1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/BlockFrequencyInfo.h" 18 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/Bitcode/BitstreamWriter.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/InlineAsm.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/UseListOrder.h" 36 #include "llvm/IR/ValueSymbolTable.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/MathExtras.h" 40 #include "llvm/Support/Program.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cctype> 43 #include <map> 44 using namespace llvm; 45 46 /// These are manifest constants used by the bitcode writer. They do not need to 47 /// be kept in sync with the reader, but need to be consistent within this file. 48 enum { 49 // VALUE_SYMTAB_BLOCK abbrev id's. 50 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 51 VST_ENTRY_7_ABBREV, 52 VST_ENTRY_6_ABBREV, 53 VST_BBENTRY_6_ABBREV, 54 55 // CONSTANTS_BLOCK abbrev id's. 56 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 57 CONSTANTS_INTEGER_ABBREV, 58 CONSTANTS_CE_CAST_Abbrev, 59 CONSTANTS_NULL_Abbrev, 60 61 // FUNCTION_BLOCK abbrev id's. 62 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 63 FUNCTION_INST_BINOP_ABBREV, 64 FUNCTION_INST_BINOP_FLAGS_ABBREV, 65 FUNCTION_INST_CAST_ABBREV, 66 FUNCTION_INST_RET_VOID_ABBREV, 67 FUNCTION_INST_RET_VAL_ABBREV, 68 FUNCTION_INST_UNREACHABLE_ABBREV, 69 FUNCTION_INST_GEP_ABBREV, 70 }; 71 72 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 73 switch (Opcode) { 74 default: llvm_unreachable("Unknown cast instruction!"); 75 case Instruction::Trunc : return bitc::CAST_TRUNC; 76 case Instruction::ZExt : return bitc::CAST_ZEXT; 77 case Instruction::SExt : return bitc::CAST_SEXT; 78 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 79 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 80 case Instruction::UIToFP : return bitc::CAST_UITOFP; 81 case Instruction::SIToFP : return bitc::CAST_SITOFP; 82 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 83 case Instruction::FPExt : return bitc::CAST_FPEXT; 84 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 85 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 86 case Instruction::BitCast : return bitc::CAST_BITCAST; 87 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 88 } 89 } 90 91 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 92 switch (Opcode) { 93 default: llvm_unreachable("Unknown binary instruction!"); 94 case Instruction::Add: 95 case Instruction::FAdd: return bitc::BINOP_ADD; 96 case Instruction::Sub: 97 case Instruction::FSub: return bitc::BINOP_SUB; 98 case Instruction::Mul: 99 case Instruction::FMul: return bitc::BINOP_MUL; 100 case Instruction::UDiv: return bitc::BINOP_UDIV; 101 case Instruction::FDiv: 102 case Instruction::SDiv: return bitc::BINOP_SDIV; 103 case Instruction::URem: return bitc::BINOP_UREM; 104 case Instruction::FRem: 105 case Instruction::SRem: return bitc::BINOP_SREM; 106 case Instruction::Shl: return bitc::BINOP_SHL; 107 case Instruction::LShr: return bitc::BINOP_LSHR; 108 case Instruction::AShr: return bitc::BINOP_ASHR; 109 case Instruction::And: return bitc::BINOP_AND; 110 case Instruction::Or: return bitc::BINOP_OR; 111 case Instruction::Xor: return bitc::BINOP_XOR; 112 } 113 } 114 115 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 116 switch (Op) { 117 default: llvm_unreachable("Unknown RMW operation!"); 118 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 119 case AtomicRMWInst::Add: return bitc::RMW_ADD; 120 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 121 case AtomicRMWInst::And: return bitc::RMW_AND; 122 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 123 case AtomicRMWInst::Or: return bitc::RMW_OR; 124 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 125 case AtomicRMWInst::Max: return bitc::RMW_MAX; 126 case AtomicRMWInst::Min: return bitc::RMW_MIN; 127 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 128 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 129 } 130 } 131 132 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 133 switch (Ordering) { 134 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 135 case Unordered: return bitc::ORDERING_UNORDERED; 136 case Monotonic: return bitc::ORDERING_MONOTONIC; 137 case Acquire: return bitc::ORDERING_ACQUIRE; 138 case Release: return bitc::ORDERING_RELEASE; 139 case AcquireRelease: return bitc::ORDERING_ACQREL; 140 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 141 } 142 llvm_unreachable("Invalid ordering"); 143 } 144 145 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 146 switch (SynchScope) { 147 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 148 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 149 } 150 llvm_unreachable("Invalid synch scope"); 151 } 152 153 static void WriteStringRecord(unsigned Code, StringRef Str, 154 unsigned AbbrevToUse, BitstreamWriter &Stream) { 155 SmallVector<unsigned, 64> Vals; 156 157 // Code: [strchar x N] 158 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 159 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 160 AbbrevToUse = 0; 161 Vals.push_back(Str[i]); 162 } 163 164 // Emit the finished record. 165 Stream.EmitRecord(Code, Vals, AbbrevToUse); 166 } 167 168 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 169 switch (Kind) { 170 case Attribute::Alignment: 171 return bitc::ATTR_KIND_ALIGNMENT; 172 case Attribute::AlwaysInline: 173 return bitc::ATTR_KIND_ALWAYS_INLINE; 174 case Attribute::ArgMemOnly: 175 return bitc::ATTR_KIND_ARGMEMONLY; 176 case Attribute::Builtin: 177 return bitc::ATTR_KIND_BUILTIN; 178 case Attribute::ByVal: 179 return bitc::ATTR_KIND_BY_VAL; 180 case Attribute::Convergent: 181 return bitc::ATTR_KIND_CONVERGENT; 182 case Attribute::InAlloca: 183 return bitc::ATTR_KIND_IN_ALLOCA; 184 case Attribute::Cold: 185 return bitc::ATTR_KIND_COLD; 186 case Attribute::InaccessibleMemOnly: 187 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 188 case Attribute::InaccessibleMemOrArgMemOnly: 189 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 190 case Attribute::InlineHint: 191 return bitc::ATTR_KIND_INLINE_HINT; 192 case Attribute::InReg: 193 return bitc::ATTR_KIND_IN_REG; 194 case Attribute::JumpTable: 195 return bitc::ATTR_KIND_JUMP_TABLE; 196 case Attribute::MinSize: 197 return bitc::ATTR_KIND_MIN_SIZE; 198 case Attribute::Naked: 199 return bitc::ATTR_KIND_NAKED; 200 case Attribute::Nest: 201 return bitc::ATTR_KIND_NEST; 202 case Attribute::NoAlias: 203 return bitc::ATTR_KIND_NO_ALIAS; 204 case Attribute::NoBuiltin: 205 return bitc::ATTR_KIND_NO_BUILTIN; 206 case Attribute::NoCapture: 207 return bitc::ATTR_KIND_NO_CAPTURE; 208 case Attribute::NoDuplicate: 209 return bitc::ATTR_KIND_NO_DUPLICATE; 210 case Attribute::NoImplicitFloat: 211 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 212 case Attribute::NoInline: 213 return bitc::ATTR_KIND_NO_INLINE; 214 case Attribute::NoRecurse: 215 return bitc::ATTR_KIND_NO_RECURSE; 216 case Attribute::NonLazyBind: 217 return bitc::ATTR_KIND_NON_LAZY_BIND; 218 case Attribute::NonNull: 219 return bitc::ATTR_KIND_NON_NULL; 220 case Attribute::Dereferenceable: 221 return bitc::ATTR_KIND_DEREFERENCEABLE; 222 case Attribute::DereferenceableOrNull: 223 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 224 case Attribute::NoRedZone: 225 return bitc::ATTR_KIND_NO_RED_ZONE; 226 case Attribute::NoReturn: 227 return bitc::ATTR_KIND_NO_RETURN; 228 case Attribute::NoUnwind: 229 return bitc::ATTR_KIND_NO_UNWIND; 230 case Attribute::OptimizeForSize: 231 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 232 case Attribute::OptimizeNone: 233 return bitc::ATTR_KIND_OPTIMIZE_NONE; 234 case Attribute::ReadNone: 235 return bitc::ATTR_KIND_READ_NONE; 236 case Attribute::ReadOnly: 237 return bitc::ATTR_KIND_READ_ONLY; 238 case Attribute::Returned: 239 return bitc::ATTR_KIND_RETURNED; 240 case Attribute::ReturnsTwice: 241 return bitc::ATTR_KIND_RETURNS_TWICE; 242 case Attribute::SExt: 243 return bitc::ATTR_KIND_S_EXT; 244 case Attribute::StackAlignment: 245 return bitc::ATTR_KIND_STACK_ALIGNMENT; 246 case Attribute::StackProtect: 247 return bitc::ATTR_KIND_STACK_PROTECT; 248 case Attribute::StackProtectReq: 249 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 250 case Attribute::StackProtectStrong: 251 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 252 case Attribute::SafeStack: 253 return bitc::ATTR_KIND_SAFESTACK; 254 case Attribute::StructRet: 255 return bitc::ATTR_KIND_STRUCT_RET; 256 case Attribute::SanitizeAddress: 257 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 258 case Attribute::SanitizeThread: 259 return bitc::ATTR_KIND_SANITIZE_THREAD; 260 case Attribute::SanitizeMemory: 261 return bitc::ATTR_KIND_SANITIZE_MEMORY; 262 case Attribute::UWTable: 263 return bitc::ATTR_KIND_UW_TABLE; 264 case Attribute::ZExt: 265 return bitc::ATTR_KIND_Z_EXT; 266 case Attribute::EndAttrKinds: 267 llvm_unreachable("Can not encode end-attribute kinds marker."); 268 case Attribute::None: 269 llvm_unreachable("Can not encode none-attribute."); 270 } 271 272 llvm_unreachable("Trying to encode unknown attribute"); 273 } 274 275 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 276 BitstreamWriter &Stream) { 277 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 278 if (AttrGrps.empty()) return; 279 280 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 281 282 SmallVector<uint64_t, 64> Record; 283 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 284 AttributeSet AS = AttrGrps[i]; 285 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 286 AttributeSet A = AS.getSlotAttributes(i); 287 288 Record.push_back(VE.getAttributeGroupID(A)); 289 Record.push_back(AS.getSlotIndex(i)); 290 291 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 292 I != E; ++I) { 293 Attribute Attr = *I; 294 if (Attr.isEnumAttribute()) { 295 Record.push_back(0); 296 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 297 } else if (Attr.isIntAttribute()) { 298 Record.push_back(1); 299 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 300 Record.push_back(Attr.getValueAsInt()); 301 } else { 302 StringRef Kind = Attr.getKindAsString(); 303 StringRef Val = Attr.getValueAsString(); 304 305 Record.push_back(Val.empty() ? 3 : 4); 306 Record.append(Kind.begin(), Kind.end()); 307 Record.push_back(0); 308 if (!Val.empty()) { 309 Record.append(Val.begin(), Val.end()); 310 Record.push_back(0); 311 } 312 } 313 } 314 315 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 316 Record.clear(); 317 } 318 } 319 320 Stream.ExitBlock(); 321 } 322 323 static void WriteAttributeTable(const ValueEnumerator &VE, 324 BitstreamWriter &Stream) { 325 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 326 if (Attrs.empty()) return; 327 328 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 329 330 SmallVector<uint64_t, 64> Record; 331 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 332 const AttributeSet &A = Attrs[i]; 333 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 334 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 335 336 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 337 Record.clear(); 338 } 339 340 Stream.ExitBlock(); 341 } 342 343 /// WriteTypeTable - Write out the type table for a module. 344 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 345 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 346 347 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 348 SmallVector<uint64_t, 64> TypeVals; 349 350 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 351 352 // Abbrev for TYPE_CODE_POINTER. 353 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 356 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 357 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_FUNCTION. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_STRUCT_ANON. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Abbrev for TYPE_CODE_STRUCT_NAME. 378 Abbv = new BitCodeAbbrev(); 379 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 382 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 383 384 // Abbrev for TYPE_CODE_STRUCT_NAMED. 385 Abbv = new BitCodeAbbrev(); 386 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 390 391 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 392 393 // Abbrev for TYPE_CODE_ARRAY. 394 Abbv = new BitCodeAbbrev(); 395 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 398 399 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 400 401 // Emit an entry count so the reader can reserve space. 402 TypeVals.push_back(TypeList.size()); 403 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 404 TypeVals.clear(); 405 406 // Loop over all of the types, emitting each in turn. 407 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 408 Type *T = TypeList[i]; 409 int AbbrevToUse = 0; 410 unsigned Code = 0; 411 412 switch (T->getTypeID()) { 413 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 414 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 415 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 416 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 417 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 418 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 419 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 420 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 421 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 422 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 423 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 424 case Type::IntegerTyID: 425 // INTEGER: [width] 426 Code = bitc::TYPE_CODE_INTEGER; 427 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 428 break; 429 case Type::PointerTyID: { 430 PointerType *PTy = cast<PointerType>(T); 431 // POINTER: [pointee type, address space] 432 Code = bitc::TYPE_CODE_POINTER; 433 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 434 unsigned AddressSpace = PTy->getAddressSpace(); 435 TypeVals.push_back(AddressSpace); 436 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 437 break; 438 } 439 case Type::FunctionTyID: { 440 FunctionType *FT = cast<FunctionType>(T); 441 // FUNCTION: [isvararg, retty, paramty x N] 442 Code = bitc::TYPE_CODE_FUNCTION; 443 TypeVals.push_back(FT->isVarArg()); 444 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 445 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 446 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 447 AbbrevToUse = FunctionAbbrev; 448 break; 449 } 450 case Type::StructTyID: { 451 StructType *ST = cast<StructType>(T); 452 // STRUCT: [ispacked, eltty x N] 453 TypeVals.push_back(ST->isPacked()); 454 // Output all of the element types. 455 for (StructType::element_iterator I = ST->element_begin(), 456 E = ST->element_end(); I != E; ++I) 457 TypeVals.push_back(VE.getTypeID(*I)); 458 459 if (ST->isLiteral()) { 460 Code = bitc::TYPE_CODE_STRUCT_ANON; 461 AbbrevToUse = StructAnonAbbrev; 462 } else { 463 if (ST->isOpaque()) { 464 Code = bitc::TYPE_CODE_OPAQUE; 465 } else { 466 Code = bitc::TYPE_CODE_STRUCT_NAMED; 467 AbbrevToUse = StructNamedAbbrev; 468 } 469 470 // Emit the name if it is present. 