xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision fdbb8f47eb9984dcbffd66123c196f7da8a3c421)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Bitcode/BitstreamWriter.h"
18 #include "llvm/Bitcode/LLVMBitCodes.h"
19 #include "llvm/Bitcode/ReaderWriter.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/UseListOrder.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/Program.h"
34 #include "llvm/Support/SHA1.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cctype>
37 #include <map>
38 using namespace llvm;
39 
40 namespace {
41 /// These are manifest constants used by the bitcode writer. They do not need to
42 /// be kept in sync with the reader, but need to be consistent within this file.
43 enum {
44   // VALUE_SYMTAB_BLOCK abbrev id's.
45   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
46   VST_ENTRY_7_ABBREV,
47   VST_ENTRY_6_ABBREV,
48   VST_BBENTRY_6_ABBREV,
49 
50   // CONSTANTS_BLOCK abbrev id's.
51   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
52   CONSTANTS_INTEGER_ABBREV,
53   CONSTANTS_CE_CAST_Abbrev,
54   CONSTANTS_NULL_Abbrev,
55 
56   // FUNCTION_BLOCK abbrev id's.
57   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
58   FUNCTION_INST_BINOP_ABBREV,
59   FUNCTION_INST_BINOP_FLAGS_ABBREV,
60   FUNCTION_INST_CAST_ABBREV,
61   FUNCTION_INST_RET_VOID_ABBREV,
62   FUNCTION_INST_RET_VAL_ABBREV,
63   FUNCTION_INST_UNREACHABLE_ABBREV,
64   FUNCTION_INST_GEP_ABBREV,
65 };
66 
67 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
68 /// file type. Owns the BitstreamWriter, and includes the main entry point for
69 /// writing.
70 class BitcodeWriter {
71 protected:
72   /// Pointer to the buffer allocated by caller for bitcode writing.
73   const SmallVectorImpl<char> &Buffer;
74 
75   /// The stream created and owned by the BitodeWriter.
76   BitstreamWriter Stream;
77 
78   /// Saves the offset of the VSTOffset record that must eventually be
79   /// backpatched with the offset of the actual VST.
80   uint64_t VSTOffsetPlaceholder = 0;
81 
82 public:
83   /// Constructs a BitcodeWriter object, and initializes a BitstreamRecord,
84   /// writing to the provided \p Buffer.
85   BitcodeWriter(SmallVectorImpl<char> &Buffer)
86       : Buffer(Buffer), Stream(Buffer) {}
87 
88   virtual ~BitcodeWriter() = default;
89 
90   /// Main entry point to write the bitcode file, which writes the bitcode
91   /// header and will then invoke the virtual writeBlocks() method.
92   void write();
93 
94 private:
95   /// Derived classes must implement this to write the corresponding blocks for
96   /// that bitcode file type.
97   virtual void writeBlocks() = 0;
98 
99 protected:
100   bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
101   void writeValueSymbolTableForwardDecl();
102   void writeBitcodeHeader();
103 };
104 
105 /// Class to manage the bitcode writing for a module.
106 class ModuleBitcodeWriter : public BitcodeWriter {
107   /// The Module to write to bitcode.
108   const Module &M;
109 
110   /// Enumerates ids for all values in the module.
111   ValueEnumerator VE;
112 
113   /// Optional per-module index to write for ThinLTO.
114   const ModuleSummaryIndex *Index;
115 
116   /// True if a module hash record should be written.
117   bool GenerateHash;
118 
119   /// The start bit of the module block, for use in generating a module hash
120   uint64_t BitcodeStartBit = 0;
121 
122 public:
123   /// Constructs a ModuleBitcodeWriter object for the given Module,
124   /// writing to the provided \p Buffer.
125   ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
126                       bool ShouldPreserveUseListOrder,
127                       const ModuleSummaryIndex *Index, bool GenerateHash)
128       : BitcodeWriter(Buffer), M(*M), VE(*M, ShouldPreserveUseListOrder),
129         Index(Index), GenerateHash(GenerateHash) {
130     // Save the start bit of the actual bitcode, in case there is space
131     // saved at the start for the darwin header above. The reader stream
132     // will start at the bitcode, and we need the offset of the VST
133     // to line up.
134     BitcodeStartBit = Stream.GetCurrentBitNo();
135   }
136 
137 private:
138   /// Main entry point for writing a module to bitcode, invoked by
139   /// BitcodeWriter::write() after it writes the header.
140   void writeBlocks() override;
141 
142   /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
143   /// current llvm version, and a record for the epoch number.
144   void writeIdentificationBlock();
145 
146   /// Emit the current module to the bitstream.
147   void writeModule();
148 
149   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
150 
151   void writeStringRecord(unsigned Code, StringRef Str, unsigned AbbrevToUse);
152   void writeAttributeGroupTable();
153   void writeAttributeTable();
154   void writeTypeTable();
155   void writeComdats();
156   void writeModuleInfo();
157   void writeValueAsMetadata(const ValueAsMetadata *MD,
158                             SmallVectorImpl<uint64_t> &Record);
159   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
160                     unsigned Abbrev);
161   unsigned createDILocationAbbrev();
162   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
163                        unsigned &Abbrev);
164   unsigned createGenericDINodeAbbrev();
165   void writeGenericDINode(const GenericDINode *N,
166                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
167   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
168                        unsigned Abbrev);
169   void writeDIEnumerator(const DIEnumerator *N,
170                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
171   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
172                         unsigned Abbrev);
173   void writeDIDerivedType(const DIDerivedType *N,
174                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
175   void writeDICompositeType(const DICompositeType *N,
176                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
177   void writeDISubroutineType(const DISubroutineType *N,
178                              SmallVectorImpl<uint64_t> &Record,
179                              unsigned Abbrev);
180   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
181                    unsigned Abbrev);
182   void writeDICompileUnit(const DICompileUnit *N,
183                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
184   void writeDISubprogram(const DISubprogram *N,
185                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
186   void writeDILexicalBlock(const DILexicalBlock *N,
187                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
188   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
189                                SmallVectorImpl<uint64_t> &Record,
190                                unsigned Abbrev);
191   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
192                         unsigned Abbrev);
193   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
194                     unsigned Abbrev);
195   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
196                         unsigned Abbrev);
197   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
198                      unsigned Abbrev);
199   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
200                                     SmallVectorImpl<uint64_t> &Record,
201                                     unsigned Abbrev);
202   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
203                                      SmallVectorImpl<uint64_t> &Record,
204                                      unsigned Abbrev);
205   void writeDIGlobalVariable(const DIGlobalVariable *N,
206                              SmallVectorImpl<uint64_t> &Record,
207                              unsigned Abbrev);
208   void writeDILocalVariable(const DILocalVariable *N,
209                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
210   void writeDIExpression(const DIExpression *N,
211                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
212   void writeDIObjCProperty(const DIObjCProperty *N,
213                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
214   void writeDIImportedEntity(const DIImportedEntity *N,
215                              SmallVectorImpl<uint64_t> &Record,
216                              unsigned Abbrev);
217   unsigned createNamedMetadataAbbrev();
218   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
219   unsigned createMetadataStringsAbbrev();
220   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
221                             SmallVectorImpl<uint64_t> &Record);
222   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
223                             SmallVectorImpl<uint64_t> &Record);
224   void writeModuleMetadata();
225   void writeFunctionMetadata(const Function &F);
226   void writeMetadataAttachment(const Function &F);
227   void writeModuleMetadataStore();
228   void writeOperandBundleTags();
229   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
230   void writeModuleConstants();
231   bool pushValueAndType(const Value *V, unsigned InstID,
232                         SmallVectorImpl<unsigned> &Vals);
233   void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
234   void pushValue(const Value *V, unsigned InstID,
235                  SmallVectorImpl<unsigned> &Vals);
236   void pushValueSigned(const Value *V, unsigned InstID,
237                        SmallVectorImpl<uint64_t> &Vals);
238   void writeInstruction(const Instruction &I, unsigned InstID,
239                         SmallVectorImpl<unsigned> &Vals);
240   void writeValueSymbolTable(
241       const ValueSymbolTable &VST, bool IsModuleLevel = false,
242       DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
243   void writeUseList(UseListOrder &&Order);
244   void writeUseListBlock(const Function *F);
245   void
246   writeFunction(const Function &F,
247                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
248   void writeBlockInfo();
249   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
250                                            GlobalValueSummary *Summary,
251                                            unsigned ValueID,
252                                            unsigned FSCallsAbbrev,
253                                            unsigned FSCallsProfileAbbrev,
254                                            const Function &F);
255   void writeModuleLevelReferences(const GlobalVariable &V,
256                                   SmallVector<uint64_t, 64> &NameVals,
257                                   unsigned FSModRefsAbbrev);
258   void writePerModuleGlobalValueSummary();
259   void writeModuleHash(size_t BlockStartPos);
260 };
261 
262 /// Class to manage the bitcode writing for a combined index.
263 class IndexBitcodeWriter : public BitcodeWriter {
264   /// The combined index to write to bitcode.
265   const ModuleSummaryIndex &Index;
266 
267   /// When writing a subset of the index for distributed backends, client
268   /// provides a map of modules to the corresponding GUIDs/summaries to write.
269   std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
270 
271   /// Map that holds the correspondence between the GUID used in the combined
272   /// index and a value id generated by this class to use in references.
273   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
274 
275   /// Tracks the last value id recorded in the GUIDToValueMap.
276   unsigned GlobalValueId = 0;
277 
278 public:
279   /// Constructs a IndexBitcodeWriter object for the given combined index,
280   /// writing to the provided \p Buffer. When writing a subset of the index
281   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
282   IndexBitcodeWriter(SmallVectorImpl<char> &Buffer,
283                      const ModuleSummaryIndex &Index,
284                      std::map<std::string, GVSummaryMapTy>
285                          *ModuleToSummariesForIndex = nullptr)
286       : BitcodeWriter(Buffer), Index(Index),
287         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
288     // Assign unique value ids to all summaries to be written, for use
289     // in writing out the call graph edges. Save the mapping from GUID
290     // to the new global value id to use when writing those edges, which
291     // are currently saved in the index in terms of GUID.
292     for (const auto &I : *this)
293       GUIDToValueIdMap[I.first] = ++GlobalValueId;
294   }
295 
296   /// The below iterator returns the GUID and associated summary.
297   typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
298 
299   /// Iterator over the value GUID and summaries to be written to bitcode,
300   /// hides the details of whether they are being pulled from the entire
301   /// index or just those in a provided ModuleToSummariesForIndex map.
302   class iterator
303       : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
304                                           GVInfo> {
305     /// Enables access to parent class.
306     const IndexBitcodeWriter &Writer;
307 
308     // Iterators used when writing only those summaries in a provided
309     // ModuleToSummariesForIndex map:
310 
311     /// Points to the last element in outer ModuleToSummariesForIndex map.
312     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesBack;
313     /// Iterator on outer ModuleToSummariesForIndex map.
314     std::map<std::string, GVSummaryMapTy>::iterator ModuleSummariesIter;
315     /// Iterator on an inner global variable summary map.
316     GVSummaryMapTy::iterator ModuleGVSummariesIter;
317 
318     // Iterators used when writing all summaries in the index:
319 
320     /// Points to the last element in the Index outer GlobalValueMap.
321     const_gvsummary_iterator IndexSummariesBack;
322     /// Iterator on outer GlobalValueMap.
323     const_gvsummary_iterator IndexSummariesIter;
324     /// Iterator on an inner GlobalValueSummaryList.
325     GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
326 
327   public:
328     /// Construct iterator from parent \p Writer and indicate if we are
329     /// constructing the end iterator.
330     iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
331       // Set up the appropriate set of iterators given whether we are writing
332       // the full index or just a subset.
333       // Can't setup the Back or inner iterators if the corresponding map
334       // is empty. This will be handled specially in operator== as well.
335       if (Writer.ModuleToSummariesForIndex &&
336           !Writer.ModuleToSummariesForIndex->empty()) {
337         for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
338              std::next(ModuleSummariesBack) !=
339              Writer.ModuleToSummariesForIndex->end();
340              ModuleSummariesBack++)
341           ;
342         ModuleSummariesIter = !IsAtEnd
343                                   ? Writer.ModuleToSummariesForIndex->begin()
344                                   : ModuleSummariesBack;
345         ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
346                                          : ModuleSummariesBack->second.end();
347       } else if (!Writer.ModuleToSummariesForIndex &&
348                  Writer.Index.begin() != Writer.Index.end()) {
349         for (IndexSummariesBack = Writer.Index.begin();
350              std::next(IndexSummariesBack) != Writer.Index.end();
351              IndexSummariesBack++)
352           ;
353         IndexSummariesIter =
354             !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
355         IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
356                                         : IndexSummariesBack->second.end();
357       }
358     }
359 
360     /// Increment the appropriate set of iterators.
361     iterator &operator++() {
362       // First the inner iterator is incremented, then if it is at the end
363       // and there are more outer iterations to go, the inner is reset to
364       // the start of the next inner list.
365       if (Writer.ModuleToSummariesForIndex) {
366         ++ModuleGVSummariesIter;
367         if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
368             ModuleSummariesIter != ModuleSummariesBack) {
369           ++ModuleSummariesIter;
370           ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
371         }
372       } else {
373         ++IndexGVSummariesIter;
374         if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
375             IndexSummariesIter != IndexSummariesBack) {
376           ++IndexSummariesIter;
377           IndexGVSummariesIter = IndexSummariesIter->second.begin();
378         }
379       }
380       return *this;
381     }
382 
383     /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
384     /// outer and inner iterator positions.
385     GVInfo operator*() {
386       if (Writer.ModuleToSummariesForIndex)
387         return std::make_pair(ModuleGVSummariesIter->first,
388                               ModuleGVSummariesIter->second);
389       return std::make_pair(IndexSummariesIter->first,
390                             IndexGVSummariesIter->get());
391     }
392 
393     /// Checks if the iterators are equal, with special handling for empty
394     /// indexes.
395     bool operator==(const iterator &RHS) const {
396       if (Writer.ModuleToSummariesForIndex) {
397         // First ensure that both are writing the same subset.
398         if (Writer.ModuleToSummariesForIndex !=
399             RHS.Writer.ModuleToSummariesForIndex)
400           return false;
401         // Already determined above that maps are the same, so if one is
402         // empty, they both are.
403         if (Writer.ModuleToSummariesForIndex->empty())
404           return true;
405         // Ensure the ModuleGVSummariesIter are iterating over the same
406         // container before checking them below.
407         if (ModuleSummariesIter != RHS.ModuleSummariesIter)
408           return false;
409         return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
410       }
411       // First ensure RHS also writing the full index, and that both are
412       // writing the same full index.
413       if (RHS.Writer.ModuleToSummariesForIndex ||
414           &Writer.Index != &RHS.Writer.Index)
415         return false;
416       // Already determined above that maps are the same, so if one is
417       // empty, they both are.
