1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 namespace { 93 94 /// These are manifest constants used by the bitcode writer. They do not need to 95 /// be kept in sync with the reader, but need to be consistent within this file. 96 enum { 97 // VALUE_SYMTAB_BLOCK abbrev id's. 98 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 99 VST_ENTRY_7_ABBREV, 100 VST_ENTRY_6_ABBREV, 101 VST_BBENTRY_6_ABBREV, 102 103 // CONSTANTS_BLOCK abbrev id's. 104 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 105 CONSTANTS_INTEGER_ABBREV, 106 CONSTANTS_CE_CAST_Abbrev, 107 CONSTANTS_NULL_Abbrev, 108 109 // FUNCTION_BLOCK abbrev id's. 110 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 111 FUNCTION_INST_BINOP_ABBREV, 112 FUNCTION_INST_BINOP_FLAGS_ABBREV, 113 FUNCTION_INST_CAST_ABBREV, 114 FUNCTION_INST_RET_VOID_ABBREV, 115 FUNCTION_INST_RET_VAL_ABBREV, 116 FUNCTION_INST_UNREACHABLE_ABBREV, 117 FUNCTION_INST_GEP_ABBREV, 118 }; 119 120 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 121 /// file type. 122 class BitcodeWriterBase { 123 protected: 124 /// The stream created and owned by the client. 125 BitstreamWriter &Stream; 126 127 StringTableBuilder &StrtabBuilder; 128 129 public: 130 /// Constructs a BitcodeWriterBase object that writes to the provided 131 /// \p Stream. 132 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 133 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 134 135 protected: 136 void writeBitcodeHeader(); 137 void writeModuleVersion(); 138 }; 139 140 void BitcodeWriterBase::writeModuleVersion() { 141 // VERSION: [version#] 142 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 143 } 144 145 /// Base class to manage the module bitcode writing, currently subclassed for 146 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 147 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 148 protected: 149 /// The Module to write to bitcode. 150 const Module &M; 151 152 /// Enumerates ids for all values in the module. 153 ValueEnumerator VE; 154 155 /// Optional per-module index to write for ThinLTO. 156 const ModuleSummaryIndex *Index; 157 158 /// Map that holds the correspondence between GUIDs in the summary index, 159 /// that came from indirect call profiles, and a value id generated by this 160 /// class to use in the VST and summary block records. 161 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 162 163 /// Tracks the last value id recorded in the GUIDToValueMap. 164 unsigned GlobalValueId; 165 166 /// Saves the offset of the VSTOffset record that must eventually be 167 /// backpatched with the offset of the actual VST. 168 uint64_t VSTOffsetPlaceholder = 0; 169 170 public: 171 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 172 /// writing to the provided \p Buffer. 173 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 174 BitstreamWriter &Stream, 175 bool ShouldPreserveUseListOrder, 176 const ModuleSummaryIndex *Index) 177 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 178 VE(M, ShouldPreserveUseListOrder), Index(Index) { 179 // Assign ValueIds to any callee values in the index that came from 180 // indirect call profiles and were recorded as a GUID not a Value* 181 // (which would have been assigned an ID by the ValueEnumerator). 182 // The starting ValueId is just after the number of values in the 183 // ValueEnumerator, so that they can be emitted in the VST. 184 GlobalValueId = VE.getValues().size(); 185 if (!Index) 186 return; 187 for (const auto &GUIDSummaryLists : *Index) 188 // Examine all summaries for this GUID. 189 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 190 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 191 // For each call in the function summary, see if the call 192 // is to a GUID (which means it is for an indirect call, 193 // otherwise we would have a Value for it). If so, synthesize 194 // a value id. 195 for (auto &CallEdge : FS->calls()) 196 if (!CallEdge.first.getValue()) 197 assignValueId(CallEdge.first.getGUID()); 198 } 199 200 protected: 201 void writePerModuleGlobalValueSummary(); 202 203 private: 204 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 205 GlobalValueSummary *Summary, 206 unsigned ValueID, 207 unsigned FSCallsAbbrev, 208 unsigned FSCallsProfileAbbrev, 209 const Function &F); 210 void writeModuleLevelReferences(const GlobalVariable &V, 211 SmallVector<uint64_t, 64> &NameVals, 212 unsigned FSModRefsAbbrev); 213 214 void assignValueId(GlobalValue::GUID ValGUID) { 215 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 216 } 217 218 unsigned getValueId(GlobalValue::GUID ValGUID) { 219 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 220 // Expect that any GUID value had a value Id assigned by an 221 // earlier call to assignValueId. 222 assert(VMI != GUIDToValueIdMap.end() && 223 "GUID does not have assigned value Id"); 224 return VMI->second; 225 } 226 227 // Helper to get the valueId for the type of value recorded in VI. 228 unsigned getValueId(ValueInfo VI) { 229 if (!VI.getValue()) 230 return getValueId(VI.getGUID()); 231 return VE.getValueID(VI.getValue()); 232 } 233 234 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 235 }; 236 237 /// Class to manage the bitcode writing for a module. 238 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 239 /// Pointer to the buffer allocated by caller for bitcode writing. 240 const SmallVectorImpl<char> &Buffer; 241 242 /// True if a module hash record should be written. 243 bool GenerateHash; 244 245 /// If non-null, when GenerateHash is true, the resulting hash is written 246 /// into ModHash. 247 ModuleHash *ModHash; 248 249 SHA1 Hasher; 250 251 /// The start bit of the identification block. 252 uint64_t BitcodeStartBit; 253 254 public: 255 /// Constructs a ModuleBitcodeWriter object for the given Module, 256 /// writing to the provided \p Buffer. 257 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 258 StringTableBuilder &StrtabBuilder, 259 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 260 const ModuleSummaryIndex *Index, bool GenerateHash, 261 ModuleHash *ModHash = nullptr) 262 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 263 ShouldPreserveUseListOrder, Index), 264 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 265 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 266 267 /// Emit the current module to the bitstream. 268 void write(); 269 270 private: 271 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 272 273 size_t addToStrtab(StringRef Str); 274 275 void writeAttributeGroupTable(); 276 void writeAttributeTable(); 277 void writeTypeTable(); 278 void writeComdats(); 279 void writeValueSymbolTableForwardDecl(); 280 void writeModuleInfo(); 281 void writeValueAsMetadata(const ValueAsMetadata *MD, 282 SmallVectorImpl<uint64_t> &Record); 283 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 284 unsigned Abbrev); 285 unsigned createDILocationAbbrev(); 286 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 287 unsigned &Abbrev); 288 unsigned createGenericDINodeAbbrev(); 289 void writeGenericDINode(const GenericDINode *N, 290 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 291 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 292 unsigned Abbrev); 293 void writeDIEnumerator(const DIEnumerator *N, 294 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 295 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned Abbrev); 297 void writeDIDerivedType(const DIDerivedType *N, 298 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 299 void writeDICompositeType(const DICompositeType *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDISubroutineType(const DISubroutineType *N, 302 SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDICompileUnit(const DICompileUnit *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDISubprogram(const DISubprogram *N, 309 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 310 void writeDILexicalBlock(const DILexicalBlock *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 313 SmallVectorImpl<uint64_t> &Record, 314 unsigned Abbrev); 315 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 324 SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIGlobalVariable(const DIGlobalVariable *N, 330 SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDILocalVariable(const DILocalVariable *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDIExpression(const DIExpression *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 337 SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIObjCProperty(const DIObjCProperty *N, 340 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 341 void writeDIImportedEntity(const DIImportedEntity *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 unsigned createNamedMetadataAbbrev(); 345 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 346 unsigned createMetadataStringsAbbrev(); 347 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 348 SmallVectorImpl<uint64_t> &Record); 349 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 350 SmallVectorImpl<uint64_t> &Record, 351 std::vector<unsigned> *MDAbbrevs = nullptr, 352 std::vector<uint64_t> *IndexPos = nullptr); 353 void writeModuleMetadata(); 354 void writeFunctionMetadata(const Function &F); 355 void writeFunctionMetadataAttachment(const Function &F); 356 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 357 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 358 const GlobalObject &GO); 359 void writeModuleMetadataKinds(); 360 void writeOperandBundleTags(); 361 void writeSyncScopeNames(); 362 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 363 void writeModuleConstants(); 364 bool pushValueAndType(const Value *V, unsigned InstID, 365 SmallVectorImpl<unsigned> &Vals); 366 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 367 void pushValue(const Value *V, unsigned InstID, 368 SmallVectorImpl<unsigned> &Vals); 369 void pushValueSigned(const Value *V, unsigned InstID, 370 SmallVectorImpl<uint64_t> &Vals); 371 void writeInstruction(const Instruction &I, unsigned InstID, 372 SmallVectorImpl<unsigned> &Vals); 373 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 374 void writeGlobalValueSymbolTable( 375 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 376 void writeUseList(UseListOrder &&Order); 377 void writeUseListBlock(const Function *F); 378 void 379 writeFunction(const Function &F, 380 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 381 void writeBlockInfo(); 382 void writeModuleHash(size_t BlockStartPos); 383 384 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 385 return unsigned(SSID); 386 } 387 }; 388 389 /// Class to manage the bitcode writing for a combined index. 390 class IndexBitcodeWriter : public BitcodeWriterBase { 391 /// The combined index to write to bitcode. 392 const ModuleSummaryIndex &Index; 393 394 /// When writing a subset of the index for distributed backends, client 395 /// provides a map of modules to the corresponding GUIDs/summaries to write. 396 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 397 398 /// Map that holds the correspondence between the GUID used in the combined 399 /// index and a value id generated by this class to use in references. 400 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 401 402 /// Tracks the last value id recorded in the GUIDToValueMap. 403 unsigned GlobalValueId = 0; 404 405 public: 406 /// Constructs a IndexBitcodeWriter object for the given combined index, 407 /// writing to the provided \p Buffer. When writing a subset of the index 408 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 409 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 410 const ModuleSummaryIndex &Index, 411 const std::map<std::string, GVSummaryMapTy> 412 *ModuleToSummariesForIndex = nullptr) 413 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 414 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 415 // Assign unique value ids to all summaries to be written, for use 416 // in writing out the call graph edges. Save the mapping from GUID 417 // to the new global value id to use when writing those edges, which 418 // are currently saved in the index in terms of GUID. 419 forEachSummary([&](GVInfo I, bool) { 420 GUIDToValueIdMap[I.first] = ++GlobalValueId; 421 }); 422 } 423 424 /// The below iterator returns the GUID and associated summary. 425 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 426 427 /// Calls the callback for each value GUID and summary to be written to 428 /// bitcode. This hides the details of whether they are being pulled from the 429 /// entire index or just those in a provided ModuleToSummariesForIndex map. 430 template<typename Functor> 431 void forEachSummary(Functor Callback) { 432 if (ModuleToSummariesForIndex) { 433 for (auto &M : *ModuleToSummariesForIndex) 434 for (auto &Summary : M.second) { 435 Callback(Summary, false); 436 // Ensure aliasee is handled, e.g. for assigning a valueId, 437 // even if we are not importing the aliasee directly (the 438 // imported alias will contain a copy of aliasee). 439 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 440 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 441 } 442 } else { 443 for (auto &Summaries : Index) 444 for (auto &Summary : Summaries.second.SummaryList) 445 Callback({Summaries.first, Summary.get()}, false); 446 } 447 } 448 449 /// Calls the callback for each entry in the modulePaths StringMap that 450 /// should be written to the module path string table. This hides the details 451 /// of whether they are being pulled from the entire index or just those in a 452 /// provided ModuleToSummariesForIndex map. 453 template <typename Functor> void forEachModule(Functor Callback) { 454 if (ModuleToSummariesForIndex) { 455 for (const auto &M : *ModuleToSummariesForIndex) { 456 const auto &MPI = Index.modulePaths().find(M.first); 457 if (MPI == Index.modulePaths().end()) { 458 // This should only happen if the bitcode file was empty, in which 459 // case we shouldn't be importing (the ModuleToSummariesForIndex 460 // would only include the module we are writing and index for). 461 assert(ModuleToSummariesForIndex->size() == 1); 462 continue; 463 } 464 Callback(*MPI); 465 } 466 } else { 467 for (const auto &MPSE : Index.modulePaths()) 468 Callback(MPSE); 469 } 470 } 471 472 /// Main entry point for writing a combined index to bitcode. 473 void write(); 474 475 private: 476 void writeModStrings(); 477 void writeCombinedGlobalValueSummary(); 478 479 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 480 auto VMI = GUIDToValueIdMap.find(ValGUID); 481 if (VMI == GUIDToValueIdMap.end()) 482 return None; 483 return VMI->second; 484 } 485 486 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 487 }; 488 489 } // end anonymous namespace 490 491 static unsigned getEncodedCastOpcode(unsigned Opcode) { 492 switch (Opcode) { 493 default: llvm_unreachable("Unknown cast instruction!"); 494 case Instruction::Trunc : return bitc::CAST_TRUNC; 495 case Instruction::ZExt : return bitc::CAST_ZEXT; 496 case Instruction::SExt : return bitc::CAST_SEXT; 497 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 498 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 499 case Instruction::UIToFP : return bitc::CAST_UITOFP; 500 case Instruction::SIToFP : return bitc::CAST_SITOFP; 501 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 502 case Instruction::FPExt : return bitc::CAST_FPEXT; 503 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 504 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 505 case Instruction::BitCast : return bitc::CAST_BITCAST; 506 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 507 } 508 } 509 510 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 511 switch (Opcode) { 512 default: llvm_unreachable("Unknown binary instruction!"); 513 case Instruction::Add: 514 case Instruction::FAdd: return bitc::BINOP_ADD; 515 case Instruction::Sub: 516 case Instruction::FSub: return bitc::BINOP_SUB; 517 case Instruction::Mul: 518 case Instruction::FMul: return bitc::BINOP_MUL; 519 case Instruction::UDiv: return bitc::BINOP_UDIV; 520 case Instruction::FDiv: 521 case Instruction::SDiv: return bitc::BINOP_SDIV; 522 case Instruction::URem: return bitc::BINOP_UREM; 523 case Instruction::FRem: 524 case Instruction::SRem: return bitc::BINOP_SREM; 525 case Instruction::Shl: return bitc::BINOP_SHL; 526 case Instruction::LShr: return bitc::BINOP_LSHR; 527 case Instruction::AShr: return bitc::BINOP_ASHR; 528 case Instruction::And: return bitc::BINOP_AND; 529 case Instruction::Or: return bitc::BINOP_OR; 530 case Instruction::Xor: return bitc::BINOP_XOR; 531 } 532 } 533 534 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 535 switch (Op) { 536 default: llvm_unreachable("Unknown RMW operation!"); 537 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 538 case AtomicRMWInst::Add: return bitc::RMW_ADD; 539 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 540 case AtomicRMWInst::And: return bitc::RMW_AND; 541 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 542 case AtomicRMWInst::Or: return bitc::RMW_OR; 543 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 544 case AtomicRMWInst::Max: return bitc::RMW_MAX; 545 case AtomicRMWInst::Min: return bitc::RMW_MIN; 546 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 547 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 548 } 549 } 550 551 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 552 switch (Ordering) { 553 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 554 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 555 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 556 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 557 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 558 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 559 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 560 } 561 llvm_unreachable("Invalid ordering"); 562 } 563 564 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 565 StringRef Str, unsigned AbbrevToUse) { 566 SmallVector<unsigned, 64> Vals; 567 568 // Code: [strchar x N] 569 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 570 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 571 AbbrevToUse = 0; 572 Vals.push_back(Str[i]); 573 } 574 575 // Emit the finished record. 