 1470 Vals.push_back((unsigned char)P); 1471 1472 // Emit the finished record. 1473 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1474 Vals.clear(); 1475 } 1476 1477 // Emit the global variable information. 1478 for (const GlobalVariable &GV : M.globals()) { 1479 unsigned AbbrevToUse = 0; 1480 1481 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1482 // linkage, alignment, section, visibility, threadlocal, 1483 // unnamed_addr, externally_initialized, dllstorageclass, 1484 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1485 Vals.push_back(addToStrtab(GV.getName())); 1486 Vals.push_back(GV.getName().size()); 1487 Vals.push_back(VE.getTypeID(GV.getValueType())); 1488 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1489 Vals.push_back(GV.isDeclaration() ? 0 : 1490 (VE.getValueID(GV.getInitializer()) + 1)); 1491 Vals.push_back(getEncodedLinkage(GV)); 1492 Vals.push_back(getEncodedAlign(GV.getAlign())); 1493 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1494 : 0); 1495 if (GV.isThreadLocal() || 1496 GV.getVisibility() != GlobalValue::DefaultVisibility || 1497 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1498 GV.isExternallyInitialized() || 1499 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1500 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1501 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1502 Vals.push_back(getEncodedVisibility(GV)); 1503 Vals.push_back(getEncodedThreadLocalMode(GV)); 1504 Vals.push_back(getEncodedUnnamedAddr(GV)); 1505 Vals.push_back(GV.isExternallyInitialized()); 1506 Vals.push_back(getEncodedDLLStorageClass(GV)); 1507 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1508 1509 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1510 Vals.push_back(VE.getAttributeListID(AL)); 1511 1512 Vals.push_back(GV.isDSOLocal()); 1513 Vals.push_back(addToStrtab(GV.getPartition())); 1514 Vals.push_back(GV.getPartition().size()); 1515 1516 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1517 GV.getSanitizerMetadata()) 1518 : 0)); 1519 Vals.push_back(GV.getCodeModelRaw()); 1520 } else { 1521 AbbrevToUse = SimpleGVarAbbrev; 1522 } 1523 1524 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1525 Vals.clear(); 1526 } 1527 1528 // Emit the function proto information. 1529 for (const Function &F : M) { 1530 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1531 // linkage, paramattrs, alignment, section, visibility, gc, 1532 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1533 // prefixdata, personalityfn, DSO_Local, addrspace] 1534 Vals.push_back(addToStrtab(F.getName())); 1535 Vals.push_back(F.getName().size()); 1536 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1537 Vals.push_back(F.getCallingConv()); 1538 Vals.push_back(F.isDeclaration()); 1539 Vals.push_back(getEncodedLinkage(F)); 1540 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1541 Vals.push_back(getEncodedAlign(F.getAlign())); 1542 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1543 : 0); 1544 Vals.push_back(getEncodedVisibility(F)); 1545 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1546 Vals.push_back(getEncodedUnnamedAddr(F)); 1547 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1548 : 0); 1549 Vals.push_back(getEncodedDLLStorageClass(F)); 1550 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1551 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1552 : 0); 1553 Vals.push_back( 1554 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1555 1556 Vals.push_back(F.isDSOLocal()); 1557 Vals.push_back(F.getAddressSpace()); 1558 Vals.push_back(addToStrtab(F.getPartition())); 1559 Vals.push_back(F.getPartition().size()); 1560 1561 unsigned AbbrevToUse = 0; 1562 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1563 Vals.clear(); 1564 } 1565 1566 // Emit the alias information. 1567 for (const GlobalAlias &A : M.aliases()) { 1568 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1569 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1570 // DSO_Local] 1571 Vals.push_back(addToStrtab(A.getName())); 1572 Vals.push_back(A.getName().size()); 1573 Vals.push_back(VE.getTypeID(A.getValueType())); 1574 Vals.push_back(A.getType()->getAddressSpace()); 1575 Vals.push_back(VE.getValueID(A.getAliasee())); 1576 Vals.push_back(getEncodedLinkage(A)); 1577 Vals.push_back(getEncodedVisibility(A)); 1578 Vals.push_back(getEncodedDLLStorageClass(A)); 1579 Vals.push_back(getEncodedThreadLocalMode(A)); 1580 Vals.push_back(getEncodedUnnamedAddr(A)); 1581 Vals.push_back(A.isDSOLocal()); 1582 Vals.push_back(addToStrtab(A.getPartition())); 1583 Vals.push_back(A.getPartition().size()); 1584 1585 unsigned AbbrevToUse = 0; 1586 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1587 Vals.clear(); 1588 } 1589 1590 // Emit the ifunc information. 1591 for (const GlobalIFunc &I : M.ifuncs()) { 1592 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1593 // val#, linkage, visibility, DSO_Local] 1594 Vals.push_back(addToStrtab(I.getName())); 1595 Vals.push_back(I.getName().size()); 1596 Vals.push_back(VE.getTypeID(I.getValueType())); 1597 Vals.push_back(I.getType()->getAddressSpace()); 1598 Vals.push_back(VE.getValueID(I.getResolver())); 1599 Vals.push_back(getEncodedLinkage(I)); 1600 Vals.push_back(getEncodedVisibility(I)); 1601 Vals.push_back(I.isDSOLocal()); 1602 Vals.push_back(addToStrtab(I.getPartition())); 1603 Vals.push_back(I.getPartition().size()); 1604 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1605 Vals.clear(); 1606 } 1607 1608 writeValueSymbolTableForwardDecl(); 1609 } 1610 1611 static uint64_t getOptimizationFlags(const Value *V) { 1612 uint64_t Flags = 0; 1613 1614 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1615 if (OBO->hasNoSignedWrap()) 1616 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1617 if (OBO->hasNoUnsignedWrap()) 1618 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1619 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1620 if (PEO->isExact()) 1621 Flags |= 1 << bitc::PEO_EXACT; 1622 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1623 if (PDI->isDisjoint()) 1624 Flags |= 1 << bitc::PDI_DISJOINT; 1625 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1626 if (FPMO->hasAllowReassoc()) 1627 Flags |= bitc::AllowReassoc; 1628 if (FPMO->hasNoNaNs()) 1629 Flags |= bitc::NoNaNs; 1630 if (FPMO->hasNoInfs()) 1631 Flags |= bitc::NoInfs; 1632 if (FPMO->hasNoSignedZeros()) 1633 Flags |= bitc::NoSignedZeros; 1634 if (FPMO->hasAllowReciprocal()) 1635 Flags |= bitc::AllowReciprocal; 1636 if (FPMO->hasAllowContract()) 1637 Flags |= bitc::AllowContract; 1638 if (FPMO->hasApproxFunc()) 1639 Flags |= bitc::ApproxFunc; 1640 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1641 if (NNI->hasNonNeg()) 1642 Flags |= 1 << bitc::PNNI_NON_NEG; 1643 } 1644 1645 return Flags; 1646 } 1647 1648 void ModuleBitcodeWriter::writeValueAsMetadata( 1649 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1650 // Mimic an MDNode with a value as one operand. 1651 Value *V = MD->getValue(); 1652 Record.push_back(VE.getTypeID(V->getType())); 1653 Record.push_back(VE.getValueID(V)); 1654 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1655 Record.clear(); 1656 } 1657 1658 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1659 SmallVectorImpl<uint64_t> &Record, 1660 unsigned Abbrev) { 1661 for (const MDOperand &MDO : N->operands()) { 1662 Metadata *MD = MDO; 1663 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1664 "Unexpected function-local metadata"); 1665 Record.push_back(VE.getMetadataOrNullID(MD)); 1666 } 1667 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1668 : bitc::METADATA_NODE, 1669 Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1674 // Assume the column is usually under 128, and always output the inlined-at 1675 // location (it's never more expensive than building an array size 1). 1676 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1677 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1684 return Stream.EmitAbbrev(std::move(Abbv)); 1685 } 1686 1687 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1688 SmallVectorImpl<uint64_t> &Record, 1689 unsigned &Abbrev) { 1690 if (!Abbrev) 1691 Abbrev = createDILocationAbbrev(); 1692 1693 Record.push_back(N->isDistinct()); 1694 Record.push_back(N->getLine()); 1695 Record.push_back(N->getColumn()); 1696 Record.push_back(VE.getMetadataID(N->getScope())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1698 Record.push_back(N->isImplicitCode()); 1699 1700 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1701 Record.clear(); 1702 } 1703 1704 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1705 // Assume the column is usually under 128, and always output the inlined-at 1706 // location (it's never more expensive than building an array size 1). 1707 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1708 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1715 return Stream.EmitAbbrev(std::move(Abbv)); 1716 } 1717 1718 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1719 SmallVectorImpl<uint64_t> &Record, 1720 unsigned &Abbrev) { 1721 if (!Abbrev) 1722 Abbrev = createGenericDINodeAbbrev(); 1723 1724 Record.push_back(N->isDistinct()); 1725 Record.push_back(N->getTag()); 1726 Record.push_back(0); // Per-tag version field; unused for now. 1727 1728 for (auto &I : N->operands()) 1729 Record.push_back(VE.getMetadataOrNullID(I)); 1730 1731 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1732 Record.clear(); 1733 } 1734 1735 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1736 SmallVectorImpl<uint64_t> &Record, 1737 unsigned Abbrev) { 1738 const uint64_t Version = 2 << 1; 1739 Record.push_back((uint64_t)N->isDistinct() | Version); 1740 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1744 1745 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1746 Record.clear(); 1747 } 1748 1749 void ModuleBitcodeWriter::writeDIGenericSubrange( 1750 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1751 unsigned Abbrev) { 1752 Record.push_back((uint64_t)N->isDistinct()); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1757 1758 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1759 Record.clear(); 1760 } 1761 1762 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1763 SmallVectorImpl<uint64_t> &Record, 1764 unsigned Abbrev) { 1765 const uint64_t IsBigInt = 1 << 2; 1766 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1767 Record.push_back(N->getValue().getBitWidth()); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1769 emitWideAPInt(Record, N->getValue()); 1770 1771 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1772 Record.clear(); 1773 } 1774 1775 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1776 SmallVectorImpl<uint64_t> &Record, 1777 unsigned Abbrev) { 1778 Record.push_back(N->isDistinct()); 1779 Record.push_back(N->getTag()); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1781 Record.push_back(N->getSizeInBits()); 1782 Record.push_back(N->getAlignInBits()); 1783 Record.push_back(N->getEncoding()); 1784 Record.push_back(N->getFlags()); 1785 1786 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1787 Record.clear(); 1788 } 1789 1790 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1791 SmallVectorImpl<uint64_t> &Record, 1792 unsigned Abbrev) { 1793 Record.push_back(N->isDistinct()); 1794 Record.push_back(N->getTag()); 1795 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1799 Record.push_back(N->getSizeInBits()); 1800 Record.push_back(N->getAlignInBits()); 1801 Record.push_back(N->getEncoding()); 1802 1803 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1804 Record.clear(); 1805 } 1806 1807 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1808 SmallVectorImpl<uint64_t> &Record, 1809 unsigned Abbrev) { 1810 Record.push_back(N->isDistinct()); 1811 Record.push_back(N->getTag()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1814 Record.push_back(N->getLine()); 1815 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1817 Record.push_back(N->getSizeInBits()); 1818 Record.push_back(N->getAlignInBits()); 1819 Record.push_back(N->getOffsetInBits()); 1820 Record.push_back(N->getFlags()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1822 1823 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1824 // that there is no DWARF address space associated with DIDerivedType. 1825 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1826 Record.push_back(*DWARFAddressSpace + 1); 1827 else 1828 Record.push_back(0); 1829 1830 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1831 1832 if (auto PtrAuthData = N->getPtrAuthData()) 1833 Record.push_back(PtrAuthData->RawData); 1834 else 1835 Record.push_back(0); 1836 1837 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1838 Record.clear(); 1839 } 1840 1841 void ModuleBitcodeWriter::writeDICompositeType( 1842 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1843 unsigned Abbrev) { 1844 const unsigned IsNotUsedInOldTypeRef = 0x2; 1845 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1846 Record.push_back(N->getTag()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1849 Record.push_back(N->getLine()); 1850 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1851 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1852 Record.push_back(N->getSizeInBits()); 1853 Record.push_back(N->getAlignInBits()); 1854 Record.push_back(N->getOffsetInBits()); 1855 Record.push_back(N->getFlags()); 1856 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1857 Record.push_back(N->getRuntimeLang()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1860 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1862 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1867 1868 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1869 Record.clear(); 1870 } 1871 1872 void ModuleBitcodeWriter::writeDISubroutineType( 1873 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1874 unsigned Abbrev) { 1875 const unsigned HasNoOldTypeRefs = 0x2; 1876 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1877 Record.push_back(N->getFlags()); 1878 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1879 Record.push_back(N->getCC()); 1880 1881 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1882 Record.clear(); 1883 } 1884 1885 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1886 SmallVectorImpl<uint64_t> &Record, 1887 unsigned Abbrev) { 1888 Record.push_back(N->isDistinct()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1891 if (N->getRawChecksum()) { 1892 Record.push_back(N->getRawChecksum()->Kind); 1893 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1894 } else { 1895 // Maintain backwards compatibility with the old internal representation of 1896 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1897 Record.push_back(0); 1898 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1899 } 1900 auto Source = N->getRawSource(); 1901 if (Source) 1902 Record.push_back(VE.getMetadataOrNullID(Source)); 1903 1904 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1905 Record.clear(); 1906 } 1907 1908 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1909 SmallVectorImpl<uint64_t> &Record, 1910 unsigned Abbrev) { 1911 assert(N->isDistinct() && "Expected distinct compile units"); 1912 Record.push_back(/* IsDistinct */ true); 1913 Record.push_back(N->getSourceLanguage()); 1914 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1915 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1916 Record.push_back(N->isOptimized()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1918 Record.push_back(N->getRuntimeVersion()); 1919 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1920 Record.push_back(N->getEmissionKind()); 1921 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1922 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1923 Record.push_back(/* subprograms */ 0); 1924 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1925 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1926 Record.push_back(N->getDWOId()); 1927 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1928 Record.push_back(N->getSplitDebugInlining()); 1929 Record.push_back(N->getDebugInfoForProfiling()); 1930 Record.push_back((unsigned)N->getNameTableKind()); 1931 Record.push_back(N->getRangesBaseAddress()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1934 1935 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1940 SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 const uint64_t HasUnitFlag = 1 << 1; 1943 const uint64_t HasSPFlagsFlag = 1 << 2; 1944 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1945 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1946 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1948 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1949 Record.push_back(N->getLine()); 1950 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1951 Record.push_back(N->getScopeLine()); 1952 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1953 Record.push_back(N->getSPFlags()); 1954 Record.push_back(N->getVirtualIndex()); 1955 Record.push_back(N->getFlags()); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1960 Record.push_back(N->getThisAdjustment()); 1961 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1964 1965 