418       if (Writer.Index.begin() == Writer.Index.end())
419         return true;
420       // Ensure the IndexGVSummariesIter are iterating over the same
421       // container before checking them below.
422       if (IndexSummariesIter != RHS.IndexSummariesIter)
423         return false;
424       return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
425     }
426   };
427 
428   /// Obtain the start iterator over the summaries to be written.
429   iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
430   /// Obtain the end iterator over the summaries to be written.
431   iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
432 
433 private:
434   /// Main entry point for writing a combined index to bitcode, invoked by
435   /// BitcodeWriter::write() after it writes the header.
436   void writeBlocks() override;
437 
438   void writeIndex();
439   void writeModStrings();
440   void writeCombinedValueSymbolTable();
441   void writeCombinedGlobalValueSummary();
442 
443   /// Indicates whether the provided \p ModulePath should be written into
444   /// the module string table, e.g. if full index written or if it is in
445   /// the provided subset.
446   bool doIncludeModule(StringRef ModulePath) {
447     return !ModuleToSummariesForIndex ||
448            ModuleToSummariesForIndex->count(ModulePath);
449   }
450 
451   bool hasValueId(GlobalValue::GUID ValGUID) {
452     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
453     return VMI != GUIDToValueIdMap.end();
454   }
455   unsigned getValueId(GlobalValue::GUID ValGUID) {
456     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
457     // If this GUID doesn't have an entry, assign one.
458     if (VMI == GUIDToValueIdMap.end()) {
459       GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
460       return GlobalValueId;
461     } else {
462       return VMI->second;
463     }
464   }
465   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
466 };
467 } // end anonymous namespace
468 
469 static unsigned getEncodedCastOpcode(unsigned Opcode) {
470   switch (Opcode) {
471   default: llvm_unreachable("Unknown cast instruction!");
472   case Instruction::Trunc   : return bitc::CAST_TRUNC;
473   case Instruction::ZExt    : return bitc::CAST_ZEXT;
474   case Instruction::SExt    : return bitc::CAST_SEXT;
475   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
476   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
477   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
478   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
479   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
480   case Instruction::FPExt   : return bitc::CAST_FPEXT;
481   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
482   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
483   case Instruction::BitCast : return bitc::CAST_BITCAST;
484   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
485   }
486 }
487 
488 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
489   switch (Opcode) {
490   default: llvm_unreachable("Unknown binary instruction!");
491   case Instruction::Add:
492   case Instruction::FAdd: return bitc::BINOP_ADD;
493   case Instruction::Sub:
494   case Instruction::FSub: return bitc::BINOP_SUB;
495   case Instruction::Mul:
496   case Instruction::FMul: return bitc::BINOP_MUL;
497   case Instruction::UDiv: return bitc::BINOP_UDIV;
498   case Instruction::FDiv:
499   case Instruction::SDiv: return bitc::BINOP_SDIV;
500   case Instruction::URem: return bitc::BINOP_UREM;
501   case Instruction::FRem:
502   case Instruction::SRem: return bitc::BINOP_SREM;
503   case Instruction::Shl:  return bitc::BINOP_SHL;
504   case Instruction::LShr: return bitc::BINOP_LSHR;
505   case Instruction::AShr: return bitc::BINOP_ASHR;
506   case Instruction::And:  return bitc::BINOP_AND;
507   case Instruction::Or:   return bitc::BINOP_OR;
508   case Instruction::Xor:  return bitc::BINOP_XOR;
509   }
510 }
511 
512 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
513   switch (Op) {
514   default: llvm_unreachable("Unknown RMW operation!");
515   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
516   case AtomicRMWInst::Add: return bitc::RMW_ADD;
517   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
518   case AtomicRMWInst::And: return bitc::RMW_AND;
519   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
520   case AtomicRMWInst::Or: return bitc::RMW_OR;
521   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
522   case AtomicRMWInst::Max: return bitc::RMW_MAX;
523   case AtomicRMWInst::Min: return bitc::RMW_MIN;
524   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
525   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
526   }
527 }
528 
529 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
530   switch (Ordering) {
531   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
532   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
533   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
534   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
535   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
536   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
537   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
538   }
539   llvm_unreachable("Invalid ordering");
540 }
541 
542 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
543   switch (SynchScope) {
544   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
545   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
546   }
547   llvm_unreachable("Invalid synch scope");
548 }
549 
550 void ModuleBitcodeWriter::writeStringRecord(unsigned Code, StringRef Str,
551                                             unsigned AbbrevToUse) {
552   SmallVector<unsigned, 64> Vals;
553 
554   // Code: [strchar x N]
555   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
556     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
557       AbbrevToUse = 0;
558     Vals.push_back(Str[i]);
559   }
560 
561   // Emit the finished record.
562   Stream.EmitRecord(Code, Vals, AbbrevToUse);
563 }
564 
565 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
566   switch (Kind) {
567   case Attribute::Alignment:
568     return bitc::ATTR_KIND_ALIGNMENT;
569   case Attribute::AllocSize:
570     return bitc::ATTR_KIND_ALLOC_SIZE;
571   case Attribute::AlwaysInline:
572     return bitc::ATTR_KIND_ALWAYS_INLINE;
573   case Attribute::ArgMemOnly:
574     return bitc::ATTR_KIND_ARGMEMONLY;
575   case Attribute::Builtin:
576     return bitc::ATTR_KIND_BUILTIN;
577   case Attribute::ByVal:
578     return bitc::ATTR_KIND_BY_VAL;
579   case Attribute::Convergent:
580     return bitc::ATTR_KIND_CONVERGENT;
581   case Attribute::InAlloca:
582     return bitc::ATTR_KIND_IN_ALLOCA;
583   case Attribute::Cold:
584     return bitc::ATTR_KIND_COLD;
585   case Attribute::InaccessibleMemOnly:
586     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
587   case Attribute::InaccessibleMemOrArgMemOnly:
588     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
589   case Attribute::InlineHint:
590     return bitc::ATTR_KIND_INLINE_HINT;
591   case Attribute::InReg:
592     return bitc::ATTR_KIND_IN_REG;
593   case Attribute::JumpTable:
594     return bitc::ATTR_KIND_JUMP_TABLE;
595   case Attribute::MinSize:
596     return bitc::ATTR_KIND_MIN_SIZE;
597   case Attribute::Naked:
598     return bitc::ATTR_KIND_NAKED;
599   case Attribute::Nest:
600     return bitc::ATTR_KIND_NEST;
601   case Attribute::NoAlias:
602     return bitc::ATTR_KIND_NO_ALIAS;
603   case Attribute::NoBuiltin:
604     return bitc::ATTR_KIND_NO_BUILTIN;
605   case Attribute::NoCapture:
606     return bitc::ATTR_KIND_NO_CAPTURE;
607   case Attribute::NoDuplicate:
608     return bitc::ATTR_KIND_NO_DUPLICATE;
609   case Attribute::NoImplicitFloat:
610     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
611   case Attribute::NoInline:
612     return bitc::ATTR_KIND_NO_INLINE;
613   case Attribute::NoRecurse:
614     return bitc::ATTR_KIND_NO_RECURSE;
615   case Attribute::NonLazyBind:
616     return bitc::ATTR_KIND_NON_LAZY_BIND;
617   case Attribute::NonNull:
618     return bitc::ATTR_KIND_NON_NULL;
619   case Attribute::Dereferenceable:
620     return bitc::ATTR_KIND_DEREFERENCEABLE;
621   case Attribute::DereferenceableOrNull:
622     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
623   case Attribute::NoRedZone:
624     return bitc::ATTR_KIND_NO_RED_ZONE;
625   case Attribute::NoReturn:
626     return bitc::ATTR_KIND_NO_RETURN;
627   case Attribute::NoUnwind:
628     return bitc::ATTR_KIND_NO_UNWIND;
629   case Attribute::OptimizeForSize:
630     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
631   case Attribute::OptimizeNone:
632     return bitc::ATTR_KIND_OPTIMIZE_NONE;
633   case Attribute::ReadNone:
634     return bitc::ATTR_KIND_READ_NONE;
635   case Attribute::ReadOnly:
636     return bitc::ATTR_KIND_READ_ONLY;
637   case Attribute::Returned:
638     return bitc::ATTR_KIND_RETURNED;
639   case Attribute::ReturnsTwice:
640     return bitc::ATTR_KIND_RETURNS_TWICE;
641   case Attribute::SExt:
642     return bitc::ATTR_KIND_S_EXT;
643   case Attribute::StackAlignment:
644     return bitc::ATTR_KIND_STACK_ALIGNMENT;
645   case Attribute::StackProtect:
646     return bitc::ATTR_KIND_STACK_PROTECT;
647   case Attribute::StackProtectReq:
648     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
649   case Attribute::StackProtectStrong:
650     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
651   case Attribute::SafeStack:
652     return bitc::ATTR_KIND_SAFESTACK;
653   case Attribute::StructRet:
654     return bitc::ATTR_KIND_STRUCT_RET;
655   case Attribute::SanitizeAddress:
656     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
657   case Attribute::SanitizeThread:
658     return bitc::ATTR_KIND_SANITIZE_THREAD;
659   case Attribute::SanitizeMemory:
660     return bitc::ATTR_KIND_SANITIZE_MEMORY;
661   case Attribute::SwiftError:
662     return bitc::ATTR_KIND_SWIFT_ERROR;
663   case Attribute::SwiftSelf:
664     return bitc::ATTR_KIND_SWIFT_SELF;
665   case Attribute::UWTable:
666     return bitc::ATTR_KIND_UW_TABLE;
667   case Attribute::ZExt:
668     return bitc::ATTR_KIND_Z_EXT;
669   case Attribute::EndAttrKinds:
670     llvm_unreachable("Can not encode end-attribute kinds marker.");
671   case Attribute::None:
672     llvm_unreachable("Can not encode none-attribute.");
673   }
674 
675   llvm_unreachable("Trying to encode unknown attribute");
676 }
677 
678 void ModuleBitcodeWriter::writeAttributeGroupTable() {
679   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
680   if (AttrGrps.empty()) return;
681 
682   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
683 
684   SmallVector<uint64_t, 64> Record;
685   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
686     AttributeSet AS = AttrGrps[i];
687     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
688       AttributeSet A = AS.getSlotAttributes(i);
689 
690       Record.push_back(VE.getAttributeGroupID(A));
691       Record.push_back(AS.getSlotIndex(i));
692 
693       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
694            I != E; ++I) {
695         Attribute Attr = *I;
696         if (Attr.isEnumAttribute()) {
697           Record.push_back(0);
698           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
699         } else if (Attr.isIntAttribute()) {
700           Record.push_back(1);
701           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
702           Record.push_back(Attr.getValueAsInt());
703         } else {
704           StringRef Kind = Attr.getKindAsString();
705           StringRef Val = Attr.getValueAsString();
706 
707           Record.push_back(Val.empty() ? 3 : 4);
708           Record.append(Kind.begin(), Kind.end());
709           Record.push_back(0);
710           if (!Val.empty()) {
711             Record.append(Val.begin(), Val.end());
712             Record.push_back(0);
713           }
714         }
715       }
716 
717       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
718       Record.clear();
719     }
720   }
721 
722   Stream.ExitBlock();
723 }
724 
725 void ModuleBitcodeWriter::writeAttributeTable() {
726   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
727   if (Attrs.empty()) return;
728 
729   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
730 
731   SmallVector<uint64_t, 64> Record;
732   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
733     const AttributeSet &A = Attrs[i];
734     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
735       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
736 
737     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
738     Record.clear();
739   }
740 
741   Stream.ExitBlock();
742 }
743 
744 /// WriteTypeTable - Write out the type table for a module.
745 void ModuleBitcodeWriter::writeTypeTable() {
746   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
747 
748   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
749   SmallVector<uint64_t, 64> TypeVals;
750 
751   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
752 
753   // Abbrev for TYPE_CODE_POINTER.
754   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
755   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
756   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
757   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
758   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
759 
760   // Abbrev for TYPE_CODE_FUNCTION.
761   Abbv = new BitCodeAbbrev();
762   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
763   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
764   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
765   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
766 
767   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
768 
769   // Abbrev for TYPE_CODE_STRUCT_ANON.
770   Abbv = new BitCodeAbbrev();
771   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
772   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
773   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
774   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
775 
776   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
777 
778   // Abbrev for TYPE_CODE_STRUCT_NAME.
779   Abbv = new BitCodeAbbrev();
780   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
781   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
782   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
783   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
784 
785   // Abbrev for TYPE_CODE_STRUCT_NAMED.
786   Abbv = new BitCodeAbbrev();
787   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
788   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
789   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
790   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
791 
792   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
793 
794   // Abbrev for TYPE_CODE_ARRAY.
795   Abbv = new BitCodeAbbrev();
796   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
797   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
798   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
799 
800   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
801 
802   // Emit an entry count so the reader can reserve space.
803   TypeVals.push_back(TypeList.size());
804   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
805   TypeVals.clear();
806 
807   // Loop over all of the types, emitting each in turn.
808   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
809     Type *T = TypeList[i];
810     int AbbrevToUse = 0;
811     unsigned Code = 0;
812 
813     switch (T->getTypeID()) {
814     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
815     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
816     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
817     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
818     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
819     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
820     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
821     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
822     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
823     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
824     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
825     case Type::IntegerTyID:
826       // INTEGER: [width]
827       Code = bitc::TYPE_CODE_INTEGER;
828       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
829       break;
830     case Type::PointerTyID: {
831       PointerType *PTy = cast<PointerType>(T);
832       // POINTER: [pointee type, address space]
833       Code = bitc::TYPE_CODE_POINTER;
834       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
835       unsigned AddressSpace = PTy->getAddressSpace();
836       TypeVals.push_back(AddressSpace);
837       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
838       break;
839     }
840     case Type::FunctionTyID: {
841       FunctionType *FT = cast<FunctionType>(T);
842       // FUNCTION: [isvararg, retty, paramty x N]
843       Code = bitc::TYPE_CODE_FUNCTION;
844       TypeVals.push_back(FT->isVarArg());
845       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
846       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
847         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
848       AbbrevToUse = FunctionAbbrev;
849       break;
850     }
851     case Type::StructTyID: {
852       StructType *ST = cast<StructType>(T);
853       // STRUCT: [ispacked, eltty x N]
854       TypeVals.push_back(ST->isPacked());
855       // Output all of the element types.
856       for (StructType::element_iterator I = ST->element_begin(),
857            E = ST->element_end(); I != E; ++I)
858         TypeVals.push_back(VE.getTypeID(*I));
859 
860       if (ST->isLiteral()) {
861         Code = bitc::TYPE_CODE_STRUCT_ANON;
862         AbbrevToUse = StructAnonAbbrev;
863       } else {
864         if (ST->isOpaque()) {
865           Code = bitc::TYPE_CODE_OPAQUE;
866         } else {
867           Code = bitc::TYPE_CODE_STRUCT_NAMED;
868           AbbrevToUse = StructNamedAbbrev;
869         }
870 
871         // Emit the name if it is present.
