1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Metadata.h" 23 #include "llvm/Module.h" 24 #include "llvm/Operator.h" 25 #include "llvm/TypeSymbolTable.h" 26 #include "llvm/ValueSymbolTable.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/System/Program.h" 31 using namespace llvm; 32 33 /// These are manifest constants used by the bitcode writer. They do not need to 34 /// be kept in sync with the reader, but need to be consistent within this file. 35 enum { 36 CurVersion = 0, 37 38 // VALUE_SYMTAB_BLOCK abbrev id's. 39 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 40 VST_ENTRY_7_ABBREV, 41 VST_ENTRY_6_ABBREV, 42 VST_BBENTRY_6_ABBREV, 43 44 // CONSTANTS_BLOCK abbrev id's. 45 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 46 CONSTANTS_INTEGER_ABBREV, 47 CONSTANTS_CE_CAST_Abbrev, 48 CONSTANTS_NULL_Abbrev, 49 50 // FUNCTION_BLOCK abbrev id's. 51 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 FUNCTION_INST_BINOP_ABBREV, 53 FUNCTION_INST_BINOP_FLAGS_ABBREV, 54 FUNCTION_INST_CAST_ABBREV, 55 FUNCTION_INST_RET_VOID_ABBREV, 56 FUNCTION_INST_RET_VAL_ABBREV, 57 FUNCTION_INST_UNREACHABLE_ABBREV 58 }; 59 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 } 77 } 78 79 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 80 switch (Opcode) { 81 default: llvm_unreachable("Unknown binary instruction!"); 82 case Instruction::Add: 83 case Instruction::FAdd: return bitc::BINOP_ADD; 84 case Instruction::Sub: 85 case Instruction::FSub: return bitc::BINOP_SUB; 86 case Instruction::Mul: 87 case Instruction::FMul: return bitc::BINOP_MUL; 88 case Instruction::UDiv: return bitc::BINOP_UDIV; 89 case Instruction::FDiv: 90 case Instruction::SDiv: return bitc::BINOP_SDIV; 91 case Instruction::URem: return bitc::BINOP_UREM; 92 case Instruction::FRem: 93 case Instruction::SRem: return bitc::BINOP_SREM; 94 case Instruction::Shl: return bitc::BINOP_SHL; 95 case Instruction::LShr: return bitc::BINOP_LSHR; 96 case Instruction::AShr: return bitc::BINOP_ASHR; 97 case Instruction::And: return bitc::BINOP_AND; 98 case Instruction::Or: return bitc::BINOP_OR; 99 case Instruction::Xor: return bitc::BINOP_XOR; 100 } 101 } 102 103 104 105 static void WriteStringRecord(unsigned Code, const std::string &Str, 106 unsigned AbbrevToUse, BitstreamWriter &Stream) { 107 SmallVector<unsigned, 64> Vals; 108 109 // Code: [strchar x N] 110 for (unsigned i = 0, e = Str.size(); i != e; ++i) 111 Vals.push_back(Str[i]); 112 113 // Emit the finished record. 114 Stream.EmitRecord(Code, Vals, AbbrevToUse); 115 } 116 117 // Emit information about parameter attributes. 118 static void WriteAttributeTable(const ValueEnumerator &VE, 119 BitstreamWriter &Stream) { 120 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 121 if (Attrs.empty()) return; 122 123 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 124 125 SmallVector<uint64_t, 64> Record; 126 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 127 const AttrListPtr &A = Attrs[i]; 128 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 129 const AttributeWithIndex &PAWI = A.getSlot(i); 130 Record.push_back(PAWI.Index); 131 132 // FIXME: remove in LLVM 3.0 133 // Store the alignment in the bitcode as a 16-bit raw value instead of a 134 // 5-bit log2 encoded value. Shift the bits above the alignment up by 135 // 11 bits. 136 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 137 if (PAWI.Attrs & Attribute::Alignment) 138 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 139 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 140 141 Record.push_back(FauxAttr); 142 } 143 144 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 145 Record.clear(); 146 } 147 148 Stream.ExitBlock(); 149 } 150 151 /// WriteTypeTable - Write out the type table for a module. 152 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 153 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 154 155 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 156 SmallVector<uint64_t, 64> TypeVals; 157 158 // Abbrev for TYPE_CODE_POINTER. 159 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 160 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 162 Log2_32_Ceil(VE.getTypes().size()+1))); 163 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 164 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 165 166 // Abbrev for TYPE_CODE_FUNCTION. 167 Abbv = new BitCodeAbbrev(); 168 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 170 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 173 Log2_32_Ceil(VE.getTypes().size()+1))); 174 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 175 176 // Abbrev for TYPE_CODE_STRUCT. 177 Abbv = new BitCodeAbbrev(); 178 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 182 Log2_32_Ceil(VE.getTypes().size()+1))); 183 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 184 185 // Abbrev for TYPE_CODE_ARRAY. 186 Abbv = new BitCodeAbbrev(); 187 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 190 Log2_32_Ceil(VE.getTypes().size()+1))); 191 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 192 193 // Emit an entry count so the reader can reserve space. 194 TypeVals.push_back(TypeList.size()); 195 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 196 TypeVals.clear(); 197 198 // Loop over all of the types, emitting each in turn. 199 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 200 const Type *T = TypeList[i].first; 201 int AbbrevToUse = 0; 202 unsigned Code = 0; 203 204 switch (T->getTypeID()) { 205 default: llvm_unreachable("Unknown type!"); 206 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 207 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 208 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 209 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 210 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 211 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 212 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 213 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 214 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 215 case Type::IntegerTyID: 216 // INTEGER: [width] 217 Code = bitc::TYPE_CODE_INTEGER; 218 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 219 break; 220 case Type::PointerTyID: { 221 const PointerType *PTy = cast<PointerType>(T); 222 // POINTER: [pointee type, address space] 223 Code = bitc::TYPE_CODE_POINTER; 224 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 225 unsigned AddressSpace = PTy->getAddressSpace(); 226 TypeVals.push_back(AddressSpace); 227 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 228 break; 229 } 230 case Type::FunctionTyID: { 231 const FunctionType *FT = cast<FunctionType>(T); 232 // FUNCTION: [isvararg, attrid, retty, paramty x N] 233 Code = bitc::TYPE_CODE_FUNCTION; 234 TypeVals.push_back(FT->isVarArg()); 235 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 236 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 237 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 238 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 239 AbbrevToUse = FunctionAbbrev; 240 break; 241 } 242 case Type::StructTyID: { 243 const StructType *ST = cast<StructType>(T); 244 // STRUCT: [ispacked, eltty x N] 245 Code = bitc::TYPE_CODE_STRUCT; 246 TypeVals.push_back(ST->isPacked()); 247 // Output all of the element types. 