1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitCodes.h" 28 #include "llvm/Bitcode/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev); 218 219 void assignValueId(GlobalValue::GUID ValGUID) { 220 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 221 } 222 223 unsigned getValueId(GlobalValue::GUID ValGUID) { 224 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 225 // Expect that any GUID value had a value Id assigned by an 226 // earlier call to assignValueId. 227 assert(VMI != GUIDToValueIdMap.end() && 228 "GUID does not have assigned value Id"); 229 return VMI->second; 230 } 231 232 // Helper to get the valueId for the type of value recorded in VI. 233 unsigned getValueId(ValueInfo VI) { 234 if (!VI.haveGVs() || !VI.getValue()) 235 return getValueId(VI.getGUID()); 236 return VE.getValueID(VI.getValue()); 237 } 238 239 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 240 }; 241 242 /// Class to manage the bitcode writing for a module. 243 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 244 /// Pointer to the buffer allocated by caller for bitcode writing. 245 const SmallVectorImpl<char> &Buffer; 246 247 /// True if a module hash record should be written. 248 bool GenerateHash; 249 250 /// If non-null, when GenerateHash is true, the resulting hash is written 251 /// into ModHash. 252 ModuleHash *ModHash; 253 254 SHA1 Hasher; 255 256 /// The start bit of the identification block. 257 uint64_t BitcodeStartBit; 258 259 public: 260 /// Constructs a ModuleBitcodeWriter object for the given Module, 261 /// writing to the provided \p Buffer. 262 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 263 StringTableBuilder &StrtabBuilder, 264 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 265 const ModuleSummaryIndex *Index, bool GenerateHash, 266 ModuleHash *ModHash = nullptr) 267 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 268 ShouldPreserveUseListOrder, Index), 269 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 270 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 271 272 /// Emit the current module to the bitstream. 273 void write(); 274 275 private: 276 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 277 278 size_t addToStrtab(StringRef Str); 279 280 void writeAttributeGroupTable(); 281 void writeAttributeTable(); 282 void writeTypeTable(); 283 void writeComdats(); 284 void writeValueSymbolTableForwardDecl(); 285 void writeModuleInfo(); 286 void writeValueAsMetadata(const ValueAsMetadata *MD, 287 SmallVectorImpl<uint64_t> &Record); 288 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 289 unsigned Abbrev); 290 unsigned createDILocationAbbrev(); 291 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 292 unsigned &Abbrev); 293 unsigned createGenericDINodeAbbrev(); 294 void writeGenericDINode(const GenericDINode *N, 295 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 296 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned Abbrev); 298 void writeDIEnumerator(const DIEnumerator *N, 299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 300 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 301 unsigned Abbrev); 302 void writeDIDerivedType(const DIDerivedType *N, 303 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 304 void writeDICompositeType(const DICompositeType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDISubroutineType(const DISubroutineType *N, 307 SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDICompileUnit(const DICompileUnit *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDISubprogram(const DISubprogram *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDILexicalBlock(const DILexicalBlock *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDICommonBlock(const DICommonBlock *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 331 SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIGlobalVariable(const DIGlobalVariable *N, 337 SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDILocalVariable(const DILocalVariable *N, 340 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 341 void writeDILabel(const DILabel *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDIExpression(const DIExpression *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIObjCProperty(const DIObjCProperty *N, 349 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 350 void writeDIImportedEntity(const DIImportedEntity *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 unsigned createNamedMetadataAbbrev(); 354 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 355 unsigned createMetadataStringsAbbrev(); 356 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 357 SmallVectorImpl<uint64_t> &Record); 358 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 359 SmallVectorImpl<uint64_t> &Record, 360 std::vector<unsigned> *MDAbbrevs = nullptr, 361 std::vector<uint64_t> *IndexPos = nullptr); 362 void writeModuleMetadata(); 363 void writeFunctionMetadata(const Function &F); 364 void writeFunctionMetadataAttachment(const Function &F); 365 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 366 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 367 const GlobalObject &GO); 368 void writeModuleMetadataKinds(); 369 void writeOperandBundleTags(); 370 void writeSyncScopeNames(); 371 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 372 void writeModuleConstants(); 