872         if (!ST->getName().empty())
873           writeStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
874                             StructNameAbbrev);
875       }
876       break;
877     }
878     case Type::ArrayTyID: {
879       ArrayType *AT = cast<ArrayType>(T);
880       // ARRAY: [numelts, eltty]
881       Code = bitc::TYPE_CODE_ARRAY;
882       TypeVals.push_back(AT->getNumElements());
883       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
884       AbbrevToUse = ArrayAbbrev;
885       break;
886     }
887     case Type::VectorTyID: {
888       VectorType *VT = cast<VectorType>(T);
889       // VECTOR [numelts, eltty]
890       Code = bitc::TYPE_CODE_VECTOR;
891       TypeVals.push_back(VT->getNumElements());
892       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
893       break;
894     }
895     }
896 
897     // Emit the finished record.
898     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
899     TypeVals.clear();
900   }
901 
902   Stream.ExitBlock();
903 }
904 
905 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
906   switch (Linkage) {
907   case GlobalValue::ExternalLinkage:
908     return 0;
909   case GlobalValue::WeakAnyLinkage:
910     return 16;
911   case GlobalValue::AppendingLinkage:
912     return 2;
913   case GlobalValue::InternalLinkage:
914     return 3;
915   case GlobalValue::LinkOnceAnyLinkage:
916     return 18;
917   case GlobalValue::ExternalWeakLinkage:
918     return 7;
919   case GlobalValue::CommonLinkage:
920     return 8;
921   case GlobalValue::PrivateLinkage:
922     return 9;
923   case GlobalValue::WeakODRLinkage:
924     return 17;
925   case GlobalValue::LinkOnceODRLinkage:
926     return 19;
927   case GlobalValue::AvailableExternallyLinkage:
928     return 12;
929   }
930   llvm_unreachable("Invalid linkage");
931 }
932 
933 static unsigned getEncodedLinkage(const GlobalValue &GV) {
934   return getEncodedLinkage(GV.getLinkage());
935 }
936 
937 // Decode the flags for GlobalValue in the summary
938 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
939   uint64_t RawFlags = 0;
940 
941   RawFlags |= Flags.HasSection; // bool
942 
943   // Linkage don't need to be remapped at that time for the summary. Any future
944   // change to the getEncodedLinkage() function will need to be taken into
945   // account here as well.
946   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
947 
948   return RawFlags;
949 }
950 
951 static unsigned getEncodedVisibility(const GlobalValue &GV) {
952   switch (GV.getVisibility()) {
953   case GlobalValue::DefaultVisibility:   return 0;
954   case GlobalValue::HiddenVisibility:    return 1;
955   case GlobalValue::ProtectedVisibility: return 2;
956   }
957   llvm_unreachable("Invalid visibility");
958 }
959 
960 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
961   switch (GV.getDLLStorageClass()) {
962   case GlobalValue::DefaultStorageClass:   return 0;
963   case GlobalValue::DLLImportStorageClass: return 1;
964   case GlobalValue::DLLExportStorageClass: return 2;
965   }
966   llvm_unreachable("Invalid DLL storage class");
967 }
968 
969 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
970   switch (GV.getThreadLocalMode()) {
971     case GlobalVariable::NotThreadLocal:         return 0;
972     case GlobalVariable::GeneralDynamicTLSModel: return 1;
973     case GlobalVariable::LocalDynamicTLSModel:   return 2;
974     case GlobalVariable::InitialExecTLSModel:    return 3;
975     case GlobalVariable::LocalExecTLSModel:      return 4;
976   }
977   llvm_unreachable("Invalid TLS model");
978 }
979 
980 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
981   switch (C.getSelectionKind()) {
982   case Comdat::Any:
983     return bitc::COMDAT_SELECTION_KIND_ANY;
984   case Comdat::ExactMatch:
985     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
986   case Comdat::Largest:
987     return bitc::COMDAT_SELECTION_KIND_LARGEST;
988   case Comdat::NoDuplicates:
989     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
990   case Comdat::SameSize:
991     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
992   }
993   llvm_unreachable("Invalid selection kind");
994 }
995 
996 void ModuleBitcodeWriter::writeComdats() {
997   SmallVector<unsigned, 64> Vals;
998   for (const Comdat *C : VE.getComdats()) {
999     // COMDAT: [selection_kind, name]
1000     Vals.push_back(getEncodedComdatSelectionKind(*C));
1001     size_t Size = C->getName().size();
1002     assert(isUInt<32>(Size));
1003     Vals.push_back(Size);
1004     for (char Chr : C->getName())
1005       Vals.push_back((unsigned char)Chr);
1006     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1007     Vals.clear();
1008   }
1009 }
1010 
1011 /// Write a record that will eventually hold the word offset of the
1012 /// module-level VST. For now the offset is 0, which will be backpatched
1013 /// after the real VST is written. Saves the bit offset to backpatch.
1014 void BitcodeWriter::writeValueSymbolTableForwardDecl() {
1015   // Write a placeholder value in for the offset of the real VST,
1016   // which is written after the function blocks so that it can include
1017   // the offset of each function. The placeholder offset will be
1018   // updated when the real VST is written.
1019   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1020   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1021   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1022   // hold the real VST offset. Must use fixed instead of VBR as we don't
1023   // know how many VBR chunks to reserve ahead of time.
1024   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1025   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
1026 
1027   // Emit the placeholder
1028   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1029   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1030 
1031   // Compute and save the bit offset to the placeholder, which will be
1032   // patched when the real VST is written. We can simply subtract the 32-bit
1033   // fixed size from the current bit number to get the location to backpatch.
1034   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1035 }
1036 
1037 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1038 
1039 /// Determine the encoding to use for the given string name and length.
1040 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
1041   bool isChar6 = true;
1042   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
1043     if (isChar6)
1044       isChar6 = BitCodeAbbrevOp::isChar6(*C);
1045     if ((unsigned char)*C & 128)
1046       // don't bother scanning the rest.
1047       return SE_Fixed8;
1048   }
1049   if (isChar6)
1050     return SE_Char6;
1051   else
1052     return SE_Fixed7;
1053 }
1054 
1055 /// Emit top-level description of module, including target triple, inline asm,
1056 /// descriptors for global variables, and function prototype info.
1057 /// Returns the bit offset to backpatch with the location of the real VST.
1058 void ModuleBitcodeWriter::writeModuleInfo() {
1059   // Emit various pieces of data attached to a module.
1060   if (!M.getTargetTriple().empty())
1061     writeStringRecord(bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1062                       0 /*TODO*/);
1063   const std::string &DL = M.getDataLayoutStr();
1064   if (!DL.empty())
1065     writeStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1066   if (!M.getModuleInlineAsm().empty())
1067     writeStringRecord(bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1068                       0 /*TODO*/);
1069 
1070   // Emit information about sections and GC, computing how many there are. Also
1071   // compute the maximum alignment value.
1072   std::map<std::string, unsigned> SectionMap;
1073   std::map<std::string, unsigned> GCMap;
1074   unsigned MaxAlignment = 0;
1075   unsigned MaxGlobalType = 0;
1076   for (const GlobalValue &GV : M.globals()) {
1077     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
1078     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1079     if (GV.hasSection()) {
1080       // Give section names unique ID's.
1081       unsigned &Entry = SectionMap[GV.getSection()];
1082       if (!Entry) {
1083         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1084                           0 /*TODO*/);
1085         Entry = SectionMap.size();
1086       }
1087     }
1088   }
1089   for (const Function &F : M) {
1090     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
1091     if (F.hasSection()) {
1092       // Give section names unique ID's.
1093       unsigned &Entry = SectionMap[F.getSection()];
1094       if (!Entry) {
1095         writeStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1096                           0 /*TODO*/);
1097         Entry = SectionMap.size();
1098       }
1099     }
1100     if (F.hasGC()) {
1101       // Same for GC names.
1102       unsigned &Entry = GCMap[F.getGC()];
1103       if (!Entry) {
1104         writeStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 0 /*TODO*/);
1105         Entry = GCMap.size();
1106       }
1107     }
1108   }
1109 
1110   // Emit abbrev for globals, now that we know # sections and max alignment.
1111   unsigned SimpleGVarAbbrev = 0;
1112   if (!M.global_empty()) {
1113     // Add an abbrev for common globals with no visibility or thread localness.
1114     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1115     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1116     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1117                               Log2_32_Ceil(MaxGlobalType+1)));
1118     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1119                                                            //| explicitType << 1
1120                                                            //| constant
1121     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1122     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1123     if (MaxAlignment == 0)                                 // Alignment.
1124       Abbv->Add(BitCodeAbbrevOp(0));
1125     else {
1126       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
1127       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1128                                Log2_32_Ceil(MaxEncAlignment+1)));
1129     }
1130     if (SectionMap.empty())                                    // Section.
1131       Abbv->Add(BitCodeAbbrevOp(0));
1132     else
1133       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1134                                Log2_32_Ceil(SectionMap.size()+1)));
1135     // Don't bother emitting vis + thread local.
1136     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
1137   }
1138 
1139   // Emit the global variable information.
1140   SmallVector<unsigned, 64> Vals;
1141   for (const GlobalVariable &GV : M.globals()) {
1142     unsigned AbbrevToUse = 0;
1143 
1144     // GLOBALVAR: [type, isconst, initid,
1145     //             linkage, alignment, section, visibility, threadlocal,
1146     //             unnamed_addr, externally_initialized, dllstorageclass,
1147     //             comdat]
1148     Vals.push_back(VE.getTypeID(GV.getValueType()));
1149     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1150     Vals.push_back(GV.isDeclaration() ? 0 :
1151                    (VE.getValueID(GV.getInitializer()) + 1));
1152     Vals.push_back(getEncodedLinkage(GV));
1153     Vals.push_back(Log2_32(GV.getAlignment())+1);
1154     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
1155     if (GV.isThreadLocal() ||
1156         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1157         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
1158         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1159         GV.hasComdat()) {
1160       Vals.push_back(getEncodedVisibility(GV));
1161       Vals.push_back(getEncodedThreadLocalMode(GV));
1162       Vals.push_back(GV.hasUnnamedAddr());
1163       Vals.push_back(GV.isExternallyInitialized());
1164       Vals.push_back(getEncodedDLLStorageClass(GV));
1165       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1166     } else {
1167       AbbrevToUse = SimpleGVarAbbrev;
1168     }
1169 
1170     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1171     Vals.clear();
1172   }
1173 
1174   // Emit the function proto information.
1175   for (const Function &F : M) {
1176     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
1177     //             section, visibility, gc, unnamed_addr, prologuedata,
1178     //             dllstorageclass, comdat, prefixdata, personalityfn]
1179     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1180     Vals.push_back(F.getCallingConv());
1181     Vals.push_back(F.isDeclaration());
1182     Vals.push_back(getEncodedLinkage(F));
1183     Vals.push_back(VE.getAttributeID(F.getAttributes()));
1184     Vals.push_back(Log2_32(F.getAlignment())+1);
1185     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
1186     Vals.push_back(getEncodedVisibility(F));
1187     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1188     Vals.push_back(F.hasUnnamedAddr());
1189     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1190                                        : 0);
1191     Vals.push_back(getEncodedDLLStorageClass(F));
1192     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1193     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1194                                      : 0);
1195     Vals.push_back(
1196         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1197 
1198     unsigned AbbrevToUse = 0;
1199     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1200     Vals.clear();
1201   }
1202 
1203   // Emit the alias information.
1204   for (const GlobalAlias &A : M.aliases()) {
1205     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1206     Vals.push_back(VE.getTypeID(A.getValueType()));
1207     Vals.push_back(A.getType()->getAddressSpace());
1208     Vals.push_back(VE.getValueID(A.getAliasee()));
1209     Vals.push_back(getEncodedLinkage(A));
1210     Vals.push_back(getEncodedVisibility(A));
1211     Vals.push_back(getEncodedDLLStorageClass(A));
1212     Vals.push_back(getEncodedThreadLocalMode(A));
1213     Vals.push_back(A.hasUnnamedAddr());
1214     unsigned AbbrevToUse = 0;
1215     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1216     Vals.clear();
1217   }
1218 
1219   // Emit the ifunc information.
1220   for (const GlobalIFunc &I : M.ifuncs()) {
1221     // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
1222     Vals.push_back(VE.getTypeID(I.getValueType()));
1223     Vals.push_back(I.getType()->getAddressSpace());
1224     Vals.push_back(VE.getValueID(I.getResolver()));
1225     Vals.push_back(getEncodedLinkage(I));
1226     Vals.push_back(getEncodedVisibility(I));
1227     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1228     Vals.clear();
1229   }
1230 
1231   // Emit the module's source file name.
1232   {
1233     StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
1234                                             M.getSourceFileName().size());
1235     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1236     if (Bits == SE_Char6)
1237       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1238     else if (Bits == SE_Fixed7)
1239       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1240 
1241     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1242     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1243     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1244     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1245     Abbv->Add(AbbrevOpToUse);
1246     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
1247 
1248     for (const auto P : M.getSourceFileName())
1249       Vals.push_back((unsigned char)P);
1250 
1251     // Emit the finished record.
1252     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1253     Vals.clear();
1254   }
1255 
1256   // If we have a VST, write the VSTOFFSET record placeholder.
1257   if (M.getValueSymbolTable().empty())
1258     return;
1259   writeValueSymbolTableForwardDecl();
1260 }
1261 
1262 static uint64_t getOptimizationFlags(const Value *V) {
1263   uint64_t Flags = 0;
1264 
1265   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1266     if (OBO->hasNoSignedWrap())
1267       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1268     if (OBO->hasNoUnsignedWrap())
1269       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1270   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1271     if (PEO->isExact())
1272       Flags |= 1 << bitc::PEO_EXACT;
1273   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1274     if (FPMO->hasUnsafeAlgebra())
1275       Flags |= FastMathFlags::UnsafeAlgebra;
1276     if (FPMO->hasNoNaNs())
1277       Flags |= FastMathFlags::NoNaNs;
1278     if (FPMO->hasNoInfs())
1279       Flags |= FastMathFlags::NoInfs;
1280     if (FPMO->hasNoSignedZeros())
1281       Flags |= FastMathFlags::NoSignedZeros;
1282     if (FPMO->hasAllowReciprocal())
1283       Flags |= FastMathFlags::AllowReciprocal;
1284   }
1285 
1286   return Flags;
1287 }
1288 
1289 void ModuleBitcodeWriter::writeValueAsMetadata(
1290     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1291   // Mimic an MDNode with a value as one operand.
1292   Value *V = MD->getValue();
1293   Record.push_back(VE.getTypeID(V->getType()));
1294   Record.push_back(VE.getValueID(V));
1295   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1296   Record.clear();
1297 }
1298 
1299 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1300                                        SmallVectorImpl<uint64_t> &Record,
1301                                        unsigned Abbrev) {
1302   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1303     Metadata *MD = N->getOperand(i);
1304     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1305            "Unexpected function-local metadata");
1306     Record.push_back(VE.getMetadataOrNullID(MD));
1307   }
1308   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1309                                     : bitc::METADATA_NODE,
1310                     Record, Abbrev);
1311   Record.clear();
1312 }
1313 
1314 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1315   // Assume the column is usually under 128, and always output the inlined-at
1316   // location (it's never more expensive than building an array size 1).
