1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/TypeSymbolTable.h" 25 #include "llvm/ValueSymbolTable.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/System/Program.h" 30 using namespace llvm; 31 32 /// These are manifest constants used by the bitcode writer. They do not need to 33 /// be kept in sync with the reader, but need to be consistent within this file. 34 enum { 35 CurVersion = 0, 36 37 // VALUE_SYMTAB_BLOCK abbrev id's. 38 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 39 VST_ENTRY_7_ABBREV, 40 VST_ENTRY_6_ABBREV, 41 VST_BBENTRY_6_ABBREV, 42 43 // CONSTANTS_BLOCK abbrev id's. 44 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 45 CONSTANTS_INTEGER_ABBREV, 46 CONSTANTS_CE_CAST_Abbrev, 47 CONSTANTS_NULL_Abbrev, 48 49 // FUNCTION_BLOCK abbrev id's. 50 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 FUNCTION_INST_BINOP_ABBREV, 52 FUNCTION_INST_BINOP_FLAGS_ABBREV, 53 FUNCTION_INST_CAST_ABBREV, 54 FUNCTION_INST_RET_VOID_ABBREV, 55 FUNCTION_INST_RET_VAL_ABBREV, 56 FUNCTION_INST_UNREACHABLE_ABBREV 57 }; 58 59 60 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 61 switch (Opcode) { 62 default: llvm_unreachable("Unknown cast instruction!"); 63 case Instruction::Trunc : return bitc::CAST_TRUNC; 64 case Instruction::ZExt : return bitc::CAST_ZEXT; 65 case Instruction::SExt : return bitc::CAST_SEXT; 66 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 67 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 68 case Instruction::UIToFP : return bitc::CAST_UITOFP; 69 case Instruction::SIToFP : return bitc::CAST_SITOFP; 70 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 71 case Instruction::FPExt : return bitc::CAST_FPEXT; 72 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 73 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 74 case Instruction::BitCast : return bitc::CAST_BITCAST; 75 } 76 } 77 78 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 79 switch (Opcode) { 80 default: llvm_unreachable("Unknown binary instruction!"); 81 case Instruction::Add: 82 case Instruction::FAdd: return bitc::BINOP_ADD; 83 case Instruction::Sub: 84 case Instruction::FSub: return bitc::BINOP_SUB; 85 case Instruction::Mul: 86 case Instruction::FMul: return bitc::BINOP_MUL; 87 case Instruction::UDiv: return bitc::BINOP_UDIV; 88 case Instruction::FDiv: 89 case Instruction::SDiv: return bitc::BINOP_SDIV; 90 case Instruction::URem: return bitc::BINOP_UREM; 91 case Instruction::FRem: 92 case Instruction::SRem: return bitc::BINOP_SREM; 93 case Instruction::Shl: return bitc::BINOP_SHL; 94 case Instruction::LShr: return bitc::BINOP_LSHR; 95 case Instruction::AShr: return bitc::BINOP_ASHR; 96 case Instruction::And: return bitc::BINOP_AND; 97 case Instruction::Or: return bitc::BINOP_OR; 98 case Instruction::Xor: return bitc::BINOP_XOR; 99 } 100 } 101 102 103 104 static void WriteStringRecord(unsigned Code, const std::string &Str, 105 unsigned AbbrevToUse, BitstreamWriter &Stream) { 106 SmallVector<unsigned, 64> Vals; 107 108 // Code: [strchar x N] 109 for (unsigned i = 0, e = Str.size(); i != e; ++i) 110 Vals.push_back(Str[i]); 111 112 // Emit the finished record. 113 Stream.EmitRecord(Code, Vals, AbbrevToUse); 114 } 115 116 // Emit information about parameter attributes. 117 static void WriteAttributeTable(const ValueEnumerator &VE, 118 BitstreamWriter &Stream) { 119 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 120 if (Attrs.empty()) return; 121 122 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 123 124 SmallVector<uint64_t, 64> Record; 125 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 126 const AttrListPtr &A = Attrs[i]; 127 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 128 const AttributeWithIndex &PAWI = A.getSlot(i); 129 Record.push_back(PAWI.Index); 130 131 // FIXME: remove in LLVM 3.0 132 // Store the alignment in the bitcode as a 16-bit raw value instead of a 133 // 5-bit log2 encoded value. Shift the bits above the alignment up by 134 // 11 bits. 135 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 136 if (PAWI.Attrs & Attribute::Alignment) 137 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 138 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 139 140 Record.push_back(FauxAttr); 141 } 142 143 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 144 Record.clear(); 145 } 146 147 Stream.ExitBlock(); 148 } 149 150 /// WriteTypeTable - Write out the type table for a module. 151 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 152 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 153 154 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 155 SmallVector<uint64_t, 64> TypeVals; 156 157 // Abbrev for TYPE_CODE_POINTER. 158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 161 Log2_32_Ceil(VE.getTypes().size()+1))); 162 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 163 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Abbrev for TYPE_CODE_FUNCTION. 166 Abbv = new BitCodeAbbrev(); 167 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 169 Abbv->Add(BitCodeAbbrevOp(0)); // FIXME: DEAD value, remove in LLVM 3.0 170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 172 Log2_32_Ceil(VE.getTypes().size()+1))); 173 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 174 175 // Abbrev for TYPE_CODE_STRUCT. 176 Abbv = new BitCodeAbbrev(); 177 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 181 Log2_32_Ceil(VE.getTypes().size()+1))); 182 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 183 184 // Abbrev for TYPE_CODE_ARRAY. 185 Abbv = new BitCodeAbbrev(); 186 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 189 Log2_32_Ceil(VE.getTypes().size()+1))); 190 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 191 192 // Emit an entry count so the reader can reserve space. 193 TypeVals.push_back(TypeList.size()); 194 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 195 TypeVals.clear(); 196 197 // Loop over all of the types, emitting each in turn. 198 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 199 const Type *T = TypeList[i].first; 200 int AbbrevToUse = 0; 201 unsigned Code = 0; 202 203 switch (T->getTypeID()) { 204 default: llvm_unreachable("Unknown type!"); 205 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 206 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 207 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 208 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 209 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 210 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 211 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 212 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 213 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 214 case Type::IntegerTyID: 215 // INTEGER: [width] 216 Code = bitc::TYPE_CODE_INTEGER; 217 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 218 break; 