248 for (StructType::element_iterator I = ST->element_begin(), 249 E = ST->element_end(); I != E; ++I) 250 TypeVals.push_back(VE.getTypeID(*I)); 251 AbbrevToUse = StructAbbrev; 252 break; 253 } 254 case Type::ArrayTyID: { 255 const ArrayType *AT = cast<ArrayType>(T); 256 // ARRAY: [numelts, eltty] 257 Code = bitc::TYPE_CODE_ARRAY; 258 TypeVals.push_back(AT->getNumElements()); 259 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 260 AbbrevToUse = ArrayAbbrev; 261 break; 262 } 263 case Type::VectorTyID: { 264 const VectorType *VT = cast<VectorType>(T); 265 // VECTOR [numelts, eltty] 266 Code = bitc::TYPE_CODE_VECTOR; 267 TypeVals.push_back(VT->getNumElements()); 268 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 269 break; 270 } 271 } 272 273 // Emit the finished record. 274 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 275 TypeVals.clear(); 276 } 277 278 Stream.ExitBlock(); 279 } 280 281 static unsigned getEncodedLinkage(const GlobalValue *GV) { 282 switch (GV->getLinkage()) { 283 default: llvm_unreachable("Invalid linkage!"); 284 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 285 case GlobalValue::ExternalLinkage: return 0; 286 case GlobalValue::WeakAnyLinkage: return 1; 287 case GlobalValue::AppendingLinkage: return 2; 288 case GlobalValue::InternalLinkage: return 3; 289 case GlobalValue::LinkOnceAnyLinkage: return 4; 290 case GlobalValue::DLLImportLinkage: return 5; 291 case GlobalValue::DLLExportLinkage: return 6; 292 case GlobalValue::ExternalWeakLinkage: return 7; 293 case GlobalValue::CommonLinkage: return 8; 294 case GlobalValue::PrivateLinkage: return 9; 295 case GlobalValue::WeakODRLinkage: return 10; 296 case GlobalValue::LinkOnceODRLinkage: return 11; 297 case GlobalValue::AvailableExternallyLinkage: return 12; 298 case GlobalValue::LinkerPrivateLinkage: return 13; 299 } 300 } 301 302 static unsigned getEncodedVisibility(const GlobalValue *GV) { 303 switch (GV->getVisibility()) { 304 default: llvm_unreachable("Invalid visibility!"); 305 case GlobalValue::DefaultVisibility: return 0; 306 case GlobalValue::HiddenVisibility: return 1; 307 case GlobalValue::ProtectedVisibility: return 2; 308 } 309 } 310 311 // Emit top-level description of module, including target triple, inline asm, 312 // descriptors for global variables, and function prototype info. 313 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 314 BitstreamWriter &Stream) { 315 // Emit the list of dependent libraries for the Module. 316 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 317 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 318 319 // Emit various pieces of data attached to a module. 320 if (!M->getTargetTriple().empty()) 321 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 322 0/*TODO*/, Stream); 323 if (!M->getDataLayout().empty()) 324 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 325 0/*TODO*/, Stream); 326 if (!M->getModuleInlineAsm().empty()) 327 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 328 0/*TODO*/, Stream); 329 330 // Emit information about sections and GC, computing how many there are. Also 331 // compute the maximum alignment value. 332 std::map<std::string, unsigned> SectionMap; 333 std::map<std::string, unsigned> GCMap; 334 unsigned MaxAlignment = 0; 335 unsigned MaxGlobalType = 0; 336 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 337 GV != E; ++GV) { 338 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 339 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 340 341 if (!GV->hasSection()) continue; 342 // Give section names unique ID's. 343 unsigned &Entry = SectionMap[GV->getSection()]; 344 if (Entry != 0) continue; 345 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 346 0/*TODO*/, Stream); 347 Entry = SectionMap.size(); 348 } 349 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 350 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 351 if (F->hasSection()) { 352 // Give section names unique ID's. 353 unsigned &Entry = SectionMap[F->getSection()]; 354 if (!Entry) { 355 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 356 0/*TODO*/, Stream); 357 Entry = SectionMap.size(); 358 } 359 } 360 if (F->hasGC()) { 361 // Same for GC names. 362 unsigned &Entry = GCMap[F->getGC()]; 363 if (!Entry) { 364 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 365 0/*TODO*/, Stream); 366 Entry = GCMap.size(); 367 } 368 } 369 } 370 371 // Emit abbrev for globals, now that we know # sections and max alignment. 372 unsigned SimpleGVarAbbrev = 0; 373 if (!M->global_empty()) { 374 // Add an abbrev for common globals with no visibility or thread localness. 375 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 376 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 378 Log2_32_Ceil(MaxGlobalType+1))); 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 382 if (MaxAlignment == 0) // Alignment. 383 Abbv->Add(BitCodeAbbrevOp(0)); 384 else { 385 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 387 Log2_32_Ceil(MaxEncAlignment+1))); 388 } 389 if (SectionMap.empty()) // Section. 390 Abbv->Add(BitCodeAbbrevOp(0)); 391 else 392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 393 Log2_32_Ceil(SectionMap.size()+1))); 394 // Don't bother emitting vis + thread local. 395 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 396 } 397 398 // Emit the global variable information. 399 SmallVector<unsigned, 64> Vals; 400 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 401 GV != E; ++GV) { 402 unsigned AbbrevToUse = 0; 403 404 // GLOBALVAR: [type, isconst, initid, 405 // linkage, alignment, section, visibility, threadlocal] 406 Vals.push_back(VE.getTypeID(GV->getType())); 407 Vals.push_back(GV->isConstant()); 408 Vals.push_back(GV->isDeclaration() ? 0 : 409 (VE.getValueID(GV->getInitializer()) + 1)); 410 Vals.push_back(getEncodedLinkage(GV)); 411 Vals.push_back(Log2_32(GV->getAlignment())+1); 412 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 413 if (GV->isThreadLocal() || 414 GV->getVisibility() != GlobalValue::DefaultVisibility) { 415 Vals.push_back(getEncodedVisibility(GV)); 416 Vals.push_back(GV->isThreadLocal()); 417 } else { 418 AbbrevToUse = SimpleGVarAbbrev; 419 } 420 421 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 422 Vals.clear(); 423 } 424 425 // Emit the function proto information. 