1317   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1318   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1319   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1320   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1321   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1322   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1323   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1324   return Stream.EmitAbbrev(Abbv);
1325 }
1326 
1327 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1328                                           SmallVectorImpl<uint64_t> &Record,
1329                                           unsigned &Abbrev) {
1330   if (!Abbrev)
1331     Abbrev = createDILocationAbbrev();
1332 
1333   Record.push_back(N->isDistinct());
1334   Record.push_back(N->getLine());
1335   Record.push_back(N->getColumn());
1336   Record.push_back(VE.getMetadataID(N->getScope()));
1337   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1338 
1339   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1340   Record.clear();
1341 }
1342 
1343 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1344   // Assume the column is usually under 128, and always output the inlined-at
1345   // location (it's never more expensive than building an array size 1).
1346   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1347   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1350   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1351   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1352   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1353   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1354   return Stream.EmitAbbrev(Abbv);
1355 }
1356 
1357 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1358                                              SmallVectorImpl<uint64_t> &Record,
1359                                              unsigned &Abbrev) {
1360   if (!Abbrev)
1361     Abbrev = createGenericDINodeAbbrev();
1362 
1363   Record.push_back(N->isDistinct());
1364   Record.push_back(N->getTag());
1365   Record.push_back(0); // Per-tag version field; unused for now.
1366 
1367   for (auto &I : N->operands())
1368     Record.push_back(VE.getMetadataOrNullID(I));
1369 
1370   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1371   Record.clear();
1372 }
1373 
1374 static uint64_t rotateSign(int64_t I) {
1375   uint64_t U = I;
1376   return I < 0 ? ~(U << 1) : U << 1;
1377 }
1378 
1379 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1380                                           SmallVectorImpl<uint64_t> &Record,
1381                                           unsigned Abbrev) {
1382   Record.push_back(N->isDistinct());
1383   Record.push_back(N->getCount());
1384   Record.push_back(rotateSign(N->getLowerBound()));
1385 
1386   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1387   Record.clear();
1388 }
1389 
1390 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1391                                             SmallVectorImpl<uint64_t> &Record,
1392                                             unsigned Abbrev) {
1393   Record.push_back(N->isDistinct());
1394   Record.push_back(rotateSign(N->getValue()));
1395   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1396 
1397   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1398   Record.clear();
1399 }
1400 
1401 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1402                                            SmallVectorImpl<uint64_t> &Record,
1403                                            unsigned Abbrev) {
1404   Record.push_back(N->isDistinct());
1405   Record.push_back(N->getTag());
1406   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1407   Record.push_back(N->getSizeInBits());
1408   Record.push_back(N->getAlignInBits());
1409   Record.push_back(N->getEncoding());
1410 
1411   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1412   Record.clear();
1413 }
1414 
1415 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1416                                              SmallVectorImpl<uint64_t> &Record,
1417                                              unsigned Abbrev) {
1418   Record.push_back(N->isDistinct());
1419   Record.push_back(N->getTag());
1420   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1421   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1422   Record.push_back(N->getLine());
1423   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1424   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1425   Record.push_back(N->getSizeInBits());
1426   Record.push_back(N->getAlignInBits());
1427   Record.push_back(N->getOffsetInBits());
1428   Record.push_back(N->getFlags());
1429   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1430 
1431   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1432   Record.clear();
1433 }
1434 
1435 void ModuleBitcodeWriter::writeDICompositeType(
1436     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1437     unsigned Abbrev) {
1438   const unsigned IsNotUsedInOldTypeRef = 0x2;
1439   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1440   Record.push_back(N->getTag());
1441   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1442   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1443   Record.push_back(N->getLine());
1444   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1445   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1446   Record.push_back(N->getSizeInBits());
1447   Record.push_back(N->getAlignInBits());
1448   Record.push_back(N->getOffsetInBits());
1449   Record.push_back(N->getFlags());
1450   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1451   Record.push_back(N->getRuntimeLang());
1452   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1453   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1454   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1455 
1456   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1457   Record.clear();
1458 }
1459 
1460 void ModuleBitcodeWriter::writeDISubroutineType(
1461     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1462     unsigned Abbrev) {
1463   const unsigned HasNoOldTypeRefs = 0x2;
1464   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1465   Record.push_back(N->getFlags());
1466   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1467 
1468   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1469   Record.clear();
1470 }
1471 
1472 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1473                                       SmallVectorImpl<uint64_t> &Record,
1474                                       unsigned Abbrev) {
1475   Record.push_back(N->isDistinct());
1476   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1477   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1478 
1479   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1480   Record.clear();
1481 }
1482 
1483 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1484                                              SmallVectorImpl<uint64_t> &Record,
1485                                              unsigned Abbrev) {
1486   assert(N->isDistinct() && "Expected distinct compile units");
1487   Record.push_back(/* IsDistinct */ true);
1488   Record.push_back(N->getSourceLanguage());
1489   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1490   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1491   Record.push_back(N->isOptimized());
1492   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1493   Record.push_back(N->getRuntimeVersion());
1494   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1495   Record.push_back(N->getEmissionKind());
1496   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1497   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1498   Record.push_back(/* subprograms */ 0);
1499   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1500   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1501   Record.push_back(N->getDWOId());
1502   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1503 
1504   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1505   Record.clear();
1506 }
1507 
1508 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1509                                             SmallVectorImpl<uint64_t> &Record,
1510                                             unsigned Abbrev) {
1511   uint64_t HasUnitFlag = 1 << 1;
1512   Record.push_back(N->isDistinct() | HasUnitFlag);
1513   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1514   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1515   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1516   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1517   Record.push_back(N->getLine());
1518   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1519   Record.push_back(N->isLocalToUnit());
1520   Record.push_back(N->isDefinition());
1521   Record.push_back(N->getScopeLine());
1522   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1523   Record.push_back(N->getVirtuality());
1524   Record.push_back(N->getVirtualIndex());
1525   Record.push_back(N->getFlags());
1526   Record.push_back(N->isOptimized());
1527   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1528   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1529   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1530   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1531 
1532   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1533   Record.clear();
1534 }
1535 
1536 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1537                                               SmallVectorImpl<uint64_t> &Record,
1538                                               unsigned Abbrev) {
1539   Record.push_back(N->isDistinct());
1540   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1541   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1542   Record.push_back(N->getLine());
1543   Record.push_back(N->getColumn());
1544 
1545   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1546   Record.clear();
1547 }
1548 
1549 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1550     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1551     unsigned Abbrev) {
1552   Record.push_back(N->isDistinct());
1553   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1554   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1555   Record.push_back(N->getDiscriminator());
1556 
1557   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1558   Record.clear();
1559 }
1560 
1561 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1562                                            SmallVectorImpl<uint64_t> &Record,
1563                                            unsigned Abbrev) {
1564   Record.push_back(N->isDistinct());
1565   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1566   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1567   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1568   Record.push_back(N->getLine());
1569 
1570   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1571   Record.clear();
1572 }
1573 
1574 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1575                                        SmallVectorImpl<uint64_t> &Record,
1576                                        unsigned Abbrev) {
1577   Record.push_back(N->isDistinct());
1578   Record.push_back(N->getMacinfoType());
1579   Record.push_back(N->getLine());
1580   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1581   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1582 
1583   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1584   Record.clear();
1585 }
1586 
1587 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1588                                            SmallVectorImpl<uint64_t> &Record,
1589                                            unsigned Abbrev) {
1590   Record.push_back(N->isDistinct());
1591   Record.push_back(N->getMacinfoType());
1592   Record.push_back(N->getLine());
1593   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1594   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1595 
1596   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1597   Record.clear();
1598 }
1599 
1600 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1601                                         SmallVectorImpl<uint64_t> &Record,
1602                                         unsigned Abbrev) {
1603   Record.push_back(N->isDistinct());
1604   for (auto &I : N->operands())
1605     Record.push_back(VE.getMetadataOrNullID(I));
1606 
1607   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1608   Record.clear();
1609 }
1610 
1611 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1612     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1613     unsigned Abbrev) {
1614   Record.push_back(N->isDistinct());
1615   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1616   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1617 
1618   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1619   Record.clear();
1620 }
1621 
1622 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1623     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1624     unsigned Abbrev) {
1625   Record.push_back(N->isDistinct());
1626   Record.push_back(N->getTag());
1627   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1628   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1629   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1630 
1631   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1632   Record.clear();
1633 }
1634 
1635 void ModuleBitcodeWriter::writeDIGlobalVariable(
1636     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1637     unsigned Abbrev) {
1638   Record.push_back(N->isDistinct());
1639   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1640   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1641   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1642   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1643   Record.push_back(N->getLine());
1644   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1645   Record.push_back(N->isLocalToUnit());
1646   Record.push_back(N->isDefinition());
1647   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1648   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1649 
1650   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1651   Record.clear();
1652 }
1653 
1654 void ModuleBitcodeWriter::writeDILocalVariable(
1655     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1656     unsigned Abbrev) {
1657   Record.push_back(N->isDistinct());
1658   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1659   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1660   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1661   Record.push_back(N->getLine());
1662   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1663   Record.push_back(N->getArg());
1664   Record.push_back(N->getFlags());
1665 
1666   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1667   Record.clear();
1668 }
1669 
1670 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1671                                             SmallVectorImpl<uint64_t> &Record,
1672                                             unsigned Abbrev) {
1673   Record.reserve(N->getElements().size() + 1);
1674 
1675   Record.push_back(N->isDistinct());
1676   Record.append(N->elements_begin(), N->elements_end());
1677 
1678   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1679   Record.clear();
1680 }
1681 
1682 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1683                                               SmallVectorImpl<uint64_t> &Record,
1684                                               unsigned Abbrev) {
1685   Record.push_back(N->isDistinct());
1686   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1687   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1688   Record.push_back(N->getLine());
1689   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1690   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1691   Record.push_back(N->getAttributes());
1692   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1693 
1694   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1695   Record.clear();
1696 }
1697 
1698 void ModuleBitcodeWriter::writeDIImportedEntity(
1699     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
1700     unsigned Abbrev) {
1701   Record.push_back(N->isDistinct());
1702   Record.push_back(N->getTag());
1703   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1704   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1705   Record.push_back(N->getLine());
1706   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1707 
1708   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1709   Record.clear();
1710 }
1711 
1712 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
1713   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1714   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1715   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1716   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1717   return Stream.EmitAbbrev(Abbv);
1718 }
1719 
1720 void ModuleBitcodeWriter::writeNamedMetadata(
1721     SmallVectorImpl<uint64_t> &Record) {
1722   if (M.named_metadata_empty())
1723     return;
1724 
1725   unsigned Abbrev = createNamedMetadataAbbrev();
1726   for (const NamedMDNode &NMD : M.named_metadata()) {
1727     // Write name.
1728     StringRef Str = NMD.getName();
1729     Record.append(Str.bytes_begin(), Str.bytes_end());
1730     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1731     Record.clear();
1732 
1733     // Write named metadata operands.
1734     for (const MDNode *N : NMD.operands())
1735       Record.push_back(VE.getMetadataID(N));
1736     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1737     Record.clear();
1738   }
1739 }
1740 
1741 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
1742   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1743   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
1744   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
1745   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
1746   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
1747   return Stream.EmitAbbrev(Abbv);
1748 }
1749 
1750 /// Write out a record for MDString.
1751 ///
1752 /// All the metadata strings in a metadata block are emitted in a single
1753 /// record.  The sizes and strings themselves are shoved into a blob.
1754 void ModuleBitcodeWriter::writeMetadataStrings(
1755     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1756   if (Strings.empty())
1757     return;
1758 
1759   // Start the record with the number of strings.
1760   Record.push_back(bitc::METADATA_STRINGS);
1761   Record.push_back(Strings.size());
1762 
1763   // Emit the sizes of the strings in the blob.
1764   SmallString<256> Blob;
1765   {
1766     BitstreamWriter W(Blob);
1767     for (const Metadata *MD : Strings)
1768       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
1769     W.FlushToWord();
1770   }
1771 
1772   // Add the offset to the strings to the record.
1773   Record.push_back(Blob.size());
1774 
1775   // Add the strings to the blob.
1776   for (const Metadata *MD : Strings)
1777     Blob.append(cast<MDString>(MD)->getString());
1778 
1779   // Emit the final record.
1780   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
1781   Record.clear();
1782 }
1783 
1784 void ModuleBitcodeWriter::writeMetadataRecords(
1785     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record) {
1786   if (MDs.empty())
1787     return;
1788 
1789   // Initialize MDNode abbreviations.
1790 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1791 #include "llvm/IR/Metadata.def"
1792 
1793   for (const Metadata *MD : MDs) {
1794     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1795       assert(N->isResolved() && "Expected forward references to be resolved");
1796 
1797       switch (N->getMetadataID()) {
1798       default:
1799         llvm_unreachable("Invalid MDNode subclass");
1800 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1801   case Metadata::CLASS##Kind:                                                  \
1802     write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                       \
1803     continue;
1804 #include "llvm/IR/Metadata.def"
1805       }
1806     }
1807     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1808   }
1809 }
1810 
1811 void ModuleBitcodeWriter::writeModuleMetadata() {
1812   if (!VE.hasMDs() && M.named_metadata_empty())
1813     return;
1814 
1815   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1816   SmallVector<uint64_t, 64> Record;
1817   writeMetadataStrings(VE.getMDStrings(), Record);
1818   writeMetadataRecords(VE.getNonMDStrings(), Record);
1819   writeNamedMetadata(Record);
1820   Stream.ExitBlock();
1821 }
1822 
1823 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
1824   if (!VE.hasMDs())
1825     return;
1826 
1827   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1828   SmallVector<uint64_t, 64> Record;
1829   writeMetadataStrings(VE.getMDStrings(), Record);
1830   writeMetadataRecords(VE.getNonMDStrings(), Record);
1831   Stream.ExitBlock();
1832 }
1833 
1834 void ModuleBitcodeWriter::writeMetadataAttachment(const Function &F) {
1835   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1836 
1837   SmallVector<uint64_t, 64> Record;
1838 
1839   // Write metadata attachments
1840   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1841   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1842   F.getAllMetadata(MDs);
1843   if (!MDs.empty()) {
1844     for (const auto &I : MDs) {
1845       Record.push_back(I.first);
1846       Record.push_back(VE.getMetadataID(I.second));
1847     }
1848     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1849     Record.clear();
1850   }
1851 
1852   for (const BasicBlock &BB : F)
1853     for (const Instruction &I : BB) {
1854       MDs.clear();
1855       I.getAllMetadataOtherThanDebugLoc(MDs);
1856 
1857       // If no metadata, ignore instruction.
