1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (CallEdge.first.isGUID()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (VI.isGUID()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 forEachSummary([&](GVInfo I) { 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 }); 346 } 347 348 /// The below iterator returns the GUID and associated summary. 349 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 350 351 /// Calls the callback for each value GUID and summary to be written to 352 /// bitcode. This hides the details of whether they are being pulled from the 353 /// entire index or just those in a provided ModuleToSummariesForIndex map. 354 void forEachSummary(std::function<void(GVInfo)> Callback) { 355 if (ModuleToSummariesForIndex) { 356 for (auto &M : *ModuleToSummariesForIndex) 357 for (auto &Summary : M.second) 358 Callback(Summary); 359 } else { 360 for (auto &Summaries : Index) 361 for (auto &Summary : Summaries.second) 362 Callback({Summaries.first, Summary.get()}); 363 } 364 } 365 366 /// Main entry point for writing a combined index to bitcode. 367 void write(); 368 369 private: 370 void writeModStrings(); 371 void writeCombinedGlobalValueSummary(); 372 373 /// Indicates whether the provided \p ModulePath should be written into 374 /// the module string table, e.g. if full index written or if it is in 375 /// the provided subset. 376 bool doIncludeModule(StringRef ModulePath) { 377 return !ModuleToSummariesForIndex || 378 ModuleToSummariesForIndex->count(ModulePath); 379 } 380 381 bool hasValueId(GlobalValue::GUID ValGUID) { 382 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 383 return VMI != GUIDToValueIdMap.end(); 384 } 385 void assignValueId(GlobalValue::GUID ValGUID) { 386 unsigned &ValueId = GUIDToValueIdMap[ValGUID]; 387 if (ValueId == 0) 388 ValueId = ++GlobalValueId; 389 } 390 unsigned getValueId(GlobalValue::GUID ValGUID) { 391 auto VMI = GUIDToValueIdMap.find(ValGUID); 392 assert(VMI != GUIDToValueIdMap.end()); 393 return VMI->second; 394 } 395 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 396 }; 397 } // end anonymous namespace 398 399 static unsigned getEncodedCastOpcode(unsigned Opcode) { 400 switch (Opcode) { 401 default: llvm_unreachable("Unknown cast instruction!"); 402 case Instruction::Trunc : return bitc::CAST_TRUNC; 403 case Instruction::ZExt : return bitc::CAST_ZEXT; 404 case Instruction::SExt : return bitc::CAST_SEXT; 405 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 406 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 407 case Instruction::UIToFP : return bitc::CAST_UITOFP; 408 case Instruction::SIToFP : return bitc::CAST_SITOFP; 409 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 410 case Instruction::FPExt : return bitc::CAST_FPEXT; 411 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 412 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 413 case Instruction::BitCast : return bitc::CAST_BITCAST; 414 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 415 } 416 } 417 418 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 419 switch (Opcode) { 420 default: llvm_unreachable("Unknown binary instruction!"); 421 case Instruction::Add: 422 case Instruction::FAdd: return bitc::BINOP_ADD; 423 case Instruction::Sub: 424 case Instruction::FSub: return bitc::BINOP_SUB; 425 case Instruction::Mul: 426 case Instruction::FMul: return bitc::BINOP_MUL; 427 case Instruction::UDiv: return bitc::BINOP_UDIV; 428 case Instruction::FDiv: 429 case Instruction::SDiv: return bitc::BINOP_SDIV; 430 case Instruction::URem: return bitc::BINOP_UREM; 431 case Instruction::FRem: 432 case Instruction::SRem: return bitc::BINOP_SREM; 433 case Instruction::Shl: return bitc::BINOP_SHL; 434 case Instruction::LShr: return bitc::BINOP_LSHR; 435 case Instruction::AShr: return bitc::BINOP_ASHR; 436 case Instruction::And: return bitc::BINOP_AND; 437 case Instruction::Or: return bitc::BINOP_OR; 438 case Instruction::Xor: return bitc::BINOP_XOR; 439 } 440 } 441 442 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 443 switch (Op) { 444 default: llvm_unreachable("Unknown RMW operation!"); 445 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 446 case AtomicRMWInst::Add: return bitc::RMW_ADD; 447 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 448 case AtomicRMWInst::And: return bitc::RMW_AND; 449 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 450 case AtomicRMWInst::Or: return bitc::RMW_OR; 451 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 452 case AtomicRMWInst::Max: return bitc::RMW_MAX; 453 case AtomicRMWInst::Min: return bitc::RMW_MIN; 454 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 455 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 456 } 457 } 458 459 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 460 switch (Ordering) { 461 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 462 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 463 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 464 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 465 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 466 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 467 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 468 } 469 llvm_unreachable("Invalid ordering"); 470 } 471 472 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 473 switch (SynchScope) { 474 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 475 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 476 } 477 llvm_unreachable("Invalid synch scope"); 478 } 479 480 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 481 StringRef Str, unsigned AbbrevToUse) { 482 SmallVector<unsigned, 64> Vals; 483 484 // Code: [strchar x N] 485 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 486 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 487 AbbrevToUse = 0; 488 Vals.push_back(Str[i]); 489 } 490 491 // Emit the finished record. 492 Stream.EmitRecord(Code, Vals, AbbrevToUse); 493 } 494 495 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 496 switch (Kind) { 497 case Attribute::Alignment: 498 return bitc::ATTR_KIND_ALIGNMENT; 499 case Attribute::AllocSize: 500 return bitc::ATTR_KIND_ALLOC_SIZE; 501 case Attribute::AlwaysInline: 502 return bitc::ATTR_KIND_ALWAYS_INLINE; 503 case Attribute::ArgMemOnly: 504 return bitc::ATTR_KIND_ARGMEMONLY; 505 case Attribute::Builtin: 506 return bitc::ATTR_KIND_BUILTIN; 507 case Attribute::ByVal: 508 return bitc::ATTR_KIND_BY_VAL; 509 case Attribute::Convergent: 510 return bitc::ATTR_KIND_CONVERGENT; 511 case Attribute::InAlloca: 512 return bitc::ATTR_KIND_IN_ALLOCA; 513 case Attribute::Cold: 514 return bitc::ATTR_KIND_COLD; 515 case Attribute::InaccessibleMemOnly: 516 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 517 case Attribute::InaccessibleMemOrArgMemOnly: 518 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 519 case Attribute::InlineHint: 520 return bitc::ATTR_KIND_INLINE_HINT; 521 case Attribute::InReg: 522 return bitc::ATTR_KIND_IN_REG; 523 case Attribute::JumpTable: 524 return bitc::ATTR_KIND_JUMP_TABLE; 525 case Attribute::MinSize: 526 return bitc::ATTR_KIND_MIN_SIZE; 527 case Attribute::Naked: 528 return bitc::ATTR_KIND_NAKED; 529 case Attribute::Nest: 530 return bitc::ATTR_KIND_NEST; 531 case Attribute::NoAlias: 532 return bitc::ATTR_KIND_NO_ALIAS; 533 case Attribute::NoBuiltin: 534 return bitc::ATTR_KIND_NO_BUILTIN; 535 case Attribute::NoCapture: 536 return bitc::ATTR_KIND_NO_CAPTURE; 537 case Attribute::NoDuplicate: 538 return bitc::ATTR_KIND_NO_DUPLICATE; 539 case Attribute::NoImplicitFloat: 540 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 541 case Attribute::NoInline: 542 return bitc::ATTR_KIND_NO_INLINE; 543 case Attribute::NoRecurse: 544 return bitc::ATTR_KIND_NO_RECURSE; 545 case Attribute::NonLazyBind: 546 return bitc::ATTR_KIND_NON_LAZY_BIND; 547 case Attribute::NonNull: 548 return bitc::ATTR_KIND_NON_NULL; 549 case Attribute::Dereferenceable: 550 return bitc::ATTR_KIND_DEREFERENCEABLE; 551 case Attribute::DereferenceableOrNull: 552 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 553 case Attribute::NoRedZone: 554 return bitc::ATTR_KIND_NO_RED_ZONE; 555 case Attribute::NoReturn: 556 return bitc::ATTR_KIND_NO_RETURN; 557 case Attribute::NoUnwind: 558 return bitc::ATTR_KIND_NO_UNWIND; 559 case Attribute::OptimizeForSize: 560 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 561 case Attribute::OptimizeNone: 562 return bitc::ATTR_KIND_OPTIMIZE_NONE; 563 case Attribute::ReadNone: 564 return bitc::ATTR_KIND_READ_NONE; 565 case Attribute::ReadOnly: 566 return bitc::ATTR_KIND_READ_ONLY; 567 case Attribute::Returned: 568 return bitc::ATTR_KIND_RETURNED; 569 case Attribute::ReturnsTwice: 570 return bitc::ATTR_KIND_RETURNS_TWICE; 571 case Attribute::SExt: 572 return bitc::ATTR_KIND_S_EXT; 573 case Attribute::Speculatable: 574 return bitc::ATTR_KIND_SPECULATABLE; 575 case Attribute::StackAlignment: 576 return bitc::ATTR_KIND_STACK_ALIGNMENT; 577 case Attribute::StackProtect: 578 return bitc::ATTR_KIND_STACK_PROTECT; 579 case Attribute::StackProtectReq: 580 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 581 case Attribute::StackProtectStrong: 582 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 583 case Attribute::SafeStack: 584 return bitc::ATTR_KIND_SAFESTACK; 585 case Attribute::StructRet: 586 return bitc::ATTR_KIND_STRUCT_RET; 587 case Attribute::SanitizeAddress: 588 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 589 case Attribute::SanitizeThread: 590 return bitc::ATTR_KIND_SANITIZE_THREAD; 591 case Attribute::SanitizeMemory: 592 return bitc::ATTR_KIND_SANITIZE_MEMORY; 593 case Attribute::SwiftError: 594 return bitc::ATTR_KIND_SWIFT_ERROR; 595 case Attribute::SwiftSelf: 596 return bitc::ATTR_KIND_SWIFT_SELF; 597 case Attribute::UWTable: 598 return bitc::ATTR_KIND_UW_TABLE; 599 case Attribute::WriteOnly: 600 return bitc::ATTR_KIND_WRITEONLY; 601 case Attribute::ZExt: 602 return bitc::ATTR_KIND_Z_EXT; 603 case Attribute::EndAttrKinds: 604 llvm_unreachable("Can not encode end-attribute kinds marker."); 605 case Attribute::None: 606 llvm_unreachable("Can not encode none-attribute."); 607 } 608 609 llvm_unreachable("Trying to encode unknown attribute"); 610 } 611 612 void ModuleBitcodeWriter::writeAttributeGroupTable() { 613 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 614 VE.getAttributeGroups(); 615 if (AttrGrps.empty()) return; 616 617 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 618 619 SmallVector<uint64_t, 64> Record; 620 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 621 unsigned AttrListIndex = Pair.first; 622 AttributeSet AS = Pair.second; 623 Record.push_back(VE.getAttributeGroupID(Pair)); 624 Record.push_back(AttrListIndex); 625 626 for (Attribute Attr : AS) { 627 if (Attr.isEnumAttribute()) { 628 Record.push_back(0); 629 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 630 } else if (Attr.isIntAttribute()) { 631 Record.push_back(1); 632 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 633 Record.push_back(Attr.getValueAsInt()); 634 } else { 635 StringRef Kind = Attr.getKindAsString(); 636 StringRef Val = Attr.getValueAsString(); 637 638 Record.push_back(Val.empty() ? 3 : 4); 639 Record.append(Kind.begin(), Kind.end()); 640 Record.push_back(0); 641 if (!Val.empty()) { 642 Record.append(Val.begin(), Val.end()); 643 Record.push_back(0); 644 } 645 } 646 } 647 648 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 649 Record.clear(); 650 } 651 652 Stream.ExitBlock(); 653 } 654 655 void ModuleBitcodeWriter::writeAttributeTable() { 656 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 657 if (Attrs.empty()) return; 658 659 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 660 661 SmallVector<uint64_t, 64> Record; 662 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 663 const AttributeList &A = Attrs[i]; 664 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 665 Record.push_back( 666 VE.getAttributeGroupID({A.getSlotIndex(i), A.getSlotAttributes(i)})); 667 668 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 669 Record.clear(); 670 } 671 672 Stream.ExitBlock(); 673 } 674 675 /// WriteTypeTable - Write out the type table for a module. 676 void ModuleBitcodeWriter::writeTypeTable() { 677 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 678 679 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 680 SmallVector<uint64_t, 64> TypeVals; 681 682 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 683 684 // Abbrev for TYPE_CODE_POINTER. 685 auto Abbv = std::make_shared<BitCodeAbbrev>(); 686 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 688 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 689 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 690 691 // Abbrev for TYPE_CODE_FUNCTION. 692 Abbv = std::make_shared<BitCodeAbbrev>(); 693 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 697 698 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 699 700 // Abbrev for TYPE_CODE_STRUCT_ANON. 701 Abbv = std::make_shared<BitCodeAbbrev>(); 702 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 706 707 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 708 709 // Abbrev for TYPE_CODE_STRUCT_NAME. 710 Abbv = std::make_shared<BitCodeAbbrev>(); 711 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 714 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 715 716 // Abbrev for TYPE_CODE_STRUCT_NAMED. 717 Abbv = std::make_shared<BitCodeAbbrev>(); 718 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 722 723 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 724 725 // Abbrev for TYPE_CODE_ARRAY. 726 Abbv = std::make_shared<BitCodeAbbrev>(); 727 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 730 731 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 732 733 // Emit an entry count so the reader can reserve space. 734 TypeVals.push_back(TypeList.size()); 735 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 736 TypeVals.clear(); 737 738 // Loop over all of the types, emitting each in turn. 739 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 740 Type *T = TypeList[i]; 741 int AbbrevToUse = 0; 742 unsigned Code = 0; 743 744 switch (T->getTypeID()) { 745 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 746 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 747 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 748 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 749 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 750 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 751 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 752 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 753 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 754 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 755 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 756 case Type::IntegerTyID: 757 // INTEGER: [width] 758 Code = bitc::TYPE_CODE_INTEGER; 759 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 760 break; 761 case Type::PointerTyID: { 762 PointerType *PTy = cast<PointerType>(T); 763 // POINTER: [pointee type, address space] 764 Code = bitc::TYPE_CODE_POINTER; 765 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 766 unsigned AddressSpace = PTy->getAddressSpace(); 767 TypeVals.push_back(AddressSpace); 768 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 769 break; 770 } 771 case Type::FunctionTyID: { 772 FunctionType *FT = cast<FunctionType>(T); 773 // FUNCTION: [isvararg, retty, paramty x N] 774 Code = bitc::TYPE_CODE_FUNCTION; 775 TypeVals.push_back(FT->isVarArg()); 776 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 777 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 778 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 779 AbbrevToUse = FunctionAbbrev; 780 break; 781 } 782 case Type::StructTyID: { 783 StructType *ST = cast<StructType>(T); 784 // STRUCT: [ispacked, eltty x N] 785 TypeVals.push_back(ST->isPacked()); 786 // Output all of the element types. 