471 if (!ST->getName().empty()) 472 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 473 StructNameAbbrev, Stream); 474 } 475 break; 476 } 477 case Type::ArrayTyID: { 478 ArrayType *AT = cast<ArrayType>(T); 479 // ARRAY: [numelts, eltty] 480 Code = bitc::TYPE_CODE_ARRAY; 481 TypeVals.push_back(AT->getNumElements()); 482 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 483 AbbrevToUse = ArrayAbbrev; 484 break; 485 } 486 case Type::VectorTyID: { 487 VectorType *VT = cast<VectorType>(T); 488 // VECTOR [numelts, eltty] 489 Code = bitc::TYPE_CODE_VECTOR; 490 TypeVals.push_back(VT->getNumElements()); 491 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 492 break; 493 } 494 } 495 496 // Emit the finished record. 497 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 498 TypeVals.clear(); 499 } 500 501 Stream.ExitBlock(); 502 } 503 504 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 505 switch (Linkage) { 506 case GlobalValue::ExternalLinkage: 507 return 0; 508 case GlobalValue::WeakAnyLinkage: 509 return 16; 510 case GlobalValue::AppendingLinkage: 511 return 2; 512 case GlobalValue::InternalLinkage: 513 return 3; 514 case GlobalValue::LinkOnceAnyLinkage: 515 return 18; 516 case GlobalValue::ExternalWeakLinkage: 517 return 7; 518 case GlobalValue::CommonLinkage: 519 return 8; 520 case GlobalValue::PrivateLinkage: 521 return 9; 522 case GlobalValue::WeakODRLinkage: 523 return 17; 524 case GlobalValue::LinkOnceODRLinkage: 525 return 19; 526 case GlobalValue::AvailableExternallyLinkage: 527 return 12; 528 } 529 llvm_unreachable("Invalid linkage"); 530 } 531 532 static unsigned getEncodedLinkage(const GlobalValue &GV) { 533 return getEncodedLinkage(GV.getLinkage()); 534 } 535 536 static unsigned getEncodedVisibility(const GlobalValue &GV) { 537 switch (GV.getVisibility()) { 538 case GlobalValue::DefaultVisibility: return 0; 539 case GlobalValue::HiddenVisibility: return 1; 540 case GlobalValue::ProtectedVisibility: return 2; 541 } 542 llvm_unreachable("Invalid visibility"); 543 } 544 545 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 546 switch (GV.getDLLStorageClass()) { 547 case GlobalValue::DefaultStorageClass: return 0; 548 case GlobalValue::DLLImportStorageClass: return 1; 549 case GlobalValue::DLLExportStorageClass: return 2; 550 } 551 llvm_unreachable("Invalid DLL storage class"); 552 } 553 554 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 555 switch (GV.getThreadLocalMode()) { 556 case GlobalVariable::NotThreadLocal: return 0; 557 case GlobalVariable::GeneralDynamicTLSModel: return 1; 558 case GlobalVariable::LocalDynamicTLSModel: return 2; 559 case GlobalVariable::InitialExecTLSModel: return 3; 560 case GlobalVariable::LocalExecTLSModel: return 4; 561 } 562 llvm_unreachable("Invalid TLS model"); 563 } 564 565 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 566 switch (C.getSelectionKind()) { 567 case Comdat::Any: 568 return bitc::COMDAT_SELECTION_KIND_ANY; 569 case Comdat::ExactMatch: 570 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 571 case Comdat::Largest: 572 return bitc::COMDAT_SELECTION_KIND_LARGEST; 573 case Comdat::NoDuplicates: 574 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 575 case Comdat::SameSize: 576 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 577 } 578 llvm_unreachable("Invalid selection kind"); 579 } 580 581 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 582 SmallVector<unsigned, 64> Vals; 583 for (const Comdat *C : VE.getComdats()) { 584 // COMDAT: [selection_kind, name] 585 Vals.push_back(getEncodedComdatSelectionKind(*C)); 586 size_t Size = C->getName().size(); 587 assert(isUInt<32>(Size)); 588 Vals.push_back(Size); 589 for (char Chr : C->getName()) 590 Vals.push_back((unsigned char)Chr); 591 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 592 Vals.clear(); 593 } 594 } 595 596 /// Write a record that will eventually hold the word offset of the 597 /// module-level VST. For now the offset is 0, which will be backpatched 598 /// after the real VST is written. Returns the bit offset to backpatch. 599 static uint64_t WriteValueSymbolTableForwardDecl(BitstreamWriter &Stream) { 600 // Write a placeholder value in for the offset of the real VST, 601 // which is written after the function blocks so that it can include 602 // the offset of each function. The placeholder offset will be 603 // updated when the real VST is written. 604 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 605 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 606 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 607 // hold the real VST offset. Must use fixed instead of VBR as we don't 608 // know how many VBR chunks to reserve ahead of time. 609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 610 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv); 611 612 // Emit the placeholder 613 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 614 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 615 616 // Compute and return the bit offset to the placeholder, which will be 617 // patched when the real VST is written. We can simply subtract the 32-bit 618 // fixed size from the current bit number to get the location to backpatch. 619 return Stream.GetCurrentBitNo() - 32; 620 } 621 622 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 623 624 /// Determine the encoding to use for the given string name and length. 625 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 626 bool isChar6 = true; 627 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 628 if (isChar6) 629 isChar6 = BitCodeAbbrevOp::isChar6(*C); 630 if ((unsigned char)*C & 128) 631 // don't bother scanning the rest. 632 return SE_Fixed8; 633 } 634 if (isChar6) 635 return SE_Char6; 636 else 637 return SE_Fixed7; 638 } 639 640 /// Emit top-level description of module, including target triple, inline asm, 641 /// descriptors for global variables, and function prototype info. 642 /// Returns the bit offset to backpatch with the location of the real VST. 643 static uint64_t WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 644 BitstreamWriter &Stream) { 645 // Emit various pieces of data attached to a module. 646 if (!M->getTargetTriple().empty()) 647 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 648 0/*TODO*/, Stream); 649 const std::string &DL = M->getDataLayoutStr(); 650 if (!DL.empty()) 651 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 652 if (!M->getModuleInlineAsm().empty()) 653 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 654 0/*TODO*/, Stream); 655 656 // Emit information about sections and GC, computing how many there are. Also 657 // compute the maximum alignment value. 658 std::map<std::string, unsigned> SectionMap; 659 std::map<std::string, unsigned> GCMap; 660 unsigned MaxAlignment = 0; 661 unsigned MaxGlobalType = 0; 662 for (const GlobalValue &GV : M->globals()) { 663 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 664 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 665 if (GV.hasSection()) { 666 // Give section names unique ID's. 667 unsigned &Entry = SectionMap[GV.getSection()]; 668 if (!Entry) { 669 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 670 0/*TODO*/, Stream); 671 Entry = SectionMap.size(); 672 } 673 } 674 } 675 for (const Function &F : *M) { 676 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 677 if (F.hasSection()) { 678 // Give section names unique ID's. 679 unsigned &Entry = SectionMap[F.getSection()]; 680 if (!Entry) { 681 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 682 0/*TODO*/, Stream); 683 Entry = SectionMap.size(); 684 } 685 } 686 if (F.hasGC()) { 687 // Same for GC names. 688 unsigned &Entry = GCMap[F.getGC()]; 689 if (!Entry) { 690 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 691 0/*TODO*/, Stream); 692 Entry = GCMap.size(); 693 } 694 } 695 } 696 697 // Emit abbrev for globals, now that we know # sections and max alignment. 698 unsigned SimpleGVarAbbrev = 0; 699 if (!M->global_empty()) { 700 // Add an abbrev for common globals with no visibility or thread localness. 701 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 702 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 704 Log2_32_Ceil(MaxGlobalType+1))); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 706 //| explicitType << 1 707 //| constant 708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 710 if (MaxAlignment == 0) // Alignment. 711 Abbv->Add(BitCodeAbbrevOp(0)); 712 else { 713 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 715 Log2_32_Ceil(MaxEncAlignment+1))); 716 } 717 if (SectionMap.empty()) // Section. 718 Abbv->Add(BitCodeAbbrevOp(0)); 719 else 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 721 Log2_32_Ceil(SectionMap.size()+1))); 722 // Don't bother emitting vis + thread local. 723 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 724 } 725 726 // Emit the global variable information. 727 SmallVector<unsigned, 64> Vals; 728 for (const GlobalVariable &GV : M->globals()) { 729 unsigned AbbrevToUse = 0; 730 731 // GLOBALVAR: [type, isconst, initid, 732 // linkage, alignment, section, visibility, threadlocal, 733 // unnamed_addr, externally_initialized, dllstorageclass, 734 // comdat] 735 Vals.push_back(VE.getTypeID(GV.getValueType())); 736 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 737 Vals.push_back(GV.isDeclaration() ? 0 : 738 (VE.getValueID(GV.getInitializer()) + 1)); 739 Vals.push_back(getEncodedLinkage(GV)); 740 Vals.push_back(Log2_32(GV.getAlignment())+1); 741 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 742 if (GV.isThreadLocal() || 743 GV.getVisibility() != GlobalValue::DefaultVisibility || 744 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 745 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 746 GV.hasComdat()) { 747 Vals.push_back(getEncodedVisibility(GV)); 748 Vals.push_back(getEncodedThreadLocalMode(GV)); 749 Vals.push_back(GV.hasUnnamedAddr()); 750 Vals.push_back(GV.isExternallyInitialized()); 751 Vals.push_back(getEncodedDLLStorageClass(GV)); 752 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 753 } else { 754 AbbrevToUse = SimpleGVarAbbrev; 755 } 756 757 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 758 Vals.clear(); 759 } 760 761 // Emit the function proto information. 762 for (const Function &F : *M) { 763 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 764 // section, visibility, gc, unnamed_addr, prologuedata, 765 // dllstorageclass, comdat, prefixdata, personalityfn] 766 Vals.push_back(VE.getTypeID(F.getFunctionType())); 767 Vals.push_back(F.getCallingConv()); 768 Vals.push_back(F.isDeclaration()); 769 Vals.push_back(getEncodedLinkage(F)); 770 Vals.push_back(VE.getAttributeID(F.getAttributes())); 771 Vals.push_back(Log2_32(F.getAlignment())+1); 772 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 773 Vals.push_back(getEncodedVisibility(F)); 774 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 775 Vals.push_back(F.hasUnnamedAddr()); 776 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 777 : 0); 778 Vals.push_back(getEncodedDLLStorageClass(F)); 779 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 780 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 781 : 0); 782 Vals.push_back( 783 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 784 785 unsigned AbbrevToUse = 0; 786 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 787 Vals.clear(); 788 } 789 790 // Emit the alias information. 791 for (const GlobalAlias &A : M->aliases()) { 792 // ALIAS: [alias type, aliasee val#, linkage, visibility] 793 Vals.push_back(VE.getTypeID(A.getValueType())); 794 Vals.push_back(A.getType()->getAddressSpace()); 795 Vals.push_back(VE.getValueID(A.getAliasee())); 796 Vals.push_back(getEncodedLinkage(A)); 797 Vals.push_back(getEncodedVisibility(A)); 798 Vals.push_back(getEncodedDLLStorageClass(A)); 799 Vals.push_back(getEncodedThreadLocalMode(A)); 800 Vals.push_back(A.hasUnnamedAddr()); 801 unsigned AbbrevToUse = 0; 802 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 803 Vals.clear(); 804 } 805 806 // Write a record indicating the number of module-level metadata IDs 807 // This is needed because the ids of metadata are assigned implicitly 808 // based on their ordering in the bitcode, with the function-level 809 // metadata ids starting after the module-level metadata ids. For 810 // function importing where we lazy load the metadata as a postpass, 811 // we want to avoid parsing the module-level metadata before parsing 812 // the imported functions. 813 { 814 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 815 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_METADATA_VALUES)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 817 unsigned MDValsAbbrev = Stream.EmitAbbrev(Abbv); 818 Vals.push_back(VE.numMDs()); 819 Stream.EmitRecord(bitc::MODULE_CODE_METADATA_VALUES, Vals, MDValsAbbrev); 820 Vals.clear(); 821 } 822 823 // Emit the module's source file name. 824 { 825 StringEncoding Bits = getStringEncoding(M->getSourceFileName().data(), 826 M->getSourceFileName().size()); 827 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 828 if (Bits == SE_Char6) 829 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 830 else if (Bits == SE_Fixed7) 831 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 832 833 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 834 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 835 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 837 Abbv->Add(AbbrevOpToUse); 838 unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv); 839 840 for (const auto P : M->getSourceFileName()) 841 Vals.push_back((unsigned char)P); 842 843 // Emit the finished record. 844 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 845 Vals.clear(); 846 } 847 848 // If we have a VST, write the VSTOFFSET record placeholder and return 849 // its offset. 850 if (M->getValueSymbolTable().empty()) 851 return 0; 852 return WriteValueSymbolTableForwardDecl(Stream); 853 } 854 855 static uint64_t GetOptimizationFlags(const Value *V) { 856 uint64_t Flags = 0; 857 858 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 859 if (OBO->hasNoSignedWrap()) 860 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 861 if (OBO->hasNoUnsignedWrap()) 862 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 863 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 864 if (PEO->isExact()) 865 Flags |= 1 << bitc::PEO_EXACT; 866 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 867 if (FPMO->hasUnsafeAlgebra()) 868 Flags |= FastMathFlags::UnsafeAlgebra; 869 if (FPMO->hasNoNaNs()) 870 Flags |= FastMathFlags::NoNaNs; 871 if (FPMO->hasNoInfs()) 872 Flags |= FastMathFlags::NoInfs; 873 if (FPMO->hasNoSignedZeros()) 874 Flags |= FastMathFlags::NoSignedZeros; 875 if (FPMO->hasAllowReciprocal()) 876 Flags |= FastMathFlags::AllowReciprocal; 877 } 878 879 return Flags; 880 } 881 882 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 883 const ValueEnumerator &VE, 884 BitstreamWriter &Stream, 885 SmallVectorImpl<uint64_t> &Record) { 886 // Mimic an MDNode with a value as one operand. 