xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision f8ecdf528459b309ea55c593ed2748443d14878e)
1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Bitcode writer implementation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Analysis/BlockFrequencyInfo.h"
18 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Bitcode/BitstreamWriter.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitcode/ReaderWriter.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/UseListOrder.h"
36 #include "llvm/IR/ValueSymbolTable.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/Program.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cctype>
43 #include <map>
44 using namespace llvm;
45 
46 /// These are manifest constants used by the bitcode writer. They do not need to
47 /// be kept in sync with the reader, but need to be consistent within this file.
48 enum {
49   // VALUE_SYMTAB_BLOCK abbrev id's.
50   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
51   VST_ENTRY_7_ABBREV,
52   VST_ENTRY_6_ABBREV,
53   VST_BBENTRY_6_ABBREV,
54 
55   // CONSTANTS_BLOCK abbrev id's.
56   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
57   CONSTANTS_INTEGER_ABBREV,
58   CONSTANTS_CE_CAST_Abbrev,
59   CONSTANTS_NULL_Abbrev,
60 
61   // FUNCTION_BLOCK abbrev id's.
62   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
63   FUNCTION_INST_BINOP_ABBREV,
64   FUNCTION_INST_BINOP_FLAGS_ABBREV,
65   FUNCTION_INST_CAST_ABBREV,
66   FUNCTION_INST_RET_VOID_ABBREV,
67   FUNCTION_INST_RET_VAL_ABBREV,
68   FUNCTION_INST_UNREACHABLE_ABBREV,
69   FUNCTION_INST_GEP_ABBREV,
70 };
71 
72 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
73   switch (Opcode) {
74   default: llvm_unreachable("Unknown cast instruction!");
75   case Instruction::Trunc   : return bitc::CAST_TRUNC;
76   case Instruction::ZExt    : return bitc::CAST_ZEXT;
77   case Instruction::SExt    : return bitc::CAST_SEXT;
78   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
79   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
80   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
81   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
82   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
83   case Instruction::FPExt   : return bitc::CAST_FPEXT;
84   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
85   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
86   case Instruction::BitCast : return bitc::CAST_BITCAST;
87   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
88   }
89 }
90 
91 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
92   switch (Opcode) {
93   default: llvm_unreachable("Unknown binary instruction!");
94   case Instruction::Add:
95   case Instruction::FAdd: return bitc::BINOP_ADD;
96   case Instruction::Sub:
97   case Instruction::FSub: return bitc::BINOP_SUB;
98   case Instruction::Mul:
99   case Instruction::FMul: return bitc::BINOP_MUL;
100   case Instruction::UDiv: return bitc::BINOP_UDIV;
101   case Instruction::FDiv:
102   case Instruction::SDiv: return bitc::BINOP_SDIV;
103   case Instruction::URem: return bitc::BINOP_UREM;
104   case Instruction::FRem:
105   case Instruction::SRem: return bitc::BINOP_SREM;
106   case Instruction::Shl:  return bitc::BINOP_SHL;
107   case Instruction::LShr: return bitc::BINOP_LSHR;
108   case Instruction::AShr: return bitc::BINOP_ASHR;
109   case Instruction::And:  return bitc::BINOP_AND;
110   case Instruction::Or:   return bitc::BINOP_OR;
111   case Instruction::Xor:  return bitc::BINOP_XOR;
112   }
113 }
114 
115 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
116   switch (Op) {
117   default: llvm_unreachable("Unknown RMW operation!");
118   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
119   case AtomicRMWInst::Add: return bitc::RMW_ADD;
120   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
121   case AtomicRMWInst::And: return bitc::RMW_AND;
122   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
123   case AtomicRMWInst::Or: return bitc::RMW_OR;
124   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
125   case AtomicRMWInst::Max: return bitc::RMW_MAX;
126   case AtomicRMWInst::Min: return bitc::RMW_MIN;
127   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
128   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
129   }
130 }
131 
132 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
133   switch (Ordering) {
134   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
135   case Unordered: return bitc::ORDERING_UNORDERED;
136   case Monotonic: return bitc::ORDERING_MONOTONIC;
137   case Acquire: return bitc::ORDERING_ACQUIRE;
138   case Release: return bitc::ORDERING_RELEASE;
139   case AcquireRelease: return bitc::ORDERING_ACQREL;
140   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
141   }
142   llvm_unreachable("Invalid ordering");
143 }
144 
145 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
146   switch (SynchScope) {
147   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
148   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
149   }
150   llvm_unreachable("Invalid synch scope");
151 }
152 
153 static void WriteStringRecord(unsigned Code, StringRef Str,
154                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
155   SmallVector<unsigned, 64> Vals;
156 
157   // Code: [strchar x N]
158   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
159     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
160       AbbrevToUse = 0;
161     Vals.push_back(Str[i]);
162   }
163 
164   // Emit the finished record.
165   Stream.EmitRecord(Code, Vals, AbbrevToUse);
166 }
167 
168 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
169   switch (Kind) {
170   case Attribute::Alignment:
171     return bitc::ATTR_KIND_ALIGNMENT;
172   case Attribute::AlwaysInline:
173     return bitc::ATTR_KIND_ALWAYS_INLINE;
174   case Attribute::ArgMemOnly:
175     return bitc::ATTR_KIND_ARGMEMONLY;
176   case Attribute::Builtin:
177     return bitc::ATTR_KIND_BUILTIN;
178   case Attribute::ByVal:
179     return bitc::ATTR_KIND_BY_VAL;
180   case Attribute::Convergent:
181     return bitc::ATTR_KIND_CONVERGENT;
182   case Attribute::InAlloca:
183     return bitc::ATTR_KIND_IN_ALLOCA;
184   case Attribute::Cold:
185     return bitc::ATTR_KIND_COLD;
186   case Attribute::InaccessibleMemOnly:
187     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
188   case Attribute::InaccessibleMemOrArgMemOnly:
189     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
190   case Attribute::InlineHint:
191     return bitc::ATTR_KIND_INLINE_HINT;
192   case Attribute::InReg:
193     return bitc::ATTR_KIND_IN_REG;
194   case Attribute::JumpTable:
195     return bitc::ATTR_KIND_JUMP_TABLE;
196   case Attribute::MinSize:
197     return bitc::ATTR_KIND_MIN_SIZE;
198   case Attribute::Naked:
199     return bitc::ATTR_KIND_NAKED;
200   case Attribute::Nest:
201     return bitc::ATTR_KIND_NEST;
202   case Attribute::NoAlias:
203     return bitc::ATTR_KIND_NO_ALIAS;
204   case Attribute::NoBuiltin:
205     return bitc::ATTR_KIND_NO_BUILTIN;
206   case Attribute::NoCapture:
207     return bitc::ATTR_KIND_NO_CAPTURE;
208   case Attribute::NoDuplicate:
209     return bitc::ATTR_KIND_NO_DUPLICATE;
210   case Attribute::NoImplicitFloat:
211     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
212   case Attribute::NoInline:
213     return bitc::ATTR_KIND_NO_INLINE;
214   case Attribute::NoRecurse:
215     return bitc::ATTR_KIND_NO_RECURSE;
216   case Attribute::NonLazyBind:
217     return bitc::ATTR_KIND_NON_LAZY_BIND;
218   case Attribute::NonNull:
219     return bitc::ATTR_KIND_NON_NULL;
220   case Attribute::Dereferenceable:
221     return bitc::ATTR_KIND_DEREFERENCEABLE;
222   case Attribute::DereferenceableOrNull:
223     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
224   case Attribute::NoRedZone:
225     return bitc::ATTR_KIND_NO_RED_ZONE;
226   case Attribute::NoReturn:
227     return bitc::ATTR_KIND_NO_RETURN;
228   case Attribute::NoUnwind:
229     return bitc::ATTR_KIND_NO_UNWIND;
230   case Attribute::OptimizeForSize:
231     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
232   case Attribute::OptimizeNone:
233     return bitc::ATTR_KIND_OPTIMIZE_NONE;
234   case Attribute::ReadNone:
235     return bitc::ATTR_KIND_READ_NONE;
236   case Attribute::ReadOnly:
237     return bitc::ATTR_KIND_READ_ONLY;
238   case Attribute::Returned:
239     return bitc::ATTR_KIND_RETURNED;
240   case Attribute::ReturnsTwice:
241     return bitc::ATTR_KIND_RETURNS_TWICE;
242   case Attribute::SExt:
243     return bitc::ATTR_KIND_S_EXT;
244   case Attribute::StackAlignment:
245     return bitc::ATTR_KIND_STACK_ALIGNMENT;
246   case Attribute::StackProtect:
247     return bitc::ATTR_KIND_STACK_PROTECT;
248   case Attribute::StackProtectReq:
249     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
250   case Attribute::StackProtectStrong:
251     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
252   case Attribute::SafeStack:
253     return bitc::ATTR_KIND_SAFESTACK;
254   case Attribute::StructRet:
255     return bitc::ATTR_KIND_STRUCT_RET;
256   case Attribute::SanitizeAddress:
257     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
258   case Attribute::SanitizeThread:
259     return bitc::ATTR_KIND_SANITIZE_THREAD;
260   case Attribute::SanitizeMemory:
261     return bitc::ATTR_KIND_SANITIZE_MEMORY;
262   case Attribute::UWTable:
263     return bitc::ATTR_KIND_UW_TABLE;
264   case Attribute::ZExt:
265     return bitc::ATTR_KIND_Z_EXT;
266   case Attribute::EndAttrKinds:
267     llvm_unreachable("Can not encode end-attribute kinds marker.");
268   case Attribute::None:
269     llvm_unreachable("Can not encode none-attribute.");
270   }
271 
272   llvm_unreachable("Trying to encode unknown attribute");
273 }
274 
275 static void WriteAttributeGroupTable(const ValueEnumerator &VE,
276                                      BitstreamWriter &Stream) {
277   const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
278   if (AttrGrps.empty()) return;
279 
280   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
281 
282   SmallVector<uint64_t, 64> Record;
283   for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
284     AttributeSet AS = AttrGrps[i];
285     for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
286       AttributeSet A = AS.getSlotAttributes(i);
287 
288       Record.push_back(VE.getAttributeGroupID(A));
289       Record.push_back(AS.getSlotIndex(i));
290 
291       for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
292            I != E; ++I) {
293         Attribute Attr = *I;
294         if (Attr.isEnumAttribute()) {
295           Record.push_back(0);
296           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
297         } else if (Attr.isIntAttribute()) {
298           Record.push_back(1);
299           Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
300           Record.push_back(Attr.getValueAsInt());
301         } else {
302           StringRef Kind = Attr.getKindAsString();
303           StringRef Val = Attr.getValueAsString();
304 
305           Record.push_back(Val.empty() ? 3 : 4);
306           Record.append(Kind.begin(), Kind.end());
307           Record.push_back(0);
308           if (!Val.empty()) {
309             Record.append(Val.begin(), Val.end());
310             Record.push_back(0);
311           }
312         }
313       }
314 
315       Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
316       Record.clear();
317     }
318   }
319 
320   Stream.ExitBlock();
321 }
322 
323 static void WriteAttributeTable(const ValueEnumerator &VE,
324                                 BitstreamWriter &Stream) {
325   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
326   if (Attrs.empty()) return;
327 
328   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
329 
330   SmallVector<uint64_t, 64> Record;
331   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
332     const AttributeSet &A = Attrs[i];
333     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
334       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
335 
336     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
337     Record.clear();
338   }
339 
340   Stream.ExitBlock();
341 }
342 
343 /// WriteTypeTable - Write out the type table for a module.
344 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) {
345   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
346 
347   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
348   SmallVector<uint64_t, 64> TypeVals;
349 
350   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
351 
352   // Abbrev for TYPE_CODE_POINTER.
353   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
354   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
355   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
356   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
357   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
358 
359   // Abbrev for TYPE_CODE_FUNCTION.
360   Abbv = new BitCodeAbbrev();
361   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
363   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
364   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
365 
366   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
367 
368   // Abbrev for TYPE_CODE_STRUCT_ANON.
369   Abbv = new BitCodeAbbrev();
370   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
371   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
372   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
373   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
374 
375   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
376 
377   // Abbrev for TYPE_CODE_STRUCT_NAME.
378   Abbv = new BitCodeAbbrev();
379   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
380   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
381   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
382   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
383 
384   // Abbrev for TYPE_CODE_STRUCT_NAMED.
385   Abbv = new BitCodeAbbrev();
386   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
387   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
388   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
389   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
390 
391   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
392 
393   // Abbrev for TYPE_CODE_ARRAY.
394   Abbv = new BitCodeAbbrev();
395   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
396   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
397   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
398 
399   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
400 
401   // Emit an entry count so the reader can reserve space.
402   TypeVals.push_back(TypeList.size());
403   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
404   TypeVals.clear();
405 
406   // Loop over all of the types, emitting each in turn.
407   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
408     Type *T = TypeList[i];
409     int AbbrevToUse = 0;
410     unsigned Code = 0;
411 
412     switch (T->getTypeID()) {
413     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
414     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
415     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
416     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
417     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
418     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
419     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
420     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
421     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
422     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
423     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
424     case Type::IntegerTyID:
425       // INTEGER: [width]
426       Code = bitc::TYPE_CODE_INTEGER;
427       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
428       break;
429     case Type::PointerTyID: {
430       PointerType *PTy = cast<PointerType>(T);
431       // POINTER: [pointee type, address space]
432       Code = bitc::TYPE_CODE_POINTER;
433       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
434       unsigned AddressSpace = PTy->getAddressSpace();
435       TypeVals.push_back(AddressSpace);
436       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
437       break;
438     }
439     case Type::FunctionTyID: {
440       FunctionType *FT = cast<FunctionType>(T);
441       // FUNCTION: [isvararg, retty, paramty x N]
442       Code = bitc::TYPE_CODE_FUNCTION;
443       TypeVals.push_back(FT->isVarArg());
444       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
445       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
446         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
447       AbbrevToUse = FunctionAbbrev;
448       break;
449     }
450     case Type::StructTyID: {
451       StructType *ST = cast<StructType>(T);
452       // STRUCT: [ispacked, eltty x N]
453       TypeVals.push_back(ST->isPacked());
454       // Output all of the element types.