1858       if (MDs.empty()) continue;
1859 
1860       Record.push_back(VE.getInstructionID(&I));
1861 
1862       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1863         Record.push_back(MDs[i].first);
1864         Record.push_back(VE.getMetadataID(MDs[i].second));
1865       }
1866       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1867       Record.clear();
1868     }
1869 
1870   Stream.ExitBlock();
1871 }
1872 
1873 void ModuleBitcodeWriter::writeModuleMetadataStore() {
1874   SmallVector<uint64_t, 64> Record;
1875 
1876   // Write metadata kinds
1877   // METADATA_KIND - [n x [id, name]]
1878   SmallVector<StringRef, 8> Names;
1879   M.getMDKindNames(Names);
1880 
1881   if (Names.empty()) return;
1882 
1883   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1884 
1885   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1886     Record.push_back(MDKindID);
1887     StringRef KName = Names[MDKindID];
1888     Record.append(KName.begin(), KName.end());
1889 
1890     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1891     Record.clear();
1892   }
1893 
1894   Stream.ExitBlock();
1895 }
1896 
1897 void ModuleBitcodeWriter::writeOperandBundleTags() {
1898   // Write metadata kinds
1899   //
1900   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1901   //
1902   // OPERAND_BUNDLE_TAG - [strchr x N]
1903 
1904   SmallVector<StringRef, 8> Tags;
1905   M.getOperandBundleTags(Tags);
1906 
1907   if (Tags.empty())
1908     return;
1909 
1910   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1911 
1912   SmallVector<uint64_t, 64> Record;
1913 
1914   for (auto Tag : Tags) {
1915     Record.append(Tag.begin(), Tag.end());
1916 
1917     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1918     Record.clear();
1919   }
1920 
1921   Stream.ExitBlock();
1922 }
1923 
1924 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1925   if ((int64_t)V >= 0)
1926     Vals.push_back(V << 1);
1927   else
1928     Vals.push_back((-V << 1) | 1);
1929 }
1930 
1931 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1932                                          bool isGlobal) {
1933   if (FirstVal == LastVal) return;
1934 
1935   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1936 
1937   unsigned AggregateAbbrev = 0;
1938   unsigned String8Abbrev = 0;
1939   unsigned CString7Abbrev = 0;
1940   unsigned CString6Abbrev = 0;
1941   // If this is a constant pool for the module, emit module-specific abbrevs.
1942   if (isGlobal) {
1943     // Abbrev for CST_CODE_AGGREGATE.
1944     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1945     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1946     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1947     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1948     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1949 
1950     // Abbrev for CST_CODE_STRING.
1951     Abbv = new BitCodeAbbrev();
1952     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1953     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1954     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1955     String8Abbrev = Stream.EmitAbbrev(Abbv);
1956     // Abbrev for CST_CODE_CSTRING.
1957     Abbv = new BitCodeAbbrev();
1958     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1959     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1960     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1961     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1962     // Abbrev for CST_CODE_CSTRING.
1963     Abbv = new BitCodeAbbrev();
1964     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1965     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1966     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1967     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1968   }
1969 
1970   SmallVector<uint64_t, 64> Record;
1971 
1972   const ValueEnumerator::ValueList &Vals = VE.getValues();
1973   Type *LastTy = nullptr;
1974   for (unsigned i = FirstVal; i != LastVal; ++i) {
1975     const Value *V = Vals[i].first;
1976     // If we need to switch types, do so now.
1977     if (V->getType() != LastTy) {
1978       LastTy = V->getType();
1979       Record.push_back(VE.getTypeID(LastTy));
1980       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1981                         CONSTANTS_SETTYPE_ABBREV);
1982       Record.clear();
1983     }
1984 
1985     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1986       Record.push_back(unsigned(IA->hasSideEffects()) |
1987                        unsigned(IA->isAlignStack()) << 1 |
1988                        unsigned(IA->getDialect()&1) << 2);
1989 
1990       // Add the asm string.
1991       const std::string &AsmStr = IA->getAsmString();
1992       Record.push_back(AsmStr.size());
1993       Record.append(AsmStr.begin(), AsmStr.end());
1994 
1995       // Add the constraint string.
1996       const std::string &ConstraintStr = IA->getConstraintString();
1997       Record.push_back(ConstraintStr.size());
1998       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1999       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2000       Record.clear();
2001       continue;
2002     }
2003     const Constant *C = cast<Constant>(V);
2004     unsigned Code = -1U;
2005     unsigned AbbrevToUse = 0;
2006     if (C->isNullValue()) {
2007       Code = bitc::CST_CODE_NULL;
2008     } else if (isa<UndefValue>(C)) {
2009       Code = bitc::CST_CODE_UNDEF;
2010     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2011       if (IV->getBitWidth() <= 64) {
2012         uint64_t V = IV->getSExtValue();
2013         emitSignedInt64(Record, V);
2014         Code = bitc::CST_CODE_INTEGER;
2015         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2016       } else {                             // Wide integers, > 64 bits in size.
2017         // We have an arbitrary precision integer value to write whose
2018         // bit width is > 64. However, in canonical unsigned integer
2019         // format it is likely that the high bits are going to be zero.
2020         // So, we only write the number of active words.
2021         unsigned NWords = IV->getValue().getActiveWords();
2022         const uint64_t *RawWords = IV->getValue().getRawData();
2023         for (unsigned i = 0; i != NWords; ++i) {
2024           emitSignedInt64(Record, RawWords[i]);
2025         }
2026         Code = bitc::CST_CODE_WIDE_INTEGER;
2027       }
2028     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2029       Code = bitc::CST_CODE_FLOAT;
2030       Type *Ty = CFP->getType();
2031       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2032         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2033       } else if (Ty->isX86_FP80Ty()) {
2034         // api needed to prevent premature destruction
2035         // bits are not in the same order as a normal i80 APInt, compensate.
2036         APInt api = CFP->getValueAPF().bitcastToAPInt();
2037         const uint64_t *p = api.getRawData();
2038         Record.push_back((p[1] << 48) | (p[0] >> 16));
2039         Record.push_back(p[0] & 0xffffLL);
2040       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2041         APInt api = CFP->getValueAPF().bitcastToAPInt();
2042         const uint64_t *p = api.getRawData();
2043         Record.push_back(p[0]);
2044         Record.push_back(p[1]);
2045       } else {
2046         assert (0 && "Unknown FP type!");
2047       }
2048     } else if (isa<ConstantDataSequential>(C) &&
2049                cast<ConstantDataSequential>(C)->isString()) {
2050       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2051       // Emit constant strings specially.
2052       unsigned NumElts = Str->getNumElements();
2053       // If this is a null-terminated string, use the denser CSTRING encoding.
2054       if (Str->isCString()) {
2055         Code = bitc::CST_CODE_CSTRING;
2056         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2057       } else {
2058         Code = bitc::CST_CODE_STRING;
2059         AbbrevToUse = String8Abbrev;
2060       }
2061       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2062       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2063       for (unsigned i = 0; i != NumElts; ++i) {
2064         unsigned char V = Str->getElementAsInteger(i);
2065         Record.push_back(V);
2066         isCStr7 &= (V & 128) == 0;
2067         if (isCStrChar6)
2068           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2069       }
2070 
2071       if (isCStrChar6)
2072         AbbrevToUse = CString6Abbrev;
2073       else if (isCStr7)
2074         AbbrevToUse = CString7Abbrev;
2075     } else if (const ConstantDataSequential *CDS =
2076                   dyn_cast<ConstantDataSequential>(C)) {
2077       Code = bitc::CST_CODE_DATA;
2078       Type *EltTy = CDS->getType()->getElementType();
2079       if (isa<IntegerType>(EltTy)) {
2080         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2081           Record.push_back(CDS->getElementAsInteger(i));
2082       } else {
2083         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2084           Record.push_back(
2085               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2086       }
2087     } else if (isa<ConstantAggregate>(C)) {
2088       Code = bitc::CST_CODE_AGGREGATE;
2089       for (const Value *Op : C->operands())
2090         Record.push_back(VE.getValueID(Op));
2091       AbbrevToUse = AggregateAbbrev;
2092     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2093       switch (CE->getOpcode()) {
2094       default:
2095         if (Instruction::isCast(CE->getOpcode())) {
2096           Code = bitc::CST_CODE_CE_CAST;
2097           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2098           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2099           Record.push_back(VE.getValueID(C->getOperand(0)));
2100           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2101         } else {
2102           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2103           Code = bitc::CST_CODE_CE_BINOP;
2104           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2105           Record.push_back(VE.getValueID(C->getOperand(0)));
2106           Record.push_back(VE.getValueID(C->getOperand(1)));
2107           uint64_t Flags = getOptimizationFlags(CE);
2108           if (Flags != 0)
2109             Record.push_back(Flags);
2110         }
2111         break;
2112       case Instruction::GetElementPtr: {
2113         Code = bitc::CST_CODE_CE_GEP;
2114         const auto *GO = cast<GEPOperator>(C);
2115         if (GO->isInBounds())
2116           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2117         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2118         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2119           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2120           Record.push_back(VE.getValueID(C->getOperand(i)));
2121         }
2122         break;
2123       }
2124       case Instruction::Select:
2125         Code = bitc::CST_CODE_CE_SELECT;
2126         Record.push_back(VE.getValueID(C->getOperand(0)));
2127         Record.push_back(VE.getValueID(C->getOperand(1)));
2128         Record.push_back(VE.getValueID(C->getOperand(2)));
2129         break;
2130       case Instruction::ExtractElement:
2131         Code = bitc::CST_CODE_CE_EXTRACTELT;
2132         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2133         Record.push_back(VE.getValueID(C->getOperand(0)));
2134         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2135         Record.push_back(VE.getValueID(C->getOperand(1)));
2136         break;
2137       case Instruction::InsertElement:
2138         Code = bitc::CST_CODE_CE_INSERTELT;
2139         Record.push_back(VE.getValueID(C->getOperand(0)));
2140         Record.push_back(VE.getValueID(C->getOperand(1)));
2141         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2142         Record.push_back(VE.getValueID(C->getOperand(2)));
2143         break;
2144       case Instruction::ShuffleVector:
2145         // If the return type and argument types are the same, this is a
2146         // standard shufflevector instruction.  If the types are different,
2147         // then the shuffle is widening or truncating the input vectors, and
2148         // the argument type must also be encoded.
2149         if (C->getType() == C->getOperand(0)->getType()) {
2150           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2151         } else {
2152           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2153           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2154         }
2155         Record.push_back(VE.getValueID(C->getOperand(0)));
2156         Record.push_back(VE.getValueID(C->getOperand(1)));
2157         Record.push_back(VE.getValueID(C->getOperand(2)));
2158         break;
2159       case Instruction::ICmp:
2160       case Instruction::FCmp:
2161         Code = bitc::CST_CODE_CE_CMP;
2162         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2163         Record.push_back(VE.getValueID(C->getOperand(0)));
2164         Record.push_back(VE.getValueID(C->getOperand(1)));
2165         Record.push_back(CE->getPredicate());
2166         break;
2167       }
2168     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2169       Code = bitc::CST_CODE_BLOCKADDRESS;
2170       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2171       Record.push_back(VE.getValueID(BA->getFunction()));
2172       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2173     } else {
2174 #ifndef NDEBUG
2175       C->dump();
2176 #endif
2177       llvm_unreachable("Unknown constant!");
2178     }
2179     Stream.EmitRecord(Code, Record, AbbrevToUse);
2180     Record.clear();
2181   }
2182 
2183   Stream.ExitBlock();
2184 }
2185 
2186 void ModuleBitcodeWriter::writeModuleConstants() {
2187   const ValueEnumerator::ValueList &Vals = VE.getValues();
2188 
2189   // Find the first constant to emit, which is the first non-globalvalue value.
2190   // We know globalvalues have been emitted by WriteModuleInfo.
2191   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2192     if (!isa<GlobalValue>(Vals[i].first)) {
2193       writeConstants(i, Vals.size(), true);
2194       return;
2195     }
2196   }
2197 }
2198 
2199 /// pushValueAndType - The file has to encode both the value and type id for
2200 /// many values, because we need to know what type to create for forward
2201 /// references.  However, most operands are not forward references, so this type
2202 /// field is not needed.
2203 ///
2204 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2205 /// instruction ID, then it is a forward reference, and it also includes the
2206 /// type ID.  The value ID that is written is encoded relative to the InstID.
2207 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2208                                            SmallVectorImpl<unsigned> &Vals) {
2209   unsigned ValID = VE.getValueID(V);
2210   // Make encoding relative to the InstID.
2211   Vals.push_back(InstID - ValID);
2212   if (ValID >= InstID) {
2213     Vals.push_back(VE.getTypeID(V->getType()));
2214     return true;
2215   }
2216   return false;
2217 }
2218 
2219 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
2220                                               unsigned InstID) {
2221   SmallVector<unsigned, 64> Record;
2222   LLVMContext &C = CS.getInstruction()->getContext();
2223 
2224   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2225     const auto &Bundle = CS.getOperandBundleAt(i);
2226     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2227 
2228     for (auto &Input : Bundle.Inputs)
2229       pushValueAndType(Input, InstID, Record);
2230 
2231     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2232     Record.clear();
2233   }
2234 }
2235 
2236 /// pushValue - Like pushValueAndType, but where the type of the value is
2237 /// omitted (perhaps it was already encoded in an earlier operand).
2238 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2239                                     SmallVectorImpl<unsigned> &Vals) {
2240   unsigned ValID = VE.getValueID(V);
2241   Vals.push_back(InstID - ValID);
2242 }
2243 
2244 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2245                                           SmallVectorImpl<uint64_t> &Vals) {
2246   unsigned ValID = VE.getValueID(V);
2247   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2248   emitSignedInt64(Vals, diff);
2249 }
2250 
2251 /// WriteInstruction - Emit an instruction to the specified stream.
