1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Support/Program.h" 30 #include <cctype> 31 #include <map> 32 using namespace llvm; 33 34 /// These are manifest constants used by the bitcode writer. They do not need to 35 /// be kept in sync with the reader, but need to be consistent within this file. 36 enum { 37 CurVersion = 0, 38 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 105 switch (Ordering) { 106 default: llvm_unreachable("Unknown atomic ordering"); 107 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 108 case Unordered: return bitc::ORDERING_UNORDERED; 109 case Monotonic: return bitc::ORDERING_MONOTONIC; 110 case Acquire: return bitc::ORDERING_ACQUIRE; 111 case Release: return bitc::ORDERING_RELEASE; 112 case AcquireRelease: return bitc::ORDERING_ACQREL; 113 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 114 } 115 } 116 117 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 118 switch (SynchScope) { 119 default: llvm_unreachable("Unknown synchronization scope"); 120 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 121 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 122 } 123 } 124 125 static void WriteStringRecord(unsigned Code, StringRef Str, 126 unsigned AbbrevToUse, BitstreamWriter &Stream) { 127 SmallVector<unsigned, 64> Vals; 128 129 // Code: [strchar x N] 130 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 131 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 132 AbbrevToUse = 0; 133 Vals.push_back(Str[i]); 134 } 135 136 // Emit the finished record. 137 Stream.EmitRecord(Code, Vals, AbbrevToUse); 138 } 139 140 // Emit information about parameter attributes. 141 static void WriteAttributeTable(const ValueEnumerator &VE, 142 BitstreamWriter &Stream) { 143 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 144 if (Attrs.empty()) return; 145 146 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 147 148 SmallVector<uint64_t, 64> Record; 149 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 150 const AttrListPtr &A = Attrs[i]; 151 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 152 const AttributeWithIndex &PAWI = A.getSlot(i); 153 Record.push_back(PAWI.Index); 154 155 // FIXME: remove in LLVM 3.0 156 // Store the alignment in the bitcode as a 16-bit raw value instead of a 157 // 5-bit log2 encoded value. Shift the bits above the alignment up by 158 // 11 bits. 159 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 160 if (PAWI.Attrs & Attribute::Alignment) 161 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 162 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 163 164 Record.push_back(FauxAttr); 165 } 166 167 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 168 Record.clear(); 169 } 170 171 Stream.ExitBlock(); 172 } 173 174 /// WriteTypeTable - Write out the type table for a module. 175 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 176 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 177 178 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 179 SmallVector<uint64_t, 64> TypeVals; 180 181 // Abbrev for TYPE_CODE_POINTER. 182 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 183 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 185 Log2_32_Ceil(VE.getTypes().size()+1))); 186 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 187 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 188 189 // Abbrev for TYPE_CODE_FUNCTION. 190 Abbv = new BitCodeAbbrev(); 191 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 193 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 196 Log2_32_Ceil(VE.getTypes().size()+1))); 197 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 198 199 // Abbrev for TYPE_CODE_STRUCT_ANON. 200 Abbv = new BitCodeAbbrev(); 201 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 205 Log2_32_Ceil(VE.getTypes().size()+1))); 206 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 207 208 // Abbrev for TYPE_CODE_STRUCT_NAME. 209 Abbv = new BitCodeAbbrev(); 210 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 213 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 214 215 // Abbrev for TYPE_CODE_STRUCT_NAMED. 216 Abbv = new BitCodeAbbrev(); 217 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 221 Log2_32_Ceil(VE.getTypes().size()+1))); 222 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 223 224 225 // Abbrev for TYPE_CODE_ARRAY. 226 Abbv = new BitCodeAbbrev(); 227 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 230 Log2_32_Ceil(VE.getTypes().size()+1))); 231 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 232 233 // Emit an entry count so the reader can reserve space. 234 TypeVals.push_back(TypeList.size()); 235 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 236 TypeVals.clear(); 237 238 // Loop over all of the types, emitting each in turn. 239 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 240 Type *T = TypeList[i]; 241 int AbbrevToUse = 0; 242 unsigned Code = 0; 243 244 switch (T->getTypeID()) { 245 default: llvm_unreachable("Unknown type!"); 246 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 247 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 248 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 249 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 250 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 251 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 252 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 253 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 254 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 255 case Type::IntegerTyID: 256 // INTEGER: [width] 257 Code = bitc::TYPE_CODE_INTEGER; 258 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 259 break; 260 case Type::PointerTyID: { 261 PointerType *PTy = cast<PointerType>(T); 262 // POINTER: [pointee type, address space] 263 Code = bitc::TYPE_CODE_POINTER; 264 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 265 unsigned AddressSpace = PTy->getAddressSpace(); 266 TypeVals.push_back(AddressSpace); 267 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 268 break; 269 } 270 case Type::FunctionTyID: { 271 FunctionType *FT = cast<FunctionType>(T); 272 // FUNCTION: [isvararg, attrid, retty, paramty x N] 273 Code = bitc::TYPE_CODE_FUNCTION; 274 TypeVals.push_back(FT->isVarArg()); 275 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 276 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 277 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 278 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 279 AbbrevToUse = FunctionAbbrev; 280 break; 281 } 282 case Type::StructTyID: { 283 StructType *ST = cast<StructType>(T); 284 // STRUCT: [ispacked, eltty x N] 285 TypeVals.push_back(ST->isPacked()); 286 // Output all of the element types. 