1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(const CallBase &CB, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NoMerge: 651 return bitc::ATTR_KIND_NO_MERGE; 652 case Attribute::NonLazyBind: 653 return bitc::ATTR_KIND_NON_LAZY_BIND; 654 case Attribute::NonNull: 655 return bitc::ATTR_KIND_NON_NULL; 656 case Attribute::Dereferenceable: 657 return bitc::ATTR_KIND_DEREFERENCEABLE; 658 case Attribute::DereferenceableOrNull: 659 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 660 case Attribute::NoRedZone: 661 return bitc::ATTR_KIND_NO_RED_ZONE; 662 case Attribute::NoReturn: 663 return bitc::ATTR_KIND_NO_RETURN; 664 case Attribute::NoSync: 665 return bitc::ATTR_KIND_NOSYNC; 666 case Attribute::NoCfCheck: 667 return bitc::ATTR_KIND_NOCF_CHECK; 668 case Attribute::NoUnwind: 669 return bitc::ATTR_KIND_NO_UNWIND; 670 case Attribute::NullPointerIsValid: 671 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 672 case Attribute::OptForFuzzing: 673 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 674 case Attribute::OptimizeForSize: 675 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 676 case Attribute::OptimizeNone: 677 return bitc::ATTR_KIND_OPTIMIZE_NONE; 678 case Attribute::ReadNone: 679 return bitc::ATTR_KIND_READ_NONE; 680 case Attribute::ReadOnly: 681 return bitc::ATTR_KIND_READ_ONLY; 682 case Attribute::Returned: 683 return bitc::ATTR_KIND_RETURNED; 684 case Attribute::ReturnsTwice: 685 return bitc::ATTR_KIND_RETURNS_TWICE; 686 case Attribute::SExt: 687 return bitc::ATTR_KIND_S_EXT; 688 case Attribute::Speculatable: 689 return bitc::ATTR_KIND_SPECULATABLE; 690 case Attribute::StackAlignment: 691 return bitc::ATTR_KIND_STACK_ALIGNMENT; 692 case Attribute::StackProtect: 693 return bitc::ATTR_KIND_STACK_PROTECT; 694 case Attribute::StackProtectReq: 695 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 696 case Attribute::StackProtectStrong: 697 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 698 case Attribute::SafeStack: 699 return bitc::ATTR_KIND_SAFESTACK; 700 case Attribute::ShadowCallStack: 701 return bitc::ATTR_KIND_SHADOWCALLSTACK; 702 case Attribute::StrictFP: 703 return bitc::ATTR_KIND_STRICT_FP; 704 case Attribute::StructRet: 705 return bitc::ATTR_KIND_STRUCT_RET; 706 case Attribute::SanitizeAddress: 707 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 708 case Attribute::SanitizeHWAddress: 709 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 710 case Attribute::SanitizeThread: 711 return bitc::ATTR_KIND_SANITIZE_THREAD; 712 case Attribute::SanitizeMemory: 713 return bitc::ATTR_KIND_SANITIZE_MEMORY; 714 case Attribute::SpeculativeLoadHardening: 715 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 716 case Attribute::SwiftError: 717 return bitc::ATTR_KIND_SWIFT_ERROR; 718 case Attribute::SwiftSelf: 719 return bitc::ATTR_KIND_SWIFT_SELF; 720 case Attribute::UWTable: 721 return bitc::ATTR_KIND_UW_TABLE; 722 case Attribute::WillReturn: 723 return bitc::ATTR_KIND_WILLRETURN; 724 case Attribute::WriteOnly: 725 return bitc::ATTR_KIND_WRITEONLY; 726 case Attribute::ZExt: 727 return bitc::ATTR_KIND_Z_EXT; 728 case Attribute::ImmArg: 729 return bitc::ATTR_KIND_IMMARG; 730 case Attribute::SanitizeMemTag: 731 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 732 case Attribute::Preallocated: 733 return bitc::ATTR_KIND_PREALLOCATED; 734 case Attribute::EndAttrKinds: 735 llvm_unreachable("Can not encode end-attribute kinds marker."); 736 case Attribute::None: 737 llvm_unreachable("Can not encode none-attribute."); 738 case Attribute::EmptyKey: 739 case Attribute::TombstoneKey: 740 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 741 } 742 743 llvm_unreachable("Trying to encode unknown attribute"); 744 } 745 746 void ModuleBitcodeWriter::writeAttributeGroupTable() { 747 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 748 VE.getAttributeGroups(); 749 if (AttrGrps.empty()) return; 750 751 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 752 753 SmallVector<uint64_t, 64> Record; 754 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 755 unsigned AttrListIndex = Pair.first; 756 AttributeSet AS = Pair.second; 757 Record.push_back(VE.getAttributeGroupID(Pair)); 758 Record.push_back(AttrListIndex); 759 760 for (Attribute Attr : AS) { 761 if (Attr.isEnumAttribute()) { 762 Record.push_back(0); 763 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 764 } else if (Attr.isIntAttribute()) { 765 Record.push_back(1); 766 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 767 Record.push_back(Attr.getValueAsInt()); 768 } else if (Attr.isStringAttribute()) { 769 StringRef Kind = Attr.getKindAsString(); 770 StringRef Val = Attr.getValueAsString(); 771 772 Record.push_back(Val.empty() ? 3 : 4); 773 Record.append(Kind.begin(), Kind.end()); 774 Record.push_back(0); 775 if (!Val.empty()) { 776 Record.append(Val.begin(), Val.end()); 777 Record.push_back(0); 778 } 779 } else { 780 assert(Attr.isTypeAttribute()); 781 Type *Ty = Attr.getValueAsType(); 782 Record.push_back(Ty ? 6 : 5); 783 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 784 if (Ty) 785 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 786 } 787 } 788 789 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 790 Record.clear(); 791 } 792 793 Stream.ExitBlock(); 794 } 795 796 void ModuleBitcodeWriter::writeAttributeTable() { 797 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 798 if (Attrs.empty()) return; 799 800 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 801 802 SmallVector<uint64_t, 64> Record; 803 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 804 AttributeList AL = Attrs[i]; 805 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 806 AttributeSet AS = AL.getAttributes(i); 807 if (AS.hasAttributes()) 808 Record.push_back(VE.getAttributeGroupID({i, AS})); 809 } 810 811 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 812 Record.clear(); 813 } 814 815 Stream.ExitBlock(); 816 } 817 818 /// WriteTypeTable - Write out the type table for a module. 819 void ModuleBitcodeWriter::writeTypeTable() { 820 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 821 822 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 823 SmallVector<uint64_t, 64> TypeVals; 824 825 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 826 827 // Abbrev for TYPE_CODE_POINTER. 828 auto Abbv = std::make_shared<BitCodeAbbrev>(); 829 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 831 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 832 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 833 834 // Abbrev for TYPE_CODE_FUNCTION. 835 Abbv = std::make_shared<BitCodeAbbrev>(); 836 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 841 842 // Abbrev for TYPE_CODE_STRUCT_ANON. 843 Abbv = std::make_shared<BitCodeAbbrev>(); 844 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 848 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 849 850 // Abbrev for TYPE_CODE_STRUCT_NAME. 851 Abbv = std::make_shared<BitCodeAbbrev>(); 852 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 855 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 856 857 // Abbrev for TYPE_CODE_STRUCT_NAMED. 858 Abbv = std::make_shared<BitCodeAbbrev>(); 859 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 863 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 864 865 // Abbrev for TYPE_CODE_ARRAY. 866 Abbv = std::make_shared<BitCodeAbbrev>(); 867 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 870 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 871 872 // Emit an entry count so the reader can reserve space. 873 TypeVals.push_back(TypeList.size()); 874 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 875 TypeVals.clear(); 876 877 // Loop over all of the types, emitting each in turn. 878 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 879 Type *T = TypeList[i]; 880 int AbbrevToUse = 0; 881 unsigned Code = 0; 882 883 switch (T->getTypeID()) { 884 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 885 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 886 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 887 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 888 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 889 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 890 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 891 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 892 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 893 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 894 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 895 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 896 case Type::IntegerTyID: 897 // INTEGER: [width] 898 Code = bitc::TYPE_CODE_INTEGER; 899 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 900 break; 901 case Type::PointerTyID: { 902 PointerType *PTy = cast<PointerType>(T); 903 // POINTER: [pointee type, address space] 904 Code = bitc::TYPE_CODE_POINTER; 905 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 906 unsigned AddressSpace = PTy->getAddressSpace(); 907 TypeVals.push_back(AddressSpace); 908 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 909 break; 910 } 911 case Type::FunctionTyID: { 912 FunctionType *FT = cast<FunctionType>(T); 913 // FUNCTION: [isvararg, retty, paramty x N] 914 Code = bitc::TYPE_CODE_FUNCTION; 915 TypeVals.push_back(FT->isVarArg()); 916 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 917 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 918 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 919 AbbrevToUse = FunctionAbbrev; 920 break; 921 } 922 case Type::StructTyID: { 923 StructType *ST = cast<StructType>(T); 924 // STRUCT: [ispacked, eltty x N] 925 TypeVals.push_back(ST->isPacked()); 926 // Output all of the element types. 927 for (StructType::element_iterator I = ST->element_begin(), 928 E = ST->element_end(); I != E; ++I) 929 TypeVals.push_back(VE.getTypeID(*I)); 930 931 if (ST->isLiteral()) { 932 Code = bitc::TYPE_CODE_STRUCT_ANON; 933 AbbrevToUse = StructAnonAbbrev; 934 } else { 935 if (ST->isOpaque()) { 936 Code = bitc::TYPE_CODE_OPAQUE; 937 } else { 938 Code = bitc::TYPE_CODE_STRUCT_NAMED; 939 AbbrevToUse = StructNamedAbbrev; 940 } 941 942 // Emit the name if it is present. 943 if (!ST->getName().empty()) 944 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 945 StructNameAbbrev); 946 } 947 break; 948 } 949 case Type::ArrayTyID: { 950 ArrayType *AT = cast<ArrayType>(T); 951 // ARRAY: [numelts, eltty] 952 Code = bitc::TYPE_CODE_ARRAY; 953 TypeVals.push_back(AT->getNumElements()); 954 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 955 AbbrevToUse = ArrayAbbrev; 956 break; 957 } 958 case Type::FixedVectorTyID: 959 case Type::ScalableVectorTyID: { 960 VectorType *VT = cast<VectorType>(T); 961 // VECTOR [numelts, eltty] or 962 // [numelts, eltty, scalable] 963 Code = bitc::TYPE_CODE_VECTOR; 964 TypeVals.push_back(VT->getNumElements()); 965 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 966 if (isa<ScalableVectorType>(VT)) 967 TypeVals.push_back(true); 968 break; 969 } 970 } 971 972 // Emit the finished record. 973 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 974 TypeVals.clear(); 975 } 976 977 Stream.ExitBlock(); 978 } 979 980 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 981 switch (Linkage) { 982 case GlobalValue::ExternalLinkage: 983 return 0; 984 case GlobalValue::WeakAnyLinkage: 985 return 16; 986 case GlobalValue::AppendingLinkage: 987 return 2; 988 case GlobalValue::InternalLinkage: 989 return 3; 990 case GlobalValue::LinkOnceAnyLinkage: 991 return 18; 992 case GlobalValue::ExternalWeakLinkage: 993 return 7; 994 case GlobalValue::CommonLinkage: 995 return 8; 996 case GlobalValue::PrivateLinkage: 997 return 9; 998 case GlobalValue::WeakODRLinkage: 999 return 17; 1000 case GlobalValue::LinkOnceODRLinkage: 1001 return 19; 1002 case GlobalValue::AvailableExternallyLinkage: 1003 return 12; 1004 } 1005 llvm_unreachable("Invalid linkage"); 1006 } 1007 1008 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1009 return getEncodedLinkage(GV.getLinkage()); 1010 } 1011 1012 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1013 uint64_t RawFlags = 0; 1014 RawFlags |= Flags.ReadNone; 1015 RawFlags |= (Flags.ReadOnly << 1); 1016 RawFlags |= (Flags.NoRecurse << 2); 1017 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1018 RawFlags |= (Flags.NoInline << 4); 1019 RawFlags |= (Flags.AlwaysInline << 5); 1020 return RawFlags; 1021 } 1022 1023 // Decode the flags for GlobalValue in the summary 1024 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1025 uint64_t RawFlags = 0; 1026 1027 RawFlags |= Flags.NotEligibleToImport; // bool 1028 RawFlags |= (Flags.Live << 1); 1029 RawFlags |= (Flags.DSOLocal << 2); 1030 RawFlags |= (Flags.CanAutoHide << 3); 1031 1032 // Linkage don't need to be remapped at that time for the summary. Any future 1033 // change to the getEncodedLinkage() function will need to be taken into 1034 // account here as well. 1035 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1036 1037 return RawFlags; 1038 } 1039 1040 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1041 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1042 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1043 return RawFlags; 1044 } 1045 1046 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1047 switch (GV.getVisibility()) { 1048 case GlobalValue::DefaultVisibility: return 0; 1049 case GlobalValue::HiddenVisibility: return 1; 1050 case GlobalValue::ProtectedVisibility: return 2; 1051 } 1052 llvm_unreachable("Invalid visibility"); 1053 } 1054 1055 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1056 switch (GV.getDLLStorageClass()) { 1057 case GlobalValue::DefaultStorageClass: return 0; 1058 case GlobalValue::DLLImportStorageClass: return 1; 1059 case GlobalValue::DLLExportStorageClass: return 2; 1060 } 1061 llvm_unreachable("Invalid DLL storage class"); 1062 } 1063 1064 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1065 switch (GV.getThreadLocalMode()) { 1066 case GlobalVariable::NotThreadLocal: return 0; 1067 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1068 case GlobalVariable::LocalDynamicTLSModel: return 2; 1069 case GlobalVariable::InitialExecTLSModel: return 3; 1070 case GlobalVariable::LocalExecTLSModel: return 4; 1071 } 1072 llvm_unreachable("Invalid TLS model"); 1073 } 1074 1075 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1076 switch (C.getSelectionKind()) { 1077 case Comdat::Any: 1078 return bitc::COMDAT_SELECTION_KIND_ANY; 1079 case Comdat::ExactMatch: 1080 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1081 case Comdat::Largest: 1082 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1083 case Comdat::NoDuplicates: 1084 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1085 case Comdat::SameSize: 1086 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1087 } 1088 llvm_unreachable("Invalid selection kind"); 1089 } 1090 1091 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1092 switch (GV.getUnnamedAddr()) { 1093 case GlobalValue::UnnamedAddr::None: return 0; 1094 case GlobalValue::UnnamedAddr::Local: return 2; 1095 case GlobalValue::UnnamedAddr::Global: return 1; 1096 } 1097 llvm_unreachable("Invalid unnamed_addr"); 1098 } 1099 1100 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1101 if (GenerateHash) 1102 Hasher.update(Str); 1103 return StrtabBuilder.add(Str); 1104 } 1105 1106 void ModuleBitcodeWriter::writeComdats() { 1107 SmallVector<unsigned, 64> Vals; 1108 for (const Comdat *C : VE.getComdats()) { 1109 // COMDAT: [strtab offset, strtab size, selection_kind] 1110 Vals.push_back(addToStrtab(C->getName())); 1111 Vals.push_back(C->getName().size()); 1112 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1113 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1114 Vals.clear(); 1115 } 1116 } 1117 1118 /// Write a record that will eventually hold the word offset of the 1119 /// module-level VST. For now the offset is 0, which will be backpatched 1120 /// after the real VST is written. Saves the bit offset to backpatch. 1121 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1122 // Write a placeholder value in for the offset of the real VST, 1123 // which is written after the function blocks so that it can include 1124 // the offset of each function. The placeholder offset will be 1125 // updated when the real VST is written. 1126 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1127 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1128 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1129 // hold the real VST offset. Must use fixed instead of VBR as we don't 1130 // know how many VBR chunks to reserve ahead of time. 1131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1132 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1133 1134 // Emit the placeholder 1135 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1136 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1137 1138 // Compute and save the bit offset to the placeholder, which will be 1139 // patched when the real VST is written. We can simply subtract the 32-bit 1140 // fixed size from the current bit number to get the location to backpatch. 1141 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1142 } 1143 1144 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1145 1146 /// Determine the encoding to use for the given string name and length. 1147 static StringEncoding getStringEncoding(StringRef Str) { 1148 bool isChar6 = true; 1149 for (char C : Str) { 1150 if (isChar6) 1151 isChar6 = BitCodeAbbrevOp::isChar6(C); 1152 if ((unsigned char)C & 128) 1153 // don't bother scanning the rest. 1154 return SE_Fixed8; 1155 } 1156 if (isChar6) 1157 return SE_Char6; 1158 return SE_Fixed7; 1159 } 1160 1161 /// Emit top-level description of module, including target triple, inline asm, 1162 /// descriptors for global variables, and function prototype info. 1163 /// Returns the bit offset to backpatch with the location of the real VST. 1164 void ModuleBitcodeWriter::writeModuleInfo() { 1165 // Emit various pieces of data attached to a module. 