1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/BlockFrequencyInfo.h" 18 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Bitcode/BitstreamWriter.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/UseListOrder.h" 36 #include "llvm/IR/ValueSymbolTable.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/Program.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cctype> 43 #include <map> 44 using namespace llvm; 45 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 73 switch (Opcode) { 74 default: llvm_unreachable("Unknown cast instruction!"); 75 case Instruction::Trunc : return bitc::CAST_TRUNC; 76 case Instruction::ZExt : return bitc::CAST_ZEXT; 77 case Instruction::SExt : return bitc::CAST_SEXT; 78 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 79 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 80 case Instruction::UIToFP : return bitc::CAST_UITOFP; 81 case Instruction::SIToFP : return bitc::CAST_SITOFP; 82 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 83 case Instruction::FPExt : return bitc::CAST_FPEXT; 84 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 85 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 86 case Instruction::BitCast : return bitc::CAST_BITCAST; 87 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 88 } 89 } 90 91 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 92 switch (Opcode) { 93 default: llvm_unreachable("Unknown binary instruction!"); 94 case Instruction::Add: 95 case Instruction::FAdd: return bitc::BINOP_ADD; 96 case Instruction::Sub: 97 case Instruction::FSub: return bitc::BINOP_SUB; 98 case Instruction::Mul: 99 case Instruction::FMul: return bitc::BINOP_MUL; 100 case Instruction::UDiv: return bitc::BINOP_UDIV; 101 case Instruction::FDiv: 102 case Instruction::SDiv: return bitc::BINOP_SDIV; 103 case Instruction::URem: return bitc::BINOP_UREM; 104 case Instruction::FRem: 105 case Instruction::SRem: return bitc::BINOP_SREM; 106 case Instruction::Shl: return bitc::BINOP_SHL; 107 case Instruction::LShr: return bitc::BINOP_LSHR; 108 case Instruction::AShr: return bitc::BINOP_ASHR; 109 case Instruction::And: return bitc::BINOP_AND; 110 case Instruction::Or: return bitc::BINOP_OR; 111 case Instruction::Xor: return bitc::BINOP_XOR; 112 } 113 } 114 115 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 116 switch (Op) { 117 default: llvm_unreachable("Unknown RMW operation!"); 118 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 119 case AtomicRMWInst::Add: return bitc::RMW_ADD; 120 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 121 case AtomicRMWInst::And: return bitc::RMW_AND; 122 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 123 case AtomicRMWInst::Or: return bitc::RMW_OR; 124 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 125 case AtomicRMWInst::Max: return bitc::RMW_MAX; 126 case AtomicRMWInst::Min: return bitc::RMW_MIN; 127 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 128 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 129 } 130 } 131 132 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 133 switch (Ordering) { 134 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 135 case Unordered: return bitc::ORDERING_UNORDERED; 136 case Monotonic: return bitc::ORDERING_MONOTONIC; 137 case Acquire: return bitc::ORDERING_ACQUIRE; 138 case Release: return bitc::ORDERING_RELEASE; 139 case AcquireRelease: return bitc::ORDERING_ACQREL; 140 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 141 } 142 llvm_unreachable("Invalid ordering"); 143 } 144 145 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 146 switch (SynchScope) { 147 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 148 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 149 } 150 llvm_unreachable("Invalid synch scope"); 151 } 152 153 static void WriteStringRecord(unsigned Code, StringRef Str, 154 unsigned AbbrevToUse, BitstreamWriter &Stream) { 155 SmallVector<unsigned, 64> Vals; 156 157 // Code: [strchar x N] 158 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 159 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 160 AbbrevToUse = 0; 161 Vals.push_back(Str[i]); 162 } 163 164 // Emit the finished record. 165 Stream.EmitRecord(Code, Vals, AbbrevToUse); 166 } 167 168 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 169 switch (Kind) { 170 case Attribute::Alignment: 171 return bitc::ATTR_KIND_ALIGNMENT; 172 case Attribute::AlwaysInline: 173 return bitc::ATTR_KIND_ALWAYS_INLINE; 174 case Attribute::ArgMemOnly: 175 return bitc::ATTR_KIND_ARGMEMONLY; 176 case Attribute::Builtin: 177 return bitc::ATTR_KIND_BUILTIN; 178 case Attribute::ByVal: 179 return bitc::ATTR_KIND_BY_VAL; 180 case Attribute::Convergent: 181 return bitc::ATTR_KIND_CONVERGENT; 182 case Attribute::InAlloca: 183 return bitc::ATTR_KIND_IN_ALLOCA; 184 case Attribute::Cold: 185 return bitc::ATTR_KIND_COLD; 186 case Attribute::InaccessibleMemOnly: 187 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 188 case Attribute::InaccessibleMemOrArgMemOnly: 189 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 190 case Attribute::InlineHint: 191 return bitc::ATTR_KIND_INLINE_HINT; 192 case Attribute::InReg: 193 return bitc::ATTR_KIND_IN_REG; 194 case Attribute::JumpTable: 195 return bitc::ATTR_KIND_JUMP_TABLE; 196 case Attribute::MinSize: 197 return bitc::ATTR_KIND_MIN_SIZE; 198 case Attribute::Naked: 199 return bitc::ATTR_KIND_NAKED; 200 case Attribute::Nest: 201 return bitc::ATTR_KIND_NEST; 202 case Attribute::NoAlias: 203 return bitc::ATTR_KIND_NO_ALIAS; 204 case Attribute::NoBuiltin: 205 return bitc::ATTR_KIND_NO_BUILTIN; 206 case Attribute::NoCapture: 207 return bitc::ATTR_KIND_NO_CAPTURE; 208 case Attribute::NoDuplicate: 209 return bitc::ATTR_KIND_NO_DUPLICATE; 210 case Attribute::NoImplicitFloat: 211 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 212 case Attribute::NoInline: 213 return bitc::ATTR_KIND_NO_INLINE; 214 case Attribute::NoRecurse: 215 return bitc::ATTR_KIND_NO_RECURSE; 216 case Attribute::NonLazyBind: 217 return bitc::ATTR_KIND_NON_LAZY_BIND; 218 case Attribute::NonNull: 219 return bitc::ATTR_KIND_NON_NULL; 220 case Attribute::Dereferenceable: 221 return bitc::ATTR_KIND_DEREFERENCEABLE; 222 case Attribute::DereferenceableOrNull: 223 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 224 case Attribute::NoRedZone: 225 return bitc::ATTR_KIND_NO_RED_ZONE; 226 case Attribute::NoReturn: 227 return bitc::ATTR_KIND_NO_RETURN; 228 case Attribute::NoUnwind: 229 return bitc::ATTR_KIND_NO_UNWIND; 230 case Attribute::OptimizeForSize: 231 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 232 case Attribute::OptimizeNone: 233 return bitc::ATTR_KIND_OPTIMIZE_NONE; 234 case Attribute::ReadNone: 235 return bitc::ATTR_KIND_READ_NONE; 236 case Attribute::ReadOnly: 237 return bitc::ATTR_KIND_READ_ONLY; 238 case Attribute::Returned: 239 return bitc::ATTR_KIND_RETURNED; 240 case Attribute::ReturnsTwice: 241 return bitc::ATTR_KIND_RETURNS_TWICE; 242 case Attribute::SExt: 243 return bitc::ATTR_KIND_S_EXT; 244 case Attribute::StackAlignment: 245 return bitc::ATTR_KIND_STACK_ALIGNMENT; 246 case Attribute::StackProtect: 247 return bitc::ATTR_KIND_STACK_PROTECT; 248 case Attribute::StackProtectReq: 249 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 250 case Attribute::StackProtectStrong: 251 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 252 case Attribute::SafeStack: 253 return bitc::ATTR_KIND_SAFESTACK; 254 case Attribute::StructRet: 255 return bitc::ATTR_KIND_STRUCT_RET; 256 case Attribute::SanitizeAddress: 257 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 258 case Attribute::SanitizeThread: 259 return bitc::ATTR_KIND_SANITIZE_THREAD; 260 case Attribute::SanitizeMemory: 261 return bitc::ATTR_KIND_SANITIZE_MEMORY; 262 case Attribute::UWTable: 263 return bitc::ATTR_KIND_UW_TABLE; 264 case Attribute::ZExt: 265 return bitc::ATTR_KIND_Z_EXT; 266 case Attribute::EndAttrKinds: 267 llvm_unreachable("Can not encode end-attribute kinds marker."); 268 case Attribute::None: 269 llvm_unreachable("Can not encode none-attribute."); 270 } 271 272 llvm_unreachable("Trying to encode unknown attribute"); 273 } 274 275 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 276 BitstreamWriter &Stream) { 277 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 278 if (AttrGrps.empty()) return; 279 280 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 281 282 SmallVector<uint64_t, 64> Record; 283 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 284 AttributeSet AS = AttrGrps[i]; 285 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 286 AttributeSet A = AS.getSlotAttributes(i); 287 288 Record.push_back(VE.getAttributeGroupID(A)); 289 Record.push_back(AS.getSlotIndex(i)); 290 291 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 292 I != E; ++I) { 293 Attribute Attr = *I; 294 if (Attr.isEnumAttribute()) { 295 Record.push_back(0); 296 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 297 } else if (Attr.isIntAttribute()) { 298 Record.push_back(1); 299 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 300 Record.push_back(Attr.getValueAsInt()); 301 } else { 302 StringRef Kind = Attr.getKindAsString(); 303 StringRef Val = Attr.getValueAsString(); 304 305 Record.push_back(Val.empty() ? 3 : 4); 306 Record.append(Kind.begin(), Kind.end()); 307 Record.push_back(0); 308 if (!Val.empty()) { 309 Record.append(Val.begin(), Val.end()); 310 Record.push_back(0); 311 } 312 } 313 } 314 315 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 316 Record.clear(); 317 } 318 } 319 320 Stream.ExitBlock(); 321 } 322 323 static void WriteAttributeTable(const ValueEnumerator &VE, 324 BitstreamWriter &Stream) { 325 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 326 if (Attrs.empty()) return; 327 328 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 329 330 SmallVector<uint64_t, 64> Record; 331 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 332 const AttributeSet &A = Attrs[i]; 333 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 334 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 335 336 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 337 Record.clear(); 338 } 339 340 Stream.ExitBlock(); 341 } 342 343 /// WriteTypeTable - Write out the type table for a module. 344 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 345 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 346 347 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 348 SmallVector<uint64_t, 64> TypeVals; 349 350 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 351 352 // Abbrev for TYPE_CODE_POINTER. 353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 356 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 357 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_FUNCTION. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_STRUCT_ANON. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Abbrev for TYPE_CODE_STRUCT_NAME. 378 Abbv = new BitCodeAbbrev(); 379 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 382 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Abbrev for TYPE_CODE_STRUCT_NAMED. 385 Abbv = new BitCodeAbbrev(); 386 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 390 391 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 392 393 // Abbrev for TYPE_CODE_ARRAY. 394 Abbv = new BitCodeAbbrev(); 395 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 398 399 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 400 401 // Emit an entry count so the reader can reserve space. 402 TypeVals.push_back(TypeList.size()); 403 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 404 TypeVals.clear(); 405 406 // Loop over all of the types, emitting each in turn. 407 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 408 Type *T = TypeList[i]; 409 int AbbrevToUse = 0; 410 unsigned Code = 0; 411 412 switch (T->getTypeID()) { 413 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 414 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 415 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 416 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 417 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 418 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 419 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 420 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 421 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 422 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 423 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 424 case Type::IntegerTyID: 425 // INTEGER: [width] 426 Code = bitc::TYPE_CODE_INTEGER; 427 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 428 break; 429 case Type::PointerTyID: { 430 PointerType *PTy = cast<PointerType>(T); 431 // POINTER: [pointee type, address space] 432 Code = bitc::TYPE_CODE_POINTER; 433 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 434 unsigned AddressSpace = PTy->getAddressSpace(); 435 TypeVals.push_back(AddressSpace); 436 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 437 break; 438 } 439 case Type::FunctionTyID: { 440 FunctionType *FT = cast<FunctionType>(T); 441 // FUNCTION: [isvararg, retty, paramty x N] 442 Code = bitc::TYPE_CODE_FUNCTION; 443 TypeVals.push_back(FT->isVarArg()); 444 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 445 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 446 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 447 AbbrevToUse = FunctionAbbrev; 448 break; 449 } 450 case Type::StructTyID: { 451 StructType *ST = cast<StructType>(T); 452 // STRUCT: [ispacked, eltty x N] 453 TypeVals.push_back(ST->isPacked()); 454 // Output all of the element types. 455 for (StructType::element_iterator I = ST->element_begin(), 456 E = ST->element_end(); I != E; ++I) 457 TypeVals.push_back(VE.getTypeID(*I)); 458 459 if (ST->isLiteral()) { 460 Code = bitc::TYPE_CODE_STRUCT_ANON; 461 AbbrevToUse = StructAnonAbbrev; 462 } else { 463 if (ST->isOpaque()) { 464 Code = bitc::TYPE_CODE_OPAQUE; 465 } else { 466 Code = bitc::TYPE_CODE_STRUCT_NAMED; 467 AbbrevToUse = StructNamedAbbrev; 468 } 469 470 // Emit the name if it is present. 471 if (!ST->getName().empty()) 472 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 473 StructNameAbbrev, Stream); 474 } 475 break; 476 } 477 case Type::ArrayTyID: { 478 ArrayType *AT = cast<ArrayType>(T); 479 // ARRAY: [numelts, eltty] 480 Code = bitc::TYPE_CODE_ARRAY; 481 TypeVals.push_back(AT->getNumElements()); 482 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 483 AbbrevToUse = ArrayAbbrev; 484 break; 485 } 486 case Type::VectorTyID: { 487 VectorType *VT = cast<VectorType>(T); 488 // VECTOR [numelts, eltty] 489 Code = bitc::TYPE_CODE_VECTOR; 490 TypeVals.push_back(VT->getNumElements()); 491 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 492 break; 493 } 494 } 495 496 // Emit the finished record. 