2252 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2253                                            unsigned InstID,
2254                                            SmallVectorImpl<unsigned> &Vals) {
2255   unsigned Code = 0;
2256   unsigned AbbrevToUse = 0;
2257   VE.setInstructionID(&I);
2258   switch (I.getOpcode()) {
2259   default:
2260     if (Instruction::isCast(I.getOpcode())) {
2261       Code = bitc::FUNC_CODE_INST_CAST;
2262       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2263         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2264       Vals.push_back(VE.getTypeID(I.getType()));
2265       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2266     } else {
2267       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2268       Code = bitc::FUNC_CODE_INST_BINOP;
2269       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2270         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2271       pushValue(I.getOperand(1), InstID, Vals);
2272       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2273       uint64_t Flags = getOptimizationFlags(&I);
2274       if (Flags != 0) {
2275         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2276           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2277         Vals.push_back(Flags);
2278       }
2279     }
2280     break;
2281 
2282   case Instruction::GetElementPtr: {
2283     Code = bitc::FUNC_CODE_INST_GEP;
2284     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2285     auto &GEPInst = cast<GetElementPtrInst>(I);
2286     Vals.push_back(GEPInst.isInBounds());
2287     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2288     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2289       pushValueAndType(I.getOperand(i), InstID, Vals);
2290     break;
2291   }
2292   case Instruction::ExtractValue: {
2293     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2294     pushValueAndType(I.getOperand(0), InstID, Vals);
2295     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2296     Vals.append(EVI->idx_begin(), EVI->idx_end());
2297     break;
2298   }
2299   case Instruction::InsertValue: {
2300     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2301     pushValueAndType(I.getOperand(0), InstID, Vals);
2302     pushValueAndType(I.getOperand(1), InstID, Vals);
2303     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2304     Vals.append(IVI->idx_begin(), IVI->idx_end());
2305     break;
2306   }
2307   case Instruction::Select:
2308     Code = bitc::FUNC_CODE_INST_VSELECT;
2309     pushValueAndType(I.getOperand(1), InstID, Vals);
2310     pushValue(I.getOperand(2), InstID, Vals);
2311     pushValueAndType(I.getOperand(0), InstID, Vals);
2312     break;
2313   case Instruction::ExtractElement:
2314     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2315     pushValueAndType(I.getOperand(0), InstID, Vals);
2316     pushValueAndType(I.getOperand(1), InstID, Vals);
2317     break;
2318   case Instruction::InsertElement:
2319     Code = bitc::FUNC_CODE_INST_INSERTELT;
2320     pushValueAndType(I.getOperand(0), InstID, Vals);
2321     pushValue(I.getOperand(1), InstID, Vals);
2322     pushValueAndType(I.getOperand(2), InstID, Vals);
2323     break;
2324   case Instruction::ShuffleVector:
2325     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2326     pushValueAndType(I.getOperand(0), InstID, Vals);
2327     pushValue(I.getOperand(1), InstID, Vals);
2328     pushValue(I.getOperand(2), InstID, Vals);
2329     break;
2330   case Instruction::ICmp:
2331   case Instruction::FCmp: {
2332     // compare returning Int1Ty or vector of Int1Ty
2333     Code = bitc::FUNC_CODE_INST_CMP2;
2334     pushValueAndType(I.getOperand(0), InstID, Vals);
2335     pushValue(I.getOperand(1), InstID, Vals);
2336     Vals.push_back(cast<CmpInst>(I).getPredicate());
2337     uint64_t Flags = getOptimizationFlags(&I);
2338     if (Flags != 0)
2339       Vals.push_back(Flags);
2340     break;
2341   }
2342 
2343   case Instruction::Ret:
2344     {
2345       Code = bitc::FUNC_CODE_INST_RET;
2346       unsigned NumOperands = I.getNumOperands();
2347       if (NumOperands == 0)
2348         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2349       else if (NumOperands == 1) {
2350         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2351           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2352       } else {
2353         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2354           pushValueAndType(I.getOperand(i), InstID, Vals);
2355       }
2356     }
2357     break;
2358   case Instruction::Br:
2359     {
2360       Code = bitc::FUNC_CODE_INST_BR;
2361       const BranchInst &II = cast<BranchInst>(I);
2362       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2363       if (II.isConditional()) {
2364         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2365         pushValue(II.getCondition(), InstID, Vals);
2366       }
2367     }
2368     break;
2369   case Instruction::Switch:
2370     {
2371       Code = bitc::FUNC_CODE_INST_SWITCH;
2372       const SwitchInst &SI = cast<SwitchInst>(I);
2373       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2374       pushValue(SI.getCondition(), InstID, Vals);
2375       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2376       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
2377         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2378         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2379       }
2380     }
2381     break;
2382   case Instruction::IndirectBr:
2383     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2384     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2385     // Encode the address operand as relative, but not the basic blocks.
2386     pushValue(I.getOperand(0), InstID, Vals);
2387     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2388       Vals.push_back(VE.getValueID(I.getOperand(i)));
2389     break;
2390 
2391   case Instruction::Invoke: {
2392     const InvokeInst *II = cast<InvokeInst>(&I);
2393     const Value *Callee = II->getCalledValue();
2394     FunctionType *FTy = II->getFunctionType();
2395 
2396     if (II->hasOperandBundles())
2397       writeOperandBundles(II, InstID);
2398 
2399     Code = bitc::FUNC_CODE_INST_INVOKE;
2400 
2401     Vals.push_back(VE.getAttributeID(II->getAttributes()));
2402     Vals.push_back(II->getCallingConv() | 1 << 13);
2403     Vals.push_back(VE.getValueID(II->getNormalDest()));
2404     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2405     Vals.push_back(VE.getTypeID(FTy));
2406     pushValueAndType(Callee, InstID, Vals);
2407 
2408     // Emit value #'s for the fixed parameters.
2409     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2410       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2411 
2412     // Emit type/value pairs for varargs params.
2413     if (FTy->isVarArg()) {
2414       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
2415            i != e; ++i)
2416         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2417     }
2418     break;
2419   }
2420   case Instruction::Resume:
2421     Code = bitc::FUNC_CODE_INST_RESUME;
2422     pushValueAndType(I.getOperand(0), InstID, Vals);
2423     break;
2424   case Instruction::CleanupRet: {
2425     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2426     const auto &CRI = cast<CleanupReturnInst>(I);
2427     pushValue(CRI.getCleanupPad(), InstID, Vals);
2428     if (CRI.hasUnwindDest())
2429       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2430     break;
2431   }
2432   case Instruction::CatchRet: {
2433     Code = bitc::FUNC_CODE_INST_CATCHRET;
2434     const auto &CRI = cast<CatchReturnInst>(I);
2435     pushValue(CRI.getCatchPad(), InstID, Vals);
2436     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2437     break;
2438   }
2439   case Instruction::CleanupPad:
2440   case Instruction::CatchPad: {
2441     const auto &FuncletPad = cast<FuncletPadInst>(I);
2442     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2443                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2444     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2445 
2446     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2447     Vals.push_back(NumArgOperands);
2448     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2449       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2450     break;
2451   }
2452   case Instruction::CatchSwitch: {
2453     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2454     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2455 
2456     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2457 
2458     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2459     Vals.push_back(NumHandlers);
2460     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2461       Vals.push_back(VE.getValueID(CatchPadBB));
2462 
2463     if (CatchSwitch.hasUnwindDest())
2464       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2465     break;
2466   }
2467   case Instruction::Unreachable:
2468     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2469     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2470     break;
2471 
2472   case Instruction::PHI: {
2473     const PHINode &PN = cast<PHINode>(I);
2474     Code = bitc::FUNC_CODE_INST_PHI;
2475     // With the newer instruction encoding, forward references could give
2476     // negative valued IDs.  This is most common for PHIs, so we use
2477     // signed VBRs.
2478     SmallVector<uint64_t, 128> Vals64;
2479     Vals64.push_back(VE.getTypeID(PN.getType()));
2480     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2481       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2482       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2483     }
2484     // Emit a Vals64 vector and exit.
2485     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2486     Vals64.clear();
2487     return;
2488   }
2489 
2490   case Instruction::LandingPad: {
2491     const LandingPadInst &LP = cast<LandingPadInst>(I);
2492     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2493     Vals.push_back(VE.getTypeID(LP.getType()));
2494     Vals.push_back(LP.isCleanup());
2495     Vals.push_back(LP.getNumClauses());
2496     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2497       if (LP.isCatch(I))
2498         Vals.push_back(LandingPadInst::Catch);
2499       else
2500         Vals.push_back(LandingPadInst::Filter);
2501       pushValueAndType(LP.getClause(I), InstID, Vals);
2502     }
2503     break;
2504   }
2505 
2506   case Instruction::Alloca: {
2507     Code = bitc::FUNC_CODE_INST_ALLOCA;
2508     const AllocaInst &AI = cast<AllocaInst>(I);
2509     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2510     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2511     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2512     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2513     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2514            "not enough bits for maximum alignment");
2515     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2516     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2517     AlignRecord |= 1 << 6;
2518     AlignRecord |= AI.isSwiftError() << 7;
2519     Vals.push_back(AlignRecord);
2520     break;
2521   }
2522 
2523   case Instruction::Load:
2524     if (cast<LoadInst>(I).isAtomic()) {
2525       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2526       pushValueAndType(I.getOperand(0), InstID, Vals);
2527     } else {
2528       Code = bitc::FUNC_CODE_INST_LOAD;
2529       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2530         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2531     }
2532     Vals.push_back(VE.getTypeID(I.getType()));
2533     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2534     Vals.push_back(cast<LoadInst>(I).isVolatile());
2535     if (cast<LoadInst>(I).isAtomic()) {
2536       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2537       Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2538     }
2539     break;
2540   case Instruction::Store:
2541     if (cast<StoreInst>(I).isAtomic())
2542       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2543     else
2544       Code = bitc::FUNC_CODE_INST_STORE;
2545     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2546     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2547     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2548     Vals.push_back(cast<StoreInst>(I).isVolatile());
2549     if (cast<StoreInst>(I).isAtomic()) {
2550       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2551       Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2552     }
2553     break;
2554   case Instruction::AtomicCmpXchg:
2555     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2556     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2557     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2558     pushValue(I.getOperand(2), InstID, Vals);        // newval.
2559     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2560     Vals.push_back(
2561         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2562     Vals.push_back(
2563         getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
2564     Vals.push_back(
2565         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2566     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2567     break;
2568   case Instruction::AtomicRMW:
2569     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2570     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2571     pushValue(I.getOperand(1), InstID, Vals);        // val.
2572     Vals.push_back(
2573         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2574     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2575     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2576     Vals.push_back(
2577         getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
2578     break;
2579   case Instruction::Fence:
2580     Code = bitc::FUNC_CODE_INST_FENCE;
2581     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2582     Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2583     break;
2584   case Instruction::Call: {
2585     const CallInst &CI = cast<CallInst>(I);
2586     FunctionType *FTy = CI.getFunctionType();
2587 
2588     if (CI.hasOperandBundles())
2589       writeOperandBundles(&CI, InstID);
2590 
2591     Code = bitc::FUNC_CODE_INST_CALL;
2592 
2593     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2594 
2595     unsigned Flags = getOptimizationFlags(&I);
2596     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2597                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2598                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2599                    1 << bitc::CALL_EXPLICIT_TYPE |
2600                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2601                    unsigned(Flags != 0) << bitc::CALL_FMF);
2602     if (Flags != 0)
2603       Vals.push_back(Flags);
2604 
2605     Vals.push_back(VE.getTypeID(FTy));
2606     pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
2607 
2608     // Emit value #'s for the fixed parameters.
2609     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2610       // Check for labels (can happen with asm labels).
2611       if (FTy->getParamType(i)->isLabelTy())
2612         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2613       else
2614         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2615     }
2616 
2617     // Emit type/value pairs for varargs params.
2618     if (FTy->isVarArg()) {
2619       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2620            i != e; ++i)
2621         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2622     }
2623     break;
2624   }
2625   case Instruction::VAArg:
2626     Code = bitc::FUNC_CODE_INST_VAARG;
2627     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2628     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
2629     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2630     break;
2631   }
2632 
2633   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2634   Vals.clear();
2635 }
2636 
2637 /// Emit names for globals/functions etc. \p IsModuleLevel is true when
2638 /// we are writing the module-level VST, where we are including a function
2639 /// bitcode index and need to backpatch the VST forward declaration record.
2640 void ModuleBitcodeWriter::writeValueSymbolTable(
2641     const ValueSymbolTable &VST, bool IsModuleLevel,
2642     DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
2643   if (VST.empty()) {
2644     // writeValueSymbolTableForwardDecl should have returned early as
2645     // well. Ensure this handling remains in sync by asserting that
2646     // the placeholder offset is not set.
2647     assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
2648     return;
2649   }
2650 
2651   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2652     // Get the offset of the VST we are writing, and backpatch it into
2653     // the VST forward declaration record.
2654     uint64_t VSTOffset = Stream.GetCurrentBitNo();
2655     // The BitcodeStartBit was the stream offset of the actual bitcode
2656     // (e.g. excluding any initial darwin header).
2657     VSTOffset -= bitcodeStartBit();
2658     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2659     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2660   }
2661 
2662   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2663 
2664   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2665   // records, which are not used in the per-function VSTs.
2666   unsigned FnEntry8BitAbbrev;
2667   unsigned FnEntry7BitAbbrev;
2668   unsigned FnEntry6BitAbbrev;
2669   if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
2670     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2671     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2672     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2673     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2674     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2675     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2676     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2677     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2678 
2679     // 7-bit fixed width VST_CODE_FNENTRY function strings.
2680     Abbv = new BitCodeAbbrev();
2681     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2682     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2683     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2684     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2685     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2686     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2687 
2688     // 6-bit char6 VST_CODE_FNENTRY function strings.
2689     Abbv = new BitCodeAbbrev();
2690     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2691     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2692     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2693     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2694     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2695     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2696   }
2697 
2698   // FIXME: Set up the abbrev, we know how many values there are!
2699   // FIXME: We know if the type names can use 7-bit ascii.
2700   SmallVector<unsigned, 64> NameVals;
2701 
2702   for (const ValueName &Name : VST) {
2703     // Figure out the encoding to use for the name.
2704     StringEncoding Bits =
2705         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2706 
2707     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2708     NameVals.push_back(VE.getValueID(Name.getValue()));
2709 
2710     Function *F = dyn_cast<Function>(Name.getValue());
2711     if (!F) {
2712       // If value is an alias, need to get the aliased base object to
2713       // see if it is a function.
2714       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2715       if (GA && GA->getBaseObject())
2716         F = dyn_cast<Function>(GA->getBaseObject());
2717     }
2718 
2719     // VST_CODE_ENTRY:   [valueid, namechar x N]
2720     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2721     // VST_CODE_BBENTRY: [bbid, namechar x N]
2722     unsigned Code;
2723     if (isa<BasicBlock>(Name.getValue())) {
2724       Code = bitc::VST_CODE_BBENTRY;
2725       if (Bits == SE_Char6)
2726         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2727     } else if (F && !F->isDeclaration()) {
2728       // Must be the module-level VST, where we pass in the Index and
2729       // have a VSTOffsetPlaceholder. The function-level VST should not
2730       // contain any Function symbols.
2731       assert(FunctionToBitcodeIndex);
2732       assert(hasVSTOffsetPlaceholder());
2733 
2734       // Save the word offset of the function (from the start of the
2735       // actual bitcode written to the stream).
2736       uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
2737       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2738       NameVals.push_back(BitcodeIndex / 32);
2739 
2740       Code = bitc::VST_CODE_FNENTRY;
2741       AbbrevToUse = FnEntry8BitAbbrev;
2742       if (Bits == SE_Char6)
2743         AbbrevToUse = FnEntry6BitAbbrev;
2744       else if (Bits == SE_Fixed7)
2745         AbbrevToUse = FnEntry7BitAbbrev;
2746     } else {
2747       Code = bitc::VST_CODE_ENTRY;
2748       if (Bits == SE_Char6)
2749         AbbrevToUse = VST_ENTRY_6_ABBREV;
2750       else if (Bits == SE_Fixed7)
2751         AbbrevToUse = VST_ENTRY_7_ABBREV;
2752     }
2753 
2754     for (const auto P : Name.getKey())
2755       NameVals.push_back((unsigned char)P);
2756 
2757     // Emit the finished record.