219 case Type::PointerTyID: { 220 const PointerType *PTy = cast<PointerType>(T); 221 // POINTER: [pointee type, address space] 222 Code = bitc::TYPE_CODE_POINTER; 223 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 224 unsigned AddressSpace = PTy->getAddressSpace(); 225 TypeVals.push_back(AddressSpace); 226 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 227 break; 228 } 229 case Type::FunctionTyID: { 230 const FunctionType *FT = cast<FunctionType>(T); 231 // FUNCTION: [isvararg, attrid, retty, paramty x N] 232 Code = bitc::TYPE_CODE_FUNCTION; 233 TypeVals.push_back(FT->isVarArg()); 234 TypeVals.push_back(0); // FIXME: DEAD: remove in llvm 3.0 235 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 236 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 237 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 238 AbbrevToUse = FunctionAbbrev; 239 break; 240 } 241 case Type::StructTyID: { 242 const StructType *ST = cast<StructType>(T); 243 // STRUCT: [ispacked, eltty x N] 244 Code = bitc::TYPE_CODE_STRUCT; 245 TypeVals.push_back(ST->isPacked()); 246 // Output all of the element types. 247 for (StructType::element_iterator I = ST->element_begin(), 248 E = ST->element_end(); I != E; ++I) 249 TypeVals.push_back(VE.getTypeID(*I)); 250 AbbrevToUse = StructAbbrev; 251 break; 252 } 253 case Type::ArrayTyID: { 254 const ArrayType *AT = cast<ArrayType>(T); 255 // ARRAY: [numelts, eltty] 256 Code = bitc::TYPE_CODE_ARRAY; 257 TypeVals.push_back(AT->getNumElements()); 258 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 259 AbbrevToUse = ArrayAbbrev; 260 break; 261 } 262 case Type::VectorTyID: { 263 const VectorType *VT = cast<VectorType>(T); 264 // VECTOR [numelts, eltty] 265 Code = bitc::TYPE_CODE_VECTOR; 266 TypeVals.push_back(VT->getNumElements()); 267 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 268 break; 269 } 270 } 271 272 // Emit the finished record. 273 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 274 TypeVals.clear(); 275 } 276 277 Stream.ExitBlock(); 278 } 279 280 static unsigned getEncodedLinkage(const GlobalValue *GV) { 281 switch (GV->getLinkage()) { 282 default: llvm_unreachable("Invalid linkage!"); 283 case GlobalValue::GhostLinkage: // Map ghost linkage onto external. 284 case GlobalValue::ExternalLinkage: return 0; 285 case GlobalValue::WeakAnyLinkage: return 1; 286 case GlobalValue::AppendingLinkage: return 2; 287 case GlobalValue::InternalLinkage: return 3; 288 case GlobalValue::LinkOnceAnyLinkage: return 4; 289 case GlobalValue::DLLImportLinkage: return 5; 290 case GlobalValue::DLLExportLinkage: return 6; 291 case GlobalValue::ExternalWeakLinkage: return 7; 292 case GlobalValue::CommonLinkage: return 8; 293 case GlobalValue::PrivateLinkage: return 9; 294 case GlobalValue::WeakODRLinkage: return 10; 295 case GlobalValue::LinkOnceODRLinkage: return 11; 296 case GlobalValue::AvailableExternallyLinkage: return 12; 297 case GlobalValue::LinkerPrivateLinkage: return 13; 298 } 299 } 300 301 static unsigned getEncodedVisibility(const GlobalValue *GV) { 302 switch (GV->getVisibility()) { 303 default: llvm_unreachable("Invalid visibility!"); 304 case GlobalValue::DefaultVisibility: return 0; 305 case GlobalValue::HiddenVisibility: return 1; 306 case GlobalValue::ProtectedVisibility: return 2; 307 } 308 } 309 310 // Emit top-level description of module, including target triple, inline asm, 311 // descriptors for global variables, and function prototype info. 312 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 313 BitstreamWriter &Stream) { 314 // Emit the list of dependent libraries for the Module. 315 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 316 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 317 318 // Emit various pieces of data attached to a module. 319 if (!M->getTargetTriple().empty()) 320 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 321 0/*TODO*/, Stream); 322 if (!M->getDataLayout().empty()) 323 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 324 0/*TODO*/, Stream); 325 if (!M->getModuleInlineAsm().empty()) 326 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 327 0/*TODO*/, Stream); 328 329 // Emit information about sections and GC, computing how many there are. Also 330 // compute the maximum alignment value. 331 std::map<std::string, unsigned> SectionMap; 332 std::map<std::string, unsigned> GCMap; 333 unsigned MaxAlignment = 0; 334 unsigned MaxGlobalType = 0; 335 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 336 GV != E; ++GV) { 337 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 338 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 339 340 if (!GV->hasSection()) continue; 341 // Give section names unique ID's. 342 unsigned &Entry = SectionMap[GV->getSection()]; 343 if (Entry != 0) continue; 344 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 345 0/*TODO*/, Stream); 346 Entry = SectionMap.size(); 347 } 348 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 349 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 350 if (F->hasSection()) { 351 // Give section names unique ID's. 352 unsigned &Entry = SectionMap[F->getSection()]; 353 if (!Entry) { 354 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 355 0/*TODO*/, Stream); 356 Entry = SectionMap.size(); 357 } 358 } 359 if (F->hasGC()) { 360 // Same for GC names. 361 unsigned &Entry = GCMap[F->getGC()]; 362 if (!Entry) { 363 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 364 0/*TODO*/, Stream); 365 Entry = GCMap.size(); 366 } 367 } 368 } 369 370 // Emit abbrev for globals, now that we know # sections and max alignment. 371 unsigned SimpleGVarAbbrev = 0; 372 if (!M->global_empty()) { 373 // Add an abbrev for common globals with no visibility or thread localness. 374 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 375 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 377 Log2_32_Ceil(MaxGlobalType+1))); 378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 381 if (MaxAlignment == 0) // Alignment. 382 Abbv->Add(BitCodeAbbrevOp(0)); 383 else { 384 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 386 Log2_32_Ceil(MaxEncAlignment+1))); 387 } 388 if (SectionMap.empty()) // Section. 389 Abbv->Add(BitCodeAbbrevOp(0)); 390 else 391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 392 Log2_32_Ceil(SectionMap.size()+1))); 393 // Don't bother emitting vis + thread local. 394 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 395 } 396 397 // Emit the global variable information. 398 SmallVector<unsigned, 64> Vals; 399 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 400 GV != E; ++GV) { 401 unsigned AbbrevToUse = 0; 402 403 // GLOBALVAR: [type, isconst, initid, 404 // linkage, alignment, section, visibility, threadlocal] 405 Vals.push_back(VE.getTypeID(GV->getType())); 406 Vals.push_back(GV->isConstant()); 407 Vals.push_back(GV->isDeclaration() ? 