287 for (StructType::element_iterator I = ST->element_begin(), 288 E = ST->element_end(); I != E; ++I) 289 TypeVals.push_back(VE.getTypeID(*I)); 290 291 if (ST->isAnonymous()) { 292 Code = bitc::TYPE_CODE_STRUCT_ANON; 293 AbbrevToUse = StructAnonAbbrev; 294 } else { 295 if (ST->isOpaque()) { 296 Code = bitc::TYPE_CODE_OPAQUE; 297 } else { 298 Code = bitc::TYPE_CODE_STRUCT_NAMED; 299 AbbrevToUse = StructNamedAbbrev; 300 } 301 302 // Emit the name if it is present. 303 if (!ST->getName().empty()) 304 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 305 StructNameAbbrev, Stream); 306 } 307 break; 308 } 309 case Type::ArrayTyID: { 310 ArrayType *AT = cast<ArrayType>(T); 311 // ARRAY: [numelts, eltty] 312 Code = bitc::TYPE_CODE_ARRAY; 313 TypeVals.push_back(AT->getNumElements()); 314 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 315 AbbrevToUse = ArrayAbbrev; 316 break; 317 } 318 case Type::VectorTyID: { 319 VectorType *VT = cast<VectorType>(T); 320 // VECTOR [numelts, eltty] 321 Code = bitc::TYPE_CODE_VECTOR; 322 TypeVals.push_back(VT->getNumElements()); 323 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 324 break; 325 } 326 } 327 328 // Emit the finished record. 329 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 330 TypeVals.clear(); 331 } 332 333 Stream.ExitBlock(); 334 } 335 336 static unsigned getEncodedLinkage(const GlobalValue *GV) { 337 switch (GV->getLinkage()) { 338 default: llvm_unreachable("Invalid linkage!"); 339 case GlobalValue::ExternalLinkage: return 0; 340 case GlobalValue::WeakAnyLinkage: return 1; 341 case GlobalValue::AppendingLinkage: return 2; 342 case GlobalValue::InternalLinkage: return 3; 343 case GlobalValue::LinkOnceAnyLinkage: return 4; 344 case GlobalValue::DLLImportLinkage: return 5; 345 case GlobalValue::DLLExportLinkage: return 6; 346 case GlobalValue::ExternalWeakLinkage: return 7; 347 case GlobalValue::CommonLinkage: return 8; 348 case GlobalValue::PrivateLinkage: return 9; 349 case GlobalValue::WeakODRLinkage: return 10; 350 case GlobalValue::LinkOnceODRLinkage: return 11; 351 case GlobalValue::AvailableExternallyLinkage: return 12; 352 case GlobalValue::LinkerPrivateLinkage: return 13; 353 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 354 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 355 } 356 } 357 358 static unsigned getEncodedVisibility(const GlobalValue *GV) { 359 switch (GV->getVisibility()) { 360 default: llvm_unreachable("Invalid visibility!"); 361 case GlobalValue::DefaultVisibility: return 0; 362 case GlobalValue::HiddenVisibility: return 1; 363 case GlobalValue::ProtectedVisibility: return 2; 364 } 365 } 366 367 // Emit top-level description of module, including target triple, inline asm, 368 // descriptors for global variables, and function prototype info. 369 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 370 BitstreamWriter &Stream) { 371 // Emit the list of dependent libraries for the Module. 372 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 373 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 374 375 // Emit various pieces of data attached to a module. 376 if (!M->getTargetTriple().empty()) 377 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 378 0/*TODO*/, Stream); 379 if (!M->getDataLayout().empty()) 380 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 381 0/*TODO*/, Stream); 382 if (!M->getModuleInlineAsm().empty()) 383 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 384 0/*TODO*/, Stream); 385 386 // Emit information about sections and GC, computing how many there are. Also 387 // compute the maximum alignment value. 388 std::map<std::string, unsigned> SectionMap; 389 std::map<std::string, unsigned> GCMap; 390 unsigned MaxAlignment = 0; 391 unsigned MaxGlobalType = 0; 392 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 393 GV != E; ++GV) { 394 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 395 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 396 397 if (!GV->hasSection()) continue; 398 // Give section names unique ID's. 399 unsigned &Entry = SectionMap[GV->getSection()]; 400 if (Entry != 0) continue; 401 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 402 0/*TODO*/, Stream); 403 Entry = SectionMap.size(); 404 } 405 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 406 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 407 if (F->hasSection()) { 408 // Give section names unique ID's. 409 unsigned &Entry = SectionMap[F->getSection()]; 410 if (!Entry) { 411 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 412 0/*TODO*/, Stream); 413 Entry = SectionMap.size(); 414 } 415 } 416 if (F->hasGC()) { 417 // Same for GC names. 418 unsigned &Entry = GCMap[F->getGC()]; 419 if (!Entry) { 420 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 421 0/*TODO*/, Stream); 422 Entry = GCMap.size(); 423 } 424 } 425 } 426 427 // Emit abbrev for globals, now that we know # sections and max alignment. 428 unsigned SimpleGVarAbbrev = 0; 429 if (!M->global_empty()) { 430 // Add an abbrev for common globals with no visibility or thread localness. 431 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 432 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 434 Log2_32_Ceil(MaxGlobalType+1))); 435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 438 if (MaxAlignment == 0) // Alignment. 439 Abbv->Add(BitCodeAbbrevOp(0)); 440 else { 441 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 443 Log2_32_Ceil(MaxEncAlignment+1))); 444 } 445 if (SectionMap.empty()) // Section. 446 Abbv->Add(BitCodeAbbrevOp(0)); 447 else 448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 449 Log2_32_Ceil(SectionMap.size()+1))); 450 // Don't bother emitting vis + thread local. 451 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 452 } 453 454 // Emit the global variable information. 455 SmallVector<unsigned, 64> Vals; 456 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 457 GV != E; ++GV) { 458 unsigned AbbrevToUse = 0; 459 460 // GLOBALVAR: [type, isconst, initid, 461 // linkage, alignment, section, visibility, threadlocal, 462 // unnamed_addr] 463 Vals.push_back(VE.getTypeID(GV->getType())); 464 Vals.push_back(GV->isConstant()); 465 Vals.push_back(GV->isDeclaration() ? 0 : 466 (VE.getValueID(GV->getInitializer()) + 1)); 467 Vals.push_back(getEncodedLinkage(GV)); 468 Vals.push_back(Log2_32(GV->getAlignment())+1); 469 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 470 if (GV->isThreadLocal() || 471 GV->getVisibility() != GlobalValue::DefaultVisibility || 472 GV->hasUnnamedAddr()) { 473 Vals.push_back(getEncodedVisibility(GV)); 474 Vals.push_back(GV->isThreadLocal()); 475 Vals.push_back(GV->hasUnnamedAddr()); 476 } else { 477 AbbrevToUse = SimpleGVarAbbrev; 478 } 479 480 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 481 Vals.clear(); 482 } 483 484 // Emit the function proto information. 