1166 if (!M.getTargetTriple().empty()) 1167 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1168 0 /*TODO*/); 1169 const std::string &DL = M.getDataLayoutStr(); 1170 if (!DL.empty()) 1171 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1172 if (!M.getModuleInlineAsm().empty()) 1173 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1174 0 /*TODO*/); 1175 1176 // Emit information about sections and GC, computing how many there are. Also 1177 // compute the maximum alignment value. 1178 std::map<std::string, unsigned> SectionMap; 1179 std::map<std::string, unsigned> GCMap; 1180 unsigned MaxAlignment = 0; 1181 unsigned MaxGlobalType = 0; 1182 for (const GlobalValue &GV : M.globals()) { 1183 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1184 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1185 if (GV.hasSection()) { 1186 // Give section names unique ID's. 1187 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1188 if (!Entry) { 1189 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1190 0 /*TODO*/); 1191 Entry = SectionMap.size(); 1192 } 1193 } 1194 } 1195 for (const Function &F : M) { 1196 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1197 if (F.hasSection()) { 1198 // Give section names unique ID's. 1199 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1200 if (!Entry) { 1201 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1202 0 /*TODO*/); 1203 Entry = SectionMap.size(); 1204 } 1205 } 1206 if (F.hasGC()) { 1207 // Same for GC names. 1208 unsigned &Entry = GCMap[F.getGC()]; 1209 if (!Entry) { 1210 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1211 0 /*TODO*/); 1212 Entry = GCMap.size(); 1213 } 1214 } 1215 } 1216 1217 // Emit abbrev for globals, now that we know # sections and max alignment. 1218 unsigned SimpleGVarAbbrev = 0; 1219 if (!M.global_empty()) { 1220 // Add an abbrev for common globals with no visibility or thread localness. 1221 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1222 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1226 Log2_32_Ceil(MaxGlobalType+1))); 1227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1228 //| explicitType << 1 1229 //| constant 1230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1232 if (MaxAlignment == 0) // Alignment. 1233 Abbv->Add(BitCodeAbbrevOp(0)); 1234 else { 1235 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1237 Log2_32_Ceil(MaxEncAlignment+1))); 1238 } 1239 if (SectionMap.empty()) // Section. 1240 Abbv->Add(BitCodeAbbrevOp(0)); 1241 else 1242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1243 Log2_32_Ceil(SectionMap.size()+1))); 1244 // Don't bother emitting vis + thread local. 1245 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1246 } 1247 1248 SmallVector<unsigned, 64> Vals; 1249 // Emit the module's source file name. 1250 { 1251 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1252 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1253 if (Bits == SE_Char6) 1254 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1255 else if (Bits == SE_Fixed7) 1256 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1257 1258 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1259 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1260 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1262 Abbv->Add(AbbrevOpToUse); 1263 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1264 1265 for (const auto P : M.getSourceFileName()) 1266 Vals.push_back((unsigned char)P); 1267 1268 // Emit the finished record. 1269 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1270 Vals.clear(); 1271 } 1272 1273 // Emit the global variable information. 1274 for (const GlobalVariable &GV : M.globals()) { 1275 unsigned AbbrevToUse = 0; 1276 1277 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1278 // linkage, alignment, section, visibility, threadlocal, 1279 // unnamed_addr, externally_initialized, dllstorageclass, 1280 // comdat, attributes, DSO_Local] 1281 Vals.push_back(addToStrtab(GV.getName())); 1282 Vals.push_back(GV.getName().size()); 1283 Vals.push_back(VE.getTypeID(GV.getValueType())); 1284 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1285 Vals.push_back(GV.isDeclaration() ? 0 : 1286 (VE.getValueID(GV.getInitializer()) + 1)); 1287 Vals.push_back(getEncodedLinkage(GV)); 1288 Vals.push_back(Log2_32(GV.getAlignment())+1); 1289 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1290 : 0); 1291 if (GV.isThreadLocal() || 1292 GV.getVisibility() != GlobalValue::DefaultVisibility || 1293 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1294 GV.isExternallyInitialized() || 1295 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1296 GV.hasComdat() || 1297 GV.hasAttributes() || 1298 GV.isDSOLocal() || 1299 GV.hasPartition()) { 1300 Vals.push_back(getEncodedVisibility(GV)); 1301 Vals.push_back(getEncodedThreadLocalMode(GV)); 1302 Vals.push_back(getEncodedUnnamedAddr(GV)); 1303 Vals.push_back(GV.isExternallyInitialized()); 1304 Vals.push_back(getEncodedDLLStorageClass(GV)); 1305 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1306 1307 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1308 Vals.push_back(VE.getAttributeListID(AL)); 1309 1310 Vals.push_back(GV.isDSOLocal()); 1311 Vals.push_back(addToStrtab(GV.getPartition())); 1312 Vals.push_back(GV.getPartition().size()); 1313 } else { 1314 AbbrevToUse = SimpleGVarAbbrev; 1315 } 1316 1317 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1318 Vals.clear(); 1319 } 1320 1321 // Emit the function proto information. 1322 for (const Function &F : M) { 1323 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1324 // linkage, paramattrs, alignment, section, visibility, gc, 1325 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1326 // prefixdata, personalityfn, DSO_Local, addrspace] 1327 Vals.push_back(addToStrtab(F.getName())); 1328 Vals.push_back(F.getName().size()); 1329 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1330 Vals.push_back(F.getCallingConv()); 1331 Vals.push_back(F.isDeclaration()); 1332 Vals.push_back(getEncodedLinkage(F)); 1333 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1334 Vals.push_back(Log2_32(F.getAlignment())+1); 1335 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1336 : 0); 1337 Vals.push_back(getEncodedVisibility(F)); 1338 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1339 Vals.push_back(getEncodedUnnamedAddr(F)); 1340 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1341 : 0); 1342 Vals.push_back(getEncodedDLLStorageClass(F)); 1343 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1344 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1345 : 0); 1346 Vals.push_back( 1347 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1348 1349 Vals.push_back(F.isDSOLocal()); 1350 Vals.push_back(F.getAddressSpace()); 1351 Vals.push_back(addToStrtab(F.getPartition())); 1352 Vals.push_back(F.getPartition().size()); 1353 1354 unsigned AbbrevToUse = 0; 1355 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1356 Vals.clear(); 1357 } 1358 1359 // Emit the alias information. 1360 for (const GlobalAlias &A : M.aliases()) { 1361 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1362 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1363 // DSO_Local] 1364 Vals.push_back(addToStrtab(A.getName())); 1365 Vals.push_back(A.getName().size()); 1366 Vals.push_back(VE.getTypeID(A.getValueType())); 1367 Vals.push_back(A.getType()->getAddressSpace()); 1368 Vals.push_back(VE.getValueID(A.getAliasee())); 1369 Vals.push_back(getEncodedLinkage(A)); 1370 Vals.push_back(getEncodedVisibility(A)); 1371 Vals.push_back(getEncodedDLLStorageClass(A)); 1372 Vals.push_back(getEncodedThreadLocalMode(A)); 1373 Vals.push_back(getEncodedUnnamedAddr(A)); 1374 Vals.push_back(A.isDSOLocal()); 1375 Vals.push_back(addToStrtab(A.getPartition())); 1376 Vals.push_back(A.getPartition().size()); 1377 1378 unsigned AbbrevToUse = 0; 1379 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1380 Vals.clear(); 1381 } 1382 1383 // Emit the ifunc information. 1384 for (const GlobalIFunc &I : M.ifuncs()) { 1385 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1386 // val#, linkage, visibility, DSO_Local] 1387 Vals.push_back(addToStrtab(I.getName())); 1388 Vals.push_back(I.getName().size()); 1389 Vals.push_back(VE.getTypeID(I.getValueType())); 1390 Vals.push_back(I.getType()->getAddressSpace()); 1391 Vals.push_back(VE.getValueID(I.getResolver())); 1392 Vals.push_back(getEncodedLinkage(I)); 1393 Vals.push_back(getEncodedVisibility(I)); 1394 Vals.push_back(I.isDSOLocal()); 1395 Vals.push_back(addToStrtab(I.getPartition())); 1396 Vals.push_back(I.getPartition().size()); 1397 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1398 Vals.clear(); 1399 } 1400 1401 writeValueSymbolTableForwardDecl(); 1402 } 1403 1404 static uint64_t getOptimizationFlags(const Value *V) { 1405 uint64_t Flags = 0; 1406 1407 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1408 if (OBO->hasNoSignedWrap()) 1409 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1410 if (OBO->hasNoUnsignedWrap()) 1411 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1412 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1413 if (PEO->isExact()) 1414 Flags |= 1 << bitc::PEO_EXACT; 1415 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1416 if (FPMO->hasAllowReassoc()) 1417 Flags |= bitc::AllowReassoc; 1418 if (FPMO->hasNoNaNs()) 1419 Flags |= bitc::NoNaNs; 1420 if (FPMO->hasNoInfs()) 1421 Flags |= bitc::NoInfs; 1422 if (FPMO->hasNoSignedZeros()) 1423 Flags |= bitc::NoSignedZeros; 1424 if (FPMO->hasAllowReciprocal()) 1425 Flags |= bitc::AllowReciprocal; 1426 if (FPMO->hasAllowContract()) 1427 Flags |= bitc::AllowContract; 1428 if (FPMO->hasApproxFunc()) 1429 Flags |= bitc::ApproxFunc; 1430 } 1431 1432 return Flags; 1433 } 1434 1435 void ModuleBitcodeWriter::writeValueAsMetadata( 1436 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1437 // Mimic an MDNode with a value as one operand. 1438 Value *V = MD->getValue(); 1439 Record.push_back(VE.getTypeID(V->getType())); 1440 Record.push_back(VE.getValueID(V)); 1441 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1442 Record.clear(); 1443 } 1444 1445 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1446 SmallVectorImpl<uint64_t> &Record, 1447 unsigned Abbrev) { 1448 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1449 Metadata *MD = N->getOperand(i); 1450 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1451 "Unexpected function-local metadata"); 1452 Record.push_back(VE.getMetadataOrNullID(MD)); 1453 } 1454 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1455 : bitc::METADATA_NODE, 1456 Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1461 // Assume the column is usually under 128, and always output the inlined-at 1462 // location (it's never more expensive than building an array size 1). 1463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1464 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1471 return Stream.EmitAbbrev(std::move(Abbv)); 1472 } 1473 1474 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1475 SmallVectorImpl<uint64_t> &Record, 1476 unsigned &Abbrev) { 1477 if (!Abbrev) 1478 Abbrev = createDILocationAbbrev(); 1479 1480 Record.push_back(N->isDistinct()); 1481 Record.push_back(N->getLine()); 1482 Record.push_back(N->getColumn()); 1483 Record.push_back(VE.getMetadataID(N->getScope())); 1484 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1485 Record.push_back(N->isImplicitCode()); 1486 1487 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1488 Record.clear(); 1489 } 1490 1491 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1492 // Assume the column is usually under 128, and always output the inlined-at 1493 // location (it's never more expensive than building an array size 1). 1494 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1495 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1502 return Stream.EmitAbbrev(std::move(Abbv)); 1503 } 1504 1505 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1506 SmallVectorImpl<uint64_t> &Record, 1507 unsigned &Abbrev) { 1508 if (!Abbrev) 1509 Abbrev = createGenericDINodeAbbrev(); 1510 1511 Record.push_back(N->isDistinct()); 1512 Record.push_back(N->getTag()); 1513 Record.push_back(0); // Per-tag version field; unused for now. 1514 1515 for (auto &I : N->operands()) 1516 Record.push_back(VE.getMetadataOrNullID(I)); 1517 1518 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1519 Record.clear(); 1520 } 1521 1522 static uint64_t rotateSign(int64_t I) { 1523 uint64_t U = I; 1524 return I < 0 ? ~(U << 1) : U << 1; 1525 } 1526 1527 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1528 SmallVectorImpl<uint64_t> &Record, 1529 unsigned Abbrev) { 1530 const uint64_t Version = 1 << 1; 1531 Record.push_back((uint64_t)N->isDistinct() | Version); 1532 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1533 Record.push_back(rotateSign(N->getLowerBound())); 1534 1535 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1536 Record.clear(); 1537 } 1538 1539 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1540 if ((int64_t)V >= 0) 1541 Vals.push_back(V << 1); 1542 else 1543 Vals.push_back((-V << 1) | 1); 1544 } 1545 1546 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1547 // We have an arbitrary precision integer value to write whose 1548 // bit width is > 64. However, in canonical unsigned integer 1549 // format it is likely that the high bits are going to be zero. 1550 // So, we only write the number of active words. 1551 unsigned NumWords = A.getActiveWords(); 1552 const uint64_t *RawData = A.getRawData(); 1553 for (unsigned i = 0; i < NumWords; i++) 1554 emitSignedInt64(Vals, RawData[i]); 1555 } 1556 1557 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1558 SmallVectorImpl<uint64_t> &Record, 1559 unsigned Abbrev) { 1560 const uint64_t IsBigInt = 1 << 2; 1561 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1562 Record.push_back(N->getValue().getBitWidth()); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1564 emitWideAPInt(Record, N->getValue()); 1565 1566 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1567 Record.clear(); 1568 } 1569 1570 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1571 SmallVectorImpl<uint64_t> &Record, 1572 unsigned Abbrev) { 1573 Record.push_back(N->isDistinct()); 1574 Record.push_back(N->getTag()); 1575 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1576 Record.push_back(N->getSizeInBits()); 1577 Record.push_back(N->getAlignInBits()); 1578 Record.push_back(N->getEncoding()); 1579 Record.push_back(N->getFlags()); 1580 1581 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1582 Record.clear(); 1583 } 1584 1585 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1586 SmallVectorImpl<uint64_t> &Record, 1587 unsigned Abbrev) { 1588 Record.push_back(N->isDistinct()); 1589 Record.push_back(N->getTag()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1592 Record.push_back(N->getLine()); 1593 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1595 Record.push_back(N->getSizeInBits()); 1596 Record.push_back(N->getAlignInBits()); 1597 Record.push_back(N->getOffsetInBits()); 1598 Record.push_back(N->getFlags()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1600 1601 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1602 // that there is no DWARF address space associated with DIDerivedType. 