0 : 408 (VE.getValueID(GV->getInitializer()) + 1)); 409 Vals.push_back(getEncodedLinkage(GV)); 410 Vals.push_back(Log2_32(GV->getAlignment())+1); 411 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 412 if (GV->isThreadLocal() || 413 GV->getVisibility() != GlobalValue::DefaultVisibility) { 414 Vals.push_back(getEncodedVisibility(GV)); 415 Vals.push_back(GV->isThreadLocal()); 416 } else { 417 AbbrevToUse = SimpleGVarAbbrev; 418 } 419 420 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 421 Vals.clear(); 422 } 423 424 // Emit the function proto information. 425 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 426 // FUNCTION: [type, callingconv, isproto, paramattr, 427 // linkage, alignment, section, visibility, gc] 428 Vals.push_back(VE.getTypeID(F->getType())); 429 Vals.push_back(F->getCallingConv()); 430 Vals.push_back(F->isDeclaration()); 431 Vals.push_back(getEncodedLinkage(F)); 432 Vals.push_back(VE.getAttributeID(F->getAttributes())); 433 Vals.push_back(Log2_32(F->getAlignment())+1); 434 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 435 Vals.push_back(getEncodedVisibility(F)); 436 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 437 438 unsigned AbbrevToUse = 0; 439 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 440 Vals.clear(); 441 } 442 443 444 // Emit the alias information. 445 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 446 AI != E; ++AI) { 447 Vals.push_back(VE.getTypeID(AI->getType())); 448 Vals.push_back(VE.getValueID(AI->getAliasee())); 449 Vals.push_back(getEncodedLinkage(AI)); 450 Vals.push_back(getEncodedVisibility(AI)); 451 unsigned AbbrevToUse = 0; 452 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 453 Vals.clear(); 454 } 455 } 456 457 static uint64_t GetOptimizationFlags(const Value *V) { 458 uint64_t Flags = 0; 459 460 if (const OverflowingBinaryOperator *OBO = 461 dyn_cast<OverflowingBinaryOperator>(V)) { 462 if (OBO->hasNoSignedWrap()) 463 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 464 if (OBO->hasNoUnsignedWrap()) 465 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 466 } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(V)) { 467 if (Div->isExact()) 468 Flags |= 1 << bitc::SDIV_EXACT; 469 } 470 471 return Flags; 472 } 473 474 static void WriteMDNode(const MDNode *N, 475 const ValueEnumerator &VE, 476 BitstreamWriter &Stream, 477 SmallVector<uint64_t, 64> &Record) { 478 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 479 if (N->getOperand(i)) { 480 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 481 Record.push_back(VE.getValueID(N->getOperand(i))); 482 } else { 483 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 484 Record.push_back(0); 485 } 486 } 487 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 488 bitc::METADATA_NODE; 489 Stream.EmitRecord(MDCode, Record, 0); 490 Record.clear(); 491 } 492 493 static void WriteModuleMetadata(const ValueEnumerator &VE, 494 BitstreamWriter &Stream) { 495 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 496 bool StartedMetadataBlock = false; 497 unsigned MDSAbbrev = 0; 498 SmallVector<uint64_t, 64> Record; 499 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 500 501 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 502 if (!StartedMetadataBlock) { 503 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 504 StartedMetadataBlock = true; 505 } 506 WriteMDNode(N, VE, Stream, Record); 507 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 508 if (!StartedMetadataBlock) { 509 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 510 511 // Abbrev for METADATA_STRING. 512 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 513 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 516 MDSAbbrev = Stream.EmitAbbrev(Abbv); 517 StartedMetadataBlock = true; 518 } 519 520 // Code: [strchar x N] 521 Record.append(MDS->begin(), MDS->end()); 522 523 // Emit the finished record. 524 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 525 Record.clear(); 526 } else if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(Vals[i].first)) { 527 if (!StartedMetadataBlock) { 528 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 529 StartedMetadataBlock = true; 530 } 531 532 // Write name. 533 StringRef Str = NMD->getName(); 534 for (unsigned i = 0, e = Str.size(); i != e; ++i) 535 Record.push_back(Str[i]); 536 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 537 Record.clear(); 538 539 // Write named metadata operands. 540 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 541 if (NMD->getOperand(i)) 542 Record.push_back(VE.getValueID(NMD->getOperand(i))); 543 else 544 Record.push_back(~0U); 545 } 546 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 547 Record.clear(); 548 } 549 } 550 551 if (StartedMetadataBlock) 552 Stream.ExitBlock(); 553 } 554 555 static void WriteMetadataAttachment(const Function &F, 556 const ValueEnumerator &VE, 557 BitstreamWriter &Stream) { 558 bool StartedMetadataBlock = false; 559 SmallVector<uint64_t, 64> Record; 560 561 // Write metadata attachments 562 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 563 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 564 565 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 566 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 567 I != E; ++I) { 568 MDs.clear(); 569 I->getAllMetadata(MDs); 570 571 // If no metadata, ignore instruction. 572 if (MDs.empty()) continue; 573 574 Record.push_back(VE.getInstructionID(I)); 575 576 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 577 Record.push_back(MDs[i].first); 578 Record.push_back(VE.getValueID(MDs[i].second)); 579 } 580 if (!StartedMetadataBlock) { 581 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 582 StartedMetadataBlock = true; 583 } 584 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 585 Record.clear(); 586 } 587 588 if (StartedMetadataBlock) 589 Stream.ExitBlock(); 590 } 591 592 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 593 SmallVector<uint64_t, 64> Record; 594 595 // Write metadata kinds 596 // METADATA_KIND - [n x [id, name]] 597 SmallVector<StringRef, 4> Names; 598 M->getMDKindNames(Names); 599 600 assert(Names[0] == "" && "MDKind #0 is invalid"); 601 if (Names.size() == 1) return; 602 603 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 604 605 for (unsigned MDKindID = 1, e = Names.size(); MDKindID != e; ++MDKindID) { 606 Record.push_back(MDKindID); 607 StringRef KName = Names[MDKindID]; 608 Record.append(KName.begin(), KName.end()); 609 610 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 611 Record.clear(); 612 } 613 614 Stream.ExitBlock(); 615 } 616 617 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 618 const ValueEnumerator &VE, 619 BitstreamWriter &Stream, bool isGlobal) { 620 if (FirstVal == LastVal) return; 621 622 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 623 624 unsigned AggregateAbbrev = 0; 625 unsigned String8Abbrev = 0; 626 unsigned CString7Abbrev = 0; 627 unsigned CString6Abbrev = 0; 628 // If this is a constant pool for the module, emit module-specific abbrevs. 