497 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 498 TypeVals.clear(); 499 } 500 501 Stream.ExitBlock(); 502 } 503 504 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 505 switch (Linkage) { 506 case GlobalValue::ExternalLinkage: 507 return 0; 508 case GlobalValue::WeakAnyLinkage: 509 return 16; 510 case GlobalValue::AppendingLinkage: 511 return 2; 512 case GlobalValue::InternalLinkage: 513 return 3; 514 case GlobalValue::LinkOnceAnyLinkage: 515 return 18; 516 case GlobalValue::ExternalWeakLinkage: 517 return 7; 518 case GlobalValue::CommonLinkage: 519 return 8; 520 case GlobalValue::PrivateLinkage: 521 return 9; 522 case GlobalValue::WeakODRLinkage: 523 return 17; 524 case GlobalValue::LinkOnceODRLinkage: 525 return 19; 526 case GlobalValue::AvailableExternallyLinkage: 527 return 12; 528 } 529 llvm_unreachable("Invalid linkage"); 530 } 531 532 static unsigned getEncodedLinkage(const GlobalValue &GV) { 533 return getEncodedLinkage(GV.getLinkage()); 534 } 535 536 static unsigned getEncodedVisibility(const GlobalValue &GV) { 537 switch (GV.getVisibility()) { 538 case GlobalValue::DefaultVisibility: return 0; 539 case GlobalValue::HiddenVisibility: return 1; 540 case GlobalValue::ProtectedVisibility: return 2; 541 } 542 llvm_unreachable("Invalid visibility"); 543 } 544 545 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 546 switch (GV.getDLLStorageClass()) { 547 case GlobalValue::DefaultStorageClass: return 0; 548 case GlobalValue::DLLImportStorageClass: return 1; 549 case GlobalValue::DLLExportStorageClass: return 2; 550 } 551 llvm_unreachable("Invalid DLL storage class"); 552 } 553 554 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 555 switch (GV.getThreadLocalMode()) { 556 case GlobalVariable::NotThreadLocal: return 0; 557 case GlobalVariable::GeneralDynamicTLSModel: return 1; 558 case GlobalVariable::LocalDynamicTLSModel: return 2; 559 case GlobalVariable::InitialExecTLSModel: return 3; 560 case GlobalVariable::LocalExecTLSModel: return 4; 561 } 562 llvm_unreachable("Invalid TLS model"); 563 } 564 565 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 566 switch (C.getSelectionKind()) { 567 case Comdat::Any: 568 return bitc::COMDAT_SELECTION_KIND_ANY; 569 case Comdat::ExactMatch: 570 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 571 case Comdat::Largest: 572 return bitc::COMDAT_SELECTION_KIND_LARGEST; 573 case Comdat::NoDuplicates: 574 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 575 case Comdat::SameSize: 576 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 577 } 578 llvm_unreachable("Invalid selection kind"); 579 } 580 581 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 582 SmallVector<unsigned, 64> Vals; 583 for (const Comdat *C : VE.getComdats()) { 584 // COMDAT: [selection_kind, name] 585 Vals.push_back(getEncodedComdatSelectionKind(*C)); 586 size_t Size = C->getName().size(); 587 assert(isUInt<32>(Size)); 588 Vals.push_back(Size); 589 for (char Chr : C->getName()) 590 Vals.push_back((unsigned char)Chr); 591 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 592 Vals.clear(); 593 } 594 } 595 596 /// Write a record that will eventually hold the word offset of the 597 /// module-level VST. For now the offset is 0, which will be backpatched 598 /// after the real VST is written. Returns the bit offset to backpatch. 599 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 600 // Write a placeholder value in for the offset of the real VST, 601 // which is written after the function blocks so that it can include 602 // the offset of each function. The placeholder offset will be 603 // updated when the real VST is written. 604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 605 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 606 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 607 // hold the real VST offset. Must use fixed instead of VBR as we don't 608 // know how many VBR chunks to reserve ahead of time. 609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 610 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 611 612 // Emit the placeholder 613 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 614 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 615 616 // Compute and return the bit offset to the placeholder, which will be 617 // patched when the real VST is written. We can simply subtract the 32-bit 618 // fixed size from the current bit number to get the location to backpatch. 619 return Stream.GetCurrentBitNo() - 32; 620 } 621 622 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 623 624 /// Determine the encoding to use for the given string name and length. 625 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 626 bool isChar6 = true; 627 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 628 if (isChar6) 629 isChar6 = BitCodeAbbrevOp::isChar6(*C); 630 if ((unsigned char)*C & 128) 631 // don't bother scanning the rest. 632 return SE_Fixed8; 633 } 634 if (isChar6) 635 return SE_Char6; 636 else 637 return SE_Fixed7; 638 } 639 640 /// Emit top-level description of module, including target triple, inline asm, 641 /// descriptors for global variables, and function prototype info. 642 /// Returns the bit offset to backpatch with the location of the real VST. 643 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 644 BitstreamWriter &Stream) { 645 // Emit various pieces of data attached to a module. 646 if (!M->getTargetTriple().empty()) 647 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 648 0/*TODO*/, Stream); 649 const std::string &DL = M->getDataLayoutStr(); 650 if (!DL.empty()) 651 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 652 if (!M->getModuleInlineAsm().empty()) 653 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 654 0/*TODO*/, Stream); 655 656 // Emit information about sections and GC, computing how many there are. Also 657 // compute the maximum alignment value. 658 std::map<std::string, unsigned> SectionMap; 659 std::map<std::string, unsigned> GCMap; 660 unsigned MaxAlignment = 0; 661 unsigned MaxGlobalType = 0; 662 for (const GlobalValue &GV : M->globals()) { 663 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 664 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 665 if (GV.hasSection()) { 666 // Give section names unique ID's. 667 unsigned &Entry = SectionMap[GV.getSection()]; 668 if (!Entry) { 669 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 670 0/*TODO*/, Stream); 671 Entry = SectionMap.size(); 672 } 673 } 674 } 675 for (const Function &F : *M) { 676 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 677 if (F.hasSection()) { 678 // Give section names unique ID's. 679 unsigned &Entry = SectionMap[F.getSection()]; 680 if (!Entry) { 681 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 682 0/*TODO*/, Stream); 683 Entry = SectionMap.size(); 684 } 685 } 686 if (F.hasGC()) { 687 // Same for GC names. 688 unsigned &Entry = GCMap[F.getGC()]; 689 if (!Entry) { 690 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 691 0/*TODO*/, Stream); 692 Entry = GCMap.size(); 693 } 694 } 695 } 696 697 // Emit abbrev for globals, now that we know # sections and max alignment. 698 unsigned SimpleGVarAbbrev = 0; 699 if (!M->global_empty()) { 700 // Add an abbrev for common globals with no visibility or thread localness. 701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 702 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 704 Log2_32_Ceil(MaxGlobalType+1))); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 706 //| explicitType << 1 707 //| constant 708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 710 if (MaxAlignment == 0) // Alignment. 711 Abbv->Add(BitCodeAbbrevOp(0)); 712 else { 713 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 715 Log2_32_Ceil(MaxEncAlignment+1))); 716 } 717 if (SectionMap.empty()) // Section. 718 Abbv->Add(BitCodeAbbrevOp(0)); 719 else 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 721 Log2_32_Ceil(SectionMap.size()+1))); 722 // Don't bother emitting vis + thread local. 723 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 724 } 725 726 // Emit the global variable information. 727 SmallVector<unsigned, 64> Vals; 728 for (const GlobalVariable &GV : M->globals()) { 729 unsigned AbbrevToUse = 0; 730 731 // GLOBALVAR: [type, isconst, initid, 732 // linkage, alignment, section, visibility, threadlocal, 733 // unnamed_addr, externally_initialized, dllstorageclass, 734 // comdat] 735 Vals.push_back(VE.getTypeID(GV.getValueType())); 736 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 737 Vals.push_back(GV.isDeclaration() ? 0 : 738 (VE.getValueID(GV.getInitializer()) + 1)); 739 Vals.push_back(getEncodedLinkage(GV)); 740 Vals.push_back(Log2_32(GV.getAlignment())+1); 741 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 742 if (GV.isThreadLocal() || 743 GV.getVisibility() != GlobalValue::DefaultVisibility || 744 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 745 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 746 GV.hasComdat()) { 747 Vals.push_back(getEncodedVisibility(GV)); 748 Vals.push_back(getEncodedThreadLocalMode(GV)); 749 Vals.push_back(GV.hasUnnamedAddr()); 750 Vals.push_back(GV.isExternallyInitialized()); 751 Vals.push_back(getEncodedDLLStorageClass(GV)); 752 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 753 } else { 754 AbbrevToUse = SimpleGVarAbbrev; 755 } 756 757 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 758 Vals.clear(); 759 } 760 761 // Emit the function proto information. 762 for (const Function &F : *M) { 763 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 764 // section, visibility, gc, unnamed_addr, prologuedata, 765 // dllstorageclass, comdat, prefixdata, personalityfn] 766 Vals.push_back(VE.getTypeID(F.getFunctionType())); 767 Vals.push_back(F.getCallingConv()); 768 Vals.push_back(F.isDeclaration()); 769 Vals.push_back(getEncodedLinkage(F)); 770 Vals.push_back(VE.getAttributeID(F.getAttributes())); 771 Vals.push_back(Log2_32(F.getAlignment())+1); 772 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 773 Vals.push_back(getEncodedVisibility(F)); 774 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 775 Vals.push_back(F.hasUnnamedAddr()); 776 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 777 : 0); 778 Vals.push_back(getEncodedDLLStorageClass(F)); 779 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 780 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 781 : 0); 782 Vals.push_back( 783 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 784 785 unsigned AbbrevToUse = 0; 786 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 787 Vals.clear(); 788 } 789 790 // Emit the alias information. 791 for (const GlobalAlias &A : M->aliases()) { 792 // ALIAS: [alias type, aliasee val#, linkage, visibility] 793 Vals.push_back(VE.getTypeID(A.getValueType())); 794 Vals.push_back(A.getType()->getAddressSpace()); 795 Vals.push_back(VE.getValueID(A.getAliasee())); 796 Vals.push_back(getEncodedLinkage(A)); 797 Vals.push_back(getEncodedVisibility(A)); 798 Vals.push_back(getEncodedDLLStorageClass(A)); 799 Vals.push_back(getEncodedThreadLocalMode(A)); 800 Vals.push_back(A.hasUnnamedAddr()); 801 unsigned AbbrevToUse = 0; 802 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 803 Vals.clear(); 804 } 805 806 // Emit the module's source file name. 807 { 808 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 809 M->getSourceFileName().size()); 810 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 811 if (Bits == SE_Char6) 812 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 813 else if (Bits == SE_Fixed7) 814 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 815 816 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 817 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 818 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 820 Abbv->Add(AbbrevOpToUse); 821 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 822 823 for (const auto P : M->getSourceFileName()) 824 Vals.push_back((unsigned char)P); 825 826 // Emit the finished record. 827 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 828 Vals.clear(); 829 } 830 831 // If we have a VST, write the VSTOFFSET record placeholder and return 832 // its offset. 833 if (M->getValueSymbolTable().empty()) 834 return 0; 835 return WriteValueSymbolTableForwardDecl(Stream); 836 } 837 838 static uint64_t GetOptimizationFlags(const Value *V) { 839 uint64_t Flags = 0; 840 841 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 842 if (OBO->hasNoSignedWrap()) 843 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 844 if (OBO->hasNoUnsignedWrap()) 845 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 846 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 847 if (PEO->isExact()) 848 Flags |= 1 << bitc::PEO_EXACT; 849 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 850 if (FPMO->hasUnsafeAlgebra()) 851 Flags |= FastMathFlags::UnsafeAlgebra; 852 if (FPMO->hasNoNaNs()) 853 Flags |= FastMathFlags::NoNaNs; 854 if (FPMO->hasNoInfs()) 855 Flags |= FastMathFlags::NoInfs; 856 if (FPMO->hasNoSignedZeros()) 857 Flags |= FastMathFlags::NoSignedZeros; 858 if (FPMO->hasAllowReciprocal()) 859 Flags |= FastMathFlags::AllowReciprocal; 860 } 861 862 return Flags; 863 } 864 865 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 866 const ValueEnumerator &VE, 867 BitstreamWriter &Stream, 868 SmallVectorImpl<uint64_t> &Record) { 869 // Mimic an MDNode with a value as one operand. 870 Value *V = MD->getValue(); 871 Record.push_back(VE.getTypeID(V->getType())); 872 Record.push_back(VE.getValueID(V)); 873 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 874 Record.clear(); 875 } 876 877 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 878 BitstreamWriter &Stream, 879 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 880 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 881 Metadata *MD = N->getOperand(i); 882 assert(!(MD && isa<LocalAsMetadata>(MD)) && 883 "Unexpected function-local metadata"); 884 Record.push_back(VE.getMetadataOrNullID(MD)); 885 } 886 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 887 : bitc::METADATA_NODE, 888 Record, Abbrev); 889 Record.clear(); 890 } 891 892 static unsigned createDILocationAbbrev(BitstreamWriter &Stream) { 893 // Assume the column is usually under 128, and always output the inlined-at 894 // location (it's never more expensive than building an array size 1). 895 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 896 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 902 return Stream.EmitAbbrev(Abbv); 903 } 904 905 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 906 BitstreamWriter &Stream, 907 SmallVectorImpl<uint64_t> &Record, 908 unsigned &Abbrev) { 909 if (!Abbrev) 910 Abbrev = createDILocationAbbrev(Stream); 911 912 Record.push_back(N->isDistinct()); 913 Record.push_back(N->getLine()); 914 Record.push_back(N->getColumn()); 915 Record.push_back(VE.getMetadataID(N->getScope())); 916 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 917 918 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 919 Record.clear(); 920 } 921 922 static unsigned createGenericDINodeAbbrev(BitstreamWriter &Stream) { 923 // Assume the column is usually under 128, and always output the inlined-at 924 // location (it's never more expensive than building an array size 1). 