2758     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2759     NameVals.clear();
2760   }
2761   Stream.ExitBlock();
2762 }
2763 
2764 /// Emit function names and summary offsets for the combined index
2765 /// used by ThinLTO.
2766 void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
2767   assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
2768   // Get the offset of the VST we are writing, and backpatch it into
2769   // the VST forward declaration record.
2770   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2771   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2772   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2773 
2774   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2775 
2776   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2777   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2778   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2779   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2780   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
2781 
2782   SmallVector<uint64_t, 64> NameVals;
2783   for (const auto &GVI : valueIds()) {
2784     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
2785     NameVals.push_back(GVI.second);
2786     NameVals.push_back(GVI.first);
2787 
2788     // Emit the finished record.
2789     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
2790     NameVals.clear();
2791   }
2792   Stream.ExitBlock();
2793 }
2794 
2795 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
2796   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2797   unsigned Code;
2798   if (isa<BasicBlock>(Order.V))
2799     Code = bitc::USELIST_CODE_BB;
2800   else
2801     Code = bitc::USELIST_CODE_DEFAULT;
2802 
2803   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2804   Record.push_back(VE.getValueID(Order.V));
2805   Stream.EmitRecord(Code, Record);
2806 }
2807 
2808 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
2809   assert(VE.shouldPreserveUseListOrder() &&
2810          "Expected to be preserving use-list order");
2811 
2812   auto hasMore = [&]() {
2813     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2814   };
2815   if (!hasMore())
2816     // Nothing to do.
2817     return;
2818 
2819   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2820   while (hasMore()) {
2821     writeUseList(std::move(VE.UseListOrders.back()));
2822     VE.UseListOrders.pop_back();
2823   }
2824   Stream.ExitBlock();
2825 }
2826 
2827 /// Emit a function body to the module stream.
2828 void ModuleBitcodeWriter::writeFunction(
2829     const Function &F,
2830     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
2831   // Save the bitcode index of the start of this function block for recording
2832   // in the VST.
2833   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
2834 
2835   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2836   VE.incorporateFunction(F);
2837 
2838   SmallVector<unsigned, 64> Vals;
2839 
2840   // Emit the number of basic blocks, so the reader can create them ahead of
2841   // time.
2842   Vals.push_back(VE.getBasicBlocks().size());
2843   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2844   Vals.clear();
2845 
2846   // If there are function-local constants, emit them now.
2847   unsigned CstStart, CstEnd;
2848   VE.getFunctionConstantRange(CstStart, CstEnd);
2849   writeConstants(CstStart, CstEnd, false);
2850 
2851   // If there is function-local metadata, emit it now.
2852   writeFunctionMetadata(F);
2853 
2854   // Keep a running idea of what the instruction ID is.
2855   unsigned InstID = CstEnd;
2856 
2857   bool NeedsMetadataAttachment = F.hasMetadata();
2858 
2859   DILocation *LastDL = nullptr;
2860   // Finally, emit all the instructions, in order.
2861   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2862     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2863          I != E; ++I) {
2864       writeInstruction(*I, InstID, Vals);
2865 
2866       if (!I->getType()->isVoidTy())
2867         ++InstID;
2868 
2869       // If the instruction has metadata, write a metadata attachment later.
2870       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2871 
2872       // If the instruction has a debug location, emit it.
2873       DILocation *DL = I->getDebugLoc();
2874       if (!DL)
2875         continue;
2876 
2877       if (DL == LastDL) {
2878         // Just repeat the same debug loc as last time.
2879         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2880         continue;
2881       }
2882 
2883       Vals.push_back(DL->getLine());
2884       Vals.push_back(DL->getColumn());
2885       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2886       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2887       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2888       Vals.clear();
2889 
2890       LastDL = DL;
2891     }
2892 
2893   // Emit names for all the instructions etc.
2894   writeValueSymbolTable(F.getValueSymbolTable());
2895 
2896   if (NeedsMetadataAttachment)
2897     writeMetadataAttachment(F);
2898   if (VE.shouldPreserveUseListOrder())
2899     writeUseListBlock(&F);
2900   VE.purgeFunction();
2901   Stream.ExitBlock();
2902 }
2903 
2904 // Emit blockinfo, which defines the standard abbreviations etc.
2905 void ModuleBitcodeWriter::writeBlockInfo() {
2906   // We only want to emit block info records for blocks that have multiple
2907   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2908   // Other blocks can define their abbrevs inline.
2909   Stream.EnterBlockInfoBlock(2);
2910 
2911   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
2912     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2913     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2914     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2915     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2916     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2917     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2918         VST_ENTRY_8_ABBREV)
2919       llvm_unreachable("Unexpected abbrev ordering!");
2920   }
2921 
2922   { // 7-bit fixed width VST_CODE_ENTRY strings.
2923     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2924     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2925     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2926     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2927     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2928     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2929         VST_ENTRY_7_ABBREV)
2930       llvm_unreachable("Unexpected abbrev ordering!");
2931   }
2932   { // 6-bit char6 VST_CODE_ENTRY strings.
2933     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2934     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2935     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2936     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2937     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2938     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2939         VST_ENTRY_6_ABBREV)
2940       llvm_unreachable("Unexpected abbrev ordering!");
2941   }
2942   { // 6-bit char6 VST_CODE_BBENTRY strings.
2943     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2944     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2945     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2946     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2947     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2948     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
2949         VST_BBENTRY_6_ABBREV)
2950       llvm_unreachable("Unexpected abbrev ordering!");
2951   }
2952 
2953 
2954 
2955   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2956     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2957     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2958     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2959                               VE.computeBitsRequiredForTypeIndicies()));
2960     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2961         CONSTANTS_SETTYPE_ABBREV)
2962       llvm_unreachable("Unexpected abbrev ordering!");
2963   }
2964 
2965   { // INTEGER abbrev for CONSTANTS_BLOCK.
2966     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2967     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2968     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2969     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2970         CONSTANTS_INTEGER_ABBREV)
2971       llvm_unreachable("Unexpected abbrev ordering!");
2972   }
2973 
2974   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2975     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2976     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2977     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2978     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2979                               VE.computeBitsRequiredForTypeIndicies()));
2980     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2981 
2982     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2983         CONSTANTS_CE_CAST_Abbrev)
2984       llvm_unreachable("Unexpected abbrev ordering!");
2985   }
2986   { // NULL abbrev for CONSTANTS_BLOCK.
2987     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2988     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2989     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
2990         CONSTANTS_NULL_Abbrev)
2991       llvm_unreachable("Unexpected abbrev ordering!");
2992   }
2993 
2994   // FIXME: This should only use space for first class types!
2995 
2996   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2997     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2998     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2999     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3000     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3001                               VE.computeBitsRequiredForTypeIndicies()));
3002     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3003     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3004     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3005         FUNCTION_INST_LOAD_ABBREV)
3006       llvm_unreachable("Unexpected abbrev ordering!");
3007   }
3008   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3009     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3010     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3011     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3012     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3013     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3014     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3015         FUNCTION_INST_BINOP_ABBREV)
3016       llvm_unreachable("Unexpected abbrev ordering!");
3017   }
3018   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3019     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3020     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3021     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3022     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3023     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3024     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
3025     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3026         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3027       llvm_unreachable("Unexpected abbrev ordering!");
3028   }
3029   { // INST_CAST abbrev for FUNCTION_BLOCK.
3030     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3031     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3032     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3033     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3034                               VE.computeBitsRequiredForTypeIndicies()));
3035     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3036     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3037         FUNCTION_INST_CAST_ABBREV)
3038       llvm_unreachable("Unexpected abbrev ordering!");
3039   }
3040 
3041   { // INST_RET abbrev for FUNCTION_BLOCK.
3042     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3043     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3044     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3045         FUNCTION_INST_RET_VOID_ABBREV)
3046       llvm_unreachable("Unexpected abbrev ordering!");
3047   }
3048   { // INST_RET abbrev for FUNCTION_BLOCK.
3049     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3050     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3051     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3052     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3053         FUNCTION_INST_RET_VAL_ABBREV)
3054       llvm_unreachable("Unexpected abbrev ordering!");
3055   }
3056   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3057     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3058     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3059     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3060         FUNCTION_INST_UNREACHABLE_ABBREV)
3061       llvm_unreachable("Unexpected abbrev ordering!");
3062   }
3063   {
3064     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3065     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3066     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3067     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3068                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3069     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3070     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3071     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3072         FUNCTION_INST_GEP_ABBREV)
3073       llvm_unreachable("Unexpected abbrev ordering!");
3074   }
3075 
3076   Stream.ExitBlock();
3077 }
3078 
3079 /// Write the module path strings, currently only used when generating
3080 /// a combined index file.
3081 void IndexBitcodeWriter::writeModStrings() {
3082   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3083 
3084   // TODO: See which abbrev sizes we actually need to emit
3085 
3086   // 8-bit fixed-width MST_ENTRY strings.
3087   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3088   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3089   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3090   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3091   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3092   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
3093 
3094   // 7-bit fixed width MST_ENTRY strings.
3095   Abbv = new BitCodeAbbrev();
3096   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3097   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3098   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3099   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3100   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
3101 
3102   // 6-bit char6 MST_ENTRY strings.
3103   Abbv = new BitCodeAbbrev();
3104   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3105   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3106   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3107   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3108   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
3109 
3110   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3111   Abbv = new BitCodeAbbrev();
3112   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3113   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3114   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3115   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3116   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3117   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3118   unsigned AbbrevHash = Stream.EmitAbbrev(Abbv);
3119 
3120   SmallVector<unsigned, 64> Vals;
3121   for (const auto &MPSE : Index.modulePaths()) {
3122     if (!doIncludeModule(MPSE.getKey()))
3123       continue;
3124     StringEncoding Bits =
3125         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
3126     unsigned AbbrevToUse = Abbrev8Bit;
3127     if (Bits == SE_Char6)
3128       AbbrevToUse = Abbrev6Bit;
3129     else if (Bits == SE_Fixed7)
3130       AbbrevToUse = Abbrev7Bit;
3131 
3132     Vals.push_back(MPSE.getValue().first);
3133 
3134     for (const auto P : MPSE.getKey())
3135       Vals.push_back((unsigned char)P);
3136 
3137     // Emit the finished record.
3138     Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3139 
3140     Vals.clear();
3141     // Emit an optional hash for the module now
3142     auto &Hash = MPSE.getValue().second;
3143     bool AllZero = true; // Detect if the hash is empty, and do not generate it
3144     for (auto Val : Hash) {
3145       if (Val)
3146         AllZero = false;
3147       Vals.push_back(Val);
3148     }
3149     if (!AllZero) {
3150       // Emit the hash record.
3151       Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3152     }
3153 
3154     Vals.clear();
3155   }
3156   Stream.ExitBlock();
3157 }
3158 
3159 // Helper to emit a single function summary record.
3160 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
3161     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3162     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3163     const Function &F) {
3164   NameVals.push_back(ValueID);
3165 
3166   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3167   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3168   NameVals.push_back(FS->instCount());
3169   NameVals.push_back(FS->refs().size());
3170 
3171   unsigned SizeBeforeRefs = NameVals.size();
3172   for (auto &RI : FS->refs())
3173     NameVals.push_back(VE.getValueID(RI.getValue()));
3174   // Sort the refs for determinism output, the vector returned by FS->refs() has
3175   // been initialized from a DenseSet.
3176   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3177 
3178   std::vector<FunctionSummary::EdgeTy> Calls = FS->calls();
3179   std::sort(Calls.begin(), Calls.end(),
3180             [this](const FunctionSummary::EdgeTy &L,
3181                    const FunctionSummary::EdgeTy &R) {
3182               return VE.getValueID(L.first.getValue()) <
3183                      VE.getValueID(R.first.getValue());
3184             });
3185   bool HasProfileData = F.getEntryCount().hasValue();
3186   for (auto &ECI : Calls) {
3187     NameVals.push_back(VE.getValueID(ECI.first.getValue()));
3188     assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
3189     NameVals.push_back(ECI.second.CallsiteCount);
3190     if (HasProfileData)
3191       NameVals.push_back(ECI.second.ProfileCount);
3192   }
3193 
3194   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3195   unsigned Code =
3196       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
3197 
3198   // Emit the finished record.
3199   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3200   NameVals.clear();
3201 }
3202 
3203 // Collect the global value references in the given variable's initializer,
3204 // and emit them in a summary record.
3205 void ModuleBitcodeWriter::writeModuleLevelReferences(
3206     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3207     unsigned FSModRefsAbbrev) {
3208   // Only interested in recording variable defs in the summary.
3209   if (V.isDeclaration())
3210     return;
3211   NameVals.push_back(VE.getValueID(&V));
3212   NameVals.push_back(getEncodedGVSummaryFlags(V));
3213   auto *Summary = Index->getGlobalValueSummary(V);
3214   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3215 
3216   unsigned SizeBeforeRefs = NameVals.size();
3217   for (auto &RI : VS->refs())
3218     NameVals.push_back(VE.getValueID(RI.getValue()));
3219   // Sort the refs for determinism output, the vector returned by FS->refs() has
3220   // been initialized from a DenseSet.
3221   std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3222 
3223   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3224                     FSModRefsAbbrev);
3225   NameVals.clear();
3226 }
3227 
3228 // Current version for the summary.
3229 // This is bumped whenever we introduce changes in the way some record are
3230 // interpreted, like flags for instance.
3231 static const uint64_t INDEX_VERSION = 1;
3232 
3233 /// Emit the per-module summary section alongside the rest of
3234 /// the module's bitcode.
3235 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
3236   if (M.empty())
3237     return;
3238 
3239   if (Index->begin() == Index->end())
3240     return;
3241 
3242   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
3243 
3244   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3245 
3246   // Abbrev for FS_PERMODULE.
3247   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3248   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3249   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3250   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3251   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3252   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3253   // numrefs x valueid, n x (valueid, callsitecount)
3254   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3255   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3256   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3257 
3258   // Abbrev for FS_PERMODULE_PROFILE.
3259   Abbv = new BitCodeAbbrev();
3260   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3261   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3262   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3263   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3264   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3265   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3266   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3267   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3268   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3269 
3270   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3271   Abbv = new BitCodeAbbrev();
3272   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3273   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3274   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3275   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3276   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3277   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3278 
3279   // Abbrev for FS_ALIAS.
3280   Abbv = new BitCodeAbbrev();
3281   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3282   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3283   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3284   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3285   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3286 
3287   SmallVector<uint64_t, 64> NameVals;
3288   // Iterate over the list of functions instead of the Index to
3289   // ensure the ordering is stable.