787 for (StructType::element_iterator I = ST->element_begin(), 788 E = ST->element_end(); I != E; ++I) 789 TypeVals.push_back(VE.getTypeID(*I)); 790 791 if (ST->isLiteral()) { 792 Code = bitc::TYPE_CODE_STRUCT_ANON; 793 AbbrevToUse = StructAnonAbbrev; 794 } else { 795 if (ST->isOpaque()) { 796 Code = bitc::TYPE_CODE_OPAQUE; 797 } else { 798 Code = bitc::TYPE_CODE_STRUCT_NAMED; 799 AbbrevToUse = StructNamedAbbrev; 800 } 801 802 // Emit the name if it is present. 803 if (!ST->getName().empty()) 804 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 805 StructNameAbbrev); 806 } 807 break; 808 } 809 case Type::ArrayTyID: { 810 ArrayType *AT = cast<ArrayType>(T); 811 // ARRAY: [numelts, eltty] 812 Code = bitc::TYPE_CODE_ARRAY; 813 TypeVals.push_back(AT->getNumElements()); 814 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 815 AbbrevToUse = ArrayAbbrev; 816 break; 817 } 818 case Type::VectorTyID: { 819 VectorType *VT = cast<VectorType>(T); 820 // VECTOR [numelts, eltty] 821 Code = bitc::TYPE_CODE_VECTOR; 822 TypeVals.push_back(VT->getNumElements()); 823 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 824 break; 825 } 826 } 827 828 // Emit the finished record. 829 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 830 TypeVals.clear(); 831 } 832 833 Stream.ExitBlock(); 834 } 835 836 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 837 switch (Linkage) { 838 case GlobalValue::ExternalLinkage: 839 return 0; 840 case GlobalValue::WeakAnyLinkage: 841 return 16; 842 case GlobalValue::AppendingLinkage: 843 return 2; 844 case GlobalValue::InternalLinkage: 845 return 3; 846 case GlobalValue::LinkOnceAnyLinkage: 847 return 18; 848 case GlobalValue::ExternalWeakLinkage: 849 return 7; 850 case GlobalValue::CommonLinkage: 851 return 8; 852 case GlobalValue::PrivateLinkage: 853 return 9; 854 case GlobalValue::WeakODRLinkage: 855 return 17; 856 case GlobalValue::LinkOnceODRLinkage: 857 return 19; 858 case GlobalValue::AvailableExternallyLinkage: 859 return 12; 860 } 861 llvm_unreachable("Invalid linkage"); 862 } 863 864 static unsigned getEncodedLinkage(const GlobalValue &GV) { 865 return getEncodedLinkage(GV.getLinkage()); 866 } 867 868 // Decode the flags for GlobalValue in the summary 869 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 870 uint64_t RawFlags = 0; 871 872 RawFlags |= Flags.NotEligibleToImport; // bool 873 RawFlags |= (Flags.LiveRoot << 1); 874 // Linkage don't need to be remapped at that time for the summary. Any future 875 // change to the getEncodedLinkage() function will need to be taken into 876 // account here as well. 877 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 878 879 return RawFlags; 880 } 881 882 static unsigned getEncodedVisibility(const GlobalValue &GV) { 883 switch (GV.getVisibility()) { 884 case GlobalValue::DefaultVisibility: return 0; 885 case GlobalValue::HiddenVisibility: return 1; 886 case GlobalValue::ProtectedVisibility: return 2; 887 } 888 llvm_unreachable("Invalid visibility"); 889 } 890 891 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 892 switch (GV.getDLLStorageClass()) { 893 case GlobalValue::DefaultStorageClass: return 0; 894 case GlobalValue::DLLImportStorageClass: return 1; 895 case GlobalValue::DLLExportStorageClass: return 2; 896 } 897 llvm_unreachable("Invalid DLL storage class"); 898 } 899 900 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 901 switch (GV.getThreadLocalMode()) { 902 case GlobalVariable::NotThreadLocal: return 0; 903 case GlobalVariable::GeneralDynamicTLSModel: return 1; 904 case GlobalVariable::LocalDynamicTLSModel: return 2; 905 case GlobalVariable::InitialExecTLSModel: return 3; 906 case GlobalVariable::LocalExecTLSModel: return 4; 907 } 908 llvm_unreachable("Invalid TLS model"); 909 } 910 911 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 912 switch (C.getSelectionKind()) { 913 case Comdat::Any: 914 return bitc::COMDAT_SELECTION_KIND_ANY; 915 case Comdat::ExactMatch: 916 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 917 case Comdat::Largest: 918 return bitc::COMDAT_SELECTION_KIND_LARGEST; 919 case Comdat::NoDuplicates: 920 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 921 case Comdat::SameSize: 922 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 923 } 924 llvm_unreachable("Invalid selection kind"); 925 } 926 927 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 928 switch (GV.getUnnamedAddr()) { 929 case GlobalValue::UnnamedAddr::None: return 0; 930 case GlobalValue::UnnamedAddr::Local: return 2; 931 case GlobalValue::UnnamedAddr::Global: return 1; 932 } 933 llvm_unreachable("Invalid unnamed_addr"); 934 } 935 936 void ModuleBitcodeWriter::writeComdats() { 937 SmallVector<unsigned, 64> Vals; 938 for (const Comdat *C : VE.getComdats()) { 939 // COMDAT: [strtab offset, strtab size, selection_kind] 940 Vals.push_back(StrtabBuilder.add(C->getName())); 941 Vals.push_back(C->getName().size()); 942 Vals.push_back(getEncodedComdatSelectionKind(*C)); 943 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 944 Vals.clear(); 945 } 946 } 947 948 /// Write a record that will eventually hold the word offset of the 949 /// module-level VST. For now the offset is 0, which will be backpatched 950 /// after the real VST is written. Saves the bit offset to backpatch. 951 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 952 // Write a placeholder value in for the offset of the real VST, 953 // which is written after the function blocks so that it can include 954 // the offset of each function. The placeholder offset will be 955 // updated when the real VST is written. 956 auto Abbv = std::make_shared<BitCodeAbbrev>(); 957 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 958 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 959 // hold the real VST offset. Must use fixed instead of VBR as we don't 960 // know how many VBR chunks to reserve ahead of time. 961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 962 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 963 964 // Emit the placeholder 965 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 966 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 967 968 // Compute and save the bit offset to the placeholder, which will be 969 // patched when the real VST is written. We can simply subtract the 32-bit 970 // fixed size from the current bit number to get the location to backpatch. 971 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 972 } 973 974 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 975 976 /// Determine the encoding to use for the given string name and length. 977 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 978 bool isChar6 = true; 979 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 980 if (isChar6) 981 isChar6 = BitCodeAbbrevOp::isChar6(*C); 982 if ((unsigned char)*C & 128) 983 // don't bother scanning the rest. 984 return SE_Fixed8; 985 } 986 if (isChar6) 987 return SE_Char6; 988 else 989 return SE_Fixed7; 990 } 991 992 /// Emit top-level description of module, including target triple, inline asm, 993 /// descriptors for global variables, and function prototype info. 994 /// Returns the bit offset to backpatch with the location of the real VST. 995 void ModuleBitcodeWriter::writeModuleInfo() { 996 // Emit various pieces of data attached to a module. 997 if (!M.getTargetTriple().empty()) 998 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 999 0 /*TODO*/); 1000 const std::string &DL = M.getDataLayoutStr(); 1001 if (!DL.empty()) 1002 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1003 if (!M.getModuleInlineAsm().empty()) 1004 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1005 0 /*TODO*/); 1006 1007 // Emit information about sections and GC, computing how many there are. Also 1008 // compute the maximum alignment value. 1009 std::map<std::string, unsigned> SectionMap; 1010 std::map<std::string, unsigned> GCMap; 1011 unsigned MaxAlignment = 0; 1012 unsigned MaxGlobalType = 0; 1013 for (const GlobalValue &GV : M.globals()) { 1014 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1015 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1016 if (GV.hasSection()) { 1017 // Give section names unique ID's. 1018 unsigned &Entry = SectionMap[GV.getSection()]; 1019 if (!Entry) { 1020 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1021 0 /*TODO*/); 1022 Entry = SectionMap.size(); 1023 } 1024 } 1025 } 1026 for (const Function &F : M) { 1027 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1028 if (F.hasSection()) { 1029 // Give section names unique ID's. 1030 unsigned &Entry = SectionMap[F.getSection()]; 1031 if (!Entry) { 1032 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1033 0 /*TODO*/); 1034 Entry = SectionMap.size(); 1035 } 1036 } 1037 if (F.hasGC()) { 1038 // Same for GC names. 1039 unsigned &Entry = GCMap[F.getGC()]; 1040 if (!Entry) { 1041 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1042 0 /*TODO*/); 1043 Entry = GCMap.size(); 1044 } 1045 } 1046 } 1047 1048 // Emit abbrev for globals, now that we know # sections and max alignment. 1049 unsigned SimpleGVarAbbrev = 0; 1050 if (!M.global_empty()) { 1051 // Add an abbrev for common globals with no visibility or thread localness. 1052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1053 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1057 Log2_32_Ceil(MaxGlobalType+1))); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1059 //| explicitType << 1 1060 //| constant 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1063 if (MaxAlignment == 0) // Alignment. 1064 Abbv->Add(BitCodeAbbrevOp(0)); 1065 else { 1066 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1068 Log2_32_Ceil(MaxEncAlignment+1))); 1069 } 1070 if (SectionMap.empty()) // Section. 1071 Abbv->Add(BitCodeAbbrevOp(0)); 1072 else 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1074 Log2_32_Ceil(SectionMap.size()+1))); 1075 // Don't bother emitting vis + thread local. 1076 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1077 } 1078 1079 SmallVector<unsigned, 64> Vals; 1080 // Emit the module's source file name. 1081 { 1082 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1083 M.getSourceFileName().size()); 1084 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1085 if (Bits == SE_Char6) 1086 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1087 else if (Bits == SE_Fixed7) 1088 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1089 1090 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1091 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1092 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1094 Abbv->Add(AbbrevOpToUse); 1095 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1096 1097 for (const auto P : M.getSourceFileName()) 1098 Vals.push_back((unsigned char)P); 1099 1100 // Emit the finished record. 1101 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1102 Vals.clear(); 1103 } 1104 1105 // Emit the global variable information. 1106 for (const GlobalVariable &GV : M.globals()) { 1107 unsigned AbbrevToUse = 0; 1108 1109 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1110 // linkage, alignment, section, visibility, threadlocal, 1111 // unnamed_addr, externally_initialized, dllstorageclass, 1112 // comdat] 1113 Vals.push_back(StrtabBuilder.add(GV.getName())); 1114 Vals.push_back(GV.getName().size()); 1115 Vals.push_back(VE.getTypeID(GV.getValueType())); 1116 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1117 Vals.push_back(GV.isDeclaration() ? 0 : 1118 (VE.getValueID(GV.getInitializer()) + 1)); 1119 Vals.push_back(getEncodedLinkage(GV)); 1120 Vals.push_back(Log2_32(GV.getAlignment())+1); 1121 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1122 if (GV.isThreadLocal() || 1123 GV.getVisibility() != GlobalValue::DefaultVisibility || 1124 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1125 GV.isExternallyInitialized() || 1126 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1127 GV.hasComdat()) { 1128 Vals.push_back(getEncodedVisibility(GV)); 1129 Vals.push_back(getEncodedThreadLocalMode(GV)); 1130 Vals.push_back(getEncodedUnnamedAddr(GV)); 1131 Vals.push_back(GV.isExternallyInitialized()); 1132 Vals.push_back(getEncodedDLLStorageClass(GV)); 1133 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1134 } else { 1135 AbbrevToUse = SimpleGVarAbbrev; 1136 } 1137 1138 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1139 Vals.clear(); 1140 } 1141 1142 // Emit the function proto information. 1143 for (const Function &F : M) { 1144 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1145 // linkage, paramattrs, alignment, section, visibility, gc, 1146 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1147 // prefixdata, personalityfn] 1148 Vals.push_back(StrtabBuilder.add(F.getName())); 1149 Vals.push_back(F.getName().size()); 1150 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1151 Vals.push_back(F.getCallingConv()); 1152 Vals.push_back(F.isDeclaration()); 1153 Vals.push_back(getEncodedLinkage(F)); 1154 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1155 Vals.push_back(Log2_32(F.getAlignment())+1); 1156 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1157 Vals.push_back(getEncodedVisibility(F)); 1158 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1159 Vals.push_back(getEncodedUnnamedAddr(F)); 1160 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1161 : 0); 1162 Vals.push_back(getEncodedDLLStorageClass(F)); 1163 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1164 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1165 : 0); 1166 Vals.push_back( 1167 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1168 1169 unsigned AbbrevToUse = 0; 1170 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1171 Vals.clear(); 1172 } 1173 1174 // Emit the alias information. 1175 for (const GlobalAlias &A : M.aliases()) { 1176 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1177 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1178 Vals.push_back(StrtabBuilder.add(A.getName())); 1179 Vals.push_back(A.getName().size()); 1180 Vals.push_back(VE.getTypeID(A.getValueType())); 1181 Vals.push_back(A.getType()->getAddressSpace()); 1182 Vals.push_back(VE.getValueID(A.getAliasee())); 1183 Vals.push_back(getEncodedLinkage(A)); 1184 Vals.push_back(getEncodedVisibility(A)); 1185 Vals.push_back(getEncodedDLLStorageClass(A)); 1186 Vals.push_back(getEncodedThreadLocalMode(A)); 1187 Vals.push_back(getEncodedUnnamedAddr(A)); 1188 unsigned AbbrevToUse = 0; 1189 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1190 Vals.clear(); 1191 } 1192 1193 // Emit the ifunc information. 