485 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 486 // FUNCTION: [type, callingconv, isproto, paramattr, 487 // linkage, alignment, section, visibility, gc, unnamed_addr] 488 Vals.push_back(VE.getTypeID(F->getType())); 489 Vals.push_back(F->getCallingConv()); 490 Vals.push_back(F->isDeclaration()); 491 Vals.push_back(getEncodedLinkage(F)); 492 Vals.push_back(VE.getAttributeID(F->getAttributes())); 493 Vals.push_back(Log2_32(F->getAlignment())+1); 494 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 495 Vals.push_back(getEncodedVisibility(F)); 496 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 497 Vals.push_back(F->hasUnnamedAddr()); 498 499 unsigned AbbrevToUse = 0; 500 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 501 Vals.clear(); 502 } 503 504 // Emit the alias information. 505 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 506 AI != E; ++AI) { 507 Vals.push_back(VE.getTypeID(AI->getType())); 508 Vals.push_back(VE.getValueID(AI->getAliasee())); 509 Vals.push_back(getEncodedLinkage(AI)); 510 Vals.push_back(getEncodedVisibility(AI)); 511 unsigned AbbrevToUse = 0; 512 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 513 Vals.clear(); 514 } 515 } 516 517 static uint64_t GetOptimizationFlags(const Value *V) { 518 uint64_t Flags = 0; 519 520 if (const OverflowingBinaryOperator *OBO = 521 dyn_cast<OverflowingBinaryOperator>(V)) { 522 if (OBO->hasNoSignedWrap()) 523 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 524 if (OBO->hasNoUnsignedWrap()) 525 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 526 } else if (const PossiblyExactOperator *PEO = 527 dyn_cast<PossiblyExactOperator>(V)) { 528 if (PEO->isExact()) 529 Flags |= 1 << bitc::PEO_EXACT; 530 } 531 532 return Flags; 533 } 534 535 static void WriteMDNode(const MDNode *N, 536 const ValueEnumerator &VE, 537 BitstreamWriter &Stream, 538 SmallVector<uint64_t, 64> &Record) { 539 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 540 if (N->getOperand(i)) { 541 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 542 Record.push_back(VE.getValueID(N->getOperand(i))); 543 } else { 544 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 545 Record.push_back(0); 546 } 547 } 548 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 549 bitc::METADATA_NODE; 550 Stream.EmitRecord(MDCode, Record, 0); 551 Record.clear(); 552 } 553 554 static void WriteModuleMetadata(const Module *M, 555 const ValueEnumerator &VE, 556 BitstreamWriter &Stream) { 557 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 558 bool StartedMetadataBlock = false; 559 unsigned MDSAbbrev = 0; 560 SmallVector<uint64_t, 64> Record; 561 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 562 563 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 564 if (!N->isFunctionLocal() || !N->getFunction()) { 565 if (!StartedMetadataBlock) { 566 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 567 StartedMetadataBlock = true; 568 } 569 WriteMDNode(N, VE, Stream, Record); 570 } 571 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 572 if (!StartedMetadataBlock) { 573 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 574 575 // Abbrev for METADATA_STRING. 576 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 577 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 580 MDSAbbrev = Stream.EmitAbbrev(Abbv); 581 StartedMetadataBlock = true; 582 } 583 584 // Code: [strchar x N] 585 Record.append(MDS->begin(), MDS->end()); 586 587 // Emit the finished record. 588 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 589 Record.clear(); 590 } 591 } 592 593 // Write named metadata. 594 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 595 E = M->named_metadata_end(); I != E; ++I) { 596 const NamedMDNode *NMD = I; 597 if (!StartedMetadataBlock) { 598 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 599 StartedMetadataBlock = true; 600 } 601 602 // Write name. 603 StringRef Str = NMD->getName(); 604 for (unsigned i = 0, e = Str.size(); i != e; ++i) 605 Record.push_back(Str[i]); 606 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 607 Record.clear(); 608 609 // Write named metadata operands. 610 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 611 Record.push_back(VE.getValueID(NMD->getOperand(i))); 612 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 613 Record.clear(); 614 } 615 616 if (StartedMetadataBlock) 617 Stream.ExitBlock(); 618 } 619 620 static void WriteFunctionLocalMetadata(const Function &F, 621 const ValueEnumerator &VE, 622 BitstreamWriter &Stream) { 623 bool StartedMetadataBlock = false; 624 SmallVector<uint64_t, 64> Record; 625 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 626 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 627 if (const MDNode *N = Vals[i]) 628 if (N->isFunctionLocal() && N->getFunction() == &F) { 629 if (!StartedMetadataBlock) { 630 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 631 StartedMetadataBlock = true; 632 } 633 WriteMDNode(N, VE, Stream, Record); 634 } 635 636 if (StartedMetadataBlock) 637 Stream.ExitBlock(); 638 } 639 640 static void WriteMetadataAttachment(const Function &F, 641 const ValueEnumerator &VE, 642 BitstreamWriter &Stream) { 643 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 644 645 SmallVector<uint64_t, 64> Record; 646 647 // Write metadata attachments 648 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 649 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 650 651 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 652 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 653 I != E; ++I) { 654 MDs.clear(); 655 I->getAllMetadataOtherThanDebugLoc(MDs); 656 657 // If no metadata, ignore instruction. 658 if (MDs.empty()) continue; 659 660 Record.push_back(VE.getInstructionID(I)); 661 662 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 663 Record.push_back(MDs[i].first); 664 Record.push_back(VE.getValueID(MDs[i].second)); 665 } 666 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 667 Record.clear(); 668 } 669 670 Stream.ExitBlock(); 671 } 672 673 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 674 SmallVector<uint64_t, 64> Record; 675 676 // Write metadata kinds 677 // METADATA_KIND - [n x [id, name]] 678 SmallVector<StringRef, 4> Names; 679 M->getMDKindNames(Names); 680 681 if (Names.empty()) return; 682 683 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 684 685 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 686 Record.push_back(MDKindID); 687 StringRef KName = Names[MDKindID]; 688 Record.append(KName.begin(), KName.end()); 689 690 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 691 Record.clear(); 692 } 693 694 Stream.ExitBlock(); 695 } 696 697 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 698 const ValueEnumerator &VE, 699 BitstreamWriter &Stream, bool isGlobal) { 700 if (FirstVal == LastVal) return; 701 702 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 703 704 unsigned AggregateAbbrev = 0; 705 unsigned String8Abbrev = 0; 706 unsigned CString7Abbrev = 0; 707 unsigned CString6Abbrev = 0; 708 // If this is a constant pool for the module, emit module-specific abbrevs. 