887 Value *V = MD->getValue(); 888 Record.push_back(VE.getTypeID(V->getType())); 889 Record.push_back(VE.getValueID(V)); 890 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 891 Record.clear(); 892 } 893 894 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 895 BitstreamWriter &Stream, 896 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 897 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 898 Metadata *MD = N->getOperand(i); 899 assert(!(MD && isa<LocalAsMetadata>(MD)) && 900 "Unexpected function-local metadata"); 901 Record.push_back(VE.getMetadataOrNullID(MD)); 902 } 903 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 904 : bitc::METADATA_NODE, 905 Record, Abbrev); 906 Record.clear(); 907 } 908 909 static void WriteDILocation(const DILocation *N, const ValueEnumerator &VE, 910 BitstreamWriter &Stream, 911 SmallVectorImpl<uint64_t> &Record, 912 unsigned Abbrev) { 913 Record.push_back(N->isDistinct()); 914 Record.push_back(N->getLine()); 915 Record.push_back(N->getColumn()); 916 Record.push_back(VE.getMetadataID(N->getScope())); 917 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 918 919 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 920 Record.clear(); 921 } 922 923 static void WriteGenericDINode(const GenericDINode *N, 924 const ValueEnumerator &VE, 925 BitstreamWriter &Stream, 926 SmallVectorImpl<uint64_t> &Record, 927 unsigned Abbrev) { 928 Record.push_back(N->isDistinct()); 929 Record.push_back(N->getTag()); 930 Record.push_back(0); // Per-tag version field; unused for now. 931 932 for (auto &I : N->operands()) 933 Record.push_back(VE.getMetadataOrNullID(I)); 934 935 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 936 Record.clear(); 937 } 938 939 static uint64_t rotateSign(int64_t I) { 940 uint64_t U = I; 941 return I < 0 ? ~(U << 1) : U << 1; 942 } 943 944 static void WriteDISubrange(const DISubrange *N, const ValueEnumerator &, 945 BitstreamWriter &Stream, 946 SmallVectorImpl<uint64_t> &Record, 947 unsigned Abbrev) { 948 Record.push_back(N->isDistinct()); 949 Record.push_back(N->getCount()); 950 Record.push_back(rotateSign(N->getLowerBound())); 951 952 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 953 Record.clear(); 954 } 955 956 static void WriteDIEnumerator(const DIEnumerator *N, const ValueEnumerator &VE, 957 BitstreamWriter &Stream, 958 SmallVectorImpl<uint64_t> &Record, 959 unsigned Abbrev) { 960 Record.push_back(N->isDistinct()); 961 Record.push_back(rotateSign(N->getValue())); 962 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 963 964 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 965 Record.clear(); 966 } 967 968 static void WriteDIBasicType(const DIBasicType *N, const ValueEnumerator &VE, 969 BitstreamWriter &Stream, 970 SmallVectorImpl<uint64_t> &Record, 971 unsigned Abbrev) { 972 Record.push_back(N->isDistinct()); 973 Record.push_back(N->getTag()); 974 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 975 Record.push_back(N->getSizeInBits()); 976 Record.push_back(N->getAlignInBits()); 977 Record.push_back(N->getEncoding()); 978 979 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 980 Record.clear(); 981 } 982 983 static void WriteDIDerivedType(const DIDerivedType *N, 984 const ValueEnumerator &VE, 985 BitstreamWriter &Stream, 986 SmallVectorImpl<uint64_t> &Record, 987 unsigned Abbrev) { 988 Record.push_back(N->isDistinct()); 989 Record.push_back(N->getTag()); 990 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 991 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 992 Record.push_back(N->getLine()); 993 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 994 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 995 Record.push_back(N->getSizeInBits()); 996 Record.push_back(N->getAlignInBits()); 997 Record.push_back(N->getOffsetInBits()); 998 Record.push_back(N->getFlags()); 999 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1000 1001 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1002 Record.clear(); 1003 } 1004 1005 static void WriteDICompositeType(const DICompositeType *N, 1006 const ValueEnumerator &VE, 1007 BitstreamWriter &Stream, 1008 SmallVectorImpl<uint64_t> &Record, 1009 unsigned Abbrev) { 1010 Record.push_back(N->isDistinct()); 1011 Record.push_back(N->getTag()); 1012 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1013 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1014 Record.push_back(N->getLine()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1016 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1017 Record.push_back(N->getSizeInBits()); 1018 Record.push_back(N->getAlignInBits()); 1019 Record.push_back(N->getOffsetInBits()); 1020 Record.push_back(N->getFlags()); 1021 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1022 Record.push_back(N->getRuntimeLang()); 1023 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1024 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1025 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1026 1027 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1028 Record.clear(); 1029 } 1030 1031 static void WriteDISubroutineType(const DISubroutineType *N, 1032 const ValueEnumerator &VE, 1033 BitstreamWriter &Stream, 1034 SmallVectorImpl<uint64_t> &Record, 1035 unsigned Abbrev) { 1036 Record.push_back(N->isDistinct()); 1037 Record.push_back(N->getFlags()); 1038 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1039 1040 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1041 Record.clear(); 1042 } 1043 1044 static void WriteDIFile(const DIFile *N, const ValueEnumerator &VE, 1045 BitstreamWriter &Stream, 1046 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1047 Record.push_back(N->isDistinct()); 1048 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1049 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1050 1051 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1052 Record.clear(); 1053 } 1054 1055 static void WriteDICompileUnit(const DICompileUnit *N, 1056 const ValueEnumerator &VE, 1057 BitstreamWriter &Stream, 1058 SmallVectorImpl<uint64_t> &Record, 1059 unsigned Abbrev) { 1060 assert(N->isDistinct() && "Expected distinct compile units"); 1061 Record.push_back(/* IsDistinct */ true); 1062 Record.push_back(N->getSourceLanguage()); 1063 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1064 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1065 Record.push_back(N->isOptimized()); 1066 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1067 Record.push_back(N->getRuntimeVersion()); 1068 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1069 Record.push_back(N->getEmissionKind()); 1070 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1071 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1072 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms().get())); 1073 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1074 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1075 Record.push_back(N->getDWOId()); 1076 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1077 1078 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1079 Record.clear(); 1080 } 1081 1082 static void WriteDISubprogram(const DISubprogram *N, const ValueEnumerator &VE, 1083 BitstreamWriter &Stream, 1084 SmallVectorImpl<uint64_t> &Record, 1085 unsigned Abbrev) { 1086 Record.push_back(N->isDistinct()); 1087 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1088 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1089 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1090 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1091 Record.push_back(N->getLine()); 1092 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1093 Record.push_back(N->isLocalToUnit()); 1094 Record.push_back(N->isDefinition()); 1095 Record.push_back(N->getScopeLine()); 1096 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1097 Record.push_back(N->getVirtuality()); 1098 Record.push_back(N->getVirtualIndex()); 1099 Record.push_back(N->getFlags()); 1100 Record.push_back(N->isOptimized()); 1101 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1102 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1103 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1104 1105 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1106 Record.clear(); 1107 } 1108 1109 static void WriteDILexicalBlock(const DILexicalBlock *N, 1110 const ValueEnumerator &VE, 1111 BitstreamWriter &Stream, 1112 SmallVectorImpl<uint64_t> &Record, 1113 unsigned Abbrev) { 1114 Record.push_back(N->isDistinct()); 1115 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1117 Record.push_back(N->getLine()); 1118 Record.push_back(N->getColumn()); 1119 1120 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1121 Record.clear(); 1122 } 1123 1124 static void WriteDILexicalBlockFile(const DILexicalBlockFile *N, 1125 const ValueEnumerator &VE, 1126 BitstreamWriter &Stream, 1127 SmallVectorImpl<uint64_t> &Record, 1128 unsigned Abbrev) { 1129 Record.push_back(N->isDistinct()); 1130 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1131 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1132 Record.push_back(N->getDiscriminator()); 1133 1134 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1135 Record.clear(); 1136 } 1137 1138 static void WriteDINamespace(const DINamespace *N, const ValueEnumerator &VE, 1139 BitstreamWriter &Stream, 1140 SmallVectorImpl<uint64_t> &Record, 1141 unsigned Abbrev) { 1142 Record.push_back(N->isDistinct()); 1143 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1144 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1145 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1146 Record.push_back(N->getLine()); 1147 1148 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1149 Record.clear(); 1150 } 1151 1152 static void WriteDIMacro(const DIMacro *N, const ValueEnumerator &VE, 1153 BitstreamWriter &Stream, 1154 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1155 Record.push_back(N->isDistinct()); 1156 Record.push_back(N->getMacinfoType()); 1157 Record.push_back(N->getLine()); 1158 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1159 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1160 1161 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1162 Record.clear(); 1163 } 1164 1165 static void WriteDIMacroFile(const DIMacroFile *N, const ValueEnumerator &VE, 1166 BitstreamWriter &Stream, 1167 SmallVectorImpl<uint64_t> &Record, 1168 unsigned Abbrev) { 1169 Record.push_back(N->isDistinct()); 1170 Record.push_back(N->getMacinfoType()); 1171 Record.push_back(N->getLine()); 1172 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1173 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1174 1175 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1176 Record.clear(); 1177 } 1178 1179 static void WriteDIModule(const DIModule *N, const ValueEnumerator &VE, 1180 BitstreamWriter &Stream, 1181 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 1182 Record.push_back(N->isDistinct()); 1183 for (auto &I : N->operands()) 1184 Record.push_back(VE.getMetadataOrNullID(I)); 1185 1186 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1187 Record.clear(); 1188 } 1189 1190 static void WriteDITemplateTypeParameter(const DITemplateTypeParameter *N, 1191 const ValueEnumerator &VE, 1192 BitstreamWriter &Stream, 1193 SmallVectorImpl<uint64_t> &Record, 1194 unsigned Abbrev) { 1195 Record.push_back(N->isDistinct()); 1196 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1197 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1198 1199 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1200 Record.clear(); 1201 } 1202 1203 static void WriteDITemplateValueParameter(const DITemplateValueParameter *N, 1204 const ValueEnumerator &VE, 1205 BitstreamWriter &Stream, 1206 SmallVectorImpl<uint64_t> &Record, 1207 unsigned Abbrev) { 1208 Record.push_back(N->isDistinct()); 1209 Record.push_back(N->getTag()); 1210 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1211 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1212 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1213 1214 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1215 Record.clear(); 1216 } 1217 1218 static void WriteDIGlobalVariable(const DIGlobalVariable *N, 1219 const ValueEnumerator &VE, 1220 BitstreamWriter &Stream, 1221 SmallVectorImpl<uint64_t> &Record, 1222 unsigned Abbrev) { 1223 Record.push_back(N->isDistinct()); 1224 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1225 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1226 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1227 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1228 Record.push_back(N->getLine()); 1229 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1230 Record.push_back(N->isLocalToUnit()); 1231 Record.push_back(N->isDefinition()); 1232 Record.push_back(VE.getMetadataOrNullID(N->getRawVariable())); 1233 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1234 1235 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1236 Record.clear(); 1237 } 1238 1239 static void WriteDILocalVariable(const DILocalVariable *N, 1240 const ValueEnumerator &VE, 1241 BitstreamWriter &Stream, 1242 SmallVectorImpl<uint64_t> &Record, 1243 unsigned Abbrev) { 1244 Record.push_back(N->isDistinct()); 1245 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1246 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1247 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1248 Record.push_back(N->getLine()); 1249 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1250 Record.push_back(N->getArg()); 1251 Record.push_back(N->getFlags()); 1252 1253 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1254 Record.clear(); 1255 } 1256 1257 static void WriteDIExpression(const DIExpression *N, const ValueEnumerator &, 1258 BitstreamWriter &Stream, 1259 SmallVectorImpl<uint64_t> &Record, 1260 unsigned Abbrev) { 1261 Record.reserve(N->getElements().size() + 1); 1262 1263 Record.push_back(N->isDistinct()); 1264 Record.append(N->elements_begin(), N->elements_end()); 1265 1266 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1267 Record.clear(); 1268 } 1269 1270 static void WriteDIObjCProperty(const DIObjCProperty *N, 1271 const ValueEnumerator &VE, 1272 BitstreamWriter &Stream, 1273 SmallVectorImpl<uint64_t> &Record, 1274 unsigned Abbrev) { 1275 Record.push_back(N->isDistinct()); 1276 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1277 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1278 Record.push_back(N->getLine()); 1279 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1280 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1281 Record.push_back(N->getAttributes()); 1282 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1283 1284 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1285 Record.clear(); 1286 } 1287 1288 static void WriteDIImportedEntity(const DIImportedEntity *N, 1289 const ValueEnumerator &VE, 1290 BitstreamWriter &Stream, 1291 SmallVectorImpl<uint64_t> &Record, 1292 unsigned Abbrev) { 1293 Record.push_back(N->isDistinct()); 1294 Record.push_back(N->getTag()); 1295 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1296 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1297 Record.push_back(N->getLine()); 1298 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1299 1300 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1301 Record.clear(); 1302 } 1303 1304 static unsigned createNamedMetadataAbbrev(BitstreamWriter &Stream) { 1305 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1306 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1309 return Stream.EmitAbbrev(Abbv); 1310 } 1311 1312 static void writeNamedMetadata(const Module &M, const ValueEnumerator &VE, 1313 BitstreamWriter &Stream, 1314 SmallVectorImpl<uint64_t> &Record) { 1315 if (M.named_metadata_empty()) 1316 return; 1317 1318 unsigned Abbrev = createNamedMetadataAbbrev(Stream); 1319 for (const NamedMDNode &NMD : M.named_metadata()) { 1320 // Write name. 1321 StringRef Str = NMD.getName(); 1322 Record.append(Str.bytes_begin(), Str.bytes_end()); 1323 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1324 Record.clear(); 1325 1326 // Write named metadata operands. 