373 bool pushValueAndType(const Value *V, unsigned InstID, 374 SmallVectorImpl<unsigned> &Vals); 375 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 376 void pushValue(const Value *V, unsigned InstID, 377 SmallVectorImpl<unsigned> &Vals); 378 void pushValueSigned(const Value *V, unsigned InstID, 379 SmallVectorImpl<uint64_t> &Vals); 380 void writeInstruction(const Instruction &I, unsigned InstID, 381 SmallVectorImpl<unsigned> &Vals); 382 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 383 void writeGlobalValueSymbolTable( 384 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 385 void writeUseList(UseListOrder &&Order); 386 void writeUseListBlock(const Function *F); 387 void 388 writeFunction(const Function &F, 389 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 390 void writeBlockInfo(); 391 void writeModuleHash(size_t BlockStartPos); 392 393 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 394 return unsigned(SSID); 395 } 396 }; 397 398 /// Class to manage the bitcode writing for a combined index. 399 class IndexBitcodeWriter : public BitcodeWriterBase { 400 /// The combined index to write to bitcode. 401 const ModuleSummaryIndex &Index; 402 403 /// When writing a subset of the index for distributed backends, client 404 /// provides a map of modules to the corresponding GUIDs/summaries to write. 405 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 406 407 /// Map that holds the correspondence between the GUID used in the combined 408 /// index and a value id generated by this class to use in references. 409 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 410 411 /// Tracks the last value id recorded in the GUIDToValueMap. 412 unsigned GlobalValueId = 0; 413 414 public: 415 /// Constructs a IndexBitcodeWriter object for the given combined index, 416 /// writing to the provided \p Buffer. When writing a subset of the index 417 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 418 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 419 const ModuleSummaryIndex &Index, 420 const std::map<std::string, GVSummaryMapTy> 421 *ModuleToSummariesForIndex = nullptr) 422 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 423 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 424 // Assign unique value ids to all summaries to be written, for use 425 // in writing out the call graph edges. Save the mapping from GUID 426 // to the new global value id to use when writing those edges, which 427 // are currently saved in the index in terms of GUID. 428 forEachSummary([&](GVInfo I, bool) { 429 GUIDToValueIdMap[I.first] = ++GlobalValueId; 430 }); 431 } 432 433 /// The below iterator returns the GUID and associated summary. 434 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 435 436 /// Calls the callback for each value GUID and summary to be written to 437 /// bitcode. This hides the details of whether they are being pulled from the 438 /// entire index or just those in a provided ModuleToSummariesForIndex map. 439 template<typename Functor> 440 void forEachSummary(Functor Callback) { 441 if (ModuleToSummariesForIndex) { 442 for (auto &M : *ModuleToSummariesForIndex) 443 for (auto &Summary : M.second) { 444 Callback(Summary, false); 445 // Ensure aliasee is handled, e.g. for assigning a valueId, 446 // even if we are not importing the aliasee directly (the 447 // imported alias will contain a copy of aliasee). 448 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 449 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 450 } 451 } else { 452 for (auto &Summaries : Index) 453 for (auto &Summary : Summaries.second.SummaryList) 454 Callback({Summaries.first, Summary.get()}, false); 455 } 456 } 457 458 /// Calls the callback for each entry in the modulePaths StringMap that 459 /// should be written to the module path string table. This hides the details 460 /// of whether they are being pulled from the entire index or just those in a 461 /// provided ModuleToSummariesForIndex map. 462 template <typename Functor> void forEachModule(Functor Callback) { 463 if (ModuleToSummariesForIndex) { 464 for (const auto &M : *ModuleToSummariesForIndex) { 465 const auto &MPI = Index.modulePaths().find(M.first); 466 if (MPI == Index.modulePaths().end()) { 467 // This should only happen if the bitcode file was empty, in which 468 // case we shouldn't be importing (the ModuleToSummariesForIndex 469 // would only include the module we are writing and index for). 470 assert(ModuleToSummariesForIndex->size() == 1); 471 continue; 472 } 473 Callback(*MPI); 474 } 475 } else { 476 for (const auto &MPSE : Index.modulePaths()) 477 Callback(MPSE); 478 } 479 } 480 481 /// Main entry point for writing a combined index to bitcode. 