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1966 Record.clear(); 1967 } 1968 1969 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1970 SmallVectorImpl<uint64_t> &Record, 1971 unsigned Abbrev) { 1972 Record.push_back(N->isDistinct()); 1973 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1974 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1975 Record.push_back(N->getLine()); 1976 Record.push_back(N->getColumn()); 1977 1978 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1979 Record.clear(); 1980 } 1981 1982 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1983 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1984 unsigned Abbrev) { 1985 Record.push_back(N->isDistinct()); 1986 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1987 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1988 Record.push_back(N->getDiscriminator()); 1989 1990 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1991 Record.clear(); 1992 } 1993 1994 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1995 SmallVectorImpl<uint64_t> &Record, 1996 unsigned Abbrev) { 1997 Record.push_back(N->isDistinct()); 1998 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1999 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2001 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2002 Record.push_back(N->getLineNo()); 2003 2004 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2005 Record.clear(); 2006 } 2007 2008 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2009 SmallVectorImpl<uint64_t> &Record, 2010 unsigned Abbrev) { 2011 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2012 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2013 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2014 2015 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2016 Record.clear(); 2017 } 2018 2019 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2020 SmallVectorImpl<uint64_t> &Record, 2021 unsigned Abbrev) { 2022 Record.push_back(N->isDistinct()); 2023 Record.push_back(N->getMacinfoType()); 2024 Record.push_back(N->getLine()); 2025 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2026 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2027 2028 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2029 Record.clear(); 2030 } 2031 2032 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2033 SmallVectorImpl<uint64_t> &Record, 2034 unsigned Abbrev) { 2035 Record.push_back(N->isDistinct()); 2036 Record.push_back(N->getMacinfoType()); 2037 Record.push_back(N->getLine()); 2038 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2039 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2040 2041 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2042 Record.clear(); 2043 } 2044 2045 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2046 SmallVectorImpl<uint64_t> &Record) { 2047 Record.reserve(N->getArgs().size()); 2048 for (ValueAsMetadata *MD : N->getArgs()) 2049 Record.push_back(VE.getMetadataID(MD)); 2050 2051 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2052 Record.clear(); 2053 } 2054 2055 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2056 SmallVectorImpl<uint64_t> &Record, 2057 unsigned Abbrev) { 2058 Record.push_back(N->isDistinct()); 2059 for (auto &I : N->operands()) 2060 Record.push_back(VE.getMetadataOrNullID(I)); 2061 Record.push_back(N->getLineNo()); 2062 Record.push_back(N->getIsDecl()); 2063 2064 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2065 Record.clear(); 2066 } 2067 2068 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2069 SmallVectorImpl<uint64_t> &Record, 2070 unsigned Abbrev) { 2071 // There are no arguments for this metadata type. 2072 Record.push_back(N->isDistinct()); 2073 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2074 Record.clear(); 2075 } 2076 2077 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2078 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2079 unsigned Abbrev) { 2080 Record.push_back(N->isDistinct()); 2081 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2082 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2083 Record.push_back(N->isDefault()); 2084 2085 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2086 Record.clear(); 2087 } 2088 2089 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2090 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2091 unsigned Abbrev) { 2092 Record.push_back(N->isDistinct()); 2093 Record.push_back(N->getTag()); 2094 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2095 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2096 Record.push_back(N->isDefault()); 2097 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2098 2099 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2100 Record.clear(); 2101 } 2102 2103 void ModuleBitcodeWriter::writeDIGlobalVariable( 2104 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2105 unsigned Abbrev) { 2106 const uint64_t Version = 2 << 1; 2107 Record.push_back((uint64_t)N->isDistinct() | Version); 2108 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2109 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2110 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2111 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2112 Record.push_back(N->getLine()); 2113 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2114 Record.push_back(N->isLocalToUnit()); 2115 Record.push_back(N->isDefinition()); 2116 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2117 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2118 Record.push_back(N->getAlignInBits()); 2119 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2120 2121 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2122 Record.clear(); 2123 } 2124 2125 void ModuleBitcodeWriter::writeDILocalVariable( 2126 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2127 unsigned Abbrev) { 2128 // In order to support all possible bitcode formats in BitcodeReader we need 2129 // to distinguish the following cases: 2130 // 1) Record has no artificial tag (Record[1]), 2131 // has no obsolete inlinedAt field (Record[9]). 2132 // In this case Record size will be 8, HasAlignment flag is false. 2133 // 2) Record has artificial tag (Record[1]), 2134 // has no obsolete inlignedAt field (Record[9]). 2135 // In this case Record size will be 9, HasAlignment flag is false. 2136 // 3) Record has both artificial tag (Record[1]) and 2137 // obsolete inlignedAt field (Record[9]). 2138 // In this case Record size will be 10, HasAlignment flag is false. 2139 // 4) Record has neither artificial tag, nor inlignedAt field, but 2140 // HasAlignment flag is true and Record[8] contains alignment value. 2141 const uint64_t HasAlignmentFlag = 1 << 1; 2142 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2143 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2144 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2145 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2146 Record.push_back(N->getLine()); 2147 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2148 Record.push_back(N->getArg()); 2149 Record.push_back(N->getFlags()); 2150 Record.push_back(N->getAlignInBits()); 2151 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2152 2153 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2154 Record.clear(); 2155 } 2156 2157 void ModuleBitcodeWriter::writeDILabel( 2158 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2159 unsigned Abbrev) { 2160 Record.push_back((uint64_t)N->isDistinct()); 2161 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2162 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2163 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2164 Record.push_back(N->getLine()); 2165 2166 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2167 Record.clear(); 2168 } 2169 2170 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2171 SmallVectorImpl<uint64_t> &Record, 2172 unsigned Abbrev) { 2173 Record.reserve(N->getElements().size() + 1); 2174 const uint64_t Version = 3 << 1; 2175 Record.push_back((uint64_t)N->isDistinct() | Version); 2176 Record.append(N->elements_begin(), N->elements_end()); 2177 2178 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2179 Record.clear(); 2180 } 2181 2182 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2183 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2184 unsigned Abbrev) { 2185 Record.push_back(N->isDistinct()); 2186 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2187 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2188 2189 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2190 Record.clear(); 2191 } 2192 2193 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2194 SmallVectorImpl<uint64_t> &Record, 2195 unsigned Abbrev) { 2196 Record.push_back(N->isDistinct()); 2197 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2198 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2199 Record.push_back(N->getLine()); 2200 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2201 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2202 Record.push_back(N->getAttributes()); 2203 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2204 2205 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2206 Record.clear(); 2207 } 2208 2209 void ModuleBitcodeWriter::writeDIImportedEntity( 2210 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2211 unsigned Abbrev) { 2212 Record.push_back(N->isDistinct()); 2213 Record.push_back(N->getTag()); 2214 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2215 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2216 Record.push_back(N->getLine()); 2217 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2218 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2219 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2220 2221 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2222 Record.clear(); 2223 } 2224 2225 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2226 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2227 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2230 return Stream.EmitAbbrev(std::move(Abbv)); 2231 } 2232 2233 void ModuleBitcodeWriter::writeNamedMetadata( 2234 SmallVectorImpl<uint64_t> &Record) { 2235 if (M.named_metadata_empty()) 2236 return; 2237 2238 unsigned Abbrev = createNamedMetadataAbbrev(); 2239 for (const NamedMDNode &NMD : M.named_metadata()) { 2240 // Write name. 2241 StringRef Str = NMD.getName(); 2242 Record.append(Str.bytes_begin(), Str.bytes_end()); 2243 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2244 Record.clear(); 2245 2246 // Write named metadata operands. 2247 for (const MDNode *N : NMD.operands()) 2248 Record.push_back(VE.getMetadataID(N)); 2249 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2250 Record.clear(); 2251 } 2252 } 2253 2254 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2255 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2256 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2260 return Stream.EmitAbbrev(std::move(Abbv)); 2261 } 2262 2263 /// Write out a record for MDString. 2264 /// 2265 /// All the metadata strings in a metadata block are emitted in a single 2266 /// record. The sizes and strings themselves are shoved into a blob. 2267 void ModuleBitcodeWriter::writeMetadataStrings( 2268 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2269 if (Strings.empty()) 2270 return; 2271 2272 // Start the record with the number of strings. 2273 Record.push_back(bitc::METADATA_STRINGS); 2274 Record.push_back(Strings.size()); 2275 2276 // Emit the sizes of the strings in the blob. 2277 SmallString<256> Blob; 2278 { 2279 BitstreamWriter W(Blob); 2280 for (const Metadata *MD : Strings) 2281 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2282 W.FlushToWord(); 2283 } 2284 2285 // Add the offset to the strings to the record. 2286 Record.push_back(Blob.size()); 2287 2288 // Add the strings to the blob. 2289 for (const Metadata *MD : Strings) 2290 Blob.append(cast<MDString>(MD)->getString()); 2291 2292 // Emit the final record. 2293 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2294 Record.clear(); 2295 } 2296 2297 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2298 enum MetadataAbbrev : unsigned { 2299 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2300 #include "llvm/IR/Metadata.def" 2301 LastPlusOne 2302 }; 2303 2304 void ModuleBitcodeWriter::writeMetadataRecords( 2305 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2306 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2307 if (MDs.empty()) 2308 return; 2309 2310 // Initialize MDNode abbreviations. 2311 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2312 #include "llvm/IR/Metadata.def" 2313 2314 for (const Metadata *MD : MDs) { 2315 if (IndexPos) 2316 IndexPos->push_back(Stream.GetCurrentBitNo()); 2317 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2318 assert(N->isResolved() && "Expected forward references to be resolved"); 2319 2320 switch (N->getMetadataID()) { 2321 default: 2322 llvm_unreachable("Invalid MDNode subclass"); 2323 #define HANDLE_MDNODE_LEAF(CLASS) \ 2324 case Metadata::CLASS##Kind: \ 2325 if (MDAbbrevs) \ 2326 write##CLASS(cast<CLASS>(N), Record, \ 2327 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2328 else \ 2329 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2330 continue; 2331 #include "llvm/IR/Metadata.def" 2332 } 2333 } 2334 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2335 writeDIArgList(AL, Record); 2336 continue; 2337 } 2338 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2339 } 2340 } 2341 2342 void ModuleBitcodeWriter::writeModuleMetadata() { 2343 if (!VE.hasMDs() && M.named_metadata_empty()) 2344 return; 2345 2346 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2347 SmallVector<uint64_t, 64> Record; 2348 2349 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2350 // block and load any metadata. 2351 std::vector<unsigned> MDAbbrevs; 2352 2353 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2354 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2355 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2356 createGenericDINodeAbbrev(); 2357 2358 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2359 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2362 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2363 2364 Abbv = std::make_shared<BitCodeAbbrev>(); 2365 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2368 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2369 2370 // Emit MDStrings together upfront. 2371 writeMetadataStrings(VE.getMDStrings(), Record); 2372 2373 // We only emit an index for the metadata record if we have more than a given 2374 // (naive) threshold of metadatas, otherwise it is not worth it. 2375 if (VE.getNonMDStrings().size() > IndexThreshold) { 2376 // Write a placeholder value in for the offset of the metadata index, 2377 // which is written after the records, so that it can include 2378 // the offset of each entry. The placeholder offset will be 2379 // updated after all records are emitted. 2380 uint64_t Vals[] = {0, 0}; 2381 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2382 } 2383 2384 // Compute and save the bit offset to the current position, which will be 2385 // patched when we emit the index later. We can simply subtract the 64-bit 2386 // fixed size from the current bit number to get the location to backpatch. 2387 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2388 2389 // This index will contain the bitpos for each individual record. 2390 std::vector<uint64_t> IndexPos; 2391 IndexPos.reserve(VE.getNonMDStrings().size()); 2392 2393 // Write all the records 2394 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2395 2396 if (VE.getNonMDStrings().size() > IndexThreshold) { 2397 // Now that we have emitted all the records we will emit the index. But 2398 // first 2399 // backpatch the forward reference so that the reader can skip the records 2400 // efficiently. 2401 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2402 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2403 2404 // Delta encode the index. 2405 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2406 for (auto &Elt : IndexPos) { 2407 auto EltDelta = Elt - PreviousValue; 2408 PreviousValue = Elt; 2409 Elt = EltDelta; 2410 } 2411 // Emit the index record. 2412 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2413 IndexPos.clear(); 2414 } 2415 2416 // Write the named metadata now. 2417 writeNamedMetadata(Record); 2418 2419 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2420 SmallVector<uint64_t, 4> Record; 2421 Record.push_back(VE.getValueID(&GO)); 2422 pushGlobalMetadataAttachment(Record, GO); 2423 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2424 }; 2425 for (const Function &F : M) 2426 if (F.isDeclaration() && F.hasMetadata()) 2427 AddDeclAttachedMetadata(F); 2428 // FIXME: Only store metadata for declarations here, and move data for global 2429 // variable definitions to a separate block (PR28134). 