1327 for (const MDNode *N : NMD.operands()) 1328 Record.push_back(VE.getMetadataID(N)); 1329 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1330 Record.clear(); 1331 } 1332 } 1333 1334 static void WriteModuleMetadata(const Module &M, 1335 const ValueEnumerator &VE, 1336 BitstreamWriter &Stream) { 1337 const auto &MDs = VE.getMDs(); 1338 if (MDs.empty() && M.named_metadata_empty()) 1339 return; 1340 1341 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1342 1343 unsigned MDSAbbrev = 0; 1344 if (VE.hasMDString()) { 1345 // Abbrev for METADATA_STRING. 1346 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1347 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1350 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1351 } 1352 1353 // Initialize MDNode abbreviations. 1354 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1355 #include "llvm/IR/Metadata.def" 1356 1357 if (VE.hasDILocation()) { 1358 // Abbrev for METADATA_LOCATION. 1359 // 1360 // Assume the column is usually under 128, and always output the inlined-at 1361 // location (it's never more expensive than building an array size 1). 1362 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1363 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1369 DILocationAbbrev = Stream.EmitAbbrev(Abbv); 1370 } 1371 1372 if (VE.hasGenericDINode()) { 1373 // Abbrev for METADATA_GENERIC_DEBUG. 1374 // 1375 // Assume the column is usually under 128, and always output the inlined-at 1376 // location (it's never more expensive than building an array size 1). 1377 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1378 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1385 GenericDINodeAbbrev = Stream.EmitAbbrev(Abbv); 1386 } 1387 1388 SmallVector<uint64_t, 64> Record; 1389 for (const Metadata *MD : MDs) { 1390 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1391 assert(N->isResolved() && "Expected forward references to be resolved"); 1392 1393 switch (N->getMetadataID()) { 1394 default: 1395 llvm_unreachable("Invalid MDNode subclass"); 1396 #define HANDLE_MDNODE_LEAF(CLASS) \ 1397 case Metadata::CLASS##Kind: \ 1398 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1399 continue; 1400 #include "llvm/IR/Metadata.def" 1401 } 1402 } 1403 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1404 WriteValueAsMetadata(MDC, VE, Stream, Record); 1405 continue; 1406 } 1407 const MDString *MDS = cast<MDString>(MD); 1408 // Code: [strchar x N] 1409 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1410 1411 // Emit the finished record. 1412 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1413 Record.clear(); 1414 } 1415 1416 writeNamedMetadata(M, VE, Stream, Record); 1417 Stream.ExitBlock(); 1418 } 1419 1420 static void WriteFunctionLocalMetadata(const Function &F, 1421 const ValueEnumerator &VE, 1422 BitstreamWriter &Stream) { 1423 bool StartedMetadataBlock = false; 1424 SmallVector<uint64_t, 64> Record; 1425 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1426 VE.getFunctionLocalMDs(); 1427 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1428 assert(MDs[i] && "Expected valid function-local metadata"); 1429 if (!StartedMetadataBlock) { 1430 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1431 StartedMetadataBlock = true; 1432 } 1433 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1434 } 1435 1436 if (StartedMetadataBlock) 1437 Stream.ExitBlock(); 1438 } 1439 1440 static void WriteMetadataAttachment(const Function &F, 1441 const ValueEnumerator &VE, 1442 BitstreamWriter &Stream) { 1443 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1444 1445 SmallVector<uint64_t, 64> Record; 1446 1447 // Write metadata attachments 1448 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1449 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1450 F.getAllMetadata(MDs); 1451 if (!MDs.empty()) { 1452 for (const auto &I : MDs) { 1453 Record.push_back(I.first); 1454 Record.push_back(VE.getMetadataID(I.second)); 1455 } 1456 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1457 Record.clear(); 1458 } 1459 1460 for (const BasicBlock &BB : F) 1461 for (const Instruction &I : BB) { 1462 MDs.clear(); 1463 I.getAllMetadataOtherThanDebugLoc(MDs); 1464 1465 // If no metadata, ignore instruction. 1466 if (MDs.empty()) continue; 1467 1468 Record.push_back(VE.getInstructionID(&I)); 1469 1470 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1471 Record.push_back(MDs[i].first); 1472 Record.push_back(VE.getMetadataID(MDs[i].second)); 1473 } 1474 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1475 Record.clear(); 1476 } 1477 1478 Stream.ExitBlock(); 1479 } 1480 1481 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1482 SmallVector<uint64_t, 64> Record; 1483 1484 // Write metadata kinds 1485 // METADATA_KIND - [n x [id, name]] 1486 SmallVector<StringRef, 8> Names; 1487 M->getMDKindNames(Names); 1488 1489 if (Names.empty()) return; 1490 1491 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1492 1493 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1494 Record.push_back(MDKindID); 1495 StringRef KName = Names[MDKindID]; 1496 Record.append(KName.begin(), KName.end()); 1497 1498 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1499 Record.clear(); 1500 } 1501 1502 Stream.ExitBlock(); 1503 } 1504 1505 static void WriteOperandBundleTags(const Module *M, BitstreamWriter &Stream) { 1506 // Write metadata kinds 1507 // 1508 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1509 // 1510 // OPERAND_BUNDLE_TAG - [strchr x N] 1511 1512 SmallVector<StringRef, 8> Tags; 1513 M->getOperandBundleTags(Tags); 1514 1515 if (Tags.empty()) 1516 return; 1517 1518 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 1519 1520 SmallVector<uint64_t, 64> Record; 1521 1522 for (auto Tag : Tags) { 1523 Record.append(Tag.begin(), Tag.end()); 1524 1525 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 1526 Record.clear(); 1527 } 1528 1529 Stream.ExitBlock(); 1530 } 1531 1532 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1533 if ((int64_t)V >= 0) 1534 Vals.push_back(V << 1); 1535 else 1536 Vals.push_back((-V << 1) | 1); 1537 } 1538 1539 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1540 const ValueEnumerator &VE, 1541 BitstreamWriter &Stream, bool isGlobal) { 1542 if (FirstVal == LastVal) return; 1543 1544 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1545 1546 unsigned AggregateAbbrev = 0; 1547 unsigned String8Abbrev = 0; 1548 unsigned CString7Abbrev = 0; 1549 unsigned CString6Abbrev = 0; 1550 // If this is a constant pool for the module, emit module-specific abbrevs. 1551 if (isGlobal) { 1552 // Abbrev for CST_CODE_AGGREGATE. 1553 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1554 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1557 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1558 1559 // Abbrev for CST_CODE_STRING. 1560 Abbv = new BitCodeAbbrev(); 1561 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1564 String8Abbrev = Stream.EmitAbbrev(Abbv); 1565 // Abbrev for CST_CODE_CSTRING. 1566 Abbv = new BitCodeAbbrev(); 1567 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1570 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1571 // Abbrev for CST_CODE_CSTRING. 1572 Abbv = new BitCodeAbbrev(); 1573 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1576 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1577 } 1578 1579 SmallVector<uint64_t, 64> Record; 1580 1581 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1582 Type *LastTy = nullptr; 1583 for (unsigned i = FirstVal; i != LastVal; ++i) { 1584 const Value *V = Vals[i].first; 1585 // If we need to switch types, do so now. 1586 if (V->getType() != LastTy) { 1587 LastTy = V->getType(); 1588 Record.push_back(VE.getTypeID(LastTy)); 1589 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1590 CONSTANTS_SETTYPE_ABBREV); 1591 Record.clear(); 1592 } 1593 1594 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1595 Record.push_back(unsigned(IA->hasSideEffects()) | 1596 unsigned(IA->isAlignStack()) << 1 | 1597 unsigned(IA->getDialect()&1) << 2); 1598 1599 // Add the asm string. 1600 const std::string &AsmStr = IA->getAsmString(); 1601 Record.push_back(AsmStr.size()); 1602 Record.append(AsmStr.begin(), AsmStr.end()); 1603 1604 // Add the constraint string. 1605 const std::string &ConstraintStr = IA->getConstraintString(); 1606 Record.push_back(ConstraintStr.size()); 1607 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 1608 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1609 Record.clear(); 1610 continue; 1611 } 1612 const Constant *C = cast<Constant>(V); 1613 unsigned Code = -1U; 1614 unsigned AbbrevToUse = 0; 1615 if (C->isNullValue()) { 1616 Code = bitc::CST_CODE_NULL; 1617 } else if (isa<UndefValue>(C)) { 1618 Code = bitc::CST_CODE_UNDEF; 1619 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1620 if (IV->getBitWidth() <= 64) { 1621 uint64_t V = IV->getSExtValue(); 1622 emitSignedInt64(Record, V); 1623 Code = bitc::CST_CODE_INTEGER; 1624 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1625 } else { // Wide integers, > 64 bits in size. 1626 // We have an arbitrary precision integer value to write whose 1627 // bit width is > 64. However, in canonical unsigned integer 1628 // format it is likely that the high bits are going to be zero. 1629 // So, we only write the number of active words. 1630 unsigned NWords = IV->getValue().getActiveWords(); 1631 const uint64_t *RawWords = IV->getValue().getRawData(); 1632 for (unsigned i = 0; i != NWords; ++i) { 1633 emitSignedInt64(Record, RawWords[i]); 1634 } 1635 Code = bitc::CST_CODE_WIDE_INTEGER; 1636 } 1637 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1638 Code = bitc::CST_CODE_FLOAT; 1639 Type *Ty = CFP->getType(); 1640 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1641 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1642 } else if (Ty->isX86_FP80Ty()) { 1643 // api needed to prevent premature destruction 1644 // bits are not in the same order as a normal i80 APInt, compensate. 1645 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1646 const uint64_t *p = api.getRawData(); 1647 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1648 Record.push_back(p[0] & 0xffffLL); 1649 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1650 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1651 const uint64_t *p = api.getRawData(); 1652 Record.push_back(p[0]); 1653 Record.push_back(p[1]); 1654 } else { 1655 assert (0 && "Unknown FP type!"); 1656 } 1657 } else if (isa<ConstantDataSequential>(C) && 1658 cast<ConstantDataSequential>(C)->isString()) { 1659 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1660 // Emit constant strings specially. 1661 unsigned NumElts = Str->getNumElements(); 1662 // If this is a null-terminated string, use the denser CSTRING encoding. 1663 if (Str->isCString()) { 1664 Code = bitc::CST_CODE_CSTRING; 1665 --NumElts; // Don't encode the null, which isn't allowed by char6. 1666 } else { 1667 Code = bitc::CST_CODE_STRING; 1668 AbbrevToUse = String8Abbrev; 1669 } 1670 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1671 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1672 for (unsigned i = 0; i != NumElts; ++i) { 1673 unsigned char V = Str->getElementAsInteger(i); 1674 Record.push_back(V); 1675 isCStr7 &= (V & 128) == 0; 1676 if (isCStrChar6) 1677 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1678 } 1679 1680 if (isCStrChar6) 1681 AbbrevToUse = CString6Abbrev; 1682 else if (isCStr7) 1683 AbbrevToUse = CString7Abbrev; 1684 } else if (const ConstantDataSequential *CDS = 1685 dyn_cast<ConstantDataSequential>(C)) { 1686 Code = bitc::CST_CODE_DATA; 1687 Type *EltTy = CDS->getType()->getElementType(); 1688 if (isa<IntegerType>(EltTy)) { 1689 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1690 Record.push_back(CDS->getElementAsInteger(i)); 1691 } else { 1692 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1693 Record.push_back( 1694 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 1695 } 1696 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1697 isa<ConstantVector>(C)) { 1698 Code = bitc::CST_CODE_AGGREGATE; 1699 for (const Value *Op : C->operands()) 1700 Record.push_back(VE.getValueID(Op)); 1701 AbbrevToUse = AggregateAbbrev; 1702 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1703 switch (CE->getOpcode()) { 1704 default: 1705 if (Instruction::isCast(CE->getOpcode())) { 1706 Code = bitc::CST_CODE_CE_CAST; 1707 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1708 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1709 Record.push_back(VE.getValueID(C->getOperand(0))); 1710 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1711 } else { 1712 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1713 Code = bitc::CST_CODE_CE_BINOP; 1714 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1715 Record.push_back(VE.getValueID(C->getOperand(0))); 1716 Record.push_back(VE.getValueID(C->getOperand(1))); 1717 uint64_t Flags = GetOptimizationFlags(CE); 1718 if (Flags != 0) 1719 Record.push_back(Flags); 1720 } 1721 break; 1722 case Instruction::GetElementPtr: { 1723 Code = bitc::CST_CODE_CE_GEP; 1724 const auto *GO = cast<GEPOperator>(C); 1725 if (GO->isInBounds()) 1726 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1727 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 1728 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1729 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1730 Record.push_back(VE.getValueID(C->getOperand(i))); 1731 } 1732 break; 1733 } 1734 case Instruction::Select: 1735 Code = bitc::CST_CODE_CE_SELECT; 1736 Record.push_back(VE.getValueID(C->getOperand(0))); 1737 Record.push_back(VE.getValueID(C->getOperand(1))); 1738 Record.push_back(VE.getValueID(C->getOperand(2))); 1739 break; 1740 case Instruction::ExtractElement: 1741 Code = bitc::CST_CODE_CE_EXTRACTELT; 1742 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1743 Record.push_back(VE.getValueID(C->getOperand(0))); 1744 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1745 Record.push_back(VE.getValueID(C->getOperand(1))); 1746 break; 1747 case Instruction::InsertElement: 1748 Code = bitc::CST_CODE_CE_INSERTELT; 1749 Record.push_back(VE.getValueID(C->getOperand(0))); 1750 Record.push_back(VE.getValueID(C->getOperand(1))); 1751 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1752 Record.push_back(VE.getValueID(C->getOperand(2))); 1753 break; 1754 case Instruction::ShuffleVector: 1755 // If the return type and argument types are the same, this is a 1756 // standard shufflevector instruction. If the types are different, 1757 // then the shuffle is widening or truncating the input vectors, and 1758 // the argument type must also be encoded. 