709 if (isGlobal) { 710 // Abbrev for CST_CODE_AGGREGATE. 711 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 712 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 715 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 716 717 // Abbrev for CST_CODE_STRING. 718 Abbv = new BitCodeAbbrev(); 719 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 722 String8Abbrev = Stream.EmitAbbrev(Abbv); 723 // Abbrev for CST_CODE_CSTRING. 724 Abbv = new BitCodeAbbrev(); 725 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 728 CString7Abbrev = Stream.EmitAbbrev(Abbv); 729 // Abbrev for CST_CODE_CSTRING. 730 Abbv = new BitCodeAbbrev(); 731 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 734 CString6Abbrev = Stream.EmitAbbrev(Abbv); 735 } 736 737 SmallVector<uint64_t, 64> Record; 738 739 const ValueEnumerator::ValueList &Vals = VE.getValues(); 740 Type *LastTy = 0; 741 for (unsigned i = FirstVal; i != LastVal; ++i) { 742 const Value *V = Vals[i].first; 743 // If we need to switch types, do so now. 744 if (V->getType() != LastTy) { 745 LastTy = V->getType(); 746 Record.push_back(VE.getTypeID(LastTy)); 747 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 748 CONSTANTS_SETTYPE_ABBREV); 749 Record.clear(); 750 } 751 752 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 753 Record.push_back(unsigned(IA->hasSideEffects()) | 754 unsigned(IA->isAlignStack()) << 1); 755 756 // Add the asm string. 757 const std::string &AsmStr = IA->getAsmString(); 758 Record.push_back(AsmStr.size()); 759 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 760 Record.push_back(AsmStr[i]); 761 762 // Add the constraint string. 763 const std::string &ConstraintStr = IA->getConstraintString(); 764 Record.push_back(ConstraintStr.size()); 765 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 766 Record.push_back(ConstraintStr[i]); 767 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 768 Record.clear(); 769 continue; 770 } 771 const Constant *C = cast<Constant>(V); 772 unsigned Code = -1U; 773 unsigned AbbrevToUse = 0; 774 if (C->isNullValue()) { 775 Code = bitc::CST_CODE_NULL; 776 } else if (isa<UndefValue>(C)) { 777 Code = bitc::CST_CODE_UNDEF; 778 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 779 if (IV->getBitWidth() <= 64) { 780 uint64_t V = IV->getSExtValue(); 781 if ((int64_t)V >= 0) 782 Record.push_back(V << 1); 783 else 784 Record.push_back((-V << 1) | 1); 785 Code = bitc::CST_CODE_INTEGER; 786 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 787 } else { // Wide integers, > 64 bits in size. 788 // We have an arbitrary precision integer value to write whose 789 // bit width is > 64. However, in canonical unsigned integer 790 // format it is likely that the high bits are going to be zero. 791 // So, we only write the number of active words. 792 unsigned NWords = IV->getValue().getActiveWords(); 793 const uint64_t *RawWords = IV->getValue().getRawData(); 794 for (unsigned i = 0; i != NWords; ++i) { 795 int64_t V = RawWords[i]; 796 if (V >= 0) 797 Record.push_back(V << 1); 798 else 799 Record.push_back((-V << 1) | 1); 800 } 801 Code = bitc::CST_CODE_WIDE_INTEGER; 802 } 803 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 804 Code = bitc::CST_CODE_FLOAT; 805 Type *Ty = CFP->getType(); 806 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 807 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 808 } else if (Ty->isX86_FP80Ty()) { 809 // api needed to prevent premature destruction 810 // bits are not in the same order as a normal i80 APInt, compensate. 811 APInt api = CFP->getValueAPF().bitcastToAPInt(); 812 const uint64_t *p = api.getRawData(); 813 Record.push_back((p[1] << 48) | (p[0] >> 16)); 814 Record.push_back(p[0] & 0xffffLL); 815 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 816 APInt api = CFP->getValueAPF().bitcastToAPInt(); 817 const uint64_t *p = api.getRawData(); 818 Record.push_back(p[0]); 819 Record.push_back(p[1]); 820 } else { 821 assert (0 && "Unknown FP type!"); 822 } 823 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 824 const ConstantArray *CA = cast<ConstantArray>(C); 825 // Emit constant strings specially. 826 unsigned NumOps = CA->getNumOperands(); 827 // If this is a null-terminated string, use the denser CSTRING encoding. 828 if (CA->getOperand(NumOps-1)->isNullValue()) { 829 Code = bitc::CST_CODE_CSTRING; 830 --NumOps; // Don't encode the null, which isn't allowed by char6. 831 } else { 832 Code = bitc::CST_CODE_STRING; 833 AbbrevToUse = String8Abbrev; 834 } 835 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 836 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 837 for (unsigned i = 0; i != NumOps; ++i) { 838 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 839 Record.push_back(V); 840 isCStr7 &= (V & 128) == 0; 841 if (isCStrChar6) 842 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 843 } 844 845 if (isCStrChar6) 846 AbbrevToUse = CString6Abbrev; 847 else if (isCStr7) 848 AbbrevToUse = CString7Abbrev; 849 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 850 isa<ConstantVector>(V)) { 851 Code = bitc::CST_CODE_AGGREGATE; 852 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 853 Record.push_back(VE.getValueID(C->getOperand(i))); 854 AbbrevToUse = AggregateAbbrev; 855 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 856 switch (CE->getOpcode()) { 857 default: 858 if (Instruction::isCast(CE->getOpcode())) { 859 Code = bitc::CST_CODE_CE_CAST; 860 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 861 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 862 Record.push_back(VE.getValueID(C->getOperand(0))); 863 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 864 } else { 865 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 866 Code = bitc::CST_CODE_CE_BINOP; 867 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 868 Record.push_back(VE.getValueID(C->getOperand(0))); 869 Record.push_back(VE.getValueID(C->getOperand(1))); 870 uint64_t Flags = GetOptimizationFlags(CE); 871 if (Flags != 0) 872 Record.push_back(Flags); 873 } 874 break; 875 case Instruction::GetElementPtr: 876 Code = bitc::CST_CODE_CE_GEP; 877 if (cast<GEPOperator>(C)->isInBounds()) 878 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 879 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 880 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 881 Record.push_back(VE.getValueID(C->getOperand(i))); 882 } 883 break; 884 case Instruction::Select: 885 Code = bitc::CST_CODE_CE_SELECT; 886 Record.push_back(VE.getValueID(C->getOperand(0))); 887 Record.push_back(VE.getValueID(C->getOperand(1))); 888 Record.push_back(VE.getValueID(C->getOperand(2))); 889 break; 890 case Instruction::ExtractElement: 891 Code = bitc::CST_CODE_CE_EXTRACTELT; 892 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 893 Record.push_back(VE.getValueID(C->getOperand(0))); 894 Record.push_back(VE.getValueID(C->getOperand(1))); 895 break; 896 case Instruction::InsertElement: 897 Code = bitc::CST_CODE_CE_INSERTELT; 898 Record.push_back(VE.getValueID(C->getOperand(0))); 899 Record.push_back(VE.getValueID(C->getOperand(1))); 900 Record.push_back(VE.getValueID(C->getOperand(2))); 901 break; 902 case Instruction::ShuffleVector: 903 // If the return type and argument types are the same, this is a 904 // standard shufflevector instruction. If the types are different, 905 // then the shuffle is widening or truncating the input vectors, and 906 // the argument type must also be encoded. 