629 if (isGlobal) { 630 // Abbrev for CST_CODE_AGGREGATE. 631 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 632 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 635 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 636 637 // Abbrev for CST_CODE_STRING. 638 Abbv = new BitCodeAbbrev(); 639 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 642 String8Abbrev = Stream.EmitAbbrev(Abbv); 643 // Abbrev for CST_CODE_CSTRING. 644 Abbv = new BitCodeAbbrev(); 645 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 648 CString7Abbrev = Stream.EmitAbbrev(Abbv); 649 // Abbrev for CST_CODE_CSTRING. 650 Abbv = new BitCodeAbbrev(); 651 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 654 CString6Abbrev = Stream.EmitAbbrev(Abbv); 655 } 656 657 SmallVector<uint64_t, 64> Record; 658 659 const ValueEnumerator::ValueList &Vals = VE.getValues(); 660 const Type *LastTy = 0; 661 for (unsigned i = FirstVal; i != LastVal; ++i) { 662 const Value *V = Vals[i].first; 663 // If we need to switch types, do so now. 664 if (V->getType() != LastTy) { 665 LastTy = V->getType(); 666 Record.push_back(VE.getTypeID(LastTy)); 667 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 668 CONSTANTS_SETTYPE_ABBREV); 669 Record.clear(); 670 } 671 672 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 673 Record.push_back(unsigned(IA->hasSideEffects()) | 674 unsigned(IA->isAlignStack()) << 1); 675 676 // Add the asm string. 677 const std::string &AsmStr = IA->getAsmString(); 678 Record.push_back(AsmStr.size()); 679 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 680 Record.push_back(AsmStr[i]); 681 682 // Add the constraint string. 683 const std::string &ConstraintStr = IA->getConstraintString(); 684 Record.push_back(ConstraintStr.size()); 685 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 686 Record.push_back(ConstraintStr[i]); 687 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 688 Record.clear(); 689 continue; 690 } 691 692 // Ignore all values in ValueList except for Constants. 693 if (V && (isa<Instruction>(V) || isa<Argument>(V))) 694 continue; 695 696 const Constant *C = cast<Constant>(V); 697 unsigned Code = -1U; 698 unsigned AbbrevToUse = 0; 699 if (C->isNullValue()) { 700 Code = bitc::CST_CODE_NULL; 701 } else if (isa<UndefValue>(C)) { 702 Code = bitc::CST_CODE_UNDEF; 703 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 704 if (IV->getBitWidth() <= 64) { 705 int64_t V = IV->getSExtValue(); 706 if (V >= 0) 707 Record.push_back(V << 1); 708 else 709 Record.push_back((-V << 1) | 1); 710 Code = bitc::CST_CODE_INTEGER; 711 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 712 } else { // Wide integers, > 64 bits in size. 713 // We have an arbitrary precision integer value to write whose 714 // bit width is > 64. However, in canonical unsigned integer 715 // format it is likely that the high bits are going to be zero. 716 // So, we only write the number of active words. 717 unsigned NWords = IV->getValue().getActiveWords(); 718 const uint64_t *RawWords = IV->getValue().getRawData(); 719 for (unsigned i = 0; i != NWords; ++i) { 720 int64_t V = RawWords[i]; 721 if (V >= 0) 722 Record.push_back(V << 1); 723 else 724 Record.push_back((-V << 1) | 1); 725 } 726 Code = bitc::CST_CODE_WIDE_INTEGER; 727 } 728 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 729 Code = bitc::CST_CODE_FLOAT; 730 const Type *Ty = CFP->getType(); 731 if (Ty->isFloatTy() || Ty->isDoubleTy()) { 732 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 733 } else if (Ty->isX86_FP80Ty()) { 734 // api needed to prevent premature destruction 735 // bits are not in the same order as a normal i80 APInt, compensate. 736 APInt api = CFP->getValueAPF().bitcastToAPInt(); 737 const uint64_t *p = api.getRawData(); 738 Record.push_back((p[1] << 48) | (p[0] >> 16)); 739 Record.push_back(p[0] & 0xffffLL); 740 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 741 APInt api = CFP->getValueAPF().bitcastToAPInt(); 742 const uint64_t *p = api.getRawData(); 743 Record.push_back(p[0]); 744 Record.push_back(p[1]); 745 } else { 746 assert (0 && "Unknown FP type!"); 747 } 748 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 749 const ConstantArray *CA = cast<ConstantArray>(C); 750 // Emit constant strings specially. 751 unsigned NumOps = CA->getNumOperands(); 752 // If this is a null-terminated string, use the denser CSTRING encoding. 753 if (CA->getOperand(NumOps-1)->isNullValue()) { 754 Code = bitc::CST_CODE_CSTRING; 755 --NumOps; // Don't encode the null, which isn't allowed by char6. 756 } else { 757 Code = bitc::CST_CODE_STRING; 758 AbbrevToUse = String8Abbrev; 759 } 760 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 761 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 762 for (unsigned i = 0; i != NumOps; ++i) { 763 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 764 Record.push_back(V); 765 isCStr7 &= (V & 128) == 0; 766 if (isCStrChar6) 767 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 768 } 769 770 if (isCStrChar6) 771 AbbrevToUse = CString6Abbrev; 772 else if (isCStr7) 773 AbbrevToUse = CString7Abbrev; 774 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 775 isa<ConstantVector>(V)) { 776 Code = bitc::CST_CODE_AGGREGATE; 777 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 778 Record.push_back(VE.getValueID(C->getOperand(i))); 779 AbbrevToUse = AggregateAbbrev; 780 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 781 switch (CE->getOpcode()) { 782 default: 783 if (Instruction::isCast(CE->getOpcode())) { 784 Code = bitc::CST_CODE_CE_CAST; 785 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 786 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 787 Record.push_back(VE.getValueID(C->getOperand(0))); 788 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 789 } else { 790 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 791 Code = bitc::CST_CODE_CE_BINOP; 792 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 793 Record.push_back(VE.getValueID(C->getOperand(0))); 794 Record.push_back(VE.getValueID(C->getOperand(1))); 795 uint64_t Flags = GetOptimizationFlags(CE); 796 if (Flags != 0) 797 Record.push_back(Flags); 798 } 799 break; 800 case Instruction::GetElementPtr: 801 Code = bitc::CST_CODE_CE_GEP; 802 if (cast<GEPOperator>(C)->isInBounds()) 803 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 804 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 805 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 806 Record.push_back(VE.getValueID(C->getOperand(i))); 807 } 808 break; 809 case Instruction::Select: 810 Code = bitc::CST_CODE_CE_SELECT; 811 Record.push_back(VE.getValueID(C->getOperand(0))); 812 Record.push_back(VE.getValueID(C->getOperand(1))); 813 Record.push_back(VE.getValueID(C->getOperand(2))); 814 break; 815 case Instruction::ExtractElement: 816 Code = bitc::CST_CODE_CE_EXTRACTELT; 817 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 818 Record.push_back(VE.getValueID(C->getOperand(0))); 819 Record.push_back(VE.getValueID(C->getOperand(1))); 820 break; 821 case Instruction::InsertElement: 822 Code = bitc::CST_CODE_CE_INSERTELT; 823 Record.push_back(VE.getValueID(C->getOperand(0))); 824 Record.push_back(VE.getValueID(C->getOperand(1))); 825 Record.push_back(VE.getValueID(C->getOperand(2))); 826 break; 827 case Instruction::ShuffleVector: 828 // If the return type and argument types are the same, this is a 829 // standard shufflevector instruction. If the types are different, 830 // then the shuffle is widening or truncating the input vectors, and 831 // the argument type must also be encoded. 