482 void write(); 483 484 private: 485 void writeModStrings(); 486 void writeCombinedGlobalValueSummary(); 487 488 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 489 auto VMI = GUIDToValueIdMap.find(ValGUID); 490 if (VMI == GUIDToValueIdMap.end()) 491 return None; 492 return VMI->second; 493 } 494 495 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 496 }; 497 498 } // end anonymous namespace 499 500 static unsigned getEncodedCastOpcode(unsigned Opcode) { 501 switch (Opcode) { 502 default: llvm_unreachable("Unknown cast instruction!"); 503 case Instruction::Trunc : return bitc::CAST_TRUNC; 504 case Instruction::ZExt : return bitc::CAST_ZEXT; 505 case Instruction::SExt : return bitc::CAST_SEXT; 506 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 507 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 508 case Instruction::UIToFP : return bitc::CAST_UITOFP; 509 case Instruction::SIToFP : return bitc::CAST_SITOFP; 510 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 511 case Instruction::FPExt : return bitc::CAST_FPEXT; 512 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 513 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 514 case Instruction::BitCast : return bitc::CAST_BITCAST; 515 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 516 } 517 } 518 519 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 520 switch (Opcode) { 521 default: llvm_unreachable("Unknown binary instruction!"); 522 case Instruction::FNeg: return bitc::UNOP_NEG; 523 } 524 } 525 526 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 527 switch (Opcode) { 528 default: llvm_unreachable("Unknown binary instruction!"); 529 case Instruction::Add: 530 case Instruction::FAdd: return bitc::BINOP_ADD; 531 case Instruction::Sub: 532 case Instruction::FSub: return bitc::BINOP_SUB; 533 case Instruction::Mul: 534 case Instruction::FMul: return bitc::BINOP_MUL; 535 case Instruction::UDiv: return bitc::BINOP_UDIV; 536 case Instruction::FDiv: 537 case Instruction::SDiv: return bitc::BINOP_SDIV; 538 case Instruction::URem: return bitc::BINOP_UREM; 539 case Instruction::FRem: 540 case Instruction::SRem: return bitc::BINOP_SREM; 541 case Instruction::Shl: return bitc::BINOP_SHL; 542 case Instruction::LShr: return bitc::BINOP_LSHR; 543 case Instruction::AShr: return bitc::BINOP_ASHR; 544 case Instruction::And: return bitc::BINOP_AND; 545 case Instruction::Or: return bitc::BINOP_OR; 546 case Instruction::Xor: return bitc::BINOP_XOR; 547 } 548 } 549 550 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 551 switch (Op) { 552 default: llvm_unreachable("Unknown RMW operation!"); 553 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 554 case AtomicRMWInst::Add: return bitc::RMW_ADD; 555 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 556 case AtomicRMWInst::And: return bitc::RMW_AND; 557 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 558 case AtomicRMWInst::Or: return bitc::RMW_OR; 559 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 560 case AtomicRMWInst::Max: return bitc::RMW_MAX; 561 case AtomicRMWInst::Min: return bitc::RMW_MIN; 562 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 563 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 564 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 565 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 566 } 567 } 568 569 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 570 switch (Ordering) { 571 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 572 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 573 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 574 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 575 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 576 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 577 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 578 } 579 llvm_unreachable("Invalid ordering"); 580 } 581 582 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 583 StringRef Str, unsigned AbbrevToUse) { 584 SmallVector<unsigned, 64> Vals; 585 586 // Code: [strchar x N] 587 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 588 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 589 AbbrevToUse = 0; 590 Vals.push_back(Str[i]); 591 } 592 593 // Emit the finished record. 594 Stream.EmitRecord(Code, Vals, AbbrevToUse); 595 } 596 597 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 598 switch (Kind) { 599 case Attribute::Alignment: 600 return bitc::ATTR_KIND_ALIGNMENT; 601 case Attribute::AllocSize: 602 return bitc::ATTR_KIND_ALLOC_SIZE; 603 case Attribute::AlwaysInline: 604 return bitc::ATTR_KIND_ALWAYS_INLINE; 605 case Attribute::ArgMemOnly: 606 return bitc::ATTR_KIND_ARGMEMONLY; 607 case Attribute::Builtin: 608 return bitc::ATTR_KIND_BUILTIN; 609 case Attribute::ByVal: 610 return bitc::ATTR_KIND_BY_VAL; 611 case Attribute::Convergent: 612 return bitc::ATTR_KIND_CONVERGENT; 613 case Attribute::InAlloca: 614 return bitc::ATTR_KIND_IN_ALLOCA; 615 case Attribute::Cold: 616 return bitc::ATTR_KIND_COLD; 617 case Attribute::InaccessibleMemOnly: 618 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 619 case Attribute::InaccessibleMemOrArgMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 621 case Attribute::InlineHint: 622 return bitc::ATTR_KIND_INLINE_HINT; 623 case Attribute::InReg: 624 return bitc::ATTR_KIND_IN_REG; 625 case Attribute::JumpTable: 626 return bitc::ATTR_KIND_JUMP_TABLE; 627 case Attribute::MinSize: 628 return bitc::ATTR_KIND_MIN_SIZE; 629 case Attribute::Naked: 630 return bitc::ATTR_KIND_NAKED; 631 case Attribute::Nest: 632 return bitc::ATTR_KIND_NEST; 633 case Attribute::NoAlias: 634 return bitc::ATTR_KIND_NO_ALIAS; 635 case Attribute::NoBuiltin: 636 return bitc::ATTR_KIND_NO_BUILTIN; 637 case Attribute::NoCapture: 638 return bitc::ATTR_KIND_NO_CAPTURE; 639 case Attribute::NoDuplicate: 640 return bitc::ATTR_KIND_NO_DUPLICATE; 641 case Attribute::NoImplicitFloat: 642 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 643 case Attribute::NoInline: 