1194 for (const GlobalIFunc &I : M.ifuncs()) { 1195 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1196 // val#, linkage, visibility] 1197 Vals.push_back(StrtabBuilder.add(I.getName())); 1198 Vals.push_back(I.getName().size()); 1199 Vals.push_back(VE.getTypeID(I.getValueType())); 1200 Vals.push_back(I.getType()->getAddressSpace()); 1201 Vals.push_back(VE.getValueID(I.getResolver())); 1202 Vals.push_back(getEncodedLinkage(I)); 1203 Vals.push_back(getEncodedVisibility(I)); 1204 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1205 Vals.clear(); 1206 } 1207 1208 writeValueSymbolTableForwardDecl(); 1209 } 1210 1211 static uint64_t getOptimizationFlags(const Value *V) { 1212 uint64_t Flags = 0; 1213 1214 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1215 if (OBO->hasNoSignedWrap()) 1216 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1217 if (OBO->hasNoUnsignedWrap()) 1218 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1219 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1220 if (PEO->isExact()) 1221 Flags |= 1 << bitc::PEO_EXACT; 1222 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1223 if (FPMO->hasUnsafeAlgebra()) 1224 Flags |= FastMathFlags::UnsafeAlgebra; 1225 if (FPMO->hasNoNaNs()) 1226 Flags |= FastMathFlags::NoNaNs; 1227 if (FPMO->hasNoInfs()) 1228 Flags |= FastMathFlags::NoInfs; 1229 if (FPMO->hasNoSignedZeros()) 1230 Flags |= FastMathFlags::NoSignedZeros; 1231 if (FPMO->hasAllowReciprocal()) 1232 Flags |= FastMathFlags::AllowReciprocal; 1233 if (FPMO->hasAllowContract()) 1234 Flags |= FastMathFlags::AllowContract; 1235 } 1236 1237 return Flags; 1238 } 1239 1240 void ModuleBitcodeWriter::writeValueAsMetadata( 1241 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1242 // Mimic an MDNode with a value as one operand. 1243 Value *V = MD->getValue(); 1244 Record.push_back(VE.getTypeID(V->getType())); 1245 Record.push_back(VE.getValueID(V)); 1246 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1247 Record.clear(); 1248 } 1249 1250 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1251 SmallVectorImpl<uint64_t> &Record, 1252 unsigned Abbrev) { 1253 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1254 Metadata *MD = N->getOperand(i); 1255 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1256 "Unexpected function-local metadata"); 1257 Record.push_back(VE.getMetadataOrNullID(MD)); 1258 } 1259 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1260 : bitc::METADATA_NODE, 1261 Record, Abbrev); 1262 Record.clear(); 1263 } 1264 1265 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1266 // Assume the column is usually under 128, and always output the inlined-at 1267 // location (it's never more expensive than building an array size 1). 1268 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1269 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1275 return Stream.EmitAbbrev(std::move(Abbv)); 1276 } 1277 1278 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1279 SmallVectorImpl<uint64_t> &Record, 1280 unsigned &Abbrev) { 1281 if (!Abbrev) 1282 Abbrev = createDILocationAbbrev(); 1283 1284 Record.push_back(N->isDistinct()); 1285 Record.push_back(N->getLine()); 1286 Record.push_back(N->getColumn()); 1287 Record.push_back(VE.getMetadataID(N->getScope())); 1288 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1289 1290 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1291 Record.clear(); 1292 } 1293 1294 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1295 // Assume the column is usually under 128, and always output the inlined-at 1296 // location (it's never more expensive than building an array size 1). 1297 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1298 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1305 return Stream.EmitAbbrev(std::move(Abbv)); 1306 } 1307 1308 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1309 SmallVectorImpl<uint64_t> &Record, 1310 unsigned &Abbrev) { 1311 if (!Abbrev) 1312 Abbrev = createGenericDINodeAbbrev(); 1313 1314 Record.push_back(N->isDistinct()); 1315 Record.push_back(N->getTag()); 1316 Record.push_back(0); // Per-tag version field; unused for now. 1317 1318 for (auto &I : N->operands()) 1319 Record.push_back(VE.getMetadataOrNullID(I)); 1320 1321 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1322 Record.clear(); 1323 } 1324 1325 static uint64_t rotateSign(int64_t I) { 1326 uint64_t U = I; 1327 return I < 0 ? ~(U << 1) : U << 1; 1328 } 1329 1330 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1331 SmallVectorImpl<uint64_t> &Record, 1332 unsigned Abbrev) { 1333 Record.push_back(N->isDistinct()); 1334 Record.push_back(N->getCount()); 1335 Record.push_back(rotateSign(N->getLowerBound())); 1336 1337 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1338 Record.clear(); 1339 } 1340 1341 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1342 SmallVectorImpl<uint64_t> &Record, 1343 unsigned Abbrev) { 1344 Record.push_back(N->isDistinct()); 1345 Record.push_back(rotateSign(N->getValue())); 1346 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1347 1348 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1349 Record.clear(); 1350 } 1351 1352 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1353 SmallVectorImpl<uint64_t> &Record, 1354 unsigned Abbrev) { 1355 Record.push_back(N->isDistinct()); 1356 Record.push_back(N->getTag()); 1357 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1358 Record.push_back(N->getSizeInBits()); 1359 Record.push_back(N->getAlignInBits()); 1360 Record.push_back(N->getEncoding()); 1361 1362 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1363 Record.clear(); 1364 } 1365 1366 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1367 SmallVectorImpl<uint64_t> &Record, 1368 unsigned Abbrev) { 1369 Record.push_back(N->isDistinct()); 1370 Record.push_back(N->getTag()); 1371 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1372 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1373 Record.push_back(N->getLine()); 1374 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1375 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1376 Record.push_back(N->getSizeInBits()); 1377 Record.push_back(N->getAlignInBits()); 1378 Record.push_back(N->getOffsetInBits()); 1379 Record.push_back(N->getFlags()); 1380 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1381 1382 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1383 // that there is no DWARF address space associated with DIDerivedType. 1384 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1385 Record.push_back(*DWARFAddressSpace + 1); 1386 else 1387 Record.push_back(0); 1388 1389 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1390 Record.clear(); 1391 } 1392 1393 void ModuleBitcodeWriter::writeDICompositeType( 1394 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1395 unsigned Abbrev) { 1396 const unsigned IsNotUsedInOldTypeRef = 0x2; 1397 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1398 Record.push_back(N->getTag()); 1399 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1400 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1401 Record.push_back(N->getLine()); 1402 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1403 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1404 Record.push_back(N->getSizeInBits()); 1405 Record.push_back(N->getAlignInBits()); 1406 Record.push_back(N->getOffsetInBits()); 1407 Record.push_back(N->getFlags()); 1408 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1409 Record.push_back(N->getRuntimeLang()); 1410 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1411 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1412 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1413 1414 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1415 Record.clear(); 1416 } 1417 1418 void ModuleBitcodeWriter::writeDISubroutineType( 1419 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1420 unsigned Abbrev) { 1421 const unsigned HasNoOldTypeRefs = 0x2; 1422 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1423 Record.push_back(N->getFlags()); 1424 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1425 Record.push_back(N->getCC()); 1426 1427 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1428 Record.clear(); 1429 } 1430 1431 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1432 SmallVectorImpl<uint64_t> &Record, 1433 unsigned Abbrev) { 1434 Record.push_back(N->isDistinct()); 1435 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1436 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1437 Record.push_back(N->getChecksumKind()); 1438 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1439 1440 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1441 Record.clear(); 1442 } 1443 1444 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1445 SmallVectorImpl<uint64_t> &Record, 1446 unsigned Abbrev) { 1447 assert(N->isDistinct() && "Expected distinct compile units"); 1448 Record.push_back(/* IsDistinct */ true); 1449 Record.push_back(N->getSourceLanguage()); 1450 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1451 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1452 Record.push_back(N->isOptimized()); 1453 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1454 Record.push_back(N->getRuntimeVersion()); 1455 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1456 Record.push_back(N->getEmissionKind()); 1457 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1458 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1459 Record.push_back(/* subprograms */ 0); 1460 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1461 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1462 Record.push_back(N->getDWOId()); 1463 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1464 Record.push_back(N->getSplitDebugInlining()); 1465 Record.push_back(N->getDebugInfoForProfiling()); 1466 1467 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1468 Record.clear(); 1469 } 1470 1471 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1472 SmallVectorImpl<uint64_t> &Record, 1473 unsigned Abbrev) { 1474 uint64_t HasUnitFlag = 1 << 1; 1475 Record.push_back(N->isDistinct() | HasUnitFlag); 1476 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1478 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1479 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1480 Record.push_back(N->getLine()); 1481 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1482 Record.push_back(N->isLocalToUnit()); 1483 Record.push_back(N->isDefinition()); 1484 Record.push_back(N->getScopeLine()); 1485 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1486 Record.push_back(N->getVirtuality()); 1487 Record.push_back(N->getVirtualIndex()); 1488 Record.push_back(N->getFlags()); 1489 Record.push_back(N->isOptimized()); 1490 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1491 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1492 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1493 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1494 Record.push_back(N->getThisAdjustment()); 1495 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1496 1497 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1498 Record.clear(); 1499 } 1500 1501 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1502 SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 Record.push_back(N->isDistinct()); 1505 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1506 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1507 Record.push_back(N->getLine()); 1508 Record.push_back(N->getColumn()); 1509 1510 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1511 Record.clear(); 1512 } 1513 1514 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1515 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1516 unsigned Abbrev) { 1517 Record.push_back(N->isDistinct()); 1518 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1520 Record.push_back(N->getDiscriminator()); 1521 1522 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1523 Record.clear(); 1524 } 1525 1526 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1527 SmallVectorImpl<uint64_t> &Record, 1528 unsigned Abbrev) { 1529 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1530 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1531 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1532 1533 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1534 Record.clear(); 1535 } 1536 1537 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1538 SmallVectorImpl<uint64_t> &Record, 1539 unsigned Abbrev) { 1540 Record.push_back(N->isDistinct()); 1541 Record.push_back(N->getMacinfoType()); 1542 Record.push_back(N->getLine()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1544 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1545 1546 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1547 Record.clear(); 1548 } 1549 1550 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1551 SmallVectorImpl<uint64_t> &Record, 1552 unsigned Abbrev) { 1553 Record.push_back(N->isDistinct()); 1554 Record.push_back(N->getMacinfoType()); 1555 Record.push_back(N->getLine()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1558 1559 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1560 Record.clear(); 1561 } 1562 1563 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1564 SmallVectorImpl<uint64_t> &Record, 1565 unsigned Abbrev) { 1566 Record.push_back(N->isDistinct()); 1567 for (auto &I : N->operands()) 1568 Record.push_back(VE.getMetadataOrNullID(I)); 1569 1570 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1571 Record.clear(); 1572 } 1573 1574 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1575 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1576 unsigned Abbrev) { 1577 Record.push_back(N->isDistinct()); 1578 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1580 1581 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1582 Record.clear(); 1583 } 1584 1585 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1586 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1587 unsigned Abbrev) { 1588 Record.push_back(N->isDistinct()); 1589 Record.push_back(N->getTag()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1593 1594 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1595 Record.clear(); 1596 } 1597 1598 void ModuleBitcodeWriter::writeDIGlobalVariable( 1599 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1600 unsigned Abbrev) { 1601 const uint64_t Version = 1 << 1; 1602 Record.push_back((uint64_t)N->isDistinct() | Version); 1603 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1607 Record.push_back(N->getLine()); 1608 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1609 Record.push_back(N->isLocalToUnit()); 1610 Record.push_back(N->isDefinition()); 1611 Record.push_back(/* expr */ 0); 1612 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1613 Record.push_back(N->getAlignInBits()); 1614 1615 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 void ModuleBitcodeWriter::writeDILocalVariable( 1620 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1621 unsigned Abbrev) { 1622 // In order to support all possible bitcode formats in BitcodeReader we need 1623 // to distinguish the following cases: 1624 // 1) Record has no artificial tag (Record[1]), 1625 // has no obsolete inlinedAt field (Record[9]). 1626 // In this case Record size will be 8, HasAlignment flag is false. 1627 // 2) Record has artificial tag (Record[1]), 1628 // has no obsolete inlignedAt field (Record[9]). 1629 // In this case Record size will be 9, HasAlignment flag is false. 1630 // 3) Record has both artificial tag (Record[1]) and 1631 // obsolete inlignedAt field (Record[9]). 1632 // In this case Record size will be 10, HasAlignment flag is false. 1633 // 4) Record has neither artificial tag, nor inlignedAt field, but 1634 // HasAlignment flag is true and Record[8] contains alignment value. 