426 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 427 // FUNCTION: [type, callingconv, isproto, paramattr, 428 // linkage, alignment, section, visibility, gc] 429 Vals.push_back(VE.getTypeID(F->getType())); 430 Vals.push_back(F->getCallingConv()); 431 Vals.push_back(F->isDeclaration()); 432 Vals.push_back(getEncodedLinkage(F)); 433 Vals.push_back(VE.getAttributeID(F->getAttributes())); 434 Vals.push_back(Log2_32(F->getAlignment())+1); 435 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 436 Vals.push_back(getEncodedVisibility(F)); 437 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 438 439 unsigned AbbrevToUse = 0; 440 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 441 Vals.clear(); 442 } 443 444 445 // Emit the alias information. 446 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 447 AI != E; ++AI) { 448 Vals.push_back(VE.getTypeID(AI->getType())); 449 Vals.push_back(VE.getValueID(AI->getAliasee())); 450 Vals.push_back(getEncodedLinkage(AI)); 451 Vals.push_back(getEncodedVisibility(AI)); 452 unsigned AbbrevToUse = 0; 453 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 454 Vals.clear(); 455 } 456 } 457 458 static uint64_t GetOptimizationFlags(const Value *V) { 459 uint64_t Flags = 0; 460 461 if (const OverflowingBinaryOperator *OBO = 462 dyn_cast<OverflowingBinaryOperator>(V)) { 463 if (OBO->hasNoSignedWrap()) 464 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 465 if (OBO->hasNoUnsignedWrap()) 466 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 467 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 468 if (Div->isExact()) 469 Flags |= 1 << bitc::SDIV_EXACT; 470 } 471 472 return Flags; 473 } 474 475 static void WriteMDNode(const MDNode *N, 476 const ValueEnumerator &VE, 477 BitstreamWriter &Stream, 478 SmallVector<uint64_t, 64> &Record) { 479 for (unsigned i = 0, e = N->getNumElements(); i != e; ++i) { 480 if (N->getElement(i)) { 481 Record.push_back(VE.getTypeID(N->getElement(i)->getType())); 482 Record.push_back(VE.getValueID(N->getElement(i))); 483 } else { 484 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 485 Record.push_back(0); 486 } 487 } 488 Stream.EmitRecord(bitc::METADATA_NODE, Record, 0); 489 Record.clear(); 490 } 491 492 static void WriteModuleMetadata(const ValueEnumerator &VE, 493 BitstreamWriter &Stream) { 494 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 495 bool StartedMetadataBlock = false; 496 unsigned MDSAbbrev = 0; 497 SmallVector<uint64_t, 64> Record; 498 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 499 500 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 501 if (!StartedMetadataBlock) { 502 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 503 StartedMetadataBlock = true; 504 } 505 WriteMDNode(N, VE, Stream, Record); 506 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 507 if (!StartedMetadataBlock) { 508 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 509 510 // Abbrev for METADATA_STRING. 511 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 512 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 515 MDSAbbrev = Stream.EmitAbbrev(Abbv); 516 StartedMetadataBlock = true; 517 } 518 519 // Code: [strchar x N] 520 const char *StrBegin = MDS->begin(); 521 for (unsigned i = 0, e = MDS->length(); i != e; ++i) 522 Record.push_back(StrBegin[i]); 523 524 // Emit the finished record. 525 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 526 Record.clear(); 527 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 528 if (!StartedMetadataBlock) { 529 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 530 StartedMetadataBlock = true; 531 } 532 533 // Write name. 534 std::string Str = NMD->getNameStr(); 535 const char *StrBegin = Str.c_str(); 536 for (unsigned i = 0, e = Str.length(); i != e; ++i) 537 Record.push_back(StrBegin[i]); 538 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 539 Record.clear(); 540 541 // Write named metadata elements. 542 for (unsigned i = 0, e = NMD->getNumElements(); i != e; ++i) { 543 if (NMD->getElement(i)) 544 Record.push_back(VE.getValueID(NMD->getElement(i))); 545 else 546 Record.push_back(0); 547 } 548 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 549 Record.clear(); 550 } 551 } 552 553 if (StartedMetadataBlock) 554 Stream.ExitBlock(); 555 } 556 557 static void WriteMetadataAttachment(const Function &F, 558 const ValueEnumerator &VE, 559 BitstreamWriter &Stream) { 560 bool StartedMetadataBlock = false; 561 SmallVector<uint64_t, 64> Record; 562 563 // Write metadata attachments 564 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 565 MetadataContext &TheMetadata = F.getContext().getMetadata(); 566 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 567 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 568 I != E; ++I) { 569 const MetadataContext::MDMapTy *P = TheMetadata.getMDs(I); 570 if (!P) continue; 571 bool RecordedInstruction = false; 572 for (MetadataContext::MDMapTy::const_iterator PI = P->begin(), 573 PE = P->end(); PI != PE; ++PI) { 574 if (MDNode *ND = dyn_cast_or_null<MDNode>(PI->second)) { 575 if (RecordedInstruction == false) { 576 Record.push_back(VE.getInstructionID(I)); 577 RecordedInstruction = true; 578 } 579 Record.push_back(PI->first); 580 Record.push_back(VE.getValueID(ND)); 581 } 582 } 583 if (!StartedMetadataBlock) { 584 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 585 StartedMetadataBlock = true; 586 } 587 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 588 Record.clear(); 589 } 590 591 if (StartedMetadataBlock) 592 Stream.ExitBlock(); 593 } 594 595 static void WriteModuleMetadataStore(const Module *M, 596 const ValueEnumerator &VE, 597 BitstreamWriter &Stream) { 598 599 bool StartedMetadataBlock = false; 600 SmallVector<uint64_t, 64> Record; 601 602 // Write metadata kinds 603 // METADATA_KIND - [n x [id, name]] 604 MetadataContext &TheMetadata = M->getContext().getMetadata(); 605 const StringMap<unsigned> *Kinds = TheMetadata.getHandlerNames(); 606 for (StringMap<unsigned>::const_iterator 607 I = Kinds->begin(), E = Kinds->end(); I != E; ++I) { 608 Record.push_back(I->second); 609 StringRef KName = I->first(); 610 for (unsigned i = 0, e = KName.size(); i != e; ++i) 611 Record.push_back(KName[i]); 612 if (!StartedMetadataBlock) { 613 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 614 StartedMetadataBlock = true; 615 } 616 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 617 Record.clear(); 618 } 619 620 if (StartedMetadataBlock) 621 Stream.ExitBlock(); 622 } 623 624 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 625 const ValueEnumerator &VE, 626 BitstreamWriter &Stream, bool isGlobal) { 627 if (FirstVal == LastVal) return; 628 629 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 630 631 unsigned AggregateAbbrev = 0; 632 unsigned String8Abbrev = 0; 633 unsigned CString7Abbrev = 0; 634 unsigned CString6Abbrev = 0; 635 // If this is a constant pool for the module, emit module-specific abbrevs. 