576 Stream.EmitRecord(Code, Vals, AbbrevToUse); 577 } 578 579 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 580 switch (Kind) { 581 case Attribute::Alignment: 582 return bitc::ATTR_KIND_ALIGNMENT; 583 case Attribute::AllocSize: 584 return bitc::ATTR_KIND_ALLOC_SIZE; 585 case Attribute::AlwaysInline: 586 return bitc::ATTR_KIND_ALWAYS_INLINE; 587 case Attribute::ArgMemOnly: 588 return bitc::ATTR_KIND_ARGMEMONLY; 589 case Attribute::Builtin: 590 return bitc::ATTR_KIND_BUILTIN; 591 case Attribute::ByVal: 592 return bitc::ATTR_KIND_BY_VAL; 593 case Attribute::Convergent: 594 return bitc::ATTR_KIND_CONVERGENT; 595 case Attribute::InAlloca: 596 return bitc::ATTR_KIND_IN_ALLOCA; 597 case Attribute::Cold: 598 return bitc::ATTR_KIND_COLD; 599 case Attribute::InaccessibleMemOnly: 600 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 601 case Attribute::InaccessibleMemOrArgMemOnly: 602 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 603 case Attribute::InlineHint: 604 return bitc::ATTR_KIND_INLINE_HINT; 605 case Attribute::InReg: 606 return bitc::ATTR_KIND_IN_REG; 607 case Attribute::JumpTable: 608 return bitc::ATTR_KIND_JUMP_TABLE; 609 case Attribute::MinSize: 610 return bitc::ATTR_KIND_MIN_SIZE; 611 case Attribute::Naked: 612 return bitc::ATTR_KIND_NAKED; 613 case Attribute::Nest: 614 return bitc::ATTR_KIND_NEST; 615 case Attribute::NoAlias: 616 return bitc::ATTR_KIND_NO_ALIAS; 617 case Attribute::NoBuiltin: 618 return bitc::ATTR_KIND_NO_BUILTIN; 619 case Attribute::NoCapture: 620 return bitc::ATTR_KIND_NO_CAPTURE; 621 case Attribute::NoDuplicate: 622 return bitc::ATTR_KIND_NO_DUPLICATE; 623 case Attribute::NoImplicitFloat: 624 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 625 case Attribute::NoInline: 626 return bitc::ATTR_KIND_NO_INLINE; 627 case Attribute::NoRecurse: 628 return bitc::ATTR_KIND_NO_RECURSE; 629 case Attribute::NonLazyBind: 630 return bitc::ATTR_KIND_NON_LAZY_BIND; 631 case Attribute::NonNull: 632 return bitc::ATTR_KIND_NON_NULL; 633 case Attribute::Dereferenceable: 634 return bitc::ATTR_KIND_DEREFERENCEABLE; 635 case Attribute::DereferenceableOrNull: 636 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 637 case Attribute::NoRedZone: 638 return bitc::ATTR_KIND_NO_RED_ZONE; 639 case Attribute::NoReturn: 640 return bitc::ATTR_KIND_NO_RETURN; 641 case Attribute::NoCfCheck: 642 return bitc::ATTR_KIND_NOCF_CHECK; 643 case Attribute::NoUnwind: 644 return bitc::ATTR_KIND_NO_UNWIND; 645 case Attribute::OptimizeForSize: 646 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 647 case Attribute::OptimizeNone: 648 return bitc::ATTR_KIND_OPTIMIZE_NONE; 649 case Attribute::ReadNone: 650 return bitc::ATTR_KIND_READ_NONE; 651 case Attribute::ReadOnly: 652 return bitc::ATTR_KIND_READ_ONLY; 653 case Attribute::Returned: 654 return bitc::ATTR_KIND_RETURNED; 655 case Attribute::ReturnsTwice: 656 return bitc::ATTR_KIND_RETURNS_TWICE; 657 case Attribute::SExt: 658 return bitc::ATTR_KIND_S_EXT; 659 case Attribute::Speculatable: 660 return bitc::ATTR_KIND_SPECULATABLE; 661 case Attribute::StackAlignment: 662 return bitc::ATTR_KIND_STACK_ALIGNMENT; 663 case Attribute::StackProtect: 664 return bitc::ATTR_KIND_STACK_PROTECT; 665 case Attribute::StackProtectReq: 666 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 667 case Attribute::StackProtectStrong: 668 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 669 case Attribute::SafeStack: 670 return bitc::ATTR_KIND_SAFESTACK; 671 case Attribute::StrictFP: 672 return bitc::ATTR_KIND_STRICT_FP; 673 case Attribute::StructRet: 674 return bitc::ATTR_KIND_STRUCT_RET; 675 case Attribute::SanitizeAddress: 676 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 677 case Attribute::SanitizeHWAddress: 678 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 679 case Attribute::SanitizeThread: 680 return bitc::ATTR_KIND_SANITIZE_THREAD; 681 case Attribute::SanitizeMemory: 682 return bitc::ATTR_KIND_SANITIZE_MEMORY; 683 case Attribute::SwiftError: 684 return bitc::ATTR_KIND_SWIFT_ERROR; 685 case Attribute::SwiftSelf: 686 return bitc::ATTR_KIND_SWIFT_SELF; 687 case Attribute::UWTable: 688 return bitc::ATTR_KIND_UW_TABLE; 689 case Attribute::WriteOnly: 690 return bitc::ATTR_KIND_WRITEONLY; 691 case Attribute::ZExt: 692 return bitc::ATTR_KIND_Z_EXT; 693 case Attribute::EndAttrKinds: 694 llvm_unreachable("Can not encode end-attribute kinds marker."); 695 case Attribute::None: 696 llvm_unreachable("Can not encode none-attribute."); 697 } 698 699 llvm_unreachable("Trying to encode unknown attribute"); 700 } 701 702 void ModuleBitcodeWriter::writeAttributeGroupTable() { 703 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 704 VE.getAttributeGroups(); 705 if (AttrGrps.empty()) return; 706 707 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 708 709 SmallVector<uint64_t, 64> Record; 710 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 711 unsigned AttrListIndex = Pair.first; 712 AttributeSet AS = Pair.second; 713 Record.push_back(VE.getAttributeGroupID(Pair)); 714 Record.push_back(AttrListIndex); 715 716 for (Attribute Attr : AS) { 717 if (Attr.isEnumAttribute()) { 718 Record.push_back(0); 719 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 720 } else if (Attr.isIntAttribute()) { 721 Record.push_back(1); 722 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 723 Record.push_back(Attr.getValueAsInt()); 724 } else { 725 StringRef Kind = Attr.getKindAsString(); 726 StringRef Val = Attr.getValueAsString(); 727 728 Record.push_back(Val.empty() ? 3 : 4); 729 Record.append(Kind.begin(), Kind.end()); 730 Record.push_back(0); 731 if (!Val.empty()) { 732 Record.append(Val.begin(), Val.end()); 733 Record.push_back(0); 734 } 735 } 736 } 737 738 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 739 Record.clear(); 740 } 741 742 Stream.ExitBlock(); 743 } 744 745 void ModuleBitcodeWriter::writeAttributeTable() { 746 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 747 if (Attrs.empty()) return; 748 749 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 750 751 SmallVector<uint64_t, 64> Record; 752 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 753 AttributeList AL = Attrs[i]; 754 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 755 AttributeSet AS = AL.getAttributes(i); 756 if (AS.hasAttributes()) 757 Record.push_back(VE.getAttributeGroupID({i, AS})); 758 } 759 760 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 761 Record.clear(); 762 } 763 764 Stream.ExitBlock(); 765 } 766 767 /// WriteTypeTable - Write out the type table for a module. 768 void ModuleBitcodeWriter::writeTypeTable() { 769 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 770 771 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 772 SmallVector<uint64_t, 64> TypeVals; 773 774 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 775 776 // Abbrev for TYPE_CODE_POINTER. 777 auto Abbv = std::make_shared<BitCodeAbbrev>(); 778 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 780 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 781 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 782 783 // Abbrev for TYPE_CODE_FUNCTION. 784 Abbv = std::make_shared<BitCodeAbbrev>(); 785 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 789 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 790 791 // Abbrev for TYPE_CODE_STRUCT_ANON. 792 Abbv = std::make_shared<BitCodeAbbrev>(); 793 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 797 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 798 799 // Abbrev for TYPE_CODE_STRUCT_NAME. 800 Abbv = std::make_shared<BitCodeAbbrev>(); 801 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 804 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 805 806 // Abbrev for TYPE_CODE_STRUCT_NAMED. 807 Abbv = std::make_shared<BitCodeAbbrev>(); 808 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 812 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 813 814 // Abbrev for TYPE_CODE_ARRAY. 815 Abbv = std::make_shared<BitCodeAbbrev>(); 816 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 819 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 820 821 // Emit an entry count so the reader can reserve space. 822 TypeVals.push_back(TypeList.size()); 823 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 824 TypeVals.clear(); 825 826 // Loop over all of the types, emitting each in turn. 827 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 828 Type *T = TypeList[i]; 829 int AbbrevToUse = 0; 830 unsigned Code = 0; 831 832 switch (T->getTypeID()) { 833 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 834 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 835 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 836 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 837 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 838 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 839 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 840 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 841 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 842 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 843 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 844 case Type::IntegerTyID: 845 // INTEGER: [width] 846 Code = bitc::TYPE_CODE_INTEGER; 847 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 848 break; 849 case Type::PointerTyID: { 850 PointerType *PTy = cast<PointerType>(T); 851 // POINTER: [pointee type, address space] 852 Code = bitc::TYPE_CODE_POINTER; 853 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 854 unsigned AddressSpace = PTy->getAddressSpace(); 855 TypeVals.push_back(AddressSpace); 856 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 857 break; 858 } 859 case Type::FunctionTyID: { 860 FunctionType *FT = cast<FunctionType>(T); 861 // FUNCTION: [isvararg, retty, paramty x N] 862 Code = bitc::TYPE_CODE_FUNCTION; 863 TypeVals.push_back(FT->isVarArg()); 864 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 865 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 866 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 867 AbbrevToUse = FunctionAbbrev; 868 break; 869 } 870 case Type::StructTyID: { 871 StructType *ST = cast<StructType>(T); 872 // STRUCT: [ispacked, eltty x N] 873 TypeVals.push_back(ST->isPacked()); 874 // Output all of the element types. 875 for (StructType::element_iterator I = ST->element_begin(), 876 E = ST->element_end(); I != E; ++I) 877 TypeVals.push_back(VE.getTypeID(*I)); 878 879 if (ST->isLiteral()) { 880 Code = bitc::TYPE_CODE_STRUCT_ANON; 881 AbbrevToUse = StructAnonAbbrev; 882 } else { 883 if (ST->isOpaque()) { 884 Code = bitc::TYPE_CODE_OPAQUE; 885 } else { 886 Code = bitc::TYPE_CODE_STRUCT_NAMED; 887 AbbrevToUse = StructNamedAbbrev; 888 } 889 890 // Emit the name if it is present. 891 if (!ST->getName().empty()) 892 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 893 StructNameAbbrev); 894 } 895 break; 896 } 897 case Type::ArrayTyID: { 898 ArrayType *AT = cast<ArrayType>(T); 899 // ARRAY: [numelts, eltty] 900 Code = bitc::TYPE_CODE_ARRAY; 901 TypeVals.push_back(AT->getNumElements()); 902 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 903 AbbrevToUse = ArrayAbbrev; 904 break; 905 } 906 case Type::VectorTyID: { 907 VectorType *VT = cast<VectorType>(T); 908 // VECTOR [numelts, eltty] 909 Code = bitc::TYPE_CODE_VECTOR; 910 TypeVals.push_back(VT->getNumElements()); 911 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 912 break; 913 } 914 } 915 916 // Emit the finished record. 917 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 918 TypeVals.clear(); 919 } 920 921 Stream.ExitBlock(); 922 } 923 924 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 925 switch (Linkage) { 926 case GlobalValue::ExternalLinkage: 927 return 0; 928 case GlobalValue::WeakAnyLinkage: 929 return 16; 930 case GlobalValue::AppendingLinkage: 931 return 2; 932 case GlobalValue::InternalLinkage: 933 return 3; 934 case GlobalValue::LinkOnceAnyLinkage: 935 return 18; 936 case GlobalValue::ExternalWeakLinkage: 937 return 7; 938 case GlobalValue::CommonLinkage: 939 return 8; 940 case GlobalValue::PrivateLinkage: 941 return 9; 942 case GlobalValue::WeakODRLinkage: 943 return 17; 944 case GlobalValue::LinkOnceODRLinkage: 945 return 19; 946 case GlobalValue::AvailableExternallyLinkage: 947 return 12; 948 } 949 llvm_unreachable("Invalid linkage"); 950 } 951 952 static unsigned getEncodedLinkage(const GlobalValue &GV) { 953 return getEncodedLinkage(GV.getLinkage()); 954 } 955 956 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 957 uint64_t RawFlags = 0; 958 RawFlags |= Flags.ReadNone; 959 RawFlags |= (Flags.ReadOnly << 1); 960 RawFlags |= (Flags.NoRecurse << 2); 961 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 962 return RawFlags; 963 } 964 965 // Decode the flags for GlobalValue in the summary 966 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 967 uint64_t RawFlags = 0; 968 969 RawFlags |= Flags.NotEligibleToImport; // bool 970 RawFlags |= (Flags.Live << 1); 971 RawFlags |= (Flags.DSOLocal << 2); 972 973 // Linkage don't need to be remapped at that time for the summary. Any future 974 // change to the getEncodedLinkage() function will need to be taken into 975 // account here as well. 976 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 977 978 return RawFlags; 979 } 980 981 static unsigned getEncodedVisibility(const GlobalValue &GV) { 982 switch (GV.getVisibility()) { 983 case GlobalValue::DefaultVisibility: return 0; 984 case GlobalValue::HiddenVisibility: return 1; 985 case GlobalValue::ProtectedVisibility: return 2; 986 } 987 llvm_unreachable("Invalid visibility"); 988 } 989 990 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 991 switch (GV.getDLLStorageClass()) { 992 case GlobalValue::DefaultStorageClass: return 0; 993 case GlobalValue::DLLImportStorageClass: return 1; 994 case GlobalValue::DLLExportStorageClass: return 2; 995 } 996 llvm_unreachable("Invalid DLL storage class"); 997 } 998 999 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1000 switch (GV.getThreadLocalMode()) { 1001 case GlobalVariable::NotThreadLocal: return 0; 1002 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1003 case GlobalVariable::LocalDynamicTLSModel: return 2; 1004 case GlobalVariable::InitialExecTLSModel: return 3; 1005 case GlobalVariable::LocalExecTLSModel: return 4; 1006 } 1007 llvm_unreachable("Invalid TLS model"); 1008 } 1009 1010 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1011 switch (C.getSelectionKind()) { 1012 case Comdat::Any: 1013 return bitc::COMDAT_SELECTION_KIND_ANY; 1014 case Comdat::ExactMatch: 1015 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1016 case Comdat::Largest: 1017 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1018 case Comdat::NoDuplicates: 1019 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1020 case Comdat::SameSize: 1021 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1022 } 1023 llvm_unreachable("Invalid selection kind"); 1024 } 1025 1026 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1027 switch (GV.getUnnamedAddr()) { 1028 case GlobalValue::UnnamedAddr::None: return 0; 1029 case GlobalValue::UnnamedAddr::Local: return 2; 1030 case GlobalValue::UnnamedAddr::Global: return 1; 1031 } 1032 llvm_unreachable("Invalid unnamed_addr"); 1033 } 1034 1035 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1036 if (GenerateHash) 1037 Hasher.update(Str); 1038 return StrtabBuilder.add(Str); 1039 } 1040 1041 void ModuleBitcodeWriter::writeComdats() { 1042 SmallVector<unsigned, 64> Vals; 1043 for (const Comdat *C : VE.getComdats()) { 1044 // COMDAT: [strtab offset, strtab size, selection_kind] 1045 Vals.push_back(addToStrtab(C->getName())); 1046 Vals.push_back(C->getName().size()); 1047 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1048 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1049 Vals.clear(); 1050 } 1051 } 1052 1053 /// Write a record that will eventually hold the word offset of the 1054 /// module-level VST. For now the offset is 0, which will be backpatched 1055 /// after the real VST is written. Saves the bit offset to backpatch. 1056 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1057 // Write a placeholder value in for the offset of the real VST, 1058 // which is written after the function blocks so that it can include 1059 // the offset of each function. The placeholder offset will be 1060 // updated when the real VST is written. 1061 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1062 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1063 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1064 // hold the real VST offset. Must use fixed instead of VBR as we don't 1065 // know how many VBR chunks to reserve ahead of time. 1066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1067 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1068 1069 // Emit the placeholder 1070 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1071 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1072 1073 // Compute and save the bit offset to the placeholder, which will be 1074 // patched when the real VST is written. We can simply subtract the 32-bit 1075 // fixed size from the current bit number to get the location to backpatch. 1076 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1077 } 1078 1079 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1080 1081 /// Determine the encoding to use for the given string name and length. 1082 static StringEncoding getStringEncoding(StringRef Str) { 1083 bool isChar6 = true; 1084 for (char C : Str) { 1085 if (isChar6) 1086 isChar6 = BitCodeAbbrevOp::isChar6(C); 1087 if ((unsigned char)C & 128) 1088 // don't bother scanning the rest. 1089 return SE_Fixed8; 1090 } 1091 if (isChar6) 1092 return SE_Char6; 1093 return SE_Fixed7; 1094 } 1095 1096 /// Emit top-level description of module, including target triple, inline asm, 1097 /// descriptors for global variables, and function prototype info. 1098 /// Returns the bit offset to backpatch with the location of the real VST. 1099 void ModuleBitcodeWriter::writeModuleInfo() { 1100 // Emit various pieces of data attached to a module. 1101 if (!M.getTargetTriple().empty()) 1102 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1103 0 /*TODO*/); 1104 const std::string &DL = M.getDataLayoutStr(); 1105 if (!DL.empty()) 1106 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1107 if (!M.getModuleInlineAsm().empty()) 1108 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1109 0 /*TODO*/); 1110 1111 // Emit information about sections and GC, computing how many there are. Also 1112 // compute the maximum alignment value. 