1635 const uint64_t HasAlignmentFlag = 1 << 1; 1636 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1637 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1638 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1640 Record.push_back(N->getLine()); 1641 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1642 Record.push_back(N->getArg()); 1643 Record.push_back(N->getFlags()); 1644 Record.push_back(N->getAlignInBits()); 1645 1646 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1647 Record.clear(); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1651 SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 Record.reserve(N->getElements().size() + 1); 1654 const uint64_t Version = 2 << 1; 1655 Record.push_back((uint64_t)N->isDistinct() | Version); 1656 Record.append(N->elements_begin(), N->elements_end()); 1657 1658 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1659 Record.clear(); 1660 } 1661 1662 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1663 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1664 unsigned Abbrev) { 1665 Record.push_back(N->isDistinct()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1668 1669 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1674 SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 Record.push_back(N->isDistinct()); 1677 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1679 Record.push_back(N->getLine()); 1680 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1681 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1682 Record.push_back(N->getAttributes()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1684 1685 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1686 Record.clear(); 1687 } 1688 1689 void ModuleBitcodeWriter::writeDIImportedEntity( 1690 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1691 unsigned Abbrev) { 1692 Record.push_back(N->isDistinct()); 1693 Record.push_back(N->getTag()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1695 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1696 Record.push_back(N->getLine()); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1698 1699 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1704 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1705 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1707 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1708 return Stream.EmitAbbrev(std::move(Abbv)); 1709 } 1710 1711 void ModuleBitcodeWriter::writeNamedMetadata( 1712 SmallVectorImpl<uint64_t> &Record) { 1713 if (M.named_metadata_empty()) 1714 return; 1715 1716 unsigned Abbrev = createNamedMetadataAbbrev(); 1717 for (const NamedMDNode &NMD : M.named_metadata()) { 1718 // Write name. 1719 StringRef Str = NMD.getName(); 1720 Record.append(Str.bytes_begin(), Str.bytes_end()); 1721 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1722 Record.clear(); 1723 1724 // Write named metadata operands. 1725 for (const MDNode *N : NMD.operands()) 1726 Record.push_back(VE.getMetadataID(N)); 1727 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1728 Record.clear(); 1729 } 1730 } 1731 1732 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1733 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1734 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1738 return Stream.EmitAbbrev(std::move(Abbv)); 1739 } 1740 1741 /// Write out a record for MDString. 1742 /// 1743 /// All the metadata strings in a metadata block are emitted in a single 1744 /// record. The sizes and strings themselves are shoved into a blob. 1745 void ModuleBitcodeWriter::writeMetadataStrings( 1746 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1747 if (Strings.empty()) 1748 return; 1749 1750 // Start the record with the number of strings. 1751 Record.push_back(bitc::METADATA_STRINGS); 1752 Record.push_back(Strings.size()); 1753 1754 // Emit the sizes of the strings in the blob. 1755 SmallString<256> Blob; 1756 { 1757 BitstreamWriter W(Blob); 1758 for (const Metadata *MD : Strings) 1759 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1760 W.FlushToWord(); 1761 } 1762 1763 // Add the offset to the strings to the record. 1764 Record.push_back(Blob.size()); 1765 1766 // Add the strings to the blob. 1767 for (const Metadata *MD : Strings) 1768 Blob.append(cast<MDString>(MD)->getString()); 1769 1770 // Emit the final record. 1771 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1772 Record.clear(); 1773 } 1774 1775 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1776 enum MetadataAbbrev : unsigned { 1777 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1778 #include "llvm/IR/Metadata.def" 1779 LastPlusOne 1780 }; 1781 1782 void ModuleBitcodeWriter::writeMetadataRecords( 1783 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1784 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1785 if (MDs.empty()) 1786 return; 1787 1788 // Initialize MDNode abbreviations. 1789 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1790 #include "llvm/IR/Metadata.def" 1791 1792 for (const Metadata *MD : MDs) { 1793 if (IndexPos) 1794 IndexPos->push_back(Stream.GetCurrentBitNo()); 1795 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1796 assert(N->isResolved() && "Expected forward references to be resolved"); 1797 1798 switch (N->getMetadataID()) { 1799 default: 1800 llvm_unreachable("Invalid MDNode subclass"); 1801 #define HANDLE_MDNODE_LEAF(CLASS) \ 1802 case Metadata::CLASS##Kind: \ 1803 if (MDAbbrevs) \ 1804 write##CLASS(cast<CLASS>(N), Record, \ 1805 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1806 else \ 1807 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1808 continue; 1809 #include "llvm/IR/Metadata.def" 1810 } 1811 } 1812 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1813 } 1814 } 1815 1816 void ModuleBitcodeWriter::writeModuleMetadata() { 1817 if (!VE.hasMDs() && M.named_metadata_empty()) 1818 return; 1819 1820 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1821 SmallVector<uint64_t, 64> Record; 1822 1823 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1824 // block and load any metadata. 1825 std::vector<unsigned> MDAbbrevs; 1826 1827 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1828 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1829 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1830 createGenericDINodeAbbrev(); 1831 1832 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1833 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1836 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1837 1838 Abbv = std::make_shared<BitCodeAbbrev>(); 1839 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1842 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1843 1844 // Emit MDStrings together upfront. 1845 writeMetadataStrings(VE.getMDStrings(), Record); 1846 1847 // We only emit an index for the metadata record if we have more than a given 1848 // (naive) threshold of metadatas, otherwise it is not worth it. 1849 if (VE.getNonMDStrings().size() > IndexThreshold) { 1850 // Write a placeholder value in for the offset of the metadata index, 1851 // which is written after the records, so that it can include 1852 // the offset of each entry. The placeholder offset will be 1853 // updated after all records are emitted. 1854 uint64_t Vals[] = {0, 0}; 1855 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1856 } 1857 1858 // Compute and save the bit offset to the current position, which will be 1859 // patched when we emit the index later. We can simply subtract the 64-bit 1860 // fixed size from the current bit number to get the location to backpatch. 1861 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1862 1863 // This index will contain the bitpos for each individual record. 1864 std::vector<uint64_t> IndexPos; 1865 IndexPos.reserve(VE.getNonMDStrings().size()); 1866 1867 // Write all the records 1868 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1869 1870 if (VE.getNonMDStrings().size() > IndexThreshold) { 1871 // Now that we have emitted all the records we will emit the index. But 1872 // first 1873 // backpatch the forward reference so that the reader can skip the records 1874 // efficiently. 1875 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1876 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1877 1878 // Delta encode the index. 1879 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1880 for (auto &Elt : IndexPos) { 1881 auto EltDelta = Elt - PreviousValue; 1882 PreviousValue = Elt; 1883 Elt = EltDelta; 1884 } 1885 // Emit the index record. 1886 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1887 IndexPos.clear(); 1888 } 1889 1890 // Write the named metadata now. 1891 writeNamedMetadata(Record); 1892 1893 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1894 SmallVector<uint64_t, 4> Record; 1895 Record.push_back(VE.getValueID(&GO)); 1896 pushGlobalMetadataAttachment(Record, GO); 1897 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1898 }; 1899 for (const Function &F : M) 1900 if (F.isDeclaration() && F.hasMetadata()) 1901 AddDeclAttachedMetadata(F); 1902 // FIXME: Only store metadata for declarations here, and move data for global 1903 // variable definitions to a separate block (PR28134). 1904 for (const GlobalVariable &GV : M.globals()) 1905 if (GV.hasMetadata()) 1906 AddDeclAttachedMetadata(GV); 1907 1908 Stream.ExitBlock(); 1909 } 1910 1911 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1912 if (!VE.hasMDs()) 1913 return; 1914 1915 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1916 SmallVector<uint64_t, 64> Record; 1917 writeMetadataStrings(VE.getMDStrings(), Record); 1918 writeMetadataRecords(VE.getNonMDStrings(), Record); 1919 Stream.ExitBlock(); 1920 } 1921 1922 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1923 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1924 // [n x [id, mdnode]] 1925 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1926 GO.getAllMetadata(MDs); 1927 for (const auto &I : MDs) { 1928 Record.push_back(I.first); 1929 Record.push_back(VE.getMetadataID(I.second)); 1930 } 1931 } 1932 1933 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1934 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1935 1936 SmallVector<uint64_t, 64> Record; 1937 1938 if (F.hasMetadata()) { 1939 pushGlobalMetadataAttachment(Record, F); 1940 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1941 Record.clear(); 1942 } 1943 1944 // Write metadata attachments 1945 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1946 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1947 for (const BasicBlock &BB : F) 1948 for (const Instruction &I : BB) { 1949 MDs.clear(); 1950 I.getAllMetadataOtherThanDebugLoc(MDs); 1951 1952 // If no metadata, ignore instruction. 1953 if (MDs.empty()) continue; 1954 1955 Record.push_back(VE.getInstructionID(&I)); 1956 1957 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1958 Record.push_back(MDs[i].first); 1959 Record.push_back(VE.getMetadataID(MDs[i].second)); 1960 } 1961 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1962 Record.clear(); 1963 } 1964 1965 Stream.ExitBlock(); 1966 } 1967 1968 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1969 SmallVector<uint64_t, 64> Record; 1970 1971 // Write metadata kinds 1972 // METADATA_KIND - [n x [id, name]] 1973 SmallVector<StringRef, 8> Names; 1974 M.getMDKindNames(Names); 1975 1976 if (Names.empty()) return; 1977 1978 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1979 1980 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1981 Record.push_back(MDKindID); 1982 StringRef KName = Names[MDKindID]; 1983 Record.append(KName.begin(), KName.end()); 1984 1985 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1986 Record.clear(); 1987 } 1988 1989 Stream.ExitBlock(); 1990 } 1991 1992 void ModuleBitcodeWriter::writeOperandBundleTags() { 1993 // Write metadata kinds 1994 // 1995 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 1996 // 1997 // OPERAND_BUNDLE_TAG - [strchr x N] 1998 1999 SmallVector<StringRef, 8> Tags; 2000 M.getOperandBundleTags(Tags); 2001 2002 if (Tags.empty()) 2003 return; 2004 2005 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2006 2007 SmallVector<uint64_t, 64> Record; 2008 2009 for (auto Tag : Tags) { 2010 Record.append(Tag.begin(), Tag.end()); 2011 2012 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2013 Record.clear(); 2014 } 2015 2016 Stream.ExitBlock(); 2017 } 2018 2019 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2020 if ((int64_t)V >= 0) 2021 Vals.push_back(V << 1); 2022 else 2023 Vals.push_back((-V << 1) | 1); 2024 } 2025 2026 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2027 bool isGlobal) { 2028 if (FirstVal == LastVal) return; 2029 2030 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2031 2032 unsigned AggregateAbbrev = 0; 2033 unsigned String8Abbrev = 0; 2034 unsigned CString7Abbrev = 0; 2035 unsigned CString6Abbrev = 0; 2036 // If this is a constant pool for the module, emit module-specific abbrevs. 2037 if (isGlobal) { 2038 // Abbrev for CST_CODE_AGGREGATE. 2039 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2040 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2042 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2043 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2044 2045 // Abbrev for CST_CODE_STRING. 2046 Abbv = std::make_shared<BitCodeAbbrev>(); 2047 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2050 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2051 // Abbrev for CST_CODE_CSTRING. 2052 Abbv = std::make_shared<BitCodeAbbrev>(); 2053 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2056 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2057 // Abbrev for CST_CODE_CSTRING. 2058 Abbv = std::make_shared<BitCodeAbbrev>(); 2059 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2062 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2063 } 2064 2065 SmallVector<uint64_t, 64> Record; 2066 2067 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2068 Type *LastTy = nullptr; 2069 for (unsigned i = FirstVal; i != LastVal; ++i) { 2070 const Value *V = Vals[i].first; 2071 // If we need to switch types, do so now. 2072 if (V->getType() != LastTy) { 2073 LastTy = V->getType(); 2074 Record.push_back(VE.getTypeID(LastTy)); 2075 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2076 CONSTANTS_SETTYPE_ABBREV); 2077 Record.clear(); 2078 } 2079 2080 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2081 Record.push_back(unsigned(IA->hasSideEffects()) | 2082 unsigned(IA->isAlignStack()) << 1 | 2083 unsigned(IA->getDialect()&1) << 2); 2084 2085 // Add the asm string. 2086 const std::string &AsmStr = IA->getAsmString(); 2087 Record.push_back(AsmStr.size()); 2088 Record.append(AsmStr.begin(), AsmStr.end()); 2089 2090 // Add the constraint string. 2091 const std::string &ConstraintStr = IA->getConstraintString(); 2092 Record.push_back(ConstraintStr.size()); 2093 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2094 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2095 Record.clear(); 2096 continue; 2097 } 2098 const Constant *C = cast<Constant>(V); 2099 unsigned Code = -1U; 2100 unsigned AbbrevToUse = 0; 2101 if (C->isNullValue()) { 2102 Code = bitc::CST_CODE_NULL; 2103 } else if (isa<UndefValue>(C)) { 2104 Code = bitc::CST_CODE_UNDEF; 2105 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2106 if (IV->getBitWidth() <= 64) { 2107 uint64_t V = IV->getSExtValue(); 2108 emitSignedInt64(Record, V); 2109 Code = bitc::CST_CODE_INTEGER; 2110 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2111 } else { // Wide integers, > 64 bits in size. 2112 // We have an arbitrary precision integer value to write whose 2113 // bit width is > 64. However, in canonical unsigned integer 2114 // format it is likely that the high bits are going to be zero. 2115 // So, we only write the number of active words. 