1603 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1604 Record.push_back(*DWARFAddressSpace + 1); 1605 else 1606 Record.push_back(0); 1607 1608 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1609 Record.clear(); 1610 } 1611 1612 void ModuleBitcodeWriter::writeDICompositeType( 1613 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1614 unsigned Abbrev) { 1615 const unsigned IsNotUsedInOldTypeRef = 0x2; 1616 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1617 Record.push_back(N->getTag()); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1620 Record.push_back(N->getLine()); 1621 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1623 Record.push_back(N->getSizeInBits()); 1624 Record.push_back(N->getAlignInBits()); 1625 Record.push_back(N->getOffsetInBits()); 1626 Record.push_back(N->getFlags()); 1627 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1628 Record.push_back(N->getRuntimeLang()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1633 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1634 1635 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1636 Record.clear(); 1637 } 1638 1639 void ModuleBitcodeWriter::writeDISubroutineType( 1640 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1641 unsigned Abbrev) { 1642 const unsigned HasNoOldTypeRefs = 0x2; 1643 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1644 Record.push_back(N->getFlags()); 1645 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1646 Record.push_back(N->getCC()); 1647 1648 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1649 Record.clear(); 1650 } 1651 1652 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1653 SmallVectorImpl<uint64_t> &Record, 1654 unsigned Abbrev) { 1655 Record.push_back(N->isDistinct()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1658 if (N->getRawChecksum()) { 1659 Record.push_back(N->getRawChecksum()->Kind); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1661 } else { 1662 // Maintain backwards compatibility with the old internal representation of 1663 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1664 Record.push_back(0); 1665 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1666 } 1667 auto Source = N->getRawSource(); 1668 if (Source) 1669 Record.push_back(VE.getMetadataOrNullID(*Source)); 1670 1671 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1672 Record.clear(); 1673 } 1674 1675 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1676 SmallVectorImpl<uint64_t> &Record, 1677 unsigned Abbrev) { 1678 assert(N->isDistinct() && "Expected distinct compile units"); 1679 Record.push_back(/* IsDistinct */ true); 1680 Record.push_back(N->getSourceLanguage()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1683 Record.push_back(N->isOptimized()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1685 Record.push_back(N->getRuntimeVersion()); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1687 Record.push_back(N->getEmissionKind()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1689 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1690 Record.push_back(/* subprograms */ 0); 1691 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1693 Record.push_back(N->getDWOId()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1695 Record.push_back(N->getSplitDebugInlining()); 1696 Record.push_back(N->getDebugInfoForProfiling()); 1697 Record.push_back((unsigned)N->getNameTableKind()); 1698 Record.push_back(N->getRangesBaseAddress()); 1699 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1700 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1701 1702 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1703 Record.clear(); 1704 } 1705 1706 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1707 SmallVectorImpl<uint64_t> &Record, 1708 unsigned Abbrev) { 1709 const uint64_t HasUnitFlag = 1 << 1; 1710 const uint64_t HasSPFlagsFlag = 1 << 2; 1711 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1712 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1716 Record.push_back(N->getLine()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1718 Record.push_back(N->getScopeLine()); 1719 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1720 Record.push_back(N->getSPFlags()); 1721 Record.push_back(N->getVirtualIndex()); 1722 Record.push_back(N->getFlags()); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1727 Record.push_back(N->getThisAdjustment()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1729 1730 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1731 Record.clear(); 1732 } 1733 1734 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1735 SmallVectorImpl<uint64_t> &Record, 1736 unsigned Abbrev) { 1737 Record.push_back(N->isDistinct()); 1738 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1740 Record.push_back(N->getLine()); 1741 Record.push_back(N->getColumn()); 1742 1743 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1744 Record.clear(); 1745 } 1746 1747 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1748 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1749 unsigned Abbrev) { 1750 Record.push_back(N->isDistinct()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1753 Record.push_back(N->getDiscriminator()); 1754 1755 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1756 Record.clear(); 1757 } 1758 1759 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1760 SmallVectorImpl<uint64_t> &Record, 1761 unsigned Abbrev) { 1762 Record.push_back(N->isDistinct()); 1763 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1764 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1765 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1766 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1767 Record.push_back(N->getLineNo()); 1768 1769 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1770 Record.clear(); 1771 } 1772 1773 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1774 SmallVectorImpl<uint64_t> &Record, 1775 unsigned Abbrev) { 1776 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1777 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1779 1780 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1781 Record.clear(); 1782 } 1783 1784 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1785 SmallVectorImpl<uint64_t> &Record, 1786 unsigned Abbrev) { 1787 Record.push_back(N->isDistinct()); 1788 Record.push_back(N->getMacinfoType()); 1789 Record.push_back(N->getLine()); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1792 1793 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1794 Record.clear(); 1795 } 1796 1797 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1798 SmallVectorImpl<uint64_t> &Record, 1799 unsigned Abbrev) { 1800 Record.push_back(N->isDistinct()); 1801 Record.push_back(N->getMacinfoType()); 1802 Record.push_back(N->getLine()); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1805 1806 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1807 Record.clear(); 1808 } 1809 1810 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1811 SmallVectorImpl<uint64_t> &Record, 1812 unsigned Abbrev) { 1813 Record.push_back(N->isDistinct()); 1814 for (auto &I : N->operands()) 1815 Record.push_back(VE.getMetadataOrNullID(I)); 1816 Record.push_back(N->getLineNo()); 1817 1818 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1819 Record.clear(); 1820 } 1821 1822 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1823 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1824 unsigned Abbrev) { 1825 Record.push_back(N->isDistinct()); 1826 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1828 Record.push_back(N->isDefault()); 1829 1830 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1831 Record.clear(); 1832 } 1833 1834 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1835 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1836 unsigned Abbrev) { 1837 Record.push_back(N->isDistinct()); 1838 Record.push_back(N->getTag()); 1839 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1840 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1841 Record.push_back(N->isDefault()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1843 1844 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1845 Record.clear(); 1846 } 1847 1848 void ModuleBitcodeWriter::writeDIGlobalVariable( 1849 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1850 unsigned Abbrev) { 1851 const uint64_t Version = 2 << 1; 1852 Record.push_back((uint64_t)N->isDistinct() | Version); 1853 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1857 Record.push_back(N->getLine()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1859 Record.push_back(N->isLocalToUnit()); 1860 Record.push_back(N->isDefinition()); 1861 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1862 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1863 Record.push_back(N->getAlignInBits()); 1864 1865 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1866 Record.clear(); 1867 } 1868 1869 void ModuleBitcodeWriter::writeDILocalVariable( 1870 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1871 unsigned Abbrev) { 1872 // In order to support all possible bitcode formats in BitcodeReader we need 1873 // to distinguish the following cases: 1874 // 1) Record has no artificial tag (Record[1]), 1875 // has no obsolete inlinedAt field (Record[9]). 1876 // In this case Record size will be 8, HasAlignment flag is false. 1877 // 2) Record has artificial tag (Record[1]), 1878 // has no obsolete inlignedAt field (Record[9]). 1879 // In this case Record size will be 9, HasAlignment flag is false. 1880 // 3) Record has both artificial tag (Record[1]) and 1881 // obsolete inlignedAt field (Record[9]). 1882 // In this case Record size will be 10, HasAlignment flag is false. 1883 // 4) Record has neither artificial tag, nor inlignedAt field, but 1884 // HasAlignment flag is true and Record[8] contains alignment value. 1885 const uint64_t HasAlignmentFlag = 1 << 1; 1886 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1887 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1890 Record.push_back(N->getLine()); 1891 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1892 Record.push_back(N->getArg()); 1893 Record.push_back(N->getFlags()); 1894 Record.push_back(N->getAlignInBits()); 1895 1896 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1897 Record.clear(); 1898 } 1899 1900 void ModuleBitcodeWriter::writeDILabel( 1901 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1902 unsigned Abbrev) { 1903 Record.push_back((uint64_t)N->isDistinct()); 1904 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1905 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1906 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1907 Record.push_back(N->getLine()); 1908 1909 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1914 SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 Record.reserve(N->getElements().size() + 1); 1917 const uint64_t Version = 3 << 1; 1918 Record.push_back((uint64_t)N->isDistinct() | Version); 1919 Record.append(N->elements_begin(), N->elements_end()); 1920 1921 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1926 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 Record.push_back(N->isDistinct()); 1929 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1931 1932 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1933 Record.clear(); 1934 } 1935 1936 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1937 SmallVectorImpl<uint64_t> &Record, 1938 unsigned Abbrev) { 1939 Record.push_back(N->isDistinct()); 1940 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1942 Record.push_back(N->getLine()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1945 Record.push_back(N->getAttributes()); 1946 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1947 1948 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1949 Record.clear(); 1950 } 1951 1952 void ModuleBitcodeWriter::writeDIImportedEntity( 1953 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1954 unsigned Abbrev) { 1955 Record.push_back(N->isDistinct()); 1956 Record.push_back(N->getTag()); 1957 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1959 Record.push_back(N->getLine()); 1960 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1961 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1962 1963 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1964 Record.clear(); 1965 } 1966 1967 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1968 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1969 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1972 return Stream.EmitAbbrev(std::move(Abbv)); 1973 } 1974 1975 void ModuleBitcodeWriter::writeNamedMetadata( 1976 SmallVectorImpl<uint64_t> &Record) { 1977 if (M.named_metadata_empty()) 1978 return; 1979 1980 unsigned Abbrev = createNamedMetadataAbbrev(); 1981 for (const NamedMDNode &NMD : M.named_metadata()) { 1982 // Write name. 1983 StringRef Str = NMD.getName(); 1984 Record.append(Str.bytes_begin(), Str.bytes_end()); 1985 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1986 Record.clear(); 1987 1988 // Write named metadata operands. 1989 for (const MDNode *N : NMD.operands()) 1990 Record.push_back(VE.getMetadataID(N)); 1991 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1992 Record.clear(); 1993 } 1994 } 1995 1996 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1997 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1998 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2002 return Stream.EmitAbbrev(std::move(Abbv)); 2003 } 2004 2005 /// Write out a record for MDString. 2006 /// 2007 /// All the metadata strings in a metadata block are emitted in a single 2008 /// record. The sizes and strings themselves are shoved into a blob. 2009 void ModuleBitcodeWriter::writeMetadataStrings( 2010 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2011 if (Strings.empty()) 2012 return; 2013 2014 // Start the record with the number of strings. 2015 Record.push_back(bitc::METADATA_STRINGS); 2016 Record.push_back(Strings.size()); 2017 2018 // Emit the sizes of the strings in the blob. 2019 SmallString<256> Blob; 2020 { 2021 BitstreamWriter W(Blob); 2022 for (const Metadata *MD : Strings) 2023 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2024 W.FlushToWord(); 2025 } 2026 2027 // Add the offset to the strings to the record. 2028 Record.push_back(Blob.size()); 2029 2030 // Add the strings to the blob. 2031 for (const Metadata *MD : Strings) 2032 Blob.append(cast<MDString>(MD)->getString()); 2033 2034 // Emit the final record. 2035 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2036 Record.clear(); 2037 } 2038 2039 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2040 enum MetadataAbbrev : unsigned { 2041 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2042 #include "llvm/IR/Metadata.def" 2043 LastPlusOne 2044 }; 2045 2046 void ModuleBitcodeWriter::writeMetadataRecords( 2047 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2048 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2049 if (MDs.empty()) 2050 return; 2051 2052 // Initialize MDNode abbreviations. 2053 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2054 #include "llvm/IR/Metadata.def" 2055 2056 for (const Metadata *MD : MDs) { 2057 if (IndexPos) 2058 IndexPos->push_back(Stream.GetCurrentBitNo()); 2059 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2060 assert(N->isResolved() && "Expected forward references to be resolved"); 2061 2062 switch (N->getMetadataID()) { 2063 default: 2064 llvm_unreachable("Invalid MDNode subclass"); 2065 #define HANDLE_MDNODE_LEAF(CLASS) \ 2066 case Metadata::CLASS##Kind: \ 2067 if (MDAbbrevs) \ 2068 write##CLASS(cast<CLASS>(N), Record, \ 2069 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2070 else \ 2071 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2072 continue; 2073 #include "llvm/IR/Metadata.def" 2074 } 2075 } 2076 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2077 } 2078 } 2079 2080 void ModuleBitcodeWriter::writeModuleMetadata() { 2081 if (!VE.hasMDs() && M.named_metadata_empty()) 2082 return; 2083 2084 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2085 SmallVector<uint64_t, 64> Record; 2086 2087 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2088 // block and load any metadata. 2089 std::vector<unsigned> MDAbbrevs; 2090 2091 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2092 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2093 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2094 createGenericDINodeAbbrev(); 2095 2096 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2097 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2098 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2100 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2101 2102 Abbv = std::make_shared<BitCodeAbbrev>(); 2103 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2105 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2106 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2107 2108 // Emit MDStrings together upfront. 2109 writeMetadataStrings(VE.getMDStrings(), Record); 2110 2111 // We only emit an index for the metadata record if we have more than a given 2112 // (naive) threshold of metadatas, otherwise it is not worth it. 2113 if (VE.getNonMDStrings().size() > IndexThreshold) { 2114 // Write a placeholder value in for the offset of the metadata index, 2115 // which is written after the records, so that it can include 2116 // the offset of each entry. The placeholder offset will be 2117 // updated after all records are emitted. 2118 uint64_t Vals[] = {0, 0}; 2119 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2120 } 2121 2122 // Compute and save the bit offset to the current position, which will be 2123 // patched when we emit the index later. We can simply subtract the 64-bit 2124 // fixed size from the current bit number to get the location to backpatch. 2125 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2126 2127 // This index will contain the bitpos for each individual record. 2128 std::vector<uint64_t> IndexPos; 2129 IndexPos.reserve(VE.getNonMDStrings().size()); 2130 2131 // Write all the records 2132 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2133 2134 if (VE.getNonMDStrings().size() > IndexThreshold) { 2135 // Now that we have emitted all the records we will emit the index. But 2136 // first 2137 // backpatch the forward reference so that the reader can skip the records 2138 // efficiently. 2139 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2140 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2141 2142 // Delta encode the index. 2143 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2144 for (auto &Elt : IndexPos) { 2145 auto EltDelta = Elt - PreviousValue; 2146 PreviousValue = Elt; 2147 Elt = EltDelta; 2148 } 2149 // Emit the index record. 2150 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2151 IndexPos.clear(); 2152 } 2153 2154 // Write the named metadata now. 2155 writeNamedMetadata(Record); 2156 2157 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2158 SmallVector<uint64_t, 4> Record; 2159 Record.push_back(VE.getValueID(&GO)); 2160 pushGlobalMetadataAttachment(Record, GO); 2161 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2162 }; 2163 for (const Function &F : M) 2164 if (F.isDeclaration() && F.hasMetadata()) 2165 AddDeclAttachedMetadata(F); 2166 // FIXME: Only store metadata for declarations here, and move data for global 2167 // variable definitions to a separate block (PR28134). 2168 for (const GlobalVariable &GV : M.globals()) 2169 if (GV.hasMetadata()) 2170 AddDeclAttachedMetadata(GV); 2171 2172 Stream.ExitBlock(); 2173 } 2174 2175 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2176 if (!VE.hasMDs()) 2177 return; 2178 2179 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2180 SmallVector<uint64_t, 64> Record; 2181 writeMetadataStrings(VE.getMDStrings(), Record); 2182 writeMetadataRecords(VE.getNonMDStrings(), Record); 2183 Stream.ExitBlock(); 2184 } 2185 2186 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2187 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2188 // [n x [id, mdnode]] 2189 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2190 GO.getAllMetadata(MDs); 2191 for (const auto &I : MDs) { 2192 Record.push_back(I.first); 2193 Record.push_back(VE.getMetadataID(I.second)); 2194 } 2195 } 2196 2197 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2198 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2199 2200 SmallVector<uint64_t, 64> Record; 2201 2202 if (F.hasMetadata()) { 2203 pushGlobalMetadataAttachment(Record, F); 2204 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2205 Record.clear(); 2206 } 2207 2208 // Write metadata attachments 2209 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2210 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2211 for (const BasicBlock &BB : F) 2212 for (const Instruction &I : BB) { 2213 MDs.clear(); 2214 I.getAllMetadataOtherThanDebugLoc(MDs); 2215 2216 // If no metadata, ignore instruction. 