455       for (StructType::element_iterator I = ST->element_begin(),
456            E = ST->element_end(); I != E; ++I)
457         TypeVals.push_back(VE.getTypeID(*I));
458 
459       if (ST->isLiteral()) {
460         Code = bitc::TYPE_CODE_STRUCT_ANON;
461         AbbrevToUse = StructAnonAbbrev;
462       } else {
463         if (ST->isOpaque()) {
464           Code = bitc::TYPE_CODE_OPAQUE;
465         } else {
466           Code = bitc::TYPE_CODE_STRUCT_NAMED;
467           AbbrevToUse = StructNamedAbbrev;
468         }
469 
470         // Emit the name if it is present.
471         if (!ST->getName().empty())
472           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
473                             StructNameAbbrev, Stream);
474       }
475       break;
476     }
477     case Type::ArrayTyID: {
478       ArrayType *AT = cast<ArrayType>(T);
479       // ARRAY: [numelts, eltty]
480       Code = bitc::TYPE_CODE_ARRAY;
481       TypeVals.push_back(AT->getNumElements());
482       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
483       AbbrevToUse = ArrayAbbrev;
484       break;
485     }
486     case Type::VectorTyID: {
487       VectorType *VT = cast<VectorType>(T);
488       // VECTOR [numelts, eltty]
489       Code = bitc::TYPE_CODE_VECTOR;
490       TypeVals.push_back(VT->getNumElements());
491       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
492       break;
493     }
494     }
495 
496     // Emit the finished record.
497     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
498     TypeVals.clear();
499   }
500 
501   Stream.ExitBlock();
502 }
503 
504 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
505   switch (Linkage) {
506   case GlobalValue::ExternalLinkage:
507     return 0;
508   case GlobalValue::WeakAnyLinkage:
509     return 16;
510   case GlobalValue::AppendingLinkage:
511     return 2;
512   case GlobalValue::InternalLinkage:
513     return 3;
514   case GlobalValue::LinkOnceAnyLinkage:
515     return 18;
516   case GlobalValue::ExternalWeakLinkage:
517     return 7;
518   case GlobalValue::CommonLinkage:
519     return 8;
520   case GlobalValue::PrivateLinkage:
521     return 9;
522   case GlobalValue::WeakODRLinkage:
523     return 17;
524   case GlobalValue::LinkOnceODRLinkage:
525     return 19;
526   case GlobalValue::AvailableExternallyLinkage:
527     return 12;
528   }
529   llvm_unreachable("Invalid linkage");
530 }
531 
532 static unsigned getEncodedLinkage(const GlobalValue &GV) {
533   return getEncodedLinkage(GV.getLinkage());
534 }
535 
536 static unsigned getEncodedVisibility(const GlobalValue &GV) {
537   switch (GV.getVisibility()) {
538   case GlobalValue::DefaultVisibility:   return 0;
539   case GlobalValue::HiddenVisibility:    return 1;
540   case GlobalValue::ProtectedVisibility: return 2;
541   }
542   llvm_unreachable("Invalid visibility");
543 }
544 
545 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
546   switch (GV.getDLLStorageClass()) {
547   case GlobalValue::DefaultStorageClass:   return 0;
548   case GlobalValue::DLLImportStorageClass: return 1;
549   case GlobalValue::DLLExportStorageClass: return 2;
550   }
551   llvm_unreachable("Invalid DLL storage class");
552 }
553 
554 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
555   switch (GV.getThreadLocalMode()) {
556     case GlobalVariable::NotThreadLocal:         return 0;
557     case GlobalVariable::GeneralDynamicTLSModel: return 1;
558     case GlobalVariable::LocalDynamicTLSModel:   return 2;
559     case GlobalVariable::InitialExecTLSModel:    return 3;
560     case GlobalVariable::LocalExecTLSModel:      return 4;
561   }
562   llvm_unreachable("Invalid TLS model");
563 }
564 
565 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
566   switch (C.getSelectionKind()) {
567   case Comdat::Any:
568     return bitc::COMDAT_SELECTION_KIND_ANY;
569   case Comdat::ExactMatch:
570     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
571   case Comdat::Largest:
572     return bitc::COMDAT_SELECTION_KIND_LARGEST;
573   case Comdat::NoDuplicates:
574     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
575   case Comdat::SameSize:
576     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
577   }
578   llvm_unreachable("Invalid selection kind");
579 }
580 
581 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) {
582   SmallVector<unsigned, 64> Vals;
583   for (const Comdat *C : VE.getComdats()) {
584     // COMDAT: [selection_kind, name]
585     Vals.push_back(getEncodedComdatSelectionKind(*C));
586     size_t Size = C->getName().size();
587     assert(isUInt<32>(Size));
588     Vals.push_back(Size);
589     for (char Chr : C->getName())
590       Vals.push_back((unsigned char)Chr);
591     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
592     Vals.clear();
593   }
594 }
595 
596 /// Write a record that will eventually hold the word offset of the
597 /// module-level VST. For now the offset is 0, which will be backpatched
598 /// after the real VST is written. Returns the bit offset to backpatch.
599 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) {
600   // Write a placeholder value in for the offset of the real VST,
601   // which is written after the function blocks so that it can include
602   // the offset of each function. The placeholder offset will be
603   // updated when the real VST is written.
604   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
605   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
606   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
607   // hold the real VST offset. Must use fixed instead of VBR as we don't
608   // know how many VBR chunks to reserve ahead of time.
609   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
610   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv);
611 
612   // Emit the placeholder
613   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
614   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
615 
616   // Compute and return the bit offset to the placeholder, which will be
617   // patched when the real VST is written. We can simply subtract the 32-bit
618   // fixed size from the current bit number to get the location to backpatch.
619   return Stream.GetCurrentBitNo() - 32;
620 }
621 
622 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
623 
624 /// Determine the encoding to use for the given string name and length.
625 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
626   bool isChar6 = true;
627   for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
628     if (isChar6)
629       isChar6 = BitCodeAbbrevOp::isChar6(*C);
630     if ((unsigned char)*C & 128)
631       // don't bother scanning the rest.
632       return SE_Fixed8;
633   }
634   if (isChar6)
635     return SE_Char6;
636   else
637     return SE_Fixed7;
638 }
639 
640 /// Emit top-level description of module, including target triple, inline asm,
641 /// descriptors for global variables, and function prototype info.
642 /// Returns the bit offset to backpatch with the location of the real VST.
643 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE,
644                                 BitstreamWriter &Stream) {
645   // Emit various pieces of data attached to a module.
646   if (!M->getTargetTriple().empty())
647     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
648                       0/*TODO*/, Stream);
649   const std::string &DL = M->getDataLayoutStr();
650   if (!DL.empty())
651     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream);
652   if (!M->getModuleInlineAsm().empty())
653     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
654                       0/*TODO*/, Stream);
655 
656   // Emit information about sections and GC, computing how many there are. Also
657   // compute the maximum alignment value.
658   std::map<std::string, unsigned> SectionMap;
659   std::map<std::string, unsigned> GCMap;
660   unsigned MaxAlignment = 0;
661   unsigned MaxGlobalType = 0;
662   for (const GlobalValue &GV : M->globals()) {
663     MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
664     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
665     if (GV.hasSection()) {
666       // Give section names unique ID's.
667       unsigned &Entry = SectionMap[GV.getSection()];
668       if (!Entry) {
669         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
670                           0/*TODO*/, Stream);
671         Entry = SectionMap.size();
672       }
673     }
674   }
675   for (const Function &F : *M) {
676     MaxAlignment = std::max(MaxAlignment, F.getAlignment());
677     if (F.hasSection()) {
678       // Give section names unique ID's.
679       unsigned &Entry = SectionMap[F.getSection()];
680       if (!Entry) {
681         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
682                           0/*TODO*/, Stream);
683         Entry = SectionMap.size();
684       }
685     }
686     if (F.hasGC()) {
687       // Same for GC names.
688       unsigned &Entry = GCMap[F.getGC()];
689       if (!Entry) {
690         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(),
691                           0/*TODO*/, Stream);
692         Entry = GCMap.size();
693       }
694     }
695   }
696 
697   // Emit abbrev for globals, now that we know # sections and max alignment.
698   unsigned SimpleGVarAbbrev = 0;
699   if (!M->global_empty()) {
700     // Add an abbrev for common globals with no visibility or thread localness.
701     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
702     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
703     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
704                               Log2_32_Ceil(MaxGlobalType+1)));
705     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
706                                                            //| explicitType << 1
707                                                            //| constant
708     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
709     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
710     if (MaxAlignment == 0)                                 // Alignment.
711       Abbv->Add(BitCodeAbbrevOp(0));
712     else {
713       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
714       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
715                                Log2_32_Ceil(MaxEncAlignment+1)));
716     }
717     if (SectionMap.empty())                                    // Section.
718       Abbv->Add(BitCodeAbbrevOp(0));
719     else
720       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
721                                Log2_32_Ceil(SectionMap.size()+1)));
722     // Don't bother emitting vis + thread local.
723     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
724   }
725 
726   // Emit the global variable information.
727   SmallVector<unsigned, 64> Vals;
728   for (const GlobalVariable &GV : M->globals()) {
729     unsigned AbbrevToUse = 0;
730 
731     // GLOBALVAR: [type, isconst, initid,
732     //             linkage, alignment, section, visibility, threadlocal,
733     //             unnamed_addr, externally_initialized, dllstorageclass,
734     //             comdat]
735     Vals.push_back(VE.getTypeID(GV.getValueType()));
736     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
737     Vals.push_back(GV.isDeclaration() ? 0 :
738                    (VE.getValueID(GV.getInitializer()) + 1));
739     Vals.push_back(getEncodedLinkage(GV));
740     Vals.push_back(Log2_32(GV.getAlignment())+1);
741     Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
742     if (GV.isThreadLocal() ||
743         GV.getVisibility() != GlobalValue::DefaultVisibility ||
744         GV.hasUnnamedAddr() || GV.isExternallyInitialized() ||
745         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
746         GV.hasComdat()) {
747       Vals.push_back(getEncodedVisibility(GV));
748       Vals.push_back(getEncodedThreadLocalMode(GV));
749       Vals.push_back(GV.hasUnnamedAddr());
750       Vals.push_back(GV.isExternallyInitialized());
751       Vals.push_back(getEncodedDLLStorageClass(GV));
752       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
753     } else {
754       AbbrevToUse = SimpleGVarAbbrev;
755     }
756 
757     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
758     Vals.clear();
759   }
760 
761   // Emit the function proto information.
762   for (const Function &F : *M) {
763     // FUNCTION:  [type, callingconv, isproto, linkage, paramattrs, alignment,
764     //             section, visibility, gc, unnamed_addr, prologuedata,
765     //             dllstorageclass, comdat, prefixdata, personalityfn]
766     Vals.push_back(VE.getTypeID(F.getFunctionType()));
767     Vals.push_back(F.getCallingConv());
768     Vals.push_back(F.isDeclaration());
769     Vals.push_back(getEncodedLinkage(F));
770     Vals.push_back(VE.getAttributeID(F.getAttributes()));
771     Vals.push_back(Log2_32(F.getAlignment())+1);
772     Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
773     Vals.push_back(getEncodedVisibility(F));
774     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
775     Vals.push_back(F.hasUnnamedAddr());
776     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
777                                        : 0);
778     Vals.push_back(getEncodedDLLStorageClass(F));
779     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
780     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
781                                      : 0);
782     Vals.push_back(
783         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
784 
785     unsigned AbbrevToUse = 0;
786     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
787     Vals.clear();
788   }
789 
790   // Emit the alias information.
791   for (const GlobalAlias &A : M->aliases()) {
792     // ALIAS: [alias type, aliasee val#, linkage, visibility]
793     Vals.push_back(VE.getTypeID(A.getValueType()));
794     Vals.push_back(A.getType()->getAddressSpace());
795     Vals.push_back(VE.getValueID(A.getAliasee()));
796     Vals.push_back(getEncodedLinkage(A));
797     Vals.push_back(getEncodedVisibility(A));
798     Vals.push_back(getEncodedDLLStorageClass(A));
799     Vals.push_back(getEncodedThreadLocalMode(A));
800     Vals.push_back(A.hasUnnamedAddr());
801     unsigned AbbrevToUse = 0;
802     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
803     Vals.clear();
804   }
805 
806   // Write a record indicating the number of module-level metadata IDs
807   // This is needed because the ids of metadata are assigned implicitly
808   // based on their ordering in the bitcode, with the function-level
809   // metadata ids starting after the module-level metadata ids. For
810   // function importing where we lazy load the metadata as a postpass,
811   // we want to avoid parsing the module-level metadata before parsing
812   // the imported functions.
813   {
814     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
815     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_METADATA_VALUES));
816     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
817     unsigned MDValsAbbrev = Stream.EmitAbbrev(Abbv);
818     Vals.push_back(VE.numMDs());
819     Stream.EmitRecord(bitc::MODULE_CODE_METADATA_VALUES, Vals, MDValsAbbrev);
820     Vals.clear();
821   }
822 
823   // Emit the module's source file name.
824   {
825     StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(),
826                                             M->getSourceFileName().size());
827     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
828     if (Bits == SE_Char6)
829       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
830     else if (Bits == SE_Fixed7)
831       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
832 
833     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
834     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
835     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
836     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
837     Abbv->Add(AbbrevOpToUse);
838     unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv);
839 
840     for (const auto P : M->getSourceFileName())
841       Vals.push_back((unsigned char)P);
842 
843     // Emit the finished record.
844     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
845     Vals.clear();
846   }
847 
848   // If we have a VST, write the VSTOFFSET record placeholder and return
849   // its offset.