1113 std::map<std::string, unsigned> SectionMap; 1114 std::map<std::string, unsigned> GCMap; 1115 unsigned MaxAlignment = 0; 1116 unsigned MaxGlobalType = 0; 1117 for (const GlobalValue &GV : M.globals()) { 1118 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1119 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1120 if (GV.hasSection()) { 1121 // Give section names unique ID's. 1122 unsigned &Entry = SectionMap[GV.getSection()]; 1123 if (!Entry) { 1124 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1125 0 /*TODO*/); 1126 Entry = SectionMap.size(); 1127 } 1128 } 1129 } 1130 for (const Function &F : M) { 1131 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1132 if (F.hasSection()) { 1133 // Give section names unique ID's. 1134 unsigned &Entry = SectionMap[F.getSection()]; 1135 if (!Entry) { 1136 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1137 0 /*TODO*/); 1138 Entry = SectionMap.size(); 1139 } 1140 } 1141 if (F.hasGC()) { 1142 // Same for GC names. 1143 unsigned &Entry = GCMap[F.getGC()]; 1144 if (!Entry) { 1145 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1146 0 /*TODO*/); 1147 Entry = GCMap.size(); 1148 } 1149 } 1150 } 1151 1152 // Emit abbrev for globals, now that we know # sections and max alignment. 1153 unsigned SimpleGVarAbbrev = 0; 1154 if (!M.global_empty()) { 1155 // Add an abbrev for common globals with no visibility or thread localness. 1156 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1157 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1161 Log2_32_Ceil(MaxGlobalType+1))); 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1163 //| explicitType << 1 1164 //| constant 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1167 if (MaxAlignment == 0) // Alignment. 1168 Abbv->Add(BitCodeAbbrevOp(0)); 1169 else { 1170 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1172 Log2_32_Ceil(MaxEncAlignment+1))); 1173 } 1174 if (SectionMap.empty()) // Section. 1175 Abbv->Add(BitCodeAbbrevOp(0)); 1176 else 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1178 Log2_32_Ceil(SectionMap.size()+1))); 1179 // Don't bother emitting vis + thread local. 1180 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1181 } 1182 1183 SmallVector<unsigned, 64> Vals; 1184 // Emit the module's source file name. 1185 { 1186 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1187 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1188 if (Bits == SE_Char6) 1189 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1190 else if (Bits == SE_Fixed7) 1191 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1192 1193 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1194 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1195 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1197 Abbv->Add(AbbrevOpToUse); 1198 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1199 1200 for (const auto P : M.getSourceFileName()) 1201 Vals.push_back((unsigned char)P); 1202 1203 // Emit the finished record. 1204 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1205 Vals.clear(); 1206 } 1207 1208 // Emit the global variable information. 1209 for (const GlobalVariable &GV : M.globals()) { 1210 unsigned AbbrevToUse = 0; 1211 1212 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1213 // linkage, alignment, section, visibility, threadlocal, 1214 // unnamed_addr, externally_initialized, dllstorageclass, 1215 // comdat, attributes, DSO_Local] 1216 Vals.push_back(addToStrtab(GV.getName())); 1217 Vals.push_back(GV.getName().size()); 1218 Vals.push_back(VE.getTypeID(GV.getValueType())); 1219 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1220 Vals.push_back(GV.isDeclaration() ? 0 : 1221 (VE.getValueID(GV.getInitializer()) + 1)); 1222 Vals.push_back(getEncodedLinkage(GV)); 1223 Vals.push_back(Log2_32(GV.getAlignment())+1); 1224 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1225 if (GV.isThreadLocal() || 1226 GV.getVisibility() != GlobalValue::DefaultVisibility || 1227 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1228 GV.isExternallyInitialized() || 1229 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1230 GV.hasComdat() || 1231 GV.hasAttributes() || 1232 GV.isDSOLocal()) { 1233 Vals.push_back(getEncodedVisibility(GV)); 1234 Vals.push_back(getEncodedThreadLocalMode(GV)); 1235 Vals.push_back(getEncodedUnnamedAddr(GV)); 1236 Vals.push_back(GV.isExternallyInitialized()); 1237 Vals.push_back(getEncodedDLLStorageClass(GV)); 1238 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1239 1240 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1241 Vals.push_back(VE.getAttributeListID(AL)); 1242 1243 Vals.push_back(GV.isDSOLocal()); 1244 } else { 1245 AbbrevToUse = SimpleGVarAbbrev; 1246 } 1247 1248 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1249 Vals.clear(); 1250 } 1251 1252 // Emit the function proto information. 1253 for (const Function &F : M) { 1254 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1255 // linkage, paramattrs, alignment, section, visibility, gc, 1256 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1257 // prefixdata, personalityfn, DSO_Local] 1258 Vals.push_back(addToStrtab(F.getName())); 1259 Vals.push_back(F.getName().size()); 1260 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1261 Vals.push_back(F.getCallingConv()); 1262 Vals.push_back(F.isDeclaration()); 1263 Vals.push_back(getEncodedLinkage(F)); 1264 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1265 Vals.push_back(Log2_32(F.getAlignment())+1); 1266 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1267 Vals.push_back(getEncodedVisibility(F)); 1268 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1269 Vals.push_back(getEncodedUnnamedAddr(F)); 1270 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1271 : 0); 1272 Vals.push_back(getEncodedDLLStorageClass(F)); 1273 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1274 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1275 : 0); 1276 Vals.push_back( 1277 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1278 1279 Vals.push_back(F.isDSOLocal()); 1280 unsigned AbbrevToUse = 0; 1281 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1282 Vals.clear(); 1283 } 1284 1285 // Emit the alias information. 1286 for (const GlobalAlias &A : M.aliases()) { 1287 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1288 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1289 // DSO_Local] 1290 Vals.push_back(addToStrtab(A.getName())); 1291 Vals.push_back(A.getName().size()); 1292 Vals.push_back(VE.getTypeID(A.getValueType())); 1293 Vals.push_back(A.getType()->getAddressSpace()); 1294 Vals.push_back(VE.getValueID(A.getAliasee())); 1295 Vals.push_back(getEncodedLinkage(A)); 1296 Vals.push_back(getEncodedVisibility(A)); 1297 Vals.push_back(getEncodedDLLStorageClass(A)); 1298 Vals.push_back(getEncodedThreadLocalMode(A)); 1299 Vals.push_back(getEncodedUnnamedAddr(A)); 1300 Vals.push_back(A.isDSOLocal()); 1301 1302 unsigned AbbrevToUse = 0; 1303 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1304 Vals.clear(); 1305 } 1306 1307 // Emit the ifunc information. 1308 for (const GlobalIFunc &I : M.ifuncs()) { 1309 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1310 // val#, linkage, visibility, DSO_Local] 1311 Vals.push_back(addToStrtab(I.getName())); 1312 Vals.push_back(I.getName().size()); 1313 Vals.push_back(VE.getTypeID(I.getValueType())); 1314 Vals.push_back(I.getType()->getAddressSpace()); 1315 Vals.push_back(VE.getValueID(I.getResolver())); 1316 Vals.push_back(getEncodedLinkage(I)); 1317 Vals.push_back(getEncodedVisibility(I)); 1318 Vals.push_back(I.isDSOLocal()); 1319 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1320 Vals.clear(); 1321 } 1322 1323 writeValueSymbolTableForwardDecl(); 1324 } 1325 1326 static uint64_t getOptimizationFlags(const Value *V) { 1327 uint64_t Flags = 0; 1328 1329 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1330 if (OBO->hasNoSignedWrap()) 1331 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1332 if (OBO->hasNoUnsignedWrap()) 1333 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1334 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1335 if (PEO->isExact()) 1336 Flags |= 1 << bitc::PEO_EXACT; 1337 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1338 if (FPMO->hasAllowReassoc()) 1339 Flags |= bitc::AllowReassoc; 1340 if (FPMO->hasNoNaNs()) 1341 Flags |= bitc::NoNaNs; 1342 if (FPMO->hasNoInfs()) 1343 Flags |= bitc::NoInfs; 1344 if (FPMO->hasNoSignedZeros()) 1345 Flags |= bitc::NoSignedZeros; 1346 if (FPMO->hasAllowReciprocal()) 1347 Flags |= bitc::AllowReciprocal; 1348 if (FPMO->hasAllowContract()) 1349 Flags |= bitc::AllowContract; 1350 if (FPMO->hasApproxFunc()) 1351 Flags |= bitc::ApproxFunc; 1352 } 1353 1354 return Flags; 1355 } 1356 1357 void ModuleBitcodeWriter::writeValueAsMetadata( 1358 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1359 // Mimic an MDNode with a value as one operand. 1360 Value *V = MD->getValue(); 1361 Record.push_back(VE.getTypeID(V->getType())); 1362 Record.push_back(VE.getValueID(V)); 1363 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1364 Record.clear(); 1365 } 1366 1367 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1368 SmallVectorImpl<uint64_t> &Record, 1369 unsigned Abbrev) { 1370 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1371 Metadata *MD = N->getOperand(i); 1372 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1373 "Unexpected function-local metadata"); 1374 Record.push_back(VE.getMetadataOrNullID(MD)); 1375 } 1376 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1377 : bitc::METADATA_NODE, 1378 Record, Abbrev); 1379 Record.clear(); 1380 } 1381 1382 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1383 // Assume the column is usually under 128, and always output the inlined-at 1384 // location (it's never more expensive than building an array size 1). 1385 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1386 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1392 return Stream.EmitAbbrev(std::move(Abbv)); 1393 } 1394 1395 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1396 SmallVectorImpl<uint64_t> &Record, 1397 unsigned &Abbrev) { 1398 if (!Abbrev) 1399 Abbrev = createDILocationAbbrev(); 1400 1401 Record.push_back(N->isDistinct()); 1402 Record.push_back(N->getLine()); 1403 Record.push_back(N->getColumn()); 1404 Record.push_back(VE.getMetadataID(N->getScope())); 1405 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1406 1407 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1408 Record.clear(); 1409 } 1410 1411 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1412 // Assume the column is usually under 128, and always output the inlined-at 1413 // location (it's never more expensive than building an array size 1). 1414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1415 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1422 return Stream.EmitAbbrev(std::move(Abbv)); 1423 } 1424 1425 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1426 SmallVectorImpl<uint64_t> &Record, 1427 unsigned &Abbrev) { 1428 if (!Abbrev) 1429 Abbrev = createGenericDINodeAbbrev(); 1430 1431 Record.push_back(N->isDistinct()); 1432 Record.push_back(N->getTag()); 1433 Record.push_back(0); // Per-tag version field; unused for now. 1434 1435 for (auto &I : N->operands()) 1436 Record.push_back(VE.getMetadataOrNullID(I)); 1437 1438 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1439 Record.clear(); 1440 } 1441 1442 static uint64_t rotateSign(int64_t I) { 1443 uint64_t U = I; 1444 return I < 0 ? ~(U << 1) : U << 1; 1445 } 1446 1447 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1448 SmallVectorImpl<uint64_t> &Record, 1449 unsigned Abbrev) { 1450 const uint64_t Version = 1 << 1; 1451 Record.push_back((uint64_t)N->isDistinct() | Version); 1452 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1453 Record.push_back(rotateSign(N->getLowerBound())); 1454 1455 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1456 Record.clear(); 1457 } 1458 1459 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1460 SmallVectorImpl<uint64_t> &Record, 1461 unsigned Abbrev) { 1462 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1463 Record.push_back(rotateSign(N->getValue())); 1464 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1465 1466 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1467 Record.clear(); 1468 } 1469 1470 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1471 SmallVectorImpl<uint64_t> &Record, 1472 unsigned Abbrev) { 1473 Record.push_back(N->isDistinct()); 1474 Record.push_back(N->getTag()); 1475 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1476 Record.push_back(N->getSizeInBits()); 1477 Record.push_back(N->getAlignInBits()); 1478 Record.push_back(N->getEncoding()); 1479 1480 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1481 Record.clear(); 1482 } 1483 1484 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1485 SmallVectorImpl<uint64_t> &Record, 1486 unsigned Abbrev) { 1487 Record.push_back(N->isDistinct()); 1488 Record.push_back(N->getTag()); 1489 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1490 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1491 Record.push_back(N->getLine()); 1492 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1493 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1494 Record.push_back(N->getSizeInBits()); 1495 Record.push_back(N->getAlignInBits()); 1496 Record.push_back(N->getOffsetInBits()); 1497 Record.push_back(N->getFlags()); 1498 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1499 1500 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1501 // that there is no DWARF address space associated with DIDerivedType. 1502 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1503 Record.push_back(*DWARFAddressSpace + 1); 1504 else 1505 Record.push_back(0); 1506 1507 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1508 Record.clear(); 1509 } 1510 1511 void ModuleBitcodeWriter::writeDICompositeType( 1512 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1513 unsigned Abbrev) { 1514 const unsigned IsNotUsedInOldTypeRef = 0x2; 1515 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1516 Record.push_back(N->getTag()); 1517 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1518 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1519 Record.push_back(N->getLine()); 1520 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1521 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1522 Record.push_back(N->getSizeInBits()); 1523 Record.push_back(N->getAlignInBits()); 1524 Record.push_back(N->getOffsetInBits()); 1525 Record.push_back(N->getFlags()); 1526 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1527 Record.push_back(N->getRuntimeLang()); 1528 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1529 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1532 1533 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDISubroutineType( 1538 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 const unsigned HasNoOldTypeRefs = 0x2; 1541 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1542 Record.push_back(N->getFlags()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1544 Record.push_back(N->getCC()); 1545 1546 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1551 SmallVectorImpl<uint64_t> &Record, 1552 unsigned Abbrev) { 1553 Record.push_back(N->isDistinct()); 1554 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1555 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1556 if (N->getRawChecksum()) { 1557 Record.push_back(N->getRawChecksum()->Kind); 1558 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1559 } else { 1560 // Maintain backwards compatibility with the old internal representation of 1561 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1562 Record.push_back(0); 1563 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1564 } 1565 auto Source = N->getRawSource(); 1566 if (Source) 1567 Record.push_back(VE.getMetadataOrNullID(*Source)); 1568 1569 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1570 Record.clear(); 1571 } 1572 1573 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1574 SmallVectorImpl<uint64_t> &Record, 1575 unsigned Abbrev) { 1576 assert(N->isDistinct() && "Expected distinct compile units"); 1577 Record.push_back(/* IsDistinct */ true); 1578 Record.push_back(N->getSourceLanguage()); 1579 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1581 Record.push_back(N->isOptimized()); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1583 Record.push_back(N->getRuntimeVersion()); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1585 Record.push_back(N->getEmissionKind()); 1586 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1588 Record.push_back(/* subprograms */ 0); 1589 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1590 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1591 Record.push_back(N->getDWOId()); 1592 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1593 Record.push_back(N->getSplitDebugInlining()); 1594 Record.push_back(N->getDebugInfoForProfiling()); 1595 Record.push_back(N->getGnuPubnames()); 1596 1597 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1598 Record.clear(); 1599 } 1600 1601 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1602 SmallVectorImpl<uint64_t> &Record, 1603 unsigned Abbrev) { 1604 uint64_t HasUnitFlag = 1 << 1; 1605 Record.push_back(N->isDistinct() | HasUnitFlag); 1606 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1610 Record.push_back(N->getLine()); 1611 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1612 Record.push_back(N->isLocalToUnit()); 1613 Record.push_back(N->isDefinition()); 1614 Record.push_back(N->getScopeLine()); 1615 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1616 Record.push_back(N->getVirtuality()); 1617 Record.push_back(N->getVirtualIndex()); 1618 Record.push_back(N->getFlags()); 1619 Record.push_back(N->isOptimized()); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1623 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1624 Record.push_back(N->getThisAdjustment()); 1625 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1626 1627 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1628 Record.clear(); 1629 } 1630 1631 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1632 SmallVectorImpl<uint64_t> &Record, 1633 unsigned Abbrev) { 1634 Record.push_back(N->isDistinct()); 1635 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1637 Record.push_back(N->getLine()); 1638 Record.push_back(N->getColumn()); 1639 1640 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1641 Record.clear(); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1645 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1646 unsigned Abbrev) { 1647 Record.push_back(N->isDistinct()); 1648 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1650 Record.push_back(N->getDiscriminator()); 1651 1652 