907 if (C->getType() == C->getOperand(0)->getType()) { 908 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 909 } else { 910 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 911 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 912 } 913 Record.push_back(VE.getValueID(C->getOperand(0))); 914 Record.push_back(VE.getValueID(C->getOperand(1))); 915 Record.push_back(VE.getValueID(C->getOperand(2))); 916 break; 917 case Instruction::ICmp: 918 case Instruction::FCmp: 919 Code = bitc::CST_CODE_CE_CMP; 920 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 921 Record.push_back(VE.getValueID(C->getOperand(0))); 922 Record.push_back(VE.getValueID(C->getOperand(1))); 923 Record.push_back(CE->getPredicate()); 924 break; 925 } 926 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 927 Code = bitc::CST_CODE_BLOCKADDRESS; 928 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 929 Record.push_back(VE.getValueID(BA->getFunction())); 930 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 931 } else { 932 #ifndef NDEBUG 933 C->dump(); 934 #endif 935 llvm_unreachable("Unknown constant!"); 936 } 937 Stream.EmitRecord(Code, Record, AbbrevToUse); 938 Record.clear(); 939 } 940 941 Stream.ExitBlock(); 942 } 943 944 static void WriteModuleConstants(const ValueEnumerator &VE, 945 BitstreamWriter &Stream) { 946 const ValueEnumerator::ValueList &Vals = VE.getValues(); 947 948 // Find the first constant to emit, which is the first non-globalvalue value. 949 // We know globalvalues have been emitted by WriteModuleInfo. 950 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 951 if (!isa<GlobalValue>(Vals[i].first)) { 952 WriteConstants(i, Vals.size(), VE, Stream, true); 953 return; 954 } 955 } 956 } 957 958 /// PushValueAndType - The file has to encode both the value and type id for 959 /// many values, because we need to know what type to create for forward 960 /// references. However, most operands are not forward references, so this type 961 /// field is not needed. 962 /// 963 /// This function adds V's value ID to Vals. If the value ID is higher than the 964 /// instruction ID, then it is a forward reference, and it also includes the 965 /// type ID. 966 static bool PushValueAndType(const Value *V, unsigned InstID, 967 SmallVector<unsigned, 64> &Vals, 968 ValueEnumerator &VE) { 969 unsigned ValID = VE.getValueID(V); 970 Vals.push_back(ValID); 971 if (ValID >= InstID) { 972 Vals.push_back(VE.getTypeID(V->getType())); 973 return true; 974 } 975 return false; 976 } 977 978 /// WriteInstruction - Emit an instruction to the specified stream. 979 static void WriteInstruction(const Instruction &I, unsigned InstID, 980 ValueEnumerator &VE, BitstreamWriter &Stream, 981 SmallVector<unsigned, 64> &Vals) { 982 unsigned Code = 0; 983 unsigned AbbrevToUse = 0; 984 VE.setInstructionID(&I); 985 switch (I.getOpcode()) { 986 default: 987 if (Instruction::isCast(I.getOpcode())) { 988 Code = bitc::FUNC_CODE_INST_CAST; 989 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 990 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 991 Vals.push_back(VE.getTypeID(I.getType())); 992 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 993 } else { 994 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 995 Code = bitc::FUNC_CODE_INST_BINOP; 996 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 997 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 998 Vals.push_back(VE.getValueID(I.getOperand(1))); 999 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1000 uint64_t Flags = GetOptimizationFlags(&I); 1001 if (Flags != 0) { 1002 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1003 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1004 Vals.push_back(Flags); 1005 } 1006 } 1007 break; 1008 1009 case Instruction::GetElementPtr: 1010 Code = bitc::FUNC_CODE_INST_GEP; 1011 if (cast<GEPOperator>(&I)->isInBounds()) 1012 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1013 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1014 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1015 break; 1016 case Instruction::ExtractValue: { 1017 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1018 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1019 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1020 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1021 Vals.push_back(*i); 1022 break; 1023 } 1024 case Instruction::InsertValue: { 1025 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1026 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1027 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1028 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1029 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1030 Vals.push_back(*i); 1031 break; 1032 } 1033 case Instruction::Select: 1034 Code = bitc::FUNC_CODE_INST_VSELECT; 1035 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1036 Vals.push_back(VE.getValueID(I.getOperand(2))); 1037 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1038 break; 1039 case Instruction::ExtractElement: 1040 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1041 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1042 Vals.push_back(VE.getValueID(I.getOperand(1))); 1043 break; 1044 case Instruction::InsertElement: 1045 Code = bitc::FUNC_CODE_INST_INSERTELT; 1046 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1047 Vals.push_back(VE.getValueID(I.getOperand(1))); 1048 Vals.push_back(VE.getValueID(I.getOperand(2))); 1049 break; 1050 case Instruction::ShuffleVector: 1051 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1052 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1053 Vals.push_back(VE.getValueID(I.getOperand(1))); 1054 Vals.push_back(VE.getValueID(I.getOperand(2))); 1055 break; 1056 case Instruction::ICmp: 1057 case Instruction::FCmp: 1058 // compare returning Int1Ty or vector of Int1Ty 1059 Code = bitc::FUNC_CODE_INST_CMP2; 1060 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1061 