2430 for (const GlobalVariable &GV : M.globals()) 2431 if (GV.hasMetadata()) 2432 AddDeclAttachedMetadata(GV); 2433 2434 Stream.ExitBlock(); 2435 } 2436 2437 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2438 if (!VE.hasMDs()) 2439 return; 2440 2441 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2442 SmallVector<uint64_t, 64> Record; 2443 writeMetadataStrings(VE.getMDStrings(), Record); 2444 writeMetadataRecords(VE.getNonMDStrings(), Record); 2445 Stream.ExitBlock(); 2446 } 2447 2448 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2449 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2450 // [n x [id, mdnode]] 2451 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2452 GO.getAllMetadata(MDs); 2453 for (const auto &I : MDs) { 2454 Record.push_back(I.first); 2455 Record.push_back(VE.getMetadataID(I.second)); 2456 } 2457 } 2458 2459 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2460 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2461 2462 SmallVector<uint64_t, 64> Record; 2463 2464 if (F.hasMetadata()) { 2465 pushGlobalMetadataAttachment(Record, F); 2466 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2467 Record.clear(); 2468 } 2469 2470 // Write metadata attachments 2471 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2472 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2473 for (const BasicBlock &BB : F) 2474 for (const Instruction &I : BB) { 2475 MDs.clear(); 2476 I.getAllMetadataOtherThanDebugLoc(MDs); 2477 2478 // If no metadata, ignore instruction. 2479 if (MDs.empty()) continue; 2480 2481 Record.push_back(VE.getInstructionID(&I)); 2482 2483 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2484 Record.push_back(MDs[i].first); 2485 Record.push_back(VE.getMetadataID(MDs[i].second)); 2486 } 2487 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2488 Record.clear(); 2489 } 2490 2491 Stream.ExitBlock(); 2492 } 2493 2494 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2495 SmallVector<uint64_t, 64> Record; 2496 2497 // Write metadata kinds 2498 // METADATA_KIND - [n x [id, name]] 2499 SmallVector<StringRef, 8> Names; 2500 M.getMDKindNames(Names); 2501 2502 if (Names.empty()) return; 2503 2504 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2505 2506 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2507 Record.push_back(MDKindID); 2508 StringRef KName = Names[MDKindID]; 2509 Record.append(KName.begin(), KName.end()); 2510 2511 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2512 Record.clear(); 2513 } 2514 2515 Stream.ExitBlock(); 2516 } 2517 2518 void ModuleBitcodeWriter::writeOperandBundleTags() { 2519 // Write metadata kinds 2520 // 2521 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2522 // 2523 // OPERAND_BUNDLE_TAG - [strchr x N] 2524 2525 SmallVector<StringRef, 8> Tags; 2526 M.getOperandBundleTags(Tags); 2527 2528 if (Tags.empty()) 2529 return; 2530 2531 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2532 2533 SmallVector<uint64_t, 64> Record; 2534 2535 for (auto Tag : Tags) { 2536 Record.append(Tag.begin(), Tag.end()); 2537 2538 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2539 Record.clear(); 2540 } 2541 2542 Stream.ExitBlock(); 2543 } 2544 2545 void ModuleBitcodeWriter::writeSyncScopeNames() { 2546 SmallVector<StringRef, 8> SSNs; 2547 M.getContext().getSyncScopeNames(SSNs); 2548 if (SSNs.empty()) 2549 return; 2550 2551 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2552 2553 SmallVector<uint64_t, 64> Record; 2554 for (auto SSN : SSNs) { 2555 Record.append(SSN.begin(), SSN.end()); 2556 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2557 Record.clear(); 2558 } 2559 2560 Stream.ExitBlock(); 2561 } 2562 2563 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2564 bool isGlobal) { 2565 if (FirstVal == LastVal) return; 2566 2567 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2568 2569 unsigned AggregateAbbrev = 0; 2570 unsigned String8Abbrev = 0; 2571 unsigned CString7Abbrev = 0; 2572 unsigned CString6Abbrev = 0; 2573 // If this is a constant pool for the module, emit module-specific abbrevs. 2574 if (isGlobal) { 2575 // Abbrev for CST_CODE_AGGREGATE. 2576 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2577 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2580 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2581 2582 // Abbrev for CST_CODE_STRING. 2583 Abbv = std::make_shared<BitCodeAbbrev>(); 2584 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2587 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2588 // Abbrev for CST_CODE_CSTRING. 2589 Abbv = std::make_shared<BitCodeAbbrev>(); 2590 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2593 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2594 // Abbrev for CST_CODE_CSTRING. 2595 Abbv = std::make_shared<BitCodeAbbrev>(); 2596 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2599 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2600 } 2601 2602 SmallVector<uint64_t, 64> Record; 2603 2604 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2605 Type *LastTy = nullptr; 2606 for (unsigned i = FirstVal; i != LastVal; ++i) { 2607 const Value *V = Vals[i].first; 2608 // If we need to switch types, do so now. 2609 if (V->getType() != LastTy) { 2610 LastTy = V->getType(); 2611 Record.push_back(VE.getTypeID(LastTy)); 2612 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2613 CONSTANTS_SETTYPE_ABBREV); 2614 Record.clear(); 2615 } 2616 2617 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2618 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2619 Record.push_back( 2620 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2621 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2622 2623 // Add the asm string. 2624 const std::string &AsmStr = IA->getAsmString(); 2625 Record.push_back(AsmStr.size()); 2626 Record.append(AsmStr.begin(), AsmStr.end()); 2627 2628 // Add the constraint string. 2629 const std::string &ConstraintStr = IA->getConstraintString(); 2630 Record.push_back(ConstraintStr.size()); 2631 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2632 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2633 Record.clear(); 2634 continue; 2635 } 2636 const Constant *C = cast<Constant>(V); 2637 unsigned Code = -1U; 2638 unsigned AbbrevToUse = 0; 2639 if (C->isNullValue()) { 2640 Code = bitc::CST_CODE_NULL; 2641 } else if (isa<PoisonValue>(C)) { 2642 Code = bitc::CST_CODE_POISON; 2643 } else if (isa<UndefValue>(C)) { 2644 Code = bitc::CST_CODE_UNDEF; 2645 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2646 if (IV->getBitWidth() <= 64) { 2647 uint64_t V = IV->getSExtValue(); 2648 emitSignedInt64(Record, V); 2649 Code = bitc::CST_CODE_INTEGER; 2650 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2651 } else { // Wide integers, > 64 bits in size. 2652 emitWideAPInt(Record, IV->getValue()); 2653 Code = bitc::CST_CODE_WIDE_INTEGER; 2654 } 2655 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2656 Code = bitc::CST_CODE_FLOAT; 2657 Type *Ty = CFP->getType()->getScalarType(); 2658 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2659 Ty->isDoubleTy()) { 2660 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2661 } else if (Ty->isX86_FP80Ty()) { 2662 // api needed to prevent premature destruction 2663 // bits are not in the same order as a normal i80 APInt, compensate. 2664 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2665 const uint64_t *p = api.getRawData(); 2666 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2667 Record.push_back(p[0] & 0xffffLL); 2668 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2669 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2670 const uint64_t *p = api.getRawData(); 2671 Record.push_back(p[0]); 2672 Record.push_back(p[1]); 2673 } else { 2674 assert(0 && "Unknown FP type!"); 2675 } 2676 } else if (isa<ConstantDataSequential>(C) && 2677 cast<ConstantDataSequential>(C)->isString()) { 2678 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2679 // Emit constant strings specially. 2680 unsigned NumElts = Str->getNumElements(); 2681 // If this is a null-terminated string, use the denser CSTRING encoding. 2682 if (Str->isCString()) { 2683 Code = bitc::CST_CODE_CSTRING; 2684 --NumElts; // Don't encode the null, which isn't allowed by char6. 2685 } else { 2686 Code = bitc::CST_CODE_STRING; 2687 AbbrevToUse = String8Abbrev; 2688 } 2689 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2690 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2691 for (unsigned i = 0; i != NumElts; ++i) { 2692 unsigned char V = Str->getElementAsInteger(i); 2693 Record.push_back(V); 2694 isCStr7 &= (V & 128) == 0; 2695 if (isCStrChar6) 2696 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2697 } 2698 2699 if (isCStrChar6) 2700 AbbrevToUse = CString6Abbrev; 2701 else if (isCStr7) 2702 AbbrevToUse = CString7Abbrev; 2703 } else if (const ConstantDataSequential *CDS = 2704 dyn_cast<ConstantDataSequential>(C)) { 2705 Code = bitc::CST_CODE_DATA; 2706 Type *EltTy = CDS->getElementType(); 2707 if (isa<IntegerType>(EltTy)) { 2708 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2709 Record.push_back(CDS->getElementAsInteger(i)); 2710 } else { 2711 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2712 Record.push_back( 2713 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2714 } 2715 } else if (isa<ConstantAggregate>(C)) { 2716 Code = bitc::CST_CODE_AGGREGATE; 2717 for (const Value *Op : C->operands()) 2718 Record.push_back(VE.getValueID(Op)); 2719 AbbrevToUse = AggregateAbbrev; 2720 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2721 switch (CE->getOpcode()) { 2722 default: 2723 if (Instruction::isCast(CE->getOpcode())) { 2724 Code = bitc::CST_CODE_CE_CAST; 2725 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2726 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2727 Record.push_back(VE.getValueID(C->getOperand(0))); 2728 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2729 } else { 2730 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2731 Code = bitc::CST_CODE_CE_BINOP; 2732 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2733 Record.push_back(VE.getValueID(C->getOperand(0))); 2734 Record.push_back(VE.getValueID(C->getOperand(1))); 2735 uint64_t Flags = getOptimizationFlags(CE); 2736 if (Flags != 0) 2737 Record.push_back(Flags); 2738 } 2739 break; 2740 case Instruction::FNeg: { 2741 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2742 Code = bitc::CST_CODE_CE_UNOP; 2743 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2744 Record.push_back(VE.getValueID(C->getOperand(0))); 2745 uint64_t Flags = getOptimizationFlags(CE); 2746 if (Flags != 0) 2747 Record.push_back(Flags); 2748 break; 2749 } 2750 case Instruction::GetElementPtr: { 2751 Code = bitc::CST_CODE_CE_GEP; 2752 const auto *GO = cast<GEPOperator>(C); 2753 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2754 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2755 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2756 Record.push_back((*Idx << 1) | GO->isInBounds()); 2757 } else if (GO->isInBounds()) 2758 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2759 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2760 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2761 Record.push_back(VE.getValueID(C->getOperand(i))); 2762 } 2763 break; 2764 } 2765 case Instruction::ExtractElement: 2766 Code = bitc::CST_CODE_CE_EXTRACTELT; 2767 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2768 Record.push_back(VE.getValueID(C->getOperand(0))); 2769 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2770 Record.push_back(VE.getValueID(C->getOperand(1))); 2771 break; 2772 case Instruction::InsertElement: 2773 Code = bitc::CST_CODE_CE_INSERTELT; 2774 Record.push_back(VE.getValueID(C->getOperand(0))); 2775 Record.push_back(VE.getValueID(C->getOperand(1))); 2776 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2777 Record.push_back(VE.getValueID(C->getOperand(2))); 2778 break; 2779 case Instruction::ShuffleVector: 2780 // If the return type and argument types are the same, this is a 2781 // standard shufflevector instruction. If the types are different, 2782 // then the shuffle is widening or truncating the input vectors, and 2783 // the argument type must also be encoded. 2784 if (C->getType() == C->getOperand(0)->getType()) { 2785 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2786 } else { 2787 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2788 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2789 } 2790 Record.push_back(VE.getValueID(C->getOperand(0))); 2791 Record.push_back(VE.getValueID(C->getOperand(1))); 2792 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2793 break; 2794 case Instruction::ICmp: 2795 case Instruction::FCmp: 2796 Code = bitc::CST_CODE_CE_CMP; 2797 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2798 Record.push_back(VE.getValueID(C->getOperand(0))); 2799 Record.push_back(VE.getValueID(C->getOperand(1))); 2800 Record.push_back(CE->getPredicate()); 2801 break; 2802 } 2803 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2804 Code = bitc::CST_CODE_BLOCKADDRESS; 2805 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2806 Record.push_back(VE.getValueID(BA->getFunction())); 2807 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2808 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2809 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2810 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2811 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2812 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2813 Code = bitc::CST_CODE_NO_CFI_VALUE; 2814 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2815 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2816 } else { 2817 #ifndef NDEBUG 2818 C->dump(); 2819 #endif 2820 llvm_unreachable("Unknown constant!"); 2821 } 2822 Stream.EmitRecord(Code, Record, AbbrevToUse); 2823 Record.clear(); 2824 } 2825 2826 Stream.ExitBlock(); 2827 } 2828 2829 void ModuleBitcodeWriter::writeModuleConstants() { 2830 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2831 2832 // Find the first constant to emit, which is the first non-globalvalue value. 2833 // We know globalvalues have been emitted by WriteModuleInfo. 2834 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2835 if (!isa<GlobalValue>(Vals[i].first)) { 2836 writeConstants(i, Vals.size(), true); 2837 return; 2838 } 2839 } 2840 } 2841 2842 /// pushValueAndType - The file has to encode both the value and type id for 2843 /// many values, because we need to know what type to create for forward 2844 /// references. However, most operands are not forward references, so this type 2845 /// field is not needed. 2846 /// 2847 /// This function adds V's value ID to Vals. If the value ID is higher than the 2848 /// instruction ID, then it is a forward reference, and it also includes the 2849 /// type ID. The value ID that is written is encoded relative to the InstID. 2850 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2851 SmallVectorImpl<unsigned> &Vals) { 2852 unsigned ValID = VE.getValueID(V); 2853 // Make encoding relative to the InstID. 2854 Vals.push_back(InstID - ValID); 2855 if (ValID >= InstID) { 2856 Vals.push_back(VE.getTypeID(V->getType())); 2857 return true; 2858 } 2859 return false; 2860 } 2861 2862 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2863 unsigned InstID) { 2864 SmallVector<unsigned, 64> Record; 2865 LLVMContext &C = CS.getContext(); 2866 2867 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2868 const auto &Bundle = CS.getOperandBundleAt(i); 2869 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2870 2871 for (auto &Input : Bundle.Inputs) 2872 pushValueAndType(Input, InstID, Record); 2873 2874 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2875 Record.clear(); 2876 } 2877 } 2878 2879 /// pushValue - Like pushValueAndType, but where the type of the value is 2880 /// omitted (perhaps it was already encoded in an earlier operand). 2881 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2882 SmallVectorImpl<unsigned> &Vals) { 2883 unsigned ValID = VE.getValueID(V); 2884 Vals.push_back(InstID - ValID); 2885 } 2886 2887 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2888 SmallVectorImpl<uint64_t> &Vals) { 2889 unsigned ValID = VE.getValueID(V); 2890 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2891 emitSignedInt64(Vals, diff); 2892 } 2893 2894 /// WriteInstruction - Emit an instruction to the specified stream. 