925 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 926 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 933 return Stream.EmitAbbrev(Abbv); 934 } 935 936 static void WriteGenericDINode(const GenericDINode *N, 937 const ValueEnumerator &VE, 938 BitstreamWriter &Stream, 939 SmallVectorImpl<uint64_t> &Record, 940 unsigned &Abbrev) { 941 if (!Abbrev) 942 Abbrev = createGenericDINodeAbbrev(Stream); 943 944 Record.push_back(N->isDistinct()); 945 Record.push_back(N->getTag()); 946 Record.push_back(0); // Per-tag version field; unused for now. 947 948 for (auto &I : N->operands()) 949 Record.push_back(VE.getMetadataOrNullID(I)); 950 951 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 952 Record.clear(); 953 } 954 955 static uint64_t rotateSign(int64_t I) { 956 uint64_t U = I; 957 return I < 0 ? ~(U << 1) : U << 1; 958 } 959 960 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 961 BitstreamWriter &Stream, 962 SmallVectorImpl<uint64_t> &Record, 963 unsigned Abbrev) { 964 Record.push_back(N->isDistinct()); 965 Record.push_back(N->getCount()); 966 Record.push_back(rotateSign(N->getLowerBound())); 967 968 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 969 Record.clear(); 970 } 971 972 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 973 BitstreamWriter &Stream, 974 SmallVectorImpl<uint64_t> &Record, 975 unsigned Abbrev) { 976 Record.push_back(N->isDistinct()); 977 Record.push_back(rotateSign(N->getValue())); 978 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 979 980 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 981 Record.clear(); 982 } 983 984 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 985 BitstreamWriter &Stream, 986 SmallVectorImpl<uint64_t> &Record, 987 unsigned Abbrev) { 988 Record.push_back(N->isDistinct()); 989 Record.push_back(N->getTag()); 990 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 991 Record.push_back(N->getSizeInBits()); 992 Record.push_back(N->getAlignInBits()); 993 Record.push_back(N->getEncoding()); 994 995 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 996 Record.clear(); 997 } 998 999 static void WriteDIDerivedType(const DIDerivedType *N, 1000 const ValueEnumerator &VE, 1001 BitstreamWriter &Stream, 1002 SmallVectorImpl<uint64_t> &Record, 1003 unsigned Abbrev) { 1004 Record.push_back(N->isDistinct()); 1005 Record.push_back(N->getTag()); 1006 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1007 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1008 Record.push_back(N->getLine()); 1009 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1010 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1011 Record.push_back(N->getSizeInBits()); 1012 Record.push_back(N->getAlignInBits()); 1013 Record.push_back(N->getOffsetInBits()); 1014 Record.push_back(N->getFlags()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1016 1017 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1018 Record.clear(); 1019 } 1020 1021 static void WriteDICompositeType(const DICompositeType *N, 1022 const ValueEnumerator &VE, 1023 BitstreamWriter &Stream, 1024 SmallVectorImpl<uint64_t> &Record, 1025 unsigned Abbrev) { 1026 Record.push_back(N->isDistinct()); 1027 Record.push_back(N->getTag()); 1028 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1029 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1030 Record.push_back(N->getLine()); 1031 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1033 Record.push_back(N->getSizeInBits()); 1034 Record.push_back(N->getAlignInBits()); 1035 Record.push_back(N->getOffsetInBits()); 1036 Record.push_back(N->getFlags()); 1037 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1038 Record.push_back(N->getRuntimeLang()); 1039 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1040 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1041 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1042 1043 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1044 Record.clear(); 1045 } 1046 1047 static void WriteDISubroutineType(const DISubroutineType *N, 1048 const ValueEnumerator &VE, 1049 BitstreamWriter &Stream, 1050 SmallVectorImpl<uint64_t> &Record, 1051 unsigned Abbrev) { 1052 Record.push_back(N->isDistinct()); 1053 Record.push_back(N->getFlags()); 1054 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1055 1056 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1057 Record.clear(); 1058 } 1059 1060 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 1061 BitstreamWriter &Stream, 1062 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1063 Record.push_back(N->isDistinct()); 1064 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1065 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1066 1067 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1068 Record.clear(); 1069 } 1070 1071 static void WriteDICompileUnit(const DICompileUnit *N, 1072 const ValueEnumerator &VE, 1073 BitstreamWriter &Stream, 1074 SmallVectorImpl<uint64_t> &Record, 1075 unsigned Abbrev) { 1076 assert(N->isDistinct() && "Expected distinct compile units"); 1077 Record.push_back(/* IsDistinct */ true); 1078 Record.push_back(N->getSourceLanguage()); 1079 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1080 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1081 Record.push_back(N->isOptimized()); 1082 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1083 Record.push_back(N->getRuntimeVersion()); 1084 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1085 Record.push_back(N->getEmissionKind()); 1086 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1087 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1088 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1089 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1090 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1091 Record.push_back(N->getDWOId()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1093 1094 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1095 Record.clear(); 1096 } 1097 1098 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1099 BitstreamWriter &Stream, 1100 SmallVectorImpl<uint64_t> &Record, 1101 unsigned Abbrev) { 1102 Record.push_back(N->isDistinct()); 1103 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1104 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1105 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1106 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1107 Record.push_back(N->getLine()); 1108 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1109 Record.push_back(N->isLocalToUnit()); 1110 Record.push_back(N->isDefinition()); 1111 Record.push_back(N->getScopeLine()); 1112 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1113 Record.push_back(N->getVirtuality()); 1114 Record.push_back(N->getVirtualIndex()); 1115 Record.push_back(N->getFlags()); 1116 Record.push_back(N->isOptimized()); 1117 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1118 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1120 1121 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1122 Record.clear(); 1123 } 1124 1125 static void WriteDILexicalBlock(const DILexicalBlock *N, 1126 const ValueEnumerator &VE, 1127 BitstreamWriter &Stream, 1128 SmallVectorImpl<uint64_t> &Record, 1129 unsigned Abbrev) { 1130 Record.push_back(N->isDistinct()); 1131 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1132 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1133 Record.push_back(N->getLine()); 1134 Record.push_back(N->getColumn()); 1135 1136 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1137 Record.clear(); 1138 } 1139 1140 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1141 const ValueEnumerator &VE, 1142 BitstreamWriter &Stream, 1143 SmallVectorImpl<uint64_t> &Record, 1144 unsigned Abbrev) { 1145 Record.push_back(N->isDistinct()); 1146 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1147 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1148 Record.push_back(N->getDiscriminator()); 1149 1150 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1151 Record.clear(); 1152 } 1153 1154 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1155 BitstreamWriter &Stream, 1156 SmallVectorImpl<uint64_t> &Record, 1157 unsigned Abbrev) { 1158 Record.push_back(N->isDistinct()); 1159 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1160 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1161 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1162 Record.push_back(N->getLine()); 1163 1164 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1165 Record.clear(); 1166 } 1167 1168 static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1169 BitstreamWriter &Stream, 1170 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1171 Record.push_back(N->isDistinct()); 1172 Record.push_back(N->getMacinfoType()); 1173 Record.push_back(N->getLine()); 1174 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1175 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1176 1177 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1178 Record.clear(); 1179 } 1180 1181 static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1182 BitstreamWriter &Stream, 1183 SmallVectorImpl<uint64_t> &Record, 1184 unsigned Abbrev) { 1185 Record.push_back(N->isDistinct()); 1186 Record.push_back(N->getMacinfoType()); 1187 Record.push_back(N->getLine()); 1188 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1189 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1190 1191 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1192 Record.clear(); 1193 } 1194 1195 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1196 BitstreamWriter &Stream, 1197 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1198 Record.push_back(N->isDistinct()); 1199 for (auto &I : N->operands()) 1200 Record.push_back(VE.getMetadataOrNullID(I)); 1201 1202 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1203 Record.clear(); 1204 } 1205 1206 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1207 const ValueEnumerator &VE, 1208 BitstreamWriter &Stream, 1209 SmallVectorImpl<uint64_t> &Record, 1210 unsigned Abbrev) { 1211 Record.push_back(N->isDistinct()); 1212 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1213 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1214 1215 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1216 Record.clear(); 1217 } 1218 1219 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1220 const ValueEnumerator &VE, 1221 BitstreamWriter &Stream, 1222 SmallVectorImpl<uint64_t> &Record, 1223 unsigned Abbrev) { 1224 Record.push_back(N->isDistinct()); 1225 Record.push_back(N->getTag()); 1226 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1227 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1228 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1229 1230 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1231 Record.clear(); 1232 } 1233 1234 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1235 const ValueEnumerator &VE, 1236 BitstreamWriter &Stream, 1237 SmallVectorImpl<uint64_t> &Record, 1238 unsigned Abbrev) { 1239 Record.push_back(N->isDistinct()); 1240 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1241 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1242 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1243 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1244 Record.push_back(N->getLine()); 1245 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1246 Record.push_back(N->isLocalToUnit()); 1247 Record.push_back(N->isDefinition()); 1248 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1249 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1250 1251 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1252 Record.clear(); 1253 } 1254 1255 static void WriteDILocalVariable(const DILocalVariable *N, 1256 const ValueEnumerator &VE, 1257 BitstreamWriter &Stream, 1258 SmallVectorImpl<uint64_t> &Record, 1259 unsigned Abbrev) { 1260 Record.push_back(N->isDistinct()); 1261 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1262 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1263 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1264 Record.push_back(N->getLine()); 1265 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1266 Record.push_back(N->getArg()); 1267 Record.push_back(N->getFlags()); 1268 1269 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1270 Record.clear(); 1271 } 1272 1273 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1274 BitstreamWriter &Stream, 1275 SmallVectorImpl<uint64_t> &Record, 1276 unsigned Abbrev) { 1277 Record.reserve(N->getElements().size() + 1); 1278 1279 Record.push_back(N->isDistinct()); 1280 Record.append(N->elements_begin(), N->elements_end()); 1281 1282 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1283 Record.clear(); 1284 } 1285 1286 static void WriteDIObjCProperty(const DIObjCProperty *N, 1287 const ValueEnumerator &VE, 1288 BitstreamWriter &Stream, 1289 SmallVectorImpl<uint64_t> &Record, 1290 unsigned Abbrev) { 1291 Record.push_back(N->isDistinct()); 1292 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1293 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1294 Record.push_back(N->getLine()); 1295 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1296 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1297 Record.push_back(N->getAttributes()); 1298 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1299 1300 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1301 Record.clear(); 1302 } 1303 1304 static void WriteDIImportedEntity(const DIImportedEntity *N, 1305 const ValueEnumerator &VE, 1306 BitstreamWriter &Stream, 1307 SmallVectorImpl<uint64_t> &Record, 1308 unsigned Abbrev) { 1309 Record.push_back(N->isDistinct()); 1310 Record.push_back(N->getTag()); 1311 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1312 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1313 Record.push_back(N->getLine()); 1314 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1315 1316 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1317 Record.clear(); 1318 } 1319 1320 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1321 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1322 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1325 return Stream.EmitAbbrev(Abbv); 1326 } 1327 1328 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1329 BitstreamWriter &Stream, 1330 SmallVectorImpl<uint64_t> &Record) { 1331 if (M.named_metadata_empty()) 1332 return; 1333 1334 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1335 for (const NamedMDNode &NMD : M.named_metadata()) { 1336 // Write name. 1337 StringRef Str = NMD.getName(); 1338 Record.append(Str.bytes_begin(), Str.bytes_end()); 1339 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1340 Record.clear(); 1341 1342 // Write named metadata operands. 