Vals.push_back(VE.getValueID(I.getOperand(1))); 1062 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1063 break; 1064 1065 case Instruction::Ret: 1066 { 1067 Code = bitc::FUNC_CODE_INST_RET; 1068 unsigned NumOperands = I.getNumOperands(); 1069 if (NumOperands == 0) 1070 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1071 else if (NumOperands == 1) { 1072 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1073 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1074 } else { 1075 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1076 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1077 } 1078 } 1079 break; 1080 case Instruction::Br: 1081 { 1082 Code = bitc::FUNC_CODE_INST_BR; 1083 BranchInst &II = cast<BranchInst>(I); 1084 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1085 if (II.isConditional()) { 1086 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1087 Vals.push_back(VE.getValueID(II.getCondition())); 1088 } 1089 } 1090 break; 1091 case Instruction::Switch: 1092 Code = bitc::FUNC_CODE_INST_SWITCH; 1093 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1094 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1095 Vals.push_back(VE.getValueID(I.getOperand(i))); 1096 break; 1097 case Instruction::IndirectBr: 1098 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1099 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1100 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1101 Vals.push_back(VE.getValueID(I.getOperand(i))); 1102 break; 1103 1104 case Instruction::Invoke: { 1105 const InvokeInst *II = cast<InvokeInst>(&I); 1106 const Value *Callee(II->getCalledValue()); 1107 PointerType *PTy = cast<PointerType>(Callee->getType()); 1108 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1109 Code = bitc::FUNC_CODE_INST_INVOKE; 1110 1111 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1112 Vals.push_back(II->getCallingConv()); 1113 Vals.push_back(VE.getValueID(II->getNormalDest())); 1114 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1115 PushValueAndType(Callee, InstID, Vals, VE); 1116 1117 // Emit value #'s for the fixed parameters. 1118 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1119 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1120 1121 // Emit type/value pairs for varargs params. 1122 if (FTy->isVarArg()) { 1123 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1124 i != e; ++i) 1125 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1126 } 1127 break; 1128 } 1129 case Instruction::Unwind: 1130 Code = bitc::FUNC_CODE_INST_UNWIND; 1131 break; 1132 case Instruction::Unreachable: 1133 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1134 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1135 break; 1136 1137 case Instruction::PHI: { 1138 const PHINode &PN = cast<PHINode>(I); 1139 Code = bitc::FUNC_CODE_INST_PHI; 1140 Vals.push_back(VE.getTypeID(PN.getType())); 1141 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1142 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1143 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1144 } 1145 break; 1146 } 1147 1148 case Instruction::Alloca: 1149 Code = bitc::FUNC_CODE_INST_ALLOCA; 1150 Vals.push_back(VE.getTypeID(I.getType())); 1151 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1152 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1153 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1154 break; 1155 1156 case Instruction::Load: 1157 Code = bitc::FUNC_CODE_INST_LOAD; 1158 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1159 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1160 1161 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1162 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1163 break; 1164 case Instruction::Store: 1165 Code = bitc::FUNC_CODE_INST_STORE; 1166 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1167 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1168 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1169 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1170 break; 1171 case Instruction::Fence: 1172 Code = bitc::FUNC_CODE_INST_FENCE; 1173 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1174 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1175 break; 1176 case Instruction::Call: { 1177 const CallInst &CI = cast<CallInst>(I); 1178 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1179 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1180 1181 Code = bitc::FUNC_CODE_INST_CALL; 1182 1183 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1184 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1185 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1186 1187 // Emit value #'s for the fixed parameters. 1188 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1189 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1190 1191 // Emit type/value pairs for varargs params. 1192 if (FTy->isVarArg()) { 1193 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1194 i != e; ++i) 1195 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1196 } 1197 break; 1198 } 1199 case Instruction::VAArg: 1200 Code = bitc::FUNC_CODE_INST_VAARG; 1201 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1202 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1203 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1204 break; 1205 } 1206 1207 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1208 Vals.clear(); 1209 } 1210 1211 // Emit names for globals/functions etc. 1212 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1213 const ValueEnumerator &VE, 1214 BitstreamWriter &Stream) { 1215 if (VST.empty()) return; 1216 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1217 1218 // FIXME: Set up the abbrev, we know how many values there are! 1219 // FIXME: We know if the type names can use 7-bit ascii. 1220 SmallVector<unsigned, 64> NameVals; 1221 1222 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1223 SI != SE; ++SI) { 1224 1225 const ValueName &Name = *SI; 1226 1227 // Figure out the encoding to use for the name. 1228 bool is7Bit = true; 1229 bool isChar6 = true; 1230 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1231 C != E; ++C) { 1232 if (isChar6) 1233 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1234 if ((unsigned char)*C & 128) { 1235 is7Bit = false; 1236 break; // don't bother scanning the rest. 1237 } 1238 } 1239 1240 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1241 1242 // VST_ENTRY: [valueid, namechar x N] 1243 // VST_BBENTRY: [bbid, namechar x N] 1244 unsigned Code; 1245 if (isa<BasicBlock>(SI->getValue())) { 1246 Code = bitc::VST_CODE_BBENTRY; 1247 if (isChar6) 1248 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1249 } else { 1250 Code = bitc::VST_CODE_ENTRY; 1251 if (isChar6) 1252 AbbrevToUse = VST_ENTRY_6_ABBREV; 1253 else if (is7Bit) 1254 AbbrevToUse = VST_ENTRY_7_ABBREV; 1255 } 1256 1257 NameVals.push_back(VE.getValueID(SI->getValue())); 1258 for (const char *P = Name.getKeyData(), 1259 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1260 NameVals.push_back((unsigned char)*P); 1261 1262 // Emit the finished record. 