2895 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2896 unsigned InstID, 2897 SmallVectorImpl<unsigned> &Vals) { 2898 unsigned Code = 0; 2899 unsigned AbbrevToUse = 0; 2900 VE.setInstructionID(&I); 2901 switch (I.getOpcode()) { 2902 default: 2903 if (Instruction::isCast(I.getOpcode())) { 2904 Code = bitc::FUNC_CODE_INST_CAST; 2905 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2906 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2907 Vals.push_back(VE.getTypeID(I.getType())); 2908 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2909 uint64_t Flags = getOptimizationFlags(&I); 2910 if (Flags != 0) { 2911 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2912 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2913 Vals.push_back(Flags); 2914 } 2915 } else { 2916 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2917 Code = bitc::FUNC_CODE_INST_BINOP; 2918 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2919 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2920 pushValue(I.getOperand(1), InstID, Vals); 2921 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2922 uint64_t Flags = getOptimizationFlags(&I); 2923 if (Flags != 0) { 2924 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2925 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2926 Vals.push_back(Flags); 2927 } 2928 } 2929 break; 2930 case Instruction::FNeg: { 2931 Code = bitc::FUNC_CODE_INST_UNOP; 2932 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2933 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2934 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2935 uint64_t Flags = getOptimizationFlags(&I); 2936 if (Flags != 0) { 2937 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2938 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2939 Vals.push_back(Flags); 2940 } 2941 break; 2942 } 2943 case Instruction::GetElementPtr: { 2944 Code = bitc::FUNC_CODE_INST_GEP; 2945 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2946 auto &GEPInst = cast<GetElementPtrInst>(I); 2947 Vals.push_back(GEPInst.isInBounds()); 2948 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2949 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2950 pushValueAndType(I.getOperand(i), InstID, Vals); 2951 break; 2952 } 2953 case Instruction::ExtractValue: { 2954 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2955 pushValueAndType(I.getOperand(0), InstID, Vals); 2956 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2957 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2958 break; 2959 } 2960 case Instruction::InsertValue: { 2961 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2962 pushValueAndType(I.getOperand(0), InstID, Vals); 2963 pushValueAndType(I.getOperand(1), InstID, Vals); 2964 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2965 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2966 break; 2967 } 2968 case Instruction::Select: { 2969 Code = bitc::FUNC_CODE_INST_VSELECT; 2970 pushValueAndType(I.getOperand(1), InstID, Vals); 2971 pushValue(I.getOperand(2), InstID, Vals); 2972 pushValueAndType(I.getOperand(0), InstID, Vals); 2973 uint64_t Flags = getOptimizationFlags(&I); 2974 if (Flags != 0) 2975 Vals.push_back(Flags); 2976 break; 2977 } 2978 case Instruction::ExtractElement: 2979 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2980 pushValueAndType(I.getOperand(0), InstID, Vals); 2981 pushValueAndType(I.getOperand(1), InstID, Vals); 2982 break; 2983 case Instruction::InsertElement: 2984 Code = bitc::FUNC_CODE_INST_INSERTELT; 2985 pushValueAndType(I.getOperand(0), InstID, Vals); 2986 pushValue(I.getOperand(1), InstID, Vals); 2987 pushValueAndType(I.getOperand(2), InstID, Vals); 2988 break; 2989 case Instruction::ShuffleVector: 2990 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2991 pushValueAndType(I.getOperand(0), InstID, Vals); 2992 pushValue(I.getOperand(1), InstID, Vals); 2993 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2994 Vals); 2995 break; 2996 case Instruction::ICmp: 2997 case Instruction::FCmp: { 2998 // compare returning Int1Ty or vector of Int1Ty 2999 Code = bitc::FUNC_CODE_INST_CMP2; 3000 pushValueAndType(I.getOperand(0), InstID, Vals); 3001 pushValue(I.getOperand(1), InstID, Vals); 3002 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3003 uint64_t Flags = getOptimizationFlags(&I); 3004 if (Flags != 0) 3005 Vals.push_back(Flags); 3006 break; 3007 } 3008 3009 case Instruction::Ret: 3010 { 3011 Code = bitc::FUNC_CODE_INST_RET; 3012 unsigned NumOperands = I.getNumOperands(); 3013 if (NumOperands == 0) 3014 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3015 else if (NumOperands == 1) { 3016 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3017 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3018 } else { 3019 for (unsigned i = 0, e = NumOperands; i != e; ++i) 3020 pushValueAndType(I.getOperand(i), InstID, Vals); 3021 } 3022 } 3023 break; 3024 case Instruction::Br: 3025 { 3026 Code = bitc::FUNC_CODE_INST_BR; 3027 const BranchInst &II = cast<BranchInst>(I); 3028 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3029 if (II.isConditional()) { 3030 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3031 pushValue(II.getCondition(), InstID, Vals); 3032 } 3033 } 3034 break; 3035 case Instruction::Switch: 3036 { 3037 Code = bitc::FUNC_CODE_INST_SWITCH; 3038 const SwitchInst &SI = cast<SwitchInst>(I); 3039 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3040 pushValue(SI.getCondition(), InstID, Vals); 3041 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3042 for (auto Case : SI.cases()) { 3043 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3044 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3045 } 3046 } 3047 break; 3048 case Instruction::IndirectBr: 3049 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3050 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3051 // Encode the address operand as relative, but not the basic blocks. 3052 pushValue(I.getOperand(0), InstID, Vals); 3053 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 3054 Vals.push_back(VE.getValueID(I.getOperand(i))); 3055 break; 3056 3057 case Instruction::Invoke: { 3058 const InvokeInst *II = cast<InvokeInst>(&I); 3059 const Value *Callee = II->getCalledOperand(); 3060 FunctionType *FTy = II->getFunctionType(); 3061 3062 if (II->hasOperandBundles()) 3063 writeOperandBundles(*II, InstID); 3064 3065 Code = bitc::FUNC_CODE_INST_INVOKE; 3066 3067 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3068 Vals.push_back(II->getCallingConv() | 1 << 13); 3069 Vals.push_back(VE.getValueID(II->getNormalDest())); 3070 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3071 Vals.push_back(VE.getTypeID(FTy)); 3072 pushValueAndType(Callee, InstID, Vals); 3073 3074 // Emit value #'s for the fixed parameters. 3075 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3076 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3077 3078 // Emit type/value pairs for varargs params. 3079 if (FTy->isVarArg()) { 3080 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3081 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3082 } 3083 break; 3084 } 3085 case Instruction::Resume: 3086 Code = bitc::FUNC_CODE_INST_RESUME; 3087 pushValueAndType(I.getOperand(0), InstID, Vals); 3088 break; 3089 case Instruction::CleanupRet: { 3090 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3091 const auto &CRI = cast<CleanupReturnInst>(I); 3092 pushValue(CRI.getCleanupPad(), InstID, Vals); 3093 if (CRI.hasUnwindDest()) 3094 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3095 break; 3096 } 3097 case Instruction::CatchRet: { 3098 Code = bitc::FUNC_CODE_INST_CATCHRET; 3099 const auto &CRI = cast<CatchReturnInst>(I); 3100 pushValue(CRI.getCatchPad(), InstID, Vals); 3101 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3102 break; 3103 } 3104 case Instruction::CleanupPad: 3105 case Instruction::CatchPad: { 3106 const auto &FuncletPad = cast<FuncletPadInst>(I); 3107 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3108 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3109 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3110 3111 unsigned NumArgOperands = FuncletPad.arg_size(); 3112 Vals.push_back(NumArgOperands); 3113 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3114 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3115 break; 3116 } 3117 case Instruction::CatchSwitch: { 3118 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3119 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3120 3121 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3122 3123 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3124 Vals.push_back(NumHandlers); 3125 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3126 Vals.push_back(VE.getValueID(CatchPadBB)); 3127 3128 if (CatchSwitch.hasUnwindDest()) 3129 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3130 break; 3131 } 3132 case Instruction::CallBr: { 3133 const CallBrInst *CBI = cast<CallBrInst>(&I); 3134 const Value *Callee = CBI->getCalledOperand(); 3135 FunctionType *FTy = CBI->getFunctionType(); 3136 3137 if (CBI->hasOperandBundles()) 3138 writeOperandBundles(*CBI, InstID); 3139 3140 Code = bitc::FUNC_CODE_INST_CALLBR; 3141 3142 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3143 3144 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3145 1 << bitc::CALL_EXPLICIT_TYPE); 3146 3147 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3148 Vals.push_back(CBI->getNumIndirectDests()); 3149 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3150 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3151 3152 Vals.push_back(VE.getTypeID(FTy)); 3153 pushValueAndType(Callee, InstID, Vals); 3154 3155 // Emit value #'s for the fixed parameters. 3156 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3157 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3158 3159 // Emit type/value pairs for varargs params. 3160 if (FTy->isVarArg()) { 3161 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3162 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3163 } 3164 break; 3165 } 3166 case Instruction::Unreachable: 3167 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3168 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3169 break; 3170 3171 case Instruction::PHI: { 3172 const PHINode &PN = cast<PHINode>(I); 3173 Code = bitc::FUNC_CODE_INST_PHI; 3174 // With the newer instruction encoding, forward references could give 3175 // negative valued IDs. This is most common for PHIs, so we use 3176 // signed VBRs. 3177 SmallVector<uint64_t, 128> Vals64; 3178 Vals64.push_back(VE.getTypeID(PN.getType())); 3179 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3180 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3181 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3182 } 3183 3184 uint64_t Flags = getOptimizationFlags(&I); 3185 if (Flags != 0) 3186 Vals64.push_back(Flags); 3187 3188 // Emit a Vals64 vector and exit. 3189 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3190 Vals64.clear(); 3191 return; 3192 } 3193 3194 case Instruction::LandingPad: { 3195 const LandingPadInst &LP = cast<LandingPadInst>(I); 3196 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3197 Vals.push_back(VE.getTypeID(LP.getType())); 3198 Vals.push_back(LP.isCleanup()); 3199 Vals.push_back(LP.getNumClauses()); 3200 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3201 if (LP.isCatch(I)) 3202 Vals.push_back(LandingPadInst::Catch); 3203 else 3204 Vals.push_back(LandingPadInst::Filter); 3205 pushValueAndType(LP.getClause(I), InstID, Vals); 3206 } 3207 break; 3208 } 3209 3210 case Instruction::Alloca: { 3211 Code = bitc::FUNC_CODE_INST_ALLOCA; 3212 const AllocaInst &AI = cast<AllocaInst>(I); 3213 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3214 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3215 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3216 using APV = AllocaPackedValues; 3217 unsigned Record = 0; 3218 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3219 Bitfield::set<APV::AlignLower>( 3220 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3221 Bitfield::set<APV::AlignUpper>(Record, 3222 EncodedAlign >> APV::AlignLower::Bits); 3223 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3224 Bitfield::set<APV::ExplicitType>(Record, true); 3225 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3226 Vals.push_back(Record); 3227 3228 unsigned AS = AI.getAddressSpace(); 3229 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3230 Vals.push_back(AS); 3231 break; 3232 } 3233 3234 case Instruction::Load: 3235 if (cast<LoadInst>(I).isAtomic()) { 3236 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3237 pushValueAndType(I.getOperand(0), InstID, Vals); 3238 } else { 3239 Code = bitc::FUNC_CODE_INST_LOAD; 3240 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3241 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3242 } 3243 Vals.push_back(VE.getTypeID(I.getType())); 3244 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3245 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3246 if (cast<LoadInst>(I).isAtomic()) { 3247 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3248 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3249 } 3250 break; 3251 case Instruction::Store: 3252 if (cast<StoreInst>(I).isAtomic()) 3253 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3254 else 3255 Code = bitc::FUNC_CODE_INST_STORE; 3256 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3257 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3258 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3259 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3260 if (cast<StoreInst>(I).isAtomic()) { 3261 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3262 Vals.push_back( 3263 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3264 } 3265 break; 3266 case Instruction::AtomicCmpXchg: 3267 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3268 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3269 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3270 pushValue(I.getOperand(2), InstID, Vals); // newval. 3271 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3272 Vals.push_back( 3273 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3274 Vals.push_back( 3275 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3276 Vals.push_back( 3277 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3278 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3279 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3280 break; 3281 case Instruction::AtomicRMW: 3282 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3283 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3284 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3285 Vals.push_back( 3286 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3287 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3288 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3289 Vals.push_back( 3290 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3291 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3292 break; 3293 case Instruction::Fence: 3294 Code = bitc::FUNC_CODE_INST_FENCE; 3295 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3296 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3297 break; 3298 case Instruction::Call: { 3299 const CallInst &CI = cast<CallInst>(I); 3300 FunctionType *FTy = CI.getFunctionType(); 3301 3302 if (CI.hasOperandBundles()) 3303 writeOperandBundles(CI, InstID); 3304 3305 Code = bitc::FUNC_CODE_INST_CALL; 3306 3307 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3308 3309 unsigned Flags = getOptimizationFlags(&I); 3310 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3311 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3312 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3313 1 << bitc::CALL_EXPLICIT_TYPE | 3314 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3315 unsigned(Flags != 0) << bitc::CALL_FMF); 3316 if (Flags != 0) 3317 Vals.push_back(Flags); 3318 3319 Vals.push_back(VE.getTypeID(FTy)); 3320 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3321 3322 // Emit value #'s for the fixed parameters. 3323 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3324 // Check for labels (can happen with asm labels). 3325 if (FTy->getParamType(i)->isLabelTy()) 3326 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3327 else 3328 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3329 } 3330 3331 // Emit type/value pairs for varargs params. 3332 if (FTy->isVarArg()) { 3333 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3334 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3335 } 3336 break; 3337 } 3338 case Instruction::VAArg: 3339 Code = bitc::FUNC_CODE_INST_VAARG; 3340 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3341 pushValue(I.getOperand(0), InstID, Vals); // valist. 3342 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3343 break; 3344 case Instruction::Freeze: 3345 Code = bitc::FUNC_CODE_INST_FREEZE; 3346 pushValueAndType(I.getOperand(0), InstID, Vals); 3347 break; 3348 } 3349 3350 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3351 Vals.clear(); 3352 } 3353 3354 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3355 /// to allow clients to efficiently find the function body. 3356 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3357 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3358 // Get the offset of the VST we are writing, and backpatch it into 3359 // the VST forward declaration record. 3360 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3361 // The BitcodeStartBit was the stream offset of the identification block. 3362 VSTOffset -= bitcodeStartBit(); 3363 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3364 // Note that we add 1 here because the offset is relative to one word 3365 // before the start of the identification block, which was historically 3366 // always the start of the regular bitcode header. 3367 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3368 3369 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3370 3371 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3372 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3375 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3376 3377 for (const Function &F : M) { 3378 uint64_t Record[2]; 3379 3380 if (F.isDeclaration()) 3381 continue; 3382 3383 Record[0] = VE.getValueID(&F); 3384 3385 // Save the word offset of the function (from the start of the 3386 // actual bitcode written to the stream). 