1343 for (const MDNode *N : NMD.operands()) 1344 Record.push_back(VE.getMetadataID(N)); 1345 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1346 Record.clear(); 1347 } 1348 } 1349 1350 static unsigned createMDStringDataAbbrev(BitstreamWriter &Stream) { 1351 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1352 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_BULK_STRING_DATA)); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1354 return Stream.EmitAbbrev(Abbv); 1355 } 1356 1357 static void emitMDStringBlob(unsigned DataAbbrev, 1358 ArrayRef<const Metadata *> Strings, 1359 BitstreamWriter &Stream, 1360 SmallVectorImpl<uint64_t> &Record, 1361 SmallString<4096> &Blob) { 1362 for (const Metadata *MD : Strings) { 1363 StringRef S = cast<MDString>(MD)->getString(); 1364 Record.push_back(S.size()); 1365 Blob.append(S.begin(), S.end()); 1366 } 1367 1368 Stream.EmitRecord(bitc::METADATA_BULK_STRING_SIZES, Record); 1369 Record.clear(); 1370 1371 Record.push_back(bitc::METADATA_BULK_STRING_DATA); 1372 Stream.EmitRecordWithBlob(DataAbbrev, Record, Blob); 1373 Record.clear(); 1374 } 1375 1376 /// Write out a section of records for MDString. 1377 /// 1378 /// All the MDString elements in a metadata block are emitted in bulk. They're 1379 /// grouped into blocks, and each block is emitted with pair of records: 1380 /// 1381 /// - SIZES: a list of the sizes of the strings in the block. 1382 /// - DATA: the blob itself. 1383 static void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 1384 BitstreamWriter &Stream, 1385 SmallVectorImpl<uint64_t> &Record) { 1386 if (Strings.empty()) 1387 return; 1388 1389 // Emit strings in large blocks to reduce record overhead. Somewhat 1390 // arbitrarily, limit this to 512 strings per blob: 1391 // - big enough to eliminate overhead; 1392 // - small enough that the reader's SIZES record will stay within a page. 1393 const size_t NumStringsPerBlob = 512; 1394 Record.reserve(std::min(NumStringsPerBlob, Strings.size())); 1395 1396 unsigned DataAbbrev = createMDStringDataAbbrev(Stream); 1397 SmallString<4096> Blob; 1398 while (Strings.size() > NumStringsPerBlob) { 1399 emitMDStringBlob(DataAbbrev, Strings.slice(0, NumStringsPerBlob), Stream, 1400 Record, Blob); 1401 Strings = Strings.slice(NumStringsPerBlob); 1402 } 1403 if (!Strings.empty()) 1404 emitMDStringBlob(DataAbbrev, Strings, Stream, Record, Blob); 1405 } 1406 1407 static void WriteModuleMetadata(const Module &M, 1408 const ValueEnumerator &VE, 1409 BitstreamWriter &Stream) { 1410 if (VE.getMDs().empty() && M.named_metadata_empty()) 1411 return; 1412 1413 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1414 1415 // Initialize MDNode abbreviations. 1416 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1417 #include "llvm/IR/Metadata.def" 1418 1419 SmallVector<uint64_t, 64> Record; 1420 writeMetadataStrings(VE.getMDStrings(), Stream, Record); 1421 for (const Metadata *MD : VE.getNonMDStrings()) { 1422 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1423 assert(N->isResolved() && "Expected forward references to be resolved"); 1424 1425 switch (N->getMetadataID()) { 1426 default: 1427 llvm_unreachable("Invalid MDNode subclass"); 1428 #define HANDLE_MDNODE_LEAF(CLASS) \ 1429 case Metadata::CLASS##Kind: \ 1430 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1431 continue; 1432 #include "llvm/IR/Metadata.def" 1433 } 1434 } 1435 WriteValueAsMetadata(cast<ConstantAsMetadata>(MD), VE, Stream, Record); 1436 } 1437 1438 writeNamedMetadata(M, VE, Stream, Record); 1439 Stream.ExitBlock(); 1440 } 1441 1442 static void WriteFunctionLocalMetadata(const Function &F, 1443 const ValueEnumerator &VE, 1444 BitstreamWriter &Stream) { 1445 bool StartedMetadataBlock = false; 1446 SmallVector<uint64_t, 64> Record; 1447 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1448 VE.getFunctionLocalMDs(); 1449 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1450 assert(MDs[i] && "Expected valid function-local metadata"); 1451 if (!StartedMetadataBlock) { 1452 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1453 StartedMetadataBlock = true; 1454 } 1455 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1456 } 1457 1458 if (StartedMetadataBlock) 1459 Stream.ExitBlock(); 1460 } 1461 1462 static void WriteMetadataAttachment(const Function &F, 1463 const ValueEnumerator &VE, 1464 BitstreamWriter &Stream) { 1465 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1466 1467 SmallVector<uint64_t, 64> Record; 1468 1469 // Write metadata attachments 1470 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1471 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1472 F.getAllMetadata(MDs); 1473 if (!MDs.empty()) { 1474 for (const auto &I : MDs) { 1475 Record.push_back(I.first); 1476 Record.push_back(VE.getMetadataID(I.second)); 1477 } 1478 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1479 Record.clear(); 1480 } 1481 1482 for (const BasicBlock &BB : F) 1483 for (const Instruction &I : BB) { 1484 MDs.clear(); 1485 I.getAllMetadataOtherThanDebugLoc(MDs); 1486 1487 // If no metadata, ignore instruction. 1488 if (MDs.empty()) continue; 1489 1490 Record.push_back(VE.getInstructionID(&I)); 1491 1492 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1493 Record.push_back(MDs[i].first); 1494 Record.push_back(VE.getMetadataID(MDs[i].second)); 1495 } 1496 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1497 Record.clear(); 1498 } 1499 1500 Stream.ExitBlock(); 1501 } 1502 1503 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1504 SmallVector<uint64_t, 64> Record; 1505 1506 // Write metadata kinds 1507 // METADATA_KIND - [n x [id, name]] 1508 SmallVector<StringRef, 8> Names; 1509 M->getMDKindNames(Names); 1510 1511 if (Names.empty()) return; 1512 1513 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1514 1515 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1516 Record.push_back(MDKindID); 1517 StringRef KName = Names[MDKindID]; 1518 Record.append(KName.begin(), KName.end()); 1519 1520 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1521 Record.clear(); 1522 } 1523 1524 Stream.ExitBlock(); 1525 } 1526 1527 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1528 // Write metadata kinds 1529 // 1530 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1531 // 1532 // OPERAND_BUNDLE_TAG - [strchr x N] 1533 1534 SmallVector<StringRef, 8> Tags; 1535 M->getOperandBundleTags(Tags); 1536 1537 if (Tags.empty()) 1538 return; 1539 1540 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1541 1542 SmallVector<uint64_t, 64> Record; 1543 1544 for (auto Tag : Tags) { 1545 Record.append(Tag.begin(), Tag.end()); 1546 1547 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1548 Record.clear(); 1549 } 1550 1551 Stream.ExitBlock(); 1552 } 1553 1554 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1555 if ((int64_t)V >= 0) 1556 Vals.push_back(V << 1); 1557 else 1558 Vals.push_back((-V << 1) | 1); 1559 } 1560 1561 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1562 const ValueEnumerator &VE, 1563 BitstreamWriter &Stream, bool isGlobal) { 1564 if (FirstVal == LastVal) return; 1565 1566 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1567 1568 unsigned AggregateAbbrev = 0; 1569 unsigned String8Abbrev = 0; 1570 unsigned CString7Abbrev = 0; 1571 unsigned CString6Abbrev = 0; 1572 // If this is a constant pool for the module, emit module-specific abbrevs. 1573 if (isGlobal) { 1574 // Abbrev for CST_CODE_AGGREGATE. 1575 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1576 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1579 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1580 1581 // Abbrev for CST_CODE_STRING. 1582 Abbv = new BitCodeAbbrev(); 1583 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1586 String8Abbrev = Stream.EmitAbbrev(Abbv); 1587 // Abbrev for CST_CODE_CSTRING. 1588 Abbv = new BitCodeAbbrev(); 1589 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1592 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1593 // Abbrev for CST_CODE_CSTRING. 1594 Abbv = new BitCodeAbbrev(); 1595 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1598 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1599 } 1600 1601 SmallVector<uint64_t, 64> Record; 1602 1603 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1604 Type *LastTy = nullptr; 1605 for (unsigned i = FirstVal; i != LastVal; ++i) { 1606 const Value *V = Vals[i].first; 1607 // If we need to switch types, do so now. 1608 if (V->getType() != LastTy) { 1609 LastTy = V->getType(); 1610 Record.push_back(VE.getTypeID(LastTy)); 1611 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1612 CONSTANTS_SETTYPE_ABBREV); 1613 Record.clear(); 1614 } 1615 1616 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1617 Record.push_back(unsigned(IA->hasSideEffects()) | 1618 unsigned(IA->isAlignStack()) << 1 | 1619 unsigned(IA->getDialect()&1) << 2); 1620 1621 // Add the asm string. 1622 const std::string &AsmStr = IA->getAsmString(); 1623 Record.push_back(AsmStr.size()); 1624 Record.append(AsmStr.begin(), AsmStr.end()); 1625 1626 // Add the constraint string. 1627 const std::string &ConstraintStr = IA->getConstraintString(); 1628 Record.push_back(ConstraintStr.size()); 1629 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1630 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1631 Record.clear(); 1632 continue; 1633 } 1634 const Constant *C = cast<Constant>(V); 1635 unsigned Code = -1U; 1636 unsigned AbbrevToUse = 0; 1637 if (C->isNullValue()) { 1638 Code = bitc::CST_CODE_NULL; 1639 } else if (isa<UndefValue>(C)) { 1640 Code = bitc::CST_CODE_UNDEF; 1641 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1642 if (IV->getBitWidth() <= 64) { 1643 uint64_t V = IV->getSExtValue(); 1644 emitSignedInt64(Record, V); 1645 Code = bitc::CST_CODE_INTEGER; 1646 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1647 } else { // Wide integers, > 64 bits in size. 1648 // We have an arbitrary precision integer value to write whose 1649 // bit width is > 64. However, in canonical unsigned integer 1650 // format it is likely that the high bits are going to be zero. 1651 // So, we only write the number of active words. 1652 unsigned NWords = IV->getValue().getActiveWords(); 1653 const uint64_t *RawWords = IV->getValue().getRawData(); 1654 for (unsigned i = 0; i != NWords; ++i) { 1655 emitSignedInt64(Record, RawWords[i]); 1656 } 1657 Code = bitc::CST_CODE_WIDE_INTEGER; 1658 } 1659 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1660 Code = bitc::CST_CODE_FLOAT; 1661 Type *Ty = CFP->getType(); 1662 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1663 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1664 } else if (Ty->isX86_FP80Ty()) { 1665 // api needed to prevent premature destruction 1666 // bits are not in the same order as a normal i80 APInt, compensate. 1667 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1668 const uint64_t *p = api.getRawData(); 1669 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1670 Record.push_back(p[0] & 0xffffLL); 1671 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1672 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1673 const uint64_t *p = api.getRawData(); 1674 Record.push_back(p[0]); 1675 Record.push_back(p[1]); 1676 } else { 1677 assert (0 && "Unknown FP type!"); 1678 } 1679 } else if (isa<ConstantDataSequential>(C) && 1680 cast<ConstantDataSequential>(C)->isString()) { 1681 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1682 // Emit constant strings specially. 1683 unsigned NumElts = Str->getNumElements(); 1684 // If this is a null-terminated string, use the denser CSTRING encoding. 1685 if (Str->isCString()) { 1686 Code = bitc::CST_CODE_CSTRING; 1687 --NumElts; // Don't encode the null, which isn't allowed by char6. 1688 } else { 1689 Code = bitc::CST_CODE_STRING; 1690 AbbrevToUse = String8Abbrev; 1691 } 1692 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1693 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1694 for (unsigned i = 0; i != NumElts; ++i) { 1695 unsigned char V = Str->getElementAsInteger(i); 1696 Record.push_back(V); 1697 isCStr7 &= (V & 128) == 0; 1698 if (isCStrChar6) 1699 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1700 } 1701 1702 if (isCStrChar6) 1703 AbbrevToUse = CString6Abbrev; 1704 else if (isCStr7) 1705 AbbrevToUse = CString7Abbrev; 1706 } else if (const ConstantDataSequential *CDS = 1707 dyn_cast<ConstantDataSequential>(C)) { 1708 Code = bitc::CST_CODE_DATA; 1709 Type *EltTy = CDS->getType()->getElementType(); 1710 if (isa<IntegerType>(EltTy)) { 1711 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1712 Record.push_back(CDS->getElementAsInteger(i)); 1713 } else { 1714 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1715 Record.push_back( 1716 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1717 } 1718 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1719 isa<ConstantVector>(C)) { 1720 Code = bitc::CST_CODE_AGGREGATE; 1721 for (const Value *Op : C->operands()) 1722 Record.push_back(VE.getValueID(Op)); 1723 AbbrevToUse = AggregateAbbrev; 1724 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1725 switch (CE->getOpcode()) { 1726 default: 1727 if (Instruction::isCast(CE->getOpcode())) { 1728 Code = bitc::CST_CODE_CE_CAST; 1729 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1730 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1731 Record.push_back(VE.getValueID(C->getOperand(0))); 1732 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1733 } else { 1734 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1735 Code = bitc::CST_CODE_CE_BINOP; 1736 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1737 Record.push_back(VE.getValueID(C->getOperand(0))); 1738 Record.push_back(VE.getValueID(C->getOperand(1))); 1739 uint64_t Flags = GetOptimizationFlags(CE); 1740 if (Flags != 0) 1741 Record.push_back(Flags); 1742 } 1743 break; 1744 case Instruction::GetElementPtr: { 1745 Code = bitc::CST_CODE_CE_GEP; 1746 const auto *GO = cast<GEPOperator>(C); 1747 if (GO->isInBounds()) 1748 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1749 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1750 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1751 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1752 Record.push_back(VE.getValueID(C->getOperand(i))); 1753 } 1754 break; 1755 } 1756 case Instruction::Select: 1757 Code = bitc::CST_CODE_CE_SELECT; 1758 Record.push_back(VE.getValueID(C->getOperand(0))); 1759 Record.push_back(VE.getValueID(C->getOperand(1))); 1760 Record.push_back(VE.getValueID(C->getOperand(2))); 1761 break; 1762 case Instruction::ExtractElement: 1763 Code = bitc::CST_CODE_CE_EXTRACTELT; 1764 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1765 Record.push_back(VE.getValueID(C->getOperand(0))); 1766 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1767 Record.push_back(VE.getValueID(C->getOperand(1))); 1768 break; 1769 case Instruction::InsertElement: 1770 Code = bitc::CST_CODE_CE_INSERTELT; 1771 Record.push_back(VE.getValueID(C->getOperand(0))); 1772 Record.push_back(VE.getValueID(C->getOperand(1))); 1773 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1774 Record.push_back(VE.getValueID(C->getOperand(2))); 1775 break; 1776 case Instruction::ShuffleVector: 1777 // If the return type and argument types are the same, this is a 1778 // standard shufflevector instruction. If the types are different, 1779 // then the shuffle is widening or truncating the input vectors, and 1780 // the argument type must also be encoded. 