850   if (M->getValueSymbolTable().empty())
851     return 0;
852   return WriteValueSymbolTableForwardDecl(Stream);
853 }
854 
855 static uint64_t GetOptimizationFlags(const Value *V) {
856   uint64_t Flags = 0;
857 
858   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
859     if (OBO->hasNoSignedWrap())
860       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
861     if (OBO->hasNoUnsignedWrap())
862       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
863   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
864     if (PEO->isExact())
865       Flags |= 1 << bitc::PEO_EXACT;
866   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
867     if (FPMO->hasUnsafeAlgebra())
868       Flags |= FastMathFlags::UnsafeAlgebra;
869     if (FPMO->hasNoNaNs())
870       Flags |= FastMathFlags::NoNaNs;
871     if (FPMO->hasNoInfs())
872       Flags |= FastMathFlags::NoInfs;
873     if (FPMO->hasNoSignedZeros())
874       Flags |= FastMathFlags::NoSignedZeros;
875     if (FPMO->hasAllowReciprocal())
876       Flags |= FastMathFlags::AllowReciprocal;
877   }
878 
879   return Flags;
880 }
881 
882 static void WriteValueAsMetadata(const ValueAsMetadata *MD,
883                                  const ValueEnumerator &VE,
884                                  BitstreamWriter &Stream,
885                                  SmallVectorImpl<uint64_t> &Record) {
886   // Mimic an MDNode with a value as one operand.
887   Value *V = MD->getValue();
888   Record.push_back(VE.getTypeID(V->getType()));
889   Record.push_back(VE.getValueID(V));
890   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
891   Record.clear();
892 }
893 
894 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE,
895                          BitstreamWriter &Stream,
896                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
897   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
898     Metadata *MD = N->getOperand(i);
899     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
900            "Unexpected function-local metadata");
901     Record.push_back(VE.getMetadataOrNullID(MD));
902   }
903   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
904                                     : bitc::METADATA_NODE,
905                     Record, Abbrev);
906   Record.clear();
907 }
908 
909 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE,
910                             BitstreamWriter &Stream,
911                             SmallVectorImpl<uint64_t> &Record,
912                             unsigned Abbrev) {
913   Record.push_back(N->isDistinct());
914   Record.push_back(N->getLine());
915   Record.push_back(N->getColumn());
916   Record.push_back(VE.getMetadataID(N->getScope()));
917   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
918 
919   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
920   Record.clear();
921 }
922 
923 static void WriteGenericDINode(const GenericDINode *N,
924                                const ValueEnumerator &VE,
925                                BitstreamWriter &Stream,
926                                SmallVectorImpl<uint64_t> &Record,
927                                unsigned Abbrev) {
928   Record.push_back(N->isDistinct());
929   Record.push_back(N->getTag());
930   Record.push_back(0); // Per-tag version field; unused for now.
931 
932   for (auto &I : N->operands())
933     Record.push_back(VE.getMetadataOrNullID(I));
934 
935   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
936   Record.clear();
937 }
938 
939 static uint64_t rotateSign(int64_t I) {
940   uint64_t U = I;
941   return I < 0 ? ~(U << 1) : U << 1;
942 }
943 
944 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &,
945                             BitstreamWriter &Stream,
946                             SmallVectorImpl<uint64_t> &Record,
947                             unsigned Abbrev) {
948   Record.push_back(N->isDistinct());
949   Record.push_back(N->getCount());
950   Record.push_back(rotateSign(N->getLowerBound()));
951 
952   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
953   Record.clear();
954 }
955 
956 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE,
957                               BitstreamWriter &Stream,
958                               SmallVectorImpl<uint64_t> &Record,
959                               unsigned Abbrev) {
960   Record.push_back(N->isDistinct());
961   Record.push_back(rotateSign(N->getValue()));
962   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
963 
964   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
965   Record.clear();
966 }
967 
968 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE,
969                              BitstreamWriter &Stream,
970                              SmallVectorImpl<uint64_t> &Record,
971                              unsigned Abbrev) {
972   Record.push_back(N->isDistinct());
973   Record.push_back(N->getTag());
974   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
975   Record.push_back(N->getSizeInBits());
976   Record.push_back(N->getAlignInBits());
977   Record.push_back(N->getEncoding());
978 
979   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
980   Record.clear();
981 }
982 
983 static void WriteDIDerivedType(const DIDerivedType *N,
984                                const ValueEnumerator &VE,
985                                BitstreamWriter &Stream,
986                                SmallVectorImpl<uint64_t> &Record,
987                                unsigned Abbrev) {
988   Record.push_back(N->isDistinct());
989   Record.push_back(N->getTag());
990   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
991   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
992   Record.push_back(N->getLine());
993   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
994   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
995   Record.push_back(N->getSizeInBits());
996   Record.push_back(N->getAlignInBits());
997   Record.push_back(N->getOffsetInBits());
998   Record.push_back(N->getFlags());
999   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1000 
1001   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1002   Record.clear();
1003 }
1004 
1005 static void WriteDICompositeType(const DICompositeType *N,
1006                                  const ValueEnumerator &VE,
1007                                  BitstreamWriter &Stream,
1008                                  SmallVectorImpl<uint64_t> &Record,
1009                                  unsigned Abbrev) {
1010   Record.push_back(N->isDistinct());
1011   Record.push_back(N->getTag());
1012   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1013   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1014   Record.push_back(N->getLine());
1015   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1016   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1017   Record.push_back(N->getSizeInBits());
1018   Record.push_back(N->getAlignInBits());
1019   Record.push_back(N->getOffsetInBits());
1020   Record.push_back(N->getFlags());
1021   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1022   Record.push_back(N->getRuntimeLang());
1023   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1024   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1025   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1026 
1027   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1028   Record.clear();
1029 }
1030 
1031 static void WriteDISubroutineType(const DISubroutineType *N,
1032                                   const ValueEnumerator &VE,
1033                                   BitstreamWriter &Stream,
1034                                   SmallVectorImpl<uint64_t> &Record,
1035                                   unsigned Abbrev) {
1036   Record.push_back(N->isDistinct());
1037   Record.push_back(N->getFlags());
1038   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1039 
1040   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1041   Record.clear();
1042 }
1043 
1044 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE,
1045                         BitstreamWriter &Stream,
1046                         SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1047   Record.push_back(N->isDistinct());
1048   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1049   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1050 
1051   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1052   Record.clear();
1053 }
1054 
1055 static void WriteDICompileUnit(const DICompileUnit *N,
1056                                const ValueEnumerator &VE,
1057                                BitstreamWriter &Stream,
1058                                SmallVectorImpl<uint64_t> &Record,
1059                                unsigned Abbrev) {
1060   assert(N->isDistinct() && "Expected distinct compile units");
1061   Record.push_back(/* IsDistinct */ true);
1062   Record.push_back(N->getSourceLanguage());
1063   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1064   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1065   Record.push_back(N->isOptimized());
1066   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1067   Record.push_back(N->getRuntimeVersion());
1068   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1069   Record.push_back(N->getEmissionKind());
1070   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1071   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1072   Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get()));
1073   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1074   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1075   Record.push_back(N->getDWOId());
1076   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1077 
1078   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1079   Record.clear();
1080 }
1081 
1082 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE,
1083                               BitstreamWriter &Stream,
1084                               SmallVectorImpl<uint64_t> &Record,
1085                               unsigned Abbrev) {
1086   Record.push_back(N->isDistinct());
1087   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1088   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1089   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1090   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1091   Record.push_back(N->getLine());
1092   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1093   Record.push_back(N->isLocalToUnit());
1094   Record.push_back(N->isDefinition());
1095   Record.push_back(N->getScopeLine());
1096   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1097   Record.push_back(N->getVirtuality());
1098   Record.push_back(N->getVirtualIndex());
1099   Record.push_back(N->getFlags());
1100   Record.push_back(N->isOptimized());
1101   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1102   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1103   Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
1104 
1105   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1106   Record.clear();
1107 }
1108 
1109 static void WriteDILexicalBlock(const DILexicalBlock *N,
1110                                 const ValueEnumerator &VE,
1111                                 BitstreamWriter &Stream,
1112                                 SmallVectorImpl<uint64_t> &Record,
1113                                 unsigned Abbrev) {
1114   Record.push_back(N->isDistinct());
1115   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1116   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1117   Record.push_back(N->getLine());
1118   Record.push_back(N->getColumn());
1119 
1120   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1121   Record.clear();
1122 }
1123 
1124 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N,
1125                                     const ValueEnumerator &VE,
1126                                     BitstreamWriter &Stream,
1127                                     SmallVectorImpl<uint64_t> &Record,
1128                                     unsigned Abbrev) {
1129   Record.push_back(N->isDistinct());
1130   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1131   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1132   Record.push_back(N->getDiscriminator());
1133 
1134   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1135   Record.clear();
1136 }
1137 
1138 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE,
1139                              BitstreamWriter &Stream,
1140                              SmallVectorImpl<uint64_t> &Record,
1141                              unsigned Abbrev) {
1142   Record.push_back(N->isDistinct());
1143   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1144   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1145   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1146   Record.push_back(N->getLine());
1147 
1148   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1149   Record.clear();
1150 }
1151 
1152 static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE,
1153                          BitstreamWriter &Stream,
1154                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1155   Record.push_back(N->isDistinct());
1156   Record.push_back(N->getMacinfoType());
1157   Record.push_back(N->getLine());
1158   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1159   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1160 
1161   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1162   Record.clear();
1163 }
1164 
1165 static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE,
1166                              BitstreamWriter &Stream,
1167                              SmallVectorImpl<uint64_t> &Record,
1168                              unsigned Abbrev) {
1169   Record.push_back(N->isDistinct());
1170   Record.push_back(N->getMacinfoType());
1171   Record.push_back(N->getLine());
1172   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1173   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1174 
1175   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1176   Record.clear();
1177 }
1178 
1179 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE,
1180                           BitstreamWriter &Stream,
1181                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
1182   Record.push_back(N->isDistinct());
1183   for (auto &I : N->operands())
1184     Record.push_back(VE.getMetadataOrNullID(I));
1185 
1186   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1187   Record.clear();
1188 }
1189 
1190 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N,
1191                                          const ValueEnumerator &VE,
1192                                          BitstreamWriter &Stream,
1193                                          SmallVectorImpl<uint64_t> &Record,
1194                                          unsigned Abbrev) {
1195   Record.push_back(N->isDistinct());
1196   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1197   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1198 
1199   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1200   Record.clear();
1201 }
1202 
1203 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N,
1204                                           const ValueEnumerator &VE,
1205                                           BitstreamWriter &Stream,
1206                                           SmallVectorImpl<uint64_t> &Record,
1207                                           unsigned Abbrev) {
1208   Record.push_back(N->isDistinct());
1209   Record.push_back(N->getTag());
1210   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1211   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1212   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1213 
1214   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1215   Record.clear();
1216 }
1217 
1218 static void WriteDIGlobalVariable(const DIGlobalVariable *N,
1219                                   const ValueEnumerator &VE,
1220                                   BitstreamWriter &Stream,
1221                                   SmallVectorImpl<uint64_t> &Record,
1222                                   unsigned Abbrev) {
1223   Record.push_back(N->isDistinct());
1224   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1225   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1226   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1227   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1228   Record.push_back(N->getLine());
1229   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1230   Record.push_back(N->isLocalToUnit());
1231   Record.push_back(N->isDefinition());
1232   Record.push_back(VE.getMetadataOrNullID(N->getRawVariable()));
1233   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1234 
1235   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1236   Record.clear();
1237 }
1238 
1239 static void WriteDILocalVariable(const DILocalVariable *N,
1240                                  const ValueEnumerator &VE,
1241                                  BitstreamWriter &Stream,
1242                                  SmallVectorImpl<uint64_t> &Record,
1243                                  unsigned Abbrev) {
1244   Record.push_back(N->isDistinct());
1245   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1246   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1247   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1248   Record.push_back(N->getLine());
1249   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1250   Record.push_back(N->getArg());
1251   Record.push_back(N->getFlags());
1252 
1253   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1254   Record.clear();
1255 }
1256 
1257 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &,
1258                               BitstreamWriter &Stream,
1259                               SmallVectorImpl<uint64_t> &Record,
1260                               unsigned Abbrev) {
1261   Record.reserve(N->getElements().size() + 1);
1262 
1263   Record.push_back(N->isDistinct());
1264   Record.append(N->elements_begin(), N->elements_end());
1265 
1266   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1267   Record.clear();
1268 }
1269 
1270 static void WriteDIObjCProperty(const DIObjCProperty *N,
1271                                 const ValueEnumerator &VE,
1272                                 BitstreamWriter &Stream,
1273                                 SmallVectorImpl<uint64_t> &Record,
1274                                 unsigned Abbrev) {
1275   Record.push_back(N->isDistinct());
1276   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1277   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1278   Record.push_back(N->getLine());
1279   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1280   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1281   Record.push_back(N->getAttributes());
1282   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1283 
1284   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1285   Record.clear();
1286 }
1287 
1288 static void WriteDIImportedEntity(const DIImportedEntity *N,
1289                                   const ValueEnumerator &VE,
1290                                   BitstreamWriter &Stream,
1291                                   SmallVectorImpl<uint64_t> &Record,
1292                                   unsigned Abbrev) {
1293   Record.push_back(N->isDistinct());
1294   Record.push_back(N->getTag());
1295   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1296   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1297   Record.push_back(N->getLine());
1298   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1299 
1300   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1301   Record.clear();
1302 }
1303 
1304 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) {
1305   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1306   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1307   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1308   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1309   return Stream.EmitAbbrev(Abbv);
1310 }
1311 
1312 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE,
1313                                BitstreamWriter &Stream,
1314                                SmallVectorImpl<uint64_t> &Record) {
1315   if (M.named_metadata_empty())
1316     return;
1317 
1318   unsigned Abbrev = createNamedMetadataAbbrev(Stream);
1319   for (const NamedMDNode &NMD : M.named_metadata()) {
1320     // Write name.