3387 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3388 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3389 // Note that we add 1 here because the offset is relative to one word 3390 // before the start of the identification block, which was historically 3391 // always the start of the regular bitcode header. 3392 Record[1] = BitcodeIndex / 32 + 1; 3393 3394 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3395 } 3396 3397 Stream.ExitBlock(); 3398 } 3399 3400 /// Emit names for arguments, instructions and basic blocks in a function. 3401 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3402 const ValueSymbolTable &VST) { 3403 if (VST.empty()) 3404 return; 3405 3406 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3407 3408 // FIXME: Set up the abbrev, we know how many values there are! 3409 // FIXME: We know if the type names can use 7-bit ascii. 3410 SmallVector<uint64_t, 64> NameVals; 3411 3412 for (const ValueName &Name : VST) { 3413 // Figure out the encoding to use for the name. 3414 StringEncoding Bits = getStringEncoding(Name.getKey()); 3415 3416 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3417 NameVals.push_back(VE.getValueID(Name.getValue())); 3418 3419 // VST_CODE_ENTRY: [valueid, namechar x N] 3420 // VST_CODE_BBENTRY: [bbid, namechar x N] 3421 unsigned Code; 3422 if (isa<BasicBlock>(Name.getValue())) { 3423 Code = bitc::VST_CODE_BBENTRY; 3424 if (Bits == SE_Char6) 3425 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3426 } else { 3427 Code = bitc::VST_CODE_ENTRY; 3428 if (Bits == SE_Char6) 3429 AbbrevToUse = VST_ENTRY_6_ABBREV; 3430 else if (Bits == SE_Fixed7) 3431 AbbrevToUse = VST_ENTRY_7_ABBREV; 3432 } 3433 3434 for (const auto P : Name.getKey()) 3435 NameVals.push_back((unsigned char)P); 3436 3437 // Emit the finished record. 3438 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3439 NameVals.clear(); 3440 } 3441 3442 Stream.ExitBlock(); 3443 } 3444 3445 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3446 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3447 unsigned Code; 3448 if (isa<BasicBlock>(Order.V)) 3449 Code = bitc::USELIST_CODE_BB; 3450 else 3451 Code = bitc::USELIST_CODE_DEFAULT; 3452 3453 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3454 Record.push_back(VE.getValueID(Order.V)); 3455 Stream.EmitRecord(Code, Record); 3456 } 3457 3458 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3459 assert(VE.shouldPreserveUseListOrder() && 3460 "Expected to be preserving use-list order"); 3461 3462 auto hasMore = [&]() { 3463 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3464 }; 3465 if (!hasMore()) 3466 // Nothing to do. 3467 return; 3468 3469 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3470 while (hasMore()) { 3471 writeUseList(std::move(VE.UseListOrders.back())); 3472 VE.UseListOrders.pop_back(); 3473 } 3474 Stream.ExitBlock(); 3475 } 3476 3477 /// Emit a function body to the module stream. 3478 void ModuleBitcodeWriter::writeFunction( 3479 const Function &F, 3480 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3481 // Save the bitcode index of the start of this function block for recording 3482 // in the VST. 3483 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3484 3485 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3486 VE.incorporateFunction(F); 3487 3488 SmallVector<unsigned, 64> Vals; 3489 3490 // Emit the number of basic blocks, so the reader can create them ahead of 3491 // time. 3492 Vals.push_back(VE.getBasicBlocks().size()); 3493 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3494 Vals.clear(); 3495 3496 // If there are function-local constants, emit them now. 3497 unsigned CstStart, CstEnd; 3498 VE.getFunctionConstantRange(CstStart, CstEnd); 3499 writeConstants(CstStart, CstEnd, false); 3500 3501 // If there is function-local metadata, emit it now. 3502 writeFunctionMetadata(F); 3503 3504 // Keep a running idea of what the instruction ID is. 3505 unsigned InstID = CstEnd; 3506 3507 bool NeedsMetadataAttachment = F.hasMetadata(); 3508 3509 DILocation *LastDL = nullptr; 3510 SmallSetVector<Function *, 4> BlockAddressUsers; 3511 3512 // Finally, emit all the instructions, in order. 3513 for (const BasicBlock &BB : F) { 3514 for (const Instruction &I : BB) { 3515 writeInstruction(I, InstID, Vals); 3516 3517 if (!I.getType()->isVoidTy()) 3518 ++InstID; 3519 3520 // If the instruction has metadata, write a metadata attachment later. 3521 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3522 3523 // If the instruction has a debug location, emit it. 3524 if (DILocation *DL = I.getDebugLoc()) { 3525 if (DL == LastDL) { 3526 // Just repeat the same debug loc as last time. 3527 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3528 } else { 3529 Vals.push_back(DL->getLine()); 3530 Vals.push_back(DL->getColumn()); 3531 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3532 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3533 Vals.push_back(DL->isImplicitCode()); 3534 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3535 Vals.clear(); 3536 LastDL = DL; 3537 } 3538 } 3539 3540 // If the instruction has DbgRecords attached to it, emit them. Note that 3541 // they come after the instruction so that it's easy to attach them again 3542 // when reading the bitcode, even though conceptually the debug locations 3543 // start "before" the instruction. 3544 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3545 /// Try to push the value only (unwrapped), otherwise push the 3546 /// metadata wrapped value. Returns true if the value was pushed 3547 /// without the ValueAsMetadata wrapper. 3548 auto PushValueOrMetadata = [&Vals, InstID, 3549 this](Metadata *RawLocation) { 3550 assert(RawLocation && 3551 "RawLocation unexpectedly null in DbgVariableRecord"); 3552 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3553 SmallVector<unsigned, 2> ValAndType; 3554 // If the value is a fwd-ref the type is also pushed. We don't 3555 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3556 // returns false if the value is pushed without type). 3557 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3558 Vals.push_back(ValAndType[0]); 3559 return true; 3560 } 3561 } 3562 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3563 // fwd-ref. Push the metadata ID. 3564 Vals.push_back(VE.getMetadataID(RawLocation)); 3565 return false; 3566 }; 3567 3568 // Write out non-instruction debug information attached to this 3569 // instruction. Write it after the instruction so that it's easy to 3570 // re-attach to the instruction reading the records in. 3571 for (DbgRecord &DR : I.DbgMarker->getDbgRecordRange()) { 3572 if (DPLabel *DPL = dyn_cast<DPLabel>(&DR)) { 3573 Vals.push_back(VE.getMetadataID(&*DPL->getDebugLoc())); 3574 Vals.push_back(VE.getMetadataID(DPL->getLabel())); 3575 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3576 Vals.clear(); 3577 continue; 3578 } 3579 3580 // First 3 fields are common to all kinds: 3581 // DILocation, DILocalVariable, DIExpression 3582 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3583 // ..., LocationMetadata 3584 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3585 // ..., Value 3586 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3587 // ..., LocationMetadata 3588 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3589 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3590 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3591 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3592 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3593 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3594 if (DVR.isDbgValue()) { 3595 if (PushValueOrMetadata(DVR.getRawLocation())) 3596 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3597 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3598 else 3599 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3600 } else if (DVR.isDbgDeclare()) { 3601 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3602 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3603 } else { 3604 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3605 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3606 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3607 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3608 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3609 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3610 } 3611 Vals.clear(); 3612 } 3613 } 3614 } 3615 3616 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3617 SmallVector<Value *> Worklist{BA}; 3618 SmallPtrSet<Value *, 8> Visited{BA}; 3619 while (!Worklist.empty()) { 3620 Value *V = Worklist.pop_back_val(); 3621 for (User *U : V->users()) { 3622 if (auto *I = dyn_cast<Instruction>(U)) { 3623 Function *P = I->getFunction(); 3624 if (P != &F) 3625 BlockAddressUsers.insert(P); 3626 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3627 Visited.insert(U).second) 3628 Worklist.push_back(U); 3629 } 3630 } 3631 } 3632 } 3633 3634 if (!BlockAddressUsers.empty()) { 3635 Vals.resize(BlockAddressUsers.size()); 3636 for (auto I : llvm::enumerate(BlockAddressUsers)) 3637 Vals[I.index()] = VE.getValueID(I.value()); 3638 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3639 Vals.clear(); 3640 } 3641 3642 // Emit names for all the instructions etc. 3643 if (auto *Symtab = F.getValueSymbolTable()) 3644 writeFunctionLevelValueSymbolTable(*Symtab); 3645 3646 if (NeedsMetadataAttachment) 3647 writeFunctionMetadataAttachment(F); 3648 if (VE.shouldPreserveUseListOrder()) 3649 writeUseListBlock(&F); 3650 VE.purgeFunction(); 3651 Stream.ExitBlock(); 3652 } 3653 3654 // Emit blockinfo, which defines the standard abbreviations etc. 3655 void ModuleBitcodeWriter::writeBlockInfo() { 3656 // We only want to emit block info records for blocks that have multiple 3657 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3658 // Other blocks can define their abbrevs inline. 3659 Stream.EnterBlockInfoBlock(); 3660 3661 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3662 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3667 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3668 VST_ENTRY_8_ABBREV) 3669 llvm_unreachable("Unexpected abbrev ordering!"); 3670 } 3671 3672 { // 7-bit fixed width VST_CODE_ENTRY strings. 3673 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3674 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3676 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3677 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3678 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3679 VST_ENTRY_7_ABBREV) 3680 llvm_unreachable("Unexpected abbrev ordering!"); 3681 } 3682 { // 6-bit char6 VST_CODE_ENTRY strings. 3683 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3684 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3685 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3688 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3689 VST_ENTRY_6_ABBREV) 3690 llvm_unreachable("Unexpected abbrev ordering!"); 3691 } 3692 { // 6-bit char6 VST_CODE_BBENTRY strings. 3693 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3694 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3698 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3699 VST_BBENTRY_6_ABBREV) 3700 llvm_unreachable("Unexpected abbrev ordering!"); 3701 } 3702 3703 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3704 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3705 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3707 VE.computeBitsRequiredForTypeIndicies())); 3708 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3709 CONSTANTS_SETTYPE_ABBREV) 3710 llvm_unreachable("Unexpected abbrev ordering!"); 3711 } 3712 3713 { // INTEGER abbrev for CONSTANTS_BLOCK. 3714 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3715 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3717 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3718 CONSTANTS_INTEGER_ABBREV) 3719 llvm_unreachable("Unexpected abbrev ordering!"); 3720 } 3721 3722 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3723 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3724 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3727 VE.computeBitsRequiredForTypeIndicies())); 3728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3729 3730 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3731 CONSTANTS_CE_CAST_Abbrev) 3732 llvm_unreachable("Unexpected abbrev ordering!"); 3733 } 3734 { // NULL abbrev for CONSTANTS_BLOCK. 3735 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3736 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3737 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3738 CONSTANTS_NULL_Abbrev) 3739 llvm_unreachable("Unexpected abbrev ordering!"); 3740 } 3741 3742 // FIXME: This should only use space for first class types! 3743 3744 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3745 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3746 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3749 VE.computeBitsRequiredForTypeIndicies())); 3750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3752 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3753 FUNCTION_INST_LOAD_ABBREV) 3754 llvm_unreachable("Unexpected abbrev ordering!"); 3755 } 3756 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3757 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3758 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3761 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3762 FUNCTION_INST_UNOP_ABBREV) 3763 llvm_unreachable("Unexpected abbrev ordering!"); 3764 } 3765 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3766 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3767 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3771 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3772 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3773 llvm_unreachable("Unexpected abbrev ordering!"); 3774 } 3775 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3776 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3777 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3781 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3782 FUNCTION_INST_BINOP_ABBREV) 3783 llvm_unreachable("Unexpected abbrev ordering!"); 3784 } 3785 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3786 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3787 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3792 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3793 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3794 llvm_unreachable("Unexpected abbrev ordering!"); 3795 } 3796 { // INST_CAST abbrev for FUNCTION_BLOCK. 3797 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3798 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3801 VE.computeBitsRequiredForTypeIndicies())); 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3803 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3804 FUNCTION_INST_CAST_ABBREV) 3805 llvm_unreachable("Unexpected abbrev ordering!"); 3806 } 3807 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3808 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3809 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3812 VE.computeBitsRequiredForTypeIndicies())); 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3815 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3816 FUNCTION_INST_CAST_FLAGS_ABBREV) 3817 llvm_unreachable("Unexpected abbrev ordering!"); 3818 } 3819 3820 { // INST_RET abbrev for FUNCTION_BLOCK. 3821 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3822 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3823 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3824 FUNCTION_INST_RET_VOID_ABBREV) 3825 llvm_unreachable("Unexpected abbrev ordering!"); 3826 } 3827 { // INST_RET abbrev for FUNCTION_BLOCK. 3828 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3829 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3831 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3832 FUNCTION_INST_RET_VAL_ABBREV) 3833 llvm_unreachable("Unexpected abbrev ordering!"); 3834 } 3835 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3836 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3837 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3838 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3839 FUNCTION_INST_UNREACHABLE_ABBREV) 3840 llvm_unreachable("Unexpected abbrev ordering!"); 3841 } 3842 { 3843 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3844 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3847 Log2_32_Ceil(VE.getTypes().size() + 1))); 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3850 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3851 FUNCTION_INST_GEP_ABBREV) 3852 llvm_unreachable("Unexpected abbrev ordering!"); 3853 } 3854 { 3855 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3856 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3861 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3862 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3863 llvm_unreachable("Unexpected abbrev ordering! 