1781 if (C->getType() == C->getOperand(0)->getType()) { 1782 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1783 } else { 1784 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1785 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1786 } 1787 Record.push_back(VE.getValueID(C->getOperand(0))); 1788 Record.push_back(VE.getValueID(C->getOperand(1))); 1789 Record.push_back(VE.getValueID(C->getOperand(2))); 1790 break; 1791 case Instruction::ICmp: 1792 case Instruction::FCmp: 1793 Code = bitc::CST_CODE_CE_CMP; 1794 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1795 Record.push_back(VE.getValueID(C->getOperand(0))); 1796 Record.push_back(VE.getValueID(C->getOperand(1))); 1797 Record.push_back(CE->getPredicate()); 1798 break; 1799 } 1800 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1801 Code = bitc::CST_CODE_BLOCKADDRESS; 1802 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1803 Record.push_back(VE.getValueID(BA->getFunction())); 1804 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1805 } else { 1806 #ifndef NDEBUG 1807 C->dump(); 1808 #endif 1809 llvm_unreachable("Unknown constant!"); 1810 } 1811 Stream.EmitRecord(Code, Record, AbbrevToUse); 1812 Record.clear(); 1813 } 1814 1815 Stream.ExitBlock(); 1816 } 1817 1818 static void WriteModuleConstants(const ValueEnumerator &VE, 1819 BitstreamWriter &Stream) { 1820 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1821 1822 // Find the first constant to emit, which is the first non-globalvalue value. 1823 // We know globalvalues have been emitted by WriteModuleInfo. 1824 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1825 if (!isa<GlobalValue>(Vals[i].first)) { 1826 WriteConstants(i, Vals.size(), VE, Stream, true); 1827 return; 1828 } 1829 } 1830 } 1831 1832 /// PushValueAndType - The file has to encode both the value and type id for 1833 /// many values, because we need to know what type to create for forward 1834 /// references. However, most operands are not forward references, so this type 1835 /// field is not needed. 1836 /// 1837 /// This function adds V's value ID to Vals. If the value ID is higher than the 1838 /// instruction ID, then it is a forward reference, and it also includes the 1839 /// type ID. The value ID that is written is encoded relative to the InstID. 1840 static bool PushValueAndType(const Value *V, unsigned InstID, 1841 SmallVectorImpl<unsigned> &Vals, 1842 ValueEnumerator &VE) { 1843 unsigned ValID = VE.getValueID(V); 1844 // Make encoding relative to the InstID. 1845 Vals.push_back(InstID - ValID); 1846 if (ValID >= InstID) { 1847 Vals.push_back(VE.getTypeID(V->getType())); 1848 return true; 1849 } 1850 return false; 1851 } 1852 1853 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1854 unsigned InstID, ValueEnumerator &VE) { 1855 SmallVector<unsigned, 64> Record; 1856 LLVMContext &C = CS.getInstruction()->getContext(); 1857 1858 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1859 const auto &Bundle = CS.getOperandBundleAt(i); 1860 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1861 1862 for (auto &Input : Bundle.Inputs) 1863 PushValueAndType(Input, InstID, Record, VE); 1864 1865 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1866 Record.clear(); 1867 } 1868 } 1869 1870 /// pushValue - Like PushValueAndType, but where the type of the value is 1871 /// omitted (perhaps it was already encoded in an earlier operand). 1872 static void pushValue(const Value *V, unsigned InstID, 1873 SmallVectorImpl<unsigned> &Vals, 1874 ValueEnumerator &VE) { 1875 unsigned ValID = VE.getValueID(V); 1876 Vals.push_back(InstID - ValID); 1877 } 1878 1879 static void pushValueSigned(const Value *V, unsigned InstID, 1880 SmallVectorImpl<uint64_t> &Vals, 1881 ValueEnumerator &VE) { 1882 unsigned ValID = VE.getValueID(V); 1883 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1884 emitSignedInt64(Vals, diff); 1885 } 1886 1887 /// WriteInstruction - Emit an instruction to the specified stream. 1888 static void WriteInstruction(const Instruction &I, unsigned InstID, 1889 ValueEnumerator &VE, BitstreamWriter &Stream, 1890 SmallVectorImpl<unsigned> &Vals) { 1891 unsigned Code = 0; 1892 unsigned AbbrevToUse = 0; 1893 VE.setInstructionID(&I); 1894 switch (I.getOpcode()) { 1895 default: 1896 if (Instruction::isCast(I.getOpcode())) { 1897 Code = bitc::FUNC_CODE_INST_CAST; 1898 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1899 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1900 Vals.push_back(VE.getTypeID(I.getType())); 1901 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1902 } else { 1903 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1904 Code = bitc::FUNC_CODE_INST_BINOP; 1905 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1906 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1907 pushValue(I.getOperand(1), InstID, Vals, VE); 1908 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1909 uint64_t Flags = GetOptimizationFlags(&I); 1910 if (Flags != 0) { 1911 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1912 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1913 Vals.push_back(Flags); 1914 } 1915 } 1916 break; 1917 1918 case Instruction::GetElementPtr: { 1919 Code = bitc::FUNC_CODE_INST_GEP; 1920 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1921 auto &GEPInst = cast<GetElementPtrInst>(I); 1922 Vals.push_back(GEPInst.isInBounds()); 1923 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1924 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1925 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1926 break; 1927 } 1928 case Instruction::ExtractValue: { 1929 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1930 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1931 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1932 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1933 break; 1934 } 1935 case Instruction::InsertValue: { 1936 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1937 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1938 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1939 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1940 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1941 break; 1942 } 1943 case Instruction::Select: 1944 Code = bitc::FUNC_CODE_INST_VSELECT; 1945 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1946 pushValue(I.getOperand(2), InstID, Vals, VE); 1947 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1948 break; 1949 case Instruction::ExtractElement: 1950 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1951 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1952 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1953 break; 1954 case Instruction::InsertElement: 1955 Code = bitc::FUNC_CODE_INST_INSERTELT; 1956 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1957 pushValue(I.getOperand(1), InstID, Vals, VE); 1958 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1959 break; 1960 case Instruction::ShuffleVector: 1961 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1962 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1963 pushValue(I.getOperand(1), InstID, Vals, VE); 1964 pushValue(I.getOperand(2), InstID, Vals, VE); 1965 break; 1966 case Instruction::ICmp: 1967 case Instruction::FCmp: { 1968 // compare returning Int1Ty or vector of Int1Ty 1969 Code = bitc::FUNC_CODE_INST_CMP2; 1970 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1971 pushValue(I.getOperand(1), InstID, Vals, VE); 1972 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1973 uint64_t Flags = GetOptimizationFlags(&I); 1974 if (Flags != 0) 1975 Vals.push_back(Flags); 1976 break; 1977 } 1978 1979 case Instruction::Ret: 1980 { 1981 Code = bitc::FUNC_CODE_INST_RET; 1982 unsigned NumOperands = I.getNumOperands(); 1983 if (NumOperands == 0) 1984 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1985 else if (NumOperands == 1) { 1986 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1987 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1988 } else { 1989 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1990 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1991 } 1992 } 1993 break; 1994 case Instruction::Br: 1995 { 1996 Code = bitc::FUNC_CODE_INST_BR; 1997 const BranchInst &II = cast<BranchInst>(I); 1998 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1999 if (II.isConditional()) { 2000 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2001 pushValue(II.getCondition(), InstID, Vals, VE); 2002 } 2003 } 2004 break; 2005 case Instruction::Switch: 2006 { 2007 Code = bitc::FUNC_CODE_INST_SWITCH; 2008 const SwitchInst &SI = cast<SwitchInst>(I); 2009 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2010 pushValue(SI.getCondition(), InstID, Vals, VE); 2011 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2012 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 2013 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2014 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2015 } 2016 } 2017 break; 2018 case Instruction::IndirectBr: 2019 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2020 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2021 // Encode the address operand as relative, but not the basic blocks. 2022 pushValue(I.getOperand(0), InstID, Vals, VE); 2023 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2024 Vals.push_back(VE.getValueID(I.getOperand(i))); 2025 break; 2026 2027 case Instruction::Invoke: { 2028 const InvokeInst *II = cast<InvokeInst>(&I); 2029 const Value *Callee = II->getCalledValue(); 2030 FunctionType *FTy = II->getFunctionType(); 2031 2032 if (II->hasOperandBundles()) 2033 WriteOperandBundles(Stream, II, InstID, VE); 2034 2035 Code = bitc::FUNC_CODE_INST_INVOKE; 2036 2037 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2038 Vals.push_back(II->getCallingConv() | 1 << 13); 2039 Vals.push_back(VE.getValueID(II->getNormalDest())); 2040 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2041 Vals.push_back(VE.getTypeID(FTy)); 2042 PushValueAndType(Callee, InstID, Vals, VE); 2043 2044 // Emit value #'s for the fixed parameters. 2045 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2046 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2047 2048 // Emit type/value pairs for varargs params. 2049 if (FTy->isVarArg()) { 2050 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2051 i != e; ++i) 2052 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2053 } 2054 break; 2055 } 2056 case Instruction::Resume: 2057 Code = bitc::FUNC_CODE_INST_RESUME; 2058 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2059 break; 2060 case Instruction::CleanupRet: { 2061 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2062 const auto &CRI = cast<CleanupReturnInst>(I); 2063 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2064 if (CRI.hasUnwindDest()) 2065 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2066 break; 2067 } 2068 case Instruction::CatchRet: { 2069 Code = bitc::FUNC_CODE_INST_CATCHRET; 2070 const auto &CRI = cast<CatchReturnInst>(I); 2071 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2072 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2073 break; 2074 } 2075 case Instruction::CleanupPad: 2076 case Instruction::CatchPad: { 2077 const auto &FuncletPad = cast<FuncletPadInst>(I); 2078 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2079 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2080 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2081 2082 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2083 Vals.push_back(NumArgOperands); 2084 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2085 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2086 break; 2087 } 2088 case Instruction::CatchSwitch: { 2089 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2090 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2091 2092 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2093 2094 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2095 Vals.push_back(NumHandlers); 2096 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2097 Vals.push_back(VE.getValueID(CatchPadBB)); 2098 2099 if (CatchSwitch.hasUnwindDest()) 2100 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2101 break; 2102 } 2103 case Instruction::Unreachable: 2104 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2105 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2106 break; 2107 2108 case Instruction::PHI: { 2109 const PHINode &PN = cast<PHINode>(I); 2110 Code = bitc::FUNC_CODE_INST_PHI; 2111 // With the newer instruction encoding, forward references could give 2112 // negative valued IDs. This is most common for PHIs, so we use 2113 // signed VBRs. 2114 SmallVector<uint64_t, 128> Vals64; 2115 Vals64.push_back(VE.getTypeID(PN.getType())); 2116 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2117 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2118 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2119 } 2120 // Emit a Vals64 vector and exit. 2121 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2122 Vals64.clear(); 2123 return; 2124 } 2125 2126 case Instruction::LandingPad: { 2127 const LandingPadInst &LP = cast<LandingPadInst>(I); 2128 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2129 Vals.push_back(VE.getTypeID(LP.getType())); 2130 Vals.push_back(LP.isCleanup()); 2131 Vals.push_back(LP.getNumClauses()); 2132 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2133 if (LP.isCatch(I)) 2134 Vals.push_back(LandingPadInst::Catch); 2135 else 2136 Vals.push_back(LandingPadInst::Filter); 2137 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2138 } 2139 break; 2140 } 2141 2142 case Instruction::Alloca: { 2143 Code = bitc::FUNC_CODE_INST_ALLOCA; 2144 const AllocaInst &AI = cast<AllocaInst>(I); 2145 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2146 