1759 if (C->getType() == C->getOperand(0)->getType()) { 1760 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1761 } else { 1762 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1763 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1764 } 1765 Record.push_back(VE.getValueID(C->getOperand(0))); 1766 Record.push_back(VE.getValueID(C->getOperand(1))); 1767 Record.push_back(VE.getValueID(C->getOperand(2))); 1768 break; 1769 case Instruction::ICmp: 1770 case Instruction::FCmp: 1771 Code = bitc::CST_CODE_CE_CMP; 1772 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1773 Record.push_back(VE.getValueID(C->getOperand(0))); 1774 Record.push_back(VE.getValueID(C->getOperand(1))); 1775 Record.push_back(CE->getPredicate()); 1776 break; 1777 } 1778 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1779 Code = bitc::CST_CODE_BLOCKADDRESS; 1780 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1781 Record.push_back(VE.getValueID(BA->getFunction())); 1782 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1783 } else { 1784 #ifndef NDEBUG 1785 C->dump(); 1786 #endif 1787 llvm_unreachable("Unknown constant!"); 1788 } 1789 Stream.EmitRecord(Code, Record, AbbrevToUse); 1790 Record.clear(); 1791 } 1792 1793 Stream.ExitBlock(); 1794 } 1795 1796 static void WriteModuleConstants(const ValueEnumerator &VE, 1797 BitstreamWriter &Stream) { 1798 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1799 1800 // Find the first constant to emit, which is the first non-globalvalue value. 1801 // We know globalvalues have been emitted by WriteModuleInfo. 1802 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1803 if (!isa<GlobalValue>(Vals[i].first)) { 1804 WriteConstants(i, Vals.size(), VE, Stream, true); 1805 return; 1806 } 1807 } 1808 } 1809 1810 /// PushValueAndType - The file has to encode both the value and type id for 1811 /// many values, because we need to know what type to create for forward 1812 /// references. However, most operands are not forward references, so this type 1813 /// field is not needed. 1814 /// 1815 /// This function adds V's value ID to Vals. If the value ID is higher than the 1816 /// instruction ID, then it is a forward reference, and it also includes the 1817 /// type ID. The value ID that is written is encoded relative to the InstID. 1818 static bool PushValueAndType(const Value *V, unsigned InstID, 1819 SmallVectorImpl<unsigned> &Vals, 1820 ValueEnumerator &VE) { 1821 unsigned ValID = VE.getValueID(V); 1822 // Make encoding relative to the InstID. 1823 Vals.push_back(InstID - ValID); 1824 if (ValID >= InstID) { 1825 Vals.push_back(VE.getTypeID(V->getType())); 1826 return true; 1827 } 1828 return false; 1829 } 1830 1831 static void WriteOperandBundles(BitstreamWriter &Stream, ImmutableCallSite CS, 1832 unsigned InstID, ValueEnumerator &VE) { 1833 SmallVector<unsigned, 64> Record; 1834 LLVMContext &C = CS.getInstruction()->getContext(); 1835 1836 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 1837 const auto &Bundle = CS.getOperandBundleAt(i); 1838 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 1839 1840 for (auto &Input : Bundle.Inputs) 1841 PushValueAndType(Input, InstID, Record, VE); 1842 1843 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 1844 Record.clear(); 1845 } 1846 } 1847 1848 /// pushValue - Like PushValueAndType, but where the type of the value is 1849 /// omitted (perhaps it was already encoded in an earlier operand). 1850 static void pushValue(const Value *V, unsigned InstID, 1851 SmallVectorImpl<unsigned> &Vals, 1852 ValueEnumerator &VE) { 1853 unsigned ValID = VE.getValueID(V); 1854 Vals.push_back(InstID - ValID); 1855 } 1856 1857 static void pushValueSigned(const Value *V, unsigned InstID, 1858 SmallVectorImpl<uint64_t> &Vals, 1859 ValueEnumerator &VE) { 1860 unsigned ValID = VE.getValueID(V); 1861 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1862 emitSignedInt64(Vals, diff); 1863 } 1864 1865 /// WriteInstruction - Emit an instruction to the specified stream. 1866 static void WriteInstruction(const Instruction &I, unsigned InstID, 1867 ValueEnumerator &VE, BitstreamWriter &Stream, 1868 SmallVectorImpl<unsigned> &Vals) { 1869 unsigned Code = 0; 1870 unsigned AbbrevToUse = 0; 1871 VE.setInstructionID(&I); 1872 switch (I.getOpcode()) { 1873 default: 1874 if (Instruction::isCast(I.getOpcode())) { 1875 Code = bitc::FUNC_CODE_INST_CAST; 1876 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1877 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1878 Vals.push_back(VE.getTypeID(I.getType())); 1879 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1880 } else { 1881 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1882 Code = bitc::FUNC_CODE_INST_BINOP; 1883 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1884 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1885 pushValue(I.getOperand(1), InstID, Vals, VE); 1886 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1887 uint64_t Flags = GetOptimizationFlags(&I); 1888 if (Flags != 0) { 1889 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1890 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1891 Vals.push_back(Flags); 1892 } 1893 } 1894 break; 1895 1896 case Instruction::GetElementPtr: { 1897 Code = bitc::FUNC_CODE_INST_GEP; 1898 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 1899 auto &GEPInst = cast<GetElementPtrInst>(I); 1900 Vals.push_back(GEPInst.isInBounds()); 1901 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 1902 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1903 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1904 break; 1905 } 1906 case Instruction::ExtractValue: { 1907 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1908 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1909 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1910 Vals.append(EVI->idx_begin(), EVI->idx_end()); 1911 break; 1912 } 1913 case Instruction::InsertValue: { 1914 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1915 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1916 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1917 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1918 Vals.append(IVI->idx_begin(), IVI->idx_end()); 1919 break; 1920 } 1921 case Instruction::Select: 1922 Code = bitc::FUNC_CODE_INST_VSELECT; 1923 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1924 pushValue(I.getOperand(2), InstID, Vals, VE); 1925 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1926 break; 1927 case Instruction::ExtractElement: 1928 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1929 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1930 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1931 break; 1932 case Instruction::InsertElement: 1933 Code = bitc::FUNC_CODE_INST_INSERTELT; 1934 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1935 pushValue(I.getOperand(1), InstID, Vals, VE); 1936 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1937 break; 1938 case Instruction::ShuffleVector: 1939 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1940 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1941 pushValue(I.getOperand(1), InstID, Vals, VE); 1942 pushValue(I.getOperand(2), InstID, Vals, VE); 1943 break; 1944 case Instruction::ICmp: 1945 case Instruction::FCmp: { 1946 // compare returning Int1Ty or vector of Int1Ty 1947 Code = bitc::FUNC_CODE_INST_CMP2; 1948 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1949 pushValue(I.getOperand(1), InstID, Vals, VE); 1950 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1951 uint64_t Flags = GetOptimizationFlags(&I); 1952 if (Flags != 0) 1953 Vals.push_back(Flags); 1954 break; 1955 } 1956 1957 case Instruction::Ret: 1958 { 1959 Code = bitc::FUNC_CODE_INST_RET; 1960 unsigned NumOperands = I.getNumOperands(); 1961 if (NumOperands == 0) 1962 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1963 else if (NumOperands == 1) { 1964 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1965 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1966 } else { 1967 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1968 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1969 } 1970 } 1971 break; 1972 case Instruction::Br: 1973 { 1974 Code = bitc::FUNC_CODE_INST_BR; 1975 const BranchInst &II = cast<BranchInst>(I); 1976 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1977 if (II.isConditional()) { 1978 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1979 pushValue(II.getCondition(), InstID, Vals, VE); 1980 } 1981 } 1982 break; 1983 case Instruction::Switch: 1984 { 1985 Code = bitc::FUNC_CODE_INST_SWITCH; 1986 const SwitchInst &SI = cast<SwitchInst>(I); 1987 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1988 pushValue(SI.getCondition(), InstID, Vals, VE); 1989 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1990 for (SwitchInst::ConstCaseIt Case : SI.cases()) { 1991 Vals.push_back(VE.getValueID(Case.getCaseValue())); 1992 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 1993 } 1994 } 1995 break; 1996 case Instruction::IndirectBr: 1997 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1998 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1999 // Encode the address operand as relative, but not the basic blocks. 2000 pushValue(I.getOperand(0), InstID, Vals, VE); 2001 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2002 Vals.push_back(VE.getValueID(I.getOperand(i))); 2003 break; 2004 2005 case Instruction::Invoke: { 2006 const InvokeInst *II = cast<InvokeInst>(&I); 2007 const Value *Callee = II->getCalledValue(); 2008 FunctionType *FTy = II->getFunctionType(); 2009 2010 if (II->hasOperandBundles()) 2011 WriteOperandBundles(Stream, II, InstID, VE); 2012 2013 Code = bitc::FUNC_CODE_INST_INVOKE; 2014 2015 Vals.push_back(VE.getAttributeID(II->getAttributes())); 2016 Vals.push_back(II->getCallingConv() | 1 << 13); 2017 Vals.push_back(VE.getValueID(II->getNormalDest())); 2018 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2019 Vals.push_back(VE.getTypeID(FTy)); 2020 PushValueAndType(Callee, InstID, Vals, VE); 2021 2022 // Emit value #'s for the fixed parameters. 2023 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2024 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 2025 2026 // Emit type/value pairs for varargs params. 2027 if (FTy->isVarArg()) { 2028 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 2029 i != e; ++i) 2030 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 2031 } 2032 break; 2033 } 2034 case Instruction::Resume: 2035 Code = bitc::FUNC_CODE_INST_RESUME; 2036 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2037 break; 2038 case Instruction::CleanupRet: { 2039 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2040 const auto &CRI = cast<CleanupReturnInst>(I); 2041 pushValue(CRI.getCleanupPad(), InstID, Vals, VE); 2042 if (CRI.hasUnwindDest()) 2043 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2044 break; 2045 } 2046 case Instruction::CatchRet: { 2047 Code = bitc::FUNC_CODE_INST_CATCHRET; 2048 const auto &CRI = cast<CatchReturnInst>(I); 2049 pushValue(CRI.getCatchPad(), InstID, Vals, VE); 2050 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2051 break; 2052 } 2053 case Instruction::CleanupPad: 2054 case Instruction::CatchPad: { 2055 const auto &FuncletPad = cast<FuncletPadInst>(I); 2056 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2057 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2058 pushValue(FuncletPad.getParentPad(), InstID, Vals, VE); 2059 2060 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2061 Vals.push_back(NumArgOperands); 2062 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2063 PushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals, VE); 2064 break; 2065 } 2066 case Instruction::CatchSwitch: { 2067 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2068 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2069 2070 pushValue(CatchSwitch.getParentPad(), InstID, Vals, VE); 2071 2072 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2073 Vals.push_back(NumHandlers); 2074 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2075 Vals.push_back(VE.getValueID(CatchPadBB)); 2076 2077 if (CatchSwitch.hasUnwindDest()) 2078 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2079 break; 2080 } 2081 case Instruction::Unreachable: 2082 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2083 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2084 break; 2085 2086 case Instruction::PHI: { 2087 const PHINode &PN = cast<PHINode>(I); 2088 Code = bitc::FUNC_CODE_INST_PHI; 2089 // With the newer instruction encoding, forward references could give 2090 // negative valued IDs. This is most common for PHIs, so we use 2091 // signed VBRs. 2092 SmallVector<uint64_t, 128> Vals64; 2093 Vals64.push_back(VE.getTypeID(PN.getType())); 2094 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2095 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 2096 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2097 } 2098 // Emit a Vals64 vector and exit. 2099 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2100 Vals64.clear(); 2101 return; 2102 } 2103 2104 case Instruction::LandingPad: { 2105 const LandingPadInst &LP = cast<LandingPadInst>(I); 2106 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2107 Vals.push_back(VE.getTypeID(LP.getType())); 2108 Vals.push_back(LP.isCleanup()); 2109 Vals.push_back(LP.getNumClauses()); 2110 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2111 if (LP.isCatch(I)) 2112 Vals.push_back(LandingPadInst::Catch); 2113 else 2114 Vals.push_back(LandingPadInst::Filter); 2115 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 2116 } 2117 break; 2118 } 2119 2120 case Instruction::Alloca: { 2121 Code = bitc::FUNC_CODE_INST_ALLOCA; 2122 const AllocaInst &AI = cast<AllocaInst>(I); 2123 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2124 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2125 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2126 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2127 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2128 "not enough bits for maximum alignment"); 2129 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2130 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2131 AlignRecord |= 1 << 6; 2132 // Reserve bit 7 for SwiftError flag. 2133 // AlignRecord |= AI.isSwiftError() << 7; 2134 Vals.push_back(AlignRecord); 2135 break; 2136 } 2137 2138 case Instruction::Load: 2139 if (cast<LoadInst>(I).isAtomic()) { 2140 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2141 