1263 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1264 NameVals.clear(); 1265 } 1266 Stream.ExitBlock(); 1267 } 1268 1269 /// WriteFunction - Emit a function body to the module stream. 1270 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1271 BitstreamWriter &Stream) { 1272 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1273 VE.incorporateFunction(F); 1274 1275 SmallVector<unsigned, 64> Vals; 1276 1277 // Emit the number of basic blocks, so the reader can create them ahead of 1278 // time. 1279 Vals.push_back(VE.getBasicBlocks().size()); 1280 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1281 Vals.clear(); 1282 1283 // If there are function-local constants, emit them now. 1284 unsigned CstStart, CstEnd; 1285 VE.getFunctionConstantRange(CstStart, CstEnd); 1286 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1287 1288 // If there is function-local metadata, emit it now. 1289 WriteFunctionLocalMetadata(F, VE, Stream); 1290 1291 // Keep a running idea of what the instruction ID is. 1292 unsigned InstID = CstEnd; 1293 1294 bool NeedsMetadataAttachment = false; 1295 1296 DebugLoc LastDL; 1297 1298 // Finally, emit all the instructions, in order. 1299 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1300 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1301 I != E; ++I) { 1302 WriteInstruction(*I, InstID, VE, Stream, Vals); 1303 1304 if (!I->getType()->isVoidTy()) 1305 ++InstID; 1306 1307 // If the instruction has metadata, write a metadata attachment later. 1308 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1309 1310 // If the instruction has a debug location, emit it. 1311 DebugLoc DL = I->getDebugLoc(); 1312 if (DL.isUnknown()) { 1313 // nothing todo. 1314 } else if (DL == LastDL) { 1315 // Just repeat the same debug loc as last time. 1316 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1317 } else { 1318 MDNode *Scope, *IA; 1319 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1320 1321 Vals.push_back(DL.getLine()); 1322 Vals.push_back(DL.getCol()); 1323 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1324 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1325 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1326 Vals.clear(); 1327 1328 LastDL = DL; 1329 } 1330 } 1331 1332 // Emit names for all the instructions etc. 1333 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1334 1335 if (NeedsMetadataAttachment) 1336 WriteMetadataAttachment(F, VE, Stream); 1337 VE.purgeFunction(); 1338 Stream.ExitBlock(); 1339 } 1340 1341 // Emit blockinfo, which defines the standard abbreviations etc. 1342 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1343 // We only want to emit block info records for blocks that have multiple 1344 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1345 // blocks can defined their abbrevs inline. 1346 Stream.EnterBlockInfoBlock(2); 1347 1348 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1349 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1354 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1355 Abbv) != VST_ENTRY_8_ABBREV) 1356 llvm_unreachable("Unexpected abbrev ordering!"); 1357 } 1358 1359 { // 7-bit fixed width VST_ENTRY strings. 1360 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1361 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1365 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1366 Abbv) != VST_ENTRY_7_ABBREV) 1367 llvm_unreachable("Unexpected abbrev ordering!"); 1368 } 1369 { // 6-bit char6 VST_ENTRY strings. 1370 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1371 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1375 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1376 Abbv) != VST_ENTRY_6_ABBREV) 1377 llvm_unreachable("Unexpected abbrev ordering!"); 1378 } 1379 { // 6-bit char6 VST_BBENTRY strings. 1380 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1381 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1385 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1386 Abbv) != VST_BBENTRY_6_ABBREV) 1387 llvm_unreachable("Unexpected abbrev ordering!"); 1388 } 1389 1390 1391 1392 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1393 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1394 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1396 Log2_32_Ceil(VE.getTypes().size()+1))); 1397 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1398 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1399 llvm_unreachable("Unexpected abbrev ordering!"); 1400 } 1401 1402 { // INTEGER abbrev for CONSTANTS_BLOCK. 1403 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1404 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1406 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1407 Abbv) != CONSTANTS_INTEGER_ABBREV) 1408 llvm_unreachable("Unexpected abbrev ordering!"); 1409 } 1410 1411 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1412 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1413 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1416 Log2_32_Ceil(VE.getTypes().size()+1))); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1418 1419 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1420 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1421 llvm_unreachable("Unexpected abbrev ordering!"); 1422 } 1423 { // NULL abbrev for CONSTANTS_BLOCK. 1424 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1425 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1426 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1427 Abbv) != CONSTANTS_NULL_Abbrev) 1428 llvm_unreachable("Unexpected abbrev ordering!"); 1429 } 1430 1431 // FIXME: This should only use space for first class types! 1432 1433 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1434 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1435 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1439 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1440 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1441 llvm_unreachable("Unexpected abbrev ordering!"); 1442 } 1443 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1444 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1445 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1449 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1450 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1451 llvm_unreachable("Unexpected abbrev ordering!"); 1452 } 1453 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1454 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1455 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1460 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1461 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1462 llvm_unreachable("Unexpected abbrev ordering!"); 1463 } 1464 { // INST_CAST abbrev for FUNCTION_BLOCK. 