2116 unsigned NWords = IV->getValue().getActiveWords(); 2117 const uint64_t *RawWords = IV->getValue().getRawData(); 2118 for (unsigned i = 0; i != NWords; ++i) { 2119 emitSignedInt64(Record, RawWords[i]); 2120 } 2121 Code = bitc::CST_CODE_WIDE_INTEGER; 2122 } 2123 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2124 Code = bitc::CST_CODE_FLOAT; 2125 Type *Ty = CFP->getType(); 2126 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2127 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2128 } else if (Ty->isX86_FP80Ty()) { 2129 // api needed to prevent premature destruction 2130 // bits are not in the same order as a normal i80 APInt, compensate. 2131 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2132 const uint64_t *p = api.getRawData(); 2133 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2134 Record.push_back(p[0] & 0xffffLL); 2135 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2136 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2137 const uint64_t *p = api.getRawData(); 2138 Record.push_back(p[0]); 2139 Record.push_back(p[1]); 2140 } else { 2141 assert (0 && "Unknown FP type!"); 2142 } 2143 } else if (isa<ConstantDataSequential>(C) && 2144 cast<ConstantDataSequential>(C)->isString()) { 2145 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2146 // Emit constant strings specially. 2147 unsigned NumElts = Str->getNumElements(); 2148 // If this is a null-terminated string, use the denser CSTRING encoding. 2149 if (Str->isCString()) { 2150 Code = bitc::CST_CODE_CSTRING; 2151 --NumElts; // Don't encode the null, which isn't allowed by char6. 2152 } else { 2153 Code = bitc::CST_CODE_STRING; 2154 AbbrevToUse = String8Abbrev; 2155 } 2156 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2157 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2158 for (unsigned i = 0; i != NumElts; ++i) { 2159 unsigned char V = Str->getElementAsInteger(i); 2160 Record.push_back(V); 2161 isCStr7 &= (V & 128) == 0; 2162 if (isCStrChar6) 2163 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2164 } 2165 2166 if (isCStrChar6) 2167 AbbrevToUse = CString6Abbrev; 2168 else if (isCStr7) 2169 AbbrevToUse = CString7Abbrev; 2170 } else if (const ConstantDataSequential *CDS = 2171 dyn_cast<ConstantDataSequential>(C)) { 2172 Code = bitc::CST_CODE_DATA; 2173 Type *EltTy = CDS->getType()->getElementType(); 2174 if (isa<IntegerType>(EltTy)) { 2175 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2176 Record.push_back(CDS->getElementAsInteger(i)); 2177 } else { 2178 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2179 Record.push_back( 2180 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2181 } 2182 } else if (isa<ConstantAggregate>(C)) { 2183 Code = bitc::CST_CODE_AGGREGATE; 2184 for (const Value *Op : C->operands()) 2185 Record.push_back(VE.getValueID(Op)); 2186 AbbrevToUse = AggregateAbbrev; 2187 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2188 switch (CE->getOpcode()) { 2189 default: 2190 if (Instruction::isCast(CE->getOpcode())) { 2191 Code = bitc::CST_CODE_CE_CAST; 2192 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2193 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2194 Record.push_back(VE.getValueID(C->getOperand(0))); 2195 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2196 } else { 2197 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2198 Code = bitc::CST_CODE_CE_BINOP; 2199 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2200 Record.push_back(VE.getValueID(C->getOperand(0))); 2201 Record.push_back(VE.getValueID(C->getOperand(1))); 2202 uint64_t Flags = getOptimizationFlags(CE); 2203 if (Flags != 0) 2204 Record.push_back(Flags); 2205 } 2206 break; 2207 case Instruction::GetElementPtr: { 2208 Code = bitc::CST_CODE_CE_GEP; 2209 const auto *GO = cast<GEPOperator>(C); 2210 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2211 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2212 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2213 Record.push_back((*Idx << 1) | GO->isInBounds()); 2214 } else if (GO->isInBounds()) 2215 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2216 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2217 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2218 Record.push_back(VE.getValueID(C->getOperand(i))); 2219 } 2220 break; 2221 } 2222 case Instruction::Select: 2223 Code = bitc::CST_CODE_CE_SELECT; 2224 Record.push_back(VE.getValueID(C->getOperand(0))); 2225 Record.push_back(VE.getValueID(C->getOperand(1))); 2226 Record.push_back(VE.getValueID(C->getOperand(2))); 2227 break; 2228 case Instruction::ExtractElement: 2229 Code = bitc::CST_CODE_CE_EXTRACTELT; 2230 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2231 Record.push_back(VE.getValueID(C->getOperand(0))); 2232 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2233 Record.push_back(VE.getValueID(C->getOperand(1))); 2234 break; 2235 case Instruction::InsertElement: 2236 Code = bitc::CST_CODE_CE_INSERTELT; 2237 Record.push_back(VE.getValueID(C->getOperand(0))); 2238 Record.push_back(VE.getValueID(C->getOperand(1))); 2239 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2240 Record.push_back(VE.getValueID(C->getOperand(2))); 2241 break; 2242 case Instruction::ShuffleVector: 2243 // If the return type and argument types are the same, this is a 2244 // standard shufflevector instruction. If the types are different, 2245 // then the shuffle is widening or truncating the input vectors, and 2246 // the argument type must also be encoded. 2247 if (C->getType() == C->getOperand(0)->getType()) { 2248 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2249 } else { 2250 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2251 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2252 } 2253 Record.push_back(VE.getValueID(C->getOperand(0))); 2254 Record.push_back(VE.getValueID(C->getOperand(1))); 2255 Record.push_back(VE.getValueID(C->getOperand(2))); 2256 break; 2257 case Instruction::ICmp: 2258 case Instruction::FCmp: 2259 Code = bitc::CST_CODE_CE_CMP; 2260 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2261 Record.push_back(VE.getValueID(C->getOperand(0))); 2262 Record.push_back(VE.getValueID(C->getOperand(1))); 2263 Record.push_back(CE->getPredicate()); 2264 break; 2265 } 2266 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2267 Code = bitc::CST_CODE_BLOCKADDRESS; 2268 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2269 Record.push_back(VE.getValueID(BA->getFunction())); 2270 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2271 } else { 2272 #ifndef NDEBUG 2273 C->dump(); 2274 #endif 2275 llvm_unreachable("Unknown constant!"); 2276 } 2277 Stream.EmitRecord(Code, Record, AbbrevToUse); 2278 Record.clear(); 2279 } 2280 2281 Stream.ExitBlock(); 2282 } 2283 2284 void ModuleBitcodeWriter::writeModuleConstants() { 2285 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2286 2287 // Find the first constant to emit, which is the first non-globalvalue value. 2288 // We know globalvalues have been emitted by WriteModuleInfo. 2289 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2290 if (!isa<GlobalValue>(Vals[i].first)) { 2291 writeConstants(i, Vals.size(), true); 2292 return; 2293 } 2294 } 2295 } 2296 2297 /// pushValueAndType - The file has to encode both the value and type id for 2298 /// many values, because we need to know what type to create for forward 2299 /// references. However, most operands are not forward references, so this type 2300 /// field is not needed. 2301 /// 2302 /// This function adds V's value ID to Vals. If the value ID is higher than the 2303 /// instruction ID, then it is a forward reference, and it also includes the 2304 /// type ID. The value ID that is written is encoded relative to the InstID. 2305 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2306 SmallVectorImpl<unsigned> &Vals) { 2307 unsigned ValID = VE.getValueID(V); 2308 // Make encoding relative to the InstID. 2309 Vals.push_back(InstID - ValID); 2310 if (ValID >= InstID) { 2311 Vals.push_back(VE.getTypeID(V->getType())); 2312 return true; 2313 } 2314 return false; 2315 } 2316 2317 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2318 unsigned InstID) { 2319 SmallVector<unsigned, 64> Record; 2320 LLVMContext &C = CS.getInstruction()->getContext(); 2321 2322 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2323 const auto &Bundle = CS.getOperandBundleAt(i); 2324 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2325 2326 for (auto &Input : Bundle.Inputs) 2327 pushValueAndType(Input, InstID, Record); 2328 2329 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2330 Record.clear(); 2331 } 2332 } 2333 2334 /// pushValue - Like pushValueAndType, but where the type of the value is 2335 /// omitted (perhaps it was already encoded in an earlier operand). 2336 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2337 SmallVectorImpl<unsigned> &Vals) { 2338 unsigned ValID = VE.getValueID(V); 2339 Vals.push_back(InstID - ValID); 2340 } 2341 2342 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2343 SmallVectorImpl<uint64_t> &Vals) { 2344 unsigned ValID = VE.getValueID(V); 2345 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2346 emitSignedInt64(Vals, diff); 2347 } 2348 2349 /// WriteInstruction - Emit an instruction to the specified stream. 2350 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2351 unsigned InstID, 2352 SmallVectorImpl<unsigned> &Vals) { 2353 unsigned Code = 0; 2354 unsigned AbbrevToUse = 0; 2355 VE.setInstructionID(&I); 2356 switch (I.getOpcode()) { 2357 default: 2358 if (Instruction::isCast(I.getOpcode())) { 2359 Code = bitc::FUNC_CODE_INST_CAST; 2360 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2361 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2362 Vals.push_back(VE.getTypeID(I.getType())); 2363 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2364 } else { 2365 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2366 Code = bitc::FUNC_CODE_INST_BINOP; 2367 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2368 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2369 pushValue(I.getOperand(1), InstID, Vals); 2370 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2371 uint64_t Flags = getOptimizationFlags(&I); 2372 if (Flags != 0) { 2373 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2374 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2375 Vals.push_back(Flags); 2376 } 2377 } 2378 break; 2379 2380 case Instruction::GetElementPtr: { 2381 Code = bitc::FUNC_CODE_INST_GEP; 2382 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2383 auto &GEPInst = cast<GetElementPtrInst>(I); 2384 Vals.push_back(GEPInst.isInBounds()); 2385 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2386 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2387 pushValueAndType(I.getOperand(i), InstID, Vals); 2388 break; 2389 } 2390 case Instruction::ExtractValue: { 2391 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2392 pushValueAndType(I.getOperand(0), InstID, Vals); 2393 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2394 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2395 break; 2396 } 2397 case Instruction::InsertValue: { 2398 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2399 pushValueAndType(I.getOperand(0), InstID, Vals); 2400 pushValueAndType(I.getOperand(1), InstID, Vals); 2401 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2402 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2403 break; 2404 } 2405 case Instruction::Select: 2406 Code = bitc::FUNC_CODE_INST_VSELECT; 2407 pushValueAndType(I.getOperand(1), InstID, Vals); 2408 pushValue(I.getOperand(2), InstID, Vals); 2409 pushValueAndType(I.getOperand(0), InstID, Vals); 2410 break; 2411 case Instruction::ExtractElement: 2412 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2413 pushValueAndType(I.getOperand(0), InstID, Vals); 2414 pushValueAndType(I.getOperand(1), InstID, Vals); 2415 break; 2416 case Instruction::InsertElement: 2417 Code = bitc::FUNC_CODE_INST_INSERTELT; 2418 pushValueAndType(I.getOperand(0), InstID, Vals); 2419 pushValue(I.getOperand(1), InstID, Vals); 2420 pushValueAndType(I.getOperand(2), InstID, Vals); 2421 break; 2422 case Instruction::ShuffleVector: 2423 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2424 pushValueAndType(I.getOperand(0), InstID, Vals); 2425 pushValue(I.getOperand(1), InstID, Vals); 2426 pushValue(I.getOperand(2), InstID, Vals); 2427 break; 2428 case Instruction::ICmp: 2429 case Instruction::FCmp: { 2430 // compare returning Int1Ty or vector of Int1Ty 2431 Code = bitc::FUNC_CODE_INST_CMP2; 2432 pushValueAndType(I.getOperand(0), InstID, Vals); 2433 pushValue(I.getOperand(1), InstID, Vals); 2434 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2435 uint64_t Flags = getOptimizationFlags(&I); 2436 if (Flags != 0) 2437 Vals.push_back(Flags); 2438 break; 2439 } 2440 2441 case Instruction::Ret: 2442 { 2443 Code = bitc::FUNC_CODE_INST_RET; 2444 unsigned NumOperands = I.getNumOperands(); 2445 if (NumOperands == 0) 2446 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2447 else if (NumOperands == 1) { 2448 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2449 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2450 } else { 2451 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2452 pushValueAndType(I.getOperand(i), InstID, Vals); 2453 } 2454 } 2455 break; 2456 case Instruction::Br: 2457 { 2458 Code = bitc::FUNC_CODE_INST_BR; 2459 const BranchInst &II = cast<BranchInst>(I); 2460 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2461 if (II.isConditional()) { 2462 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2463 pushValue(II.getCondition(), InstID, Vals); 2464 } 2465 } 2466 break; 2467 case Instruction::Switch: 2468 { 2469 Code = bitc::FUNC_CODE_INST_SWITCH; 2470 const SwitchInst &SI = cast<SwitchInst>(I); 2471 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2472 pushValue(SI.getCondition(), InstID, Vals); 2473 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2474 for (auto Case : SI.cases()) { 2475 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2476 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2477 } 2478 } 2479 break; 2480 case Instruction::IndirectBr: 2481 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2482 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2483 // Encode the address operand as relative, but not the basic blocks. 2484 pushValue(I.getOperand(0), InstID, Vals); 2485 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2486 Vals.push_back(VE.getValueID(I.getOperand(i))); 2487 break; 2488 2489 case Instruction::Invoke: { 2490 const InvokeInst *II = cast<InvokeInst>(&I); 2491 const Value *Callee = II->getCalledValue(); 2492 FunctionType *FTy = II->getFunctionType(); 2493 2494 if (II->hasOperandBundles()) 2495 writeOperandBundles(II, InstID); 2496 2497 Code = bitc::FUNC_CODE_INST_INVOKE; 2498 2499 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2500 Vals.push_back(II->getCallingConv() | 1 << 13); 2501 Vals.push_back(VE.getValueID(II->getNormalDest())); 2502 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2503 Vals.push_back(VE.getTypeID(FTy)); 2504 pushValueAndType(Callee, InstID, Vals); 2505 2506 // Emit value #'s for the fixed parameters. 2507 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2508 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2509 2510 // Emit type/value pairs for varargs params. 