636 if (isGlobal) { 637 // Abbrev for CST_CODE_AGGREGATE. 638 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 639 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 642 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 643 644 // Abbrev for CST_CODE_STRING. 645 Abbv = new BitCodeAbbrev(); 646 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 649 String8Abbrev = Stream.EmitAbbrev(Abbv); 650 // Abbrev for CST_CODE_CSTRING. 651 Abbv = new BitCodeAbbrev(); 652 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 655 CString7Abbrev = Stream.EmitAbbrev(Abbv); 656 // Abbrev for CST_CODE_CSTRING. 657 Abbv = new BitCodeAbbrev(); 658 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 661 CString6Abbrev = Stream.EmitAbbrev(Abbv); 662 } 663 664 SmallVector<uint64_t, 64> Record; 665 666 const ValueEnumerator::ValueList &Vals = VE.getValues(); 667 const Type *LastTy = 0; 668 for (unsigned i = FirstVal; i != LastVal; ++i) { 669 const Value *V = Vals[i].first; 670 // If we need to switch types, do so now. 671 if (V->getType() != LastTy) { 672 LastTy = V->getType(); 673 Record.push_back(VE.getTypeID(LastTy)); 674 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 675 CONSTANTS_SETTYPE_ABBREV); 676 Record.clear(); 677 } 678 679 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 680 Record.push_back(unsigned(IA->hasSideEffects())); 681 682 // Add the asm string. 683 const std::string &AsmStr = IA->getAsmString(); 684 Record.push_back(AsmStr.size()); 685 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 686 Record.push_back(AsmStr[i]); 687 688 // Add the constraint string. 689 const std::string &ConstraintStr = IA->getConstraintString(); 690 Record.push_back(ConstraintStr.size()); 691 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 692 Record.push_back(ConstraintStr[i]); 693 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 694 Record.clear(); 695 continue; 696 } 697 const Constant *C = cast<Constant>(V); 698 unsigned Code = -1U; 699 unsigned AbbrevToUse = 0; 700 if (C->isNullValue()) { 701 Code = bitc::CST_CODE_NULL; 702 } else if (isa<UndefValue>(C)) { 703 Code = bitc::CST_CODE_UNDEF; 704 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 705 if (IV->getBitWidth() <= 64) { 706 int64_t V = IV->getSExtValue(); 707 if (V >= 0) 708 Record.push_back(V << 1); 709 else 710 Record.push_back((-V << 1) | 1); 711 Code = bitc::CST_CODE_INTEGER; 712 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 713 } else { // Wide integers, > 64 bits in size. 714 // We have an arbitrary precision integer value to write whose 715 // bit width is > 64. However, in canonical unsigned integer 716 // format it is likely that the high bits are going to be zero. 717 // So, we only write the number of active words. 718 unsigned NWords = IV->getValue().getActiveWords(); 719 const uint64_t *RawWords = IV->getValue().getRawData(); 720 for (unsigned i = 0; i != NWords; ++i) { 721 int64_t V = RawWords[i]; 722 if (V >= 0) 723 Record.push_back(V << 1); 724 else 725 Record.push_back((-V << 1) | 1); 726 } 727 Code = bitc::CST_CODE_WIDE_INTEGER; 728 } 729 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 730 Code = bitc::CST_CODE_FLOAT; 731 const Type *Ty = CFP->getType(); 732 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 733 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 734 } else if (Ty->isX86_FP80Ty()) { 735 // api needed to prevent premature destruction 736 // bits are not in the same order as a normal i80 APInt, compensate. 737 APInt api = CFP->getValueAPF().bitcastToAPInt(); 738 const uint64_t *p = api.getRawData(); 739 Record.push_back((p[1] << 48) | (p[0] >> 16)); 740 Record.push_back(p[0] & 0xffffLL); 741 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 742 APInt api = CFP->getValueAPF().bitcastToAPInt(); 743 const uint64_t *p = api.getRawData(); 744 Record.push_back(p[0]); 745 Record.push_back(p[1]); 746 } else { 747 assert (0 && "Unknown FP type!"); 748 } 749 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 750 // Emit constant strings specially. 751 unsigned NumOps = C->getNumOperands(); 752 // If this is a null-terminated string, use the denser CSTRING encoding. 753 if (C->getOperand(NumOps-1)->isNullValue()) { 754 Code = bitc::CST_CODE_CSTRING; 755 --NumOps; // Don't encode the null, which isn't allowed by char6. 756 } else { 757 Code = bitc::CST_CODE_STRING; 758 AbbrevToUse = String8Abbrev; 759 } 760 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 761 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 762 for (unsigned i = 0; i != NumOps; ++i) { 763 unsigned char V = cast<ConstantInt>(C->getOperand(i))->getZExtValue(); 764 Record.push_back(V); 765 isCStr7 &= (V & 128) == 0; 766 if (isCStrChar6) 767 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 768 } 769 770 if (isCStrChar6) 771 AbbrevToUse = CString6Abbrev; 772 else if (isCStr7) 773 AbbrevToUse = CString7Abbrev; 774 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 775 isa<ConstantVector>(V)) { 776 Code = bitc::CST_CODE_AGGREGATE; 777 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 778 Record.push_back(VE.getValueID(C->getOperand(i))); 779 AbbrevToUse = AggregateAbbrev; 780 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 781 switch (CE->getOpcode()) { 782 default: 783 if (Instruction::isCast(CE->getOpcode())) { 784 Code = bitc::CST_CODE_CE_CAST; 785 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 786 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 787 Record.push_back(VE.getValueID(C->getOperand(0))); 788 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 789 } else { 790 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 791 Code = bitc::CST_CODE_CE_BINOP; 792 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 793 Record.push_back(VE.getValueID(C->getOperand(0))); 794 Record.push_back(VE.getValueID(C->getOperand(1))); 795 uint64_t Flags = GetOptimizationFlags(CE); 796 if (Flags != 0) 797 Record.push_back(Flags); 798 } 799 break; 800 case Instruction::GetElementPtr: 801 Code = bitc::CST_CODE_CE_GEP; 802 if (cast<GEPOperator>(C)->isInBounds()) 803 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 804 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 805 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 806 Record.push_back(VE.getValueID(C->getOperand(i))); 807 } 808 break; 809 case Instruction::Select: 810 Code = bitc::CST_CODE_CE_SELECT; 811 Record.push_back(VE.getValueID(C->getOperand(0))); 812 Record.push_back(VE.getValueID(C->getOperand(1))); 813 Record.push_back(VE.getValueID(C->getOperand(2))); 814 break; 815 case Instruction::ExtractElement: 816 Code = bitc::CST_CODE_CE_EXTRACTELT; 817 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 818 Record.push_back(VE.getValueID(C->getOperand(0))); 819 Record.push_back(VE.getValueID(C->getOperand(1))); 820 break; 821 case Instruction::InsertElement: 822 Code = bitc::CST_CODE_CE_INSERTELT; 823 Record.push_back(VE.getValueID(C->getOperand(0))); 824 Record.push_back(VE.getValueID(C->getOperand(1))); 825 Record.push_back(VE.getValueID(C->getOperand(2))); 826 break; 827 case Instruction::ShuffleVector: 828 // If the return type and argument types are the same, this is a 829 // standard shufflevector instruction. If the types are different, 830 // then the shuffle is widening or truncating the input vectors, and 831 // the argument type must also be encoded. 