832 if (C->getType() == C->getOperand(0)->getType()) { 833 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 834 } else { 835 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 836 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 837 } 838 Record.push_back(VE.getValueID(C->getOperand(0))); 839 Record.push_back(VE.getValueID(C->getOperand(1))); 840 Record.push_back(VE.getValueID(C->getOperand(2))); 841 break; 842 case Instruction::ICmp: 843 case Instruction::FCmp: 844 Code = bitc::CST_CODE_CE_CMP; 845 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 846 Record.push_back(VE.getValueID(C->getOperand(0))); 847 Record.push_back(VE.getValueID(C->getOperand(1))); 848 Record.push_back(CE->getPredicate()); 849 break; 850 } 851 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 852 assert(BA->getFunction() == BA->getBasicBlock()->getParent() && 853 "Malformed blockaddress"); 854 Code = bitc::CST_CODE_BLOCKADDRESS; 855 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 856 Record.push_back(VE.getValueID(BA->getFunction())); 857 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 858 } else { 859 llvm_unreachable("Unknown constant!"); 860 } 861 Stream.EmitRecord(Code, Record, AbbrevToUse); 862 Record.clear(); 863 } 864 865 Stream.ExitBlock(); 866 } 867 868 static void WriteModuleConstants(const ValueEnumerator &VE, 869 BitstreamWriter &Stream) { 870 const ValueEnumerator::ValueList &Vals = VE.getValues(); 871 872 // Find the first constant to emit, which is the first non-globalvalue value. 873 // We know globalvalues have been emitted by WriteModuleInfo. 874 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 875 if (!isa<GlobalValue>(Vals[i].first)) { 876 WriteConstants(i, Vals.size(), VE, Stream, true); 877 return; 878 } 879 } 880 } 881 882 /// PushValueAndType - The file has to encode both the value and type id for 883 /// many values, because we need to know what type to create for forward 884 /// references. However, most operands are not forward references, so this type 885 /// field is not needed. 886 /// 887 /// This function adds V's value ID to Vals. If the value ID is higher than the 888 /// instruction ID, then it is a forward reference, and it also includes the 889 /// type ID. 890 static bool PushValueAndType(const Value *V, unsigned InstID, 891 SmallVector<unsigned, 64> &Vals, 892 ValueEnumerator &VE) { 893 unsigned ValID = VE.getValueID(V); 894 Vals.push_back(ValID); 895 if (ValID >= InstID) { 896 Vals.push_back(VE.getTypeID(V->getType())); 897 return true; 898 } 899 return false; 900 } 901 902 /// WriteInstruction - Emit an instruction to the specified stream. 903 static void WriteInstruction(const Instruction &I, unsigned InstID, 904 ValueEnumerator &VE, BitstreamWriter &Stream, 905 SmallVector<unsigned, 64> &Vals) { 906 unsigned Code = 0; 907 unsigned AbbrevToUse = 0; 908 VE.setInstructionID(&I); 909 switch (I.getOpcode()) { 910 default: 911 if (Instruction::isCast(I.getOpcode())) { 912 Code = bitc::FUNC_CODE_INST_CAST; 913 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 914 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 915 Vals.push_back(VE.getTypeID(I.getType())); 916 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 917 } else { 918 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 919 Code = bitc::FUNC_CODE_INST_BINOP; 920 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 921 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 922 Vals.push_back(VE.getValueID(I.getOperand(1))); 923 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 924 uint64_t Flags = GetOptimizationFlags(&I); 925 if (Flags != 0) { 926 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 927 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 928 Vals.push_back(Flags); 929 } 930 } 931 break; 932 933 case Instruction::GetElementPtr: 934 Code = bitc::FUNC_CODE_INST_GEP; 935 if (cast<GEPOperator>(&I)->isInBounds()) 936 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 937 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 938 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 939 break; 940 case Instruction::ExtractValue: { 941 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 942 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 943 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 944 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 945 Vals.push_back(*i); 946 break; 947 } 948 case Instruction::InsertValue: { 949 Code = bitc::FUNC_CODE_INST_INSERTVAL; 950 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 951 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 952 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 953 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 954 Vals.push_back(*i); 955 break; 956 } 957 case Instruction::Select: 958 Code = bitc::FUNC_CODE_INST_VSELECT; 959 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 960 Vals.push_back(VE.getValueID(I.getOperand(2))); 961 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 962 break; 963 case Instruction::ExtractElement: 964 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 965 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 966 Vals.push_back(VE.getValueID(I.getOperand(1))); 967 break; 968 case Instruction::InsertElement: 969 Code = bitc::FUNC_CODE_INST_INSERTELT; 970 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 971 Vals.push_back(VE.getValueID(I.getOperand(1))); 972 Vals.push_back(VE.getValueID(I.getOperand(2))); 973 break; 974 case Instruction::ShuffleVector: 975 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 976 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 977 Vals.push_back(VE.getValueID(I.getOperand(1))); 978 Vals.push_back(VE.getValueID(I.getOperand(2))); 979 break; 980 case Instruction::ICmp: 981 case Instruction::FCmp: 982 // compare returning Int1Ty or vector of Int1Ty 983 Code = bitc::FUNC_CODE_INST_CMP2; 984 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 985 