2511 if (FTy->isVarArg()) { 2512 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2513 i != e; ++i) 2514 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2515 } 2516 break; 2517 } 2518 case Instruction::Resume: 2519 Code = bitc::FUNC_CODE_INST_RESUME; 2520 pushValueAndType(I.getOperand(0), InstID, Vals); 2521 break; 2522 case Instruction::CleanupRet: { 2523 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2524 const auto &CRI = cast<CleanupReturnInst>(I); 2525 pushValue(CRI.getCleanupPad(), InstID, Vals); 2526 if (CRI.hasUnwindDest()) 2527 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2528 break; 2529 } 2530 case Instruction::CatchRet: { 2531 Code = bitc::FUNC_CODE_INST_CATCHRET; 2532 const auto &CRI = cast<CatchReturnInst>(I); 2533 pushValue(CRI.getCatchPad(), InstID, Vals); 2534 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2535 break; 2536 } 2537 case Instruction::CleanupPad: 2538 case Instruction::CatchPad: { 2539 const auto &FuncletPad = cast<FuncletPadInst>(I); 2540 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2541 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2542 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2543 2544 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2545 Vals.push_back(NumArgOperands); 2546 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2547 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2548 break; 2549 } 2550 case Instruction::CatchSwitch: { 2551 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2552 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2553 2554 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2555 2556 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2557 Vals.push_back(NumHandlers); 2558 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2559 Vals.push_back(VE.getValueID(CatchPadBB)); 2560 2561 if (CatchSwitch.hasUnwindDest()) 2562 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2563 break; 2564 } 2565 case Instruction::Unreachable: 2566 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2567 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2568 break; 2569 2570 case Instruction::PHI: { 2571 const PHINode &PN = cast<PHINode>(I); 2572 Code = bitc::FUNC_CODE_INST_PHI; 2573 // With the newer instruction encoding, forward references could give 2574 // negative valued IDs. This is most common for PHIs, so we use 2575 // signed VBRs. 2576 SmallVector<uint64_t, 128> Vals64; 2577 Vals64.push_back(VE.getTypeID(PN.getType())); 2578 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2579 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2580 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2581 } 2582 // Emit a Vals64 vector and exit. 2583 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2584 Vals64.clear(); 2585 return; 2586 } 2587 2588 case Instruction::LandingPad: { 2589 const LandingPadInst &LP = cast<LandingPadInst>(I); 2590 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2591 Vals.push_back(VE.getTypeID(LP.getType())); 2592 Vals.push_back(LP.isCleanup()); 2593 Vals.push_back(LP.getNumClauses()); 2594 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2595 if (LP.isCatch(I)) 2596 Vals.push_back(LandingPadInst::Catch); 2597 else 2598 Vals.push_back(LandingPadInst::Filter); 2599 pushValueAndType(LP.getClause(I), InstID, Vals); 2600 } 2601 break; 2602 } 2603 2604 case Instruction::Alloca: { 2605 Code = bitc::FUNC_CODE_INST_ALLOCA; 2606 const AllocaInst &AI = cast<AllocaInst>(I); 2607 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2608 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2609 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2610 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2611 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2612 "not enough bits for maximum alignment"); 2613 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2614 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2615 AlignRecord |= 1 << 6; 2616 AlignRecord |= AI.isSwiftError() << 7; 2617 Vals.push_back(AlignRecord); 2618 break; 2619 } 2620 2621 case Instruction::Load: 2622 if (cast<LoadInst>(I).isAtomic()) { 2623 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2624 pushValueAndType(I.getOperand(0), InstID, Vals); 2625 } else { 2626 Code = bitc::FUNC_CODE_INST_LOAD; 2627 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2628 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2629 } 2630 Vals.push_back(VE.getTypeID(I.getType())); 2631 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2632 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2633 if (cast<LoadInst>(I).isAtomic()) { 2634 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2635 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2636 } 2637 break; 2638 case Instruction::Store: 2639 if (cast<StoreInst>(I).isAtomic()) 2640 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2641 else 2642 Code = bitc::FUNC_CODE_INST_STORE; 2643 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2644 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2645 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2646 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2647 if (cast<StoreInst>(I).isAtomic()) { 2648 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2649 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2650 } 2651 break; 2652 case Instruction::AtomicCmpXchg: 2653 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2654 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2655 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2656 pushValue(I.getOperand(2), InstID, Vals); // newval. 2657 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2658 Vals.push_back( 2659 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2660 Vals.push_back( 2661 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2662 Vals.push_back( 2663 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2664 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2665 break; 2666 case Instruction::AtomicRMW: 2667 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2668 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2669 pushValue(I.getOperand(1), InstID, Vals); // val. 2670 Vals.push_back( 2671 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2672 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2673 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2674 Vals.push_back( 2675 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2676 break; 2677 case Instruction::Fence: 2678 Code = bitc::FUNC_CODE_INST_FENCE; 2679 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2680 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2681 break; 2682 case Instruction::Call: { 2683 const CallInst &CI = cast<CallInst>(I); 2684 FunctionType *FTy = CI.getFunctionType(); 2685 2686 if (CI.hasOperandBundles()) 2687 writeOperandBundles(&CI, InstID); 2688 2689 Code = bitc::FUNC_CODE_INST_CALL; 2690 2691 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2692 2693 unsigned Flags = getOptimizationFlags(&I); 2694 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2695 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2696 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2697 1 << bitc::CALL_EXPLICIT_TYPE | 2698 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2699 unsigned(Flags != 0) << bitc::CALL_FMF); 2700 if (Flags != 0) 2701 Vals.push_back(Flags); 2702 2703 Vals.push_back(VE.getTypeID(FTy)); 2704 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2705 2706 // Emit value #'s for the fixed parameters. 2707 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2708 // Check for labels (can happen with asm labels). 2709 if (FTy->getParamType(i)->isLabelTy()) 2710 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2711 else 2712 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2713 } 2714 2715 // Emit type/value pairs for varargs params. 2716 if (FTy->isVarArg()) { 2717 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2718 i != e; ++i) 2719 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2720 } 2721 break; 2722 } 2723 case Instruction::VAArg: 2724 Code = bitc::FUNC_CODE_INST_VAARG; 2725 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2726 pushValue(I.getOperand(0), InstID, Vals); // valist. 2727 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2728 break; 2729 } 2730 2731 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2732 Vals.clear(); 2733 } 2734 2735 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2736 /// to allow clients to efficiently find the function body. 2737 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2738 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2739 // Get the offset of the VST we are writing, and backpatch it into 2740 // the VST forward declaration record. 2741 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2742 // The BitcodeStartBit was the stream offset of the identification block. 2743 VSTOffset -= bitcodeStartBit(); 2744 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2745 // Note that we add 1 here because the offset is relative to one word 2746 // before the start of the identification block, which was historically 2747 // always the start of the regular bitcode header. 2748 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2749 2750 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2751 2752 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2753 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2756 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2757 2758 for (const Function &F : M) { 2759 uint64_t Record[2]; 2760 2761 if (F.isDeclaration()) 2762 continue; 2763 2764 Record[0] = VE.getValueID(&F); 2765 2766 // Save the word offset of the function (from the start of the 2767 // actual bitcode written to the stream). 2768 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2769 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2770 // Note that we add 1 here because the offset is relative to one word 2771 // before the start of the identification block, which was historically 2772 // always the start of the regular bitcode header. 2773 Record[1] = BitcodeIndex / 32 + 1; 2774 2775 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2776 } 2777 2778 Stream.ExitBlock(); 2779 } 2780 2781 /// Emit names for arguments, instructions and basic blocks in a function. 2782 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2783 const ValueSymbolTable &VST) { 2784 if (VST.empty()) 2785 return; 2786 2787 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2788 2789 // FIXME: Set up the abbrev, we know how many values there are! 2790 // FIXME: We know if the type names can use 7-bit ascii. 2791 SmallVector<uint64_t, 64> NameVals; 2792 2793 for (const ValueName &Name : VST) { 2794 // Figure out the encoding to use for the name. 2795 StringEncoding Bits = 2796 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2797 2798 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2799 NameVals.push_back(VE.getValueID(Name.getValue())); 2800 2801 // VST_CODE_ENTRY: [valueid, namechar x N] 2802 // VST_CODE_BBENTRY: [bbid, namechar x N] 2803 unsigned Code; 2804 if (isa<BasicBlock>(Name.getValue())) { 2805 Code = bitc::VST_CODE_BBENTRY; 2806 if (Bits == SE_Char6) 2807 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2808 } else { 2809 Code = bitc::VST_CODE_ENTRY; 2810 if (Bits == SE_Char6) 2811 AbbrevToUse = VST_ENTRY_6_ABBREV; 2812 else if (Bits == SE_Fixed7) 2813 AbbrevToUse = VST_ENTRY_7_ABBREV; 2814 } 2815 2816 for (const auto P : Name.getKey()) 2817 NameVals.push_back((unsigned char)P); 2818 2819 // Emit the finished record. 2820 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2821 NameVals.clear(); 2822 } 2823 2824 Stream.ExitBlock(); 2825 } 2826 2827 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2828 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2829 unsigned Code; 2830 if (isa<BasicBlock>(Order.V)) 2831 Code = bitc::USELIST_CODE_BB; 2832 else 2833 Code = bitc::USELIST_CODE_DEFAULT; 2834 2835 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2836 Record.push_back(VE.getValueID(Order.V)); 2837 Stream.EmitRecord(Code, Record); 2838 } 2839 2840 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2841 assert(VE.shouldPreserveUseListOrder() && 2842 "Expected to be preserving use-list order"); 2843 2844 auto hasMore = [&]() { 2845 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2846 }; 2847 if (!hasMore()) 2848 // Nothing to do. 2849 return; 2850 2851 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2852 while (hasMore()) { 2853 writeUseList(std::move(VE.UseListOrders.back())); 2854 VE.UseListOrders.pop_back(); 2855 } 2856 Stream.ExitBlock(); 2857 } 2858 2859 /// Emit a function body to the module stream. 2860 void ModuleBitcodeWriter::writeFunction( 2861 const Function &F, 2862 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2863 // Save the bitcode index of the start of this function block for recording 2864 // in the VST. 2865 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2866 2867 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2868 VE.incorporateFunction(F); 2869 2870 SmallVector<unsigned, 64> Vals; 2871 2872 // Emit the number of basic blocks, so the reader can create them ahead of 2873 // time. 2874 Vals.push_back(VE.getBasicBlocks().size()); 2875 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2876 Vals.clear(); 2877 2878 // If there are function-local constants, emit them now. 2879 unsigned CstStart, CstEnd; 2880 VE.getFunctionConstantRange(CstStart, CstEnd); 2881 writeConstants(CstStart, CstEnd, false); 2882 2883 // If there is function-local metadata, emit it now. 2884 writeFunctionMetadata(F); 2885 2886 // Keep a running idea of what the instruction ID is. 2887 unsigned InstID = CstEnd; 2888 2889 bool NeedsMetadataAttachment = F.hasMetadata(); 2890 2891 DILocation *LastDL = nullptr; 2892 // Finally, emit all the instructions, in order. 2893 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2894 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2895 I != E; ++I) { 2896 writeInstruction(*I, InstID, Vals); 2897 2898 if (!I->getType()->isVoidTy()) 2899 ++InstID; 2900 2901 // If the instruction has metadata, write a metadata attachment later. 2902 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2903 2904 // If the instruction has a debug location, emit it. 2905 DILocation *DL = I->getDebugLoc(); 2906 if (!DL) 2907 continue; 2908 2909 if (DL == LastDL) { 2910 // Just repeat the same debug loc as last time. 2911 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2912 continue; 2913 } 2914 2915 Vals.push_back(DL->getLine()); 2916 Vals.push_back(DL->getColumn()); 2917 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2918 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2919 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2920 Vals.clear(); 2921 2922 LastDL = DL; 2923 } 2924 2925 // Emit names for all the instructions etc. 2926 if (auto *Symtab = F.getValueSymbolTable()) 2927 writeFunctionLevelValueSymbolTable(*Symtab); 2928 2929 if (NeedsMetadataAttachment) 2930 writeFunctionMetadataAttachment(F); 2931 if (VE.shouldPreserveUseListOrder()) 2932 writeUseListBlock(&F); 2933 VE.purgeFunction(); 2934 Stream.ExitBlock(); 2935 } 2936 2937 // Emit blockinfo, which defines the standard abbreviations etc. 2938 void ModuleBitcodeWriter::writeBlockInfo() { 2939 // We only want to emit block info records for blocks that have multiple 2940 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2941 // Other blocks can define their abbrevs inline. 2942 Stream.EnterBlockInfoBlock(); 2943 2944 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2945 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2950 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2951 VST_ENTRY_8_ABBREV) 2952 llvm_unreachable("Unexpected abbrev ordering!"); 2953 } 2954 2955 { // 7-bit fixed width VST_CODE_ENTRY strings. 