644 return bitc::ATTR_KIND_NO_INLINE; 645 case Attribute::NoRecurse: 646 return bitc::ATTR_KIND_NO_RECURSE; 647 case Attribute::NonLazyBind: 648 return bitc::ATTR_KIND_NON_LAZY_BIND; 649 case Attribute::NonNull: 650 return bitc::ATTR_KIND_NON_NULL; 651 case Attribute::Dereferenceable: 652 return bitc::ATTR_KIND_DEREFERENCEABLE; 653 case Attribute::DereferenceableOrNull: 654 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 655 case Attribute::NoRedZone: 656 return bitc::ATTR_KIND_NO_RED_ZONE; 657 case Attribute::NoReturn: 658 return bitc::ATTR_KIND_NO_RETURN; 659 case Attribute::NoCfCheck: 660 return bitc::ATTR_KIND_NOCF_CHECK; 661 case Attribute::NoUnwind: 662 return bitc::ATTR_KIND_NO_UNWIND; 663 case Attribute::OptForFuzzing: 664 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 665 case Attribute::OptimizeForSize: 666 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 667 case Attribute::OptimizeNone: 668 return bitc::ATTR_KIND_OPTIMIZE_NONE; 669 case Attribute::ReadNone: 670 return bitc::ATTR_KIND_READ_NONE; 671 case Attribute::ReadOnly: 672 return bitc::ATTR_KIND_READ_ONLY; 673 case Attribute::Returned: 674 return bitc::ATTR_KIND_RETURNED; 675 case Attribute::ReturnsTwice: 676 return bitc::ATTR_KIND_RETURNS_TWICE; 677 case Attribute::SExt: 678 return bitc::ATTR_KIND_S_EXT; 679 case Attribute::Speculatable: 680 return bitc::ATTR_KIND_SPECULATABLE; 681 case Attribute::StackAlignment: 682 return bitc::ATTR_KIND_STACK_ALIGNMENT; 683 case Attribute::StackProtect: 684 return bitc::ATTR_KIND_STACK_PROTECT; 685 case Attribute::StackProtectReq: 686 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 687 case Attribute::StackProtectStrong: 688 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 689 case Attribute::SafeStack: 690 return bitc::ATTR_KIND_SAFESTACK; 691 case Attribute::ShadowCallStack: 692 return bitc::ATTR_KIND_SHADOWCALLSTACK; 693 case Attribute::StrictFP: 694 return bitc::ATTR_KIND_STRICT_FP; 695 case Attribute::StructRet: 696 return bitc::ATTR_KIND_STRUCT_RET; 697 case Attribute::SanitizeAddress: 698 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 699 case Attribute::SanitizeHWAddress: 700 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 701 case Attribute::SanitizeThread: 702 return bitc::ATTR_KIND_SANITIZE_THREAD; 703 case Attribute::SanitizeMemory: 704 return bitc::ATTR_KIND_SANITIZE_MEMORY; 705 case Attribute::SpeculativeLoadHardening: 706 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 707 case Attribute::SwiftError: 708 return bitc::ATTR_KIND_SWIFT_ERROR; 709 case Attribute::SwiftSelf: 710 return bitc::ATTR_KIND_SWIFT_SELF; 711 case Attribute::UWTable: 712 return bitc::ATTR_KIND_UW_TABLE; 713 case Attribute::WriteOnly: 714 return bitc::ATTR_KIND_WRITEONLY; 715 case Attribute::ZExt: 716 return bitc::ATTR_KIND_Z_EXT; 717 case Attribute::ImmArg: 718 return bitc::ATTR_KIND_IMMARG; 719 case Attribute::EndAttrKinds: 720 llvm_unreachable("Can not encode end-attribute kinds marker."); 721 case Attribute::None: 722 llvm_unreachable("Can not encode none-attribute."); 723 } 724 725 llvm_unreachable("Trying to encode unknown attribute"); 726 } 727 728 void ModuleBitcodeWriter::writeAttributeGroupTable() { 729 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 730 VE.getAttributeGroups(); 731 if (AttrGrps.empty()) return; 732 733 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 734 735 SmallVector<uint64_t, 64> Record; 736 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 737 unsigned AttrListIndex = Pair.first; 738 AttributeSet AS = Pair.second; 739 Record.push_back(VE.getAttributeGroupID(Pair)); 740 Record.push_back(AttrListIndex); 741 742 for (Attribute Attr : AS) { 743 if (Attr.isEnumAttribute()) { 744 Record.push_back(0); 745 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 746 } else if (Attr.isIntAttribute()) { 747 Record.push_back(1); 748 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 749 Record.push_back(Attr.getValueAsInt()); 750 } else { 751 StringRef Kind = Attr.getKindAsString(); 752 StringRef Val = Attr.getValueAsString(); 753 754 Record.push_back(Val.empty() ? 3 : 4); 755 Record.append(Kind.begin(), Kind.end()); 756 Record.push_back(0); 757 if (!Val.empty()) { 758 Record.append(Val.begin(), Val.end()); 759 Record.push_back(0); 760 } 761 } 762 } 763 764 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 765 Record.clear(); 766 } 767 768 Stream.ExitBlock(); 769 } 770 771 void ModuleBitcodeWriter::writeAttributeTable() { 772 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 773 if (Attrs.empty()) return; 774 775 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 776 777 SmallVector<uint64_t, 64> Record; 778 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 779 AttributeList AL = Attrs[i]; 780 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 781 AttributeSet AS = AL.getAttributes(i); 782 if (AS.hasAttributes()) 783 Record.push_back(VE.getAttributeGroupID({i, AS})); 784 } 785 786 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 787 Record.clear(); 788 } 789 790 Stream.ExitBlock(); 791 } 792 793 /// WriteTypeTable - Write out the type table for a module. 794 void ModuleBitcodeWriter::writeTypeTable() { 795 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 796 797 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 798 SmallVector<uint64_t, 64> TypeVals; 799 800 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 801 802 // Abbrev for TYPE_CODE_POINTER. 