Vals.push_back(VE.getValueID(I.getOperand(1))); 986 Vals.push_back(cast<CmpInst>(I).getPredicate()); 987 break; 988 989 case Instruction::Ret: 990 { 991 Code = bitc::FUNC_CODE_INST_RET; 992 unsigned NumOperands = I.getNumOperands(); 993 if (NumOperands == 0) 994 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 995 else if (NumOperands == 1) { 996 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 997 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 998 } else { 999 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1000 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1001 } 1002 } 1003 break; 1004 case Instruction::Br: 1005 { 1006 Code = bitc::FUNC_CODE_INST_BR; 1007 BranchInst &II = cast<BranchInst>(I); 1008 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1009 if (II.isConditional()) { 1010 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1011 Vals.push_back(VE.getValueID(II.getCondition())); 1012 } 1013 } 1014 break; 1015 case Instruction::Switch: 1016 Code = bitc::FUNC_CODE_INST_SWITCH; 1017 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1018 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1019 Vals.push_back(VE.getValueID(I.getOperand(i))); 1020 break; 1021 case Instruction::IndirectBr: 1022 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1023 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1024 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1025 Vals.push_back(VE.getValueID(I.getOperand(i))); 1026 break; 1027 1028 case Instruction::Invoke: { 1029 const InvokeInst *II = cast<InvokeInst>(&I); 1030 const Value *Callee(II->getCalledValue()); 1031 const PointerType *PTy = cast<PointerType>(Callee->getType()); 1032 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1033 Code = bitc::FUNC_CODE_INST_INVOKE; 1034 1035 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1036 Vals.push_back(II->getCallingConv()); 1037 Vals.push_back(VE.getValueID(II->getNormalDest())); 1038 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1039 PushValueAndType(Callee, InstID, Vals, VE); 1040 1041 // Emit value #'s for the fixed parameters. 1042 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1043 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 1044 1045 // Emit type/value pairs for varargs params. 1046 if (FTy->isVarArg()) { 1047 for (unsigned i = 3+FTy->getNumParams(), e = I.getNumOperands(); 1048 i != e; ++i) 1049 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1050 } 1051 break; 1052 } 1053 case Instruction::Unwind: 1054 Code = bitc::FUNC_CODE_INST_UNWIND; 1055 break; 1056 case Instruction::Unreachable: 1057 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1058 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1059 break; 1060 1061 case Instruction::PHI: 1062 Code = bitc::FUNC_CODE_INST_PHI; 1063 Vals.push_back(VE.getTypeID(I.getType())); 1064 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1065 Vals.push_back(VE.getValueID(I.getOperand(i))); 1066 break; 1067 1068 case Instruction::Alloca: 1069 Code = bitc::FUNC_CODE_INST_ALLOCA; 1070 Vals.push_back(VE.getTypeID(I.getType())); 1071 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1072 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1073 break; 1074 1075 case Instruction::Load: 1076 Code = bitc::FUNC_CODE_INST_LOAD; 1077 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1078 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1079 1080 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1081 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1082 break; 1083 case Instruction::Store: 1084 Code = bitc::FUNC_CODE_INST_STORE2; 1085 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1086 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1087 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1088 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1089 break; 1090 case Instruction::Call: { 1091 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 1092 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1093 1094 Code = bitc::FUNC_CODE_INST_CALL; 1095 1096 const CallInst *CI = cast<CallInst>(&I); 1097 Vals.push_back(VE.getAttributeID(CI->getAttributes())); 1098 Vals.push_back((CI->getCallingConv() << 1) | unsigned(CI->isTailCall())); 1099 PushValueAndType(CI->getOperand(0), InstID, Vals, VE); // Callee 1100 1101 // Emit value #'s for the fixed parameters. 1102 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1103 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 1104 1105 // Emit type/value pairs for varargs params. 1106 if (FTy->isVarArg()) { 1107 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 1108 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 1109 i != e; ++i) 1110 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // varargs 1111 } 1112 break; 1113 } 1114 case Instruction::VAArg: 1115 Code = bitc::FUNC_CODE_INST_VAARG; 1116 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1117 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1118 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1119 break; 1120 } 1121 1122 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1123 Vals.clear(); 1124 } 1125 1126 // Emit names for globals/functions etc. 1127 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1128 const ValueEnumerator &VE, 1129 BitstreamWriter &Stream) { 1130 if (VST.empty()) return; 1131 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1132 1133 // FIXME: Set up the abbrev, we know how many values there are! 1134 // FIXME: We know if the type names can use 7-bit ascii. 1135 SmallVector<unsigned, 64> NameVals; 1136 1137 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1138 SI != SE; ++SI) { 1139 1140 const ValueName &Name = *SI; 1141 1142 // Figure out the encoding to use for the name. 1143 bool is7Bit = true; 1144 bool isChar6 = true; 1145 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1146 C != E; ++C) { 1147 if (isChar6) 1148 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1149 if ((unsigned char)*C & 128) { 1150 is7Bit = false; 1151 break; // don't bother scanning the rest. 1152 } 1153 } 1154 1155 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1156 1157 // VST_ENTRY: [valueid, namechar x N] 1158 // VST_BBENTRY: [bbid, namechar x N] 1159 unsigned Code; 1160 if (isa<BasicBlock>(SI->getValue())) { 1161 Code = bitc::VST_CODE_BBENTRY; 1162 if (isChar6) 1163 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1164 } else { 1165 Code = bitc::VST_CODE_ENTRY; 1166 if (isChar6) 1167 AbbrevToUse = VST_ENTRY_6_ABBREV; 1168 else if (is7Bit) 1169 AbbrevToUse = VST_ENTRY_7_ABBREV; 1170 } 1171 1172 NameVals.push_back(VE.getValueID(SI->getValue())); 1173 for (const char *P = Name.getKeyData(), 1174 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1175 NameVals.push_back((unsigned char)*P); 1176 1177 // Emit the finished record. 