2217 if (MDs.empty()) continue; 2218 2219 Record.push_back(VE.getInstructionID(&I)); 2220 2221 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2222 Record.push_back(MDs[i].first); 2223 Record.push_back(VE.getMetadataID(MDs[i].second)); 2224 } 2225 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2226 Record.clear(); 2227 } 2228 2229 Stream.ExitBlock(); 2230 } 2231 2232 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2233 SmallVector<uint64_t, 64> Record; 2234 2235 // Write metadata kinds 2236 // METADATA_KIND - [n x [id, name]] 2237 SmallVector<StringRef, 8> Names; 2238 M.getMDKindNames(Names); 2239 2240 if (Names.empty()) return; 2241 2242 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2243 2244 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2245 Record.push_back(MDKindID); 2246 StringRef KName = Names[MDKindID]; 2247 Record.append(KName.begin(), KName.end()); 2248 2249 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2250 Record.clear(); 2251 } 2252 2253 Stream.ExitBlock(); 2254 } 2255 2256 void ModuleBitcodeWriter::writeOperandBundleTags() { 2257 // Write metadata kinds 2258 // 2259 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2260 // 2261 // OPERAND_BUNDLE_TAG - [strchr x N] 2262 2263 SmallVector<StringRef, 8> Tags; 2264 M.getOperandBundleTags(Tags); 2265 2266 if (Tags.empty()) 2267 return; 2268 2269 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2270 2271 SmallVector<uint64_t, 64> Record; 2272 2273 for (auto Tag : Tags) { 2274 Record.append(Tag.begin(), Tag.end()); 2275 2276 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2277 Record.clear(); 2278 } 2279 2280 Stream.ExitBlock(); 2281 } 2282 2283 void ModuleBitcodeWriter::writeSyncScopeNames() { 2284 SmallVector<StringRef, 8> SSNs; 2285 M.getContext().getSyncScopeNames(SSNs); 2286 if (SSNs.empty()) 2287 return; 2288 2289 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2290 2291 SmallVector<uint64_t, 64> Record; 2292 for (auto SSN : SSNs) { 2293 Record.append(SSN.begin(), SSN.end()); 2294 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2295 Record.clear(); 2296 } 2297 2298 Stream.ExitBlock(); 2299 } 2300 2301 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2302 bool isGlobal) { 2303 if (FirstVal == LastVal) return; 2304 2305 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2306 2307 unsigned AggregateAbbrev = 0; 2308 unsigned String8Abbrev = 0; 2309 unsigned CString7Abbrev = 0; 2310 unsigned CString6Abbrev = 0; 2311 // If this is a constant pool for the module, emit module-specific abbrevs. 2312 if (isGlobal) { 2313 // Abbrev for CST_CODE_AGGREGATE. 2314 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2315 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2318 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2319 2320 // Abbrev for CST_CODE_STRING. 2321 Abbv = std::make_shared<BitCodeAbbrev>(); 2322 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2325 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2326 // Abbrev for CST_CODE_CSTRING. 2327 Abbv = std::make_shared<BitCodeAbbrev>(); 2328 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2331 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2332 // Abbrev for CST_CODE_CSTRING. 2333 Abbv = std::make_shared<BitCodeAbbrev>(); 2334 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2337 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2338 } 2339 2340 SmallVector<uint64_t, 64> Record; 2341 2342 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2343 Type *LastTy = nullptr; 2344 for (unsigned i = FirstVal; i != LastVal; ++i) { 2345 const Value *V = Vals[i].first; 2346 // If we need to switch types, do so now. 2347 if (V->getType() != LastTy) { 2348 LastTy = V->getType(); 2349 Record.push_back(VE.getTypeID(LastTy)); 2350 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2351 CONSTANTS_SETTYPE_ABBREV); 2352 Record.clear(); 2353 } 2354 2355 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2356 Record.push_back(unsigned(IA->hasSideEffects()) | 2357 unsigned(IA->isAlignStack()) << 1 | 2358 unsigned(IA->getDialect()&1) << 2); 2359 2360 // Add the asm string. 2361 const std::string &AsmStr = IA->getAsmString(); 2362 Record.push_back(AsmStr.size()); 2363 Record.append(AsmStr.begin(), AsmStr.end()); 2364 2365 // Add the constraint string. 2366 const std::string &ConstraintStr = IA->getConstraintString(); 2367 Record.push_back(ConstraintStr.size()); 2368 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2369 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2370 Record.clear(); 2371 continue; 2372 } 2373 const Constant *C = cast<Constant>(V); 2374 unsigned Code = -1U; 2375 unsigned AbbrevToUse = 0; 2376 if (C->isNullValue()) { 2377 Code = bitc::CST_CODE_NULL; 2378 } else if (isa<UndefValue>(C)) { 2379 Code = bitc::CST_CODE_UNDEF; 2380 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2381 if (IV->getBitWidth() <= 64) { 2382 uint64_t V = IV->getSExtValue(); 2383 emitSignedInt64(Record, V); 2384 Code = bitc::CST_CODE_INTEGER; 2385 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2386 } else { // Wide integers, > 64 bits in size. 2387 emitWideAPInt(Record, IV->getValue()); 2388 Code = bitc::CST_CODE_WIDE_INTEGER; 2389 } 2390 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2391 Code = bitc::CST_CODE_FLOAT; 2392 Type *Ty = CFP->getType(); 2393 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2394 Ty->isDoubleTy()) { 2395 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2396 } else if (Ty->isX86_FP80Ty()) { 2397 // api needed to prevent premature destruction 2398 // bits are not in the same order as a normal i80 APInt, compensate. 2399 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2400 const uint64_t *p = api.getRawData(); 2401 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2402 Record.push_back(p[0] & 0xffffLL); 2403 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2404 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2405 const uint64_t *p = api.getRawData(); 2406 Record.push_back(p[0]); 2407 Record.push_back(p[1]); 2408 } else { 2409 assert(0 && "Unknown FP type!"); 2410 } 2411 } else if (isa<ConstantDataSequential>(C) && 2412 cast<ConstantDataSequential>(C)->isString()) { 2413 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2414 // Emit constant strings specially. 2415 unsigned NumElts = Str->getNumElements(); 2416 // If this is a null-terminated string, use the denser CSTRING encoding. 2417 if (Str->isCString()) { 2418 Code = bitc::CST_CODE_CSTRING; 2419 --NumElts; // Don't encode the null, which isn't allowed by char6. 2420 } else { 2421 Code = bitc::CST_CODE_STRING; 2422 AbbrevToUse = String8Abbrev; 2423 } 2424 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2425 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2426 for (unsigned i = 0; i != NumElts; ++i) { 2427 unsigned char V = Str->getElementAsInteger(i); 2428 Record.push_back(V); 2429 isCStr7 &= (V & 128) == 0; 2430 if (isCStrChar6) 2431 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2432 } 2433 2434 if (isCStrChar6) 2435 AbbrevToUse = CString6Abbrev; 2436 else if (isCStr7) 2437 AbbrevToUse = CString7Abbrev; 2438 } else if (const ConstantDataSequential *CDS = 2439 dyn_cast<ConstantDataSequential>(C)) { 2440 Code = bitc::CST_CODE_DATA; 2441 Type *EltTy = CDS->getElementType(); 2442 if (isa<IntegerType>(EltTy)) { 2443 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2444 Record.push_back(CDS->getElementAsInteger(i)); 2445 } else { 2446 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2447 Record.push_back( 2448 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2449 } 2450 } else if (isa<ConstantAggregate>(C)) { 2451 Code = bitc::CST_CODE_AGGREGATE; 2452 for (const Value *Op : C->operands()) 2453 Record.push_back(VE.getValueID(Op)); 2454 AbbrevToUse = AggregateAbbrev; 2455 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2456 switch (CE->getOpcode()) { 2457 default: 2458 if (Instruction::isCast(CE->getOpcode())) { 2459 Code = bitc::CST_CODE_CE_CAST; 2460 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2461 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2462 Record.push_back(VE.getValueID(C->getOperand(0))); 2463 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2464 } else { 2465 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2466 Code = bitc::CST_CODE_CE_BINOP; 2467 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2468 Record.push_back(VE.getValueID(C->getOperand(0))); 2469 Record.push_back(VE.getValueID(C->getOperand(1))); 2470 uint64_t Flags = getOptimizationFlags(CE); 2471 if (Flags != 0) 2472 Record.push_back(Flags); 2473 } 2474 break; 2475 case Instruction::FNeg: { 2476 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2477 Code = bitc::CST_CODE_CE_UNOP; 2478 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2479 Record.push_back(VE.getValueID(C->getOperand(0))); 2480 uint64_t Flags = getOptimizationFlags(CE); 2481 if (Flags != 0) 2482 Record.push_back(Flags); 2483 break; 2484 } 2485 case Instruction::GetElementPtr: { 2486 Code = bitc::CST_CODE_CE_GEP; 2487 const auto *GO = cast<GEPOperator>(C); 2488 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2489 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2490 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2491 Record.push_back((*Idx << 1) | GO->isInBounds()); 2492 } else if (GO->isInBounds()) 2493 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2494 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2495 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2496 Record.push_back(VE.getValueID(C->getOperand(i))); 2497 } 2498 break; 2499 } 2500 case Instruction::Select: 2501 Code = bitc::CST_CODE_CE_SELECT; 2502 Record.push_back(VE.getValueID(C->getOperand(0))); 2503 Record.push_back(VE.getValueID(C->getOperand(1))); 2504 Record.push_back(VE.getValueID(C->getOperand(2))); 2505 break; 2506 case Instruction::ExtractElement: 2507 Code = bitc::CST_CODE_CE_EXTRACTELT; 2508 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2509 Record.push_back(VE.getValueID(C->getOperand(0))); 2510 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2511 Record.push_back(VE.getValueID(C->getOperand(1))); 2512 break; 2513 case Instruction::InsertElement: 2514 Code = bitc::CST_CODE_CE_INSERTELT; 2515 Record.push_back(VE.getValueID(C->getOperand(0))); 2516 Record.push_back(VE.getValueID(C->getOperand(1))); 2517 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2518 Record.push_back(VE.getValueID(C->getOperand(2))); 2519 break; 2520 case Instruction::ShuffleVector: 2521 // If the return type and argument types are the same, this is a 2522 // standard shufflevector instruction. If the types are different, 2523 // then the shuffle is widening or truncating the input vectors, and 2524 // the argument type must also be encoded. 2525 if (C->getType() == C->getOperand(0)->getType()) { 2526 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2527 } else { 2528 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2529 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2530 } 2531 Record.push_back(VE.getValueID(C->getOperand(0))); 2532 Record.push_back(VE.getValueID(C->getOperand(1))); 2533 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2534 break; 2535 case Instruction::ICmp: 2536 case Instruction::FCmp: 2537 Code = bitc::CST_CODE_CE_CMP; 2538 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2539 Record.push_back(VE.getValueID(C->getOperand(0))); 2540 Record.push_back(VE.getValueID(C->getOperand(1))); 2541 Record.push_back(CE->getPredicate()); 2542 break; 2543 } 2544 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2545 Code = bitc::CST_CODE_BLOCKADDRESS; 2546 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2547 Record.push_back(VE.getValueID(BA->getFunction())); 2548 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2549 } else { 2550 #ifndef NDEBUG 2551 C->dump(); 2552 #endif 2553 llvm_unreachable("Unknown constant!"); 2554 } 2555 Stream.EmitRecord(Code, Record, AbbrevToUse); 2556 Record.clear(); 2557 } 2558 2559 Stream.ExitBlock(); 2560 } 2561 2562 void ModuleBitcodeWriter::writeModuleConstants() { 2563 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2564 2565 // Find the first constant to emit, which is the first non-globalvalue value. 2566 // We know globalvalues have been emitted by WriteModuleInfo. 2567 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2568 if (!isa<GlobalValue>(Vals[i].first)) { 2569 writeConstants(i, Vals.size(), true); 2570 return; 2571 } 2572 } 2573 } 2574 2575 /// pushValueAndType - The file has to encode both the value and type id for 2576 /// many values, because we need to know what type to create for forward 2577 /// references. However, most operands are not forward references, so this type 2578 /// field is not needed. 2579 /// 2580 /// This function adds V's value ID to Vals. If the value ID is higher than the 2581 /// instruction ID, then it is a forward reference, and it also includes the 2582 /// type ID. The value ID that is written is encoded relative to the InstID. 2583 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2584 SmallVectorImpl<unsigned> &Vals) { 2585 unsigned ValID = VE.getValueID(V); 2586 // Make encoding relative to the InstID. 2587 Vals.push_back(InstID - ValID); 2588 if (ValID >= InstID) { 2589 Vals.push_back(VE.getTypeID(V->getType())); 2590 return true; 2591 } 2592 return false; 2593 } 2594 2595 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2596 unsigned InstID) { 2597 SmallVector<unsigned, 64> Record; 2598 LLVMContext &C = CS.getContext(); 2599 2600 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2601 const auto &Bundle = CS.getOperandBundleAt(i); 2602 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2603 2604 for (auto &Input : Bundle.Inputs) 2605 pushValueAndType(Input, InstID, Record); 2606 2607 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2608 Record.clear(); 2609 } 2610 } 2611 2612 /// pushValue - Like pushValueAndType, but where the type of the value is 2613 /// omitted (perhaps it was already encoded in an earlier operand). 2614 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2615 SmallVectorImpl<unsigned> &Vals) { 2616 unsigned ValID = VE.getValueID(V); 2617 Vals.push_back(InstID - ValID); 2618 } 2619 2620 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2621 SmallVectorImpl<uint64_t> &Vals) { 2622 unsigned ValID = VE.getValueID(V); 2623 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2624 emitSignedInt64(Vals, diff); 2625 } 2626 2627 /// WriteInstruction - Emit an instruction to the specified stream. 2628 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2629 unsigned InstID, 2630 SmallVectorImpl<unsigned> &Vals) { 2631 unsigned Code = 0; 2632 unsigned AbbrevToUse = 0; 2633 VE.setInstructionID(&I); 2634 switch (I.getOpcode()) { 2635 default: 2636 if (Instruction::isCast(I.getOpcode())) { 2637 Code = bitc::FUNC_CODE_INST_CAST; 2638 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2639 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2640 Vals.push_back(VE.getTypeID(I.getType())); 2641 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2642 } else { 2643 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2644 Code = bitc::FUNC_CODE_INST_BINOP; 2645 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2646 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2647 pushValue(I.getOperand(1), InstID, Vals); 2648 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2649 uint64_t Flags = getOptimizationFlags(&I); 2650 if (Flags != 0) { 2651 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2652 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2653 Vals.push_back(Flags); 2654 } 2655 } 2656 break; 2657 case Instruction::FNeg: { 2658 Code = bitc::FUNC_CODE_INST_UNOP; 2659 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2660 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2661 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2662 uint64_t Flags = getOptimizationFlags(&I); 2663 if (Flags != 0) { 2664 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2665 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2666 Vals.push_back(Flags); 2667 } 2668 break; 2669 } 2670 case Instruction::GetElementPtr: { 2671 Code = bitc::FUNC_CODE_INST_GEP; 2672 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2673 auto &GEPInst = cast<GetElementPtrInst>(I); 2674 Vals.push_back(GEPInst.isInBounds()); 2675 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2676 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2677 pushValueAndType(I.getOperand(i), InstID, Vals); 2678 break; 2679 } 2680 case Instruction::ExtractValue: { 2681 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2682 pushValueAndType(I.getOperand(0), InstID, Vals); 2683 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2684 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2685 break; 2686 } 2687 case Instruction::InsertValue: { 2688 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2689 pushValueAndType(I.getOperand(0), InstID, Vals); 2690 pushValueAndType(I.getOperand(1), InstID, Vals); 2691 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2692 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2693 break; 2694 } 2695 case Instruction::Select: { 2696 Code = bitc::FUNC_CODE_INST_VSELECT; 2697 pushValueAndType(I.getOperand(1), InstID, Vals); 2698 pushValue(I.getOperand(2), InstID, Vals); 2699 pushValueAndType(I.getOperand(0), InstID, Vals); 2700 uint64_t Flags = getOptimizationFlags(&I); 2701 if (Flags != 0) 2702 Vals.push_back(Flags); 2703 break; 2704 } 2705 case