803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 804 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 806 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 807 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 808 809 // Abbrev for TYPE_CODE_FUNCTION. 810 Abbv = std::make_shared<BitCodeAbbrev>(); 811 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 815 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 816 817 // Abbrev for TYPE_CODE_STRUCT_ANON. 818 Abbv = std::make_shared<BitCodeAbbrev>(); 819 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 823 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 824 825 // Abbrev for TYPE_CODE_STRUCT_NAME. 826 Abbv = std::make_shared<BitCodeAbbrev>(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 830 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 831 832 // Abbrev for TYPE_CODE_STRUCT_NAMED. 833 Abbv = std::make_shared<BitCodeAbbrev>(); 834 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 838 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 839 840 // Abbrev for TYPE_CODE_ARRAY. 841 Abbv = std::make_shared<BitCodeAbbrev>(); 842 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 845 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 846 847 // Emit an entry count so the reader can reserve space. 848 TypeVals.push_back(TypeList.size()); 849 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 850 TypeVals.clear(); 851 852 // Loop over all of the types, emitting each in turn. 853 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 854 Type *T = TypeList[i]; 855 int AbbrevToUse = 0; 856 unsigned Code = 0; 857 858 switch (T->getTypeID()) { 859 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 860 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 861 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 862 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 863 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 864 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 865 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 866 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 867 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 868 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 869 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 870 case Type::IntegerTyID: 871 // INTEGER: [width] 872 Code = bitc::TYPE_CODE_INTEGER; 873 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 874 break; 875 case Type::PointerTyID: { 876 PointerType *PTy = cast<PointerType>(T); 877 // POINTER: [pointee type, address space] 878 Code = bitc::TYPE_CODE_POINTER; 879 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 880 unsigned AddressSpace = PTy->getAddressSpace(); 881 TypeVals.push_back(AddressSpace); 882 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 883 break; 884 } 885 case Type::FunctionTyID: { 886 FunctionType *FT = cast<FunctionType>(T); 887 // FUNCTION: [isvararg, retty, paramty x N] 888 Code = bitc::TYPE_CODE_FUNCTION; 889 TypeVals.push_back(FT->isVarArg()); 890 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 891 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 892 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 893 AbbrevToUse = FunctionAbbrev; 894 break; 895 } 896 case Type::StructTyID: { 897 StructType *ST = cast<StructType>(T); 898 // STRUCT: [ispacked, eltty x N] 899 TypeVals.push_back(ST->isPacked()); 900 // Output all of the element types. 901 for (StructType::element_iterator I = ST->element_begin(), 902 E = ST->element_end(); I != E; ++I) 903 TypeVals.push_back(VE.getTypeID(*I)); 904 905 if (ST->isLiteral()) { 906 Code = bitc::TYPE_CODE_STRUCT_ANON; 907 AbbrevToUse = StructAnonAbbrev; 908 } else { 909 if (ST->isOpaque()) { 910 Code = bitc::TYPE_CODE_OPAQUE; 911 } else { 912 Code = bitc::TYPE_CODE_STRUCT_NAMED; 913 AbbrevToUse = StructNamedAbbrev; 914 } 915 916 // Emit the name if it is present. 917 if (!ST->getName().empty()) 918 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 919 StructNameAbbrev); 920 } 921 break; 922 } 923 case Type::ArrayTyID: { 924 ArrayType *AT = cast<ArrayType>(T); 925 // ARRAY: [numelts, eltty] 926 Code = bitc::TYPE_CODE_ARRAY; 927 TypeVals.push_back(AT->getNumElements()); 928 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 929 AbbrevToUse = ArrayAbbrev; 930 break; 931 } 932 case Type::VectorTyID: { 933 VectorType *VT = cast<VectorType>(T); 934 // VECTOR [numelts, eltty] or 935 // [numelts, eltty, scalable] 936 Code = bitc::TYPE_CODE_VECTOR; 937 TypeVals.push_back(VT->getNumElements()); 938 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 939 if (VT->isScalable()) 940 TypeVals.push_back(VT->isScalable()); 941 break; 942 } 943 } 944 945 // Emit the finished record. 