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1660 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1662 1663 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1668 SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back(N->isDistinct()); 1671 Record.push_back(N->getMacinfoType()); 1672 Record.push_back(N->getLine()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1675 1676 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1681 SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 Record.push_back(N->getMacinfoType()); 1685 Record.push_back(N->getLine()); 1686 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1688 1689 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1690 Record.clear(); 1691 } 1692 1693 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1694 SmallVectorImpl<uint64_t> &Record, 1695 unsigned Abbrev) { 1696 Record.push_back(N->isDistinct()); 1697 for (auto &I : N->operands()) 1698 Record.push_back(VE.getMetadataOrNullID(I)); 1699 1700 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1701 Record.clear(); 1702 } 1703 1704 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1705 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1706 unsigned Abbrev) { 1707 Record.push_back(N->isDistinct()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1710 1711 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1712 Record.clear(); 1713 } 1714 1715 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1716 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 Record.push_back(N->isDistinct()); 1719 Record.push_back(N->getTag()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1723 1724 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1725 Record.clear(); 1726 } 1727 1728 void ModuleBitcodeWriter::writeDIGlobalVariable( 1729 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1730 unsigned Abbrev) { 1731 const uint64_t Version = 1 << 1; 1732 Record.push_back((uint64_t)N->isDistinct() | Version); 1733 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1734 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1735 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1737 Record.push_back(N->getLine()); 1738 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1739 Record.push_back(N->isLocalToUnit()); 1740 Record.push_back(N->isDefinition()); 1741 Record.push_back(/* expr */ 0); 1742 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1743 Record.push_back(N->getAlignInBits()); 1744 1745 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1746 Record.clear(); 1747 } 1748 1749 void ModuleBitcodeWriter::writeDILocalVariable( 1750 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1751 unsigned Abbrev) { 1752 // In order to support all possible bitcode formats in BitcodeReader we need 1753 // to distinguish the following cases: 1754 // 1) Record has no artificial tag (Record[1]), 1755 // has no obsolete inlinedAt field (Record[9]). 1756 // In this case Record size will be 8, HasAlignment flag is false. 1757 // 2) Record has artificial tag (Record[1]), 1758 // has no obsolete inlignedAt field (Record[9]). 1759 // In this case Record size will be 9, HasAlignment flag is false. 1760 // 3) Record has both artificial tag (Record[1]) and 1761 // obsolete inlignedAt field (Record[9]). 1762 // In this case Record size will be 10, HasAlignment flag is false. 1763 // 4) Record has neither artificial tag, nor inlignedAt field, but 1764 // HasAlignment flag is true and Record[8] contains alignment value. 1765 const uint64_t HasAlignmentFlag = 1 << 1; 1766 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1767 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1769 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1770 Record.push_back(N->getLine()); 1771 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1772 Record.push_back(N->getArg()); 1773 Record.push_back(N->getFlags()); 1774 Record.push_back(N->getAlignInBits()); 1775 1776 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1777 Record.clear(); 1778 } 1779 1780 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1781 SmallVectorImpl<uint64_t> &Record, 1782 unsigned Abbrev) { 1783 Record.reserve(N->getElements().size() + 1); 1784 const uint64_t Version = 3 << 1; 1785 Record.push_back((uint64_t)N->isDistinct() | Version); 1786 Record.append(N->elements_begin(), N->elements_end()); 1787 1788 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1789 Record.clear(); 1790 } 1791 1792 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1793 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1794 unsigned Abbrev) { 1795 Record.push_back(N->isDistinct()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1798 1799 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1800 Record.clear(); 1801 } 1802 1803 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1804 SmallVectorImpl<uint64_t> &Record, 1805 unsigned Abbrev) { 1806 Record.push_back(N->isDistinct()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1808 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1809 Record.push_back(N->getLine()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1812 Record.push_back(N->getAttributes()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1814 1815 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1816 Record.clear(); 1817 } 1818 1819 void ModuleBitcodeWriter::writeDIImportedEntity( 1820 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1821 unsigned Abbrev) { 1822 Record.push_back(N->isDistinct()); 1823 Record.push_back(N->getTag()); 1824 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1826 Record.push_back(N->getLine()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1829 1830 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1831 Record.clear(); 1832 } 1833 1834 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1835 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1836 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1839 return Stream.EmitAbbrev(std::move(Abbv)); 1840 } 1841 1842 void ModuleBitcodeWriter::writeNamedMetadata( 1843 SmallVectorImpl<uint64_t> &Record) { 1844 if (M.named_metadata_empty()) 1845 return; 1846 1847 unsigned Abbrev = createNamedMetadataAbbrev(); 1848 for (const NamedMDNode &NMD : M.named_metadata()) { 1849 // Write name. 1850 StringRef Str = NMD.getName(); 1851 Record.append(Str.bytes_begin(), Str.bytes_end()); 1852 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1853 Record.clear(); 1854 1855 // Write named metadata operands. 1856 for (const MDNode *N : NMD.operands()) 1857 Record.push_back(VE.getMetadataID(N)); 1858 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1859 Record.clear(); 1860 } 1861 } 1862 1863 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1864 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1865 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1869 return Stream.EmitAbbrev(std::move(Abbv)); 1870 } 1871 1872 /// Write out a record for MDString. 1873 /// 1874 /// All the metadata strings in a metadata block are emitted in a single 1875 /// record. The sizes and strings themselves are shoved into a blob. 1876 void ModuleBitcodeWriter::writeMetadataStrings( 1877 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1878 if (Strings.empty()) 1879 return; 1880 1881 // Start the record with the number of strings. 1882 Record.push_back(bitc::METADATA_STRINGS); 1883 Record.push_back(Strings.size()); 1884 1885 // Emit the sizes of the strings in the blob. 1886 SmallString<256> Blob; 1887 { 1888 BitstreamWriter W(Blob); 1889 for (const Metadata *MD : Strings) 1890 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1891 W.FlushToWord(); 1892 } 1893 1894 // Add the offset to the strings to the record. 1895 Record.push_back(Blob.size()); 1896 1897 // Add the strings to the blob. 1898 for (const Metadata *MD : Strings) 1899 Blob.append(cast<MDString>(MD)->getString()); 1900 1901 // Emit the final record. 1902 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1903 Record.clear(); 1904 } 1905 1906 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1907 enum MetadataAbbrev : unsigned { 1908 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1909 #include "llvm/IR/Metadata.def" 1910 LastPlusOne 1911 }; 1912 1913 void ModuleBitcodeWriter::writeMetadataRecords( 1914 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1915 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1916 if (MDs.empty()) 1917 return; 1918 1919 // Initialize MDNode abbreviations. 1920 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1921 #include "llvm/IR/Metadata.def" 1922 1923 for (const Metadata *MD : MDs) { 1924 if (IndexPos) 1925 IndexPos->push_back(Stream.GetCurrentBitNo()); 1926 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1927 assert(N->isResolved() && "Expected forward references to be resolved"); 1928 1929 switch (N->getMetadataID()) { 1930 default: 1931 llvm_unreachable("Invalid MDNode subclass"); 1932 #define HANDLE_MDNODE_LEAF(CLASS) \ 1933 case Metadata::CLASS##Kind: \ 1934 if (MDAbbrevs) \ 1935 write##CLASS(cast<CLASS>(N), Record, \ 1936 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1937 else \ 1938 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1939 continue; 1940 #include "llvm/IR/Metadata.def" 1941 } 1942 } 1943 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1944 } 1945 } 1946 1947 void ModuleBitcodeWriter::writeModuleMetadata() { 1948 if (!VE.hasMDs() && M.named_metadata_empty()) 1949 return; 1950 1951 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1952 SmallVector<uint64_t, 64> Record; 1953 1954 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1955 // block and load any metadata. 1956 std::vector<unsigned> MDAbbrevs; 1957 1958 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1959 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1960 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1961 createGenericDINodeAbbrev(); 1962 1963 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1964 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1967 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1968 1969 Abbv = std::make_shared<BitCodeAbbrev>(); 1970 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1973 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1974 1975 // Emit MDStrings together upfront. 1976 writeMetadataStrings(VE.getMDStrings(), Record); 1977 1978 // We only emit an index for the metadata record if we have more than a given 1979 // (naive) threshold of metadatas, otherwise it is not worth it. 1980 if (VE.getNonMDStrings().size() > IndexThreshold) { 1981 // Write a placeholder value in for the offset of the metadata index, 1982 // which is written after the records, so that it can include 1983 // the offset of each entry. The placeholder offset will be 1984 // updated after all records are emitted. 1985 uint64_t Vals[] = {0, 0}; 1986 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1987 } 1988 1989 // Compute and save the bit offset to the current position, which will be 1990 // patched when we emit the index later. We can simply subtract the 64-bit 1991 // fixed size from the current bit number to get the location to backpatch. 1992 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1993 1994 // This index will contain the bitpos for each individual record. 1995 std::vector<uint64_t> IndexPos; 1996 IndexPos.reserve(VE.getNonMDStrings().size()); 1997 1998 // Write all the records 1999 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2000 2001 if (VE.getNonMDStrings().size() > IndexThreshold) { 2002 // Now that we have emitted all the records we will emit the index. But 2003 // first 2004 // backpatch the forward reference so that the reader can skip the records 2005 // efficiently. 2006 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2007 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2008 2009 // Delta encode the index. 2010 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2011 for (auto &Elt : IndexPos) { 2012 auto EltDelta = Elt - PreviousValue; 2013 PreviousValue = Elt; 2014 Elt = EltDelta; 2015 } 2016 // Emit the index record. 2017 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2018 IndexPos.clear(); 2019 } 2020 2021 // Write the named metadata now. 2022 writeNamedMetadata(Record); 2023 2024 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2025 SmallVector<uint64_t, 4> Record; 2026 Record.push_back(VE.getValueID(&GO)); 2027 pushGlobalMetadataAttachment(Record, GO); 2028 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2029 }; 2030 for (const Function &F : M) 2031 if (F.isDeclaration() && F.hasMetadata()) 2032 AddDeclAttachedMetadata(F); 2033 // FIXME: Only store metadata for declarations here, and move data for global 2034 // variable definitions to a separate block (PR28134). 2035 for (const GlobalVariable &GV : M.globals()) 2036 if (GV.hasMetadata()) 2037 AddDeclAttachedMetadata(GV); 2038 2039 Stream.ExitBlock(); 2040 } 2041 2042 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2043 if (!VE.hasMDs()) 2044 return; 2045 2046 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2047 SmallVector<uint64_t, 64> Record; 2048 writeMetadataStrings(VE.getMDStrings(), Record); 2049 writeMetadataRecords(VE.getNonMDStrings(), Record); 2050 Stream.ExitBlock(); 2051 } 2052 2053 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2054 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2055 // [n x [id, mdnode]] 2056 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2057 GO.getAllMetadata(MDs); 2058 for (const auto &I : MDs) { 2059 Record.push_back(I.first); 2060 Record.push_back(VE.getMetadataID(I.second)); 2061 } 2062 } 2063 2064 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2065 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2066 2067 SmallVector<uint64_t, 64> Record; 2068 2069 if (F.hasMetadata()) { 2070 pushGlobalMetadataAttachment(Record, F); 2071 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2072 Record.clear(); 2073 } 2074 2075 // Write metadata attachments 2076 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2077 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2078 for (const BasicBlock &BB : F) 2079 for (const Instruction &I : BB) { 2080 MDs.clear(); 2081 I.getAllMetadataOtherThanDebugLoc(MDs); 2082 2083 // If no metadata, ignore instruction. 2084 if (MDs.empty()) continue; 2085 2086 Record.push_back(VE.getInstructionID(&I)); 2087 2088 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2089 Record.push_back(MDs[i].first); 2090 Record.push_back(VE.getMetadataID(MDs[i].second)); 2091 } 2092 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2093 Record.clear(); 2094 } 2095 2096 Stream.ExitBlock(); 2097 } 2098 2099 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2100 SmallVector<uint64_t, 64> Record; 2101 2102 // Write metadata kinds 2103 // METADATA_KIND - [n x [id, name]] 2104 SmallVector<StringRef, 8> Names; 2105 M.getMDKindNames(Names); 2106 2107 if (Names.empty()) return; 2108 2109 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2110 2111 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2112 Record.push_back(MDKindID); 2113 StringRef KName = Names[MDKindID]; 2114 Record.append(KName.begin(), KName.end()); 2115 2116 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2117 Record.clear(); 2118 } 2119 2120 Stream.ExitBlock(); 2121 } 2122 2123 void ModuleBitcodeWriter::writeOperandBundleTags() { 2124 // Write metadata kinds 2125 // 2126 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2127 // 2128 // OPERAND_BUNDLE_TAG - [strchr x N] 2129 2130 SmallVector<StringRef, 8> Tags; 2131 M.getOperandBundleTags(Tags); 2132 2133 if (Tags.empty()) 2134 return; 2135 2136 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2137 2138 SmallVector<uint64_t, 64> Record; 2139 2140 for (auto Tag : Tags) { 2141 Record.append(Tag.begin(), Tag.end()); 2142 2143 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2144 Record.clear(); 2145 } 2146 2147 Stream.ExitBlock(); 2148 } 2149 2150 void ModuleBitcodeWriter::writeSyncScopeNames() { 2151 SmallVector<StringRef, 8> SSNs; 2152 M.getContext().getSyncScopeNames(SSNs); 2153 if (SSNs.empty()) 2154 return; 2155 2156 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2157 2158 SmallVector<uint64_t, 64> Record; 2159 for (auto SSN : SSNs) { 2160 Record.append(SSN.begin(), SSN.end()); 2161 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2162 Record.clear(); 2163 } 2164 2165 Stream.ExitBlock(); 2166 } 2167 2168 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2169 if ((int64_t)V >= 0) 2170 Vals.push_back(V << 1); 2171 else 2172 Vals.push_back((-V << 1) | 1); 2173 } 2174 2175 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2176 bool isGlobal) { 2177 if (FirstVal == LastVal) return; 2178 2179 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2180 2181 unsigned AggregateAbbrev = 0; 2182 unsigned String8Abbrev = 0; 2183 unsigned CString7Abbrev = 0; 2184 unsigned CString6Abbrev = 0; 2185 // If this is a constant pool for the module, emit module-specific abbrevs. 2186 if (isGlobal) { 2187 // Abbrev for CST_CODE_AGGREGATE. 2188 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2189 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2192 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2193 2194 // Abbrev for CST_CODE_STRING. 2195 Abbv = std::make_shared<BitCodeAbbrev>(); 2196 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2199 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2200 // Abbrev for CST_CODE_CSTRING. 2201 Abbv = std::make_shared<BitCodeAbbrev>(); 2202 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2205 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2206 // Abbrev for CST_CODE_CSTRING. 2207 Abbv = std::make_shared<BitCodeAbbrev>(); 2208 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2211 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2212 } 2213 2214 SmallVector<uint64_t, 64> Record; 2215 2216 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2217 Type *LastTy = nullptr; 2218 for (unsigned i = FirstVal; i != LastVal; ++i) { 2219 const Value *V = Vals[i].first; 2220 // If we need to switch types, do so now. 2221 if (V->getType() != LastTy) { 2222 LastTy = V->getType(); 2223 Record.push_back(VE.getTypeID(LastTy)); 2224 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2225 CONSTANTS_SETTYPE_ABBREV); 2226 Record.clear(); 2227 } 2228 2229 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2230 Record.push_back(unsigned(IA->hasSideEffects()) | 2231 unsigned(IA->isAlignStack()) << 1 | 2232 unsigned(IA->getDialect()&1) << 2); 2233 2234 // Add the asm string. 