Instruction::ExtractElement: 2706 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2707 pushValueAndType(I.getOperand(0), InstID, Vals); 2708 pushValueAndType(I.getOperand(1), InstID, Vals); 2709 break; 2710 case Instruction::InsertElement: 2711 Code = bitc::FUNC_CODE_INST_INSERTELT; 2712 pushValueAndType(I.getOperand(0), InstID, Vals); 2713 pushValue(I.getOperand(1), InstID, Vals); 2714 pushValueAndType(I.getOperand(2), InstID, Vals); 2715 break; 2716 case Instruction::ShuffleVector: 2717 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2718 pushValueAndType(I.getOperand(0), InstID, Vals); 2719 pushValue(I.getOperand(1), InstID, Vals); 2720 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2721 Vals); 2722 break; 2723 case Instruction::ICmp: 2724 case Instruction::FCmp: { 2725 // compare returning Int1Ty or vector of Int1Ty 2726 Code = bitc::FUNC_CODE_INST_CMP2; 2727 pushValueAndType(I.getOperand(0), InstID, Vals); 2728 pushValue(I.getOperand(1), InstID, Vals); 2729 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2730 uint64_t Flags = getOptimizationFlags(&I); 2731 if (Flags != 0) 2732 Vals.push_back(Flags); 2733 break; 2734 } 2735 2736 case Instruction::Ret: 2737 { 2738 Code = bitc::FUNC_CODE_INST_RET; 2739 unsigned NumOperands = I.getNumOperands(); 2740 if (NumOperands == 0) 2741 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2742 else if (NumOperands == 1) { 2743 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2744 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2745 } else { 2746 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2747 pushValueAndType(I.getOperand(i), InstID, Vals); 2748 } 2749 } 2750 break; 2751 case Instruction::Br: 2752 { 2753 Code = bitc::FUNC_CODE_INST_BR; 2754 const BranchInst &II = cast<BranchInst>(I); 2755 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2756 if (II.isConditional()) { 2757 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2758 pushValue(II.getCondition(), InstID, Vals); 2759 } 2760 } 2761 break; 2762 case Instruction::Switch: 2763 { 2764 Code = bitc::FUNC_CODE_INST_SWITCH; 2765 const SwitchInst &SI = cast<SwitchInst>(I); 2766 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2767 pushValue(SI.getCondition(), InstID, Vals); 2768 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2769 for (auto Case : SI.cases()) { 2770 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2771 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2772 } 2773 } 2774 break; 2775 case Instruction::IndirectBr: 2776 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2777 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2778 // Encode the address operand as relative, but not the basic blocks. 2779 pushValue(I.getOperand(0), InstID, Vals); 2780 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2781 Vals.push_back(VE.getValueID(I.getOperand(i))); 2782 break; 2783 2784 case Instruction::Invoke: { 2785 const InvokeInst *II = cast<InvokeInst>(&I); 2786 const Value *Callee = II->getCalledOperand(); 2787 FunctionType *FTy = II->getFunctionType(); 2788 2789 if (II->hasOperandBundles()) 2790 writeOperandBundles(*II, InstID); 2791 2792 Code = bitc::FUNC_CODE_INST_INVOKE; 2793 2794 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2795 Vals.push_back(II->getCallingConv() | 1 << 13); 2796 Vals.push_back(VE.getValueID(II->getNormalDest())); 2797 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2798 Vals.push_back(VE.getTypeID(FTy)); 2799 pushValueAndType(Callee, InstID, Vals); 2800 2801 // Emit value #'s for the fixed parameters. 2802 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2803 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2804 2805 // Emit type/value pairs for varargs params. 2806 if (FTy->isVarArg()) { 2807 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2808 i != e; ++i) 2809 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2810 } 2811 break; 2812 } 2813 case Instruction::Resume: 2814 Code = bitc::FUNC_CODE_INST_RESUME; 2815 pushValueAndType(I.getOperand(0), InstID, Vals); 2816 break; 2817 case Instruction::CleanupRet: { 2818 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2819 const auto &CRI = cast<CleanupReturnInst>(I); 2820 pushValue(CRI.getCleanupPad(), InstID, Vals); 2821 if (CRI.hasUnwindDest()) 2822 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2823 break; 2824 } 2825 case Instruction::CatchRet: { 2826 Code = bitc::FUNC_CODE_INST_CATCHRET; 2827 const auto &CRI = cast<CatchReturnInst>(I); 2828 pushValue(CRI.getCatchPad(), InstID, Vals); 2829 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2830 break; 2831 } 2832 case Instruction::CleanupPad: 2833 case Instruction::CatchPad: { 2834 const auto &FuncletPad = cast<FuncletPadInst>(I); 2835 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2836 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2837 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2838 2839 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2840 Vals.push_back(NumArgOperands); 2841 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2842 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2843 break; 2844 } 2845 case Instruction::CatchSwitch: { 2846 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2847 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2848 2849 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2850 2851 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2852 Vals.push_back(NumHandlers); 2853 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2854 Vals.push_back(VE.getValueID(CatchPadBB)); 2855 2856 if (CatchSwitch.hasUnwindDest()) 2857 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2858 break; 2859 } 2860 case Instruction::CallBr: { 2861 const CallBrInst *CBI = cast<CallBrInst>(&I); 2862 const Value *Callee = CBI->getCalledOperand(); 2863 FunctionType *FTy = CBI->getFunctionType(); 2864 2865 if (CBI->hasOperandBundles()) 2866 writeOperandBundles(*CBI, InstID); 2867 2868 Code = bitc::FUNC_CODE_INST_CALLBR; 2869 2870 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2871 2872 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2873 1 << bitc::CALL_EXPLICIT_TYPE); 2874 2875 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2876 Vals.push_back(CBI->getNumIndirectDests()); 2877 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2878 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2879 2880 Vals.push_back(VE.getTypeID(FTy)); 2881 pushValueAndType(Callee, InstID, Vals); 2882 2883 // Emit value #'s for the fixed parameters. 2884 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2885 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2886 2887 // Emit type/value pairs for varargs params. 2888 if (FTy->isVarArg()) { 2889 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2890 i != e; ++i) 2891 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2892 } 2893 break; 2894 } 2895 case Instruction::Unreachable: 2896 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2897 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2898 break; 2899 2900 case Instruction::PHI: { 2901 const PHINode &PN = cast<PHINode>(I); 2902 Code = bitc::FUNC_CODE_INST_PHI; 2903 // With the newer instruction encoding, forward references could give 2904 // negative valued IDs. This is most common for PHIs, so we use 2905 // signed VBRs. 2906 SmallVector<uint64_t, 128> Vals64; 2907 Vals64.push_back(VE.getTypeID(PN.getType())); 2908 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2909 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2910 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2911 } 2912 2913 uint64_t Flags = getOptimizationFlags(&I); 2914 if (Flags != 0) 2915 Vals64.push_back(Flags); 2916 2917 // Emit a Vals64 vector and exit. 2918 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2919 Vals64.clear(); 2920 return; 2921 } 2922 2923 case Instruction::LandingPad: { 2924 const LandingPadInst &LP = cast<LandingPadInst>(I); 2925 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2926 Vals.push_back(VE.getTypeID(LP.getType())); 2927 Vals.push_back(LP.isCleanup()); 2928 Vals.push_back(LP.getNumClauses()); 2929 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2930 if (LP.isCatch(I)) 2931 Vals.push_back(LandingPadInst::Catch); 2932 else 2933 Vals.push_back(LandingPadInst::Filter); 2934 pushValueAndType(LP.getClause(I), InstID, Vals); 2935 } 2936 break; 2937 } 2938 2939 case Instruction::Alloca: { 2940 Code = bitc::FUNC_CODE_INST_ALLOCA; 2941 const AllocaInst &AI = cast<AllocaInst>(I); 2942 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2943 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2944 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2945 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2946 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2947 "not enough bits for maximum alignment"); 2948 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2949 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2950 AlignRecord |= 1 << 6; 2951 AlignRecord |= AI.isSwiftError() << 7; 2952 Vals.push_back(AlignRecord); 2953 break; 2954 } 2955 2956 case Instruction::Load: 2957 if (cast<LoadInst>(I).isAtomic()) { 2958 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2959 pushValueAndType(I.getOperand(0), InstID, Vals); 2960 } else { 2961 Code = bitc::FUNC_CODE_INST_LOAD; 2962 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2963 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2964 } 2965 Vals.push_back(VE.getTypeID(I.getType())); 2966 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2967 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2968 if (cast<LoadInst>(I).isAtomic()) { 2969 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2970 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2971 } 2972 break; 2973 case Instruction::Store: 2974 if (cast<StoreInst>(I).isAtomic()) 2975 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2976 else 2977 Code = bitc::FUNC_CODE_INST_STORE; 2978 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2979 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2980 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2981 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2982 if (cast<StoreInst>(I).isAtomic()) { 2983 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2984 Vals.push_back( 2985 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2986 } 2987 break; 2988 case Instruction::AtomicCmpXchg: 2989 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2990 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2991 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2992 pushValue(I.getOperand(2), InstID, Vals); // newval. 2993 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2994 Vals.push_back( 2995 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2996 Vals.push_back( 2997 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2998 Vals.push_back( 2999 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3000 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3001 break; 3002 case Instruction::AtomicRMW: 3003 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3004 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3005 pushValue(I.getOperand(1), InstID, Vals); // val. 3006 Vals.push_back( 3007 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3008 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3009 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3010 Vals.push_back( 3011 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3012 break; 3013 case Instruction::Fence: 3014 Code = bitc::FUNC_CODE_INST_FENCE; 3015 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3016 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3017 break; 3018 case Instruction::Call: { 3019 const CallInst &CI = cast<CallInst>(I); 3020 FunctionType *FTy = CI.getFunctionType(); 3021 3022 if (CI.hasOperandBundles()) 3023 writeOperandBundles(CI, InstID); 3024 3025 Code = bitc::FUNC_CODE_INST_CALL; 3026 3027 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3028 3029 unsigned Flags = getOptimizationFlags(&I); 3030 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3031 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3032 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3033 1 << bitc::CALL_EXPLICIT_TYPE | 3034 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3035 unsigned(Flags != 0) << bitc::CALL_FMF); 3036 if (Flags != 0) 3037 Vals.push_back(Flags); 3038 3039 Vals.push_back(VE.getTypeID(FTy)); 3040 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3041 3042 // Emit value #'s for the fixed parameters. 3043 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3044 // Check for labels (can happen with asm labels). 3045 if (FTy->getParamType(i)->isLabelTy()) 3046 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3047 else 3048 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3049 } 3050 3051 // Emit type/value pairs for varargs params. 3052 if (FTy->isVarArg()) { 3053 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3054 i != e; ++i) 3055 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3056 } 3057 break; 3058 } 3059 case Instruction::VAArg: 3060 Code = bitc::FUNC_CODE_INST_VAARG; 3061 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3062 pushValue(I.getOperand(0), InstID, Vals); // valist. 3063 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3064 break; 3065 case Instruction::Freeze: 3066 Code = bitc::FUNC_CODE_INST_FREEZE; 3067 pushValueAndType(I.getOperand(0), InstID, Vals); 3068 break; 3069 } 3070 3071 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3072 Vals.clear(); 3073 } 3074 3075 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3076 /// to allow clients to efficiently find the function body. 3077 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3078 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3079 // Get the offset of the VST we are writing, and backpatch it into 3080 // the VST forward declaration record. 3081 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3082 // The BitcodeStartBit was the stream offset of the identification block. 3083 VSTOffset -= bitcodeStartBit(); 3084 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3085 // Note that we add 1 here because the offset is relative to one word 3086 // before the start of the identification block, which was historically 3087 // always the start of the regular bitcode header. 3088 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3089 3090 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3091 3092 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3093 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3096 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3097 3098 for (const Function &F : M) { 3099 uint64_t Record[2]; 3100 3101 if (F.isDeclaration()) 3102 continue; 3103 3104 Record[0] = VE.getValueID(&F); 3105 3106 // Save the word offset of the function (from the start of the 3107 // actual bitcode written to the stream). 3108 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3109 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3110 // Note that we add 1 here because the offset is relative to one word 3111 // before the start of the identification block, which was historically 3112 // always the start of the regular bitcode header. 3113 Record[1] = BitcodeIndex / 32 + 1; 3114 3115 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3116 } 3117 3118 Stream.ExitBlock(); 3119 } 3120 3121 /// Emit names for arguments, instructions and basic blocks in a function. 3122 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3123 const ValueSymbolTable &VST) { 3124 if (VST.empty()) 3125 return; 3126 3127 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3128 3129 // FIXME: Set up the abbrev, we know how many values there are! 3130 // FIXME: We know if the type names can use 7-bit ascii. 3131 SmallVector<uint64_t, 64> NameVals; 3132 3133 for (const ValueName &Name : VST) { 3134 // Figure out the encoding to use for the name. 3135 StringEncoding Bits = getStringEncoding(Name.getKey()); 3136 3137 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3138 NameVals.push_back(VE.getValueID(Name.getValue())); 3139 3140 // VST_CODE_ENTRY: [valueid, namechar x N] 3141 // VST_CODE_BBENTRY: [bbid, namechar x N] 3142 unsigned Code; 3143 if (isa<BasicBlock>(Name.getValue())) { 3144 Code = bitc::VST_CODE_BBENTRY; 3145 if (Bits == SE_Char6) 3146 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3147 } else { 3148 Code = bitc::VST_CODE_ENTRY; 3149 if (Bits == SE_Char6) 3150 AbbrevToUse = VST_ENTRY_6_ABBREV; 3151 else if (Bits == SE_Fixed7) 3152 AbbrevToUse = VST_ENTRY_7_ABBREV; 3153 } 3154 3155 for (const auto P : Name.getKey()) 3156 NameVals.push_back((unsigned char)P); 3157 3158 // Emit the finished record. 3159 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3160 NameVals.clear(); 3161 } 3162 3163 Stream.ExitBlock(); 3164 } 3165 3166 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3167 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3168 unsigned Code; 3169 if (isa<BasicBlock>(Order.V)) 3170 Code = bitc::USELIST_CODE_BB; 3171 else 3172 Code = bitc::USELIST_CODE_DEFAULT; 3173 3174 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3175 Record.push_back(VE.getValueID(Order.V)); 3176 Stream.EmitRecord(Code, Record); 3177 } 3178 3179 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3180 assert(VE.shouldPreserveUseListOrder() && 3181 "Expected to be preserving use-list order"); 3182 3183 auto hasMore = [&]() { 3184 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3185 }; 3186 if (!hasMore()) 3187 // Nothing to do. 3188 return; 3189 3190 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3191 while (hasMore()) { 3192 writeUseList(std::move(VE.UseListOrders.back())); 3193 VE.UseListOrders.pop_back(); 3194 } 3195 Stream.ExitBlock(); 3196 } 3197 3198 /// Emit a function body to the module stream. 