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 2142 } else { 2143 Code = bitc::FUNC_CODE_INST_LOAD; 2144 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 2145 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2146 } 2147 Vals.push_back(VE.getTypeID(I.getType())); 2148 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2149 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2150 if (cast<LoadInst>(I).isAtomic()) { 2151 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2152 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2153 } 2154 break; 2155 case Instruction::Store: 2156 if (cast<StoreInst>(I).isAtomic()) 2157 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2158 else 2159 Code = bitc::FUNC_CODE_INST_STORE; 2160 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 2161 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // valty + val 2162 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2163 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2164 if (cast<StoreInst>(I).isAtomic()) { 2165 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2166 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2167 } 2168 break; 2169 case Instruction::AtomicCmpXchg: 2170 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2171 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2172 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // cmp. 2173 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 2174 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2175 Vals.push_back(GetEncodedOrdering( 2176 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2177 Vals.push_back(GetEncodedSynchScope( 2178 cast<AtomicCmpXchgInst>(I).getSynchScope())); 2179 Vals.push_back(GetEncodedOrdering( 2180 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2181 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2182 break; 2183 case Instruction::AtomicRMW: 2184 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2185 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 2186 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 2187 Vals.push_back(GetEncodedRMWOperation( 2188 cast<AtomicRMWInst>(I).getOperation())); 2189 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2190 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2191 Vals.push_back(GetEncodedSynchScope( 2192 cast<AtomicRMWInst>(I).getSynchScope())); 2193 break; 2194 case Instruction::Fence: 2195 Code = bitc::FUNC_CODE_INST_FENCE; 2196 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2197 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2198 break; 2199 case Instruction::Call: { 2200 const CallInst &CI = cast<CallInst>(I); 2201 FunctionType *FTy = CI.getFunctionType(); 2202 2203 if (CI.hasOperandBundles()) 2204 WriteOperandBundles(Stream, &CI, InstID, VE); 2205 2206 Code = bitc::FUNC_CODE_INST_CALL; 2207 2208 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 2209 2210 unsigned Flags = GetOptimizationFlags(&I); 2211 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2212 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2213 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2214 1 << bitc::CALL_EXPLICIT_TYPE | 2215 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2216 unsigned(Flags != 0) << bitc::CALL_FMF); 2217 if (Flags != 0) 2218 Vals.push_back(Flags); 2219 2220 Vals.push_back(VE.getTypeID(FTy)); 2221 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 2222 2223 // Emit value #'s for the fixed parameters. 2224 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2225 // Check for labels (can happen with asm labels). 2226 if (FTy->getParamType(i)->isLabelTy()) 2227 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2228 else 2229 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 2230 } 2231 2232 // Emit type/value pairs for varargs params. 2233 if (FTy->isVarArg()) { 2234 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2235 i != e; ++i) 2236 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 2237 } 2238 break; 2239 } 2240 case Instruction::VAArg: 2241 Code = bitc::FUNC_CODE_INST_VAARG; 2242 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2243 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 2244 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2245 break; 2246 } 2247 2248 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2249 Vals.clear(); 2250 } 2251 2252 /// Emit names for globals/functions etc. The VSTOffsetPlaceholder, 2253 /// BitcodeStartBit and ModuleSummaryIndex are only passed for the module-level 2254 /// VST, where we are including a function bitcode index and need to 2255 /// backpatch the VST forward declaration record. 2256 static void WriteValueSymbolTable( 2257 const ValueSymbolTable &VST, const ValueEnumerator &VE, 2258 BitstreamWriter &Stream, uint64_t VSTOffsetPlaceholder = 0, 2259 uint64_t BitcodeStartBit = 0, 2260 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> 2261 *FunctionIndex = nullptr) { 2262 if (VST.empty()) { 2263 // WriteValueSymbolTableForwardDecl should have returned early as 2264 // well. Ensure this handling remains in sync by asserting that 2265 // the placeholder offset is not set. 2266 assert(VSTOffsetPlaceholder == 0); 2267 return; 2268 } 2269 2270 if (VSTOffsetPlaceholder > 0) { 2271 // Get the offset of the VST we are writing, and backpatch it into 2272 // the VST forward declaration record. 2273 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2274 // The BitcodeStartBit was the stream offset of the actual bitcode 2275 // (e.g. excluding any initial darwin header). 2276 VSTOffset -= BitcodeStartBit; 2277 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2278 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2279 } 2280 2281 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2282 2283 // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY 2284 // records, which are not used in the per-function VSTs. 2285 unsigned FnEntry8BitAbbrev; 2286 unsigned FnEntry7BitAbbrev; 2287 unsigned FnEntry6BitAbbrev; 2288 if (VSTOffsetPlaceholder > 0) { 2289 // 8-bit fixed-width VST_CODE_FNENTRY function strings. 2290 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2291 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2296 FnEntry8BitAbbrev = Stream.EmitAbbrev(Abbv); 2297 2298 // 7-bit fixed width VST_CODE_FNENTRY function strings. 2299 Abbv = new BitCodeAbbrev(); 2300 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2305 FnEntry7BitAbbrev = Stream.EmitAbbrev(Abbv); 2306 2307 // 6-bit char6 VST_CODE_FNENTRY function strings. 2308 Abbv = new BitCodeAbbrev(); 2309 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2314 FnEntry6BitAbbrev = Stream.EmitAbbrev(Abbv); 2315 } 2316 2317 // FIXME: Set up the abbrev, we know how many values there are! 2318 // FIXME: We know if the type names can use 7-bit ascii. 2319 SmallVector<unsigned, 64> NameVals; 2320 2321 for (const ValueName &Name : VST) { 2322 // Figure out the encoding to use for the name. 2323 StringEncoding Bits = 2324 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2325 2326 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2327 NameVals.push_back(VE.getValueID(Name.getValue())); 2328 2329 Function *F = dyn_cast<Function>(Name.getValue()); 2330 if (!F) { 2331 // If value is an alias, need to get the aliased base object to 2332 // see if it is a function. 2333 auto *GA = dyn_cast<GlobalAlias>(Name.getValue()); 2334 if (GA && GA->getBaseObject()) 2335 F = dyn_cast<Function>(GA->getBaseObject()); 2336 } 2337 2338 // VST_CODE_ENTRY: [valueid, namechar x N] 2339 // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N] 2340 // VST_CODE_BBENTRY: [bbid, namechar x N] 2341 unsigned Code; 2342 if (isa<BasicBlock>(Name.getValue())) { 2343 Code = bitc::VST_CODE_BBENTRY; 2344 if (Bits == SE_Char6) 2345 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2346 } else if (F && !F->isDeclaration()) { 2347 // Must be the module-level VST, where we pass in the Index and 2348 // have a VSTOffsetPlaceholder. The function-level VST should not 2349 // contain any Function symbols. 2350 assert(FunctionIndex); 2351 assert(VSTOffsetPlaceholder > 0); 2352 2353 // Save the word offset of the function (from the start of the 2354 // actual bitcode written to the stream). 2355 uint64_t BitcodeIndex = 2356 (*FunctionIndex)[F]->bitcodeIndex() - BitcodeStartBit; 2357 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2358 NameVals.push_back(BitcodeIndex / 32); 2359 2360 Code = bitc::VST_CODE_FNENTRY; 2361 AbbrevToUse = FnEntry8BitAbbrev; 2362 if (Bits == SE_Char6) 2363 AbbrevToUse = FnEntry6BitAbbrev; 2364 else if (Bits == SE_Fixed7) 2365 AbbrevToUse = FnEntry7BitAbbrev; 2366 } else { 2367 Code = bitc::VST_CODE_ENTRY; 2368 if (Bits == SE_Char6) 2369 AbbrevToUse = VST_ENTRY_6_ABBREV; 2370 else if (Bits == SE_Fixed7) 2371 AbbrevToUse = VST_ENTRY_7_ABBREV; 2372 } 2373 2374 for (const auto P : Name.getKey()) 2375 NameVals.push_back((unsigned char)P); 2376 2377 // Emit the finished record. 2378 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2379 NameVals.clear(); 2380 } 2381 Stream.ExitBlock(); 2382 } 2383 2384 /// Emit function names and summary offsets for the combined index 2385 /// used by ThinLTO. 2386 static void 2387 WriteCombinedValueSymbolTable(const ModuleSummaryIndex &Index, 2388 BitstreamWriter &Stream, 2389 std::map<uint64_t, unsigned> &GUIDToValueIdMap, 2390 uint64_t VSTOffsetPlaceholder) { 2391 assert(VSTOffsetPlaceholder > 0 && "Expected non-zero VSTOffsetPlaceholder"); 2392 // Get the offset of the VST we are writing, and backpatch it into 2393 // the VST forward declaration record. 2394 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2395 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2396 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32); 2397 2398 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2399 2400 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2401 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_GVDEFENTRY)); 2402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // sumoffset 2404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // guid 2405 unsigned DefEntryAbbrev = Stream.EmitAbbrev(Abbv); 2406 2407 Abbv = new BitCodeAbbrev(); 2408 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY)); 2409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid 2411 unsigned EntryAbbrev = Stream.EmitAbbrev(Abbv); 2412 2413 SmallVector<uint64_t, 64> NameVals; 2414 2415 for (const auto &FII : Index) { 2416 uint64_t FuncGUID = FII.first; 2417 const auto &VMI = GUIDToValueIdMap.find(FuncGUID); 2418 assert(VMI != GUIDToValueIdMap.end()); 2419 2420 for (const auto &FI : FII.second) { 2421 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, sumoffset, guid] 2422 NameVals.push_back(VMI->second); 2423 NameVals.push_back(FI->bitcodeIndex()); 2424 NameVals.push_back(FuncGUID); 2425 2426 // Emit the finished record. 2427 Stream.EmitRecord(bitc::VST_CODE_COMBINED_GVDEFENTRY, NameVals, 2428 DefEntryAbbrev); 2429 NameVals.clear(); 2430 } 2431 GUIDToValueIdMap.erase(VMI); 2432 } 2433 for (const auto &GVI : GUIDToValueIdMap) { 2434 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 2435 NameVals.push_back(GVI.second); 2436 NameVals.push_back(GVI.first); 2437 2438 // Emit the finished record. 2439 Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev); 2440 NameVals.clear(); 2441 } 2442 Stream.ExitBlock(); 2443 } 2444 2445 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2446 BitstreamWriter &Stream) { 2447 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2448 unsigned Code; 2449 if (isa<BasicBlock>(Order.V)) 2450 Code = bitc::USELIST_CODE_BB; 2451 else 2452 Code = bitc::USELIST_CODE_DEFAULT; 2453 2454 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2455 Record.push_back(VE.getValueID(Order.V)); 2456 Stream.EmitRecord(Code, Record); 2457 } 2458 2459 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2460 BitstreamWriter &Stream) { 2461 assert(VE.shouldPreserveUseListOrder() && 2462 "Expected to be preserving use-list order"); 2463 2464 auto hasMore = [&]() { 2465 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2466 }; 2467 if (!hasMore()) 2468 // Nothing to do. 2469 return; 2470 2471 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2472 while (hasMore()) { 2473 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2474 VE.UseListOrders.pop_back(); 2475 } 2476 Stream.ExitBlock(); 2477 } 2478 2479 // Walk through the operands of a given User via worklist iteration and populate 2480 // the set of GlobalValue references encountered. Invoked either on an 2481 // Instruction or a GlobalVariable (which walks its initializer). 2482 static void findRefEdges(const User *CurUser, const ValueEnumerator &VE, 2483 DenseSet<unsigned> &RefEdges, 2484 SmallPtrSet<const User *, 8> &Visited) { 2485 SmallVector<const User *, 32> Worklist; 2486 Worklist.push_back(CurUser); 2487 2488 while (!Worklist.empty()) { 2489 const User *U = Worklist.pop_back_val(); 2490 2491 if (!Visited.insert(U).second) 2492 continue; 2493 2494 ImmutableCallSite CS(U); 2495 2496 for (const auto &OI : U->operands()) { 2497 const User *Operand = dyn_cast<User>(OI); 2498 if (!Operand) 2499 continue; 2500 if (isa<BlockAddress>(Operand)) 2501 continue; 2502 if (isa<GlobalValue>(Operand)) { 2503 // We have a reference to a global value. This should be added to 2504 // the reference set unless it is a callee. Callees are handled 2505 // specially by WriteFunction and are added to a separate list. 2506 if (!(CS && CS.isCallee(&OI))) 2507 RefEdges.insert(VE.getValueID(Operand)); 2508 continue; 2509 } 2510 Worklist.push_back(Operand); 2511 } 2512 } 2513 } 2514 2515 /// Emit a function body to the module stream. 2516 static void WriteFunction( 2517 const Function &F, const Module *M, ValueEnumerator &VE, 2518 BitstreamWriter &Stream, 2519 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2520 bool EmitSummaryIndex) { 2521 // Save the bitcode index of the start of this function block for recording 2522 // in the VST. 2523 uint64_t BitcodeIndex = Stream.GetCurrentBitNo(); 2524 2525 bool HasProfileData = F.getEntryCount().hasValue(); 2526 std::unique_ptr<BlockFrequencyInfo> BFI; 2527 if (EmitSummaryIndex && HasProfileData) { 2528 Function &Func = const_cast<Function &>(F); 2529 LoopInfo LI{DominatorTree(Func)}; 2530 BranchProbabilityInfo BPI{Func, LI}; 2531 BFI = llvm::make_unique<BlockFrequencyInfo>(Func, BPI, LI); 2532 } 2533 2534 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2535 VE.incorporateFunction(F); 2536 2537 SmallVector<unsigned, 64> Vals; 2538 2539 // Emit the number of basic blocks, so the reader can create them ahead of 2540 // time. 2541 Vals.push_back(VE.getBasicBlocks().size()); 2542 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2543 Vals.clear(); 2544 2545 // If there are function-local constants, emit them now. 2546 unsigned CstStart, CstEnd; 2547 VE.getFunctionConstantRange(CstStart, CstEnd); 2548 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2549 2550 // If there is function-local metadata, emit it now. 2551 WriteFunctionLocalMetadata(F, VE, Stream); 2552 2553 // Keep a running idea of what the instruction ID is. 2554 unsigned InstID = CstEnd; 2555 2556 bool NeedsMetadataAttachment = F.hasMetadata(); 2557 2558 DILocation *LastDL = nullptr; 2559 unsigned NumInsts = 0; 2560 // Map from callee ValueId to profile count. Used to accumulate profile 2561 // counts for all static calls to a given callee. 