2956 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2957 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2961 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2962 VST_ENTRY_7_ABBREV) 2963 llvm_unreachable("Unexpected abbrev ordering!"); 2964 } 2965 { // 6-bit char6 VST_CODE_ENTRY strings. 2966 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2967 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2971 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2972 VST_ENTRY_6_ABBREV) 2973 llvm_unreachable("Unexpected abbrev ordering!"); 2974 } 2975 { // 6-bit char6 VST_CODE_BBENTRY strings. 2976 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2977 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2981 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2982 VST_BBENTRY_6_ABBREV) 2983 llvm_unreachable("Unexpected abbrev ordering!"); 2984 } 2985 2986 2987 2988 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2989 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2990 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2992 VE.computeBitsRequiredForTypeIndicies())); 2993 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2994 CONSTANTS_SETTYPE_ABBREV) 2995 llvm_unreachable("Unexpected abbrev ordering!"); 2996 } 2997 2998 { // INTEGER abbrev for CONSTANTS_BLOCK. 2999 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3000 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3002 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3003 CONSTANTS_INTEGER_ABBREV) 3004 llvm_unreachable("Unexpected abbrev ordering!"); 3005 } 3006 3007 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3008 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3009 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3012 VE.computeBitsRequiredForTypeIndicies())); 3013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3014 3015 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3016 CONSTANTS_CE_CAST_Abbrev) 3017 llvm_unreachable("Unexpected abbrev ordering!"); 3018 } 3019 { // NULL abbrev for CONSTANTS_BLOCK. 3020 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3021 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3022 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3023 CONSTANTS_NULL_Abbrev) 3024 llvm_unreachable("Unexpected abbrev ordering!"); 3025 } 3026 3027 // FIXME: This should only use space for first class types! 3028 3029 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3030 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3031 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3034 VE.computeBitsRequiredForTypeIndicies())); 3035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3037 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3038 FUNCTION_INST_LOAD_ABBREV) 3039 llvm_unreachable("Unexpected abbrev ordering!"); 3040 } 3041 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3042 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3043 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3047 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3048 FUNCTION_INST_BINOP_ABBREV) 3049 llvm_unreachable("Unexpected abbrev ordering!"); 3050 } 3051 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3053 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3058 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3059 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3060 llvm_unreachable("Unexpected abbrev ordering!"); 3061 } 3062 { // INST_CAST abbrev for FUNCTION_BLOCK. 3063 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3064 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3067 VE.computeBitsRequiredForTypeIndicies())); 3068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3069 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3070 FUNCTION_INST_CAST_ABBREV) 3071 llvm_unreachable("Unexpected abbrev ordering!"); 3072 } 3073 3074 { // INST_RET abbrev for FUNCTION_BLOCK. 3075 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3076 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3077 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3078 FUNCTION_INST_RET_VOID_ABBREV) 3079 llvm_unreachable("Unexpected abbrev ordering!"); 3080 } 3081 { // INST_RET abbrev for FUNCTION_BLOCK. 3082 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3083 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3085 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3086 FUNCTION_INST_RET_VAL_ABBREV) 3087 llvm_unreachable("Unexpected abbrev ordering!"); 3088 } 3089 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3090 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3091 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3092 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3093 FUNCTION_INST_UNREACHABLE_ABBREV) 3094 llvm_unreachable("Unexpected abbrev ordering!"); 3095 } 3096 { 3097 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3098 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3101 Log2_32_Ceil(VE.getTypes().size() + 1))); 3102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3104 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3105 FUNCTION_INST_GEP_ABBREV) 3106 llvm_unreachable("Unexpected abbrev ordering!"); 3107 } 3108 3109 Stream.ExitBlock(); 3110 } 3111 3112 /// Write the module path strings, currently only used when generating 3113 /// a combined index file. 3114 void IndexBitcodeWriter::writeModStrings() { 3115 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3116 3117 // TODO: See which abbrev sizes we actually need to emit 3118 3119 // 8-bit fixed-width MST_ENTRY strings. 3120 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3121 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3125 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3126 3127 // 7-bit fixed width MST_ENTRY strings. 3128 Abbv = std::make_shared<BitCodeAbbrev>(); 3129 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3133 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3134 3135 // 6-bit char6 MST_ENTRY strings. 3136 Abbv = std::make_shared<BitCodeAbbrev>(); 3137 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3141 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3142 3143 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3144 Abbv = std::make_shared<BitCodeAbbrev>(); 3145 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3151 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3152 3153 SmallVector<unsigned, 64> Vals; 3154 for (const auto &MPSE : Index.modulePaths()) { 3155 if (!doIncludeModule(MPSE.getKey())) 3156 continue; 3157 StringEncoding Bits = 3158 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3159 unsigned AbbrevToUse = Abbrev8Bit; 3160 if (Bits == SE_Char6) 3161 AbbrevToUse = Abbrev6Bit; 3162 else if (Bits == SE_Fixed7) 3163 AbbrevToUse = Abbrev7Bit; 3164 3165 Vals.push_back(MPSE.getValue().first); 3166 3167 for (const auto P : MPSE.getKey()) 3168 Vals.push_back((unsigned char)P); 3169 3170 // Emit the finished record. 3171 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3172 3173 Vals.clear(); 3174 // Emit an optional hash for the module now 3175 auto &Hash = MPSE.getValue().second; 3176 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3177 for (auto Val : Hash) { 3178 if (Val) 3179 AllZero = false; 3180 Vals.push_back(Val); 3181 } 3182 if (!AllZero) { 3183 // Emit the hash record. 3184 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3185 } 3186 3187 Vals.clear(); 3188 } 3189 Stream.ExitBlock(); 3190 } 3191 3192 /// Write the function type metadata related records that need to appear before 3193 /// a function summary entry (whether per-module or combined). 3194 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3195 FunctionSummary *FS) { 3196 if (!FS->type_tests().empty()) 3197 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3198 3199 SmallVector<uint64_t, 64> Record; 3200 3201 auto WriteVFuncIdVec = [&](uint64_t Ty, 3202 ArrayRef<FunctionSummary::VFuncId> VFs) { 3203 if (VFs.empty()) 3204 return; 3205 Record.clear(); 3206 for (auto &VF : VFs) { 3207 Record.push_back(VF.GUID); 3208 Record.push_back(VF.Offset); 3209 } 3210 Stream.EmitRecord(Ty, Record); 3211 }; 3212 3213 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3214 FS->type_test_assume_vcalls()); 3215 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3216 FS->type_checked_load_vcalls()); 3217 3218 auto WriteConstVCallVec = [&](uint64_t Ty, 3219 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3220 for (auto &VC : VCs) { 3221 Record.clear(); 3222 Record.push_back(VC.VFunc.GUID); 3223 Record.push_back(VC.VFunc.Offset); 3224 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3225 Stream.EmitRecord(Ty, Record); 3226 } 3227 }; 3228 3229 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3230 FS->type_test_assume_const_vcalls()); 3231 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3232 FS->type_checked_load_const_vcalls()); 3233 } 3234 3235 // Helper to emit a single function summary record. 3236 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3237 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3238 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3239 const Function &F) { 3240 NameVals.push_back(ValueID); 3241 3242 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3243 writeFunctionTypeMetadataRecords(Stream, FS); 3244 3245 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3246 NameVals.push_back(FS->instCount()); 3247 NameVals.push_back(FS->refs().size()); 3248 3249 for (auto &RI : FS->refs()) 3250 NameVals.push_back(VE.getValueID(RI.getValue())); 3251 3252 bool HasProfileData = F.getEntryCount().hasValue(); 3253 for (auto &ECI : FS->calls()) { 3254 NameVals.push_back(getValueId(ECI.first)); 3255 if (HasProfileData) 3256 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3257 } 3258 3259 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3260 unsigned Code = 3261 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3262 3263 // Emit the finished record. 3264 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3265 NameVals.clear(); 3266 } 3267 3268 // Collect the global value references in the given variable's initializer, 3269 // and emit them in a summary record. 3270 void ModuleBitcodeWriter::writeModuleLevelReferences( 3271 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3272 unsigned FSModRefsAbbrev) { 3273 auto Summaries = 3274 Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName())); 3275 if (Summaries == Index->end()) { 3276 // Only declarations should not have a summary (a declaration might however 3277 // have a summary if the def was in module level asm). 3278 assert(V.isDeclaration()); 3279 return; 3280 } 3281 auto *Summary = Summaries->second.front().get(); 3282 NameVals.push_back(VE.getValueID(&V)); 3283 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3284 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3285 3286 unsigned SizeBeforeRefs = NameVals.size(); 3287 for (auto &RI : VS->refs()) 3288 NameVals.push_back(VE.getValueID(RI.getValue())); 3289 // Sort the refs for determinism output, the vector returned by FS->refs() has 3290 // been initialized from a DenseSet. 3291 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3292 3293 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3294 FSModRefsAbbrev); 3295 NameVals.clear(); 3296 } 3297 3298 // Current version for the summary. 3299 // This is bumped whenever we introduce changes in the way some record are 3300 // interpreted, like flags for instance. 3301 static const uint64_t INDEX_VERSION = 3; 3302 3303 /// Emit the per-module summary section alongside the rest of 3304 /// the module's bitcode. 3305 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3306 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3307 3308 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3309 3310 if (Index->begin() == Index->end()) { 3311 Stream.ExitBlock(); 3312 return; 3313 } 3314 3315 for (const auto &GVI : valueIds()) { 3316 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3317 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3318 } 3319 3320 // Abbrev for FS_PERMODULE. 3321 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3322 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3327 // numrefs x valueid, n x (valueid) 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3330 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3331 3332 // Abbrev for FS_PERMODULE_PROFILE. 3333 Abbv = std::make_shared<BitCodeAbbrev>(); 3334 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3339 // numrefs x valueid, n x (valueid, hotness) 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3342 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3343 3344 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3345 Abbv = std::make_shared<BitCodeAbbrev>(); 3346 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3351 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3352 3353 // Abbrev for FS_ALIAS. 3354 Abbv = std::make_shared<BitCodeAbbrev>(); 3355 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3359 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3360 3361 SmallVector<uint64_t, 64> NameVals; 3362 // Iterate over the list of functions instead of the Index to 3363 // ensure the ordering is stable. 3364 for (const Function &F : M) { 3365 // Summary emission does not support anonymous functions, they have to 3366 // renamed using the anonymous function renaming pass. 3367 if (!F.hasName()) 3368 report_fatal_error("Unexpected anonymous function when writing summary"); 3369 3370 auto Summaries = 3371 Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName())); 3372 if (Summaries == Index->end()) { 3373 // Only declarations should not have a summary (a declaration might 3374 // however have a summary if the def was in module level asm). 3375 assert(F.isDeclaration()); 3376 continue; 3377 } 3378 auto *Summary = Summaries->second.front().get(); 3379 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3380 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3381 } 3382 3383 // Capture references from GlobalVariable initializers, which are outside 3384 // of a function scope. 3385 for (const GlobalVariable &G : M.globals()) 3386 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3387 3388 for (const GlobalAlias &A : M.aliases()) { 3389 auto *Aliasee = A.getBaseObject(); 3390 if (!Aliasee->hasName()) 3391 // Nameless function don't have an entry in the summary, skip it. 3392 continue; 3393 auto AliasId = VE.getValueID(&A); 3394 auto AliaseeId = VE.getValueID(Aliasee); 3395 NameVals.push_back(AliasId); 3396 auto *Summary = Index->getGlobalValueSummary(A); 3397 AliasSummary *AS = cast<AliasSummary>(Summary); 3398 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3399 NameVals.push_back(AliaseeId); 3400 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3401 NameVals.clear(); 3402 } 3403 3404 Stream.ExitBlock(); 3405 } 3406 3407 /// Emit the combined summary section into the combined index file. 3408 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3409 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3410 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3411 3412 // Create value IDs for undefined references. 