832 if (C->getType() == C->getOperand(0)->getType()) { 833 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 834 } else { 835 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 836 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 837 } 838 Record.push_back(VE.getValueID(C->getOperand(0))); 839 Record.push_back(VE.getValueID(C->getOperand(1))); 840 Record.push_back(VE.getValueID(C->getOperand(2))); 841 break; 842 case Instruction::ICmp: 843 case Instruction::FCmp: 844 Code = bitc::CST_CODE_CE_CMP; 845 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 846 Record.push_back(VE.getValueID(C->getOperand(0))); 847 Record.push_back(VE.getValueID(C->getOperand(1))); 848 Record.push_back(CE->getPredicate()); 849 break; 850 } 851 } else { 852 llvm_unreachable("Unknown constant!"); 853 } 854 Stream.EmitRecord(Code, Record, AbbrevToUse); 855 Record.clear(); 856 } 857 858 Stream.ExitBlock(); 859 } 860 861 static void WriteModuleConstants(const ValueEnumerator &VE, 862 BitstreamWriter &Stream) { 863 const ValueEnumerator::ValueList &Vals = VE.getValues(); 864 865 // Find the first constant to emit, which is the first non-globalvalue value. 866 // We know globalvalues have been emitted by WriteModuleInfo. 867 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 868 if (!isa<GlobalValue>(Vals[i].first)) { 869 WriteConstants(i, Vals.size(), VE, Stream, true); 870 return; 871 } 872 } 873 } 874 875 /// PushValueAndType - The file has to encode both the value and type id for 876 /// many values, because we need to know what type to create for forward 877 /// references. However, most operands are not forward references, so this type 878 /// field is not needed. 879 /// 880 /// This function adds V's value ID to Vals. If the value ID is higher than the 881 /// instruction ID, then it is a forward reference, and it also includes the 882 /// type ID. 883 static bool PushValueAndType(const Value *V, unsigned InstID, 884 SmallVector<unsigned, 64> &Vals, 885 ValueEnumerator &VE) { 886 unsigned ValID = VE.getValueID(V); 887 Vals.push_back(ValID); 888 if (ValID >= InstID) { 889 Vals.push_back(VE.getTypeID(V->getType())); 890 return true; 891 } 892 return false; 893 } 894 895 /// WriteInstruction - Emit an instruction to the specified stream. 896 static void WriteInstruction(const Instruction &I, unsigned InstID, 897 ValueEnumerator &VE, BitstreamWriter &Stream, 898 SmallVector<unsigned, 64> &Vals) { 899 unsigned Code = 0; 900 unsigned AbbrevToUse = 0; 901 VE.setInstructionID(&I); 902 switch (I.getOpcode()) { 903 default: 904 if (Instruction::isCast(I.getOpcode())) { 905 Code = bitc::FUNC_CODE_INST_CAST; 906 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 907 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 908 Vals.push_back(VE.getTypeID(I.getType())); 909 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 910 } else { 911 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 912 Code = bitc::FUNC_CODE_INST_BINOP; 913 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 914 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 915 Vals.push_back(VE.getValueID(I.getOperand(1))); 916 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 917 uint64_t Flags = GetOptimizationFlags(&I); 918 if (Flags != 0) { 919 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 920 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 921 Vals.push_back(Flags); 922 } 923 } 924 break; 925 926 case Instruction::GetElementPtr: 927 Code = bitc::FUNC_CODE_INST_GEP; 928 if (cast<GEPOperator>(&I)->isInBounds()) 929 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 930 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 931 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 932 break; 933 case Instruction::ExtractValue: { 934 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 935 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 936 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 937 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 938 Vals.push_back(*i); 939 break; 940 } 941 case Instruction::InsertValue: { 942 Code = bitc::FUNC_CODE_INST_INSERTVAL; 943 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 944 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 945 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 946 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 947 Vals.push_back(*i); 948 break; 949 } 950 case Instruction::Select: 951 Code = bitc::FUNC_CODE_INST_VSELECT; 952 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 953 Vals.push_back(VE.getValueID(I.getOperand(2))); 954 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 955 break; 956 case Instruction::ExtractElement: 957 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 958 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 959 Vals.push_back(VE.getValueID(I.getOperand(1))); 960 break; 961 case Instruction::InsertElement: 962 Code = bitc::FUNC_CODE_INST_INSERTELT; 963 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 964 Vals.push_back(VE.getValueID(I.getOperand(1))); 965 Vals.push_back(VE.getValueID(I.getOperand(2))); 966 break; 967 case Instruction::ShuffleVector: 968 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 969 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 970 Vals.push_back(VE.getValueID(I.getOperand(1))); 971 Vals.push_back(VE.getValueID(I.getOperand(2))); 972 break; 973 case Instruction::ICmp: 974 case Instruction::FCmp: 975 // compare returning Int1Ty or vector of Int1Ty 976 Code = bitc::FUNC_CODE_INST_CMP2; 977 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 978 Vals.push_back(VE.getValueID(I.getOperand(1))); 979 Vals.push_back(cast<CmpInst>(I).getPredicate()); 980 break; 981 982 case Instruction::Ret: 983 { 984 Code = bitc::FUNC_CODE_INST_RET; 985 unsigned NumOperands = I.getNumOperands(); 986 if (NumOperands == 0) 987 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 