2562 DenseMap<unsigned, CalleeInfo> CallGraphEdges; 2563 DenseSet<unsigned> RefEdges; 2564 2565 SmallPtrSet<const User *, 8> Visited; 2566 // Finally, emit all the instructions, in order. 2567 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2568 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2569 I != E; ++I) { 2570 WriteInstruction(*I, InstID, VE, Stream, Vals); 2571 2572 if (!isa<DbgInfoIntrinsic>(I)) 2573 ++NumInsts; 2574 2575 if (!I->getType()->isVoidTy()) 2576 ++InstID; 2577 2578 if (EmitSummaryIndex) { 2579 if (auto CS = ImmutableCallSite(&*I)) { 2580 auto *CalledFunction = CS.getCalledFunction(); 2581 if (CalledFunction && CalledFunction->hasName() && 2582 !CalledFunction->isIntrinsic()) { 2583 auto ScaledCount = BFI ? BFI->getBlockProfileCount(&*BB) : None; 2584 unsigned CalleeId = VE.getValueID( 2585 M->getValueSymbolTable().lookup(CalledFunction->getName())); 2586 CallGraphEdges[CalleeId] += 2587 (ScaledCount ? ScaledCount.getValue() : 0); 2588 } 2589 } 2590 findRefEdges(&*I, VE, RefEdges, Visited); 2591 } 2592 2593 // If the instruction has metadata, write a metadata attachment later. 2594 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2595 2596 // If the instruction has a debug location, emit it. 2597 DILocation *DL = I->getDebugLoc(); 2598 if (!DL) 2599 continue; 2600 2601 if (DL == LastDL) { 2602 // Just repeat the same debug loc as last time. 2603 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2604 continue; 2605 } 2606 2607 Vals.push_back(DL->getLine()); 2608 Vals.push_back(DL->getColumn()); 2609 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2610 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2611 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2612 Vals.clear(); 2613 2614 LastDL = DL; 2615 } 2616 2617 std::unique_ptr<FunctionSummary> FuncSummary; 2618 if (EmitSummaryIndex) { 2619 FuncSummary = llvm::make_unique<FunctionSummary>(F.getLinkage(), NumInsts); 2620 FuncSummary->addCallGraphEdges(CallGraphEdges); 2621 FuncSummary->addRefEdges(RefEdges); 2622 } 2623 FunctionIndex[&F] = 2624 llvm::make_unique<GlobalValueInfo>(BitcodeIndex, std::move(FuncSummary)); 2625 2626 // Emit names for all the instructions etc. 2627 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2628 2629 if (NeedsMetadataAttachment) 2630 WriteMetadataAttachment(F, VE, Stream); 2631 if (VE.shouldPreserveUseListOrder()) 2632 WriteUseListBlock(&F, VE, Stream); 2633 VE.purgeFunction(); 2634 Stream.ExitBlock(); 2635 } 2636 2637 // Emit blockinfo, which defines the standard abbreviations etc. 2638 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2639 // We only want to emit block info records for blocks that have multiple 2640 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2641 // Other blocks can define their abbrevs inline. 2642 Stream.EnterBlockInfoBlock(2); 2643 2644 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2645 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2650 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2651 Abbv) != VST_ENTRY_8_ABBREV) 2652 llvm_unreachable("Unexpected abbrev ordering!"); 2653 } 2654 2655 { // 7-bit fixed width VST_CODE_ENTRY strings. 2656 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2657 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2661 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2662 Abbv) != VST_ENTRY_7_ABBREV) 2663 llvm_unreachable("Unexpected abbrev ordering!"); 2664 } 2665 { // 6-bit char6 VST_CODE_ENTRY strings. 2666 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2667 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2669 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2671 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2672 Abbv) != VST_ENTRY_6_ABBREV) 2673 llvm_unreachable("Unexpected abbrev ordering!"); 2674 } 2675 { // 6-bit char6 VST_CODE_BBENTRY strings. 2676 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2677 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2681 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2682 Abbv) != VST_BBENTRY_6_ABBREV) 2683 llvm_unreachable("Unexpected abbrev ordering!"); 2684 } 2685 2686 2687 2688 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2689 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2690 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2692 VE.computeBitsRequiredForTypeIndicies())); 2693 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2694 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2695 llvm_unreachable("Unexpected abbrev ordering!"); 2696 } 2697 2698 { // INTEGER abbrev for CONSTANTS_BLOCK. 2699 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2700 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2702 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2703 Abbv) != CONSTANTS_INTEGER_ABBREV) 2704 llvm_unreachable("Unexpected abbrev ordering!"); 2705 } 2706 2707 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2708 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2709 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2712 VE.computeBitsRequiredForTypeIndicies())); 2713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2714 2715 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2716 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2717 llvm_unreachable("Unexpected abbrev ordering!"); 2718 } 2719 { // NULL abbrev for CONSTANTS_BLOCK. 2720 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2721 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2722 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2723 Abbv) != CONSTANTS_NULL_Abbrev) 2724 llvm_unreachable("Unexpected abbrev ordering!"); 2725 } 2726 2727 // FIXME: This should only use space for first class types! 2728 2729 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2730 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2731 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2734 VE.computeBitsRequiredForTypeIndicies())); 2735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2737 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2738 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2739 llvm_unreachable("Unexpected abbrev ordering!"); 2740 } 2741 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2742 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2743 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2747 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2748 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2749 llvm_unreachable("Unexpected abbrev ordering!"); 2750 } 2751 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2752 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2753 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2758 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2759 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2760 llvm_unreachable("Unexpected abbrev ordering!"); 2761 } 2762 { // INST_CAST abbrev for FUNCTION_BLOCK. 2763 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2764 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2767 VE.computeBitsRequiredForTypeIndicies())); 2768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2769 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2770 Abbv) != FUNCTION_INST_CAST_ABBREV) 2771 llvm_unreachable("Unexpected abbrev ordering!"); 2772 } 2773 2774 { // INST_RET abbrev for FUNCTION_BLOCK. 2775 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2776 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2777 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2778 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2779 llvm_unreachable("Unexpected abbrev ordering!"); 2780 } 2781 { // INST_RET abbrev for FUNCTION_BLOCK. 2782 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2783 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2785 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2786 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2787 llvm_unreachable("Unexpected abbrev ordering!"); 2788 } 2789 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2790 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2791 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2792 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2793 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2794 llvm_unreachable("Unexpected abbrev ordering!"); 2795 } 2796 { 2797 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2798 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 2799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 2800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2801 Log2_32_Ceil(VE.getTypes().size() + 1))); 2802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2804 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 2805 FUNCTION_INST_GEP_ABBREV) 2806 llvm_unreachable("Unexpected abbrev ordering!"); 2807 } 2808 2809 Stream.ExitBlock(); 2810 } 2811 2812 /// Write the module path strings, currently only used when generating 2813 /// a combined index file. 2814 static void WriteModStrings(const ModuleSummaryIndex &I, 2815 BitstreamWriter &Stream) { 2816 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 2817 2818 // TODO: See which abbrev sizes we actually need to emit 2819 2820 // 8-bit fixed-width MST_ENTRY strings. 2821 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2822 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2826 unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv); 2827 2828 // 7-bit fixed width MST_ENTRY strings. 2829 Abbv = new BitCodeAbbrev(); 2830 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2834 unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv); 2835 2836 // 6-bit char6 MST_ENTRY strings. 2837 Abbv = new BitCodeAbbrev(); 2838 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 2839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2842 unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv); 2843 2844 SmallVector<unsigned, 64> NameVals; 2845 for (const StringMapEntry<uint64_t> &MPSE : I.modPathStringEntries()) { 2846 StringEncoding Bits = 2847 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 2848 unsigned AbbrevToUse = Abbrev8Bit; 2849 if (Bits == SE_Char6) 2850 AbbrevToUse = Abbrev6Bit; 2851 else if (Bits == SE_Fixed7) 2852 AbbrevToUse = Abbrev7Bit; 2853 2854 NameVals.push_back(MPSE.getValue()); 2855 2856 for (const auto P : MPSE.getKey()) 2857 NameVals.push_back((unsigned char)P); 2858 2859 // Emit the finished record. 2860 Stream.EmitRecord(bitc::MST_CODE_ENTRY, NameVals, AbbrevToUse); 2861 NameVals.clear(); 2862 } 2863 Stream.ExitBlock(); 2864 } 2865 2866 // Helper to emit a single function summary record. 2867 static void WritePerModuleFunctionSummaryRecord( 2868 SmallVector<uint64_t, 64> &NameVals, FunctionSummary *FS, unsigned ValueID, 2869 unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 2870 BitstreamWriter &Stream, const Function &F) { 2871 assert(FS); 2872 NameVals.push_back(ValueID); 2873 NameVals.push_back(getEncodedLinkage(FS->linkage())); 2874 NameVals.push_back(FS->instCount()); 2875 NameVals.push_back(FS->refs().size()); 2876 2877 for (auto &RI : FS->refs()) 2878 NameVals.push_back(RI); 2879 2880 bool HasProfileData = F.getEntryCount().hasValue(); 2881 for (auto &ECI : FS->edges()) { 2882 NameVals.push_back(ECI.first); 2883 assert(ECI.second.CallsiteCount > 0 && "Expected at least one callsite"); 2884 NameVals.push_back(ECI.second.CallsiteCount); 2885 if (HasProfileData) 2886 NameVals.push_back(ECI.second.ProfileCount); 2887 } 2888 2889 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 2890 unsigned Code = 2891 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 2892 2893 // Emit the finished record. 2894 Stream.EmitRecord(Code, NameVals, FSAbbrev); 2895 NameVals.clear(); 2896 } 2897 2898 // Collect the global value references in the given variable's initializer, 2899 // and emit them in a summary record. 2900 static void WriteModuleLevelReferences(const GlobalVariable &V, 2901 const ValueEnumerator &VE, 2902 SmallVector<uint64_t, 64> &NameVals, 2903 unsigned FSModRefsAbbrev, 2904 BitstreamWriter &Stream) { 2905 // Only interested in recording variable defs in the summary. 2906 if (V.isDeclaration()) 2907 return; 2908 DenseSet<unsigned> RefEdges; 2909 SmallPtrSet<const User *, 8> Visited; 2910 findRefEdges(&V, VE, RefEdges, Visited); 2911 NameVals.push_back(VE.getValueID(&V)); 2912 NameVals.push_back(getEncodedLinkage(V.getLinkage())); 2913 for (auto RefId : RefEdges) { 2914 NameVals.push_back(RefId); 2915 } 2916 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 2917 FSModRefsAbbrev); 2918 NameVals.clear(); 2919 } 2920 2921 /// Emit the per-module summary section alongside the rest of 2922 /// the module's bitcode. 2923 static void WritePerModuleGlobalValueSummary( 2924 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> &FunctionIndex, 2925 const Module *M, const ValueEnumerator &VE, BitstreamWriter &Stream) { 2926 if (M->empty()) 2927 return; 2928 2929 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 2930 2931 // Abbrev for FS_PERMODULE. 2932 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2933 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 2934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2938 // numrefs x valueid, n x (valueid, callsitecount) 2939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2941 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 2942 2943 // Abbrev for FS_PERMODULE_PROFILE. 2944 Abbv = new BitCodeAbbrev(); 2945 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 2946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 2949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 2950 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 2951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2953 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 2954 2955 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 2956 Abbv = new BitCodeAbbrev(); 2957 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 2958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 2959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 2960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 2961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2962 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 2963 2964 SmallVector<uint64_t, 64> NameVals; 2965 // Iterate over the list of functions instead of the FunctionIndex map to 2966 // ensure the ordering is stable. 2967 for (const Function &F : *M) { 2968 if (F.isDeclaration()) 2969 continue; 2970 // Skip anonymous functions. We will emit a function summary for 2971 // any aliases below. 