3199 void ModuleBitcodeWriter::writeFunction( 3200 const Function &F, 3201 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3202 // Save the bitcode index of the start of this function block for recording 3203 // in the VST. 3204 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3205 3206 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3207 VE.incorporateFunction(F); 3208 3209 SmallVector<unsigned, 64> Vals; 3210 3211 // Emit the number of basic blocks, so the reader can create them ahead of 3212 // time. 3213 Vals.push_back(VE.getBasicBlocks().size()); 3214 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3215 Vals.clear(); 3216 3217 // If there are function-local constants, emit them now. 3218 unsigned CstStart, CstEnd; 3219 VE.getFunctionConstantRange(CstStart, CstEnd); 3220 writeConstants(CstStart, CstEnd, false); 3221 3222 // If there is function-local metadata, emit it now. 3223 writeFunctionMetadata(F); 3224 3225 // Keep a running idea of what the instruction ID is. 3226 unsigned InstID = CstEnd; 3227 3228 bool NeedsMetadataAttachment = F.hasMetadata(); 3229 3230 DILocation *LastDL = nullptr; 3231 // Finally, emit all the instructions, in order. 3232 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3233 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3234 I != E; ++I) { 3235 writeInstruction(*I, InstID, Vals); 3236 3237 if (!I->getType()->isVoidTy()) 3238 ++InstID; 3239 3240 // If the instruction has metadata, write a metadata attachment later. 3241 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3242 3243 // If the instruction has a debug location, emit it. 3244 DILocation *DL = I->getDebugLoc(); 3245 if (!DL) 3246 continue; 3247 3248 if (DL == LastDL) { 3249 // Just repeat the same debug loc as last time. 3250 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3251 continue; 3252 } 3253 3254 Vals.push_back(DL->getLine()); 3255 Vals.push_back(DL->getColumn()); 3256 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3257 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3258 Vals.push_back(DL->isImplicitCode()); 3259 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3260 Vals.clear(); 3261 3262 LastDL = DL; 3263 } 3264 3265 // Emit names for all the instructions etc. 3266 if (auto *Symtab = F.getValueSymbolTable()) 3267 writeFunctionLevelValueSymbolTable(*Symtab); 3268 3269 if (NeedsMetadataAttachment) 3270 writeFunctionMetadataAttachment(F); 3271 if (VE.shouldPreserveUseListOrder()) 3272 writeUseListBlock(&F); 3273 VE.purgeFunction(); 3274 Stream.ExitBlock(); 3275 } 3276 3277 // Emit blockinfo, which defines the standard abbreviations etc. 3278 void ModuleBitcodeWriter::writeBlockInfo() { 3279 // We only want to emit block info records for blocks that have multiple 3280 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3281 // Other blocks can define their abbrevs inline. 3282 Stream.EnterBlockInfoBlock(); 3283 3284 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3285 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3290 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3291 VST_ENTRY_8_ABBREV) 3292 llvm_unreachable("Unexpected abbrev ordering!"); 3293 } 3294 3295 { // 7-bit fixed width VST_CODE_ENTRY strings. 3296 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3297 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3301 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3302 VST_ENTRY_7_ABBREV) 3303 llvm_unreachable("Unexpected abbrev ordering!"); 3304 } 3305 { // 6-bit char6 VST_CODE_ENTRY strings. 3306 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3307 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3311 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3312 VST_ENTRY_6_ABBREV) 3313 llvm_unreachable("Unexpected abbrev ordering!"); 3314 } 3315 { // 6-bit char6 VST_CODE_BBENTRY strings. 3316 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3317 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3321 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3322 VST_BBENTRY_6_ABBREV) 3323 llvm_unreachable("Unexpected abbrev ordering!"); 3324 } 3325 3326 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3327 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3328 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3330 VE.computeBitsRequiredForTypeIndicies())); 3331 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3332 CONSTANTS_SETTYPE_ABBREV) 3333 llvm_unreachable("Unexpected abbrev ordering!"); 3334 } 3335 3336 { // INTEGER abbrev for CONSTANTS_BLOCK. 3337 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3338 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3340 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3341 CONSTANTS_INTEGER_ABBREV) 3342 llvm_unreachable("Unexpected abbrev ordering!"); 3343 } 3344 3345 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3346 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3347 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3350 VE.computeBitsRequiredForTypeIndicies())); 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3352 3353 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3354 CONSTANTS_CE_CAST_Abbrev) 3355 llvm_unreachable("Unexpected abbrev ordering!"); 3356 } 3357 { // NULL abbrev for CONSTANTS_BLOCK. 3358 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3359 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3360 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3361 CONSTANTS_NULL_Abbrev) 3362 llvm_unreachable("Unexpected abbrev ordering!"); 3363 } 3364 3365 // FIXME: This should only use space for first class types! 3366 3367 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3368 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3369 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3372 VE.computeBitsRequiredForTypeIndicies())); 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3375 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3376 FUNCTION_INST_LOAD_ABBREV) 3377 llvm_unreachable("Unexpected abbrev ordering!"); 3378 } 3379 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3380 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3381 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3384 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3385 FUNCTION_INST_UNOP_ABBREV) 3386 llvm_unreachable("Unexpected abbrev ordering!"); 3387 } 3388 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3389 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3390 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3394 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3395 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3396 llvm_unreachable("Unexpected abbrev ordering!"); 3397 } 3398 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3400 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3404 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3405 FUNCTION_INST_BINOP_ABBREV) 3406 llvm_unreachable("Unexpected abbrev ordering!"); 3407 } 3408 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3409 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3410 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3415 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3416 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3417 llvm_unreachable("Unexpected abbrev ordering!"); 3418 } 3419 { // INST_CAST abbrev for FUNCTION_BLOCK. 3420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3421 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3424 VE.computeBitsRequiredForTypeIndicies())); 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3426 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3427 FUNCTION_INST_CAST_ABBREV) 3428 llvm_unreachable("Unexpected abbrev ordering!"); 3429 } 3430 3431 { // INST_RET abbrev for FUNCTION_BLOCK. 3432 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3433 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3434 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3435 FUNCTION_INST_RET_VOID_ABBREV) 3436 llvm_unreachable("Unexpected abbrev ordering!"); 3437 } 3438 { // INST_RET abbrev for FUNCTION_BLOCK. 3439 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3440 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3442 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3443 FUNCTION_INST_RET_VAL_ABBREV) 3444 llvm_unreachable("Unexpected abbrev ordering!"); 3445 } 3446 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3447 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3448 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3449 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3450 FUNCTION_INST_UNREACHABLE_ABBREV) 3451 llvm_unreachable("Unexpected abbrev ordering!"); 3452 } 3453 { 3454 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3455 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3458 Log2_32_Ceil(VE.getTypes().size() + 1))); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3461 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3462 FUNCTION_INST_GEP_ABBREV) 3463 llvm_unreachable("Unexpected abbrev ordering!"); 3464 } 3465 3466 Stream.ExitBlock(); 3467 } 3468 3469 /// Write the module path strings, currently only used when generating 3470 /// a combined index file. 3471 void IndexBitcodeWriter::writeModStrings() { 3472 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3473 3474 // TODO: See which abbrev sizes we actually need to emit 3475 3476 // 8-bit fixed-width MST_ENTRY strings. 3477 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3482 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3483 3484 // 7-bit fixed width MST_ENTRY strings. 3485 Abbv = std::make_shared<BitCodeAbbrev>(); 3486 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3490 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3491 3492 // 6-bit char6 MST_ENTRY strings. 3493 Abbv = std::make_shared<BitCodeAbbrev>(); 3494 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3498 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3499 3500 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3501 Abbv = std::make_shared<BitCodeAbbrev>(); 3502 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3508 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3509 3510 SmallVector<unsigned, 64> Vals; 3511 forEachModule( 3512 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3513 StringRef Key = MPSE.getKey(); 3514 const auto &Value = MPSE.getValue(); 3515 StringEncoding Bits = getStringEncoding(Key); 3516 unsigned AbbrevToUse = Abbrev8Bit; 3517 if (Bits == SE_Char6) 3518 AbbrevToUse = Abbrev6Bit; 3519 else if (Bits == SE_Fixed7) 3520 AbbrevToUse = Abbrev7Bit; 3521 3522 Vals.push_back(Value.first); 3523 Vals.append(Key.begin(), Key.end()); 3524 3525 // Emit the finished record. 3526 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3527 3528 // Emit an optional hash for the module now 3529 const auto &Hash = Value.second; 3530 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3531 Vals.assign(Hash.begin(), Hash.end()); 3532 // Emit the hash record. 3533 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3534 } 3535 3536 Vals.clear(); 3537 }); 3538 Stream.ExitBlock(); 3539 } 3540 3541 /// Write the function type metadata related records that need to appear before 3542 /// a function summary entry (whether per-module or combined). 3543 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3544 FunctionSummary *FS) { 3545 if (!FS->type_tests().empty()) 3546 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3547 3548 SmallVector<uint64_t, 64> Record; 3549 3550 auto WriteVFuncIdVec = [&](uint64_t Ty, 3551 ArrayRef<FunctionSummary::VFuncId> VFs) { 3552 if (VFs.empty()) 3553 return; 3554 Record.clear(); 3555 for (auto &VF : VFs) { 3556 Record.push_back(VF.GUID); 3557 Record.push_back(VF.Offset); 3558 } 3559 Stream.EmitRecord(Ty, Record); 3560 }; 3561 3562 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3563 FS->type_test_assume_vcalls()); 3564 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3565 FS->type_checked_load_vcalls()); 3566 3567 auto WriteConstVCallVec = [&](uint64_t Ty, 3568 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3569 for (auto &VC : VCs) { 3570 Record.clear(); 3571 Record.push_back(VC.VFunc.GUID); 3572 Record.push_back(VC.VFunc.Offset); 3573 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3574 Stream.EmitRecord(Ty, Record); 3575 } 3576 }; 3577 3578 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3579 FS->type_test_assume_const_vcalls()); 3580 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3581 FS->type_checked_load_const_vcalls()); 3582 } 3583 3584 /// Collect type IDs from type tests used by function. 3585 static void 3586 getReferencedTypeIds(FunctionSummary *FS, 3587 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3588 if (!FS->type_tests().empty()) 3589 for (auto &TT : FS->type_tests()) 3590 ReferencedTypeIds.insert(TT); 3591 3592 auto GetReferencedTypesFromVFuncIdVec = 3593 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3594 for (auto &VF : VFs) 3595 ReferencedTypeIds.insert(VF.GUID); 3596 }; 3597 3598 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3599 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3600 3601 auto GetReferencedTypesFromConstVCallVec = 3602 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3603 for (auto &VC : VCs) 3604 ReferencedTypeIds.insert(VC.VFunc.GUID); 3605 }; 3606 3607 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3608 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3609 } 3610 3611 static void writeWholeProgramDevirtResolutionByArg( 3612 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3613 const WholeProgramDevirtResolution::ByArg &ByArg) { 3614 NameVals.push_back(args.size()); 3615 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3616 3617 NameVals.push_back(ByArg.TheKind); 3618 NameVals.push_back(ByArg.Info); 3619 NameVals.push_back(ByArg.Byte); 3620 NameVals.push_back(ByArg.Bit); 3621 } 3622 3623 static void writeWholeProgramDevirtResolution( 3624 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3625 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3626 NameVals.push_back(Id); 3627 3628 NameVals.push_back(Wpd.TheKind); 3629 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3630 NameVals.push_back(Wpd.SingleImplName.size()); 3631 3632 NameVals.push_back(Wpd.ResByArg.size()); 3633 for (auto &A : Wpd.ResByArg) 3634 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3635 } 3636 3637 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3638 StringTableBuilder &StrtabBuilder, 3639 const std::string &Id, 3640 const TypeIdSummary &Summary) { 3641 NameVals.push_back(StrtabBuilder.add(Id)); 3642 NameVals.push_back(Id.size()); 3643 3644 NameVals.push_back(Summary.TTRes.TheKind); 3645 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3646 NameVals.push_back(Summary.TTRes.AlignLog2); 3647 NameVals.push_back(Summary.TTRes.SizeM1); 3648 NameVals.push_back(Summary.TTRes.BitMask); 3649 NameVals.push_back(Summary.TTRes.InlineBits); 3650 3651 for (auto &W : Summary.WPDRes) 3652 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3653 W.second); 3654 } 3655 3656 static void writeTypeIdCompatibleVtableSummaryRecord( 3657 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3658 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3659 ValueEnumerator &VE) { 3660 NameVals.push_back(StrtabBuilder.add(Id)); 3661 NameVals.push_back(Id.size()); 3662 3663 for (auto &P : Summary) { 3664 NameVals.push_back(P.AddressPointOffset); 3665 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3666 } 3667 } 3668 3669 // Helper to emit a single function summary record. 3670 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3671 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3672 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3673 const Function &F) { 3674 NameVals.push_back(ValueID); 3675 3676 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3677 writeFunctionTypeMetadataRecords(Stream, FS); 3678 3679 auto SpecialRefCnts = FS->specialRefCounts(); 3680 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3681 NameVals.push_back(FS->instCount()); 3682 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3683 NameVals.push_back(FS->refs().size()); 3684 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3685 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3686 3687 for (auto &RI : FS->refs()) 3688 NameVals.push_back(VE.getValueID(RI.getValue())); 3689 3690 bool HasProfileData = 3691 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3692 for (auto &ECI : FS->calls()) { 3693 NameVals.push_back(getValueId(ECI.first)); 3694 if (HasProfileData) 3695 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3696 else if (WriteRelBFToSummary) 3697 NameVals.push_back(ECI.second.RelBlockFreq); 3698 } 3699 3700 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3701 unsigned Code = 3702 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3703 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3704 : bitc::FS_PERMODULE)); 3705 3706 // Emit the finished record. 3707 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3708 NameVals.clear(); 3709 } 3710 3711 // Collect the global value references in the given variable's initializer, 3712 // and emit them in a summary record. 3713 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3714 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3715 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3716 auto VI = Index->getValueInfo(V.getGUID()); 3717 if (!VI || VI.getSummaryList().empty()) { 3718 // Only declarations should not have a summary (a declaration might however 3719 // have a summary if the def was in module level asm). 3720 assert(V.isDeclaration()); 3721 return; 3722 } 3723 auto *Summary = VI.getSummaryList()[0].get(); 3724 NameVals.push_back(VE.getValueID(&V)); 3725 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3726 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3727 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3728 3729 auto VTableFuncs = VS->vTableFuncs(); 3730 if (!VTableFuncs.empty()) 3731 NameVals.push_back(VS->refs().size()); 3732 3733 unsigned SizeBeforeRefs = NameVals.size(); 3734 for (auto &RI : VS->refs()) 3735 NameVals.push_back(VE.getValueID(RI.getValue())); 3736 // Sort the refs for determinism output, the vector returned by FS->refs() has 3737 // been initialized from a DenseSet. 