2235 const std::string &AsmStr = IA->getAsmString(); 2236 Record.push_back(AsmStr.size()); 2237 Record.append(AsmStr.begin(), AsmStr.end()); 2238 2239 // Add the constraint string. 2240 const std::string &ConstraintStr = IA->getConstraintString(); 2241 Record.push_back(ConstraintStr.size()); 2242 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2243 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2244 Record.clear(); 2245 continue; 2246 } 2247 const Constant *C = cast<Constant>(V); 2248 unsigned Code = -1U; 2249 unsigned AbbrevToUse = 0; 2250 if (C->isNullValue()) { 2251 Code = bitc::CST_CODE_NULL; 2252 } else if (isa<UndefValue>(C)) { 2253 Code = bitc::CST_CODE_UNDEF; 2254 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2255 if (IV->getBitWidth() <= 64) { 2256 uint64_t V = IV->getSExtValue(); 2257 emitSignedInt64(Record, V); 2258 Code = bitc::CST_CODE_INTEGER; 2259 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2260 } else { // Wide integers, > 64 bits in size. 2261 // We have an arbitrary precision integer value to write whose 2262 // bit width is > 64. However, in canonical unsigned integer 2263 // format it is likely that the high bits are going to be zero. 2264 // So, we only write the number of active words. 2265 unsigned NWords = IV->getValue().getActiveWords(); 2266 const uint64_t *RawWords = IV->getValue().getRawData(); 2267 for (unsigned i = 0; i != NWords; ++i) { 2268 emitSignedInt64(Record, RawWords[i]); 2269 } 2270 Code = bitc::CST_CODE_WIDE_INTEGER; 2271 } 2272 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2273 Code = bitc::CST_CODE_FLOAT; 2274 Type *Ty = CFP->getType(); 2275 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2276 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2277 } else if (Ty->isX86_FP80Ty()) { 2278 // api needed to prevent premature destruction 2279 // bits are not in the same order as a normal i80 APInt, compensate. 2280 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2281 const uint64_t *p = api.getRawData(); 2282 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2283 Record.push_back(p[0] & 0xffffLL); 2284 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2285 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2286 const uint64_t *p = api.getRawData(); 2287 Record.push_back(p[0]); 2288 Record.push_back(p[1]); 2289 } else { 2290 assert(0 && "Unknown FP type!"); 2291 } 2292 } else if (isa<ConstantDataSequential>(C) && 2293 cast<ConstantDataSequential>(C)->isString()) { 2294 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2295 // Emit constant strings specially. 2296 unsigned NumElts = Str->getNumElements(); 2297 // If this is a null-terminated string, use the denser CSTRING encoding. 2298 if (Str->isCString()) { 2299 Code = bitc::CST_CODE_CSTRING; 2300 --NumElts; // Don't encode the null, which isn't allowed by char6. 2301 } else { 2302 Code = bitc::CST_CODE_STRING; 2303 AbbrevToUse = String8Abbrev; 2304 } 2305 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2306 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2307 for (unsigned i = 0; i != NumElts; ++i) { 2308 unsigned char V = Str->getElementAsInteger(i); 2309 Record.push_back(V); 2310 isCStr7 &= (V & 128) == 0; 2311 if (isCStrChar6) 2312 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2313 } 2314 2315 if (isCStrChar6) 2316 AbbrevToUse = CString6Abbrev; 2317 else if (isCStr7) 2318 AbbrevToUse = CString7Abbrev; 2319 } else if (const ConstantDataSequential *CDS = 2320 dyn_cast<ConstantDataSequential>(C)) { 2321 Code = bitc::CST_CODE_DATA; 2322 Type *EltTy = CDS->getType()->getElementType(); 2323 if (isa<IntegerType>(EltTy)) { 2324 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2325 Record.push_back(CDS->getElementAsInteger(i)); 2326 } else { 2327 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2328 Record.push_back( 2329 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2330 } 2331 } else if (isa<ConstantAggregate>(C)) { 2332 Code = bitc::CST_CODE_AGGREGATE; 2333 for (const Value *Op : C->operands()) 2334 Record.push_back(VE.getValueID(Op)); 2335 AbbrevToUse = AggregateAbbrev; 2336 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2337 switch (CE->getOpcode()) { 2338 default: 2339 if (Instruction::isCast(CE->getOpcode())) { 2340 Code = bitc::CST_CODE_CE_CAST; 2341 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2342 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2343 Record.push_back(VE.getValueID(C->getOperand(0))); 2344 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2345 } else { 2346 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2347 Code = bitc::CST_CODE_CE_BINOP; 2348 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2349 Record.push_back(VE.getValueID(C->getOperand(0))); 2350 Record.push_back(VE.getValueID(C->getOperand(1))); 2351 uint64_t Flags = getOptimizationFlags(CE); 2352 if (Flags != 0) 2353 Record.push_back(Flags); 2354 } 2355 break; 2356 case Instruction::GetElementPtr: { 2357 Code = bitc::CST_CODE_CE_GEP; 2358 const auto *GO = cast<GEPOperator>(C); 2359 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2360 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2361 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2362 Record.push_back((*Idx << 1) | GO->isInBounds()); 2363 } else if (GO->isInBounds()) 2364 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2365 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2366 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2367 Record.push_back(VE.getValueID(C->getOperand(i))); 2368 } 2369 break; 2370 } 2371 case Instruction::Select: 2372 Code = bitc::CST_CODE_CE_SELECT; 2373 Record.push_back(VE.getValueID(C->getOperand(0))); 2374 Record.push_back(VE.getValueID(C->getOperand(1))); 2375 Record.push_back(VE.getValueID(C->getOperand(2))); 2376 break; 2377 case Instruction::ExtractElement: 2378 Code = bitc::CST_CODE_CE_EXTRACTELT; 2379 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2380 Record.push_back(VE.getValueID(C->getOperand(0))); 2381 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2382 Record.push_back(VE.getValueID(C->getOperand(1))); 2383 break; 2384 case Instruction::InsertElement: 2385 Code = bitc::CST_CODE_CE_INSERTELT; 2386 Record.push_back(VE.getValueID(C->getOperand(0))); 2387 Record.push_back(VE.getValueID(C->getOperand(1))); 2388 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2389 Record.push_back(VE.getValueID(C->getOperand(2))); 2390 break; 2391 case Instruction::ShuffleVector: 2392 // If the return type and argument types are the same, this is a 2393 // standard shufflevector instruction. If the types are different, 2394 // then the shuffle is widening or truncating the input vectors, and 2395 // the argument type must also be encoded. 2396 if (C->getType() == C->getOperand(0)->getType()) { 2397 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2398 } else { 2399 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2400 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2401 } 2402 Record.push_back(VE.getValueID(C->getOperand(0))); 2403 Record.push_back(VE.getValueID(C->getOperand(1))); 2404 Record.push_back(VE.getValueID(C->getOperand(2))); 2405 break; 2406 case Instruction::ICmp: 2407 case Instruction::FCmp: 2408 Code = bitc::CST_CODE_CE_CMP; 2409 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2410 Record.push_back(VE.getValueID(C->getOperand(0))); 2411 Record.push_back(VE.getValueID(C->getOperand(1))); 2412 Record.push_back(CE->getPredicate()); 2413 break; 2414 } 2415 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2416 Code = bitc::CST_CODE_BLOCKADDRESS; 2417 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2418 Record.push_back(VE.getValueID(BA->getFunction())); 2419 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2420 } else { 2421 #ifndef NDEBUG 2422 C->dump(); 2423 #endif 2424 llvm_unreachable("Unknown constant!"); 2425 } 2426 Stream.EmitRecord(Code, Record, AbbrevToUse); 2427 Record.clear(); 2428 } 2429 2430 Stream.ExitBlock(); 2431 } 2432 2433 void ModuleBitcodeWriter::writeModuleConstants() { 2434 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2435 2436 // Find the first constant to emit, which is the first non-globalvalue value. 2437 // We know globalvalues have been emitted by WriteModuleInfo. 2438 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2439 if (!isa<GlobalValue>(Vals[i].first)) { 2440 writeConstants(i, Vals.size(), true); 2441 return; 2442 } 2443 } 2444 } 2445 2446 /// pushValueAndType - The file has to encode both the value and type id for 2447 /// many values, because we need to know what type to create for forward 2448 /// references. However, most operands are not forward references, so this type 2449 /// field is not needed. 2450 /// 2451 /// This function adds V's value ID to Vals. If the value ID is higher than the 2452 /// instruction ID, then it is a forward reference, and it also includes the 2453 /// type ID. The value ID that is written is encoded relative to the InstID. 2454 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2455 SmallVectorImpl<unsigned> &Vals) { 2456 unsigned ValID = VE.getValueID(V); 2457 // Make encoding relative to the InstID. 2458 Vals.push_back(InstID - ValID); 2459 if (ValID >= InstID) { 2460 Vals.push_back(VE.getTypeID(V->getType())); 2461 return true; 2462 } 2463 return false; 2464 } 2465 2466 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2467 unsigned InstID) { 2468 SmallVector<unsigned, 64> Record; 2469 LLVMContext &C = CS.getInstruction()->getContext(); 2470 2471 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2472 const auto &Bundle = CS.getOperandBundleAt(i); 2473 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2474 2475 for (auto &Input : Bundle.Inputs) 2476 pushValueAndType(Input, InstID, Record); 2477 2478 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2479 Record.clear(); 2480 } 2481 } 2482 2483 /// pushValue - Like pushValueAndType, but where the type of the value is 2484 /// omitted (perhaps it was already encoded in an earlier operand). 2485 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2486 SmallVectorImpl<unsigned> &Vals) { 2487 unsigned ValID = VE.getValueID(V); 2488 Vals.push_back(InstID - ValID); 2489 } 2490 2491 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2492 SmallVectorImpl<uint64_t> &Vals) { 2493 unsigned ValID = VE.getValueID(V); 2494 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2495 emitSignedInt64(Vals, diff); 2496 } 2497 2498 /// WriteInstruction - Emit an instruction to the specified stream. 2499 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2500 unsigned InstID, 2501 SmallVectorImpl<unsigned> &Vals) { 2502 unsigned Code = 0; 2503 unsigned AbbrevToUse = 0; 2504 VE.setInstructionID(&I); 2505 switch (I.getOpcode()) { 2506 default: 2507 if (Instruction::isCast(I.getOpcode())) { 2508 Code = bitc::FUNC_CODE_INST_CAST; 2509 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2510 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2511 Vals.push_back(VE.getTypeID(I.getType())); 2512 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2513 } else { 2514 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2515 Code = bitc::FUNC_CODE_INST_BINOP; 2516 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2517 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2518 pushValue(I.getOperand(1), InstID, Vals); 2519 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2520 uint64_t Flags = getOptimizationFlags(&I); 2521 if (Flags != 0) { 2522 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2523 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2524 Vals.push_back(Flags); 2525 } 2526 } 2527 break; 2528 2529 case Instruction::GetElementPtr: { 2530 Code = bitc::FUNC_CODE_INST_GEP; 2531 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2532 auto &GEPInst = cast<GetElementPtrInst>(I); 2533 Vals.push_back(GEPInst.isInBounds()); 2534 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2535 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2536 pushValueAndType(I.getOperand(i), InstID, Vals); 2537 break; 2538 } 2539 case Instruction::ExtractValue: { 2540 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2541 pushValueAndType(I.getOperand(0), InstID, Vals); 2542 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2543 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2544 break; 2545 } 2546 case Instruction::InsertValue: { 2547 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2548 pushValueAndType(I.getOperand(0), InstID, Vals); 2549 pushValueAndType(I.getOperand(1), InstID, Vals); 2550 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2551 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2552 break; 2553 } 2554 case Instruction::Select: 2555 Code = bitc::FUNC_CODE_INST_VSELECT; 2556 pushValueAndType(I.getOperand(1), InstID, Vals); 2557 pushValue(I.getOperand(2), InstID, Vals); 2558 pushValueAndType(I.getOperand(0), InstID, Vals); 2559 break; 2560 case Instruction::ExtractElement: 2561 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2562 pushValueAndType(I.getOperand(0), InstID, Vals); 2563 pushValueAndType(I.getOperand(1), InstID, Vals); 2564 break; 2565 case Instruction::InsertElement: 2566 Code = bitc::FUNC_CODE_INST_INSERTELT; 2567 pushValueAndType(I.getOperand(0), InstID, Vals); 2568 pushValue(I.getOperand(1), InstID, Vals); 2569 pushValueAndType(I.getOperand(2), InstID, Vals); 2570 break; 2571 case Instruction::ShuffleVector: 2572 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2573 pushValueAndType(I.getOperand(0), InstID, Vals); 2574 pushValue(I.getOperand(1), InstID, Vals); 2575 pushValue(I.getOperand(2), InstID, Vals); 2576 break; 2577 case Instruction::ICmp: 2578 case Instruction::FCmp: { 2579 // compare returning Int1Ty or vector of Int1Ty 2580 Code = bitc::FUNC_CODE_INST_CMP2; 2581 pushValueAndType(I.getOperand(0), InstID, Vals); 2582 pushValue(I.getOperand(1), InstID, Vals); 2583 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2584 uint64_t Flags = getOptimizationFlags(&I); 2585 if (Flags != 0) 2586 Vals.push_back(Flags); 2587 break; 2588 } 2589 2590 case Instruction::Ret: 2591 { 2592 Code = bitc::FUNC_CODE_INST_RET; 2593 unsigned NumOperands = I.getNumOperands(); 2594 if (NumOperands == 0) 2595 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2596 else if (NumOperands == 1) { 2597 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2598 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2599 } else { 2600 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2601 pushValueAndType(I.getOperand(i), InstID, Vals); 2602 } 2603 } 2604 break; 2605 case Instruction::Br: 2606 { 2607 Code = bitc::FUNC_CODE_INST_BR; 2608 const BranchInst &II = cast<BranchInst>(I); 2609 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2610 if (II.isConditional()) { 2611 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2612 pushValue(II.getCondition(), InstID, Vals); 2613 } 2614 } 2615 break; 2616 case Instruction::Switch: 2617 { 2618 Code = bitc::FUNC_CODE_INST_SWITCH; 2619 const SwitchInst &SI = cast<SwitchInst>(I); 2620 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2621 pushValue(SI.getCondition(), InstID, Vals); 2622 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2623 for (auto Case : SI.cases()) { 2624 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2625 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2626 } 2627 } 2628 break; 2629 case Instruction::IndirectBr: 2630 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2631 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2632 // Encode the address operand as relative, but not the basic blocks. 2633 pushValue(I.getOperand(0), InstID, Vals); 2634 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2635 Vals.push_back(VE.getValueID(I.getOperand(i))); 2636 break; 2637 2638 case Instruction::Invoke: { 2639 const InvokeInst *II = cast<InvokeInst>(&I); 2640 const Value *Callee = II->getCalledValue(); 2641 FunctionType *FTy = II->getFunctionType(); 2642 2643 if (II->hasOperandBundles()) 2644 writeOperandBundles(II, InstID); 2645 2646 Code = bitc::FUNC_CODE_INST_INVOKE; 2647 2648 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2649 Vals.push_back(II->getCallingConv() | 1 << 13); 2650 Vals.push_back(VE.getValueID(II->getNormalDest())); 2651 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2652 Vals.push_back(VE.getTypeID(FTy)); 2653 pushValueAndType(Callee, InstID, Vals); 2654 2655 // Emit value #'s for the fixed parameters. 2656 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2657 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2658 2659 // Emit type/value pairs for varargs params. 