1321     StringRef Str = NMD.getName();
1322     Record.append(Str.bytes_begin(), Str.bytes_end());
1323     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
1324     Record.clear();
1325 
1326     // Write named metadata operands.
1327     for (const MDNode *N : NMD.operands())
1328       Record.push_back(VE.getMetadataID(N));
1329     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1330     Record.clear();
1331   }
1332 }
1333 
1334 static void WriteModuleMetadata(const Module &M,
1335                                 const ValueEnumerator &VE,
1336                                 BitstreamWriter &Stream) {
1337   const auto &MDs = VE.getMDs();
1338   if (MDs.empty() && M.named_metadata_empty())
1339     return;
1340 
1341   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1342 
1343   unsigned MDSAbbrev = 0;
1344   if (VE.hasMDString()) {
1345     // Abbrev for METADATA_STRING.
1346     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1347     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
1348     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1349     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1350     MDSAbbrev = Stream.EmitAbbrev(Abbv);
1351   }
1352 
1353   // Initialize MDNode abbreviations.
1354 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1355 #include "llvm/IR/Metadata.def"
1356 
1357   if (VE.hasDILocation()) {
1358     // Abbrev for METADATA_LOCATION.
1359     //
1360     // Assume the column is usually under 128, and always output the inlined-at
1361     // location (it's never more expensive than building an array size 1).
1362     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1363     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1364     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1365     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1366     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1367     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1369     DILocationAbbrev = Stream.EmitAbbrev(Abbv);
1370   }
1371 
1372   if (VE.hasGenericDINode()) {
1373     // Abbrev for METADATA_GENERIC_DEBUG.
1374     //
1375     // Assume the column is usually under 128, and always output the inlined-at
1376     // location (it's never more expensive than building an array size 1).
1377     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1378     Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1381     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1382     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1383     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1384     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1385     GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv);
1386   }
1387 
1388   SmallVector<uint64_t, 64> Record;
1389   for (const Metadata *MD : MDs) {
1390     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1391       assert(N->isResolved() && "Expected forward references to be resolved");
1392 
1393       switch (N->getMetadataID()) {
1394       default:
1395         llvm_unreachable("Invalid MDNode subclass");
1396 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1397   case Metadata::CLASS##Kind:                                                  \
1398     Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev);           \
1399     continue;
1400 #include "llvm/IR/Metadata.def"
1401       }
1402     }
1403     if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) {
1404       WriteValueAsMetadata(MDC, VE, Stream, Record);
1405       continue;
1406     }
1407     const MDString *MDS = cast<MDString>(MD);
1408     // Code: [strchar x N]
1409     Record.append(MDS->bytes_begin(), MDS->bytes_end());
1410 
1411     // Emit the finished record.
1412     Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
1413     Record.clear();
1414   }
1415 
1416   writeNamedMetadata(M, VE, Stream, Record);
1417   Stream.ExitBlock();
1418 }
1419 
1420 static void WriteFunctionLocalMetadata(const Function &F,
1421                                        const ValueEnumerator &VE,
1422                                        BitstreamWriter &Stream) {
1423   bool StartedMetadataBlock = false;
1424   SmallVector<uint64_t, 64> Record;
1425   const SmallVectorImpl<const LocalAsMetadata *> &MDs =
1426       VE.getFunctionLocalMDs();
1427   for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1428     assert(MDs[i] && "Expected valid function-local metadata");
1429     if (!StartedMetadataBlock) {
1430       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1431       StartedMetadataBlock = true;
1432     }
1433     WriteValueAsMetadata(MDs[i], VE, Stream, Record);
1434   }
1435 
1436   if (StartedMetadataBlock)
1437     Stream.ExitBlock();
1438 }
1439 
1440 static void WriteMetadataAttachment(const Function &F,
1441                                     const ValueEnumerator &VE,
1442                                     BitstreamWriter &Stream) {
1443   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1444 
1445   SmallVector<uint64_t, 64> Record;
1446 
1447   // Write metadata attachments
1448   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1449   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1450   F.getAllMetadata(MDs);
1451   if (!MDs.empty()) {
1452     for (const auto &I : MDs) {
1453       Record.push_back(I.first);
1454       Record.push_back(VE.getMetadataID(I.second));
1455     }
1456     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1457     Record.clear();
1458   }
1459 
1460   for (const BasicBlock &BB : F)
1461     for (const Instruction &I : BB) {
1462       MDs.clear();
1463       I.getAllMetadataOtherThanDebugLoc(MDs);
1464 
1465       // If no metadata, ignore instruction.
1466       if (MDs.empty()) continue;
1467 
1468       Record.push_back(VE.getInstructionID(&I));
1469 
1470       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1471         Record.push_back(MDs[i].first);
1472         Record.push_back(VE.getMetadataID(MDs[i].second));
1473       }
1474       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1475       Record.clear();
1476     }
1477 
1478   Stream.ExitBlock();
1479 }
1480 
1481 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
1482   SmallVector<uint64_t, 64> Record;
1483 
1484   // Write metadata kinds
1485   // METADATA_KIND - [n x [id, name]]
1486   SmallVector<StringRef, 8> Names;
1487   M->getMDKindNames(Names);
1488 
1489   if (Names.empty()) return;
1490 
1491   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
1492 
1493   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1494     Record.push_back(MDKindID);
1495     StringRef KName = Names[MDKindID];
1496     Record.append(KName.begin(), KName.end());
1497 
1498     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1499     Record.clear();
1500   }
1501 
1502   Stream.ExitBlock();
1503 }
1504 
1505 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) {
1506   // Write metadata kinds
1507   //
1508   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
1509   //
1510   // OPERAND_BUNDLE_TAG - [strchr x N]
1511 
1512   SmallVector<StringRef, 8> Tags;
1513   M->getOperandBundleTags(Tags);
1514 
1515   if (Tags.empty())
1516     return;
1517 
1518   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
1519 
1520   SmallVector<uint64_t, 64> Record;
1521 
1522   for (auto Tag : Tags) {
1523     Record.append(Tag.begin(), Tag.end());
1524 
1525     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
1526     Record.clear();
1527   }
1528 
1529   Stream.ExitBlock();
1530 }
1531 
1532 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1533   if ((int64_t)V >= 0)
1534     Vals.push_back(V << 1);
1535   else
1536     Vals.push_back((-V << 1) | 1);
1537 }
1538 
1539 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
1540                            const ValueEnumerator &VE,
1541                            BitstreamWriter &Stream, bool isGlobal) {
1542   if (FirstVal == LastVal) return;
1543 
1544   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1545 
1546   unsigned AggregateAbbrev = 0;
1547   unsigned String8Abbrev = 0;
1548   unsigned CString7Abbrev = 0;
1549   unsigned CString6Abbrev = 0;
1550   // If this is a constant pool for the module, emit module-specific abbrevs.
1551   if (isGlobal) {
1552     // Abbrev for CST_CODE_AGGREGATE.
1553     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
1554     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1555     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1556     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
1557     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
1558 
1559     // Abbrev for CST_CODE_STRING.
1560     Abbv = new BitCodeAbbrev();
1561     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1562     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1563     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1564     String8Abbrev = Stream.EmitAbbrev(Abbv);
1565     // Abbrev for CST_CODE_CSTRING.
1566     Abbv = new BitCodeAbbrev();
1567     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1568     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1569     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1570     CString7Abbrev = Stream.EmitAbbrev(Abbv);
1571     // Abbrev for CST_CODE_CSTRING.
1572     Abbv = new BitCodeAbbrev();
1573     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1574     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1575     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1576     CString6Abbrev = Stream.EmitAbbrev(Abbv);
1577   }
1578 
1579   SmallVector<uint64_t, 64> Record;
1580 
1581   const ValueEnumerator::ValueList &Vals = VE.getValues();
1582   Type *LastTy = nullptr;
1583   for (unsigned i = FirstVal; i != LastVal; ++i) {
1584     const Value *V = Vals[i].first;
1585     // If we need to switch types, do so now.
1586     if (V->getType() != LastTy) {
1587       LastTy = V->getType();
1588       Record.push_back(VE.getTypeID(LastTy));
1589       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1590                         CONSTANTS_SETTYPE_ABBREV);
1591       Record.clear();
1592     }
1593 
1594     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1595       Record.push_back(unsigned(IA->hasSideEffects()) |
1596                        unsigned(IA->isAlignStack()) << 1 |
1597                        unsigned(IA->getDialect()&1) << 2);
1598 
1599       // Add the asm string.
1600       const std::string &AsmStr = IA->getAsmString();
1601       Record.push_back(AsmStr.size());
1602       Record.append(AsmStr.begin(), AsmStr.end());
1603 
1604       // Add the constraint string.
1605       const std::string &ConstraintStr = IA->getConstraintString();
1606       Record.push_back(ConstraintStr.size());
1607       Record.append(ConstraintStr.begin(), ConstraintStr.end());
1608       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1609       Record.clear();
1610       continue;
1611     }
1612     const Constant *C = cast<Constant>(V);
1613     unsigned Code = -1U;
1614     unsigned AbbrevToUse = 0;
1615     if (C->isNullValue()) {
1616       Code = bitc::CST_CODE_NULL;
1617     } else if (isa<UndefValue>(C)) {
1618       Code = bitc::CST_CODE_UNDEF;
1619     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1620       if (IV->getBitWidth() <= 64) {
1621         uint64_t V = IV->getSExtValue();
1622         emitSignedInt64(Record, V);
1623         Code = bitc::CST_CODE_INTEGER;
1624         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1625       } else {                             // Wide integers, > 64 bits in size.
1626         // We have an arbitrary precision integer value to write whose
1627         // bit width is > 64. However, in canonical unsigned integer
1628         // format it is likely that the high bits are going to be zero.
1629         // So, we only write the number of active words.
1630         unsigned NWords = IV->getValue().getActiveWords();
1631         const uint64_t *RawWords = IV->getValue().getRawData();
1632         for (unsigned i = 0; i != NWords; ++i) {
1633           emitSignedInt64(Record, RawWords[i]);
1634         }
1635         Code = bitc::CST_CODE_WIDE_INTEGER;
1636       }
1637     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1638       Code = bitc::CST_CODE_FLOAT;
1639       Type *Ty = CFP->getType();
1640       if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
1641         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
1642       } else if (Ty->isX86_FP80Ty()) {
1643         // api needed to prevent premature destruction
1644         // bits are not in the same order as a normal i80 APInt, compensate.
1645         APInt api = CFP->getValueAPF().bitcastToAPInt();
1646         const uint64_t *p = api.getRawData();
1647         Record.push_back((p[1] << 48) | (p[0] >> 16));
1648         Record.push_back(p[0] & 0xffffLL);
1649       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
1650         APInt api = CFP->getValueAPF().bitcastToAPInt();
1651         const uint64_t *p = api.getRawData();
1652         Record.push_back(p[0]);
1653         Record.push_back(p[1]);
1654       } else {
1655         assert (0 && "Unknown FP type!");
1656       }
1657     } else if (isa<ConstantDataSequential>(C) &&
1658                cast<ConstantDataSequential>(C)->isString()) {
1659       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
1660       // Emit constant strings specially.
1661       unsigned NumElts = Str->getNumElements();
1662       // If this is a null-terminated string, use the denser CSTRING encoding.
1663       if (Str->isCString()) {
1664         Code = bitc::CST_CODE_CSTRING;
1665         --NumElts;  // Don't encode the null, which isn't allowed by char6.
1666       } else {
1667         Code = bitc::CST_CODE_STRING;
1668         AbbrevToUse = String8Abbrev;
1669       }
1670       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
1671       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
1672       for (unsigned i = 0; i != NumElts; ++i) {
1673         unsigned char V = Str->getElementAsInteger(i);
1674         Record.push_back(V);
1675         isCStr7 &= (V & 128) == 0;
1676         if (isCStrChar6)
1677           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
1678       }
1679 
1680       if (isCStrChar6)
1681         AbbrevToUse = CString6Abbrev;
1682       else if (isCStr7)
1683         AbbrevToUse = CString7Abbrev;
1684     } else if (const ConstantDataSequential *CDS =
1685                   dyn_cast<ConstantDataSequential>(C)) {
1686       Code = bitc::CST_CODE_DATA;
1687       Type *EltTy = CDS->getType()->getElementType();
1688       if (isa<IntegerType>(EltTy)) {
1689         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1690           Record.push_back(CDS->getElementAsInteger(i));
1691       } else {
1692         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
1693           Record.push_back(
1694               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
1695       }
1696     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
1697                isa<ConstantVector>(C)) {
1698       Code = bitc::CST_CODE_AGGREGATE;
1699       for (const Value *Op : C->operands())
1700         Record.push_back(VE.getValueID(Op));
1701       AbbrevToUse = AggregateAbbrev;
1702     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1703       switch (CE->getOpcode()) {
1704       default:
1705         if (Instruction::isCast(CE->getOpcode())) {
1706           Code = bitc::CST_CODE_CE_CAST;
1707           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
1708           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1709           Record.push_back(VE.getValueID(C->getOperand(0)));
1710           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
1711         } else {
1712           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
1713           Code = bitc::CST_CODE_CE_BINOP;
1714           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
1715           Record.push_back(VE.getValueID(C->getOperand(0)));
1716           Record.push_back(VE.getValueID(C->getOperand(1)));
1717           uint64_t Flags = GetOptimizationFlags(CE);
1718           if (Flags != 0)
1719             Record.push_back(Flags);
1720         }
1721         break;
1722       case Instruction::GetElementPtr: {
1723         Code = bitc::CST_CODE_CE_GEP;
1724         const auto *GO = cast<GEPOperator>(C);
1725         if (GO->isInBounds())
1726           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
1727         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
1728         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
1729           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
1730           Record.push_back(VE.getValueID(C->getOperand(i)));
1731         }
1732         break;
1733       }
1734       case Instruction::Select:
1735         Code = bitc::CST_CODE_CE_SELECT;
1736         Record.push_back(VE.getValueID(C->getOperand(0)));
1737         Record.push_back(VE.getValueID(C->getOperand(1)));
1738         Record.push_back(VE.getValueID(C->getOperand(2)));
1739         break;
1740       case Instruction::ExtractElement:
1741         Code = bitc::CST_CODE_CE_EXTRACTELT;
1742         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1743         Record.push_back(VE.getValueID(C->getOperand(0)));
1744         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
1745         Record.push_back(VE.getValueID(C->getOperand(1)));
1746         break;
1747       case Instruction::InsertElement:
1748         Code = bitc::CST_CODE_CE_INSERTELT;
1749         Record.push_back(VE.getValueID(C->getOperand(0)));
1750         Record.push_back(VE.getValueID(C->getOperand(1)));
1751         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
1752         Record.push_back(VE.getValueID(C->getOperand(2)));
1753         break;
1754       case Instruction::ShuffleVector:
1755         // If the return type and argument types are the same, this is a
1756         // standard shufflevector instruction.  If the types are different,
1757         // then the shuffle is widening or truncating the input vectors, and
1758         // the argument type must also be encoded.