988 else if (NumOperands == 1) { 989 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 990 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 991 } else { 992 for (unsigned i = 0, e = NumOperands; i != e; ++i) 993 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 994 } 995 } 996 break; 997 case Instruction::Br: 998 { 999 Code = bitc::FUNC_CODE_INST_BR; 1000 BranchInst &II(cast<BranchInst>(I)); 1001 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1002 if (II.isConditional()) { 1003 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1004 Vals.push_back(VE.getValueID(II.getCondition())); 1005 } 1006 } 1007 break; 1008 case Instruction::Switch: 1009 Code = bitc::FUNC_CODE_INST_SWITCH; 1010 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1011 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1012 Vals.push_back(VE.getValueID(I.getOperand(i))); 1013 break; 1014 case Instruction::Invoke: { 1015 const InvokeInst *II = cast<InvokeInst>(&I); 1016 const Value *Callee(II->getCalledValue()); 1017 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1018 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1019 Code = bitc::FUNC_CODE_INST_INVOKE; 1020 1021 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1022 Vals.push_back(II->getCallingConv()); 1023 Vals.push_back(VE.getValueID(II->getNormalDest())); 1024 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1025 PushValueAndType(Callee, InstID, Vals, VE); 1026 1027 // Emit value #'s for the fixed parameters. 1028 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1029 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 1030 1031 // Emit type/value pairs for varargs params. 1032 if (FTy->isVarArg()) { 1033 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 1034 i != e; ++i) 1035 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1036 } 1037 break; 1038 } 1039 case Instruction::Unwind: 1040 Code = bitc::FUNC_CODE_INST_UNWIND; 1041 break; 1042 case Instruction::Unreachable: 1043 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1044 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1045 break; 1046 1047 case Instruction::PHI: 1048 Code = bitc::FUNC_CODE_INST_PHI; 1049 Vals.push_back(VE.getTypeID(I.getType())); 1050 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1051 Vals.push_back(VE.getValueID(I.getOperand(i))); 1052 break; 1053 1054 case Instruction::Malloc: 1055 Code = bitc::FUNC_CODE_INST_MALLOC; 1056 Vals.push_back(VE.getTypeID(I.getType())); 1057 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1058 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 1059 break; 1060 1061 case Instruction::Free: 1062 Code = bitc::FUNC_CODE_INST_FREE; 1063 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1064 break; 1065 1066 case Instruction::Alloca: 1067 Code = bitc::FUNC_CODE_INST_ALLOCA; 1068 Vals.push_back(VE.getTypeID(I.getType())); 1069 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1070 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1071 break; 1072 1073 case Instruction::Load: 1074 Code = bitc::FUNC_CODE_INST_LOAD; 1075 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1076 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1077 1078 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1079 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1080 break; 1081 case Instruction::Store: 1082 Code = bitc::FUNC_CODE_INST_STORE2; 1083 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1084 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1085 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1086 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1087 break; 1088 case Instruction::Call: { 1089 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 1090 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1091 1092 Code = bitc::FUNC_CODE_INST_CALL; 1093 1094 const CallInst *CI = cast<CallInst>(&I); 1095 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 1096 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 1097 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 1098 1099 // Emit value #'s for the fixed parameters. 1100 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1101 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 1102 1103 // Emit type/value pairs for varargs params. 1104 if (FTy->isVarArg()) { 1105 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1106 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1107 i != e; ++i) 1108 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1109 } 1110 break; 1111 } 1112 case Instruction::VAArg: 1113 Code = bitc::FUNC_CODE_INST_VAARG; 1114 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1115 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1116 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1117 break; 1118 } 1119 1120 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1121 Vals.clear(); 1122 } 1123 1124 // Emit names for globals/functions etc. 1125 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1126 const ValueEnumerator &VE, 1127 BitstreamWriter &Stream) { 1128 if (VST.empty()) return; 1129 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1130 1131 // FIXME: Set up the abbrev, we know how many values there are! 1132 // FIXME: We know if the type names can use 7-bit ascii. 1133 SmallVector<unsigned, 64> NameVals; 1134 1135 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1136 SI != SE; ++SI) { 1137 1138 const ValueName &Name = *SI; 1139 1140 // Figure out the encoding to use for the name. 1141 bool is7Bit = true; 1142 bool isChar6 = true; 1143 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1144 C != E; ++C) { 1145 if (isChar6) 1146 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1147 if ((unsigned char)*C & 128) { 1148 is7Bit = false; 1149 break; // don't bother scanning the rest. 1150 } 1151 } 1152 1153 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1154 1155 // VST_ENTRY: [valueid, namechar x N] 1156 // VST_BBENTRY: [bbid, namechar x N] 1157 unsigned Code; 1158 if (isa<BasicBlock>(SI->getValue())) { 1159 Code = bitc::VST_CODE_BBENTRY; 1160 if (isChar6) 1161 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1162 } else { 1163 Code = bitc::VST_CODE_ENTRY; 1164 if (isChar6) 1165 AbbrevToUse = VST_ENTRY_6_ABBREV; 1166 else if (is7Bit) 1167 AbbrevToUse = VST_ENTRY_7_ABBREV; 1168 } 1169 1170 NameVals.push_back(VE.getValueID(SI->getValue())); 1171 for (const char *P = Name.getKeyData(), 1172 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1173 NameVals.push_back((unsigned char)*P); 1174 1175 // Emit the finished record. 1176 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1177 NameVals.clear(); 1178 } 1179 Stream.ExitBlock(); 1180 } 1181 1182 /// WriteFunction - Emit a function body to the module stream. 