2660 if (FTy->isVarArg()) { 2661 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2662 i != e; ++i) 2663 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2664 } 2665 break; 2666 } 2667 case Instruction::Resume: 2668 Code = bitc::FUNC_CODE_INST_RESUME; 2669 pushValueAndType(I.getOperand(0), InstID, Vals); 2670 break; 2671 case Instruction::CleanupRet: { 2672 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2673 const auto &CRI = cast<CleanupReturnInst>(I); 2674 pushValue(CRI.getCleanupPad(), InstID, Vals); 2675 if (CRI.hasUnwindDest()) 2676 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2677 break; 2678 } 2679 case Instruction::CatchRet: { 2680 Code = bitc::FUNC_CODE_INST_CATCHRET; 2681 const auto &CRI = cast<CatchReturnInst>(I); 2682 pushValue(CRI.getCatchPad(), InstID, Vals); 2683 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2684 break; 2685 } 2686 case Instruction::CleanupPad: 2687 case Instruction::CatchPad: { 2688 const auto &FuncletPad = cast<FuncletPadInst>(I); 2689 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2690 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2691 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2692 2693 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2694 Vals.push_back(NumArgOperands); 2695 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2696 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2697 break; 2698 } 2699 case Instruction::CatchSwitch: { 2700 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2701 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2702 2703 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2704 2705 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2706 Vals.push_back(NumHandlers); 2707 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2708 Vals.push_back(VE.getValueID(CatchPadBB)); 2709 2710 if (CatchSwitch.hasUnwindDest()) 2711 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2712 break; 2713 } 2714 case Instruction::Unreachable: 2715 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2716 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2717 break; 2718 2719 case Instruction::PHI: { 2720 const PHINode &PN = cast<PHINode>(I); 2721 Code = bitc::FUNC_CODE_INST_PHI; 2722 // With the newer instruction encoding, forward references could give 2723 // negative valued IDs. This is most common for PHIs, so we use 2724 // signed VBRs. 2725 SmallVector<uint64_t, 128> Vals64; 2726 Vals64.push_back(VE.getTypeID(PN.getType())); 2727 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2728 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2729 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2730 } 2731 // Emit a Vals64 vector and exit. 2732 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2733 Vals64.clear(); 2734 return; 2735 } 2736 2737 case Instruction::LandingPad: { 2738 const LandingPadInst &LP = cast<LandingPadInst>(I); 2739 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2740 Vals.push_back(VE.getTypeID(LP.getType())); 2741 Vals.push_back(LP.isCleanup()); 2742 Vals.push_back(LP.getNumClauses()); 2743 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2744 if (LP.isCatch(I)) 2745 Vals.push_back(LandingPadInst::Catch); 2746 else 2747 Vals.push_back(LandingPadInst::Filter); 2748 pushValueAndType(LP.getClause(I), InstID, Vals); 2749 } 2750 break; 2751 } 2752 2753 case Instruction::Alloca: { 2754 Code = bitc::FUNC_CODE_INST_ALLOCA; 2755 const AllocaInst &AI = cast<AllocaInst>(I); 2756 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2757 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2758 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2759 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2760 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2761 "not enough bits for maximum alignment"); 2762 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2763 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2764 AlignRecord |= 1 << 6; 2765 AlignRecord |= AI.isSwiftError() << 7; 2766 Vals.push_back(AlignRecord); 2767 break; 2768 } 2769 2770 case Instruction::Load: 2771 if (cast<LoadInst>(I).isAtomic()) { 2772 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2773 pushValueAndType(I.getOperand(0), InstID, Vals); 2774 } else { 2775 Code = bitc::FUNC_CODE_INST_LOAD; 2776 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2777 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2778 } 2779 Vals.push_back(VE.getTypeID(I.getType())); 2780 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2781 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2782 if (cast<LoadInst>(I).isAtomic()) { 2783 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2784 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2785 } 2786 break; 2787 case Instruction::Store: 2788 if (cast<StoreInst>(I).isAtomic()) 2789 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2790 else 2791 Code = bitc::FUNC_CODE_INST_STORE; 2792 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2793 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2794 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2795 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2796 if (cast<StoreInst>(I).isAtomic()) { 2797 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2798 Vals.push_back( 2799 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2800 } 2801 break; 2802 case Instruction::AtomicCmpXchg: 2803 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2804 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2805 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2806 pushValue(I.getOperand(2), InstID, Vals); // newval. 2807 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2808 Vals.push_back( 2809 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2810 Vals.push_back( 2811 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2812 Vals.push_back( 2813 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2814 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2815 break; 2816 case Instruction::AtomicRMW: 2817 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2818 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2819 pushValue(I.getOperand(1), InstID, Vals); // val. 2820 Vals.push_back( 2821 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2822 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2823 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2824 Vals.push_back( 2825 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2826 break; 2827 case Instruction::Fence: 2828 Code = bitc::FUNC_CODE_INST_FENCE; 2829 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2830 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2831 break; 2832 case Instruction::Call: { 2833 const CallInst &CI = cast<CallInst>(I); 2834 FunctionType *FTy = CI.getFunctionType(); 2835 2836 if (CI.hasOperandBundles()) 2837 writeOperandBundles(&CI, InstID); 2838 2839 Code = bitc::FUNC_CODE_INST_CALL; 2840 2841 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2842 2843 unsigned Flags = getOptimizationFlags(&I); 2844 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2845 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2846 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2847 1 << bitc::CALL_EXPLICIT_TYPE | 2848 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2849 unsigned(Flags != 0) << bitc::CALL_FMF); 2850 if (Flags != 0) 2851 Vals.push_back(Flags); 2852 2853 Vals.push_back(VE.getTypeID(FTy)); 2854 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2855 2856 // Emit value #'s for the fixed parameters. 2857 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2858 // Check for labels (can happen with asm labels). 2859 if (FTy->getParamType(i)->isLabelTy()) 2860 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2861 else 2862 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2863 } 2864 2865 // Emit type/value pairs for varargs params. 2866 if (FTy->isVarArg()) { 2867 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2868 i != e; ++i) 2869 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2870 } 2871 break; 2872 } 2873 case Instruction::VAArg: 2874 Code = bitc::FUNC_CODE_INST_VAARG; 2875 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2876 pushValue(I.getOperand(0), InstID, Vals); // valist. 2877 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2878 break; 2879 } 2880 2881 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2882 Vals.clear(); 2883 } 2884 2885 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2886 /// to allow clients to efficiently find the function body. 2887 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2888 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2889 // Get the offset of the VST we are writing, and backpatch it into 2890 // the VST forward declaration record. 2891 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2892 // The BitcodeStartBit was the stream offset of the identification block. 2893 VSTOffset -= bitcodeStartBit(); 2894 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2895 // Note that we add 1 here because the offset is relative to one word 2896 // before the start of the identification block, which was historically 2897 // always the start of the regular bitcode header. 2898 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2899 2900 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2901 2902 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2903 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2906 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2907 2908 for (const Function &F : M) { 2909 uint64_t Record[2]; 2910 2911 if (F.isDeclaration()) 2912 continue; 2913 2914 Record[0] = VE.getValueID(&F); 2915 2916 // Save the word offset of the function (from the start of the 2917 // actual bitcode written to the stream). 2918 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2919 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2920 // Note that we add 1 here because the offset is relative to one word 2921 // before the start of the identification block, which was historically 2922 // always the start of the regular bitcode header. 2923 Record[1] = BitcodeIndex / 32 + 1; 2924 2925 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2926 } 2927 2928 Stream.ExitBlock(); 2929 } 2930 2931 /// Emit names for arguments, instructions and basic blocks in a function. 2932 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2933 const ValueSymbolTable &VST) { 2934 if (VST.empty()) 2935 return; 2936 2937 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2938 2939 // FIXME: Set up the abbrev, we know how many values there are! 2940 // FIXME: We know if the type names can use 7-bit ascii. 2941 SmallVector<uint64_t, 64> NameVals; 2942 2943 for (const ValueName &Name : VST) { 2944 // Figure out the encoding to use for the name. 2945 StringEncoding Bits = getStringEncoding(Name.getKey()); 2946 2947 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2948 NameVals.push_back(VE.getValueID(Name.getValue())); 2949 2950 // VST_CODE_ENTRY: [valueid, namechar x N] 2951 // VST_CODE_BBENTRY: [bbid, namechar x N] 2952 unsigned Code; 2953 if (isa<BasicBlock>(Name.getValue())) { 2954 Code = bitc::VST_CODE_BBENTRY; 2955 if (Bits == SE_Char6) 2956 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2957 } else { 2958 Code = bitc::VST_CODE_ENTRY; 2959 if (Bits == SE_Char6) 2960 AbbrevToUse = VST_ENTRY_6_ABBREV; 2961 else if (Bits == SE_Fixed7) 2962 AbbrevToUse = VST_ENTRY_7_ABBREV; 2963 } 2964 2965 for (const auto P : Name.getKey()) 2966 NameVals.push_back((unsigned char)P); 2967 2968 // Emit the finished record. 2969 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2970 NameVals.clear(); 2971 } 2972 2973 Stream.ExitBlock(); 2974 } 2975 2976 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2977 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2978 unsigned Code; 2979 if (isa<BasicBlock>(Order.V)) 2980 Code = bitc::USELIST_CODE_BB; 2981 else 2982 Code = bitc::USELIST_CODE_DEFAULT; 2983 2984 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2985 Record.push_back(VE.getValueID(Order.V)); 2986 Stream.EmitRecord(Code, Record); 2987 } 2988 2989 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2990 assert(VE.shouldPreserveUseListOrder() && 2991 "Expected to be preserving use-list order"); 2992 2993 auto hasMore = [&]() { 2994 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2995 }; 2996 if (!hasMore()) 2997 // Nothing to do. 2998 return; 2999 3000 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3001 while (hasMore()) { 3002 writeUseList(std::move(VE.UseListOrders.back())); 3003 VE.UseListOrders.pop_back(); 3004 } 3005 Stream.ExitBlock(); 3006 } 3007 3008 /// Emit a function body to the module stream. 3009 void ModuleBitcodeWriter::writeFunction( 3010 const Function &F, 3011 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3012 // Save the bitcode index of the start of this function block for recording 3013 // in the VST. 3014 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3015 3016 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3017 VE.incorporateFunction(F); 3018 3019 SmallVector<unsigned, 64> Vals; 3020 3021 // Emit the number of basic blocks, so the reader can create them ahead of 3022 // time. 3023 Vals.push_back(VE.getBasicBlocks().size()); 3024 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3025 Vals.clear(); 3026 3027 // If there are function-local constants, emit them now. 3028 unsigned CstStart, CstEnd; 3029 VE.getFunctionConstantRange(CstStart, CstEnd); 3030 writeConstants(CstStart, CstEnd, false); 3031 3032 // If there is function-local metadata, emit it now. 3033 writeFunctionMetadata(F); 3034 3035 // Keep a running idea of what the instruction ID is. 3036 unsigned InstID = CstEnd; 3037 3038 bool NeedsMetadataAttachment = F.hasMetadata(); 3039 3040 DILocation *LastDL = nullptr; 3041 // Finally, emit all the instructions, in order. 3042 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3043 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3044 I != E; ++I) { 3045 writeInstruction(*I, InstID, Vals); 3046 3047 if (!I->getType()->isVoidTy()) 3048 ++InstID; 3049 3050 // If the instruction has metadata, write a metadata attachment later. 3051 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3052 3053 // If the instruction has a debug location, emit it. 3054 DILocation *DL = I->getDebugLoc(); 3055 if (!DL) 3056 continue; 3057 3058 if (DL == LastDL) { 3059 // Just repeat the same debug loc as last time. 3060 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3061 continue; 3062 } 3063 3064 Vals.push_back(DL->getLine()); 3065 Vals.push_back(DL->getColumn()); 3066 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3067 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3068 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3069 Vals.clear(); 3070 3071 LastDL = DL; 3072 } 3073 3074 // Emit names for all the instructions etc. 3075 if (auto *Symtab = F.getValueSymbolTable()) 3076 writeFunctionLevelValueSymbolTable(*Symtab); 3077 3078 if (NeedsMetadataAttachment) 3079 writeFunctionMetadataAttachment(F); 3080 if (VE.shouldPreserveUseListOrder()) 3081 writeUseListBlock(&F); 3082 VE.purgeFunction(); 3083 Stream.ExitBlock(); 3084 } 3085 3086 // Emit blockinfo, which defines the standard abbreviations etc. 3087 void ModuleBitcodeWriter::writeBlockInfo() { 3088 // We only want to emit block info records for blocks that have multiple 3089 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3090 // Other blocks can define their abbrevs inline. 3091 Stream.EnterBlockInfoBlock(); 3092 3093 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3094 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3099 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3100 VST_ENTRY_8_ABBREV) 3101 llvm_unreachable("Unexpected abbrev ordering!"); 3102 } 3103 3104 { // 7-bit fixed width VST_CODE_ENTRY strings. 3105 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3106 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3110 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3111 VST_ENTRY_7_ABBREV) 3112 llvm_unreachable("Unexpected abbrev ordering!"); 3113 } 3114 { // 6-bit char6 VST_CODE_ENTRY strings. 3115 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3116 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3120 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3121 VST_ENTRY_6_ABBREV) 3122 llvm_unreachable("Unexpected abbrev ordering!"); 3123 } 3124 { // 6-bit char6 VST_CODE_BBENTRY strings. 3125 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3126 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3130 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3131 VST_BBENTRY_6_ABBREV) 3132 llvm_unreachable("Unexpected abbrev ordering!"); 3133 } 3134 3135 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3136 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3137 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3139 VE.computeBitsRequiredForTypeIndicies())); 3140 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3141 CONSTANTS_SETTYPE_ABBREV) 3142 llvm_unreachable("Unexpected abbrev ordering!"); 3143 } 3144 3145 { // INTEGER abbrev for CONSTANTS_BLOCK. 3146 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3147 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3149 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3150 CONSTANTS_INTEGER_ABBREV) 3151 llvm_unreachable("Unexpected abbrev ordering!"); 3152 } 3153 3154 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3155 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3156 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3159 VE.computeBitsRequiredForTypeIndicies())); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3161 3162 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3163 CONSTANTS_CE_CAST_Abbrev) 3164 llvm_unreachable("Unexpected abbrev ordering!"); 3165 } 3166 { // NULL abbrev for CONSTANTS_BLOCK. 3167 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3168 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3169 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3170 CONSTANTS_NULL_Abbrev) 3171 llvm_unreachable("Unexpected abbrev ordering!"); 3172 } 3173 3174 // FIXME: This should only use space for first class types! 3175 3176 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3177 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3178 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3181 VE.computeBitsRequiredForTypeIndicies())); 3182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3184 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3185 FUNCTION_INST_LOAD_ABBREV) 3186 llvm_unreachable("Unexpected abbrev ordering!"); 3187 } 3188 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3189 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3190 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3194 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3195 FUNCTION_INST_BINOP_ABBREV) 3196 llvm_unreachable("Unexpected abbrev ordering!"); 3197 } 3198 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3199 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3200 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3205 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3206 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3207 llvm_unreachable("Unexpected abbrev ordering!"); 3208 } 3209 { // INST_CAST abbrev for FUNCTION_BLOCK. 3210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3211 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3214 VE.computeBitsRequiredForTypeIndicies())); 3215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3216 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3217 FUNCTION_INST_CAST_ABBREV) 3218 llvm_unreachable("Unexpected abbrev ordering!"); 3219 } 3220 3221 { // INST_RET abbrev for FUNCTION_BLOCK. 3222 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3223 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3224 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3225 FUNCTION_INST_RET_VOID_ABBREV) 3226 llvm_unreachable("Unexpected abbrev ordering!"); 3227 } 3228 { // INST_RET abbrev for FUNCTION_BLOCK. 