1759         if (C->getType() == C->getOperand(0)->getType()) {
1760           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
1761         } else {
1762           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
1763           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1764         }
1765         Record.push_back(VE.getValueID(C->getOperand(0)));
1766         Record.push_back(VE.getValueID(C->getOperand(1)));
1767         Record.push_back(VE.getValueID(C->getOperand(2)));
1768         break;
1769       case Instruction::ICmp:
1770       case Instruction::FCmp:
1771         Code = bitc::CST_CODE_CE_CMP;
1772         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
1773         Record.push_back(VE.getValueID(C->getOperand(0)));
1774         Record.push_back(VE.getValueID(C->getOperand(1)));
1775         Record.push_back(CE->getPredicate());
1776         break;
1777       }
1778     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
1779       Code = bitc::CST_CODE_BLOCKADDRESS;
1780       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
1781       Record.push_back(VE.getValueID(BA->getFunction()));
1782       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
1783     } else {
1784 #ifndef NDEBUG
1785       C->dump();
1786 #endif
1787       llvm_unreachable("Unknown constant!");
1788     }
1789     Stream.EmitRecord(Code, Record, AbbrevToUse);
1790     Record.clear();
1791   }
1792 
1793   Stream.ExitBlock();
1794 }
1795 
1796 static void WriteModuleConstants(const ValueEnumerator &VE,
1797                                  BitstreamWriter &Stream) {
1798   const ValueEnumerator::ValueList &Vals = VE.getValues();
1799 
1800   // Find the first constant to emit, which is the first non-globalvalue value.
1801   // We know globalvalues have been emitted by WriteModuleInfo.
1802   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
1803     if (!isa<GlobalValue>(Vals[i].first)) {
1804       WriteConstants(i, Vals.size(), VE, Stream, true);
1805       return;
1806     }
1807   }
1808 }
1809 
1810 /// PushValueAndType - The file has to encode both the value and type id for
1811 /// many values, because we need to know what type to create for forward
1812 /// references.  However, most operands are not forward references, so this type
1813 /// field is not needed.
1814 ///
1815 /// This function adds V's value ID to Vals.  If the value ID is higher than the
1816 /// instruction ID, then it is a forward reference, and it also includes the
1817 /// type ID.  The value ID that is written is encoded relative to the InstID.
1818 static bool PushValueAndType(const Value *V, unsigned InstID,
1819                              SmallVectorImpl<unsigned> &Vals,
1820                              ValueEnumerator &VE) {
1821   unsigned ValID = VE.getValueID(V);
1822   // Make encoding relative to the InstID.
1823   Vals.push_back(InstID - ValID);
1824   if (ValID >= InstID) {
1825     Vals.push_back(VE.getTypeID(V->getType()));
1826     return true;
1827   }
1828   return false;
1829 }
1830 
1831 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS,
1832                                 unsigned InstID, ValueEnumerator &VE) {
1833   SmallVector<unsigned, 64> Record;
1834   LLVMContext &C = CS.getInstruction()->getContext();
1835 
1836   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
1837     const auto &Bundle = CS.getOperandBundleAt(i);
1838     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
1839 
1840     for (auto &Input : Bundle.Inputs)
1841       PushValueAndType(Input, InstID, Record, VE);
1842 
1843     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
1844     Record.clear();
1845   }
1846 }
1847 
1848 /// pushValue - Like PushValueAndType, but where the type of the value is
1849 /// omitted (perhaps it was already encoded in an earlier operand).
1850 static void pushValue(const Value *V, unsigned InstID,
1851                       SmallVectorImpl<unsigned> &Vals,
1852                       ValueEnumerator &VE) {
1853   unsigned ValID = VE.getValueID(V);
1854   Vals.push_back(InstID - ValID);
1855 }
1856 
1857 static void pushValueSigned(const Value *V, unsigned InstID,
1858                             SmallVectorImpl<uint64_t> &Vals,
1859                             ValueEnumerator &VE) {
1860   unsigned ValID = VE.getValueID(V);
1861   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
1862   emitSignedInt64(Vals, diff);
1863 }
1864 
1865 /// WriteInstruction - Emit an instruction to the specified stream.
1866 static void WriteInstruction(const Instruction &I, unsigned InstID,
1867                              ValueEnumerator &VE, BitstreamWriter &Stream,
1868                              SmallVectorImpl<unsigned> &Vals) {
1869   unsigned Code = 0;
1870   unsigned AbbrevToUse = 0;
1871   VE.setInstructionID(&I);
1872   switch (I.getOpcode()) {
1873   default:
1874     if (Instruction::isCast(I.getOpcode())) {
1875       Code = bitc::FUNC_CODE_INST_CAST;
1876       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1877         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
1878       Vals.push_back(VE.getTypeID(I.getType()));
1879       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
1880     } else {
1881       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
1882       Code = bitc::FUNC_CODE_INST_BINOP;
1883       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1884         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
1885       pushValue(I.getOperand(1), InstID, Vals, VE);
1886       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
1887       uint64_t Flags = GetOptimizationFlags(&I);
1888       if (Flags != 0) {
1889         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
1890           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
1891         Vals.push_back(Flags);
1892       }
1893     }
1894     break;
1895 
1896   case Instruction::GetElementPtr: {
1897     Code = bitc::FUNC_CODE_INST_GEP;
1898     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
1899     auto &GEPInst = cast<GetElementPtrInst>(I);
1900     Vals.push_back(GEPInst.isInBounds());
1901     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
1902     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
1903       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1904     break;
1905   }
1906   case Instruction::ExtractValue: {
1907     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
1908     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1909     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
1910     Vals.append(EVI->idx_begin(), EVI->idx_end());
1911     break;
1912   }
1913   case Instruction::InsertValue: {
1914     Code = bitc::FUNC_CODE_INST_INSERTVAL;
1915     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1916     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1917     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
1918     Vals.append(IVI->idx_begin(), IVI->idx_end());
1919     break;
1920   }
1921   case Instruction::Select:
1922     Code = bitc::FUNC_CODE_INST_VSELECT;
1923     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1924     pushValue(I.getOperand(2), InstID, Vals, VE);
1925     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1926     break;
1927   case Instruction::ExtractElement:
1928     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
1929     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1930     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
1931     break;
1932   case Instruction::InsertElement:
1933     Code = bitc::FUNC_CODE_INST_INSERTELT;
1934     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1935     pushValue(I.getOperand(1), InstID, Vals, VE);
1936     PushValueAndType(I.getOperand(2), InstID, Vals, VE);
1937     break;
1938   case Instruction::ShuffleVector:
1939     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
1940     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1941     pushValue(I.getOperand(1), InstID, Vals, VE);
1942     pushValue(I.getOperand(2), InstID, Vals, VE);
1943     break;
1944   case Instruction::ICmp:
1945   case Instruction::FCmp: {
1946     // compare returning Int1Ty or vector of Int1Ty
1947     Code = bitc::FUNC_CODE_INST_CMP2;
1948     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
1949     pushValue(I.getOperand(1), InstID, Vals, VE);
1950     Vals.push_back(cast<CmpInst>(I).getPredicate());
1951     uint64_t Flags = GetOptimizationFlags(&I);
1952     if (Flags != 0)
1953       Vals.push_back(Flags);
1954     break;
1955   }
1956 
1957   case Instruction::Ret:
1958     {
1959       Code = bitc::FUNC_CODE_INST_RET;
1960       unsigned NumOperands = I.getNumOperands();
1961       if (NumOperands == 0)
1962         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
1963       else if (NumOperands == 1) {
1964         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
1965           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
1966       } else {
1967         for (unsigned i = 0, e = NumOperands; i != e; ++i)
1968           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
1969       }
1970     }
1971     break;
1972   case Instruction::Br:
1973     {
1974       Code = bitc::FUNC_CODE_INST_BR;
1975       const BranchInst &II = cast<BranchInst>(I);
1976       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
1977       if (II.isConditional()) {
1978         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
1979         pushValue(II.getCondition(), InstID, Vals, VE);
1980       }
1981     }
1982     break;
1983   case Instruction::Switch:
1984     {
1985       Code = bitc::FUNC_CODE_INST_SWITCH;
1986       const SwitchInst &SI = cast<SwitchInst>(I);
1987       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
1988       pushValue(SI.getCondition(), InstID, Vals, VE);
1989       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
1990       for (SwitchInst::ConstCaseIt Case : SI.cases()) {
1991         Vals.push_back(VE.getValueID(Case.getCaseValue()));
1992         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
1993       }
1994     }
1995     break;
1996   case Instruction::IndirectBr:
1997     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
1998     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
1999     // Encode the address operand as relative, but not the basic blocks.
2000     pushValue(I.getOperand(0), InstID, Vals, VE);
2001     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2002       Vals.push_back(VE.getValueID(I.getOperand(i)));
2003     break;
2004 
2005   case Instruction::Invoke: {
2006     const InvokeInst *II = cast<InvokeInst>(&I);
2007     const Value *Callee = II->getCalledValue();
2008     FunctionType *FTy = II->getFunctionType();
2009 
2010     if (II->hasOperandBundles())
2011       WriteOperandBundles(Stream, II, InstID, VE);
2012 
2013     Code = bitc::FUNC_CODE_INST_INVOKE;
2014 
2015     Vals.push_back(VE.getAttributeID(II->getAttributes()));
2016     Vals.push_back(II->getCallingConv() | 1 << 13);
2017     Vals.push_back(VE.getValueID(II->getNormalDest()));
2018     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2019     Vals.push_back(VE.getTypeID(FTy));
2020     PushValueAndType(Callee, InstID, Vals, VE);
2021 
2022     // Emit value #'s for the fixed parameters.
2023     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2024       pushValue(I.getOperand(i), InstID, Vals, VE);  // fixed param.
2025 
2026     // Emit type/value pairs for varargs params.
2027     if (FTy->isVarArg()) {
2028       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
2029            i != e; ++i)
2030         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
2031     }
2032     break;
2033   }
2034   case Instruction::Resume:
2035     Code = bitc::FUNC_CODE_INST_RESUME;
2036     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
2037     break;
2038   case Instruction::CleanupRet: {
2039     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2040     const auto &CRI = cast<CleanupReturnInst>(I);
2041     pushValue(CRI.getCleanupPad(), InstID, Vals, VE);
2042     if (CRI.hasUnwindDest())
2043       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2044     break;
2045   }
2046   case Instruction::CatchRet: {
2047     Code = bitc::FUNC_CODE_INST_CATCHRET;
2048     const auto &CRI = cast<CatchReturnInst>(I);
2049     pushValue(CRI.getCatchPad(), InstID, Vals, VE);
2050     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2051     break;
2052   }
2053   case Instruction::CleanupPad:
2054   case Instruction::CatchPad: {
2055     const auto &FuncletPad = cast<FuncletPadInst>(I);
2056     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2057                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2058     pushValue(FuncletPad.getParentPad(), InstID, Vals, VE);
2059 
2060     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2061     Vals.push_back(NumArgOperands);
2062     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2063       PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE);
2064     break;
2065   }
2066   case Instruction::CatchSwitch: {
2067     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2068     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2069 
2070     pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE);
2071 
2072     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2073     Vals.push_back(NumHandlers);
2074     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2075       Vals.push_back(VE.getValueID(CatchPadBB));
2076 
2077     if (CatchSwitch.hasUnwindDest())
2078       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2079     break;
2080   }
2081   case Instruction::Unreachable:
2082     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2083     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2084     break;
2085 
2086   case Instruction::PHI: {
2087     const PHINode &PN = cast<PHINode>(I);
2088     Code = bitc::FUNC_CODE_INST_PHI;
2089     // With the newer instruction encoding, forward references could give
2090     // negative valued IDs.  This is most common for PHIs, so we use
2091     // signed VBRs.
2092     SmallVector<uint64_t, 128> Vals64;
2093     Vals64.push_back(VE.getTypeID(PN.getType()));
2094     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2095       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE);
2096       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2097     }
2098     // Emit a Vals64 vector and exit.
2099     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2100     Vals64.clear();
2101     return;
2102   }
2103 
2104   case Instruction::LandingPad: {
2105     const LandingPadInst &LP = cast<LandingPadInst>(I);
2106     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2107     Vals.push_back(VE.getTypeID(LP.getType()));
2108     Vals.push_back(LP.isCleanup());
2109     Vals.push_back(LP.getNumClauses());
2110     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2111       if (LP.isCatch(I))
2112         Vals.push_back(LandingPadInst::Catch);
2113       else
2114         Vals.push_back(LandingPadInst::Filter);
2115       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
2116     }
2117     break;
2118   }
2119 
2120   case Instruction::Alloca: {
2121     Code = bitc::FUNC_CODE_INST_ALLOCA;
2122     const AllocaInst &AI = cast<AllocaInst>(I);
2123     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2124     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2125     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2126     unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
2127     assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
2128            "not enough bits for maximum alignment");
2129     assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2130     AlignRecord |= AI.isUsedWithInAlloca() << 5;
2131     AlignRecord |= 1 << 6;
2132     // Reserve bit 7 for SwiftError flag.