3738 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3739 3740 if (VTableFuncs.empty()) 3741 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3742 FSModRefsAbbrev); 3743 else { 3744 // VTableFuncs pairs should already be sorted by offset. 3745 for (auto &P : VTableFuncs) { 3746 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3747 NameVals.push_back(P.VTableOffset); 3748 } 3749 3750 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3751 FSModVTableRefsAbbrev); 3752 } 3753 NameVals.clear(); 3754 } 3755 3756 /// Emit the per-module summary section alongside the rest of 3757 /// the module's bitcode. 3758 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3759 // By default we compile with ThinLTO if the module has a summary, but the 3760 // client can request full LTO with a module flag. 3761 bool IsThinLTO = true; 3762 if (auto *MD = 3763 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3764 IsThinLTO = MD->getZExtValue(); 3765 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3766 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3767 4); 3768 3769 Stream.EmitRecord( 3770 bitc::FS_VERSION, 3771 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3772 3773 // Write the index flags. 3774 uint64_t Flags = 0; 3775 // Bits 1-3 are set only in the combined index, skip them. 3776 if (Index->enableSplitLTOUnit()) 3777 Flags |= 0x8; 3778 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3779 3780 if (Index->begin() == Index->end()) { 3781 Stream.ExitBlock(); 3782 return; 3783 } 3784 3785 for (const auto &GVI : valueIds()) { 3786 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3787 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3788 } 3789 3790 // Abbrev for FS_PERMODULE_PROFILE. 3791 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3792 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3800 // numrefs x valueid, n x (valueid, hotness) 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3803 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3804 3805 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3806 Abbv = std::make_shared<BitCodeAbbrev>(); 3807 if (WriteRelBFToSummary) 3808 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3809 else 3810 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3818 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3821 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3822 3823 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3824 Abbv = std::make_shared<BitCodeAbbrev>(); 3825 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3826 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3830 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3831 3832 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3833 Abbv = std::make_shared<BitCodeAbbrev>(); 3834 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3838 // numrefs x valueid, n x (valueid , offset) 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3841 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3842 3843 // Abbrev for FS_ALIAS. 3844 Abbv = std::make_shared<BitCodeAbbrev>(); 3845 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3849 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3850 3851 // Abbrev for FS_TYPE_ID_METADATA 3852 Abbv = std::make_shared<BitCodeAbbrev>(); 3853 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3856 // n x (valueid , offset) 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3859 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3860 3861 SmallVector<uint64_t, 64> NameVals; 3862 // Iterate over the list of functions instead of the Index to 3863 // ensure the ordering is stable. 3864 for (const Function &F : M) { 3865 // Summary emission does not support anonymous functions, they have to 3866 // renamed using the anonymous function renaming pass. 3867 if (!F.hasName()) 3868 report_fatal_error("Unexpected anonymous function when writing summary"); 3869 3870 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3871 if (!VI || VI.getSummaryList().empty()) { 3872 // Only declarations should not have a summary (a declaration might 3873 // however have a summary if the def was in module level asm). 3874 assert(F.isDeclaration()); 3875 continue; 3876 } 3877 auto *Summary = VI.getSummaryList()[0].get(); 3878 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3879 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3880 } 3881 3882 // Capture references from GlobalVariable initializers, which are outside 3883 // of a function scope. 3884 for (const GlobalVariable &G : M.globals()) 3885 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3886 FSModVTableRefsAbbrev); 3887 3888 for (const GlobalAlias &A : M.aliases()) { 3889 auto *Aliasee = A.getBaseObject(); 3890 if (!Aliasee->hasName()) 3891 // Nameless function don't have an entry in the summary, skip it. 3892 continue; 3893 auto AliasId = VE.getValueID(&A); 3894 auto AliaseeId = VE.getValueID(Aliasee); 3895 NameVals.push_back(AliasId); 3896 auto *Summary = Index->getGlobalValueSummary(A); 3897 AliasSummary *AS = cast<AliasSummary>(Summary); 3898 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3899 NameVals.push_back(AliaseeId); 3900 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3901 NameVals.clear(); 3902 } 3903 3904 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3905 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3906 S.second, VE); 3907 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3908 TypeIdCompatibleVtableAbbrev); 3909 NameVals.clear(); 3910 } 3911 3912 Stream.ExitBlock(); 3913 } 3914 3915 /// Emit the combined summary section into the combined index file. 3916 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3917 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3918 Stream.EmitRecord( 3919 bitc::FS_VERSION, 3920 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3921 3922 // Write the index flags. 3923 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3924 3925 for (const auto &GVI : valueIds()) { 3926 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3927 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3928 } 3929 3930 // Abbrev for FS_COMBINED. 3931 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3932 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3942 // numrefs x valueid, n x (valueid) 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3945 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3946 3947 // Abbrev for FS_COMBINED_PROFILE. 3948 Abbv = std::make_shared<BitCodeAbbrev>(); 3949 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3959 // numrefs x valueid, n x (valueid, hotness) 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3962 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3963 3964 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3965 Abbv = std::make_shared<BitCodeAbbrev>(); 3966 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3972 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3973 3974 // Abbrev for FS_COMBINED_ALIAS. 3975 Abbv = std::make_shared<BitCodeAbbrev>(); 3976 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3981 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3982 3983 // The aliases are emitted as a post-pass, and will point to the value 3984 // id of the aliasee. Save them in a vector for post-processing. 3985 SmallVector<AliasSummary *, 64> Aliases; 3986 3987 // Save the value id for each summary for alias emission. 3988 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3989 3990 SmallVector<uint64_t, 64> NameVals; 3991 3992 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3993 // with the type ids referenced by this index file. 3994 std::set<GlobalValue::GUID> ReferencedTypeIds; 3995 3996 // For local linkage, we also emit the original name separately 3997 // immediately after the record. 3998 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3999 if (!GlobalValue::isLocalLinkage(S.linkage())) 4000 return; 4001 NameVals.push_back(S.getOriginalName()); 4002 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4003 NameVals.clear(); 4004 }; 4005 4006 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4007 forEachSummary([&](GVInfo I, bool IsAliasee) { 4008 GlobalValueSummary *S = I.second; 4009 assert(S); 4010 DefOrUseGUIDs.insert(I.first); 4011 for (const ValueInfo &VI : S->refs()) 4012 DefOrUseGUIDs.insert(VI.getGUID()); 4013 4014 auto ValueId = getValueId(I.first); 4015 assert(ValueId); 4016 SummaryToValueIdMap[S] = *ValueId; 4017 4018 // If this is invoked for an aliasee, we want to record the above 4019 // mapping, but then not emit a summary entry (if the aliasee is 4020 // to be imported, we will invoke this separately with IsAliasee=false). 4021 if (IsAliasee) 4022 return; 4023 4024 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4025 // Will process aliases as a post-pass because the reader wants all 4026 // global to be loaded first. 4027 Aliases.push_back(AS); 4028 return; 4029 } 4030 4031 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4032 NameVals.push_back(*ValueId); 4033 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4034 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4035 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4036 for (auto &RI : VS->refs()) { 4037 auto RefValueId = getValueId(RI.getGUID()); 4038 if (!RefValueId) 4039 continue; 4040 NameVals.push_back(*RefValueId); 4041 } 4042 4043 // Emit the finished record. 4044 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4045 FSModRefsAbbrev); 4046 NameVals.clear(); 4047 MaybeEmitOriginalName(*S); 4048 return; 4049 } 4050 4051 auto *FS = cast<FunctionSummary>(S); 4052 writeFunctionTypeMetadataRecords(Stream, FS); 4053 getReferencedTypeIds(FS, ReferencedTypeIds); 4054 4055 NameVals.push_back(*ValueId); 4056 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4057 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4058 NameVals.push_back(FS->instCount()); 4059 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4060 NameVals.push_back(FS->entryCount()); 4061 4062 // Fill in below 4063 NameVals.push_back(0); // numrefs 4064 NameVals.push_back(0); // rorefcnt 4065 NameVals.push_back(0); // worefcnt 4066 4067 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4068 for (auto &RI : FS->refs()) { 4069 auto RefValueId = getValueId(RI.getGUID()); 4070 if (!RefValueId) 4071 continue; 4072 NameVals.push_back(*RefValueId); 4073 if (RI.isReadOnly()) 4074 RORefCnt++; 4075 else if (RI.isWriteOnly()) 4076 WORefCnt++; 4077 Count++; 4078 } 4079 NameVals[6] = Count; 4080 NameVals[7] = RORefCnt; 4081 NameVals[8] = WORefCnt; 4082 4083 bool HasProfileData = false; 4084 for (auto &EI : FS->calls()) { 4085 HasProfileData |= 4086 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4087 if (HasProfileData) 4088 break; 4089 } 4090 4091 for (auto &EI : FS->calls()) { 4092 // If this GUID doesn't have a value id, it doesn't have a function 4093 // summary and we don't need to record any calls to it. 4094 GlobalValue::GUID GUID = EI.first.getGUID(); 4095 auto CallValueId = getValueId(GUID); 4096 if (!CallValueId) { 4097 // For SamplePGO, the indirect call targets for local functions will 4098 // have its original name annotated in profile. We try to find the 4099 // corresponding PGOFuncName as the GUID. 4100 GUID = Index.getGUIDFromOriginalID(GUID); 4101 if (GUID == 0) 4102 continue; 4103 CallValueId = getValueId(GUID); 4104 if (!CallValueId) 4105 continue; 4106 // The mapping from OriginalId to GUID may return a GUID 4107 // that corresponds to a static variable. Filter it out here. 4108 // This can happen when 4109 // 1) There is a call to a library function which does not have 4110 // a CallValidId; 4111 // 2) There is a static variable with the OriginalGUID identical 4112 // to the GUID of the library function in 1); 4113 // When this happens, the logic for SamplePGO kicks in and 4114 // the static variable in 2) will be found, which needs to be 4115 // filtered out. 4116 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4117 if (GVSum && 4118 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4119 continue; 4120 } 4121 NameVals.push_back(*CallValueId); 4122 if (HasProfileData) 4123 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4124 } 4125 4126 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4127 unsigned Code = 4128 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4129 4130 // Emit the finished record. 4131 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4132 NameVals.clear(); 4133 MaybeEmitOriginalName(*S); 4134 }); 4135 4136 for (auto *AS : Aliases) { 4137 auto AliasValueId = SummaryToValueIdMap[AS]; 4138 assert(AliasValueId); 4139 NameVals.push_back(AliasValueId); 4140 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4141 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4142 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4143 assert(AliaseeValueId); 4144 NameVals.push_back(AliaseeValueId); 4145 4146 // Emit the finished record. 4147 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4148 NameVals.clear(); 4149 MaybeEmitOriginalName(*AS); 4150 4151 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4152 getReferencedTypeIds(FS, ReferencedTypeIds); 4153 } 4154 4155 if (!Index.cfiFunctionDefs().empty()) { 4156 for (auto &S : Index.cfiFunctionDefs()) { 4157 if (DefOrUseGUIDs.count( 4158 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4159 NameVals.push_back(StrtabBuilder.add(S)); 4160 NameVals.push_back(S.size()); 4161 } 4162 } 4163 if (!NameVals.empty()) { 4164 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4165 NameVals.clear(); 4166 } 4167 } 4168 4169 if (!Index.cfiFunctionDecls().empty()) { 4170 for (auto &S : Index.cfiFunctionDecls()) { 4171 if (DefOrUseGUIDs.count( 4172 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4173 NameVals.push_back(StrtabBuilder.add(S)); 4174 NameVals.push_back(S.size()); 4175 } 4176 } 4177 if (!NameVals.empty()) { 4178 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4179 NameVals.clear(); 4180 } 4181 } 4182 4183 // Walk the GUIDs that were referenced, and write the 4184 // corresponding type id records. 4185 for (auto &T : ReferencedTypeIds) { 4186 auto TidIter = Index.typeIds().equal_range(T); 4187 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4188 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4189 It->second.second); 4190 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4191 NameVals.clear(); 4192 } 4193 } 4194 4195 Stream.ExitBlock(); 4196 } 4197 4198 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4199 /// current llvm version, and a record for the epoch number. 4200 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4201 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4202 4203 // Write the "user readable" string identifying the bitcode producer 4204 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4205 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4208 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4209 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4210 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4211 4212 // Write the epoch version 4213 Abbv = std::make_shared<BitCodeAbbrev>(); 4214 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4216 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4217 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4218 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4219 Stream.ExitBlock(); 4220 } 4221 4222 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4223 // Emit the module's hash. 4224 // MODULE_CODE_HASH: [5*i32] 4225 if (GenerateHash) { 4226 uint32_t Vals[5]; 4227 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4228 Buffer.size() - BlockStartPos)); 4229 StringRef Hash = Hasher.result(); 4230 for (int Pos = 0; Pos < 20; Pos += 4) { 4231 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4232 } 4233 4234 // Emit the finished record. 4235 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4236 4237 if (ModHash) 4238 // Save the written hash value. 4239 llvm::copy(Vals, std::begin(*ModHash)); 4240 } 4241 } 4242 4243 void ModuleBitcodeWriter::write() { 4244 writeIdentificationBlock(Stream); 4245 4246 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4247 size_t BlockStartPos = Buffer.size(); 4248 4249 writeModuleVersion(); 4250 4251 // Emit blockinfo, which defines the standard abbreviations etc. 4252 writeBlockInfo(); 4253 4254 // Emit information describing all of the types in the module. 4255 writeTypeTable(); 4256 4257 // Emit information about attribute groups. 4258 writeAttributeGroupTable(); 4259 4260 // Emit information about parameter attributes. 4261 writeAttributeTable(); 4262 4263 writeComdats(); 4264 4265 // Emit top-level description of module, including target triple, inline asm, 4266 // descriptors for global variables, and function prototype info. 4267 writeModuleInfo(); 4268 4269 // Emit constants. 4270 writeModuleConstants(); 4271 4272 // Emit metadata kind names. 4273 writeModuleMetadataKinds(); 4274 4275 // Emit metadata. 4276 writeModuleMetadata(); 4277 4278 // Emit module-level use-lists. 4279 if (VE.shouldPreserveUseListOrder()) 4280 writeUseListBlock(nullptr); 4281 4282 writeOperandBundleTags(); 4283 writeSyncScopeNames(); 4284 4285 // Emit function bodies. 4286 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4287 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4288 if (!F->isDeclaration()) 4289 writeFunction(*F, FunctionToBitcodeIndex); 4290 4291 // Need to write after the above call to WriteFunction which populates 4292 // the summary information in the index. 