946 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 947 TypeVals.clear(); 948 } 949 950 Stream.ExitBlock(); 951 } 952 953 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 954 switch (Linkage) { 955 case GlobalValue::ExternalLinkage: 956 return 0; 957 case GlobalValue::WeakAnyLinkage: 958 return 16; 959 case GlobalValue::AppendingLinkage: 960 return 2; 961 case GlobalValue::InternalLinkage: 962 return 3; 963 case GlobalValue::LinkOnceAnyLinkage: 964 return 18; 965 case GlobalValue::ExternalWeakLinkage: 966 return 7; 967 case GlobalValue::CommonLinkage: 968 return 8; 969 case GlobalValue::PrivateLinkage: 970 return 9; 971 case GlobalValue::WeakODRLinkage: 972 return 17; 973 case GlobalValue::LinkOnceODRLinkage: 974 return 19; 975 case GlobalValue::AvailableExternallyLinkage: 976 return 12; 977 } 978 llvm_unreachable("Invalid linkage"); 979 } 980 981 static unsigned getEncodedLinkage(const GlobalValue &GV) { 982 return getEncodedLinkage(GV.getLinkage()); 983 } 984 985 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 986 uint64_t RawFlags = 0; 987 RawFlags |= Flags.ReadNone; 988 RawFlags |= (Flags.ReadOnly << 1); 989 RawFlags |= (Flags.NoRecurse << 2); 990 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 991 RawFlags |= (Flags.NoInline << 4); 992 return RawFlags; 993 } 994 995 // Decode the flags for GlobalValue in the summary 996 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 997 uint64_t RawFlags = 0; 998 999 RawFlags |= Flags.NotEligibleToImport; // bool 1000 RawFlags |= (Flags.Live << 1); 1001 RawFlags |= (Flags.DSOLocal << 2); 1002 RawFlags |= (Flags.CanAutoHide << 3); 1003 1004 // Linkage don't need to be remapped at that time for the summary. Any future 1005 // change to the getEncodedLinkage() function will need to be taken into 1006 // account here as well. 1007 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1008 1009 return RawFlags; 1010 } 1011 1012 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1013 uint64_t RawFlags = Flags.ReadOnly; 1014 return RawFlags; 1015 } 1016 1017 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1018 switch (GV.getVisibility()) { 1019 case GlobalValue::DefaultVisibility: return 0; 1020 case GlobalValue::HiddenVisibility: return 1; 1021 case GlobalValue::ProtectedVisibility: return 2; 1022 } 1023 llvm_unreachable("Invalid visibility"); 1024 } 1025 1026 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1027 switch (GV.getDLLStorageClass()) { 1028 case GlobalValue::DefaultStorageClass: return 0; 1029 case GlobalValue::DLLImportStorageClass: return 1; 1030 case GlobalValue::DLLExportStorageClass: return 2; 1031 } 1032 llvm_unreachable("Invalid DLL storage class"); 1033 } 1034 1035 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1036 switch (GV.getThreadLocalMode()) { 1037 case GlobalVariable::NotThreadLocal: return 0; 1038 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1039 case GlobalVariable::LocalDynamicTLSModel: return 2; 1040 case GlobalVariable::InitialExecTLSModel: return 3; 1041 case GlobalVariable::LocalExecTLSModel: return 4; 1042 } 1043 llvm_unreachable("Invalid TLS model"); 1044 } 1045 1046 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1047 switch (C.getSelectionKind()) { 1048 case Comdat::Any: 1049 return bitc::COMDAT_SELECTION_KIND_ANY; 1050 case Comdat::ExactMatch: 1051 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1052 case Comdat::Largest: 1053 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1054 case Comdat::NoDuplicates: 1055 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1056 case Comdat::SameSize: 1057 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1058 } 1059 llvm_unreachable("Invalid selection kind"); 1060 } 1061 1062 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1063 switch (GV.getUnnamedAddr()) { 1064 case GlobalValue::UnnamedAddr::None: return 0; 1065 case GlobalValue::UnnamedAddr::Local: return 2; 1066 case GlobalValue::UnnamedAddr::Global: return 1; 1067 } 1068 llvm_unreachable("Invalid unnamed_addr"); 1069 } 1070 1071 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1072 if (GenerateHash) 1073 Hasher.update(Str); 1074 return StrtabBuilder.add(Str); 1075 } 1076 1077 void ModuleBitcodeWriter::writeComdats() { 1078 SmallVector<unsigned, 64> Vals; 1079 for (const Comdat *C : VE.getComdats()) { 1080 // COMDAT: [strtab offset, strtab size, selection_kind] 1081 Vals.push_back(addToStrtab(C->getName())); 1082 Vals.push_back(C->getName().size()); 1083 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1084 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1085 Vals.clear(); 1086 } 1087 } 1088 1089 /// Write a record that will eventually hold the word offset of the 1090 /// module-level VST. For now the offset is 0, which will be backpatched 1091 /// after the real VST is written. Saves the bit offset to backpatch. 1092 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1093 // Write a placeholder value in for the offset of the real VST, 1094 // which is written after the function blocks so that it can include 1095 // the offset of each function. The placeholder offset will be 1096 // updated when the real VST is written. 1097 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1098 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1099 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1100 // hold the real VST offset. Must use fixed instead of VBR as we don't 1101 // know how many VBR chunks to reserve ahead of time. 1102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1103 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1104 1105 // Emit the placeholder 1106 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1107 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1108 1109 // Compute and save the bit offset to the placeholder, which will be 1110 // patched when the real VST is written. We can simply subtract the 32-bit 1111 // fixed size from the current bit number to get the location to backpatch. 