2133     // AlignRecord |= AI.isSwiftError() << 7;
2134     Vals.push_back(AlignRecord);
2135     break;
2136   }
2137 
2138   case Instruction::Load:
2139     if (cast<LoadInst>(I).isAtomic()) {
2140       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2141       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
2142     } else {
2143       Code = bitc::FUNC_CODE_INST_LOAD;
2144       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
2145         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
2146     }
2147     Vals.push_back(VE.getTypeID(I.getType()));
2148     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
2149     Vals.push_back(cast<LoadInst>(I).isVolatile());
2150     if (cast<LoadInst>(I).isAtomic()) {
2151       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2152       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
2153     }
2154     break;
2155   case Instruction::Store:
2156     if (cast<StoreInst>(I).isAtomic())
2157       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2158     else
2159       Code = bitc::FUNC_CODE_INST_STORE;
2160     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
2161     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // valty + val
2162     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
2163     Vals.push_back(cast<StoreInst>(I).isVolatile());
2164     if (cast<StoreInst>(I).isAtomic()) {
2165       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2166       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
2167     }
2168     break;
2169   case Instruction::AtomicCmpXchg:
2170     Code = bitc::FUNC_CODE_INST_CMPXCHG;
2171     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2172     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // cmp.
2173     pushValue(I.getOperand(2), InstID, Vals, VE);         // newval.
2174     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2175     Vals.push_back(GetEncodedOrdering(
2176                      cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2177     Vals.push_back(GetEncodedSynchScope(
2178                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
2179     Vals.push_back(GetEncodedOrdering(
2180                      cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2181     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2182     break;
2183   case Instruction::AtomicRMW:
2184     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2185     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
2186     pushValue(I.getOperand(1), InstID, Vals, VE);         // val.
2187     Vals.push_back(GetEncodedRMWOperation(
2188                      cast<AtomicRMWInst>(I).getOperation()));
2189     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2190     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2191     Vals.push_back(GetEncodedSynchScope(
2192                      cast<AtomicRMWInst>(I).getSynchScope()));
2193     break;
2194   case Instruction::Fence:
2195     Code = bitc::FUNC_CODE_INST_FENCE;
2196     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2197     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
2198     break;
2199   case Instruction::Call: {
2200     const CallInst &CI = cast<CallInst>(I);
2201     FunctionType *FTy = CI.getFunctionType();
2202 
2203     if (CI.hasOperandBundles())
2204       WriteOperandBundles(Stream, &CI, InstID, VE);
2205 
2206     Code = bitc::FUNC_CODE_INST_CALL;
2207 
2208     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
2209 
2210     unsigned Flags = GetOptimizationFlags(&I);
2211     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
2212                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
2213                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
2214                    1 << bitc::CALL_EXPLICIT_TYPE |
2215                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
2216                    unsigned(Flags != 0) << bitc::CALL_FMF);
2217     if (Flags != 0)
2218       Vals.push_back(Flags);
2219 
2220     Vals.push_back(VE.getTypeID(FTy));
2221     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
2222 
2223     // Emit value #'s for the fixed parameters.
2224     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2225       // Check for labels (can happen with asm labels).
2226       if (FTy->getParamType(i)->isLabelTy())
2227         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2228       else
2229         pushValue(CI.getArgOperand(i), InstID, Vals, VE);  // fixed param.
2230     }
2231 
2232     // Emit type/value pairs for varargs params.
2233     if (FTy->isVarArg()) {
2234       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
2235            i != e; ++i)
2236         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
2237     }
2238     break;
2239   }
2240   case Instruction::VAArg:
2241     Code = bitc::FUNC_CODE_INST_VAARG;
2242     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
2243     pushValue(I.getOperand(0), InstID, Vals, VE); // valist.
2244     Vals.push_back(VE.getTypeID(I.getType())); // restype.
2245     break;
2246   }
2247 
2248   Stream.EmitRecord(Code, Vals, AbbrevToUse);
2249   Vals.clear();
2250 }
2251 
2252 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder,
2253 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level
2254 /// VST, where we are including a function bitcode index and need to
2255 /// backpatch the VST forward declaration record.
2256 static void WriteValueSymbolTable(
2257     const ValueSymbolTable &VST, const ValueEnumerator &VE,
2258     BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0,
2259     uint64_t BitcodeStartBit = 0,
2260     DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>>
2261         *FunctionIndex = nullptr) {
2262   if (VST.empty()) {
2263     // WriteValueSymbolTableForwardDecl should have returned early as
2264     // well. Ensure this handling remains in sync by asserting that
2265     // the placeholder offset is not set.
2266     assert(VSTOffsetPlaceholder == 0);
2267     return;
2268   }
2269 
2270   if (VSTOffsetPlaceholder > 0) {
2271     // Get the offset of the VST we are writing, and backpatch it into
2272     // the VST forward declaration record.
2273     uint64_t VSTOffset = Stream.GetCurrentBitNo();
2274     // The BitcodeStartBit was the stream offset of the actual bitcode
2275     // (e.g. excluding any initial darwin header).
2276     VSTOffset -= BitcodeStartBit;
2277     assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2278     Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2279   }
2280 
2281   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2282 
2283   // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
2284   // records, which are not used in the per-function VSTs.
2285   unsigned FnEntry8BitAbbrev;
2286   unsigned FnEntry7BitAbbrev;
2287   unsigned FnEntry6BitAbbrev;
2288   if (VSTOffsetPlaceholder > 0) {
2289     // 8-bit fixed-width VST_CODE_FNENTRY function strings.
2290     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2291     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2292     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2293     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2294     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2295     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2296     FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv);
2297 
2298     // 7-bit fixed width VST_CODE_FNENTRY function strings.
2299     Abbv = new BitCodeAbbrev();
2300     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2301     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2302     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2303     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2304     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2305     FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv);
2306 
2307     // 6-bit char6 VST_CODE_FNENTRY function strings.
2308     Abbv = new BitCodeAbbrev();
2309     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
2310     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2311     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
2312     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2313     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2314     FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv);
2315   }
2316 
2317   // FIXME: Set up the abbrev, we know how many values there are!
2318   // FIXME: We know if the type names can use 7-bit ascii.
2319   SmallVector<unsigned, 64> NameVals;
2320 
2321   for (const ValueName &Name : VST) {
2322     // Figure out the encoding to use for the name.
2323     StringEncoding Bits =
2324         getStringEncoding(Name.getKeyData(), Name.getKeyLength());
2325 
2326     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2327     NameVals.push_back(VE.getValueID(Name.getValue()));
2328 
2329     Function *F = dyn_cast<Function>(Name.getValue());
2330     if (!F) {
2331       // If value is an alias, need to get the aliased base object to
2332       // see if it is a function.
2333       auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
2334       if (GA && GA->getBaseObject())
2335         F = dyn_cast<Function>(GA->getBaseObject());
2336     }
2337 
2338     // VST_CODE_ENTRY:   [valueid, namechar x N]
2339     // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
2340     // VST_CODE_BBENTRY: [bbid, namechar x N]
2341     unsigned Code;
2342     if (isa<BasicBlock>(Name.getValue())) {
2343       Code = bitc::VST_CODE_BBENTRY;
2344       if (Bits == SE_Char6)
2345         AbbrevToUse = VST_BBENTRY_6_ABBREV;
2346     } else if (F && !F->isDeclaration()) {
2347       // Must be the module-level VST, where we pass in the Index and
2348       // have a VSTOffsetPlaceholder. The function-level VST should not
2349       // contain any Function symbols.
2350       assert(FunctionIndex);
2351       assert(VSTOffsetPlaceholder > 0);
2352 
2353       // Save the word offset of the function (from the start of the
2354       // actual bitcode written to the stream).
2355       uint64_t BitcodeIndex =
2356           (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit;
2357       assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
2358       NameVals.push_back(BitcodeIndex / 32);
2359 
2360       Code = bitc::VST_CODE_FNENTRY;
2361       AbbrevToUse = FnEntry8BitAbbrev;
2362       if (Bits == SE_Char6)
2363         AbbrevToUse = FnEntry6BitAbbrev;
2364       else if (Bits == SE_Fixed7)
2365         AbbrevToUse = FnEntry7BitAbbrev;
2366     } else {
2367       Code = bitc::VST_CODE_ENTRY;
2368       if (Bits == SE_Char6)
2369         AbbrevToUse = VST_ENTRY_6_ABBREV;
2370       else if (Bits == SE_Fixed7)
2371         AbbrevToUse = VST_ENTRY_7_ABBREV;
2372     }
2373 
2374     for (const auto P : Name.getKey())
2375       NameVals.push_back((unsigned char)P);
2376 
2377     // Emit the finished record.
2378     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2379     NameVals.clear();
2380   }
2381   Stream.ExitBlock();
2382 }
2383 
2384 /// Emit function names and summary offsets for the combined index
2385 /// used by ThinLTO.
2386 static void
2387 WriteCombinedValueSymbolTable(const ModuleSummaryIndex &Index,
2388                               BitstreamWriter &Stream,
2389                               std::map<uint64_t, unsigned> &GUIDToValueIdMap,
2390                               uint64_t VSTOffsetPlaceholder) {
2391   assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder");
2392   // Get the offset of the VST we are writing, and backpatch it into
2393   // the VST forward declaration record.
2394   uint64_t VSTOffset = Stream.GetCurrentBitNo();
2395   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
2396   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
2397 
2398   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2399 
2400   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2401   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY));
2402   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2403   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset
2404   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid
2405   unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv);
2406 
2407   Abbv = new BitCodeAbbrev();
2408   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
2409   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2410   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
2411   unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv);
2412 
2413   SmallVector<uint64_t, 64> NameVals;
2414 
2415   for (const auto &FII : Index) {
2416     uint64_t FuncGUID = FII.first;
2417     const auto &VMI = GUIDToValueIdMap.find(FuncGUID);
2418     assert(VMI != GUIDToValueIdMap.end());
2419 
2420     for (const auto &FI : FII.second) {
2421       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid]
2422       NameVals.push_back(VMI->second);
2423       NameVals.push_back(FI->bitcodeIndex());
2424       NameVals.push_back(FuncGUID);
2425 
2426       // Emit the finished record.
2427       Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals,
2428                         DefEntryAbbrev);
2429       NameVals.clear();
2430     }
2431     GUIDToValueIdMap.erase(VMI);
2432   }
2433   for (const auto &GVI : GUIDToValueIdMap) {
2434     // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
2435     NameVals.push_back(GVI.second);
2436     NameVals.push_back(GVI.first);
2437 
2438     // Emit the finished record.
2439     Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
2440     NameVals.clear();
2441   }
2442   Stream.ExitBlock();
2443 }
2444 
2445 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order,
2446                          BitstreamWriter &Stream) {
2447   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
2448   unsigned Code;
2449   if (isa<BasicBlock>(Order.V))
2450     Code = bitc::USELIST_CODE_BB;
2451   else
2452     Code = bitc::USELIST_CODE_DEFAULT;
2453 
2454   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
2455   Record.push_back(VE.getValueID(Order.V));
2456   Stream.EmitRecord(Code, Record);
2457 }
2458 
2459 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE,
2460                               BitstreamWriter &Stream) {
2461   assert(VE.shouldPreserveUseListOrder() &&
2462          "Expected to be preserving use-list order");
2463 
2464   auto hasMore = [&]() {
2465     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
2466   };
2467   if (!hasMore())
2468     // Nothing to do.
2469     return;
2470 
2471   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
2472   while (hasMore()) {
2473     WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream);
2474     VE.UseListOrders.pop_back();
2475   }
2476   Stream.ExitBlock();
2477 }
2478 
2479 // Walk through the operands of a given User via worklist iteration and populate
2480 // the set of GlobalValue references encountered. Invoked either on an
2481 // Instruction or a GlobalVariable (which walks its initializer).
2482 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE,
2483                          DenseSet<unsigned> &RefEdges,
2484                          SmallPtrSet<const User *, 8> &Visited) {
2485   SmallVector<const User *, 32> Worklist;
2486   Worklist.push_back(CurUser);
2487 
2488   while (!Worklist.empty()) {
2489     const User *U = Worklist.pop_back_val();
2490 
2491     if (!Visited.insert(U).second)
2492       continue;
2493 
2494     ImmutableCallSite CS(U);
2495 
2496     for (const auto &OI : U->operands()) {
2497       const User *Operand = dyn_cast<User>(OI);
2498       if (!Operand)
2499         continue;
2500       if (isa<BlockAddress>(Operand))
2501         continue;
2502       if (isa<GlobalValue>(Operand)) {
2503         // We have a reference to a global value. This should be added to
2504         // the reference set unless it is a callee. Callees are handled
2505         // specially by WriteFunction and are added to a separate list.
2506         if (!(CS && CS.isCallee(&OI)))
2507           RefEdges.insert(VE.getValueID(Operand));
2508         continue;
2509       }
2510       Worklist.push_back(Operand);
2511     }
2512   }
2513 }
2514 
2515 /// Emit a function body to the module stream.
2516 static void WriteFunction(
2517     const Function &F, const Module *M, ValueEnumerator &VE,
2518     BitstreamWriter &Stream,
2519     DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex,
2520     bool EmitSummaryIndex) {
2521   // Save the bitcode index of the start of this function block for recording
2522   // in the VST.