1"); 3864 } 3865 Stream.ExitBlock(); 3866 } 3867 3868 /// Write the module path strings, currently only used when generating 3869 /// a combined index file. 3870 void IndexBitcodeWriter::writeModStrings() { 3871 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3872 3873 // TODO: See which abbrev sizes we actually need to emit 3874 3875 // 8-bit fixed-width MST_ENTRY strings. 3876 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3877 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3881 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3882 3883 // 7-bit fixed width MST_ENTRY strings. 3884 Abbv = std::make_shared<BitCodeAbbrev>(); 3885 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3889 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3890 3891 // 6-bit char6 MST_ENTRY strings. 3892 Abbv = std::make_shared<BitCodeAbbrev>(); 3893 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3897 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3898 3899 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3900 Abbv = std::make_shared<BitCodeAbbrev>(); 3901 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3907 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3908 3909 SmallVector<unsigned, 64> Vals; 3910 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3911 StringRef Key = MPSE.getKey(); 3912 const auto &Hash = MPSE.getValue(); 3913 StringEncoding Bits = getStringEncoding(Key); 3914 unsigned AbbrevToUse = Abbrev8Bit; 3915 if (Bits == SE_Char6) 3916 AbbrevToUse = Abbrev6Bit; 3917 else if (Bits == SE_Fixed7) 3918 AbbrevToUse = Abbrev7Bit; 3919 3920 auto ModuleId = ModuleIdMap.size(); 3921 ModuleIdMap[Key] = ModuleId; 3922 Vals.push_back(ModuleId); 3923 Vals.append(Key.begin(), Key.end()); 3924 3925 // Emit the finished record. 3926 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3927 3928 // Emit an optional hash for the module now 3929 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3930 Vals.assign(Hash.begin(), Hash.end()); 3931 // Emit the hash record. 3932 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3933 } 3934 3935 Vals.clear(); 3936 }); 3937 Stream.ExitBlock(); 3938 } 3939 3940 /// Write the function type metadata related records that need to appear before 3941 /// a function summary entry (whether per-module or combined). 3942 template <typename Fn> 3943 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3944 FunctionSummary *FS, 3945 Fn GetValueID) { 3946 if (!FS->type_tests().empty()) 3947 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3948 3949 SmallVector<uint64_t, 64> Record; 3950 3951 auto WriteVFuncIdVec = [&](uint64_t Ty, 3952 ArrayRef<FunctionSummary::VFuncId> VFs) { 3953 if (VFs.empty()) 3954 return; 3955 Record.clear(); 3956 for (auto &VF : VFs) { 3957 Record.push_back(VF.GUID); 3958 Record.push_back(VF.Offset); 3959 } 3960 Stream.EmitRecord(Ty, Record); 3961 }; 3962 3963 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3964 FS->type_test_assume_vcalls()); 3965 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3966 FS->type_checked_load_vcalls()); 3967 3968 auto WriteConstVCallVec = [&](uint64_t Ty, 3969 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3970 for (auto &VC : VCs) { 3971 Record.clear(); 3972 Record.push_back(VC.VFunc.GUID); 3973 Record.push_back(VC.VFunc.Offset); 3974 llvm::append_range(Record, VC.Args); 3975 Stream.EmitRecord(Ty, Record); 3976 } 3977 }; 3978 3979 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3980 FS->type_test_assume_const_vcalls()); 3981 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3982 FS->type_checked_load_const_vcalls()); 3983 3984 auto WriteRange = [&](ConstantRange Range) { 3985 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3986 assert(Range.getLower().getNumWords() == 1); 3987 assert(Range.getUpper().getNumWords() == 1); 3988 emitSignedInt64(Record, *Range.getLower().getRawData()); 3989 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3990 }; 3991 3992 if (!FS->paramAccesses().empty()) { 3993 Record.clear(); 3994 for (auto &Arg : FS->paramAccesses()) { 3995 size_t UndoSize = Record.size(); 3996 Record.push_back(Arg.ParamNo); 3997 WriteRange(Arg.Use); 3998 Record.push_back(Arg.Calls.size()); 3999 for (auto &Call : Arg.Calls) { 4000 Record.push_back(Call.ParamNo); 4001 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4002 if (!ValueID) { 4003 // If ValueID is unknown we can't drop just this call, we must drop 4004 // entire parameter. 4005 Record.resize(UndoSize); 4006 break; 4007 } 4008 Record.push_back(*ValueID); 4009 WriteRange(Call.Offsets); 4010 } 4011 } 4012 if (!Record.empty()) 4013 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4014 } 4015 } 4016 4017 /// Collect type IDs from type tests used by function. 4018 static void 4019 getReferencedTypeIds(FunctionSummary *FS, 4020 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4021 if (!FS->type_tests().empty()) 4022 for (auto &TT : FS->type_tests()) 4023 ReferencedTypeIds.insert(TT); 4024 4025 auto GetReferencedTypesFromVFuncIdVec = 4026 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4027 for (auto &VF : VFs) 4028 ReferencedTypeIds.insert(VF.GUID); 4029 }; 4030 4031 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4032 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4033 4034 auto GetReferencedTypesFromConstVCallVec = 4035 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4036 for (auto &VC : VCs) 4037 ReferencedTypeIds.insert(VC.VFunc.GUID); 4038 }; 4039 4040 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4041 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4042 } 4043 4044 static void writeWholeProgramDevirtResolutionByArg( 4045 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4046 const WholeProgramDevirtResolution::ByArg &ByArg) { 4047 NameVals.push_back(args.size()); 4048 llvm::append_range(NameVals, args); 4049 4050 NameVals.push_back(ByArg.TheKind); 4051 NameVals.push_back(ByArg.Info); 4052 NameVals.push_back(ByArg.Byte); 4053 NameVals.push_back(ByArg.Bit); 4054 } 4055 4056 static void writeWholeProgramDevirtResolution( 4057 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4058 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4059 NameVals.push_back(Id); 4060 4061 NameVals.push_back(Wpd.TheKind); 4062 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4063 NameVals.push_back(Wpd.SingleImplName.size()); 4064 4065 NameVals.push_back(Wpd.ResByArg.size()); 4066 for (auto &A : Wpd.ResByArg) 4067 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4068 } 4069 4070 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4071 StringTableBuilder &StrtabBuilder, 4072 const std::string &Id, 4073 const TypeIdSummary &Summary) { 4074 NameVals.push_back(StrtabBuilder.add(Id)); 4075 NameVals.push_back(Id.size()); 4076 4077 NameVals.push_back(Summary.TTRes.TheKind); 4078 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4079 NameVals.push_back(Summary.TTRes.AlignLog2); 4080 NameVals.push_back(Summary.TTRes.SizeM1); 4081 NameVals.push_back(Summary.TTRes.BitMask); 4082 NameVals.push_back(Summary.TTRes.InlineBits); 4083 4084 for (auto &W : Summary.WPDRes) 4085 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4086 W.second); 4087 } 4088 4089 static void writeTypeIdCompatibleVtableSummaryRecord( 4090 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4091 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4092 ValueEnumerator &VE) { 4093 NameVals.push_back(StrtabBuilder.add(Id)); 4094 NameVals.push_back(Id.size()); 4095 4096 for (auto &P : Summary) { 4097 NameVals.push_back(P.AddressPointOffset); 4098 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4099 } 4100 } 4101 4102 static void writeFunctionHeapProfileRecords( 4103 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4104 unsigned AllocAbbrev, bool PerModule, 4105 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4106 std::function<unsigned(unsigned)> GetStackIndex) { 4107 SmallVector<uint64_t> Record; 4108 4109 for (auto &CI : FS->callsites()) { 4110 Record.clear(); 4111 // Per module callsite clones should always have a single entry of 4112 // value 0. 4113 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4114 Record.push_back(GetValueID(CI.Callee)); 4115 if (!PerModule) { 4116 Record.push_back(CI.StackIdIndices.size()); 4117 Record.push_back(CI.Clones.size()); 4118 } 4119 for (auto Id : CI.StackIdIndices) 4120 Record.push_back(GetStackIndex(Id)); 4121 if (!PerModule) { 4122 for (auto V : CI.Clones) 4123 Record.push_back(V); 4124 } 4125 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4126 : bitc::FS_COMBINED_CALLSITE_INFO, 4127 Record, CallsiteAbbrev); 4128 } 4129 4130 for (auto &AI : FS->allocs()) { 4131 Record.clear(); 4132 // Per module alloc versions should always have a single entry of 4133 // value 0. 4134 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4135 if (!PerModule) { 4136 Record.push_back(AI.MIBs.size()); 4137 Record.push_back(AI.Versions.size()); 4138 } 4139 for (auto &MIB : AI.MIBs) { 4140 Record.push_back((uint8_t)MIB.AllocType); 4141 Record.push_back(MIB.StackIdIndices.size()); 4142 for (auto Id : MIB.StackIdIndices) 4143 Record.push_back(GetStackIndex(Id)); 4144 } 4145 if (!PerModule) { 4146 for (auto V : AI.Versions) 4147 Record.push_back(V); 4148 } 4149 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4150 : bitc::FS_COMBINED_ALLOC_INFO, 4151 Record, AllocAbbrev); 4152 } 4153 } 4154 4155 // Helper to emit a single function summary record. 4156 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4157 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4158 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4159 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4160 unsigned AllocAbbrev, const Function &F) { 4161 NameVals.push_back(ValueID); 4162 4163 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4164 4165 writeFunctionTypeMetadataRecords( 4166 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4167 return {VE.getValueID(VI.getValue())}; 4168 }); 4169 4170 writeFunctionHeapProfileRecords( 4171 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4172 /*PerModule*/ true, 4173 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4174 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4175 4176 auto SpecialRefCnts = FS->specialRefCounts(); 4177 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4178 NameVals.push_back(FS->instCount()); 4179 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4180 NameVals.push_back(FS->refs().size()); 4181 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4182 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4183 4184 for (auto &RI : FS->refs()) 4185 NameVals.push_back(VE.getValueID(RI.getValue())); 4186 4187 const bool UseRelBFRecord = 4188 WriteRelBFToSummary && !F.hasProfileData() && 4189 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4190 for (auto &ECI : FS->calls()) { 4191 NameVals.push_back(getValueId(ECI.first)); 4192 if (UseRelBFRecord) 4193 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4194 else 4195 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4196 } 4197 4198 unsigned FSAbbrev = 4199 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4200 unsigned Code = 4201 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4202 4203 // Emit the finished record. 4204 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4205 NameVals.clear(); 4206 } 4207 4208 // Collect the global value references in the given variable's initializer, 4209 // and emit them in a summary record. 4210 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4211 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4212 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4213 auto VI = Index->getValueInfo(V.getGUID()); 4214 if (!VI || VI.getSummaryList().empty()) { 4215 // Only declarations should not have a summary (a declaration might however 4216 // have a summary if the def was in module level asm). 4217 assert(V.isDeclaration()); 4218 return; 4219 } 4220 auto *Summary = VI.getSummaryList()[0].get(); 4221 NameVals.push_back(VE.getValueID(&V)); 4222 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4223 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4224 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4225 4226 auto VTableFuncs = VS->vTableFuncs(); 4227 if (!VTableFuncs.empty()) 4228 NameVals.push_back(VS->refs().size()); 4229 4230 unsigned SizeBeforeRefs = NameVals.size(); 4231 for (auto &RI : VS->refs()) 4232 NameVals.push_back(VE.getValueID(RI.getValue())); 4233 // Sort the refs for determinism output, the vector returned by FS->refs() has 4234 // been initialized from a DenseSet. 4235 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4236 4237 if (VTableFuncs.empty()) 4238 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4239 FSModRefsAbbrev); 4240 else { 4241 // VTableFuncs pairs should already be sorted by offset. 4242 for (auto &P : VTableFuncs) { 4243 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4244 NameVals.push_back(P.VTableOffset); 4245 } 4246 4247 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4248 FSModVTableRefsAbbrev); 4249 } 4250 NameVals.clear(); 4251 } 4252 4253 /// Emit the per-module summary section alongside the rest of 4254 /// the module's bitcode. 4255 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4256 // By default we compile with ThinLTO if the module has a summary, but the 4257 // client can request full LTO with a module flag. 4258 bool IsThinLTO = true; 4259 if (auto *MD = 4260 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4261 IsThinLTO = MD->getZExtValue(); 4262 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4263 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4264 4); 4265 4266 Stream.EmitRecord( 4267 bitc::FS_VERSION, 4268 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4269 4270 // Write the index flags. 4271 uint64_t Flags = 0; 4272 // Bits 1-3 are set only in the combined index, skip them. 4273 if (Index->enableSplitLTOUnit()) 4274 Flags |= 0x8; 4275 if (Index->hasUnifiedLTO()) 4276 Flags |= 0x200; 4277 4278 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4279 4280 if (Index->begin() == Index->end()) { 4281 Stream.ExitBlock(); 4282 return; 4283 } 4284 4285 for (const auto &GVI : valueIds()) { 4286 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4287 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4288 } 4289 4290 if (!Index->stackIds().empty()) { 4291 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4292 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4293 // numids x stackid 4294 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4295 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4296 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4297 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4298 } 4299 4300 // Abbrev for FS_PERMODULE_PROFILE. 4301 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4302 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4310 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4313 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4314 4315 // Abbrev for FS_PERMODULE_RELBF. 4316 Abbv = std::make_shared<BitCodeAbbrev>(); 4317 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4325 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4328 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4329 4330 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4331 Abbv = std::make_shared<BitCodeAbbrev>(); 4332 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4337 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4338 4339 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4340 Abbv = std::make_shared<BitCodeAbbrev>(); 4341 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4345 // numrefs x valueid, n x (valueid , offset) 4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4348 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4349 4350 // Abbrev for FS_ALIAS. 4351 Abbv = std::make_shared<BitCodeAbbrev>(); 4352 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4356 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4357 4358 // Abbrev for FS_TYPE_ID_METADATA 4359 Abbv = std::make_shared<BitCodeAbbrev>(); 4360 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4363 // n x (valueid , offset) 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4366 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4367 4368 Abbv = std::make_shared<BitCodeAbbrev>(); 4369 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4371 // n x stackidindex 4372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4374 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4375 4376 Abbv = std::make_shared<BitCodeAbbrev>(); 4377 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4378 // n x (alloc type, numstackids, numstackids x stackidindex) 4379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4381 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4382 4383 SmallVector<uint64_t, 64> NameVals; 4384 // Iterate over the list of functions instead of the Index to 4385 // ensure the ordering is stable. 