1465 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1466 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1469 Log2_32_Ceil(VE.getTypes().size()+1))); 1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1471 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1472 Abbv) != FUNCTION_INST_CAST_ABBREV) 1473 llvm_unreachable("Unexpected abbrev ordering!"); 1474 } 1475 1476 { // INST_RET abbrev for FUNCTION_BLOCK. 1477 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1478 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1479 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1480 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1481 llvm_unreachable("Unexpected abbrev ordering!"); 1482 } 1483 { // INST_RET abbrev for FUNCTION_BLOCK. 1484 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1485 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1487 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1488 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1489 llvm_unreachable("Unexpected abbrev ordering!"); 1490 } 1491 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1492 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1493 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1494 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1495 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1496 llvm_unreachable("Unexpected abbrev ordering!"); 1497 } 1498 1499 Stream.ExitBlock(); 1500 } 1501 1502 1503 /// WriteModule - Emit the specified module to the bitstream. 1504 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1505 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1506 1507 // Emit the version number if it is non-zero. 1508 if (CurVersion) { 1509 SmallVector<unsigned, 1> Vals; 1510 Vals.push_back(CurVersion); 1511 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1512 } 1513 1514 // Analyze the module, enumerating globals, functions, etc. 1515 ValueEnumerator VE(M); 1516 1517 // Emit blockinfo, which defines the standard abbreviations etc. 1518 WriteBlockInfo(VE, Stream); 1519 1520 // Emit information about parameter attributes. 1521 WriteAttributeTable(VE, Stream); 1522 1523 // Emit information describing all of the types in the module. 1524 WriteTypeTable(VE, Stream); 1525 1526 // Emit top-level description of module, including target triple, inline asm, 1527 // descriptors for global variables, and function prototype info. 1528 WriteModuleInfo(M, VE, Stream); 1529 1530 // Emit constants. 1531 WriteModuleConstants(VE, Stream); 1532 1533 // Emit metadata. 1534 WriteModuleMetadata(M, VE, Stream); 1535 1536 // Emit function bodies. 1537 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1538 if (!F->isDeclaration()) 1539 WriteFunction(*F, VE, Stream); 1540 1541 // Emit metadata. 1542 WriteModuleMetadataStore(M, Stream); 1543 1544 // Emit names for globals/functions etc. 1545 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1546 1547 Stream.ExitBlock(); 1548 } 1549 1550 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1551 /// header and trailer to make it compatible with the system archiver. To do 1552 /// this we emit the following header, and then emit a trailer that pads the 1553 /// file out to be a multiple of 16 bytes. 1554 /// 1555 /// struct bc_header { 1556 /// uint32_t Magic; // 0x0B17C0DE 1557 /// uint32_t Version; // Version, currently always 0. 1558 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1559 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1560 /// uint32_t CPUType; // CPU specifier. 1561 /// ... potentially more later ... 1562 /// }; 1563 enum { 1564 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1565 DarwinBCHeaderSize = 5*4 1566 }; 1567 1568 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) { 1569 unsigned CPUType = ~0U; 1570 1571 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1572 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1573 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1574 // specific constants here because they are implicitly part of the Darwin ABI. 1575 enum { 1576 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1577 DARWIN_CPU_TYPE_X86 = 7, 1578 DARWIN_CPU_TYPE_ARM = 12, 1579 DARWIN_CPU_TYPE_POWERPC = 18 1580 }; 1581 1582 Triple::ArchType Arch = TT.getArch(); 1583 if (Arch == Triple::x86_64) 1584 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1585 else if (Arch == Triple::x86) 1586 CPUType = DARWIN_CPU_TYPE_X86; 1587 else if (Arch == Triple::ppc) 1588 CPUType = DARWIN_CPU_TYPE_POWERPC; 1589 else if (Arch == Triple::ppc64) 1590 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1591 else if (Arch == Triple::arm || Arch == Triple::thumb) 1592 CPUType = DARWIN_CPU_TYPE_ARM; 1593 1594 // Traditional Bitcode starts after header. 1595 unsigned BCOffset = DarwinBCHeaderSize; 1596 1597 Stream.Emit(0x0B17C0DE, 32); 1598 Stream.Emit(0 , 32); // Version. 1599 Stream.Emit(BCOffset , 32); 1600 Stream.Emit(0 , 32); // Filled in later. 1601 Stream.Emit(CPUType , 32); 1602 } 1603 1604 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1605 /// finalize the header. 1606 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1607 // Update the size field in the header. 1608 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1609 1610 // If the file is not a multiple of 16 bytes, insert dummy padding. 1611 while (BufferSize & 15) { 1612 Stream.Emit(0, 8); 1613 ++BufferSize; 1614 } 1615 } 1616 1617 1618 /// WriteBitcodeToFile - Write the specified module to the specified output 1619 /// stream. 1620 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1621 std::vector<unsigned char> Buffer; 1622 BitstreamWriter Stream(Buffer); 1623 1624 Buffer.reserve(256*1024); 1625 1626 WriteBitcodeToStream( M, Stream ); 1627 1628 // Write the generated bitstream to "Out". 1629 Out.write((char*)&Buffer.front(), Buffer.size()); 1630 } 1631 1632 /// WriteBitcodeToStream - Write the specified module to the specified output 1633 /// stream. 1634 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1635 // If this is darwin or another generic macho target, emit a file header and 1636 // trailer if needed. 1637 Triple TT(M->getTargetTriple()); 1638 if (TT.isOSDarwin()) 1639 EmitDarwinBCHeader(Stream, TT); 1640 1641 // Emit the file header. 1642 Stream.Emit((unsigned)'B', 8); 1643 Stream.Emit((unsigned)'C', 8); 1644 Stream.Emit(0x0, 4); 1645 Stream.Emit(0xC, 4); 1646 Stream.Emit(0xE, 4); 1647 Stream.Emit(0xD, 4); 1648 1649 // Emit the module. 1650 WriteModule(M, Stream); 1651 1652 if (TT.isOSDarwin()) 1653 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1654 } 1655