2523   uint64_t BitcodeIndex = Stream.GetCurrentBitNo();
2524 
2525   bool HasProfileData = F.getEntryCount().hasValue();
2526   std::unique_ptr<BlockFrequencyInfo> BFI;
2527   if (EmitSummaryIndex && HasProfileData) {
2528     Function &Func = const_cast<Function &>(F);
2529     LoopInfo LI{DominatorTree(Func)};
2530     BranchProbabilityInfo BPI{Func, LI};
2531     BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI);
2532   }
2533 
2534   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2535   VE.incorporateFunction(F);
2536 
2537   SmallVector<unsigned, 64> Vals;
2538 
2539   // Emit the number of basic blocks, so the reader can create them ahead of
2540   // time.
2541   Vals.push_back(VE.getBasicBlocks().size());
2542   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2543   Vals.clear();
2544 
2545   // If there are function-local constants, emit them now.
2546   unsigned CstStart, CstEnd;
2547   VE.getFunctionConstantRange(CstStart, CstEnd);
2548   WriteConstants(CstStart, CstEnd, VE, Stream, false);
2549 
2550   // If there is function-local metadata, emit it now.
2551   WriteFunctionLocalMetadata(F, VE, Stream);
2552 
2553   // Keep a running idea of what the instruction ID is.
2554   unsigned InstID = CstEnd;
2555 
2556   bool NeedsMetadataAttachment = F.hasMetadata();
2557 
2558   DILocation *LastDL = nullptr;
2559   unsigned NumInsts = 0;
2560   // Map from callee ValueId to profile count. Used to accumulate profile
2561   // counts for all static calls to a given callee.
2562   DenseMap<unsigned, CalleeInfo> CallGraphEdges;
2563   DenseSet<unsigned> RefEdges;
2564 
2565   SmallPtrSet<const User *, 8> Visited;
2566   // Finally, emit all the instructions, in order.
2567   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2568     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
2569          I != E; ++I) {
2570       WriteInstruction(*I, InstID, VE, Stream, Vals);
2571 
2572       if (!isa<DbgInfoIntrinsic>(I))
2573         ++NumInsts;
2574 
2575       if (!I->getType()->isVoidTy())
2576         ++InstID;
2577 
2578       if (EmitSummaryIndex) {
2579         if (auto CS = ImmutableCallSite(&*I)) {
2580           auto *CalledFunction = CS.getCalledFunction();
2581           if (CalledFunction && CalledFunction->hasName() &&
2582               !CalledFunction->isIntrinsic()) {
2583             auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None;
2584             unsigned CalleeId = VE.getValueID(
2585                 M->getValueSymbolTable().lookup(CalledFunction->getName()));
2586             CallGraphEdges[CalleeId] +=
2587                 (ScaledCount ? ScaledCount.getValue() : 0);
2588           }
2589         }
2590         findRefEdges(&*I, VE, RefEdges, Visited);
2591       }
2592 
2593       // If the instruction has metadata, write a metadata attachment later.
2594       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2595 
2596       // If the instruction has a debug location, emit it.
2597       DILocation *DL = I->getDebugLoc();
2598       if (!DL)
2599         continue;
2600 
2601       if (DL == LastDL) {
2602         // Just repeat the same debug loc as last time.
2603         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2604         continue;
2605       }
2606 
2607       Vals.push_back(DL->getLine());
2608       Vals.push_back(DL->getColumn());
2609       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2610       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2611       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2612       Vals.clear();
2613 
2614       LastDL = DL;
2615     }
2616 
2617   std::unique_ptr<FunctionSummary> FuncSummary;
2618   if (EmitSummaryIndex) {
2619     FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts);
2620     FuncSummary->addCallGraphEdges(CallGraphEdges);
2621     FuncSummary->addRefEdges(RefEdges);
2622   }
2623   FunctionIndex[&F] =
2624       llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary));
2625 
2626   // Emit names for all the instructions etc.
2627   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
2628 
2629   if (NeedsMetadataAttachment)
2630     WriteMetadataAttachment(F, VE, Stream);
2631   if (VE.shouldPreserveUseListOrder())
2632     WriteUseListBlock(&F, VE, Stream);
2633   VE.purgeFunction();
2634   Stream.ExitBlock();
2635 }
2636 
2637 // Emit blockinfo, which defines the standard abbreviations etc.
2638 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) {
2639   // We only want to emit block info records for blocks that have multiple
2640   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2641   // Other blocks can define their abbrevs inline.
2642   Stream.EnterBlockInfoBlock(2);
2643 
2644   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
2645     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2646     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2647     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2648     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2649     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2650     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2651                                    Abbv) != VST_ENTRY_8_ABBREV)
2652       llvm_unreachable("Unexpected abbrev ordering!");
2653   }
2654 
2655   { // 7-bit fixed width VST_CODE_ENTRY strings.
2656     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2657     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2658     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2659     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2660     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2661     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2662                                    Abbv) != VST_ENTRY_7_ABBREV)
2663       llvm_unreachable("Unexpected abbrev ordering!");
2664   }
2665   { // 6-bit char6 VST_CODE_ENTRY strings.
2666     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2667     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2668     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2669     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2670     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2671     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2672                                    Abbv) != VST_ENTRY_6_ABBREV)
2673       llvm_unreachable("Unexpected abbrev ordering!");
2674   }
2675   { // 6-bit char6 VST_CODE_BBENTRY strings.
2676     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2677     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2678     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2679     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2680     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2681     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2682                                    Abbv) != VST_BBENTRY_6_ABBREV)
2683       llvm_unreachable("Unexpected abbrev ordering!");
2684   }
2685 
2686 
2687 
2688   { // SETTYPE abbrev for CONSTANTS_BLOCK.
2689     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2690     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2691     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2692                               VE.computeBitsRequiredForTypeIndicies()));
2693     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2694                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
2695       llvm_unreachable("Unexpected abbrev ordering!");
2696   }
2697 
2698   { // INTEGER abbrev for CONSTANTS_BLOCK.
2699     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2700     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2701     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2702     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2703                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
2704       llvm_unreachable("Unexpected abbrev ordering!");
2705   }
2706 
2707   { // CE_CAST abbrev for CONSTANTS_BLOCK.
2708     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2709     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2710     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
2711     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
2712                               VE.computeBitsRequiredForTypeIndicies()));
2713     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
2714 
2715     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2716                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
2717       llvm_unreachable("Unexpected abbrev ordering!");
2718   }
2719   { // NULL abbrev for CONSTANTS_BLOCK.
2720     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2721     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2722     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
2723                                    Abbv) != CONSTANTS_NULL_Abbrev)
2724       llvm_unreachable("Unexpected abbrev ordering!");
2725   }
2726 
2727   // FIXME: This should only use space for first class types!
2728 
2729   { // INST_LOAD abbrev for FUNCTION_BLOCK.
2730     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2731     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2732     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2733     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
2734                               VE.computeBitsRequiredForTypeIndicies()));
2735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2736     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2737     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2738                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
2739       llvm_unreachable("Unexpected abbrev ordering!");
2740   }
2741   { // INST_BINOP abbrev for FUNCTION_BLOCK.
2742     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2743     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2744     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2745     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2746     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2747     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2748                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
2749       llvm_unreachable("Unexpected abbrev ordering!");
2750   }
2751   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2752     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2753     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2754     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2755     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2756     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2757     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2758     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2759                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
2760       llvm_unreachable("Unexpected abbrev ordering!");
2761   }
2762   { // INST_CAST abbrev for FUNCTION_BLOCK.
2763     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2764     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2765     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
2766     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
2767                               VE.computeBitsRequiredForTypeIndicies()));
2768     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
2769     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2770                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
2771       llvm_unreachable("Unexpected abbrev ordering!");
2772   }
2773 
2774   { // INST_RET abbrev for FUNCTION_BLOCK.
2775     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2776     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2777     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2778                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
2779       llvm_unreachable("Unexpected abbrev ordering!");
2780   }
2781   { // INST_RET abbrev for FUNCTION_BLOCK.
2782     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2783     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2784     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2785     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2786                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
2787       llvm_unreachable("Unexpected abbrev ordering!");
2788   }
2789   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2790     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2791     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2792     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
2793                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
2794       llvm_unreachable("Unexpected abbrev ordering!");
2795   }
2796   {
2797     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2798     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2799     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2800     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2801                               Log2_32_Ceil(VE.getTypes().size() + 1)));
2802     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2803     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2804     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
2805         FUNCTION_INST_GEP_ABBREV)
2806       llvm_unreachable("Unexpected abbrev ordering!");
2807   }
2808 
2809   Stream.ExitBlock();
2810 }
2811 
2812 /// Write the module path strings, currently only used when generating
2813 /// a combined index file.
2814 static void WriteModStrings(const ModuleSummaryIndex &I,
2815                             BitstreamWriter &Stream) {
2816   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
2817 
2818   // TODO: See which abbrev sizes we actually need to emit
2819 
2820   // 8-bit fixed-width MST_ENTRY strings.
2821   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2822   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2823   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2824   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2825   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2826   unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv);
2827 
2828   // 7-bit fixed width MST_ENTRY strings.
2829   Abbv = new BitCodeAbbrev();
2830   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2831   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2832   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2833   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2834   unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv);
2835 
2836   // 6-bit char6 MST_ENTRY strings.
2837   Abbv = new BitCodeAbbrev();
2838   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
2839   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2840   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2841   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2842   unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv);
2843 
2844   SmallVector<unsigned, 64> NameVals;
2845   for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) {
2846     StringEncoding Bits =
2847         getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
2848     unsigned AbbrevToUse = Abbrev8Bit;
2849     if (Bits == SE_Char6)
2850       AbbrevToUse = Abbrev6Bit;
2851     else if (Bits == SE_Fixed7)
2852       AbbrevToUse = Abbrev7Bit;
2853 
2854     NameVals.push_back(MPSE.getValue());
2855 
2856     for (const auto P : MPSE.getKey())
2857       NameVals.push_back((unsigned char)P);
2858 
2859     // Emit the finished record.
2860     Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse);
2861     NameVals.clear();
2862   }
2863   Stream.ExitBlock();
2864 }
2865 
2866 // Helper to emit a single function summary record.
2867 static void WritePerModuleFunctionSummaryRecord(
2868     SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID,
2869     unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
2870     BitstreamWriter &Stream, const Function &F) {
2871   assert(FS);
2872   NameVals.push_back(ValueID);
2873   NameVals.push_back(getEncodedLinkage(FS->linkage()));
2874   NameVals.push_back(FS->instCount());
2875   NameVals.push_back(FS->refs().size());
2876 
2877   for (auto &RI : FS->refs())
2878     NameVals.push_back(RI);
2879 
2880   bool HasProfileData = F.getEntryCount().hasValue();
2881   for (auto &ECI : FS->edges()) {
2882     NameVals.push_back(ECI.first);
2883     assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite");
2884     NameVals.push_back(ECI.second.CallsiteCount);
2885     if (HasProfileData)
2886       NameVals.push_back(ECI.second.ProfileCount);
2887   }
2888 
2889   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
2890   unsigned Code =
2891       (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
2892 
2893   // Emit the finished record.
2894   Stream.EmitRecord(Code, NameVals, FSAbbrev);
2895   NameVals.clear();
2896 }
2897 
2898 // Collect the global value references in the given variable's initializer,
2899 // and emit them in a summary record.
2900 static void WriteModuleLevelReferences(const GlobalVariable &V,
2901                                        const ValueEnumerator &VE,
2902                                        SmallVector<uint64_t, 64> &NameVals,
2903                                        unsigned FSModRefsAbbrev,
2904                                        BitstreamWriter &Stream) {
2905   // Only interested in recording variable defs in the summary.
2906   if (V.isDeclaration())
2907     return;
2908   DenseSet<unsigned> RefEdges;
2909   SmallPtrSet<const User *, 8> Visited;
2910   findRefEdges(&V, VE, RefEdges, Visited);
2911   NameVals.push_back(VE.getValueID(&V));
2912   NameVals.push_back(getEncodedLinkage(V.getLinkage()));
2913   for (auto RefId : RefEdges) {
2914     NameVals.push_back(RefId);
2915   }
2916   Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
2917                     FSModRefsAbbrev);
2918   NameVals.clear();
2919 }
2920 
2921 /// Emit the per-module summary section alongside the rest of
2922 /// the module's bitcode.
2923 static void WritePerModuleGlobalValueSummary(
2924     DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex,
2925     const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) {
2926   if (M->empty())
2927     return;
2928 
2929   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
2930 
2931   // Abbrev for FS_PERMODULE.
2932   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
2933   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
2934   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
2935   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
2936   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
2937   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
2938   // numrefs x valueid, n x (valueid, callsitecount)
2939   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2940   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2941   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
2942 
2943   // Abbrev for FS_PERMODULE_PROFILE.
2944   Abbv = new BitCodeAbbrev();
2945   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
2946   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
2947   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
2948   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
2949   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
2950   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
2951   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2952   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2953   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
2954 
2955   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
2956   Abbv = new BitCodeAbbrev();
2957   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
2958   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
2959   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
2960   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
2961   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2962   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
2963 
2964   SmallVector<uint64_t, 64> NameVals;
2965   // Iterate over the list of functions instead of the FunctionIndex map to
2966   // ensure the ordering is stable.
2967   for (const Function &F : *M) {
2968     if (F.isDeclaration())
2969       continue;
2970     // Skip anonymous functions. We will emit a function summary for
2971     // any aliases below.
2972     if (!F.hasName())
2973       continue;
2974 
2975     assert(FunctionIndex.count(&F) == 1);
2976 
2977     WritePerModuleFunctionSummaryRecord(
2978         NameVals, cast<FunctionSummary>(FunctionIndex[&F]->summary()),
2979         VE.getValueID(M->getValueSymbolTable().lookup(F.getName())),
2980         FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F);
2981   }
2982 
2983   for (const GlobalAlias &A : M->aliases()) {
2984     if (!A.getBaseObject())
2985       continue;
2986     const Function *F = dyn_cast<Function>(A.getBaseObject());
2987     if (!F || F->isDeclaration())
2988       continue;
2989 
2990     assert(FunctionIndex.count(F) == 1);
2991     FunctionSummary *FS =
2992         cast<FunctionSummary>(FunctionIndex[F]->summary());
2993     // Add the alias to the reference list of aliasee function.