4386 for (const Function &F : M) { 4387 // Summary emission does not support anonymous functions, they have to 4388 // renamed using the anonymous function renaming pass. 4389 if (!F.hasName()) 4390 report_fatal_error("Unexpected anonymous function when writing summary"); 4391 4392 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4393 if (!VI || VI.getSummaryList().empty()) { 4394 // Only declarations should not have a summary (a declaration might 4395 // however have a summary if the def was in module level asm). 4396 assert(F.isDeclaration()); 4397 continue; 4398 } 4399 auto *Summary = VI.getSummaryList()[0].get(); 4400 writePerModuleFunctionSummaryRecord( 4401 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4402 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4403 } 4404 4405 // Capture references from GlobalVariable initializers, which are outside 4406 // of a function scope. 4407 for (const GlobalVariable &G : M.globals()) 4408 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4409 FSModVTableRefsAbbrev); 4410 4411 for (const GlobalAlias &A : M.aliases()) { 4412 auto *Aliasee = A.getAliaseeObject(); 4413 // Skip ifunc and nameless functions which don't have an entry in the 4414 // summary. 4415 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4416 continue; 4417 auto AliasId = VE.getValueID(&A); 4418 auto AliaseeId = VE.getValueID(Aliasee); 4419 NameVals.push_back(AliasId); 4420 auto *Summary = Index->getGlobalValueSummary(A); 4421 AliasSummary *AS = cast<AliasSummary>(Summary); 4422 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4423 NameVals.push_back(AliaseeId); 4424 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4425 NameVals.clear(); 4426 } 4427 4428 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4429 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4430 S.second, VE); 4431 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4432 TypeIdCompatibleVtableAbbrev); 4433 NameVals.clear(); 4434 } 4435 4436 if (Index->getBlockCount()) 4437 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4438 ArrayRef<uint64_t>{Index->getBlockCount()}); 4439 4440 Stream.ExitBlock(); 4441 } 4442 4443 /// Emit the combined summary section into the combined index file. 4444 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4445 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4446 Stream.EmitRecord( 4447 bitc::FS_VERSION, 4448 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4449 4450 // Write the index flags. 4451 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4452 4453 for (const auto &GVI : valueIds()) { 4454 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4455 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4456 } 4457 4458 if (!StackIdIndices.empty()) { 4459 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4460 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4461 // numids x stackid 4462 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4463 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4464 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4465 // Write the stack ids used by this index, which will be a subset of those in 4466 // the full index in the case of distributed indexes. 4467 std::vector<uint64_t> StackIds; 4468 for (auto &I : StackIdIndices) 4469 StackIds.push_back(Index.getStackIdAtIndex(I)); 4470 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4471 } 4472 4473 // Abbrev for FS_COMBINED_PROFILE. 4474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4475 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4485 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4488 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4489 4490 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4491 Abbv = std::make_shared<BitCodeAbbrev>(); 4492 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4498 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4499 4500 // Abbrev for FS_COMBINED_ALIAS. 4501 Abbv = std::make_shared<BitCodeAbbrev>(); 4502 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4507 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4508 4509 Abbv = std::make_shared<BitCodeAbbrev>(); 4510 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4514 // numstackindices x stackidindex, numver x version 4515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4517 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4518 4519 Abbv = std::make_shared<BitCodeAbbrev>(); 4520 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4523 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4524 // numver x version 4525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4527 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4528 4529 // The aliases are emitted as a post-pass, and will point to the value 4530 // id of the aliasee. Save them in a vector for post-processing. 4531 SmallVector<AliasSummary *, 64> Aliases; 4532 4533 // Save the value id for each summary for alias emission. 4534 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4535 4536 SmallVector<uint64_t, 64> NameVals; 4537 4538 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4539 // with the type ids referenced by this index file. 4540 std::set<GlobalValue::GUID> ReferencedTypeIds; 4541 4542 // For local linkage, we also emit the original name separately 4543 // immediately after the record. 4544 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4545 // We don't need to emit the original name if we are writing the index for 4546 // distributed backends (in which case ModuleToSummariesForIndex is 4547 // non-null). The original name is only needed during the thin link, since 4548 // for SamplePGO the indirect call targets for local functions have 4549 // have the original name annotated in profile. 4550 // Continue to emit it when writing out the entire combined index, which is 4551 // used in testing the thin link via llvm-lto. 4552 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4553 return; 4554 NameVals.push_back(S.getOriginalName()); 4555 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4556 NameVals.clear(); 4557 }; 4558 4559 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4560 forEachSummary([&](GVInfo I, bool IsAliasee) { 4561 GlobalValueSummary *S = I.second; 4562 assert(S); 4563 DefOrUseGUIDs.insert(I.first); 4564 for (const ValueInfo &VI : S->refs()) 4565 DefOrUseGUIDs.insert(VI.getGUID()); 4566 4567 auto ValueId = getValueId(I.first); 4568 assert(ValueId); 4569 SummaryToValueIdMap[S] = *ValueId; 4570 4571 // If this is invoked for an aliasee, we want to record the above 4572 // mapping, but then not emit a summary entry (if the aliasee is 4573 // to be imported, we will invoke this separately with IsAliasee=false). 4574 if (IsAliasee) 4575 return; 4576 4577 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4578 // Will process aliases as a post-pass because the reader wants all 4579 // global to be loaded first. 4580 Aliases.push_back(AS); 4581 return; 4582 } 4583 4584 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4585 NameVals.push_back(*ValueId); 4586 assert(ModuleIdMap.count(VS->modulePath())); 4587 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4588 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4589 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4590 for (auto &RI : VS->refs()) { 4591 auto RefValueId = getValueId(RI.getGUID()); 4592 if (!RefValueId) 4593 continue; 4594 NameVals.push_back(*RefValueId); 4595 } 4596 4597 // Emit the finished record. 4598 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4599 FSModRefsAbbrev); 4600 NameVals.clear(); 4601 MaybeEmitOriginalName(*S); 4602 return; 4603 } 4604 4605 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4606 if (!VI) 4607 return std::nullopt; 4608 return getValueId(VI.getGUID()); 4609 }; 4610 4611 auto *FS = cast<FunctionSummary>(S); 4612 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4613 getReferencedTypeIds(FS, ReferencedTypeIds); 4614 4615 writeFunctionHeapProfileRecords( 4616 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4617 /*PerModule*/ false, 4618 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4619 std::optional<unsigned> ValueID = GetValueId(VI); 4620 // This can happen in shared index files for distributed ThinLTO if 4621 // the callee function summary is not included. Record 0 which we 4622 // will have to deal with conservatively when doing any kind of 4623 // validation in the ThinLTO backends. 4624 if (!ValueID) 4625 return 0; 4626 return *ValueID; 4627 }, 4628 /*GetStackIndex*/ [&](unsigned I) { 4629 // Get the corresponding index into the list of StackIdIndices 4630 // actually being written for this combined index (which may be a 4631 // subset in the case of distributed indexes). 4632 auto Lower = llvm::lower_bound(StackIdIndices, I); 4633 return std::distance(StackIdIndices.begin(), Lower); 4634 }); 4635 4636 NameVals.push_back(*ValueId); 4637 assert(ModuleIdMap.count(FS->modulePath())); 4638 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4639 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4640 NameVals.push_back(FS->instCount()); 4641 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4642 NameVals.push_back(FS->entryCount()); 4643 4644 // Fill in below 4645 NameVals.push_back(0); // numrefs 4646 NameVals.push_back(0); // rorefcnt 4647 NameVals.push_back(0); // worefcnt 4648 4649 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4650 for (auto &RI : FS->refs()) { 4651 auto RefValueId = getValueId(RI.getGUID()); 4652 if (!RefValueId) 4653 continue; 4654 NameVals.push_back(*RefValueId); 4655 if (RI.isReadOnly()) 4656 RORefCnt++; 4657 else if (RI.isWriteOnly()) 4658 WORefCnt++; 4659 Count++; 4660 } 4661 NameVals[6] = Count; 4662 NameVals[7] = RORefCnt; 4663 NameVals[8] = WORefCnt; 4664 4665 for (auto &EI : FS->calls()) { 4666 // If this GUID doesn't have a value id, it doesn't have a function 4667 // summary and we don't need to record any calls to it. 4668 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4669 if (!CallValueId) 4670 continue; 4671 NameVals.push_back(*CallValueId); 4672 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4673 } 4674 4675 // Emit the finished record. 4676 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4677 FSCallsProfileAbbrev); 4678 NameVals.clear(); 4679 MaybeEmitOriginalName(*S); 4680 }); 4681 4682 for (auto *AS : Aliases) { 4683 auto AliasValueId = SummaryToValueIdMap[AS]; 4684 assert(AliasValueId); 4685 NameVals.push_back(AliasValueId); 4686 assert(ModuleIdMap.count(AS->modulePath())); 4687 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4688 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4689 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4690 assert(AliaseeValueId); 4691 NameVals.push_back(AliaseeValueId); 4692 4693 // Emit the finished record. 4694 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4695 NameVals.clear(); 4696 MaybeEmitOriginalName(*AS); 4697 4698 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4699 getReferencedTypeIds(FS, ReferencedTypeIds); 4700 } 4701 4702 if (!Index.cfiFunctionDefs().empty()) { 4703 for (auto &S : Index.cfiFunctionDefs()) { 4704 if (DefOrUseGUIDs.count( 4705 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4706 NameVals.push_back(StrtabBuilder.add(S)); 4707 NameVals.push_back(S.size()); 4708 } 4709 } 4710 if (!NameVals.empty()) { 4711 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4712 NameVals.clear(); 4713 } 4714 } 4715 4716 if (!Index.cfiFunctionDecls().empty()) { 4717 for (auto &S : Index.cfiFunctionDecls()) { 4718 if (DefOrUseGUIDs.count( 4719 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4720 NameVals.push_back(StrtabBuilder.add(S)); 4721 NameVals.push_back(S.size()); 4722 } 4723 } 4724 if (!NameVals.empty()) { 4725 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4726 NameVals.clear(); 4727 } 4728 } 4729 4730 // Walk the GUIDs that were referenced, and write the 4731 // corresponding type id records. 4732 for (auto &T : ReferencedTypeIds) { 4733 auto TidIter = Index.typeIds().equal_range(T); 4734 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4735 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4736 It->second.second); 4737 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4738 NameVals.clear(); 4739 } 4740 } 4741 4742 if (Index.getBlockCount()) 4743 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4744 ArrayRef<uint64_t>{Index.getBlockCount()}); 4745 4746 Stream.ExitBlock(); 4747 } 4748 4749 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4750 /// current llvm version, and a record for the epoch number. 4751 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4752 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4753 4754 // Write the "user readable" string identifying the bitcode producer 4755 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4756 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4759 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4760 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4761 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4762 4763 // Write the epoch version 4764 Abbv = std::make_shared<BitCodeAbbrev>(); 4765 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4767 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4768 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4769 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4770 Stream.ExitBlock(); 4771 } 4772 4773 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4774 // Emit the module's hash. 4775 // MODULE_CODE_HASH: [5*i32] 4776 if (GenerateHash) { 4777 uint32_t Vals[5]; 4778 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4779 Buffer.size() - BlockStartPos)); 4780 std::array<uint8_t, 20> Hash = Hasher.result(); 4781 for (int Pos = 0; Pos < 20; Pos += 4) { 4782 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4783 } 4784 4785 // Emit the finished record. 4786 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4787 4788 if (ModHash) 4789 // Save the written hash value. 4790 llvm::copy(Vals, std::begin(*ModHash)); 4791 } 4792 } 4793 4794 void ModuleBitcodeWriter::write() { 4795 writeIdentificationBlock(Stream); 4796 4797 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4798 size_t BlockStartPos = Buffer.size(); 4799 4800 writeModuleVersion(); 4801 4802 // Emit blockinfo, which defines the standard abbreviations etc. 4803 writeBlockInfo(); 4804 4805 // Emit information describing all of the types in the module. 4806 writeTypeTable(); 4807 4808 // Emit information about attribute groups. 4809 writeAttributeGroupTable(); 4810 4811 // Emit information about parameter attributes. 4812 writeAttributeTable(); 4813 4814 writeComdats(); 4815 4816 // Emit top-level description of module, including target triple, inline asm, 4817 // descriptors for global variables, and function prototype info. 4818 writeModuleInfo(); 4819 4820 // Emit constants. 4821 writeModuleConstants(); 4822 4823 // Emit metadata kind names. 4824 writeModuleMetadataKinds(); 4825 4826 // Emit metadata. 4827 writeModuleMetadata(); 4828 4829 // Emit module-level use-lists. 4830 if (VE.shouldPreserveUseListOrder()) 4831 writeUseListBlock(nullptr); 4832 4833 writeOperandBundleTags(); 4834 writeSyncScopeNames(); 4835 4836 // Emit function bodies. 4837 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4838 for (const Function &F : M) 4839 if (!F.isDeclaration()) 4840 writeFunction(F, FunctionToBitcodeIndex); 4841 4842 // Need to write after the above call to WriteFunction which populates 4843 // the summary information in the index. 4844 if (Index) 4845 writePerModuleGlobalValueSummary(); 4846 4847 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4848 4849 writeModuleHash(BlockStartPos); 4850 4851 Stream.ExitBlock(); 4852 } 4853 4854 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4855 uint32_t &Position) { 4856 support::endian::write32le(&Buffer[Position], Value); 4857 Position += 4; 4858 } 4859 4860 /// If generating a bc file on darwin, we have to emit a 4861 /// header and trailer to make it compatible with the system archiver. To do 4862 /// this we emit the following header, and then emit a trailer that pads the 4863 /// file out to be a multiple of 16 bytes. 4864 /// 4865 /// struct bc_header { 4866 /// uint32_t Magic; // 0x0B17C0DE 4867 /// uint32_t Version; // Version, currently always 0. 4868 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4869 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4870 /// uint32_t CPUType; // CPU specifier. 4871 /// ... potentially more later ... 4872 /// }; 4873 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4874 const Triple &TT) { 4875 unsigned CPUType = ~0U; 4876 4877 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4878 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4879 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4880 // specific constants here because they are implicitly part of the Darwin ABI. 4881 enum { 4882 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4883 DARWIN_CPU_TYPE_X86 = 7, 4884 DARWIN_CPU_TYPE_ARM = 12, 4885 DARWIN_CPU_TYPE_POWERPC = 18 4886 }; 4887 4888 Triple::ArchType Arch = TT.getArch(); 4889 if (Arch == Triple::x86_64) 4890 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4891 else if (Arch == Triple::x86) 4892 CPUType = DARWIN_CPU_TYPE_X86; 4893 else if (Arch == Triple::ppc) 4894 CPUType = DARWIN_CPU_TYPE_POWERPC; 4895 else if (Arch == Triple::ppc64) 4896 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4897 else if (Arch == Triple::arm || Arch == Triple::thumb) 4898 CPUType = DARWIN_CPU_TYPE_ARM; 4899 4900 // Traditional Bitcode starts after header. 