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2147 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2148 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2149 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2150 "not enough bits for maximum alignment"); 2151 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2152 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2153 AlignRecord |= 1 << 6; 2154 // Reserve bit 7 for SwiftError flag. 2155 // AlignRecord |= AI.isSwiftError() << 7; 2156 Vals.push_back(AlignRecord); 2157 break; 2158 } 2159 2160 case Instruction::Load: 2161 if (cast<LoadInst>(I).isAtomic()) { 2162 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2163 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2164 } else { 2165 Code = bitc::FUNC_CODE_INST_LOAD; 2166 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2167 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2168 } 2169 Vals.push_back(VE.getTypeID(I.getType())); 2170 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2171 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2172 if (cast<LoadInst>(I).isAtomic()) { 2173 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2174 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2175 } 2176 break; 2177 case Instruction::Store: 2178 if (cast<StoreInst>(I).isAtomic()) 2179 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2180 else 2181 Code = bitc::FUNC_CODE_INST_STORE; 2182 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2183 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2184 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2185 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2186 if (cast<StoreInst>(I).isAtomic()) { 2187 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2188 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2189 } 2190 break; 2191 case Instruction::AtomicCmpXchg: 2192 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2193 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2194 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2195 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2196 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2197 Vals.push_back(GetEncodedOrdering( 2198 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2199 Vals.push_back(GetEncodedSynchScope( 2200 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2201 Vals.push_back(GetEncodedOrdering( 2202 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2203 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2204 break; 2205 case Instruction::AtomicRMW: 2206 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2207 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2208 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2209 Vals.push_back(GetEncodedRMWOperation( 2210 cast<AtomicRMWInst>(I).getOperation())); 2211 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2212 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2213 Vals.push_back(GetEncodedSynchScope( 2214 cast<AtomicRMWInst>(I).getSynchScope())); 2215 break; 2216 case Instruction::Fence: 2217 Code = bitc::FUNC_CODE_INST_FENCE; 2218 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2219 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2220 break; 2221 case Instruction::Call: { 2222 const CallInst &CI = cast<CallInst>(I); 2223 FunctionType *FTy = CI.getFunctionType(); 2224 2225 if (CI.hasOperandBundles()) 2226 WriteOperandBundles(Stream, &CI, InstID, VE); 2227 2228 Code = bitc::FUNC_CODE_INST_CALL; 2229 2230 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2231 2232 unsigned Flags = GetOptimizationFlags(&I); 2233 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2234 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2235 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2236 1 << bitc::CALL_EXPLICIT_TYPE | 2237 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2238 unsigned(Flags != 0) << bitc::CALL_FMF); 2239 if (Flags != 0) 2240 Vals.push_back(Flags); 2241 2242 Vals.push_back(VE.getTypeID(FTy)); 2243 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2244 2245 // Emit value #'s for the fixed parameters. 2246 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2247 // Check for labels (can happen with asm labels). 2248 if (FTy->getParamType(i)->isLabelTy()) 2249 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2250 else 2251 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2252 } 2253 2254 // Emit type/value pairs for varargs params. 2255 if (FTy->isVarArg()) { 2256 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2257 i != e; ++i) 2258 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2259 } 2260 break; 2261 } 2262 case Instruction::VAArg: 2263 Code = bitc::FUNC_CODE_INST_VAARG; 2264 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2265 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2266 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2267 break; 2268 } 2269 2270 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2271 Vals.clear(); 2272 } 2273 2274 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2275 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2276 /// VST, where we are including a function bitcode index and need to 2277 /// backpatch the VST forward declaration record. 2278 static void WriteValueSymbolTable( 2279 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2280 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2281 uint64_t BitcodeStartBit = 0, 2282 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> 2283 *FunctionIndex = nullptr) { 2284 if (VST.empty()) { 2285 // WriteValueSymbolTableForwardDecl should have returned early as 2286 // well. Ensure this handling remains in sync by asserting that 2287 // the placeholder offset is not set. 2288 assert(VSTOffsetPlaceholder == 0); 2289 return; 2290 } 2291 2292 if (VSTOffsetPlaceholder > 0) { 2293 // Get the offset of the VST we are writing, and backpatch it into 2294 // the VST forward declaration record. 2295 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2296 // The BitcodeStartBit was the stream offset of the actual bitcode 2297 // (e.g. excluding any initial darwin header). 2298 VSTOffset -= BitcodeStartBit; 2299 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2300 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2301 } 2302 2303 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2304 2305 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2306 // records, which are not used in the per-function VSTs. 2307 unsigned FnEntry8BitAbbrev; 2308 unsigned FnEntry7BitAbbrev; 2309 unsigned FnEntry6BitAbbrev; 2310 if (VSTOffsetPlaceholder > 0) { 2311 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2312 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2313 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2318 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2319 2320 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2321 Abbv = new BitCodeAbbrev(); 2322 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2327 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2328 2329 // 6-bit char6 VST_CODE_FNENTRY function strings. 2330 Abbv = new BitCodeAbbrev(); 2331 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2336 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2337 } 2338 2339 // FIXME: Set up the abbrev, we know how many values there are! 2340 // FIXME: We know if the type names can use 7-bit ascii. 2341 SmallVector<unsigned, 64> NameVals; 2342 2343 for (const ValueName &Name : VST) { 2344 // Figure out the encoding to use for the name. 2345 StringEncoding Bits = 2346 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2347 2348 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2349 NameVals.push_back(VE.getValueID(Name.getValue())); 2350 2351 Function *F = dyn_cast<Function>(Name.getValue()); 2352 if (!F) { 2353 // If value is an alias, need to get the aliased base object to 2354 // see if it is a function. 2355 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2356 if (GA && GA->getBaseObject()) 2357 F = dyn_cast<Function>(GA->getBaseObject()); 2358 } 2359 2360 // VST_CODE_ENTRY: [valueid, namechar x N] 2361 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2362 // VST_CODE_BBENTRY: [bbid, namechar x N] 2363 unsigned Code; 2364 if (isa<BasicBlock>(Name.getValue())) { 2365 Code = bitc::VST_CODE_BBENTRY; 2366 if (Bits == SE_Char6) 2367 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2368 } else if (F && !F->isDeclaration()) { 2369 // Must be the module-level VST, where we pass in the Index and 2370 // have a VSTOffsetPlaceholder. The function-level VST should not 2371 // contain any Function symbols. 2372 assert(FunctionIndex); 2373 assert(VSTOffsetPlaceholder > 0); 2374 2375 // Save the word offset of the function (from the start of the 2376 // actual bitcode written to the stream). 2377 uint64_t BitcodeIndex = 2378 (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2379 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2380 NameVals.push_back(BitcodeIndex / 32); 2381 2382 Code = bitc::VST_CODE_FNENTRY; 2383 AbbrevToUse = FnEntry8BitAbbrev; 2384 if (Bits == SE_Char6) 2385 AbbrevToUse = FnEntry6BitAbbrev; 2386 else if (Bits == SE_Fixed7) 2387 AbbrevToUse = FnEntry7BitAbbrev; 2388 } else { 2389 Code = bitc::VST_CODE_ENTRY; 2390 if (Bits == SE_Char6) 2391 AbbrevToUse = VST_ENTRY_6_ABBREV; 2392 else if (Bits == SE_Fixed7) 2393 AbbrevToUse = VST_ENTRY_7_ABBREV; 2394 } 2395 2396 for (const auto P : Name.getKey()) 2397 NameVals.push_back((unsigned char)P); 2398 2399 // Emit the finished record. 2400 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2401 NameVals.clear(); 2402 } 2403 Stream.ExitBlock(); 2404 } 2405 2406 /// Emit function names and summary offsets for the combined index 2407 /// used by ThinLTO. 2408 static void 2409 WriteCombinedValueSymbolTable(const ModuleSummaryIndex &Index, 2410 BitstreamWriter &Stream, 2411 std::map<uint64_t, unsigned> &GUIDToValueIdMap, 2412 uint64_t VSTOffsetPlaceholder) { 2413 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2414 // Get the offset of the VST we are writing, and backpatch it into 2415 // the VST forward declaration record. 2416 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2417 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2418 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2419 2420 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2421 2422 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2423 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2427 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2428 2429 Abbv = new BitCodeAbbrev(); 2430 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2433 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2434 2435 SmallVector<uint64_t, 64> NameVals; 2436 2437 for (const auto &FII : Index) { 2438 uint64_t FuncGUID = FII.first; 2439 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2440 assert(VMI != GUIDToValueIdMap.end()); 2441 2442 for (const auto &FI : FII.second) { 2443 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2444 NameVals.push_back(VMI->second); 2445 NameVals.push_back(FI->bitcodeIndex()); 2446 NameVals.push_back(FuncGUID); 2447 2448 // Emit the finished record. 2449 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2450 DefEntryAbbrev); 2451 NameVals.clear(); 2452 } 2453 GUIDToValueIdMap.erase(VMI); 2454 } 2455 for (const auto &GVI : GUIDToValueIdMap) { 2456 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2457 NameVals.push_back(GVI.second); 2458 NameVals.push_back(GVI.first); 2459 2460 // Emit the finished record. 2461 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2462 NameVals.clear(); 2463 } 2464 Stream.ExitBlock(); 2465 } 2466 2467 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2468 BitstreamWriter &Stream) { 2469 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2470 unsigned Code; 2471 if (isa<BasicBlock>(Order.V)) 2472 Code = bitc::USELIST_CODE_BB; 2473 else 2474 Code = bitc::USELIST_CODE_DEFAULT; 2475 2476 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2477 Record.push_back(VE.getValueID(Order.V)); 2478 Stream.EmitRecord(Code, Record); 2479 } 2480 2481 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2482 BitstreamWriter &Stream) { 2483 assert(VE.shouldPreserveUseListOrder() && 2484 "Expected to be preserving use-list order"); 2485 2486 auto hasMore = [&]() { 2487 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2488 }; 2489 if (!hasMore()) 2490 // Nothing to do. 2491 return; 2492 2493 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2494 while (hasMore()) { 2495 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2496 VE.UseListOrders.pop_back(); 2497 } 2498 Stream.ExitBlock(); 2499 } 2500 2501 // Walk through the operands of a given User via worklist iteration and populate 2502 // the set of GlobalValue references encountered. Invoked either on an 2503 // Instruction or a GlobalVariable (which walks its initializer). 2504 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE, 2505 DenseSet<unsigned> &RefEdges, 2506 SmallPtrSet<const User *, 8> &Visited) { 2507 SmallVector<const User *, 32> Worklist; 2508 Worklist.push_back(CurUser); 2509 2510 while (!Worklist.empty()) { 2511 const User *U = Worklist.pop_back_val(); 2512 2513 if (!Visited.insert(U).second) 2514 continue; 2515 2516 ImmutableCallSite CS(U); 2517 2518 for (const auto &OI : U->operands()) { 2519 const User *Operand = dyn_cast<User>(OI); 2520 if (!Operand) 2521 continue; 2522 if (isa<BlockAddress>(Operand)) 2523 continue; 2524 if (isa<GlobalValue>(Operand)) { 2525 // We have a reference to a global value. This should be added to 2526 // the reference set unless it is a callee. Callees are handled 2527 // specially by WriteFunction and are added to a separate list. 2528 if (!(CS && CS.isCallee(&OI))) 2529 RefEdges.insert(VE.getValueID(Operand)); 2530 continue; 2531 } 2532 Worklist.push_back(Operand); 2533 } 2534 } 2535 } 2536 2537 /// Emit a function body to the module stream. 