4293 if (Index) 4294 writePerModuleGlobalValueSummary(); 4295 4296 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4297 4298 writeModuleHash(BlockStartPos); 4299 4300 Stream.ExitBlock(); 4301 } 4302 4303 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4304 uint32_t &Position) { 4305 support::endian::write32le(&Buffer[Position], Value); 4306 Position += 4; 4307 } 4308 4309 /// If generating a bc file on darwin, we have to emit a 4310 /// header and trailer to make it compatible with the system archiver. To do 4311 /// this we emit the following header, and then emit a trailer that pads the 4312 /// file out to be a multiple of 16 bytes. 4313 /// 4314 /// struct bc_header { 4315 /// uint32_t Magic; // 0x0B17C0DE 4316 /// uint32_t Version; // Version, currently always 0. 4317 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4318 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4319 /// uint32_t CPUType; // CPU specifier. 4320 /// ... potentially more later ... 4321 /// }; 4322 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4323 const Triple &TT) { 4324 unsigned CPUType = ~0U; 4325 4326 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4327 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4328 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4329 // specific constants here because they are implicitly part of the Darwin ABI. 4330 enum { 4331 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4332 DARWIN_CPU_TYPE_X86 = 7, 4333 DARWIN_CPU_TYPE_ARM = 12, 4334 DARWIN_CPU_TYPE_POWERPC = 18 4335 }; 4336 4337 Triple::ArchType Arch = TT.getArch(); 4338 if (Arch == Triple::x86_64) 4339 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4340 else if (Arch == Triple::x86) 4341 CPUType = DARWIN_CPU_TYPE_X86; 4342 else if (Arch == Triple::ppc) 4343 CPUType = DARWIN_CPU_TYPE_POWERPC; 4344 else if (Arch == Triple::ppc64) 4345 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4346 else if (Arch == Triple::arm || Arch == Triple::thumb) 4347 CPUType = DARWIN_CPU_TYPE_ARM; 4348 4349 // Traditional Bitcode starts after header. 4350 assert(Buffer.size() >= BWH_HeaderSize && 4351 "Expected header size to be reserved"); 4352 unsigned BCOffset = BWH_HeaderSize; 4353 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4354 4355 // Write the magic and version. 4356 unsigned Position = 0; 4357 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4358 writeInt32ToBuffer(0, Buffer, Position); // Version. 4359 writeInt32ToBuffer(BCOffset, Buffer, Position); 4360 writeInt32ToBuffer(BCSize, Buffer, Position); 4361 writeInt32ToBuffer(CPUType, Buffer, Position); 4362 4363 // If the file is not a multiple of 16 bytes, insert dummy padding. 4364 while (Buffer.size() & 15) 4365 Buffer.push_back(0); 4366 } 4367 4368 /// Helper to write the header common to all bitcode files. 4369 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4370 // Emit the file header. 4371 Stream.Emit((unsigned)'B', 8); 4372 Stream.Emit((unsigned)'C', 8); 4373 Stream.Emit(0x0, 4); 4374 Stream.Emit(0xC, 4); 4375 Stream.Emit(0xE, 4); 4376 Stream.Emit(0xD, 4); 4377 } 4378 4379 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4380 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4381 writeBitcodeHeader(*Stream); 4382 } 4383 4384 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4385 4386 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4387 Stream->EnterSubblock(Block, 3); 4388 4389 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4390 Abbv->Add(BitCodeAbbrevOp(Record)); 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4392 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4393 4394 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4395 4396 Stream->ExitBlock(); 4397 } 4398 4399 void BitcodeWriter::writeSymtab() { 4400 assert(!WroteStrtab && !WroteSymtab); 4401 4402 // If any module has module-level inline asm, we will require a registered asm 4403 // parser for the target so that we can create an accurate symbol table for 4404 // the module. 4405 for (Module *M : Mods) { 4406 if (M->getModuleInlineAsm().empty()) 4407 continue; 4408 4409 std::string Err; 4410 const Triple TT(M->getTargetTriple()); 4411 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4412 if (!T || !T->hasMCAsmParser()) 4413 return; 4414 } 4415 4416 WroteSymtab = true; 4417 SmallVector<char, 0> Symtab; 4418 // The irsymtab::build function may be unable to create a symbol table if the 4419 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4420 // table is not required for correctness, but we still want to be able to 4421 // write malformed modules to bitcode files, so swallow the error. 4422 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4423 consumeError(std::move(E)); 4424 return; 4425 } 4426 4427 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4428 {Symtab.data(), Symtab.size()}); 4429 } 4430 4431 void BitcodeWriter::writeStrtab() { 4432 assert(!WroteStrtab); 4433 4434 std::vector<char> Strtab; 4435 StrtabBuilder.finalizeInOrder(); 4436 Strtab.resize(StrtabBuilder.getSize()); 4437 StrtabBuilder.write((uint8_t *)Strtab.data()); 4438 4439 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4440 {Strtab.data(), Strtab.size()}); 4441 4442 WroteStrtab = true; 4443 } 4444 4445 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4446 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4447 WroteStrtab = true; 4448 } 4449 4450 void BitcodeWriter::writeModule(const Module &M, 4451 bool ShouldPreserveUseListOrder, 4452 const ModuleSummaryIndex *Index, 4453 bool GenerateHash, ModuleHash *ModHash) { 4454 assert(!WroteStrtab); 4455 4456 // The Mods vector is used by irsymtab::build, which requires non-const 4457 // Modules in case it needs to materialize metadata. But the bitcode writer 4458 // requires that the module is materialized, so we can cast to non-const here, 4459 // after checking that it is in fact materialized. 4460 assert(M.isMaterialized()); 4461 Mods.push_back(const_cast<Module *>(&M)); 4462 4463 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4464 ShouldPreserveUseListOrder, Index, 4465 GenerateHash, ModHash); 4466 ModuleWriter.write(); 4467 } 4468 4469 void BitcodeWriter::writeIndex( 4470 const ModuleSummaryIndex *Index, 4471 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4472 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4473 ModuleToSummariesForIndex); 4474 IndexWriter.write(); 4475 } 4476 4477 /// Write the specified module to the specified output stream. 4478 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4479 bool ShouldPreserveUseListOrder, 4480 const ModuleSummaryIndex *Index, 4481 bool GenerateHash, ModuleHash *ModHash) { 4482 SmallVector<char, 0> Buffer; 4483 Buffer.reserve(256*1024); 4484 4485 // If this is darwin or another generic macho target, reserve space for the 4486 // header. 4487 Triple TT(M.getTargetTriple()); 4488 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4489 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4490 4491 BitcodeWriter Writer(Buffer); 4492 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4493 ModHash); 4494 Writer.writeSymtab(); 4495 Writer.writeStrtab(); 4496 4497 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4498 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4499 4500 // Write the generated bitstream to "Out". 4501 Out.write((char*)&Buffer.front(), Buffer.size()); 4502 } 4503 4504 void IndexBitcodeWriter::write() { 4505 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4506 4507 writeModuleVersion(); 4508 4509 // Write the module paths in the combined index. 4510 writeModStrings(); 4511 4512 // Write the summary combined index records. 4513 writeCombinedGlobalValueSummary(); 4514 4515 Stream.ExitBlock(); 4516 } 4517 4518 // Write the specified module summary index to the given raw output stream, 4519 // where it will be written in a new bitcode block. This is used when 4520 // writing the combined index file for ThinLTO. When writing a subset of the 4521 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4522 void llvm::WriteIndexToFile( 4523 const ModuleSummaryIndex &Index, raw_ostream &Out, 4524 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4525 SmallVector<char, 0> Buffer; 4526 Buffer.reserve(256 * 1024); 4527 4528 BitcodeWriter Writer(Buffer); 4529 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4530 Writer.writeStrtab(); 4531 4532 Out.write((char *)&Buffer.front(), Buffer.size()); 4533 } 4534 4535 namespace { 4536 4537 /// Class to manage the bitcode writing for a thin link bitcode file. 4538 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4539 /// ModHash is for use in ThinLTO incremental build, generated while writing 4540 /// the module bitcode file. 4541 const ModuleHash *ModHash; 4542 4543 public: 4544 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4545 BitstreamWriter &Stream, 4546 const ModuleSummaryIndex &Index, 4547 const ModuleHash &ModHash) 4548 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4549 /*ShouldPreserveUseListOrder=*/false, &Index), 4550 ModHash(&ModHash) {} 4551 4552 void write(); 4553 4554 private: 4555 void writeSimplifiedModuleInfo(); 4556 }; 4557 4558 } // end anonymous namespace 4559 4560 // This function writes a simpilified module info for thin link bitcode file. 4561 // It only contains the source file name along with the name(the offset and 4562 // size in strtab) and linkage for global values. For the global value info 4563 // entry, in order to keep linkage at offset 5, there are three zeros used 4564 // as padding. 4565 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4566 SmallVector<unsigned, 64> Vals; 4567 // Emit the module's source file name. 4568 { 4569 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4570 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4571 if (Bits == SE_Char6) 4572 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4573 else if (Bits == SE_Fixed7) 4574 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4575 4576 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4578 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4580 Abbv->Add(AbbrevOpToUse); 4581 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4582 4583 for (const auto P : M.getSourceFileName()) 4584 Vals.push_back((unsigned char)P); 4585 4586 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4587 Vals.clear(); 4588 } 4589 4590 // Emit the global variable information. 4591 for (const GlobalVariable &GV : M.globals()) { 4592 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4593 Vals.push_back(StrtabBuilder.add(GV.getName())); 4594 Vals.push_back(GV.getName().size()); 4595 Vals.push_back(0); 4596 Vals.push_back(0); 4597 Vals.push_back(0); 4598 Vals.push_back(getEncodedLinkage(GV)); 4599 4600 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4601 Vals.clear(); 4602 } 4603 4604 // Emit the function proto information. 4605 for (const Function &F : M) { 4606 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4607 Vals.push_back(StrtabBuilder.add(F.getName())); 4608 Vals.push_back(F.getName().size()); 4609 Vals.push_back(0); 4610 Vals.push_back(0); 4611 Vals.push_back(0); 4612 Vals.push_back(getEncodedLinkage(F)); 4613 4614 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4615 Vals.clear(); 4616 } 4617 4618 // Emit the alias information. 4619 for (const GlobalAlias &A : M.aliases()) { 4620 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4621 Vals.push_back(StrtabBuilder.add(A.getName())); 4622 Vals.push_back(A.getName().size()); 4623 Vals.push_back(0); 4624 Vals.push_back(0); 4625 Vals.push_back(0); 4626 Vals.push_back(getEncodedLinkage(A)); 4627 4628 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4629 Vals.clear(); 4630 } 4631 4632 // Emit the ifunc information. 4633 for (const GlobalIFunc &I : M.ifuncs()) { 4634 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4635 Vals.push_back(StrtabBuilder.add(I.getName())); 4636 Vals.push_back(I.getName().size()); 4637 Vals.push_back(0); 4638 Vals.push_back(0); 4639 Vals.push_back(0); 4640 Vals.push_back(getEncodedLinkage(I)); 4641 4642 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4643 Vals.clear(); 4644 } 4645 } 4646 4647 void ThinLinkBitcodeWriter::write() { 4648 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4649 4650 writeModuleVersion(); 4651 4652 writeSimplifiedModuleInfo(); 4653 4654 writePerModuleGlobalValueSummary(); 4655 4656 // Write module hash. 4657 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4658 4659 Stream.ExitBlock(); 4660 } 4661 4662 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4663 const ModuleSummaryIndex &Index, 4664 const ModuleHash &ModHash) { 4665 assert(!WroteStrtab); 4666 4667 // The Mods vector is used by irsymtab::build, which requires non-const 4668 // Modules in case it needs to materialize metadata. But the bitcode writer 4669 // requires that the module is materialized, so we can cast to non-const here, 4670 // after checking that it is in fact materialized. 4671 assert(M.isMaterialized()); 4672 Mods.push_back(const_cast<Module *>(&M)); 4673 4674 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4675 ModHash); 4676 ThinLinkWriter.write(); 4677 } 4678 4679 // Write the specified thin link bitcode file to the given raw output stream, 4680 // where it will be written in a new bitcode block. This is used when 4681 // writing the per-module index file for ThinLTO. 4682 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4683 const ModuleSummaryIndex &Index, 4684 const ModuleHash &ModHash) { 4685 SmallVector<char, 0> Buffer; 4686 Buffer.reserve(256 * 1024); 4687 4688 BitcodeWriter Writer(Buffer); 4689 Writer.writeThinLinkBitcode(M, Index, ModHash); 4690 Writer.writeSymtab(); 4691 Writer.writeStrtab(); 4692 4693 Out.write((char *)&Buffer.front(), Buffer.size()); 4694 } 4695 4696 static const char *getSectionNameForBitcode(const Triple &T) { 4697 switch (T.getObjectFormat()) { 4698 case Triple::MachO: 4699 return "__LLVM,__bitcode"; 4700 case Triple::COFF: 4701 case Triple::ELF: 4702 case Triple::Wasm: 4703 case Triple::UnknownObjectFormat: 4704 return ".llvmbc"; 4705 case Triple::XCOFF: 4706 llvm_unreachable("XCOFF is not yet implemented"); 4707 break; 4708 } 4709 llvm_unreachable("Unimplemented ObjectFormatType"); 4710 } 4711 4712 static const char *getSectionNameForCommandline(const Triple &T) { 4713 switch (T.getObjectFormat()) { 4714 case Triple::MachO: 4715 return "__LLVM,__cmdline"; 4716 case Triple::COFF: 4717 case Triple::ELF: 4718 case Triple::Wasm: 4719 case Triple::UnknownObjectFormat: 4720 return ".llvmcmd"; 4721 case Triple::XCOFF: 4722 llvm_unreachable("XCOFF is not yet implemented"); 4723 break; 4724 } 4725 llvm_unreachable("Unimplemented ObjectFormatType"); 4726 } 4727 4728 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4729 bool EmbedBitcode, bool EmbedMarker, 4730 const std::vector<uint8_t> *CmdArgs) { 4731 // Save llvm.compiler.used and remove it. 4732 SmallVector<Constant *, 2> UsedArray; 4733 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4734 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4735 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4736 for (auto *GV : UsedGlobals) { 4737 if (GV->getName() != "llvm.embedded.module" && 4738 GV->getName() != "llvm.cmdline") 4739 UsedArray.push_back( 4740 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4741 } 4742 if (Used) 4743 Used->eraseFromParent(); 4744 4745 // Embed the bitcode for the llvm module. 4746 std::string Data; 4747 ArrayRef<uint8_t> ModuleData; 4748 Triple T(M.getTargetTriple()); 4749 // Create a constant that contains the bitcode. 4750 // In case of embedding a marker, ignore the input Buf and use the empty 4751 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4752 if (EmbedBitcode) { 4753 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4754 (const unsigned char *)Buf.getBufferEnd())) { 4755 // If the input is LLVM Assembly, bitcode is produced by serializing 4756 // the module. Use-lists order need to be preserved in this case. 4757 llvm::raw_string_ostream OS(Data); 4758 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4759 ModuleData = 4760 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4761 } else 4762 // If the input is LLVM bitcode, write the input byte stream directly. 4763 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4764 Buf.getBufferSize()); 4765 } 4766 llvm::Constant *ModuleConstant = 4767 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4768 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4769 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4770 ModuleConstant); 4771 GV->setSection(getSectionNameForBitcode(T)); 4772 UsedArray.push_back( 4773 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4774 if (llvm::GlobalVariable *Old = 4775 M.getGlobalVariable("llvm.embedded.module", true)) { 4776 assert(Old->hasOneUse() && 4777 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4778 GV->takeName(Old); 4779 Old->eraseFromParent(); 4780 } else { 4781 GV->setName("llvm.embedded.module"); 4782 } 4783 4784 // Skip if only bitcode needs to be embedded. 4785 if (EmbedMarker) { 4786 // Embed command-line options. 4787 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4788 CmdArgs->size()); 4789 llvm::Constant *CmdConstant = 4790 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4791 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4792 llvm::GlobalValue::PrivateLinkage, 4793 CmdConstant); 4794 GV->setSection(getSectionNameForCommandline(T)); 4795 UsedArray.push_back( 4796 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4797 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4798 assert(Old->hasOneUse() && 4799 "llvm.cmdline can only be used once in llvm.compiler.used"); 4800 GV->takeName(Old); 4801 Old->eraseFromParent(); 4802 } else { 4803 GV->setName("llvm.cmdline"); 4804 } 4805 } 4806 4807 if (UsedArray.empty()) 4808 return; 4809 4810 // Recreate llvm.compiler.used. 4811 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4812 auto *NewUsed = new GlobalVariable( 4813 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4814 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4815 NewUsed->setSection("llvm.metadata"); 4816 } 4817