3229 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3230 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3232 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3233 FUNCTION_INST_RET_VAL_ABBREV) 3234 llvm_unreachable("Unexpected abbrev ordering!"); 3235 } 3236 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3237 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3238 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3239 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3240 FUNCTION_INST_UNREACHABLE_ABBREV) 3241 llvm_unreachable("Unexpected abbrev ordering!"); 3242 } 3243 { 3244 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3245 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3248 Log2_32_Ceil(VE.getTypes().size() + 1))); 3249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3251 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3252 FUNCTION_INST_GEP_ABBREV) 3253 llvm_unreachable("Unexpected abbrev ordering!"); 3254 } 3255 3256 Stream.ExitBlock(); 3257 } 3258 3259 /// Write the module path strings, currently only used when generating 3260 /// a combined index file. 3261 void IndexBitcodeWriter::writeModStrings() { 3262 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3263 3264 // TODO: See which abbrev sizes we actually need to emit 3265 3266 // 8-bit fixed-width MST_ENTRY strings. 3267 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3268 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3269 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3272 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3273 3274 // 7-bit fixed width MST_ENTRY strings. 3275 Abbv = std::make_shared<BitCodeAbbrev>(); 3276 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3280 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3281 3282 // 6-bit char6 MST_ENTRY strings. 3283 Abbv = std::make_shared<BitCodeAbbrev>(); 3284 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3288 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3289 3290 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3291 Abbv = std::make_shared<BitCodeAbbrev>(); 3292 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3298 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3299 3300 SmallVector<unsigned, 64> Vals; 3301 forEachModule( 3302 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3303 StringRef Key = MPSE.getKey(); 3304 const auto &Value = MPSE.getValue(); 3305 StringEncoding Bits = getStringEncoding(Key); 3306 unsigned AbbrevToUse = Abbrev8Bit; 3307 if (Bits == SE_Char6) 3308 AbbrevToUse = Abbrev6Bit; 3309 else if (Bits == SE_Fixed7) 3310 AbbrevToUse = Abbrev7Bit; 3311 3312 Vals.push_back(Value.first); 3313 Vals.append(Key.begin(), Key.end()); 3314 3315 // Emit the finished record. 3316 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3317 3318 // Emit an optional hash for the module now 3319 const auto &Hash = Value.second; 3320 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3321 Vals.assign(Hash.begin(), Hash.end()); 3322 // Emit the hash record. 3323 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3324 } 3325 3326 Vals.clear(); 3327 }); 3328 Stream.ExitBlock(); 3329 } 3330 3331 /// Write the function type metadata related records that need to appear before 3332 /// a function summary entry (whether per-module or combined). 3333 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3334 FunctionSummary *FS) { 3335 if (!FS->type_tests().empty()) 3336 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3337 3338 SmallVector<uint64_t, 64> Record; 3339 3340 auto WriteVFuncIdVec = [&](uint64_t Ty, 3341 ArrayRef<FunctionSummary::VFuncId> VFs) { 3342 if (VFs.empty()) 3343 return; 3344 Record.clear(); 3345 for (auto &VF : VFs) { 3346 Record.push_back(VF.GUID); 3347 Record.push_back(VF.Offset); 3348 } 3349 Stream.EmitRecord(Ty, Record); 3350 }; 3351 3352 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3353 FS->type_test_assume_vcalls()); 3354 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3355 FS->type_checked_load_vcalls()); 3356 3357 auto WriteConstVCallVec = [&](uint64_t Ty, 3358 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3359 for (auto &VC : VCs) { 3360 Record.clear(); 3361 Record.push_back(VC.VFunc.GUID); 3362 Record.push_back(VC.VFunc.Offset); 3363 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3364 Stream.EmitRecord(Ty, Record); 3365 } 3366 }; 3367 3368 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3369 FS->type_test_assume_const_vcalls()); 3370 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3371 FS->type_checked_load_const_vcalls()); 3372 } 3373 3374 static void writeWholeProgramDevirtResolutionByArg( 3375 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3376 const WholeProgramDevirtResolution::ByArg &ByArg) { 3377 NameVals.push_back(args.size()); 3378 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3379 3380 NameVals.push_back(ByArg.TheKind); 3381 NameVals.push_back(ByArg.Info); 3382 NameVals.push_back(ByArg.Byte); 3383 NameVals.push_back(ByArg.Bit); 3384 } 3385 3386 static void writeWholeProgramDevirtResolution( 3387 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3388 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3389 NameVals.push_back(Id); 3390 3391 NameVals.push_back(Wpd.TheKind); 3392 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3393 NameVals.push_back(Wpd.SingleImplName.size()); 3394 3395 NameVals.push_back(Wpd.ResByArg.size()); 3396 for (auto &A : Wpd.ResByArg) 3397 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3398 } 3399 3400 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3401 StringTableBuilder &StrtabBuilder, 3402 const std::string &Id, 3403 const TypeIdSummary &Summary) { 3404 NameVals.push_back(StrtabBuilder.add(Id)); 3405 NameVals.push_back(Id.size()); 3406 3407 NameVals.push_back(Summary.TTRes.TheKind); 3408 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3409 NameVals.push_back(Summary.TTRes.AlignLog2); 3410 NameVals.push_back(Summary.TTRes.SizeM1); 3411 NameVals.push_back(Summary.TTRes.BitMask); 3412 NameVals.push_back(Summary.TTRes.InlineBits); 3413 3414 for (auto &W : Summary.WPDRes) 3415 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3416 W.second); 3417 } 3418 3419 // Helper to emit a single function summary record. 3420 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3421 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3422 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3423 const Function &F) { 3424 NameVals.push_back(ValueID); 3425 3426 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3427 writeFunctionTypeMetadataRecords(Stream, FS); 3428 3429 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3430 NameVals.push_back(FS->instCount()); 3431 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3432 NameVals.push_back(FS->refs().size()); 3433 3434 for (auto &RI : FS->refs()) 3435 NameVals.push_back(VE.getValueID(RI.getValue())); 3436 3437 bool HasProfileData = F.hasProfileData(); 3438 for (auto &ECI : FS->calls()) { 3439 NameVals.push_back(getValueId(ECI.first)); 3440 if (HasProfileData) 3441 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3442 else if (WriteRelBFToSummary) 3443 NameVals.push_back(ECI.second.RelBlockFreq); 3444 } 3445 3446 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3447 unsigned Code = 3448 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3449 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3450 : bitc::FS_PERMODULE)); 3451 3452 // Emit the finished record. 3453 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3454 NameVals.clear(); 3455 } 3456 3457 // Collect the global value references in the given variable's initializer, 3458 // and emit them in a summary record. 3459 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3460 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3461 unsigned FSModRefsAbbrev) { 3462 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3463 if (!VI || VI.getSummaryList().empty()) { 3464 // Only declarations should not have a summary (a declaration might however 3465 // have a summary if the def was in module level asm). 3466 assert(V.isDeclaration()); 3467 return; 3468 } 3469 auto *Summary = VI.getSummaryList()[0].get(); 3470 NameVals.push_back(VE.getValueID(&V)); 3471 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3472 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3473 3474 unsigned SizeBeforeRefs = NameVals.size(); 3475 for (auto &RI : VS->refs()) 3476 NameVals.push_back(VE.getValueID(RI.getValue())); 3477 // Sort the refs for determinism output, the vector returned by FS->refs() has 3478 // been initialized from a DenseSet. 3479 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3480 3481 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3482 FSModRefsAbbrev); 3483 NameVals.clear(); 3484 } 3485 3486 // Current version for the summary. 3487 // This is bumped whenever we introduce changes in the way some record are 3488 // interpreted, like flags for instance. 3489 static const uint64_t INDEX_VERSION = 4; 3490 3491 /// Emit the per-module summary section alongside the rest of 3492 /// the module's bitcode. 3493 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3494 // By default we compile with ThinLTO if the module has a summary, but the 3495 // client can request full LTO with a module flag. 3496 bool IsThinLTO = true; 3497 if (auto *MD = 3498 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3499 IsThinLTO = MD->getZExtValue(); 3500 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3501 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3502 4); 3503 3504 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3505 3506 if (Index->begin() == Index->end()) { 3507 Stream.ExitBlock(); 3508 return; 3509 } 3510 3511 for (const auto &GVI : valueIds()) { 3512 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3513 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3514 } 3515 3516 // Abbrev for FS_PERMODULE_PROFILE. 3517 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3518 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3524 // numrefs x valueid, n x (valueid, hotness) 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3527 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3528 3529 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3530 Abbv = std::make_shared<BitCodeAbbrev>(); 3531 if (WriteRelBFToSummary) 3532 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3533 else 3534 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3540 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3543 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3544 3545 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3546 Abbv = std::make_shared<BitCodeAbbrev>(); 3547 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3552 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3553 3554 // Abbrev for FS_ALIAS. 3555 Abbv = std::make_shared<BitCodeAbbrev>(); 3556 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3560 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3561 3562 SmallVector<uint64_t, 64> NameVals; 3563 // Iterate over the list of functions instead of the Index to 3564 // ensure the ordering is stable. 3565 for (const Function &F : M) { 3566 // Summary emission does not support anonymous functions, they have to 3567 // renamed using the anonymous function renaming pass. 3568 if (!F.hasName()) 3569 report_fatal_error("Unexpected anonymous function when writing summary"); 3570 3571 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3572 if (!VI || VI.getSummaryList().empty()) { 3573 // Only declarations should not have a summary (a declaration might 3574 // however have a summary if the def was in module level asm). 3575 assert(F.isDeclaration()); 3576 continue; 3577 } 3578 auto *Summary = VI.getSummaryList()[0].get(); 3579 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3580 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3581 } 3582 3583 // Capture references from GlobalVariable initializers, which are outside 3584 // of a function scope. 3585 for (const GlobalVariable &G : M.globals()) 3586 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3587 3588 for (const GlobalAlias &A : M.aliases()) { 3589 auto *Aliasee = A.getBaseObject(); 3590 if (!Aliasee->hasName()) 3591 // Nameless function don't have an entry in the summary, skip it. 3592 continue; 3593 auto AliasId = VE.getValueID(&A); 3594 auto AliaseeId = VE.getValueID(Aliasee); 3595 NameVals.push_back(AliasId); 3596 auto *Summary = Index->getGlobalValueSummary(A); 3597 AliasSummary *AS = cast<AliasSummary>(Summary); 3598 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3599 NameVals.push_back(AliaseeId); 3600 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3601 NameVals.clear(); 3602 } 3603 3604 Stream.ExitBlock(); 3605 } 3606 3607 /// Emit the combined summary section into the combined index file. 3608 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3609 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3610 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3611 3612 // Write the index flags. 3613 uint64_t Flags = 0; 3614 if (Index.withGlobalValueDeadStripping()) 3615 Flags |= 0x1; 3616 if (Index.skipModuleByDistributedBackend()) 3617 Flags |= 0x2; 3618 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3619 3620 for (const auto &GVI : valueIds()) { 3621 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3622 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3623 } 3624 3625 // Abbrev for FS_COMBINED. 3626 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3627 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3634 // numrefs x valueid, n x (valueid) 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3637 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3638 3639 // Abbrev for FS_COMBINED_PROFILE. 3640 Abbv = std::make_shared<BitCodeAbbrev>(); 3641 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3648 // numrefs x valueid, n x (valueid, hotness) 3649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3651 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3652 3653 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3654 Abbv = std::make_shared<BitCodeAbbrev>(); 3655 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3657 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3661 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3662 3663 // Abbrev for FS_COMBINED_ALIAS. 3664 Abbv = std::make_shared<BitCodeAbbrev>(); 3665 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3670 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3671 3672 // The aliases are emitted as a post-pass, and will point to the value 3673 // id of the aliasee. Save them in a vector for post-processing. 3674 SmallVector<AliasSummary *, 64> Aliases; 3675 3676 // Save the value id for each summary for alias emission. 3677 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3678 3679 SmallVector<uint64_t, 64> NameVals; 3680 3681 // For local linkage, we also emit the original name separately 3682 // immediately after the record. 3683 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3684 if (!GlobalValue::isLocalLinkage(S.linkage())) 3685 return; 3686 NameVals.push_back(S.getOriginalName()); 3687 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3688 NameVals.clear(); 3689 }; 3690 3691 forEachSummary([&](GVInfo I, bool IsAliasee) { 3692 GlobalValueSummary *S = I.second; 3693 assert(S); 3694 3695 auto ValueId = getValueId(I.first); 3696 assert(ValueId); 3697 SummaryToValueIdMap[S] = *ValueId; 3698 3699 // If this is invoked for an aliasee, we want to record the above 3700 // mapping, but then not emit a summary entry (if the aliasee is 3701 // to be imported, we will invoke this separately with IsAliasee=false). 3702 if (IsAliasee) 3703 return; 3704 3705 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3706 // Will process aliases as a post-pass because the reader wants all 3707 // global to be loaded first. 3708 Aliases.push_back(AS); 3709 return; 3710 } 3711 3712 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3713 NameVals.push_back(*ValueId); 3714 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3715 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3716 for (auto &RI : VS->refs()) { 3717 auto RefValueId = getValueId(RI.getGUID()); 3718 if (!RefValueId) 3719 continue; 3720 NameVals.push_back(*RefValueId); 3721 } 3722 3723 // Emit the finished record. 3724 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3725 FSModRefsAbbrev); 3726 NameVals.clear(); 3727 MaybeEmitOriginalName(*S); 3728 return; 3729 } 3730 3731 auto *FS = cast<FunctionSummary>(S); 3732 writeFunctionTypeMetadataRecords(Stream, FS); 3733 3734 NameVals.push_back(*ValueId); 3735 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3736 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3737 NameVals.push_back(FS->instCount()); 3738 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3739 // Fill in below 3740 NameVals.push_back(0); 3741 3742 unsigned Count = 0; 3743 for (auto &RI : FS->refs()) { 3744 auto RefValueId = getValueId(RI.getGUID()); 3745 if (!RefValueId) 3746 continue; 3747 NameVals.push_back(*RefValueId); 3748 Count++; 3749 } 3750 NameVals[5] = Count; 3751 3752 bool HasProfileData = false; 3753 for (auto &EI : FS->calls()) { 3754 HasProfileData |= 3755 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3756 if (HasProfileData) 3757 break; 3758 } 3759 3760 for (auto &EI : FS->calls()) { 3761 // If this GUID doesn't have a value id, it doesn't have a function 3762 // summary and we don't need to record any calls to it. 3763 GlobalValue::GUID GUID = EI.first.getGUID(); 3764 auto CallValueId = getValueId(GUID); 3765 if (!CallValueId) { 3766 // For SamplePGO, the indirect call targets for local functions will 3767 // have its original name annotated in profile. We try to find the 3768 // corresponding PGOFuncName as the GUID. 3769 GUID = Index.getGUIDFromOriginalID(GUID); 3770 if (GUID == 0) 3771 continue; 3772 CallValueId = getValueId(GUID); 3773 if (!CallValueId) 3774 continue; 3775 // The mapping from OriginalId to GUID may return a GUID 3776 // that corresponds to a static variable. Filter it out here. 3777 // This can happen when 3778 // 1) There is a call to a library function which does not have 3779 // a CallValidId; 3780 // 2) There is a static variable with the OriginalGUID identical 3781 // to the GUID of the library function in 1); 3782 // When this happens, the logic for SamplePGO kicks in and 3783 // the static variable in 2) will be found, which needs to be 3784 // filtered out. 3785 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3786 if (GVSum && 3787 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3788 continue; 3789 } 3790 NameVals.push_back(*CallValueId); 3791 if (HasProfileData) 3792 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3793 } 3794 3795 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3796 unsigned Code = 3797 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3798 3799 // Emit the finished record. 