4901 assert(Buffer.size() >= BWH_HeaderSize && 4902 "Expected header size to be reserved"); 4903 unsigned BCOffset = BWH_HeaderSize; 4904 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4905 4906 // Write the magic and version. 4907 unsigned Position = 0; 4908 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4909 writeInt32ToBuffer(0, Buffer, Position); // Version. 4910 writeInt32ToBuffer(BCOffset, Buffer, Position); 4911 writeInt32ToBuffer(BCSize, Buffer, Position); 4912 writeInt32ToBuffer(CPUType, Buffer, Position); 4913 4914 // If the file is not a multiple of 16 bytes, insert dummy padding. 4915 while (Buffer.size() & 15) 4916 Buffer.push_back(0); 4917 } 4918 4919 /// Helper to write the header common to all bitcode files. 4920 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4921 // Emit the file header. 4922 Stream.Emit((unsigned)'B', 8); 4923 Stream.Emit((unsigned)'C', 8); 4924 Stream.Emit(0x0, 4); 4925 Stream.Emit(0xC, 4); 4926 Stream.Emit(0xE, 4); 4927 Stream.Emit(0xD, 4); 4928 } 4929 4930 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4931 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4932 writeBitcodeHeader(*Stream); 4933 } 4934 4935 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4936 4937 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4938 Stream->EnterSubblock(Block, 3); 4939 4940 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4941 Abbv->Add(BitCodeAbbrevOp(Record)); 4942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4943 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4944 4945 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4946 4947 Stream->ExitBlock(); 4948 } 4949 4950 void BitcodeWriter::writeSymtab() { 4951 assert(!WroteStrtab && !WroteSymtab); 4952 4953 // If any module has module-level inline asm, we will require a registered asm 4954 // parser for the target so that we can create an accurate symbol table for 4955 // the module. 4956 for (Module *M : Mods) { 4957 if (M->getModuleInlineAsm().empty()) 4958 continue; 4959 4960 std::string Err; 4961 const Triple TT(M->getTargetTriple()); 4962 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4963 if (!T || !T->hasMCAsmParser()) 4964 return; 4965 } 4966 4967 WroteSymtab = true; 4968 SmallVector<char, 0> Symtab; 4969 // The irsymtab::build function may be unable to create a symbol table if the 4970 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4971 // table is not required for correctness, but we still want to be able to 4972 // write malformed modules to bitcode files, so swallow the error. 4973 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4974 consumeError(std::move(E)); 4975 return; 4976 } 4977 4978 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4979 {Symtab.data(), Symtab.size()}); 4980 } 4981 4982 void BitcodeWriter::writeStrtab() { 4983 assert(!WroteStrtab); 4984 4985 std::vector<char> Strtab; 4986 StrtabBuilder.finalizeInOrder(); 4987 Strtab.resize(StrtabBuilder.getSize()); 4988 StrtabBuilder.write((uint8_t *)Strtab.data()); 4989 4990 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4991 {Strtab.data(), Strtab.size()}); 4992 4993 WroteStrtab = true; 4994 } 4995 4996 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4997 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4998 WroteStrtab = true; 4999 } 5000 5001 void BitcodeWriter::writeModule(const Module &M, 5002 bool ShouldPreserveUseListOrder, 5003 const ModuleSummaryIndex *Index, 5004 bool GenerateHash, ModuleHash *ModHash) { 5005 assert(!WroteStrtab); 5006 5007 // The Mods vector is used by irsymtab::build, which requires non-const 5008 // Modules in case it needs to materialize metadata. But the bitcode writer 5009 // requires that the module is materialized, so we can cast to non-const here, 5010 // after checking that it is in fact materialized. 5011 assert(M.isMaterialized()); 5012 Mods.push_back(const_cast<Module *>(&M)); 5013 5014 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 5015 ShouldPreserveUseListOrder, Index, 5016 GenerateHash, ModHash); 5017 ModuleWriter.write(); 5018 } 5019 5020 void BitcodeWriter::writeIndex( 5021 const ModuleSummaryIndex *Index, 5022 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 5023 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 5024 ModuleToSummariesForIndex); 5025 IndexWriter.write(); 5026 } 5027 5028 /// Write the specified module to the specified output stream. 5029 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5030 bool ShouldPreserveUseListOrder, 5031 const ModuleSummaryIndex *Index, 5032 bool GenerateHash, ModuleHash *ModHash) { 5033 SmallVector<char, 0> Buffer; 5034 Buffer.reserve(256*1024); 5035 5036 // If this is darwin or another generic macho target, reserve space for the 5037 // header. 5038 Triple TT(M.getTargetTriple()); 5039 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 5040 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5041 5042 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 5043 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5044 ModHash); 5045 Writer.writeSymtab(); 5046 Writer.writeStrtab(); 5047 5048 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 5049 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5050 5051 // Write the generated bitstream to "Out". 5052 if (!Buffer.empty()) 5053 Out.write((char *)&Buffer.front(), Buffer.size()); 5054 } 5055 5056 void IndexBitcodeWriter::write() { 5057 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5058 5059 writeModuleVersion(); 5060 5061 // Write the module paths in the combined index. 5062 writeModStrings(); 5063 5064 // Write the summary combined index records. 5065 writeCombinedGlobalValueSummary(); 5066 5067 Stream.ExitBlock(); 5068 } 5069 5070 // Write the specified module summary index to the given raw output stream, 5071 // where it will be written in a new bitcode block. This is used when 5072 // writing the combined index file for ThinLTO. When writing a subset of the 5073 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5074 void llvm::writeIndexToFile( 5075 const ModuleSummaryIndex &Index, raw_ostream &Out, 5076 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 5077 SmallVector<char, 0> Buffer; 5078 Buffer.reserve(256 * 1024); 5079 5080 BitcodeWriter Writer(Buffer); 5081 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 5082 Writer.writeStrtab(); 5083 5084 Out.write((char *)&Buffer.front(), Buffer.size()); 5085 } 5086 5087 namespace { 5088 5089 /// Class to manage the bitcode writing for a thin link bitcode file. 5090 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5091 /// ModHash is for use in ThinLTO incremental build, generated while writing 5092 /// the module bitcode file. 5093 const ModuleHash *ModHash; 5094 5095 public: 5096 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5097 BitstreamWriter &Stream, 5098 const ModuleSummaryIndex &Index, 5099 const ModuleHash &ModHash) 5100 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5101 /*ShouldPreserveUseListOrder=*/false, &Index), 5102 ModHash(&ModHash) {} 5103 5104 void write(); 5105 5106 private: 5107 void writeSimplifiedModuleInfo(); 5108 }; 5109 5110 } // end anonymous namespace 5111 5112 // This function writes a simpilified module info for thin link bitcode file. 5113 // It only contains the source file name along with the name(the offset and 5114 // size in strtab) and linkage for global values. For the global value info 5115 // entry, in order to keep linkage at offset 5, there are three zeros used 5116 // as padding. 5117 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5118 SmallVector<unsigned, 64> Vals; 5119 // Emit the module's source file name. 5120 { 5121 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5122 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5123 if (Bits == SE_Char6) 5124 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5125 else if (Bits == SE_Fixed7) 5126 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5127 5128 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5129 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5130 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5132 Abbv->Add(AbbrevOpToUse); 5133 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5134 5135 for (const auto P : M.getSourceFileName()) 5136 Vals.push_back((unsigned char)P); 5137 5138 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5139 Vals.clear(); 5140 } 5141 5142 // Emit the global variable information. 5143 for (const GlobalVariable &GV : M.globals()) { 5144 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5145 Vals.push_back(StrtabBuilder.add(GV.getName())); 5146 Vals.push_back(GV.getName().size()); 5147 Vals.push_back(0); 5148 Vals.push_back(0); 5149 Vals.push_back(0); 5150 Vals.push_back(getEncodedLinkage(GV)); 5151 5152 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5153 Vals.clear(); 5154 } 5155 5156 // Emit the function proto information. 5157 for (const Function &F : M) { 5158 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5159 Vals.push_back(StrtabBuilder.add(F.getName())); 5160 Vals.push_back(F.getName().size()); 5161 Vals.push_back(0); 5162 Vals.push_back(0); 5163 Vals.push_back(0); 5164 Vals.push_back(getEncodedLinkage(F)); 5165 5166 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5167 Vals.clear(); 5168 } 5169 5170 // Emit the alias information. 5171 for (const GlobalAlias &A : M.aliases()) { 5172 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5173 Vals.push_back(StrtabBuilder.add(A.getName())); 5174 Vals.push_back(A.getName().size()); 5175 Vals.push_back(0); 5176 Vals.push_back(0); 5177 Vals.push_back(0); 5178 Vals.push_back(getEncodedLinkage(A)); 5179 5180 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5181 Vals.clear(); 5182 } 5183 5184 // Emit the ifunc information. 5185 for (const GlobalIFunc &I : M.ifuncs()) { 5186 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5187 Vals.push_back(StrtabBuilder.add(I.getName())); 5188 Vals.push_back(I.getName().size()); 5189 Vals.push_back(0); 5190 Vals.push_back(0); 5191 Vals.push_back(0); 5192 Vals.push_back(getEncodedLinkage(I)); 5193 5194 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5195 Vals.clear(); 5196 } 5197 } 5198 5199 void ThinLinkBitcodeWriter::write() { 5200 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5201 5202 writeModuleVersion(); 5203 5204 writeSimplifiedModuleInfo(); 5205 5206 writePerModuleGlobalValueSummary(); 5207 5208 // Write module hash. 5209 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5210 5211 Stream.ExitBlock(); 5212 } 5213 5214 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5215 const ModuleSummaryIndex &Index, 5216 const ModuleHash &ModHash) { 5217 assert(!WroteStrtab); 5218 5219 // The Mods vector is used by irsymtab::build, which requires non-const 5220 // Modules in case it needs to materialize metadata. But the bitcode writer 5221 // requires that the module is materialized, so we can cast to non-const here, 5222 // after checking that it is in fact materialized. 5223 assert(M.isMaterialized()); 5224 Mods.push_back(const_cast<Module *>(&M)); 5225 5226 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5227 ModHash); 5228 ThinLinkWriter.write(); 5229 } 5230 5231 // Write the specified thin link bitcode file to the given raw output stream, 5232 // where it will be written in a new bitcode block. This is used when 5233 // writing the per-module index file for ThinLTO. 5234 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5235 const ModuleSummaryIndex &Index, 5236 const ModuleHash &ModHash) { 5237 SmallVector<char, 0> Buffer; 5238 Buffer.reserve(256 * 1024); 5239 5240 BitcodeWriter Writer(Buffer); 5241 Writer.writeThinLinkBitcode(M, Index, ModHash); 5242 Writer.writeSymtab(); 5243 Writer.writeStrtab(); 5244 5245 Out.write((char *)&Buffer.front(), Buffer.size()); 5246 } 5247 5248 static const char *getSectionNameForBitcode(const Triple &T) { 5249 switch (T.getObjectFormat()) { 5250 case Triple::MachO: 5251 return "__LLVM,__bitcode"; 5252 case Triple::COFF: 5253 case Triple::ELF: 5254 case Triple::Wasm: 5255 case Triple::UnknownObjectFormat: 5256 return ".llvmbc"; 5257 case Triple::GOFF: 5258 llvm_unreachable("GOFF is not yet implemented"); 5259 break; 5260 case Triple::SPIRV: 5261 llvm_unreachable("SPIRV is not yet implemented"); 5262 break; 5263 case Triple::XCOFF: 5264 llvm_unreachable("XCOFF is not yet implemented"); 5265 break; 5266 case Triple::DXContainer: 5267 llvm_unreachable("DXContainer is not yet implemented"); 5268 break; 5269 } 5270 llvm_unreachable("Unimplemented ObjectFormatType"); 5271 } 5272 5273 static const char *getSectionNameForCommandline(const Triple &T) { 5274 switch (T.getObjectFormat()) { 5275 case Triple::MachO: 5276 return "__LLVM,__cmdline"; 5277 case Triple::COFF: 5278 case Triple::ELF: 5279 case Triple::Wasm: 5280 case Triple::UnknownObjectFormat: 5281 return ".llvmcmd"; 5282 case Triple::GOFF: 5283 llvm_unreachable("GOFF is not yet implemented"); 5284 break; 5285 case Triple::SPIRV: 5286 llvm_unreachable("SPIRV is not yet implemented"); 5287 break; 5288 case Triple::XCOFF: 5289 llvm_unreachable("XCOFF is not yet implemented"); 5290 break; 5291 case Triple::DXContainer: 5292 llvm_unreachable("DXC is not yet implemented"); 5293 break; 5294 } 5295 llvm_unreachable("Unimplemented ObjectFormatType"); 5296 } 5297 5298 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5299 bool EmbedBitcode, bool EmbedCmdline, 5300 const std::vector<uint8_t> &CmdArgs) { 5301 // Save llvm.compiler.used and remove it. 5302 SmallVector<Constant *, 2> UsedArray; 5303 SmallVector<GlobalValue *, 4> UsedGlobals; 5304 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5305 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5306 for (auto *GV : UsedGlobals) { 5307 if (GV->getName() != "llvm.embedded.module" && 5308 GV->getName() != "llvm.cmdline") 5309 UsedArray.push_back( 5310 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5311 } 5312 if (Used) 5313 Used->eraseFromParent(); 5314 5315 // Embed the bitcode for the llvm module. 5316 std::string Data; 5317 ArrayRef<uint8_t> ModuleData; 5318 Triple T(M.getTargetTriple()); 5319 5320 if (EmbedBitcode) { 5321 if (Buf.getBufferSize() == 0 || 5322 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5323 (const unsigned char *)Buf.getBufferEnd())) { 5324 // If the input is LLVM Assembly, bitcode is produced by serializing 5325 // the module. Use-lists order need to be preserved in this case. 5326 llvm::raw_string_ostream OS(Data); 5327 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5328 ModuleData = 5329 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5330 } else 5331 // If the input is LLVM bitcode, write the input byte stream directly. 5332 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5333 Buf.getBufferSize()); 5334 } 5335 llvm::Constant *ModuleConstant = 5336 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5337 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5338 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5339 ModuleConstant); 5340 GV->setSection(getSectionNameForBitcode(T)); 5341 // Set alignment to 1 to prevent padding between two contributions from input 5342 // sections after linking. 5343 GV->setAlignment(Align(1)); 5344 UsedArray.push_back( 5345 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5346 if (llvm::GlobalVariable *Old = 5347 M.getGlobalVariable("llvm.embedded.module", true)) { 5348 assert(Old->hasZeroLiveUses() && 5349 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5350 GV->takeName(Old); 5351 Old->eraseFromParent(); 5352 } else { 5353 GV->setName("llvm.embedded.module"); 5354 } 5355 5356 // Skip if only bitcode needs to be embedded. 5357 if (EmbedCmdline) { 5358 // Embed command-line options. 5359 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5360 CmdArgs.size()); 5361 llvm::Constant *CmdConstant = 5362 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5363 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5364 llvm::GlobalValue::PrivateLinkage, 5365 CmdConstant); 5366 GV->setSection(getSectionNameForCommandline(T)); 5367 GV->setAlignment(Align(1)); 5368 UsedArray.push_back( 5369 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5370 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5371 assert(Old->hasZeroLiveUses() && 5372 "llvm.cmdline can only be used once in llvm.compiler.used"); 5373 GV->takeName(Old); 5374 Old->eraseFromParent(); 5375 } else { 5376 GV->setName("llvm.cmdline"); 5377 } 5378 } 5379 5380 if (UsedArray.empty()) 5381 return; 5382 5383 // Recreate llvm.compiler.used. 5384 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5385 auto *NewUsed = new GlobalVariable( 5386 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5387 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5388 NewUsed->setSection("llvm.metadata"); 5389 } 5390