2538 static void WriteFunction( 2539 const Function &F, const Module *M, ValueEnumerator &VE, 2540 BitstreamWriter &Stream, 2541 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2542 bool EmitSummaryIndex) { 2543 // Save the bitcode index of the start of this function block for recording 2544 // in the VST. 2545 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2546 2547 bool HasProfileData = F.getEntryCount().hasValue(); 2548 std::unique_ptr<BlockFrequencyInfo> BFI; 2549 if (EmitSummaryIndex && HasProfileData) { 2550 Function &Func = const_cast<Function &>(F); 2551 LoopInfo LI{DominatorTree(Func)}; 2552 BranchProbabilityInfo BPI{Func, LI}; 2553 BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI); 2554 } 2555 2556 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2557 VE.incorporateFunction(F); 2558 2559 SmallVector<unsigned, 64> Vals; 2560 2561 // Emit the number of basic blocks, so the reader can create them ahead of 2562 // time. 2563 Vals.push_back(VE.getBasicBlocks().size()); 2564 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2565 Vals.clear(); 2566 2567 // If there are function-local constants, emit them now. 2568 unsigned CstStart, CstEnd; 2569 VE.getFunctionConstantRange(CstStart, CstEnd); 2570 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2571 2572 // If there is function-local metadata, emit it now. 2573 WriteFunctionLocalMetadata(F, VE, Stream); 2574 2575 // Keep a running idea of what the instruction ID is. 2576 unsigned InstID = CstEnd; 2577 2578 bool NeedsMetadataAttachment = F.hasMetadata(); 2579 2580 DILocation *LastDL = nullptr; 2581 unsigned NumInsts = 0; 2582 // Map from callee ValueId to profile count. Used to accumulate profile 2583 // counts for all static calls to a given callee. 2584 DenseMap<unsigned, CalleeInfo> CallGraphEdges; 2585 DenseSet<unsigned> RefEdges; 2586 2587 SmallPtrSet<const User *, 8> Visited; 2588 // Finally, emit all the instructions, in order. 2589 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2590 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2591 I != E; ++I) { 2592 WriteInstruction(*I, InstID, VE, Stream, Vals); 2593 2594 if (!isa<DbgInfoIntrinsic>(I)) 2595 ++NumInsts; 2596 2597 if (!I->getType()->isVoidTy()) 2598 ++InstID; 2599 2600 if (EmitSummaryIndex) { 2601 if (auto CS = ImmutableCallSite(&*I)) { 2602 auto *CalledFunction = CS.getCalledFunction(); 2603 if (CalledFunction && CalledFunction->hasName() && 2604 !CalledFunction->isIntrinsic()) { 2605 auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None; 2606 unsigned CalleeId = VE.getValueID( 2607 M->getValueSymbolTable().lookup(CalledFunction->getName())); 2608 CallGraphEdges[CalleeId] += 2609 (ScaledCount ? ScaledCount.getValue() : 0); 2610 } 2611 } 2612 findRefEdges(&*I, VE, RefEdges, Visited); 2613 } 2614 2615 // If the instruction has metadata, write a metadata attachment later. 2616 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2617 2618 // If the instruction has a debug location, emit it. 2619 DILocation *DL = I->getDebugLoc(); 2620 if (!DL) 2621 continue; 2622 2623 if (DL == LastDL) { 2624 // Just repeat the same debug loc as last time. 2625 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2626 continue; 2627 } 2628 2629 Vals.push_back(DL->getLine()); 2630 Vals.push_back(DL->getColumn()); 2631 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2632 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2633 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2634 Vals.clear(); 2635 2636 LastDL = DL; 2637 } 2638 2639 std::unique_ptr<FunctionSummary> FuncSummary; 2640 if (EmitSummaryIndex) { 2641 FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts); 2642 FuncSummary->addCallGraphEdges(CallGraphEdges); 2643 FuncSummary->addRefEdges(RefEdges); 2644 } 2645 FunctionIndex[&F] = 2646 llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary)); 2647 2648 // Emit names for all the instructions etc. 2649 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2650 2651 if (NeedsMetadataAttachment) 2652 WriteMetadataAttachment(F, VE, Stream); 2653 if (VE.shouldPreserveUseListOrder()) 2654 WriteUseListBlock(&F, VE, Stream); 2655 VE.purgeFunction(); 2656 Stream.ExitBlock(); 2657 } 2658 2659 // Emit blockinfo, which defines the standard abbreviations etc. 2660 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2661 // We only want to emit block info records for blocks that have multiple 2662 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2663 // Other blocks can define their abbrevs inline. 2664 Stream.EnterBlockInfoBlock(2); 2665 2666 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2667 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2672 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2673 Abbv) != VST_ENTRY_8_ABBREV) 2674 llvm_unreachable("Unexpected abbrev ordering!"); 2675 } 2676 2677 { // 7-bit fixed width VST_CODE_ENTRY strings. 2678 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2679 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2683 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2684 Abbv) != VST_ENTRY_7_ABBREV) 2685 llvm_unreachable("Unexpected abbrev ordering!"); 2686 } 2687 { // 6-bit char6 VST_CODE_ENTRY strings. 2688 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2689 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2693 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2694 Abbv) != VST_ENTRY_6_ABBREV) 2695 llvm_unreachable("Unexpected abbrev ordering!"); 2696 } 2697 { // 6-bit char6 VST_CODE_BBENTRY strings. 2698 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2699 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2703 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2704 Abbv) != VST_BBENTRY_6_ABBREV) 2705 llvm_unreachable("Unexpected abbrev ordering!"); 2706 } 2707 2708 2709 2710 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2711 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2712 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2714 VE.computeBitsRequiredForTypeIndicies())); 2715 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2716 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2717 llvm_unreachable("Unexpected abbrev ordering!"); 2718 } 2719 2720 { // INTEGER abbrev for CONSTANTS_BLOCK. 2721 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2722 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2724 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2725 Abbv) != CONSTANTS_INTEGER_ABBREV) 2726 llvm_unreachable("Unexpected abbrev ordering!"); 2727 } 2728 2729 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2730 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2731 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2734 VE.computeBitsRequiredForTypeIndicies())); 2735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2736 2737 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2738 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2739 llvm_unreachable("Unexpected abbrev ordering!"); 2740 } 2741 { // NULL abbrev for CONSTANTS_BLOCK. 2742 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2743 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2744 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2745 Abbv) != CONSTANTS_NULL_Abbrev) 2746 llvm_unreachable("Unexpected abbrev ordering!"); 2747 } 2748 2749 // FIXME: This should only use space for first class types! 2750 2751 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2752 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2753 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2756 VE.computeBitsRequiredForTypeIndicies())); 2757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2759 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2760 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2761 llvm_unreachable("Unexpected abbrev ordering!"); 2762 } 2763 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2764 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2765 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2769 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2770 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2771 llvm_unreachable("Unexpected abbrev ordering!"); 2772 } 2773 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2774 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2775 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2780 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2781 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2782 llvm_unreachable("Unexpected abbrev ordering!"); 2783 } 2784 { // INST_CAST abbrev for FUNCTION_BLOCK. 2785 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2786 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2789 VE.computeBitsRequiredForTypeIndicies())); 2790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2791 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2792 Abbv) != FUNCTION_INST_CAST_ABBREV) 2793 llvm_unreachable("Unexpected abbrev ordering!"); 2794 } 2795 2796 { // INST_RET abbrev for FUNCTION_BLOCK. 2797 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2798 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2799 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2800 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2801 llvm_unreachable("Unexpected abbrev ordering!"); 2802 } 2803 { // INST_RET abbrev for FUNCTION_BLOCK. 2804 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2805 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2807 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2808 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2809 llvm_unreachable("Unexpected abbrev ordering!"); 2810 } 2811 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2812 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2813 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2814 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2815 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2816 llvm_unreachable("Unexpected abbrev ordering!"); 2817 } 2818 { 2819 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2820 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2823 Log2_32_Ceil(VE.getTypes().size() + 1))); 2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2826 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2827 FUNCTION_INST_GEP_ABBREV) 2828 llvm_unreachable("Unexpected abbrev ordering!"); 2829 } 2830 2831 Stream.ExitBlock(); 2832 } 2833 2834 /// Write the module path strings, currently only used when generating 2835 /// a combined index file. 2836 static void WriteModStrings(const ModuleSummaryIndex &I, 2837 BitstreamWriter &Stream) { 2838 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2839 2840 // TODO: See which abbrev sizes we actually need to emit 2841 2842 // 8-bit fixed-width MST_ENTRY strings. 2843 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2844 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2848 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2849 2850 // 7-bit fixed width MST_ENTRY strings. 2851 Abbv = new BitCodeAbbrev(); 2852 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2856 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2857 2858 // 6-bit char6 MST_ENTRY strings. 2859 Abbv = new BitCodeAbbrev(); 2860 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2864 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2865 2866 SmallVector<unsigned, 64> NameVals; 2867 for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) { 2868 StringEncoding Bits = 2869 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2870 unsigned AbbrevToUse = Abbrev8Bit; 2871 if (Bits == SE_Char6) 2872 AbbrevToUse = Abbrev6Bit; 2873 else if (Bits == SE_Fixed7) 2874 AbbrevToUse = Abbrev7Bit; 2875 2876 NameVals.push_back(MPSE.getValue()); 2877 2878 for (const auto P : MPSE.getKey()) 2879 NameVals.push_back((unsigned char)P); 2880 2881 // Emit the finished record. 2882 Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse); 2883 NameVals.clear(); 2884 } 2885 Stream.ExitBlock(); 2886 } 2887 2888 // Helper to emit a single function summary record. 2889 static void WritePerModuleFunctionSummaryRecord( 2890 SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2891 unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 2892 BitstreamWriter &Stream, const Function &F) { 2893 assert(FS); 2894 NameVals.push_back(ValueID); 2895 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2896 NameVals.push_back(FS->instCount()); 2897 NameVals.push_back(FS->refs().size()); 2898 2899 for (auto &RI : FS->refs()) 2900 NameVals.push_back(RI); 2901 2902 bool HasProfileData = F.getEntryCount().hasValue(); 2903 for (auto &ECI : FS->edges()) { 2904 NameVals.push_back(ECI.first); 2905 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2906 NameVals.push_back(ECI.second.CallsiteCount); 2907 if (HasProfileData) 2908 NameVals.push_back(ECI.second.ProfileCount); 2909 } 2910 2911 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2912 unsigned Code = 2913 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2914 2915 // Emit the finished record. 2916 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2917 NameVals.clear(); 2918 } 2919 2920 // Collect the global value references in the given variable's initializer, 2921 // and emit them in a summary record. 2922 static void WriteModuleLevelReferences(const GlobalVariable &V, 2923 const ValueEnumerator &VE, 2924 SmallVector<uint64_t, 64> &NameVals, 2925 unsigned FSModRefsAbbrev, 2926 BitstreamWriter &Stream) { 2927 // Only interested in recording variable defs in the summary. 2928 if (V.isDeclaration()) 2929 return; 2930 DenseSet<unsigned> RefEdges; 2931 SmallPtrSet<const User *, 8> Visited; 2932 findRefEdges(&V, VE, RefEdges, Visited); 2933 NameVals.push_back(VE.getValueID(&V)); 2934 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2935 for (auto RefId : RefEdges) { 2936 NameVals.push_back(RefId); 2937 } 2938 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2939 FSModRefsAbbrev); 2940 NameVals.clear(); 2941 } 2942 2943 /// Emit the per-module summary section alongside the rest of 2944 /// the module's bitcode. 2945 static void WritePerModuleGlobalValueSummary( 2946 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2947 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2948 if (M->empty()) 2949 return; 2950 2951 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2952 2953 // Abbrev for FS_PERMODULE. 2954 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2955 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2960 // numrefs x valueid, n x (valueid, callsitecount) 2961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2963 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2964 2965 // Abbrev for FS_PERMODULE_PROFILE. 2966 Abbv = new BitCodeAbbrev(); 2967 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2972 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2975 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2976 2977 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2978 Abbv = new BitCodeAbbrev(); 2979 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2981 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2984 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 2985 2986 SmallVector<uint64_t, 64> NameVals; 2987 // Iterate over the list of functions instead of the FunctionIndex map to 2988 // ensure the ordering is stable. 2989 for (const Function &F : *M) { 2990 if (F.isDeclaration()) 2991 continue; 2992 // Skip anonymous functions. We will emit a function summary for 2993 // any aliases below. 