1178 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1179 NameVals.clear(); 1180 } 1181 Stream.ExitBlock(); 1182 } 1183 1184 /// WriteFunction - Emit a function body to the module stream. 1185 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1186 BitstreamWriter &Stream) { 1187 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1188 VE.incorporateFunction(F); 1189 1190 SmallVector<unsigned, 64> Vals; 1191 1192 // Emit the number of basic blocks, so the reader can create them ahead of 1193 // time. 1194 Vals.push_back(VE.getBasicBlocks().size()); 1195 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1196 Vals.clear(); 1197 1198 // If there are function-local constants, emit them now. 1199 unsigned CstStart, CstEnd; 1200 VE.getFunctionConstantRange(CstStart, CstEnd); 1201 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1202 1203 // Keep a running idea of what the instruction ID is. 1204 unsigned InstID = CstEnd; 1205 1206 // Finally, emit all the instructions, in order. 1207 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1208 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1209 I != E; ++I) { 1210 WriteInstruction(*I, InstID, VE, Stream, Vals); 1211 if (!I->getType()->isVoidTy()) 1212 ++InstID; 1213 } 1214 1215 // Emit names for all the instructions etc. 1216 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1217 1218 WriteMetadataAttachment(F, VE, Stream); 1219 VE.purgeFunction(); 1220 Stream.ExitBlock(); 1221 } 1222 1223 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 1224 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 1225 const ValueEnumerator &VE, 1226 BitstreamWriter &Stream) { 1227 if (TST.empty()) return; 1228 1229 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 1230 1231 // 7-bit fixed width VST_CODE_ENTRY strings. 1232 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1233 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1235 Log2_32_Ceil(VE.getTypes().size()+1))); 1236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1238 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 1239 1240 SmallVector<unsigned, 64> NameVals; 1241 1242 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 1243 TI != TE; ++TI) { 1244 // TST_ENTRY: [typeid, namechar x N] 1245 NameVals.push_back(VE.getTypeID(TI->second)); 1246 1247 const std::string &Str = TI->first; 1248 bool is7Bit = true; 1249 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 1250 NameVals.push_back((unsigned char)Str[i]); 1251 if (Str[i] & 128) 1252 is7Bit = false; 1253 } 1254 1255 // Emit the finished record. 1256 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 1257 NameVals.clear(); 1258 } 1259 1260 Stream.ExitBlock(); 1261 } 1262 1263 // Emit blockinfo, which defines the standard abbreviations etc. 1264 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1265 // We only want to emit block info records for blocks that have multiple 1266 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1267 // blocks can defined their abbrevs inline. 1268 Stream.EnterBlockInfoBlock(2); 1269 1270 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1271 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1276 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1277 Abbv) != VST_ENTRY_8_ABBREV) 1278 llvm_unreachable("Unexpected abbrev ordering!"); 1279 } 1280 1281 { // 7-bit fixed width VST_ENTRY strings. 1282 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1283 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1287 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1288 Abbv) != VST_ENTRY_7_ABBREV) 1289 llvm_unreachable("Unexpected abbrev ordering!"); 1290 } 1291 { // 6-bit char6 VST_ENTRY strings. 1292 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1293 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1297 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1298 Abbv) != VST_ENTRY_6_ABBREV) 1299 llvm_unreachable("Unexpected abbrev ordering!"); 1300 } 1301 { // 6-bit char6 VST_BBENTRY strings. 1302 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1303 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1307 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1308 Abbv) != VST_BBENTRY_6_ABBREV) 1309 llvm_unreachable("Unexpected abbrev ordering!"); 1310 } 1311 1312 1313 1314 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1315 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1316 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1318 Log2_32_Ceil(VE.getTypes().size()+1))); 1319 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1320 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1321 llvm_unreachable("Unexpected abbrev ordering!"); 1322 } 1323 1324 { // INTEGER abbrev for CONSTANTS_BLOCK. 1325 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1326 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1328 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1329 Abbv) != CONSTANTS_INTEGER_ABBREV) 1330 llvm_unreachable("Unexpected abbrev ordering!"); 1331 } 1332 1333 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1334 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1335 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1338 Log2_32_Ceil(VE.getTypes().size()+1))); 1339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1340 1341 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1342 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1343 llvm_unreachable("Unexpected abbrev ordering!"); 1344 } 1345 { // NULL abbrev for CONSTANTS_BLOCK. 1346 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1347 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1348 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1349 Abbv) != CONSTANTS_NULL_Abbrev) 1350 llvm_unreachable("Unexpected abbrev ordering!"); 1351 } 1352 1353 // FIXME: This should only use space for first class types! 1354 1355 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1356 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1357 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1361 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1362 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1363 llvm_unreachable("Unexpected abbrev ordering!"); 1364 } 1365 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1366 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1367 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1371 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1372 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1373 llvm_unreachable("Unexpected abbrev ordering!"); 1374 } 1375 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1376 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1377 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1382 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1383 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1384 llvm_unreachable("Unexpected abbrev ordering!"); 1385 } 1386 { // INST_CAST abbrev for FUNCTION_BLOCK. 