3800 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3801 NameVals.clear(); 3802 MaybeEmitOriginalName(*S); 3803 }); 3804 3805 for (auto *AS : Aliases) { 3806 auto AliasValueId = SummaryToValueIdMap[AS]; 3807 assert(AliasValueId); 3808 NameVals.push_back(AliasValueId); 3809 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3810 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3811 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3812 assert(AliaseeValueId); 3813 NameVals.push_back(AliaseeValueId); 3814 3815 // Emit the finished record. 3816 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3817 NameVals.clear(); 3818 MaybeEmitOriginalName(*AS); 3819 } 3820 3821 if (!Index.cfiFunctionDefs().empty()) { 3822 for (auto &S : Index.cfiFunctionDefs()) { 3823 NameVals.push_back(StrtabBuilder.add(S)); 3824 NameVals.push_back(S.size()); 3825 } 3826 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3827 NameVals.clear(); 3828 } 3829 3830 if (!Index.cfiFunctionDecls().empty()) { 3831 for (auto &S : Index.cfiFunctionDecls()) { 3832 NameVals.push_back(StrtabBuilder.add(S)); 3833 NameVals.push_back(S.size()); 3834 } 3835 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3836 NameVals.clear(); 3837 } 3838 3839 if (!Index.typeIds().empty()) { 3840 for (auto &S : Index.typeIds()) { 3841 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second); 3842 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 3843 NameVals.clear(); 3844 } 3845 } 3846 3847 Stream.ExitBlock(); 3848 } 3849 3850 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3851 /// current llvm version, and a record for the epoch number. 3852 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3853 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3854 3855 // Write the "user readable" string identifying the bitcode producer 3856 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3857 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3860 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3861 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3862 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3863 3864 // Write the epoch version 3865 Abbv = std::make_shared<BitCodeAbbrev>(); 3866 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3868 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3869 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3870 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3871 Stream.ExitBlock(); 3872 } 3873 3874 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3875 // Emit the module's hash. 3876 // MODULE_CODE_HASH: [5*i32] 3877 if (GenerateHash) { 3878 uint32_t Vals[5]; 3879 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3880 Buffer.size() - BlockStartPos)); 3881 StringRef Hash = Hasher.result(); 3882 for (int Pos = 0; Pos < 20; Pos += 4) { 3883 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3884 } 3885 3886 // Emit the finished record. 3887 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3888 3889 if (ModHash) 3890 // Save the written hash value. 3891 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3892 } 3893 } 3894 3895 void ModuleBitcodeWriter::write() { 3896 writeIdentificationBlock(Stream); 3897 3898 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3899 size_t BlockStartPos = Buffer.size(); 3900 3901 writeModuleVersion(); 3902 3903 // Emit blockinfo, which defines the standard abbreviations etc. 3904 writeBlockInfo(); 3905 3906 // Emit information about attribute groups. 3907 writeAttributeGroupTable(); 3908 3909 // Emit information about parameter attributes. 3910 writeAttributeTable(); 3911 3912 // Emit information describing all of the types in the module. 3913 writeTypeTable(); 3914 3915 writeComdats(); 3916 3917 // Emit top-level description of module, including target triple, inline asm, 3918 // descriptors for global variables, and function prototype info. 3919 writeModuleInfo(); 3920 3921 // Emit constants. 3922 writeModuleConstants(); 3923 3924 // Emit metadata kind names. 3925 writeModuleMetadataKinds(); 3926 3927 // Emit metadata. 3928 writeModuleMetadata(); 3929 3930 // Emit module-level use-lists. 3931 if (VE.shouldPreserveUseListOrder()) 3932 writeUseListBlock(nullptr); 3933 3934 writeOperandBundleTags(); 3935 writeSyncScopeNames(); 3936 3937 // Emit function bodies. 3938 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3939 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3940 if (!F->isDeclaration()) 3941 writeFunction(*F, FunctionToBitcodeIndex); 3942 3943 // Need to write after the above call to WriteFunction which populates 3944 // the summary information in the index. 3945 if (Index) 3946 writePerModuleGlobalValueSummary(); 3947 3948 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3949 3950 writeModuleHash(BlockStartPos); 3951 3952 Stream.ExitBlock(); 3953 } 3954 3955 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3956 uint32_t &Position) { 3957 support::endian::write32le(&Buffer[Position], Value); 3958 Position += 4; 3959 } 3960 3961 /// If generating a bc file on darwin, we have to emit a 3962 /// header and trailer to make it compatible with the system archiver. To do 3963 /// this we emit the following header, and then emit a trailer that pads the 3964 /// file out to be a multiple of 16 bytes. 3965 /// 3966 /// struct bc_header { 3967 /// uint32_t Magic; // 0x0B17C0DE 3968 /// uint32_t Version; // Version, currently always 0. 3969 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3970 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3971 /// uint32_t CPUType; // CPU specifier. 3972 /// ... potentially more later ... 3973 /// }; 3974 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3975 const Triple &TT) { 3976 unsigned CPUType = ~0U; 3977 3978 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3979 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3980 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3981 // specific constants here because they are implicitly part of the Darwin ABI. 3982 enum { 3983 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3984 DARWIN_CPU_TYPE_X86 = 7, 3985 DARWIN_CPU_TYPE_ARM = 12, 3986 DARWIN_CPU_TYPE_POWERPC = 18 3987 }; 3988 3989 Triple::ArchType Arch = TT.getArch(); 3990 if (Arch == Triple::x86_64) 3991 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3992 else if (Arch == Triple::x86) 3993 CPUType = DARWIN_CPU_TYPE_X86; 3994 else if (Arch == Triple::ppc) 3995 CPUType = DARWIN_CPU_TYPE_POWERPC; 3996 else if (Arch == Triple::ppc64) 3997 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3998 else if (Arch == Triple::arm || Arch == Triple::thumb) 3999 CPUType = DARWIN_CPU_TYPE_ARM; 4000 4001 // Traditional Bitcode starts after header. 4002 assert(Buffer.size() >= BWH_HeaderSize && 4003 "Expected header size to be reserved"); 4004 unsigned BCOffset = BWH_HeaderSize; 4005 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4006 4007 // Write the magic and version. 4008 unsigned Position = 0; 4009 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4010 writeInt32ToBuffer(0, Buffer, Position); // Version. 4011 writeInt32ToBuffer(BCOffset, Buffer, Position); 4012 writeInt32ToBuffer(BCSize, Buffer, Position); 4013 writeInt32ToBuffer(CPUType, Buffer, Position); 4014 4015 // If the file is not a multiple of 16 bytes, insert dummy padding. 4016 while (Buffer.size() & 15) 4017 Buffer.push_back(0); 4018 } 4019 4020 /// Helper to write the header common to all bitcode files. 4021 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4022 // Emit the file header. 4023 Stream.Emit((unsigned)'B', 8); 4024 Stream.Emit((unsigned)'C', 8); 4025 Stream.Emit(0x0, 4); 4026 Stream.Emit(0xC, 4); 4027 Stream.Emit(0xE, 4); 4028 Stream.Emit(0xD, 4); 4029 } 4030 4031 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4032 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4033 writeBitcodeHeader(*Stream); 4034 } 4035 4036 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4037 4038 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4039 Stream->EnterSubblock(Block, 3); 4040 4041 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4042 Abbv->Add(BitCodeAbbrevOp(Record)); 4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4044 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4045 4046 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4047 4048 Stream->ExitBlock(); 4049 } 4050 4051 void BitcodeWriter::writeSymtab() { 4052 assert(!WroteStrtab && !WroteSymtab); 4053 4054 // If any module has module-level inline asm, we will require a registered asm 4055 // parser for the target so that we can create an accurate symbol table for 4056 // the module. 4057 for (Module *M : Mods) { 4058 if (M->getModuleInlineAsm().empty()) 4059 continue; 4060 4061 std::string Err; 4062 const Triple TT(M->getTargetTriple()); 4063 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4064 if (!T || !T->hasMCAsmParser()) 4065 return; 4066 } 4067 4068 WroteSymtab = true; 4069 SmallVector<char, 0> Symtab; 4070 // The irsymtab::build function may be unable to create a symbol table if the 4071 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4072 // table is not required for correctness, but we still want to be able to 4073 // write malformed modules to bitcode files, so swallow the error. 4074 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4075 consumeError(std::move(E)); 4076 return; 4077 } 4078 4079 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4080 {Symtab.data(), Symtab.size()}); 4081 } 4082 4083 void BitcodeWriter::writeStrtab() { 4084 assert(!WroteStrtab); 4085 4086 std::vector<char> Strtab; 4087 StrtabBuilder.finalizeInOrder(); 4088 Strtab.resize(StrtabBuilder.getSize()); 4089 StrtabBuilder.write((uint8_t *)Strtab.data()); 4090 4091 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4092 {Strtab.data(), Strtab.size()}); 4093 4094 WroteStrtab = true; 4095 } 4096 4097 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4098 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4099 WroteStrtab = true; 4100 } 4101 4102 void BitcodeWriter::writeModule(const Module &M, 4103 bool ShouldPreserveUseListOrder, 4104 const ModuleSummaryIndex *Index, 4105 bool GenerateHash, ModuleHash *ModHash) { 4106 assert(!WroteStrtab); 4107 4108 // The Mods vector is used by irsymtab::build, which requires non-const 4109 // Modules in case it needs to materialize metadata. But the bitcode writer 4110 // requires that the module is materialized, so we can cast to non-const here, 4111 // after checking that it is in fact materialized. 4112 assert(M.isMaterialized()); 4113 Mods.push_back(const_cast<Module *>(&M)); 4114 4115 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4116 ShouldPreserveUseListOrder, Index, 4117 GenerateHash, ModHash); 4118 ModuleWriter.write(); 4119 } 4120 4121 void BitcodeWriter::writeIndex( 4122 const ModuleSummaryIndex *Index, 4123 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4124 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4125 ModuleToSummariesForIndex); 4126 IndexWriter.write(); 4127 } 4128 4129 /// Write the specified module to the specified output stream. 4130 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4131 bool ShouldPreserveUseListOrder, 4132 const ModuleSummaryIndex *Index, 4133 bool GenerateHash, ModuleHash *ModHash) { 4134 SmallVector<char, 0> Buffer; 4135 Buffer.reserve(256*1024); 4136 4137 // If this is darwin or another generic macho target, reserve space for the 4138 // header. 4139 Triple TT(M.getTargetTriple()); 4140 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4141 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4142 4143 BitcodeWriter Writer(Buffer); 4144 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4145 ModHash); 4146 Writer.writeSymtab(); 4147 Writer.writeStrtab(); 4148 4149 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4150 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4151 4152 // Write the generated bitstream to "Out". 4153 Out.write((char*)&Buffer.front(), Buffer.size()); 4154 } 4155 4156 void IndexBitcodeWriter::write() { 4157 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4158 4159 writeModuleVersion(); 4160 4161 // Write the module paths in the combined index. 4162 writeModStrings(); 4163 4164 // Write the summary combined index records. 4165 writeCombinedGlobalValueSummary(); 4166 4167 Stream.ExitBlock(); 4168 } 4169 4170 // Write the specified module summary index to the given raw output stream, 4171 // where it will be written in a new bitcode block. This is used when 4172 // writing the combined index file for ThinLTO. When writing a subset of the 4173 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4174 void llvm::WriteIndexToFile( 4175 const ModuleSummaryIndex &Index, raw_ostream &Out, 4176 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4177 SmallVector<char, 0> Buffer; 4178 Buffer.reserve(256 * 1024); 4179 4180 BitcodeWriter Writer(Buffer); 4181 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4182 Writer.writeStrtab(); 4183 4184 Out.write((char *)&Buffer.front(), Buffer.size()); 4185 } 4186 4187 namespace { 4188 4189 /// Class to manage the bitcode writing for a thin link bitcode file. 4190 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4191 /// ModHash is for use in ThinLTO incremental build, generated while writing 4192 /// the module bitcode file. 4193 const ModuleHash *ModHash; 4194 4195 public: 4196 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4197 BitstreamWriter &Stream, 4198 const ModuleSummaryIndex &Index, 4199 const ModuleHash &ModHash) 4200 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4201 /*ShouldPreserveUseListOrder=*/false, &Index), 4202 ModHash(&ModHash) {} 4203 4204 void write(); 4205 4206 private: 4207 void writeSimplifiedModuleInfo(); 4208 }; 4209 4210 } // end anonymous namespace 4211 4212 // This function writes a simpilified module info for thin link bitcode file. 4213 // It only contains the source file name along with the name(the offset and 4214 // size in strtab) and linkage for global values. For the global value info 4215 // entry, in order to keep linkage at offset 5, there are three zeros used 4216 // as padding. 4217 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4218 SmallVector<unsigned, 64> Vals; 4219 // Emit the module's source file name. 4220 { 4221 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4222 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4223 if (Bits == SE_Char6) 4224 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4225 else if (Bits == SE_Fixed7) 4226 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4227 4228 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4229 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4230 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4232 Abbv->Add(AbbrevOpToUse); 4233 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4234 4235 for (const auto P : M.getSourceFileName()) 4236 Vals.push_back((unsigned char)P); 4237 4238 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4239 Vals.clear(); 4240 } 4241 4242 // Emit the global variable information. 4243 for (const GlobalVariable &GV : M.globals()) { 4244 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4245 Vals.push_back(StrtabBuilder.add(GV.getName())); 4246 Vals.push_back(GV.getName().size()); 4247 Vals.push_back(0); 4248 Vals.push_back(0); 4249 Vals.push_back(0); 4250 Vals.push_back(getEncodedLinkage(GV)); 4251 4252 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4253 Vals.clear(); 4254 } 4255 4256 // Emit the function proto information. 4257 for (const Function &F : M) { 4258 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4259 Vals.push_back(StrtabBuilder.add(F.getName())); 4260 Vals.push_back(F.getName().size()); 4261 Vals.push_back(0); 4262 Vals.push_back(0); 4263 Vals.push_back(0); 4264 Vals.push_back(getEncodedLinkage(F)); 4265 4266 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4267 Vals.clear(); 4268 } 4269 4270 // Emit the alias information. 4271 for (const GlobalAlias &A : M.aliases()) { 4272 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4273 Vals.push_back(StrtabBuilder.add(A.getName())); 4274 Vals.push_back(A.getName().size()); 4275 Vals.push_back(0); 4276 Vals.push_back(0); 4277 Vals.push_back(0); 4278 Vals.push_back(getEncodedLinkage(A)); 4279 4280 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4281 Vals.clear(); 4282 } 4283 4284 // Emit the ifunc information. 4285 for (const GlobalIFunc &I : M.ifuncs()) { 4286 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4287 Vals.push_back(StrtabBuilder.add(I.getName())); 4288 Vals.push_back(I.getName().size()); 4289 Vals.push_back(0); 4290 Vals.push_back(0); 4291 Vals.push_back(0); 4292 Vals.push_back(getEncodedLinkage(I)); 4293 4294 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4295 Vals.clear(); 4296 } 4297 } 4298 4299 void ThinLinkBitcodeWriter::write() { 4300 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4301 4302 writeModuleVersion(); 4303 4304 writeSimplifiedModuleInfo(); 4305 4306 writePerModuleGlobalValueSummary(); 4307 4308 // Write module hash. 4309 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4310 4311 Stream.ExitBlock(); 4312 } 4313 4314 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4315 const ModuleSummaryIndex &Index, 4316 const ModuleHash &ModHash) { 4317 assert(!WroteStrtab); 4318 4319 // The Mods vector is used by irsymtab::build, which requires non-const 4320 // Modules in case it needs to materialize metadata. But the bitcode writer 4321 // requires that the module is materialized, so we can cast to non-const here, 4322 // after checking that it is in fact materialized. 4323 assert(M.isMaterialized()); 4324 Mods.push_back(const_cast<Module *>(&M)); 4325 4326 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4327 ModHash); 4328 ThinLinkWriter.write(); 4329 } 4330 4331 // Write the specified thin link bitcode file to the given raw output stream, 4332 // where it will be written in a new bitcode block. This is used when 4333 // writing the per-module index file for ThinLTO. 4334 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4335 const ModuleSummaryIndex &Index, 4336 const ModuleHash &ModHash) { 4337 SmallVector<char, 0> Buffer; 4338 Buffer.reserve(256 * 1024); 4339 4340 BitcodeWriter Writer(Buffer); 4341 Writer.writeThinLinkBitcode(M, Index, ModHash); 4342 Writer.writeSymtab(); 4343 Writer.writeStrtab(); 4344 4345 Out.write((char *)&Buffer.front(), Buffer.size()); 4346 } 4347