3290   for (const Function &F : M) {
3291     if (F.isDeclaration())
3292       continue;
3293     // Summary emission does not support anonymous functions, they have to
3294     // renamed using the anonymous function renaming pass.
3295     if (!F.hasName())
3296       report_fatal_error("Unexpected anonymous function when writing summary");
3297 
3298     auto *Summary = Index->getGlobalValueSummary(F);
3299     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3300                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3301   }
3302 
3303   // Capture references from GlobalVariable initializers, which are outside
3304   // of a function scope.
3305   for (const GlobalVariable &G : M.globals())
3306     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
3307 
3308   for (const GlobalAlias &A : M.aliases()) {
3309     auto *Aliasee = A.getBaseObject();
3310     if (!Aliasee->hasName())
3311       // Nameless function don't have an entry in the summary, skip it.
3312       continue;
3313     auto AliasId = VE.getValueID(&A);
3314     auto AliaseeId = VE.getValueID(Aliasee);
3315     NameVals.push_back(AliasId);
3316     NameVals.push_back(getEncodedGVSummaryFlags(A));
3317     NameVals.push_back(AliaseeId);
3318     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3319     NameVals.clear();
3320   }
3321 
3322   Stream.ExitBlock();
3323 }
3324 
3325 /// Emit the combined summary section into the combined index file.
3326 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
3327   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3328   Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
3329 
3330   // Abbrev for FS_COMBINED.
3331   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3332   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3333   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3334   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3335   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3336   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3337   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3338   // numrefs x valueid, n x (valueid, callsitecount)
3339   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3340   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3341   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3342 
3343   // Abbrev for FS_COMBINED_PROFILE.
3344   Abbv = new BitCodeAbbrev();
3345   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3346   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3347   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3348   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3349   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3350   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3351   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3352   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3353   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3354   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3355 
3356   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3357   Abbv = new BitCodeAbbrev();
3358   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3359   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3360   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3361   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3364   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3365 
3366   // Abbrev for FS_COMBINED_ALIAS.
3367   Abbv = new BitCodeAbbrev();
3368   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
3369   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3370   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3373   unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv);
3374 
3375   // The aliases are emitted as a post-pass, and will point to the value
3376   // id of the aliasee. Save them in a vector for post-processing.
3377   SmallVector<AliasSummary *, 64> Aliases;
3378 
3379   // Save the value id for each summary for alias emission.
3380   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
3381 
3382   SmallVector<uint64_t, 64> NameVals;
3383 
3384   // For local linkage, we also emit the original name separately
3385   // immediately after the record.
3386   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
3387     if (!GlobalValue::isLocalLinkage(S.linkage()))
3388       return;
3389     NameVals.push_back(S.getOriginalName());
3390     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
3391     NameVals.clear();
3392   };
3393 
3394   for (const auto &I : *this) {
3395     GlobalValueSummary *S = I.second;
3396     assert(S);
3397 
3398     assert(hasValueId(I.first));
3399     unsigned ValueId = getValueId(I.first);
3400     SummaryToValueIdMap[S] = ValueId;
3401 
3402     if (auto *AS = dyn_cast<AliasSummary>(S)) {
3403       // Will process aliases as a post-pass because the reader wants all
3404       // global to be loaded first.
3405       Aliases.push_back(AS);
3406       continue;
3407     }
3408 
3409     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3410       NameVals.push_back(ValueId);
3411       NameVals.push_back(Index.getModuleId(VS->modulePath()));
3412       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3413       for (auto &RI : VS->refs()) {
3414         NameVals.push_back(getValueId(RI.getGUID()));
3415       }
3416 
3417       // Emit the finished record.
3418       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3419                         FSModRefsAbbrev);
3420       NameVals.clear();
3421       MaybeEmitOriginalName(*S);
3422       continue;
3423     }
3424 
3425     auto *FS = cast<FunctionSummary>(S);
3426     NameVals.push_back(ValueId);
3427     NameVals.push_back(Index.getModuleId(FS->modulePath()));
3428     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3429     NameVals.push_back(FS->instCount());
3430     NameVals.push_back(FS->refs().size());
3431 
3432     for (auto &RI : FS->refs()) {
3433       NameVals.push_back(getValueId(RI.getGUID()));
3434     }
3435 
3436     bool HasProfileData = false;
3437     for (auto &EI : FS->calls()) {
3438       HasProfileData |= EI.second.ProfileCount != 0;
3439       if (HasProfileData)
3440         break;
3441     }
3442 
3443     for (auto &EI : FS->calls()) {
3444       // If this GUID doesn't have a value id, it doesn't have a function
3445       // summary and we don't need to record any calls to it.
3446       if (!hasValueId(EI.first.getGUID()))
3447         continue;
3448       NameVals.push_back(getValueId(EI.first.getGUID()));
3449       assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
3450       NameVals.push_back(EI.second.CallsiteCount);
3451       if (HasProfileData)
3452         NameVals.push_back(EI.second.ProfileCount);
3453     }
3454 
3455     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3456     unsigned Code =
3457         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3458 
3459     // Emit the finished record.
3460     Stream.EmitRecord(Code, NameVals, FSAbbrev);
3461     NameVals.clear();
3462     MaybeEmitOriginalName(*S);
3463   }
3464 
3465   for (auto *AS : Aliases) {
3466     auto AliasValueId = SummaryToValueIdMap[AS];
3467     assert(AliasValueId);
3468     NameVals.push_back(AliasValueId);
3469     NameVals.push_back(Index.getModuleId(AS->modulePath()));
3470     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3471     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
3472     assert(AliaseeValueId);
3473     NameVals.push_back(AliaseeValueId);
3474 
3475     // Emit the finished record.
3476     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
3477     NameVals.clear();
3478     MaybeEmitOriginalName(*AS);
3479   }
3480 
3481   Stream.ExitBlock();
3482 }
3483 
3484 void ModuleBitcodeWriter::writeIdentificationBlock() {
3485   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3486 
3487   // Write the "user readable" string identifying the bitcode producer
3488   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3489   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3490   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3491   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3492   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
3493   writeStringRecord(bitc::IDENTIFICATION_CODE_STRING,
3494                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
3495 
3496   // Write the epoch version
3497   Abbv = new BitCodeAbbrev();
3498   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3499   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3500   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
3501   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3502   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3503   Stream.ExitBlock();
3504 }
3505 
3506 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
3507   // Emit the module's hash.
3508   // MODULE_CODE_HASH: [5*i32]
3509   SHA1 Hasher;
3510   Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
3511                                   Buffer.size() - BlockStartPos));
3512   auto Hash = Hasher.result();
3513   SmallVector<uint64_t, 20> Vals;
3514   auto LShift = [&](unsigned char Val, unsigned Amount)
3515                     -> uint64_t { return ((uint64_t)Val) << Amount; };
3516   for (int Pos = 0; Pos < 20; Pos += 4) {
3517     uint32_t SubHash = LShift(Hash[Pos + 0], 24);
3518     SubHash |= LShift(Hash[Pos + 1], 16) | LShift(Hash[Pos + 2], 8) |
3519                (unsigned)(unsigned char)Hash[Pos + 3];
3520     Vals.push_back(SubHash);
3521   }
3522 
3523   // Emit the finished record.
3524   Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
3525 }
3526 
3527 void BitcodeWriter::write() {
3528   // Emit the file header first.
3529   writeBitcodeHeader();
3530 
3531   writeBlocks();
3532 }
3533 
3534 void ModuleBitcodeWriter::writeBlocks() {
3535   writeIdentificationBlock();
3536   writeModule();
3537 }
3538 
3539 void IndexBitcodeWriter::writeBlocks() {
3540   // Index contains only a single outer (module) block.
3541   writeIndex();
3542 }
3543 
3544 void ModuleBitcodeWriter::writeModule() {
3545   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3546   size_t BlockStartPos = Buffer.size();
3547 
3548   SmallVector<unsigned, 1> Vals;
3549   unsigned CurVersion = 1;
3550   Vals.push_back(CurVersion);
3551   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3552 
3553   // Emit blockinfo, which defines the standard abbreviations etc.
3554   writeBlockInfo();
3555 
3556   // Emit information about attribute groups.
3557   writeAttributeGroupTable();
3558 
3559   // Emit information about parameter attributes.
3560   writeAttributeTable();
3561 
3562   // Emit information describing all of the types in the module.
3563   writeTypeTable();
3564 
3565   writeComdats();
3566 
3567   // Emit top-level description of module, including target triple, inline asm,
3568   // descriptors for global variables, and function prototype info.
3569   writeModuleInfo();
3570 
3571   // Emit constants.
3572   writeModuleConstants();
3573 
3574   // Emit metadata.
3575   writeModuleMetadata();
3576 
3577   // Emit metadata.
3578   writeModuleMetadataStore();
3579 
3580   // Emit module-level use-lists.
3581   if (VE.shouldPreserveUseListOrder())
3582     writeUseListBlock(nullptr);
3583 
3584   writeOperandBundleTags();
3585 
3586   // Emit function bodies.
3587   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
3588   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
3589     if (!F->isDeclaration())
3590       writeFunction(*F, FunctionToBitcodeIndex);
3591 
3592   // Need to write after the above call to WriteFunction which populates
3593   // the summary information in the index.
3594   if (Index)
3595     writePerModuleGlobalValueSummary();
3596 
3597   writeValueSymbolTable(M.getValueSymbolTable(),
3598                         /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
3599 
3600   if (GenerateHash) {
3601     writeModuleHash(BlockStartPos);
3602   }
3603 
3604   Stream.ExitBlock();
3605 }
3606 
3607 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3608                                uint32_t &Position) {
3609   support::endian::write32le(&Buffer[Position], Value);
3610   Position += 4;
3611 }
3612 
3613 /// If generating a bc file on darwin, we have to emit a
3614 /// header and trailer to make it compatible with the system archiver.  To do
3615 /// this we emit the following header, and then emit a trailer that pads the
3616 /// file out to be a multiple of 16 bytes.
3617 ///
3618 /// struct bc_header {
3619 ///   uint32_t Magic;         // 0x0B17C0DE
3620 ///   uint32_t Version;       // Version, currently always 0.
3621 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3622 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3623 ///   uint32_t CPUType;       // CPU specifier.
3624 ///   ... potentially more later ...
3625 /// };
3626 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3627                                          const Triple &TT) {
3628   unsigned CPUType = ~0U;
3629 
3630   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3631   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3632   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3633   // specific constants here because they are implicitly part of the Darwin ABI.
3634   enum {
3635     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3636     DARWIN_CPU_TYPE_X86        = 7,
3637     DARWIN_CPU_TYPE_ARM        = 12,
3638     DARWIN_CPU_TYPE_POWERPC    = 18
3639   };
3640 
3641   Triple::ArchType Arch = TT.getArch();
3642   if (Arch == Triple::x86_64)
3643     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3644   else if (Arch == Triple::x86)
3645     CPUType = DARWIN_CPU_TYPE_X86;
3646   else if (Arch == Triple::ppc)
3647     CPUType = DARWIN_CPU_TYPE_POWERPC;
3648   else if (Arch == Triple::ppc64)
3649     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3650   else if (Arch == Triple::arm || Arch == Triple::thumb)
3651     CPUType = DARWIN_CPU_TYPE_ARM;
3652 
3653   // Traditional Bitcode starts after header.
3654   assert(Buffer.size() >= BWH_HeaderSize &&
3655          "Expected header size to be reserved");
3656   unsigned BCOffset = BWH_HeaderSize;
3657   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3658 
3659   // Write the magic and version.
3660   unsigned Position = 0;
3661   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
3662   writeInt32ToBuffer(0, Buffer, Position); // Version.
3663   writeInt32ToBuffer(BCOffset, Buffer, Position);
3664   writeInt32ToBuffer(BCSize, Buffer, Position);
3665   writeInt32ToBuffer(CPUType, Buffer, Position);
3666 
3667   // If the file is not a multiple of 16 bytes, insert dummy padding.
3668   while (Buffer.size() & 15)
3669     Buffer.push_back(0);
3670 }
3671 
3672 /// Helper to write the header common to all bitcode files.
3673 void BitcodeWriter::writeBitcodeHeader() {
3674   // Emit the file header.
3675   Stream.Emit((unsigned)'B', 8);
3676   Stream.Emit((unsigned)'C', 8);
3677   Stream.Emit(0x0, 4);
3678   Stream.Emit(0xC, 4);
3679   Stream.Emit(0xE, 4);
3680   Stream.Emit(0xD, 4);
3681 }
3682 
3683 /// WriteBitcodeToFile - Write the specified module to the specified output
3684 /// stream.
3685 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3686                               bool ShouldPreserveUseListOrder,
3687                               const ModuleSummaryIndex *Index,
3688                               bool GenerateHash) {
3689   SmallVector<char, 0> Buffer;
3690   Buffer.reserve(256*1024);
3691 
3692   // If this is darwin or another generic macho target, reserve space for the
3693   // header.
3694   Triple TT(M->getTargetTriple());
3695   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3696     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3697 
3698   // Emit the module into the buffer.
3699   ModuleBitcodeWriter ModuleWriter(M, Buffer, ShouldPreserveUseListOrder, Index,
3700                                    GenerateHash);
3701   ModuleWriter.write();
3702 
3703   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3704     emitDarwinBCHeaderAndTrailer(Buffer, TT);
3705 
3706   // Write the generated bitstream to "Out".
3707   Out.write((char*)&Buffer.front(), Buffer.size());
3708 }
3709 
3710 void IndexBitcodeWriter::writeIndex() {
3711   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3712 
3713   SmallVector<unsigned, 1> Vals;
3714   unsigned CurVersion = 1;
3715   Vals.push_back(CurVersion);
3716   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3717 
3718   // If we have a VST, write the VSTOFFSET record placeholder.
3719   writeValueSymbolTableForwardDecl();
3720 
3721   // Write the module paths in the combined index.
3722   writeModStrings();
3723 
3724   // Write the summary combined index records.
3725   writeCombinedGlobalValueSummary();
3726 
3727   // Need a special VST writer for the combined index (we don't have a
3728   // real VST and real values when this is invoked).
3729   writeCombinedValueSymbolTable();
3730 
3731   Stream.ExitBlock();
3732 }
3733 
3734 // Write the specified module summary index to the given raw output stream,
3735 // where it will be written in a new bitcode block. This is used when
3736 // writing the combined index file for ThinLTO. When writing a subset of the
3737 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
3738 void llvm::WriteIndexToFile(
3739     const ModuleSummaryIndex &Index, raw_ostream &Out,
3740     std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
3741   SmallVector<char, 0> Buffer;
3742   Buffer.reserve(256 * 1024);
3743 
3744   IndexBitcodeWriter IndexWriter(Buffer, Index, ModuleToSummariesForIndex);
3745   IndexWriter.write();
3746 
3747   Out.write((char *)&Buffer.front(), Buffer.size());
3748 }
3749