1112 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1113 } 1114 1115 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1116 1117 /// Determine the encoding to use for the given string name and length. 1118 static StringEncoding getStringEncoding(StringRef Str) { 1119 bool isChar6 = true; 1120 for (char C : Str) { 1121 if (isChar6) 1122 isChar6 = BitCodeAbbrevOp::isChar6(C); 1123 if ((unsigned char)C & 128) 1124 // don't bother scanning the rest. 1125 return SE_Fixed8; 1126 } 1127 if (isChar6) 1128 return SE_Char6; 1129 return SE_Fixed7; 1130 } 1131 1132 /// Emit top-level description of module, including target triple, inline asm, 1133 /// descriptors for global variables, and function prototype info. 1134 /// Returns the bit offset to backpatch with the location of the real VST. 1135 void ModuleBitcodeWriter::writeModuleInfo() { 1136 // Emit various pieces of data attached to a module. 1137 if (!M.getTargetTriple().empty()) 1138 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1139 0 /*TODO*/); 1140 const std::string &DL = M.getDataLayoutStr(); 1141 if (!DL.empty()) 1142 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1143 if (!M.getModuleInlineAsm().empty()) 1144 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1145 0 /*TODO*/); 1146 1147 // Emit information about sections and GC, computing how many there are. Also 1148 // compute the maximum alignment value. 1149 std::map<std::string, unsigned> SectionMap; 1150 std::map<std::string, unsigned> GCMap; 1151 unsigned MaxAlignment = 0; 1152 unsigned MaxGlobalType = 0; 1153 for (const GlobalValue &GV : M.globals()) { 1154 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1155 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1156 if (GV.hasSection()) { 1157 // Give section names unique ID's. 1158 unsigned &Entry = SectionMap[GV.getSection()]; 1159 if (!Entry) { 1160 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1161 0 /*TODO*/); 1162 Entry = SectionMap.size(); 1163 } 1164 } 1165 } 1166 for (const Function &F : M) { 1167 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1168 if (F.hasSection()) { 1169 // Give section names unique ID's. 1170 unsigned &Entry = SectionMap[F.getSection()]; 1171 if (!Entry) { 1172 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1173 0 /*TODO*/); 1174 Entry = SectionMap.size(); 1175 } 1176 } 1177 if (F.hasGC()) { 1178 // Same for GC names. 1179 unsigned &Entry = GCMap[F.getGC()]; 1180 if (!Entry) { 1181 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1182 0 /*TODO*/); 1183 Entry = GCMap.size(); 1184 } 1185 } 1186 } 1187 1188 // Emit abbrev for globals, now that we know # sections and max alignment. 1189 unsigned SimpleGVarAbbrev = 0; 1190 if (!M.global_empty()) { 1191 // Add an abbrev for common globals with no visibility or thread localness. 1192 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1193 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1197 Log2_32_Ceil(MaxGlobalType+1))); 1198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1199 //| explicitType << 1 1200 //| constant 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1203 if (MaxAlignment == 0) // Alignment. 1204 Abbv->Add(BitCodeAbbrevOp(0)); 1205 else { 1206 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1208 Log2_32_Ceil(MaxEncAlignment+1))); 1209 } 1210 if (SectionMap.empty()) // Section. 1211 Abbv->Add(BitCodeAbbrevOp(0)); 1212 else 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1214 Log2_32_Ceil(SectionMap.size()+1))); 1215 // Don't bother emitting vis + thread local. 1216 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1217 } 1218 1219 SmallVector<unsigned, 64> Vals; 1220 // Emit the module's source file name. 1221 { 1222 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1223 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1224 if (Bits == SE_Char6) 1225 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1226 else if (Bits == SE_Fixed7) 1227 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1228 1229 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1230 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1231 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1233 Abbv->Add(AbbrevOpToUse); 1234 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1235 1236 for (const auto P : M.getSourceFileName()) 1237 Vals.push_back((unsigned char)P); 1238 1239 // Emit the finished record. 1240 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1241 Vals.clear(); 1242 } 1243 1244 // Emit the global variable information. 1245 for (const GlobalVariable &GV : M.globals()) { 1246 unsigned AbbrevToUse = 0; 1247 1248 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1249 // linkage, alignment, section, visibility, threadlocal, 1250 // unnamed_addr, externally_initialized, dllstorageclass, 1251 // comdat, attributes, DSO_Local] 1252 Vals.push_back(addToStrtab(GV.getName())); 1253 Vals.push_back(GV.getName().size()); 1254 Vals.push_back(VE.getTypeID(GV.getValueType())); 1255 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1256 Vals.push_back(GV.isDeclaration() ? 