1183 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1184 BitstreamWriter &Stream) { 1185 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1186 VE.incorporateFunction(F); 1187 1188 SmallVector<unsigned, 64> Vals; 1189 1190 // Emit the number of basic blocks, so the reader can create them ahead of 1191 // time. 1192 Vals.push_back(VE.getBasicBlocks().size()); 1193 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1194 Vals.clear(); 1195 1196 // If there are function-local constants, emit them now. 1197 unsigned CstStart, CstEnd; 1198 VE.getFunctionConstantRange(CstStart, CstEnd); 1199 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1200 1201 // Keep a running idea of what the instruction ID is. 1202 unsigned InstID = CstEnd; 1203 1204 // Finally, emit all the instructions, in order. 1205 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1206 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1207 I != E; ++I) { 1208 WriteInstruction(*I, InstID, VE, Stream, Vals); 1209 if (I->getType() != Type::getVoidTy(F.getContext())) 1210 ++InstID; 1211 } 1212 1213 // Emit names for all the instructions etc. 1214 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1215 1216 WriteMetadataAttachment(F, VE, Stream); 1217 VE.purgeFunction(); 1218 Stream.ExitBlock(); 1219 } 1220 1221 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1222 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1223 const ValueEnumerator &VE, 1224 BitstreamWriter &Stream) { 1225 if (TST.empty()) return; 1226 1227 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1228 1229 // 7-bit fixed width VST_CODE_ENTRY strings. 1230 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1231 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1233 Log2_32_Ceil(VE.getTypes().size()+1))); 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1236 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1237 1238 SmallVector<unsigned, 64> NameVals; 1239 1240 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1241 TI != TE; ++TI) { 1242 // TST_ENTRY: [typeid, namechar x N] 1243 NameVals.push_back(VE.getTypeID(TI->second)); 1244 1245 const std::string &Str = TI->first; 1246 bool is7Bit = true; 1247 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1248 NameVals.push_back((unsigned char)Str[i]); 1249 if (Str[i] & 128) 1250 is7Bit = false; 1251 } 1252 1253 // Emit the finished record. 1254 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1255 NameVals.clear(); 1256 } 1257 1258 Stream.ExitBlock(); 1259 } 1260 1261 // Emit blockinfo, which defines the standard abbreviations etc. 1262 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1263 // We only want to emit block info records for blocks that have multiple 1264 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1265 // blocks can defined their abbrevs inline. 1266 Stream.EnterBlockInfoBlock(2); 1267 1268 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1269 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1274 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1275 Abbv) != VST_ENTRY_8_ABBREV) 1276 llvm_unreachable("Unexpected abbrev ordering!"); 1277 } 1278 1279 { // 7-bit fixed width VST_ENTRY strings. 1280 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1281 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1285 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1286 Abbv) != VST_ENTRY_7_ABBREV) 1287 llvm_unreachable("Unexpected abbrev ordering!"); 1288 } 1289 { // 6-bit char6 VST_ENTRY strings. 1290 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1291 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1295 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1296 Abbv) != VST_ENTRY_6_ABBREV) 1297 llvm_unreachable("Unexpected abbrev ordering!"); 1298 } 1299 { // 6-bit char6 VST_BBENTRY strings. 1300 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1301 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1305 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1306 Abbv) != VST_BBENTRY_6_ABBREV) 1307 llvm_unreachable("Unexpected abbrev ordering!"); 1308 } 1309 1310 1311 1312 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1313 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1314 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1316 Log2_32_Ceil(VE.getTypes().size()+1))); 1317 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1318 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1319 llvm_unreachable("Unexpected abbrev ordering!"); 1320 } 1321 1322 { // INTEGER abbrev for CONSTANTS_BLOCK. 1323 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1324 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1326 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1327 Abbv) != CONSTANTS_INTEGER_ABBREV) 1328 llvm_unreachable("Unexpected abbrev ordering!"); 1329 } 1330 1331 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1332 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1333 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1336 Log2_32_Ceil(VE.getTypes().size()+1))); 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1338 1339 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1340 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1341 llvm_unreachable("Unexpected abbrev ordering!"); 1342 } 1343 { // NULL abbrev for CONSTANTS_BLOCK. 1344 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1345 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1346 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1347 Abbv) != CONSTANTS_NULL_Abbrev) 1348 llvm_unreachable("Unexpected abbrev ordering!"); 1349 } 1350 1351 // FIXME: This should only use space for first class types! 1352 1353 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1354 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1355 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1359 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1360 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1361 llvm_unreachable("Unexpected abbrev ordering!"); 1362 } 1363 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1364 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1365 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1369 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1370 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1371 llvm_unreachable("Unexpected abbrev ordering!"); 1372 } 1373 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1374 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1375 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1380 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1381 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1382 llvm_unreachable("Unexpected abbrev ordering!"); 1383 } 1384 { // INST_CAST abbrev for FUNCTION_BLOCK. 