2972 if (!F.hasName()) 2973 continue; 2974 2975 assert(FunctionIndex.count(&F) == 1); 2976 2977 WritePerModuleFunctionSummaryRecord( 2978 NameVals, cast<FunctionSummary>(FunctionIndex[&F]->summary()), 2979 VE.getValueID(M->getValueSymbolTable().lookup(F.getName())), 2980 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, F); 2981 } 2982 2983 for (const GlobalAlias &A : M->aliases()) { 2984 if (!A.getBaseObject()) 2985 continue; 2986 const Function *F = dyn_cast<Function>(A.getBaseObject()); 2987 if (!F || F->isDeclaration()) 2988 continue; 2989 2990 assert(FunctionIndex.count(F) == 1); 2991 FunctionSummary *FS = 2992 cast<FunctionSummary>(FunctionIndex[F]->summary()); 2993 // Add the alias to the reference list of aliasee function. 2994 FS->addRefEdge( 2995 VE.getValueID(M->getValueSymbolTable().lookup(A.getName()))); 2996 WritePerModuleFunctionSummaryRecord( 2997 NameVals, FS, 2998 VE.getValueID(M->getValueSymbolTable().lookup(A.getName())), 2999 FSCallsAbbrev, FSCallsProfileAbbrev, Stream, *F); 3000 } 3001 3002 // Capture references from GlobalVariable initializers, which are outside 3003 // of a function scope. 3004 for (const GlobalVariable &G : M->globals()) 3005 WriteModuleLevelReferences(G, VE, NameVals, FSModRefsAbbrev, Stream); 3006 for (const GlobalAlias &A : M->aliases()) 3007 if (auto *GV = dyn_cast<GlobalVariable>(A.getBaseObject())) 3008 WriteModuleLevelReferences(*GV, VE, NameVals, FSModRefsAbbrev, Stream); 3009 3010 Stream.ExitBlock(); 3011 } 3012 3013 /// Emit the combined summary section into the combined index file. 3014 static void WriteCombinedGlobalValueSummary( 3015 const ModuleSummaryIndex &I, BitstreamWriter &Stream, 3016 std::map<uint64_t, unsigned> &GUIDToValueIdMap, unsigned GlobalValueId) { 3017 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3018 3019 // Abbrev for FS_COMBINED. 3020 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3021 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3026 // numrefs x valueid, n x (valueid, callsitecount) 3027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3029 unsigned FSCallsAbbrev = Stream.EmitAbbrev(Abbv); 3030 3031 // Abbrev for FS_COMBINED_PROFILE. 3032 Abbv = new BitCodeAbbrev(); 3033 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3038 // numrefs x valueid, n x (valueid, callsitecount, profilecount) 3039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3041 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv); 3042 3043 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3044 Abbv = new BitCodeAbbrev(); 3045 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // linkage 3048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3050 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv); 3051 3052 SmallVector<uint64_t, 64> NameVals; 3053 for (const auto &FII : I) { 3054 for (auto &FI : FII.second) { 3055 GlobalValueSummary *S = FI->summary(); 3056 assert(S); 3057 3058 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3059 NameVals.push_back(I.getModuleId(VS->modulePath())); 3060 NameVals.push_back(getEncodedLinkage(VS->linkage())); 3061 for (auto &RI : VS->refs()) { 3062 const auto &VMI = GUIDToValueIdMap.find(RI); 3063 unsigned RefId; 3064 // If this GUID doesn't have an entry, assign one. 3065 if (VMI == GUIDToValueIdMap.end()) { 3066 GUIDToValueIdMap[RI] = ++GlobalValueId; 3067 RefId = GlobalValueId; 3068 } else { 3069 RefId = VMI->second; 3070 } 3071 NameVals.push_back(RefId); 3072 } 3073 3074 // Record the starting offset of this summary entry for use 3075 // in the VST entry. Add the current code size since the 3076 // reader will invoke readRecord after the abbrev id read. 3077 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + 3078 Stream.GetAbbrevIDWidth()); 3079 3080 // Emit the finished record. 3081 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3082 FSModRefsAbbrev); 3083 NameVals.clear(); 3084 continue; 3085 } 3086 3087 auto *FS = cast<FunctionSummary>(S); 3088 NameVals.push_back(I.getModuleId(FS->modulePath())); 3089 NameVals.push_back(getEncodedLinkage(FS->linkage())); 3090 NameVals.push_back(FS->instCount()); 3091 NameVals.push_back(FS->refs().size()); 3092 3093 for (auto &RI : FS->refs()) { 3094 const auto &VMI = GUIDToValueIdMap.find(RI); 3095 unsigned RefId; 3096 // If this GUID doesn't have an entry, assign one. 3097 if (VMI == GUIDToValueIdMap.end()) { 3098 GUIDToValueIdMap[RI] = ++GlobalValueId; 3099 RefId = GlobalValueId; 3100 } else { 3101 RefId = VMI->second; 3102 } 3103 NameVals.push_back(RefId); 3104 } 3105 3106 bool HasProfileData = false; 3107 for (auto &EI : FS->edges()) { 3108 HasProfileData |= EI.second.ProfileCount != 0; 3109 if (HasProfileData) 3110 break; 3111 } 3112 3113 for (auto &EI : FS->edges()) { 3114 const auto &VMI = GUIDToValueIdMap.find(EI.first); 3115 // If this GUID doesn't have an entry, it doesn't have a function 3116 // summary and we don't need to record any calls to it. 3117 if (VMI == GUIDToValueIdMap.end()) 3118 continue; 3119 NameVals.push_back(VMI->second); 3120 assert(EI.second.CallsiteCount > 0 && "Expected at least one callsite"); 3121 NameVals.push_back(EI.second.CallsiteCount); 3122 if (HasProfileData) 3123 NameVals.push_back(EI.second.ProfileCount); 3124 } 3125 3126 // Record the starting offset of this summary entry for use 3127 // in the VST entry. Add the current code size since the 3128 // reader will invoke readRecord after the abbrev id read. 3129 FI->setBitcodeIndex(Stream.GetCurrentBitNo() + Stream.GetAbbrevIDWidth()); 3130 3131 unsigned FSAbbrev = 3132 (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3133 unsigned Code = 3134 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3135 3136 // Emit the finished record. 3137 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3138 NameVals.clear(); 3139 } 3140 } 3141 3142 Stream.ExitBlock(); 3143 } 3144 3145 // Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3146 // current llvm version, and a record for the epoch number. 3147 static void WriteIdentificationBlock(const Module *M, BitstreamWriter &Stream) { 3148 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3149 3150 // Write the "user readable" string identifying the bitcode producer 3151 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 3152 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3155 auto StringAbbrev = Stream.EmitAbbrev(Abbv); 3156 WriteStringRecord(bitc::IDENTIFICATION_CODE_STRING, 3157 "LLVM" LLVM_VERSION_STRING, StringAbbrev, Stream); 3158 3159 // Write the epoch version 3160 Abbv = new BitCodeAbbrev(); 3161 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3163 auto EpochAbbrev = Stream.EmitAbbrev(Abbv); 3164 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3165 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3166 Stream.ExitBlock(); 3167 } 3168 3169 /// WriteModule - Emit the specified module to the bitstream. 3170 static void WriteModule(const Module *M, BitstreamWriter &Stream, 3171 bool ShouldPreserveUseListOrder, 3172 uint64_t BitcodeStartBit, bool EmitSummaryIndex) { 3173 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3174 3175 SmallVector<unsigned, 1> Vals; 3176 unsigned CurVersion = 1; 3177 Vals.push_back(CurVersion); 3178 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3179 3180 // Analyze the module, enumerating globals, functions, etc. 3181 ValueEnumerator VE(*M, ShouldPreserveUseListOrder); 3182 3183 // Emit blockinfo, which defines the standard abbreviations etc. 3184 WriteBlockInfo(VE, Stream); 3185 3186 // Emit information about attribute groups. 3187 WriteAttributeGroupTable(VE, Stream); 3188 3189 // Emit information about parameter attributes. 3190 WriteAttributeTable(VE, Stream); 3191 3192 // Emit information describing all of the types in the module. 3193 WriteTypeTable(VE, Stream); 3194 3195 writeComdats(VE, Stream); 3196 3197 // Emit top-level description of module, including target triple, inline asm, 3198 // descriptors for global variables, and function prototype info. 3199 uint64_t VSTOffsetPlaceholder = WriteModuleInfo(M, VE, Stream); 3200 3201 // Emit constants. 3202 WriteModuleConstants(VE, Stream); 3203 3204 // Emit metadata. 3205 WriteModuleMetadata(*M, VE, Stream); 3206 3207 // Emit metadata. 3208 WriteModuleMetadataStore(M, Stream); 3209 3210 // Emit module-level use-lists. 3211 if (VE.shouldPreserveUseListOrder()) 3212 WriteUseListBlock(nullptr, VE, Stream); 3213 3214 WriteOperandBundleTags(M, Stream); 3215 3216 // Emit function bodies. 3217 DenseMap<const Function *, std::unique_ptr<GlobalValueInfo>> FunctionIndex; 3218 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 3219 if (!F->isDeclaration()) 3220 WriteFunction(*F, M, VE, Stream, FunctionIndex, EmitSummaryIndex); 3221 3222 // Need to write after the above call to WriteFunction which populates 3223 // the summary information in the index. 3224 if (EmitSummaryIndex) 3225 WritePerModuleGlobalValueSummary(FunctionIndex, M, VE, Stream); 3226 3227 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream, 3228 VSTOffsetPlaceholder, BitcodeStartBit, &FunctionIndex); 3229 3230 Stream.ExitBlock(); 3231 } 3232 3233 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 3234 /// header and trailer to make it compatible with the system archiver. To do 3235 /// this we emit the following header, and then emit a trailer that pads the 3236 /// file out to be a multiple of 16 bytes. 3237 /// 3238 /// struct bc_header { 3239 /// uint32_t Magic; // 0x0B17C0DE 3240 /// uint32_t Version; // Version, currently always 0. 3241 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3242 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3243 /// uint32_t CPUType; // CPU specifier. 3244 /// ... potentially more later ... 3245 /// }; 3246 3247 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3248 uint32_t &Position) { 3249 support::endian::write32le(&Buffer[Position], Value); 3250 Position += 4; 3251 } 3252 3253 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3254 const Triple &TT) { 3255 unsigned CPUType = ~0U; 3256 3257 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3258 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3259 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3260 // specific constants here because they are implicitly part of the Darwin ABI. 3261 enum { 3262 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3263 DARWIN_CPU_TYPE_X86 = 7, 3264 DARWIN_CPU_TYPE_ARM = 12, 3265 DARWIN_CPU_TYPE_POWERPC = 18 3266 }; 3267 3268 Triple::ArchType Arch = TT.getArch(); 3269 if (Arch == Triple::x86_64) 3270 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3271 else if (Arch == Triple::x86) 3272 CPUType = DARWIN_CPU_TYPE_X86; 3273 else if (Arch == Triple::ppc) 3274 CPUType = DARWIN_CPU_TYPE_POWERPC; 3275 else if (Arch == Triple::ppc64) 3276 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3277 else if (Arch == Triple::arm || Arch == Triple::thumb) 3278 CPUType = DARWIN_CPU_TYPE_ARM; 3279 3280 // Traditional Bitcode starts after header. 3281 assert(Buffer.size() >= BWH_HeaderSize && 3282 "Expected header size to be reserved"); 3283 unsigned BCOffset = BWH_HeaderSize; 3284 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3285 3286 // Write the magic and version. 3287 unsigned Position = 0; 3288 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 3289 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 3290 WriteInt32ToBuffer(BCOffset , Buffer, Position); 3291 WriteInt32ToBuffer(BCSize , Buffer, Position); 3292 WriteInt32ToBuffer(CPUType , Buffer, Position); 3293 3294 // If the file is not a multiple of 16 bytes, insert dummy padding. 3295 while (Buffer.size() & 15) 3296 Buffer.push_back(0); 3297 } 3298 3299 /// Helper to write the header common to all bitcode files. 3300 static void WriteBitcodeHeader(BitstreamWriter &Stream) { 3301 // Emit the file header. 3302 Stream.Emit((unsigned)'B', 8); 3303 Stream.Emit((unsigned)'C', 8); 3304 Stream.Emit(0x0, 4); 3305 Stream.Emit(0xC, 4); 3306 Stream.Emit(0xE, 4); 3307 Stream.Emit(0xD, 4); 3308 } 3309 3310 /// WriteBitcodeToFile - Write the specified module to the specified output 3311 /// stream. 3312 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3313 bool ShouldPreserveUseListOrder, 3314 bool EmitSummaryIndex) { 3315 SmallVector<char, 0> Buffer; 3316 Buffer.reserve(256*1024); 3317 3318 // If this is darwin or another generic macho target, reserve space for the 3319 // header. 3320 Triple TT(M->getTargetTriple()); 3321 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3322 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3323 3324 // Emit the module into the buffer. 3325 { 3326 BitstreamWriter Stream(Buffer); 3327 // Save the start bit of the actual bitcode, in case there is space 3328 // saved at the start for the darwin header above. The reader stream 3329 // will start at the bitcode, and we need the offset of the VST 3330 // to line up. 3331 uint64_t BitcodeStartBit = Stream.GetCurrentBitNo(); 3332 3333 // Emit the file header. 3334 WriteBitcodeHeader(Stream); 3335 3336 WriteIdentificationBlock(M, Stream); 3337 3338 // Emit the module. 3339 WriteModule(M, Stream, ShouldPreserveUseListOrder, BitcodeStartBit, 3340 EmitSummaryIndex); 3341 } 3342 3343 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3344 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 3345 3346 // Write the generated bitstream to "Out". 3347 Out.write((char*)&Buffer.front(), Buffer.size()); 3348 } 3349 3350 // Write the specified module summary index to the given raw output stream, 3351 // where it will be written in a new bitcode block. This is used when 3352 // writing the combined index file for ThinLTO. 3353 void llvm::WriteIndexToFile(const ModuleSummaryIndex &Index, raw_ostream &Out) { 3354 SmallVector<char, 0> Buffer; 3355 Buffer.reserve(256 * 1024); 3356 3357 BitstreamWriter Stream(Buffer); 3358 3359 // Emit the bitcode header. 3360 WriteBitcodeHeader(Stream); 3361 3362 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3363 3364 SmallVector<unsigned, 1> Vals; 3365 unsigned CurVersion = 1; 3366 Vals.push_back(CurVersion); 3367 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 3368 3369 // If we have a VST, write the VSTOFFSET record placeholder and record 3370 // its offset. 3371 uint64_t VSTOffsetPlaceholder = WriteValueSymbolTableForwardDecl(Stream); 3372 3373 // Write the module paths in the combined index. 3374 WriteModStrings(Index, Stream); 3375 3376 // Assign unique value ids to all functions in the index for use 3377 // in writing out the call graph edges. Save the mapping from GUID 3378 // to the new global value id to use when writing those edges, which 3379 // are currently saved in the index in terms of GUID. 3380 std::map<uint64_t, unsigned> GUIDToValueIdMap; 3381 unsigned GlobalValueId = 0; 3382 for (auto &II : Index) 3383 GUIDToValueIdMap[II.first] = ++GlobalValueId; 3384 3385 // Write the summary combined index records. 3386 WriteCombinedGlobalValueSummary(Index, Stream, GUIDToValueIdMap, 3387 GlobalValueId); 3388 3389 // Need a special VST writer for the combined index (we don't have a 3390 // real VST and real values when this is invoked). 3391 WriteCombinedValueSymbolTable(Index, Stream, GUIDToValueIdMap, 3392 VSTOffsetPlaceholder); 3393 3394 Stream.ExitBlock(); 3395 3396 Out.write((char *)&Buffer.front(), Buffer.size()); 3397 } 3398