2994 if (!F.hasName()) 2995 continue; 2996 2997 assert(FunctionIndex.count(&F) == 1); 2998 2999 WritePerModuleFunctionSummaryRecord( 3000 NameVals, cast<FunctionSummary>(FunctionIndex[&F]->summary()), 3001 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), 3002 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 3003 } 3004 3005 for (const GlobalAlias &A : M->aliases()) { 3006 if (!A.getBaseObject()) 3007 continue; 3008 const Function *F = dyn_cast<Function>(A.getBaseObject()); 3009 if (!F || F->isDeclaration()) 3010 continue; 3011 3012 assert(FunctionIndex.count(F) == 1); 3013 FunctionSummary *FS = 3014 cast<FunctionSummary>(FunctionIndex[F]->summary()); 3015 // Add the alias to the reference list of aliasee function. 3016 FS->addRefEdge( 3017 VE.getValueID(M->getValueSymbolTable().lookup(A.getName()))); 3018 WritePerModuleFunctionSummaryRecord( 3019 NameVals, FS, 3020 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), 3021 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F); 3022 } 3023 3024 // Capture references from GlobalVariable initializers, which are outside 3025 // of a function scope. 3026 for (const GlobalVariable &G : M->globals()) 3027 WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream); 3028 for (const GlobalAlias &A : M->aliases()) 3029 if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject())) 3030 WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream); 3031 3032 Stream.ExitBlock(); 3033 } 3034 3035 /// Emit the combined summary section into the combined index file. 3036 static void WriteCombinedGlobalValueSummary( 3037 const ModuleSummaryIndex &I, BitstreamWriter &Stream, 3038 std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) { 3039 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3040 3041 // Abbrev for FS_COMBINED. 3042 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3043 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3048 // numrefs x valueid, n x (valueid, callsitecount) 3049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3051 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3052 3053 // Abbrev for FS_COMBINED_PROFILE. 3054 Abbv = new BitCodeAbbrev(); 3055 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3060 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3063 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3064 3065 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3066 Abbv = new BitCodeAbbrev(); 3067 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3072 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3073 3074 SmallVector<uint64_t, 64> NameVals; 3075 for (const auto &FII : I) { 3076 for (auto &FI : FII.second) { 3077 GlobalValueSummary *S = FI->summary(); 3078 assert(S); 3079 3080 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3081 NameVals.push_back(I.getModuleId(VS->modulePath())); 3082 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3083 for (auto &RI : VS->refs()) { 3084 const auto &VMI = GUIDToValueIdMap.find(RI); 3085 unsigned RefId; 3086 // If this GUID doesn't have an entry, assign one. 3087 if (VMI == GUIDToValueIdMap.end()) { 3088 GUIDToValueIdMap[RI] = ++GlobalValueId; 3089 RefId = GlobalValueId; 3090 } else { 3091 RefId = VMI->second; 3092 } 3093 NameVals.push_back(RefId); 3094 } 3095 3096 // Record the starting offset of this summary entry for use 3097 // in the VST entry. Add the current code size since the 3098 // reader will invoke readRecord after the abbrev id read. 3099 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3100 Stream.GetAbbrevIDWidth()); 3101 3102 // Emit the finished record. 3103 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3104 FSModRefsAbbrev); 3105 NameVals.clear(); 3106 continue; 3107 } 3108 3109 auto *FS = cast<FunctionSummary>(S); 3110 NameVals.push_back(I.getModuleId(FS->modulePath())); 3111 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3112 NameVals.push_back(FS->instCount()); 3113 NameVals.push_back(FS->refs().size()); 3114 3115 for (auto &RI : FS->refs()) { 3116 const auto &VMI = GUIDToValueIdMap.find(RI); 3117 unsigned RefId; 3118 // If this GUID doesn't have an entry, assign one. 3119 if (VMI == GUIDToValueIdMap.end()) { 3120 GUIDToValueIdMap[RI] = ++GlobalValueId; 3121 RefId = GlobalValueId; 3122 } else { 3123 RefId = VMI->second; 3124 } 3125 NameVals.push_back(RefId); 3126 } 3127 3128 bool HasProfileData = false; 3129 for (auto &EI : FS->edges()) { 3130 HasProfileData |= EI.second.ProfileCount != 0; 3131 if (HasProfileData) 3132 break; 3133 } 3134 3135 for (auto &EI : FS->edges()) { 3136 const auto &VMI = GUIDToValueIdMap.find(EI.first); 3137 // If this GUID doesn't have an entry, it doesn't have a function 3138 // summary and we don't need to record any calls to it. 3139 if (VMI == GUIDToValueIdMap.end()) 3140 continue; 3141 NameVals.push_back(VMI->second); 3142 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3143 NameVals.push_back(EI.second.CallsiteCount); 3144 if (HasProfileData) 3145 NameVals.push_back(EI.second.ProfileCount); 3146 } 3147 3148 // Record the starting offset of this summary entry for use 3149 // in the VST entry. Add the current code size since the 3150 // reader will invoke readRecord after the abbrev id read. 3151 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3152 3153 unsigned FSAbbrev = 3154 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3155 unsigned Code = 3156 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3157 3158 // Emit the finished record. 3159 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3160 NameVals.clear(); 3161 } 3162 } 3163 3164 Stream.ExitBlock(); 3165 } 3166 3167 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3168 // current llvm version, and a record for the epoch number. 3169 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3170 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3171 3172 // Write the "user readable" string identifying the bitcode producer 3173 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3174 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3177 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3178 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3179 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3180 3181 // Write the epoch version 3182 Abbv = new BitCodeAbbrev(); 3183 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3185 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3186 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3187 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3188 Stream.ExitBlock(); 3189 } 3190 3191 /// WriteModule - Emit the specified module to the bitstream. 3192 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3193 bool ShouldPreserveUseListOrder, 3194 uint64_t BitcodeStartBit, bool EmitSummaryIndex) { 3195 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3196 3197 SmallVector<unsigned, 1> Vals; 3198 unsigned CurVersion = 1; 3199 Vals.push_back(CurVersion); 3200 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3201 3202 // Analyze the module, enumerating globals, functions, etc. 3203 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3204 3205 // Emit blockinfo, which defines the standard abbreviations etc. 3206 WriteBlockInfo(VE, Stream); 3207 3208 // Emit information about attribute groups. 3209 WriteAttributeGroupTable(VE, Stream); 3210 3211 // Emit information about parameter attributes. 3212 WriteAttributeTable(VE, Stream); 3213 3214 // Emit information describing all of the types in the module. 3215 WriteTypeTable(VE, Stream); 3216 3217 writeComdats(VE, Stream); 3218 3219 // Emit top-level description of module, including target triple, inline asm, 3220 // descriptors for global variables, and function prototype info. 3221 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3222 3223 // Emit constants. 3224 WriteModuleConstants(VE, Stream); 3225 3226 // Emit metadata. 3227 WriteModuleMetadata(*M, VE, Stream); 3228 3229 // Emit metadata. 3230 WriteModuleMetadataStore(M, Stream); 3231 3232 // Emit module-level use-lists. 3233 if (VE.shouldPreserveUseListOrder()) 3234 WriteUseListBlock(nullptr, VE, Stream); 3235 3236 WriteOperandBundleTags(M, Stream); 3237 3238 // Emit function bodies. 3239 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex; 3240 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3241 if (!F->isDeclaration()) 3242 WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex); 3243 3244 // Need to write after the above call to WriteFunction which populates 3245 // the summary information in the index. 3246 if (EmitSummaryIndex) 3247 WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream); 3248 3249 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3250 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 3251 3252 Stream.ExitBlock(); 3253 } 3254 3255 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3256 /// header and trailer to make it compatible with the system archiver. To do 3257 /// this we emit the following header, and then emit a trailer that pads the 3258 /// file out to be a multiple of 16 bytes. 3259 /// 3260 /// struct bc_header { 3261 /// uint32_t Magic; // 0x0B17C0DE 3262 /// uint32_t Version; // Version, currently always 0. 3263 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3264 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3265 /// uint32_t CPUType; // CPU specifier. 3266 /// ... potentially more later ... 3267 /// }; 3268 3269 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3270 uint32_t &Position) { 3271 support::endian::write32le(&Buffer[Position], Value); 3272 Position += 4; 3273 } 3274 3275 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3276 const Triple &TT) { 3277 unsigned CPUType = ~0U; 3278 3279 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3280 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3281 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3282 // specific constants here because they are implicitly part of the Darwin ABI. 3283 enum { 3284 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3285 DARWIN_CPU_TYPE_X86 = 7, 3286 DARWIN_CPU_TYPE_ARM = 12, 3287 DARWIN_CPU_TYPE_POWERPC = 18 3288 }; 3289 3290 Triple::ArchType Arch = TT.getArch(); 3291 if (Arch == Triple::x86_64) 3292 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3293 else if (Arch == Triple::x86) 3294 CPUType = DARWIN_CPU_TYPE_X86; 3295 else if (Arch == Triple::ppc) 3296 CPUType = DARWIN_CPU_TYPE_POWERPC; 3297 else if (Arch == Triple::ppc64) 3298 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3299 else if (Arch == Triple::arm || Arch == Triple::thumb) 3300 CPUType = DARWIN_CPU_TYPE_ARM; 3301 3302 // Traditional Bitcode starts after header. 3303 assert(Buffer.size() >= BWH_HeaderSize && 3304 "Expected header size to be reserved"); 3305 unsigned BCOffset = BWH_HeaderSize; 3306 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3307 3308 // Write the magic and version. 3309 unsigned Position = 0; 3310 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3311 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3312 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3313 WriteInt32ToBuffer(BCSize , Buffer, Position); 3314 WriteInt32ToBuffer(CPUType , Buffer, Position); 3315 3316 // If the file is not a multiple of 16 bytes, insert dummy padding. 3317 while (Buffer.size() & 15) 3318 Buffer.push_back(0); 3319 } 3320 3321 /// Helper to write the header common to all bitcode files. 3322 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3323 // Emit the file header. 3324 Stream.Emit((unsigned)'B', 8); 3325 Stream.Emit((unsigned)'C', 8); 3326 Stream.Emit(0x0, 4); 3327 Stream.Emit(0xC, 4); 3328 Stream.Emit(0xE, 4); 3329 Stream.Emit(0xD, 4); 3330 } 3331 3332 /// WriteBitcodeToFile - Write the specified module to the specified output 3333 /// stream. 3334 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3335 bool ShouldPreserveUseListOrder, 3336 bool EmitSummaryIndex) { 3337 SmallVector<char, 0> Buffer; 3338 Buffer.reserve(256*1024); 3339 3340 // If this is darwin or another generic macho target, reserve space for the 3341 // header. 3342 Triple TT(M->getTargetTriple()); 3343 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3344 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3345 3346 // Emit the module into the buffer. 3347 { 3348 BitstreamWriter Stream(Buffer); 3349 // Save the start bit of the actual bitcode, in case there is space 3350 // saved at the start for the darwin header above. The reader stream 3351 // will start at the bitcode, and we need the offset of the VST 3352 // to line up. 3353 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3354 3355 // Emit the file header. 3356 WriteBitcodeHeader(Stream); 3357 3358 WriteIdentificationBlock(M, Stream); 3359 3360 // Emit the module. 3361 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3362 EmitSummaryIndex); 3363 } 3364 3365 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3366 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3367 3368 // Write the generated bitstream to "Out". 3369 Out.write((char*)&Buffer.front(), Buffer.size()); 3370 } 3371 3372 // Write the specified module summary index to the given raw output stream, 3373 // where it will be written in a new bitcode block. This is used when 3374 // writing the combined index file for ThinLTO. 3375 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3376 SmallVector<char, 0> Buffer; 3377 Buffer.reserve(256 * 1024); 3378 3379 BitstreamWriter Stream(Buffer); 3380 3381 // Emit the bitcode header. 3382 WriteBitcodeHeader(Stream); 3383 3384 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3385 3386 SmallVector<unsigned, 1> Vals; 3387 unsigned CurVersion = 1; 3388 Vals.push_back(CurVersion); 3389 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3390 3391 // If we have a VST, write the VSTOFFSET record placeholder and record 3392 // its offset. 3393 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3394 3395 // Write the module paths in the combined index. 3396 WriteModStrings(Index, Stream); 3397 3398 // Assign unique value ids to all functions in the index for use 3399 // in writing out the call graph edges. Save the mapping from GUID 3400 // to the new global value id to use when writing those edges, which 3401 // are currently saved in the index in terms of GUID. 3402 std::map<uint64_t, unsigned> GUIDToValueIdMap; 3403 unsigned GlobalValueId = 0; 3404 for (auto &II : Index) 3405 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3406 3407 // Write the summary combined index records. 3408 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3409 GlobalValueId); 3410 3411 // Need a special VST writer for the combined index (we don't have a 3412 // real VST and real values when this is invoked). 3413 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3414 VSTOffsetPlaceholder); 3415 3416 Stream.ExitBlock(); 3417 3418 Out.write((char *)&Buffer.front(), Buffer.size()); 3419 } 3420