1385 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1386 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1389 Log2_32_Ceil(VE.getTypes().size()+1))); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1391 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1392 Abbv) != FUNCTION_INST_CAST_ABBREV) 1393 llvm_unreachable("Unexpected abbrev ordering!"); 1394 } 1395 1396 { // INST_RET abbrev for FUNCTION_BLOCK. 1397 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1398 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1399 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1400 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1401 llvm_unreachable("Unexpected abbrev ordering!"); 1402 } 1403 { // INST_RET abbrev for FUNCTION_BLOCK. 1404 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1405 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1407 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1408 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1409 llvm_unreachable("Unexpected abbrev ordering!"); 1410 } 1411 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1412 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1413 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1414 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1415 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1416 llvm_unreachable("Unexpected abbrev ordering!"); 1417 } 1418 1419 Stream.ExitBlock(); 1420 } 1421 1422 1423 /// WriteModule - Emit the specified module to the bitstream. 1424 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1425 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1426 1427 // Emit the version number if it is non-zero. 1428 if (CurVersion) { 1429 SmallVector<unsigned, 1> Vals; 1430 Vals.push_back(CurVersion); 1431 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1432 } 1433 1434 // Analyze the module, enumerating globals, functions, etc. 1435 ValueEnumerator VE(M); 1436 1437 // Emit blockinfo, which defines the standard abbreviations etc. 1438 WriteBlockInfo(VE, Stream); 1439 1440 // Emit information about parameter attributes. 1441 WriteAttributeTable(VE, Stream); 1442 1443 // Emit information describing all of the types in the module. 1444 WriteTypeTable(VE, Stream); 1445 1446 // Emit top-level description of module, including target triple, inline asm, 1447 // descriptors for global variables, and function prototype info. 1448 WriteModuleInfo(M, VE, Stream); 1449 1450 // Emit constants. 1451 WriteModuleConstants(VE, Stream); 1452 1453 // Emit metadata. 1454 WriteModuleMetadata(VE, Stream); 1455 1456 // Emit function bodies. 1457 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1458 if (!I->isDeclaration()) 1459 WriteFunction(*I, VE, Stream); 1460 1461 // Emit metadata. 1462 WriteModuleMetadataStore(M, VE, Stream); 1463 1464 // Emit the type symbol table information. 1465 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1466 1467 // Emit names for globals/functions etc. 1468 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1469 1470 Stream.ExitBlock(); 1471 } 1472 1473 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1474 /// header and trailer to make it compatible with the system archiver. To do 1475 /// this we emit the following header, and then emit a trailer that pads the 1476 /// file out to be a multiple of 16 bytes. 1477 /// 1478 /// struct bc_header { 1479 /// uint32_t Magic; // 0x0B17C0DE 1480 /// uint32_t Version; // Version, currently always 0. 1481 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1482 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1483 /// uint32_t CPUType; // CPU specifier. 1484 /// ... potentially more later ... 1485 /// }; 1486 enum { 1487 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1488 DarwinBCHeaderSize = 5*4 1489 }; 1490 1491 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1492 const std::string &TT) { 1493 unsigned CPUType = ~0U; 1494 1495 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1496 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1497 // specific constants here because they are implicitly part of the Darwin ABI. 1498 enum { 1499 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1500 DARWIN_CPU_TYPE_X86 = 7, 1501 DARWIN_CPU_TYPE_POWERPC = 18 1502 }; 1503 1504 if (TT.find("x86_64-") == 0) 1505 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1506 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1507 TT[4] == '-' && TT[1] - '3' < 6) 1508 CPUType = DARWIN_CPU_TYPE_X86; 1509 else if (TT.find("powerpc-") == 0) 1510 CPUType = DARWIN_CPU_TYPE_POWERPC; 1511 else if (TT.find("powerpc64-") == 0) 1512 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1513 1514 // Traditional Bitcode starts after header. 1515 unsigned BCOffset = DarwinBCHeaderSize; 1516 1517 Stream.Emit(0x0B17C0DE, 32); 1518 Stream.Emit(0 , 32); // Version. 1519 Stream.Emit(BCOffset , 32); 1520 Stream.Emit(0 , 32); // Filled in later. 1521 Stream.Emit(CPUType , 32); 1522 } 1523 1524 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1525 /// finalize the header. 1526 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1527 // Update the size field in the header. 1528 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1529 1530 // If the file is not a multiple of 16 bytes, insert dummy padding. 1531 while (BufferSize & 15) { 1532 Stream.Emit(0, 8); 1533 ++BufferSize; 1534 } 1535 } 1536 1537 1538 /// WriteBitcodeToFile - Write the specified module to the specified output 1539 /// stream. 1540 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1541 std::vector<unsigned char> Buffer; 1542 BitstreamWriter Stream(Buffer); 1543 1544 Buffer.reserve(256*1024); 1545 1546 WriteBitcodeToStream( M, Stream ); 1547 1548 // If writing to stdout, set binary mode. 1549 if (&llvm::outs() == &Out) 1550 sys::Program::ChangeStdoutToBinary(); 1551 1552 // Write the generated bitstream to "Out". 1553 Out.write((char*)&Buffer.front(), Buffer.size()); 1554 1555 // Make sure it hits disk now. 1556 Out.flush(); 1557 } 1558 1559 /// WriteBitcodeToStream - Write the specified module to the specified output 1560 /// stream. 1561 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1562 // If this is darwin, emit a file header and trailer if needed. 1563 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1564 if (isDarwin) 1565 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1566 1567 // Emit the file header. 1568 Stream.Emit((unsigned)'B', 8); 1569 Stream.Emit((unsigned)'C', 8); 1570 Stream.Emit(0x0, 4); 1571 Stream.Emit(0xC, 4); 1572 Stream.Emit(0xE, 4); 1573 Stream.Emit(0xD, 4); 1574 1575 // Emit the module. 1576 WriteModule(M, Stream); 1577 1578 if (isDarwin) 1579 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1580 } 1581