2994     FS->addRefEdge(
2995         VE.getValueID(M->getValueSymbolTable().lookup(A.getName())));
2996     WritePerModuleFunctionSummaryRecord(
2997         NameVals, FS,
2998         VE.getValueID(M->getValueSymbolTable().lookup(A.getName())),
2999         FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F);
3000   }
3001 
3002   // Capture references from GlobalVariable initializers, which are outside
3003   // of a function scope.
3004   for (const GlobalVariable &G : M->globals())
3005     WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream);
3006   for (const GlobalAlias &A : M->aliases())
3007     if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject()))
3008       WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream);
3009 
3010   Stream.ExitBlock();
3011 }
3012 
3013 /// Emit the combined summary section into the combined index file.
3014 static void WriteCombinedGlobalValueSummary(
3015     const ModuleSummaryIndex &I, BitstreamWriter &Stream,
3016     std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) {
3017   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
3018 
3019   // Abbrev for FS_COMBINED.
3020   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3021   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
3022   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3023   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
3024   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3025   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3026   // numrefs x valueid, n x (valueid, callsitecount)
3027   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3028   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3029   unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv);
3030 
3031   // Abbrev for FS_COMBINED_PROFILE.
3032   Abbv = new BitCodeAbbrev();
3033   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
3034   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3035   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
3036   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3037   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3038   // numrefs x valueid, n x (valueid, callsitecount, profilecount)
3039   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3040   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3041   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv);
3042 
3043   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
3044   Abbv = new BitCodeAbbrev();
3045   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
3046   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
3047   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage
3048   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
3049   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3050   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv);
3051 
3052   SmallVector<uint64_t, 64> NameVals;
3053   for (const auto &FII : I) {
3054     for (auto &FI : FII.second) {
3055       GlobalValueSummary *S = FI->summary();
3056       assert(S);
3057 
3058       if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
3059         NameVals.push_back(I.getModuleId(VS->modulePath()));
3060         NameVals.push_back(getEncodedLinkage(VS->linkage()));
3061         for (auto &RI : VS->refs()) {
3062           const auto &VMI = GUIDToValueIdMap.find(RI);
3063           unsigned RefId;
3064           // If this GUID doesn't have an entry, assign one.
3065           if (VMI == GUIDToValueIdMap.end()) {
3066             GUIDToValueIdMap[RI] = ++GlobalValueId;
3067             RefId = GlobalValueId;
3068           } else {
3069             RefId = VMI->second;
3070           }
3071           NameVals.push_back(RefId);
3072         }
3073 
3074         // Record the starting offset of this summary entry for use
3075         // in the VST entry. Add the current code size since the
3076         // reader will invoke readRecord after the abbrev id read.
3077         FI->setBitcodeIndex(Stream.GetCurrentBitNo() +
3078                             Stream.GetAbbrevIDWidth());
3079 
3080         // Emit the finished record.
3081         Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
3082                           FSModRefsAbbrev);
3083         NameVals.clear();
3084         continue;
3085       }
3086 
3087       auto *FS = cast<FunctionSummary>(S);
3088       NameVals.push_back(I.getModuleId(FS->modulePath()));
3089       NameVals.push_back(getEncodedLinkage(FS->linkage()));
3090       NameVals.push_back(FS->instCount());
3091       NameVals.push_back(FS->refs().size());
3092 
3093       for (auto &RI : FS->refs()) {
3094         const auto &VMI = GUIDToValueIdMap.find(RI);
3095         unsigned RefId;
3096         // If this GUID doesn't have an entry, assign one.
3097         if (VMI == GUIDToValueIdMap.end()) {
3098           GUIDToValueIdMap[RI] = ++GlobalValueId;
3099           RefId = GlobalValueId;
3100         } else {
3101           RefId = VMI->second;
3102         }
3103         NameVals.push_back(RefId);
3104       }
3105 
3106       bool HasProfileData = false;
3107       for (auto &EI : FS->edges()) {
3108         HasProfileData |= EI.second.ProfileCount != 0;
3109         if (HasProfileData)
3110           break;
3111       }
3112 
3113       for (auto &EI : FS->edges()) {
3114         const auto &VMI = GUIDToValueIdMap.find(EI.first);
3115         // If this GUID doesn't have an entry, it doesn't have a function
3116         // summary and we don't need to record any calls to it.
3117         if (VMI == GUIDToValueIdMap.end())
3118           continue;
3119         NameVals.push_back(VMI->second);
3120         assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite");
3121         NameVals.push_back(EI.second.CallsiteCount);
3122         if (HasProfileData)
3123           NameVals.push_back(EI.second.ProfileCount);
3124       }
3125 
3126       // Record the starting offset of this summary entry for use
3127       // in the VST entry. Add the current code size since the
3128       // reader will invoke readRecord after the abbrev id read.
3129       FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth());
3130 
3131       unsigned FSAbbrev =
3132           (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3133       unsigned Code =
3134           (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
3135 
3136       // Emit the finished record.
3137       Stream.EmitRecord(Code, NameVals, FSAbbrev);
3138       NameVals.clear();
3139     }
3140   }
3141 
3142   Stream.ExitBlock();
3143 }
3144 
3145 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
3146 // current llvm version, and a record for the epoch number.
3147 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) {
3148   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
3149 
3150   // Write the "user readable" string identifying the bitcode producer
3151   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
3152   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
3153   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3155   auto StringAbbrev = Stream.EmitAbbrev(Abbv);
3156   WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING,
3157                     "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream);
3158 
3159   // Write the epoch version
3160   Abbv = new BitCodeAbbrev();
3161   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
3162   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3163   auto EpochAbbrev = Stream.EmitAbbrev(Abbv);
3164   SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
3165   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
3166   Stream.ExitBlock();
3167 }
3168 
3169 /// WriteModule - Emit the specified module to the bitstream.
3170 static void WriteModule(const Module *M, BitstreamWriter &Stream,
3171                         bool ShouldPreserveUseListOrder,
3172                         uint64_t BitcodeStartBit, bool EmitSummaryIndex) {
3173   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3174 
3175   SmallVector<unsigned, 1> Vals;
3176   unsigned CurVersion = 1;
3177   Vals.push_back(CurVersion);
3178   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3179 
3180   // Analyze the module, enumerating globals, functions, etc.
3181   ValueEnumerator VE(*M, ShouldPreserveUseListOrder);
3182 
3183   // Emit blockinfo, which defines the standard abbreviations etc.
3184   WriteBlockInfo(VE, Stream);
3185 
3186   // Emit information about attribute groups.
3187   WriteAttributeGroupTable(VE, Stream);
3188 
3189   // Emit information about parameter attributes.
3190   WriteAttributeTable(VE, Stream);
3191 
3192   // Emit information describing all of the types in the module.
3193   WriteTypeTable(VE, Stream);
3194 
3195   writeComdats(VE, Stream);
3196 
3197   // Emit top-level description of module, including target triple, inline asm,
3198   // descriptors for global variables, and function prototype info.
3199   uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream);
3200 
3201   // Emit constants.
3202   WriteModuleConstants(VE, Stream);
3203 
3204   // Emit metadata.
3205   WriteModuleMetadata(*M, VE, Stream);
3206 
3207   // Emit metadata.
3208   WriteModuleMetadataStore(M, Stream);
3209 
3210   // Emit module-level use-lists.
3211   if (VE.shouldPreserveUseListOrder())
3212     WriteUseListBlock(nullptr, VE, Stream);
3213 
3214   WriteOperandBundleTags(M, Stream);
3215 
3216   // Emit function bodies.
3217   DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex;
3218   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
3219     if (!F->isDeclaration())
3220       WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex);
3221 
3222   // Need to write after the above call to WriteFunction which populates
3223   // the summary information in the index.
3224   if (EmitSummaryIndex)
3225     WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream);
3226 
3227   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream,
3228                         VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex);
3229 
3230   Stream.ExitBlock();
3231 }
3232 
3233 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
3234 /// header and trailer to make it compatible with the system archiver.  To do
3235 /// this we emit the following header, and then emit a trailer that pads the
3236 /// file out to be a multiple of 16 bytes.
3237 ///
3238 /// struct bc_header {
3239 ///   uint32_t Magic;         // 0x0B17C0DE
3240 ///   uint32_t Version;       // Version, currently always 0.
3241 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
3242 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
3243 ///   uint32_t CPUType;       // CPU specifier.
3244 ///   ... potentially more later ...
3245 /// };
3246 
3247 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
3248                                uint32_t &Position) {
3249   support::endian::write32le(&Buffer[Position], Value);
3250   Position += 4;
3251 }
3252 
3253 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
3254                                          const Triple &TT) {
3255   unsigned CPUType = ~0U;
3256 
3257   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
3258   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
3259   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
3260   // specific constants here because they are implicitly part of the Darwin ABI.
3261   enum {
3262     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
3263     DARWIN_CPU_TYPE_X86        = 7,
3264     DARWIN_CPU_TYPE_ARM        = 12,
3265     DARWIN_CPU_TYPE_POWERPC    = 18
3266   };
3267 
3268   Triple::ArchType Arch = TT.getArch();
3269   if (Arch == Triple::x86_64)
3270     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
3271   else if (Arch == Triple::x86)
3272     CPUType = DARWIN_CPU_TYPE_X86;
3273   else if (Arch == Triple::ppc)
3274     CPUType = DARWIN_CPU_TYPE_POWERPC;
3275   else if (Arch == Triple::ppc64)
3276     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
3277   else if (Arch == Triple::arm || Arch == Triple::thumb)
3278     CPUType = DARWIN_CPU_TYPE_ARM;
3279 
3280   // Traditional Bitcode starts after header.
3281   assert(Buffer.size() >= BWH_HeaderSize &&
3282          "Expected header size to be reserved");
3283   unsigned BCOffset = BWH_HeaderSize;
3284   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
3285 
3286   // Write the magic and version.
3287   unsigned Position = 0;
3288   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
3289   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
3290   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
3291   WriteInt32ToBuffer(BCSize     , Buffer, Position);
3292   WriteInt32ToBuffer(CPUType    , Buffer, Position);
3293 
3294   // If the file is not a multiple of 16 bytes, insert dummy padding.
3295   while (Buffer.size() & 15)
3296     Buffer.push_back(0);
3297 }
3298 
3299 /// Helper to write the header common to all bitcode files.
3300 static void WriteBitcodeHeader(BitstreamWriter &Stream) {
3301   // Emit the file header.
3302   Stream.Emit((unsigned)'B', 8);
3303   Stream.Emit((unsigned)'C', 8);
3304   Stream.Emit(0x0, 4);
3305   Stream.Emit(0xC, 4);
3306   Stream.Emit(0xE, 4);
3307   Stream.Emit(0xD, 4);
3308 }
3309 
3310 /// WriteBitcodeToFile - Write the specified module to the specified output
3311 /// stream.
3312 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
3313                               bool ShouldPreserveUseListOrder,
3314                               bool EmitSummaryIndex) {
3315   SmallVector<char, 0> Buffer;
3316   Buffer.reserve(256*1024);
3317 
3318   // If this is darwin or another generic macho target, reserve space for the
3319   // header.
3320   Triple TT(M->getTargetTriple());
3321   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3322     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
3323 
3324   // Emit the module into the buffer.
3325   {
3326     BitstreamWriter Stream(Buffer);
3327     // Save the start bit of the actual bitcode, in case there is space
3328     // saved at the start for the darwin header above. The reader stream
3329     // will start at the bitcode, and we need the offset of the VST
3330     // to line up.
3331     uint64_t BitcodeStartBit = Stream.GetCurrentBitNo();
3332 
3333     // Emit the file header.
3334     WriteBitcodeHeader(Stream);
3335 
3336     WriteIdentificationBlock(M, Stream);
3337 
3338     // Emit the module.
3339     WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit,
3340                 EmitSummaryIndex);
3341   }
3342 
3343   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
3344     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
3345 
3346   // Write the generated bitstream to "Out".
3347   Out.write((char*)&Buffer.front(), Buffer.size());
3348 }
3349 
3350 // Write the specified module summary index to the given raw output stream,
3351 // where it will be written in a new bitcode block. This is used when
3352 // writing the combined index file for ThinLTO.
3353 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) {
3354   SmallVector<char, 0> Buffer;
3355   Buffer.reserve(256 * 1024);
3356 
3357   BitstreamWriter Stream(Buffer);
3358 
3359   // Emit the bitcode header.
3360   WriteBitcodeHeader(Stream);
3361 
3362   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
3363 
3364   SmallVector<unsigned, 1> Vals;
3365   unsigned CurVersion = 1;
3366   Vals.push_back(CurVersion);
3367   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
3368 
3369   // If we have a VST, write the VSTOFFSET record placeholder and record
3370   // its offset.
3371   uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream);
3372 
3373   // Write the module paths in the combined index.
3374   WriteModStrings(Index, Stream);
3375 
3376   // Assign unique value ids to all functions in the index for use
3377   // in writing out the call graph edges. Save the mapping from GUID
3378   // to the new global value id to use when writing those edges, which
3379   // are currently saved in the index in terms of GUID.
3380   std::map<uint64_t, unsigned> GUIDToValueIdMap;
3381   unsigned GlobalValueId = 0;
3382   for (auto &II : Index)
3383     GUIDToValueIdMap[II.first] = ++GlobalValueId;
3384 
3385   // Write the summary combined index records.
3386   WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap,
3387                                   GlobalValueId);
3388 
3389   // Need a special VST writer for the combined index (we don't have a
3390   // real VST and real values when this is invoked).
3391   WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap,
3392                                 VSTOffsetPlaceholder);
3393 
3394   Stream.ExitBlock();
3395 
3396   Out.write((char *)&Buffer.front(), Buffer.size());
3397 }
3398