3413 forEachSummary([&](GVInfo I) { 3414 if (auto *VS = dyn_cast<GlobalVarSummary>(I.second)) { 3415 for (auto &RI : VS->refs()) 3416 assignValueId(RI.getGUID()); 3417 return; 3418 } 3419 3420 auto *FS = dyn_cast<FunctionSummary>(I.second); 3421 if (!FS) 3422 return; 3423 for (auto &RI : FS->refs()) 3424 assignValueId(RI.getGUID()); 3425 3426 for (auto &EI : FS->calls()) { 3427 GlobalValue::GUID GUID = EI.first.getGUID(); 3428 if (!hasValueId(GUID)) { 3429 // For SamplePGO, the indirect call targets for local functions will 3430 // have its original name annotated in profile. We try to find the 3431 // corresponding PGOFuncName as the GUID. 3432 GUID = Index.getGUIDFromOriginalID(GUID); 3433 if (GUID == 0 || !hasValueId(GUID)) 3434 continue; 3435 } 3436 assignValueId(GUID); 3437 } 3438 }); 3439 3440 for (const auto &GVI : valueIds()) { 3441 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3442 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3443 } 3444 3445 // Abbrev for FS_COMBINED. 3446 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3447 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3453 // numrefs x valueid, n x (valueid) 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3456 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3457 3458 // Abbrev for FS_COMBINED_PROFILE. 3459 Abbv = std::make_shared<BitCodeAbbrev>(); 3460 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3466 // numrefs x valueid, n x (valueid, hotness) 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3469 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3470 3471 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3472 Abbv = std::make_shared<BitCodeAbbrev>(); 3473 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3479 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3480 3481 // Abbrev for FS_COMBINED_ALIAS. 3482 Abbv = std::make_shared<BitCodeAbbrev>(); 3483 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3488 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3489 3490 // The aliases are emitted as a post-pass, and will point to the value 3491 // id of the aliasee. Save them in a vector for post-processing. 3492 SmallVector<AliasSummary *, 64> Aliases; 3493 3494 // Save the value id for each summary for alias emission. 3495 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3496 3497 SmallVector<uint64_t, 64> NameVals; 3498 3499 // For local linkage, we also emit the original name separately 3500 // immediately after the record. 3501 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3502 if (!GlobalValue::isLocalLinkage(S.linkage())) 3503 return; 3504 NameVals.push_back(S.getOriginalName()); 3505 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3506 NameVals.clear(); 3507 }; 3508 3509 forEachSummary([&](GVInfo I) { 3510 GlobalValueSummary *S = I.second; 3511 assert(S); 3512 3513 assert(hasValueId(I.first)); 3514 unsigned ValueId = getValueId(I.first); 3515 SummaryToValueIdMap[S] = ValueId; 3516 3517 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3518 // Will process aliases as a post-pass because the reader wants all 3519 // global to be loaded first. 3520 Aliases.push_back(AS); 3521 return; 3522 } 3523 3524 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3525 NameVals.push_back(ValueId); 3526 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3527 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3528 for (auto &RI : VS->refs()) { 3529 NameVals.push_back(getValueId(RI.getGUID())); 3530 } 3531 3532 // Emit the finished record. 3533 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3534 FSModRefsAbbrev); 3535 NameVals.clear(); 3536 MaybeEmitOriginalName(*S); 3537 return; 3538 } 3539 3540 auto *FS = cast<FunctionSummary>(S); 3541 writeFunctionTypeMetadataRecords(Stream, FS); 3542 3543 NameVals.push_back(ValueId); 3544 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3545 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3546 NameVals.push_back(FS->instCount()); 3547 NameVals.push_back(FS->refs().size()); 3548 3549 for (auto &RI : FS->refs()) { 3550 NameVals.push_back(getValueId(RI.getGUID())); 3551 } 3552 3553 bool HasProfileData = false; 3554 for (auto &EI : FS->calls()) { 3555 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3556 if (HasProfileData) 3557 break; 3558 } 3559 3560 for (auto &EI : FS->calls()) { 3561 // If this GUID doesn't have a value id, it doesn't have a function 3562 // summary and we don't need to record any calls to it. 3563 GlobalValue::GUID GUID = EI.first.getGUID(); 3564 if (!hasValueId(GUID)) { 3565 // For SamplePGO, the indirect call targets for local functions will 3566 // have its original name annotated in profile. We try to find the 3567 // corresponding PGOFuncName as the GUID. 3568 GUID = Index.getGUIDFromOriginalID(GUID); 3569 if (GUID == 0 || !hasValueId(GUID)) 3570 continue; 3571 } 3572 NameVals.push_back(getValueId(GUID)); 3573 if (HasProfileData) 3574 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3575 } 3576 3577 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3578 unsigned Code = 3579 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3580 3581 // Emit the finished record. 3582 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3583 NameVals.clear(); 3584 MaybeEmitOriginalName(*S); 3585 }); 3586 3587 for (auto *AS : Aliases) { 3588 auto AliasValueId = SummaryToValueIdMap[AS]; 3589 assert(AliasValueId); 3590 NameVals.push_back(AliasValueId); 3591 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3592 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3593 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3594 assert(AliaseeValueId); 3595 NameVals.push_back(AliaseeValueId); 3596 3597 // Emit the finished record. 3598 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3599 NameVals.clear(); 3600 MaybeEmitOriginalName(*AS); 3601 } 3602 3603 Stream.ExitBlock(); 3604 } 3605 3606 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3607 /// current llvm version, and a record for the epoch number. 3608 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3609 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3610 3611 // Write the "user readable" string identifying the bitcode producer 3612 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3613 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3616 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3617 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3618 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3619 3620 // Write the epoch version 3621 Abbv = std::make_shared<BitCodeAbbrev>(); 3622 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3624 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3625 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3626 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3627 Stream.ExitBlock(); 3628 } 3629 3630 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3631 // Emit the module's hash. 3632 // MODULE_CODE_HASH: [5*i32] 3633 if (GenerateHash) { 3634 SHA1 Hasher; 3635 uint32_t Vals[5]; 3636 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3637 Buffer.size() - BlockStartPos)); 3638 StringRef Hash = Hasher.result(); 3639 for (int Pos = 0; Pos < 20; Pos += 4) { 3640 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3641 } 3642 3643 // Emit the finished record. 3644 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3645 3646 if (ModHash) 3647 // Save the written hash value. 3648 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3649 } else if (ModHash) 3650 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3651 } 3652 3653 void ModuleBitcodeWriter::write() { 3654 writeIdentificationBlock(Stream); 3655 3656 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3657 size_t BlockStartPos = Buffer.size(); 3658 3659 writeModuleVersion(); 3660 3661 // Emit blockinfo, which defines the standard abbreviations etc. 3662 writeBlockInfo(); 3663 3664 // Emit information about attribute groups. 3665 writeAttributeGroupTable(); 3666 3667 // Emit information about parameter attributes. 3668 writeAttributeTable(); 3669 3670 // Emit information describing all of the types in the module. 3671 writeTypeTable(); 3672 3673 writeComdats(); 3674 3675 // Emit top-level description of module, including target triple, inline asm, 3676 // descriptors for global variables, and function prototype info. 3677 writeModuleInfo(); 3678 3679 // Emit constants. 3680 writeModuleConstants(); 3681 3682 // Emit metadata kind names. 3683 writeModuleMetadataKinds(); 3684 3685 // Emit metadata. 3686 writeModuleMetadata(); 3687 3688 // Emit module-level use-lists. 3689 if (VE.shouldPreserveUseListOrder()) 3690 writeUseListBlock(nullptr); 3691 3692 writeOperandBundleTags(); 3693 3694 // Emit function bodies. 3695 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3696 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3697 if (!F->isDeclaration()) 3698 writeFunction(*F, FunctionToBitcodeIndex); 3699 3700 // Need to write after the above call to WriteFunction which populates 3701 // the summary information in the index. 3702 if (Index) 3703 writePerModuleGlobalValueSummary(); 3704 3705 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3706 3707 writeModuleHash(BlockStartPos); 3708 3709 Stream.ExitBlock(); 3710 } 3711 3712 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3713 uint32_t &Position) { 3714 support::endian::write32le(&Buffer[Position], Value); 3715 Position += 4; 3716 } 3717 3718 /// If generating a bc file on darwin, we have to emit a 3719 /// header and trailer to make it compatible with the system archiver. To do 3720 /// this we emit the following header, and then emit a trailer that pads the 3721 /// file out to be a multiple of 16 bytes. 3722 /// 3723 /// struct bc_header { 3724 /// uint32_t Magic; // 0x0B17C0DE 3725 /// uint32_t Version; // Version, currently always 0. 3726 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3727 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3728 /// uint32_t CPUType; // CPU specifier. 3729 /// ... potentially more later ... 3730 /// }; 3731 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3732 const Triple &TT) { 3733 unsigned CPUType = ~0U; 3734 3735 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3736 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3737 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3738 // specific constants here because they are implicitly part of the Darwin ABI. 3739 enum { 3740 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3741 DARWIN_CPU_TYPE_X86 = 7, 3742 DARWIN_CPU_TYPE_ARM = 12, 3743 DARWIN_CPU_TYPE_POWERPC = 18 3744 }; 3745 3746 Triple::ArchType Arch = TT.getArch(); 3747 if (Arch == Triple::x86_64) 3748 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3749 else if (Arch == Triple::x86) 3750 CPUType = DARWIN_CPU_TYPE_X86; 3751 else if (Arch == Triple::ppc) 3752 CPUType = DARWIN_CPU_TYPE_POWERPC; 3753 else if (Arch == Triple::ppc64) 3754 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3755 else if (Arch == Triple::arm || Arch == Triple::thumb) 3756 CPUType = DARWIN_CPU_TYPE_ARM; 3757 3758 // Traditional Bitcode starts after header. 3759 assert(Buffer.size() >= BWH_HeaderSize && 3760 "Expected header size to be reserved"); 3761 unsigned BCOffset = BWH_HeaderSize; 3762 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3763 3764 // Write the magic and version. 3765 unsigned Position = 0; 3766 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3767 writeInt32ToBuffer(0, Buffer, Position); // Version. 3768 writeInt32ToBuffer(BCOffset, Buffer, Position); 3769 writeInt32ToBuffer(BCSize, Buffer, Position); 3770 writeInt32ToBuffer(CPUType, Buffer, Position); 3771 3772 // If the file is not a multiple of 16 bytes, insert dummy padding. 3773 while (Buffer.size() & 15) 3774 Buffer.push_back(0); 3775 } 3776 3777 /// Helper to write the header common to all bitcode files. 3778 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3779 // Emit the file header. 3780 Stream.Emit((unsigned)'B', 8); 3781 Stream.Emit((unsigned)'C', 8); 3782 Stream.Emit(0x0, 4); 3783 Stream.Emit(0xC, 4); 3784 Stream.Emit(0xE, 4); 3785 Stream.Emit(0xD, 4); 3786 } 3787 3788 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3789 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3790 writeBitcodeHeader(*Stream); 3791 } 3792 3793 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3794 3795 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3796 Stream->EnterSubblock(Block, 3); 3797 3798 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3799 Abbv->Add(BitCodeAbbrevOp(Record)); 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3801 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3802 3803 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3804 3805 Stream->ExitBlock(); 3806 } 3807 3808 void BitcodeWriter::writeStrtab() { 3809 assert(!WroteStrtab); 3810 3811 std::vector<char> Strtab; 3812 StrtabBuilder.finalizeInOrder(); 3813 Strtab.resize(StrtabBuilder.getSize()); 3814 StrtabBuilder.write((uint8_t *)Strtab.data()); 3815 3816 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3817 {Strtab.data(), Strtab.size()}); 3818 3819 WroteStrtab = true; 3820 } 3821 3822 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3823 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3824 WroteStrtab = true; 3825 } 3826 3827 void BitcodeWriter::writeModule(const Module *M, 3828 bool ShouldPreserveUseListOrder, 3829 const ModuleSummaryIndex *Index, 3830 bool GenerateHash, ModuleHash *ModHash) { 3831 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3832 ShouldPreserveUseListOrder, Index, 3833 GenerateHash, ModHash); 3834 ModuleWriter.write(); 3835 } 3836 3837 /// WriteBitcodeToFile - Write the specified module to the specified output 3838 /// stream. 3839 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3840 bool ShouldPreserveUseListOrder, 3841 const ModuleSummaryIndex *Index, 3842 bool GenerateHash, ModuleHash *ModHash) { 3843 SmallVector<char, 0> Buffer; 3844 Buffer.reserve(256*1024); 3845 3846 // If this is darwin or another generic macho target, reserve space for the 3847 // header. 3848 Triple TT(M->getTargetTriple()); 3849 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3850 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3851 3852 BitcodeWriter Writer(Buffer); 3853 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3854 ModHash); 3855 Writer.writeStrtab(); 3856 3857 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3858 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3859 3860 // Write the generated bitstream to "Out". 3861 Out.write((char*)&Buffer.front(), Buffer.size()); 3862 } 3863 3864 void IndexBitcodeWriter::write() { 3865 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3866 3867 writeModuleVersion(); 3868 3869 // Write the module paths in the combined index. 3870 writeModStrings(); 3871 3872 // Write the summary combined index records. 3873 writeCombinedGlobalValueSummary(); 3874 3875 Stream.ExitBlock(); 3876 } 3877 3878 // Write the specified module summary index to the given raw output stream, 3879 // where it will be written in a new bitcode block. This is used when 3880 // writing the combined index file for ThinLTO. When writing a subset of the 3881 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3882 void llvm::WriteIndexToFile( 3883 const ModuleSummaryIndex &Index, raw_ostream &Out, 3884 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3885 SmallVector<char, 0> Buffer; 3886 Buffer.reserve(256 * 1024); 3887 3888 BitstreamWriter Stream(Buffer); 3889 writeBitcodeHeader(Stream); 3890 3891 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3892 IndexWriter.write(); 3893 3894 Out.write((char *)&Buffer.front(), Buffer.size()); 3895 } 3896