1387 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1388 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1391 Log2_32_Ceil(VE.getTypes().size()+1))); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1393 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1394 Abbv) != FUNCTION_INST_CAST_ABBREV) 1395 llvm_unreachable("Unexpected abbrev ordering!"); 1396 } 1397 1398 { // INST_RET abbrev for FUNCTION_BLOCK. 1399 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1400 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1401 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1402 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1403 llvm_unreachable("Unexpected abbrev ordering!"); 1404 } 1405 { // INST_RET abbrev for FUNCTION_BLOCK. 1406 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1407 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1409 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1410 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1411 llvm_unreachable("Unexpected abbrev ordering!"); 1412 } 1413 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1414 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1415 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1416 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1417 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1418 llvm_unreachable("Unexpected abbrev ordering!"); 1419 } 1420 1421 Stream.ExitBlock(); 1422 } 1423 1424 1425 /// WriteModule - Emit the specified module to the bitstream. 1426 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1427 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1428 1429 // Emit the version number if it is non-zero. 1430 if (CurVersion) { 1431 SmallVector<unsigned, 1> Vals; 1432 Vals.push_back(CurVersion); 1433 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1434 } 1435 1436 // Analyze the module, enumerating globals, functions, etc. 1437 ValueEnumerator VE(M); 1438 1439 // Emit blockinfo, which defines the standard abbreviations etc. 1440 WriteBlockInfo(VE, Stream); 1441 1442 // Emit information about parameter attributes. 1443 WriteAttributeTable(VE, Stream); 1444 1445 // Emit information describing all of the types in the module. 1446 WriteTypeTable(VE, Stream); 1447 1448 // Emit top-level description of module, including target triple, inline asm, 1449 // descriptors for global variables, and function prototype info. 1450 WriteModuleInfo(M, VE, Stream); 1451 1452 // Emit constants. 1453 WriteModuleConstants(VE, Stream); 1454 1455 // Emit metadata. 1456 WriteModuleMetadata(VE, Stream); 1457 1458 // Emit function bodies. 1459 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1460 if (!I->isDeclaration()) 1461 WriteFunction(*I, VE, Stream); 1462 1463 // Emit metadata. 1464 WriteModuleMetadataStore(M, Stream); 1465 1466 // Emit the type symbol table information. 1467 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1468 1469 // Emit names for globals/functions etc. 1470 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1471 1472 Stream.ExitBlock(); 1473 } 1474 1475 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1476 /// header and trailer to make it compatible with the system archiver. To do 1477 /// this we emit the following header, and then emit a trailer that pads the 1478 /// file out to be a multiple of 16 bytes. 1479 /// 1480 /// struct bc_header { 1481 /// uint32_t Magic; // 0x0B17C0DE 1482 /// uint32_t Version; // Version, currently always 0. 1483 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1484 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1485 /// uint32_t CPUType; // CPU specifier. 1486 /// ... potentially more later ... 1487 /// }; 1488 enum { 1489 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1490 DarwinBCHeaderSize = 5*4 1491 }; 1492 1493 static void EmitDarwinBCHeader(BitstreamWriter &Stream, 1494 const std::string &TT) { 1495 unsigned CPUType = ~0U; 1496 1497 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*. The CPUType is a 1498 // magic number from /usr/include/mach/machine.h. It is ok to reproduce the 1499 // specific constants here because they are implicitly part of the Darwin ABI. 1500 enum { 1501 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1502 DARWIN_CPU_TYPE_X86 = 7, 1503 DARWIN_CPU_TYPE_POWERPC = 18 1504 }; 1505 1506 if (TT.find("x86_64-") == 0) 1507 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1508 else if (TT.size() >= 5 && TT[0] == 'i' && TT[2] == '8' && TT[3] == '6' && 1509 TT[4] == '-' && TT[1] - '3' < 6) 1510 CPUType = DARWIN_CPU_TYPE_X86; 1511 else if (TT.find("powerpc-") == 0) 1512 CPUType = DARWIN_CPU_TYPE_POWERPC; 1513 else if (TT.find("powerpc64-") == 0) 1514 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1515 1516 // Traditional Bitcode starts after header. 1517 unsigned BCOffset = DarwinBCHeaderSize; 1518 1519 Stream.Emit(0x0B17C0DE, 32); 1520 Stream.Emit(0 , 32); // Version. 1521 Stream.Emit(BCOffset , 32); 1522 Stream.Emit(0 , 32); // Filled in later. 1523 Stream.Emit(CPUType , 32); 1524 } 1525 1526 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1527 /// finalize the header. 1528 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1529 // Update the size field in the header. 1530 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1531 1532 // If the file is not a multiple of 16 bytes, insert dummy padding. 1533 while (BufferSize & 15) { 1534 Stream.Emit(0, 8); 1535 ++BufferSize; 1536 } 1537 } 1538 1539 1540 /// WriteBitcodeToFile - Write the specified module to the specified output 1541 /// stream. 1542 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1543 std::vector<unsigned char> Buffer; 1544 BitstreamWriter Stream(Buffer); 1545 1546 Buffer.reserve(256*1024); 1547 1548 WriteBitcodeToStream( M, Stream ); 1549 1550 // If writing to stdout, set binary mode. 1551 if (&llvm::outs() == &Out) 1552 sys::Program::ChangeStdoutToBinary(); 1553 1554 // Write the generated bitstream to "Out". 1555 Out.write((char*)&Buffer.front(), Buffer.size()); 1556 1557 // Make sure it hits disk now. 1558 Out.flush(); 1559 } 1560 1561 /// WriteBitcodeToStream - Write the specified module to the specified output 1562 /// stream. 1563 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1564 // If this is darwin, emit a file header and trailer if needed. 1565 bool isDarwin = M->getTargetTriple().find("-darwin") != std::string::npos; 1566 if (isDarwin) 1567 EmitDarwinBCHeader(Stream, M->getTargetTriple()); 1568 1569 // Emit the file header. 1570 Stream.Emit((unsigned)'B', 8); 1571 Stream.Emit((unsigned)'C', 8); 1572 Stream.Emit(0x0, 4); 1573 Stream.Emit(0xC, 4); 1574 Stream.Emit(0xE, 4); 1575 Stream.Emit(0xD, 4); 1576 1577 // Emit the module. 1578 WriteModule(M, Stream); 1579 1580 if (isDarwin) 1581 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1582 } 1583