0 : 1257 (VE.getValueID(GV.getInitializer()) + 1)); 1258 Vals.push_back(getEncodedLinkage(GV)); 1259 Vals.push_back(Log2_32(GV.getAlignment())+1); 1260 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1261 if (GV.isThreadLocal() || 1262 GV.getVisibility() != GlobalValue::DefaultVisibility || 1263 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1264 GV.isExternallyInitialized() || 1265 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1266 GV.hasComdat() || 1267 GV.hasAttributes() || 1268 GV.isDSOLocal() || 1269 GV.hasPartition()) { 1270 Vals.push_back(getEncodedVisibility(GV)); 1271 Vals.push_back(getEncodedThreadLocalMode(GV)); 1272 Vals.push_back(getEncodedUnnamedAddr(GV)); 1273 Vals.push_back(GV.isExternallyInitialized()); 1274 Vals.push_back(getEncodedDLLStorageClass(GV)); 1275 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1276 1277 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1278 Vals.push_back(VE.getAttributeListID(AL)); 1279 1280 Vals.push_back(GV.isDSOLocal()); 1281 Vals.push_back(addToStrtab(GV.getPartition())); 1282 Vals.push_back(GV.getPartition().size()); 1283 } else { 1284 AbbrevToUse = SimpleGVarAbbrev; 1285 } 1286 1287 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1288 Vals.clear(); 1289 } 1290 1291 // Emit the function proto information. 1292 for (const Function &F : M) { 1293 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1294 // linkage, paramattrs, alignment, section, visibility, gc, 1295 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1296 // prefixdata, personalityfn, DSO_Local, addrspace] 1297 Vals.push_back(addToStrtab(F.getName())); 1298 Vals.push_back(F.getName().size()); 1299 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1300 Vals.push_back(F.getCallingConv()); 1301 Vals.push_back(F.isDeclaration()); 1302 Vals.push_back(getEncodedLinkage(F)); 1303 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1304 Vals.push_back(Log2_32(F.getAlignment())+1); 1305 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1306 Vals.push_back(getEncodedVisibility(F)); 1307 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1308 Vals.push_back(getEncodedUnnamedAddr(F)); 1309 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1310 : 0); 1311 Vals.push_back(getEncodedDLLStorageClass(F)); 1312 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1313 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1314 : 0); 1315 Vals.push_back( 1316 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1317 1318 Vals.push_back(F.isDSOLocal()); 1319 Vals.push_back(F.getAddressSpace()); 1320 Vals.push_back(addToStrtab(F.getPartition())); 1321 Vals.push_back(F.getPartition().size()); 1322 1323 unsigned AbbrevToUse = 0; 1324 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1325 Vals.clear(); 1326 } 1327 1328 // Emit the alias information. 1329 for (const GlobalAlias &A : M.aliases()) { 1330 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1331 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1332 // DSO_Local] 1333 Vals.push_back(addToStrtab(A.getName())); 1334 Vals.push_back(A.getName().size()); 1335 Vals.push_back(VE.getTypeID(A.getValueType())); 1336 Vals.push_back(A.getType()->getAddressSpace()); 1337 Vals.push_back(VE.getValueID(A.getAliasee())); 1338 Vals.push_back(getEncodedLinkage(A)); 1339 Vals.push_back(getEncodedVisibility(A)); 1340 Vals.push_back(getEncodedDLLStorageClass(A)); 1341 Vals.push_back(getEncodedThreadLocalMode(A)); 1342 Vals.push_back(getEncodedUnnamedAddr(A)); 1343 Vals.push_back(A.isDSOLocal()); 1344 Vals.push_back(addToStrtab(A.getPartition())); 1345 Vals.push_back(A.getPartition().size()); 1346 1347 unsigned AbbrevToUse = 0; 1348 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1349 Vals.clear(); 1350 } 1351 1352 // Emit the ifunc information. 1353 for (const GlobalIFunc &I : M.ifuncs()) { 1354 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1355 // val#, linkage, visibility, DSO_Local] 1356 Vals.push_back(addToStrtab(I.getName())); 1357 Vals.push_back(I.getName().size()); 1358 Vals.push_back(VE.getTypeID(I.getValueType())); 1359 Vals.push_back(I.getType()->getAddressSpace()); 1360 Vals.push_back(VE.getValueID(I.getResolver())); 1361 Vals.push_back(getEncodedLinkage(I)); 1362 Vals.push_back(getEncodedVisibility(I)); 1363 Vals.push_back(I.isDSOLocal()); 1364 Vals.push_back(addToStrtab(I.getPartition())); 1365 Vals.push_back(I.getPartition().size()); 1366 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1367 Vals.clear(); 1368 } 1369 1370 writeValueSymbolTableForwardDecl(); 1371 } 1372 1373 static uint64_t getOptimizationFlags(const Value *V) { 1374 uint64_t Flags = 0; 1375 1376 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1377 if (OBO->hasNoSignedWrap()) 1378 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1379 if (OBO->hasNoUnsignedWrap()) 1380 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1381 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1382 if (PEO->isExact()) 1383 Flags |= 1 << bitc::PEO_EXACT; 1384 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1385 if (FPMO->hasAllowReassoc()) 1386 Flags |= bitc::AllowReassoc; 1387 if (FPMO->hasNoNaNs()) 1388 Flags |= bitc::NoNaNs; 1389 if (FPMO->hasNoInfs()) 1390 Flags |= bitc::NoInfs; 1391 if (FPMO->hasNoSignedZeros()) 1392 Flags |= bitc::NoSignedZeros; 1393 if (FPMO->hasAllowReciprocal()) 1394 Flags |= bitc::AllowReciprocal; 1395 if (FPMO->hasAllowContract()) 1396 Flags |= bitc::AllowContract; 1397 if (FPMO->hasApproxFunc()) 1398 Flags |= bitc::ApproxFunc; 1399 } 1400 1401 return Flags; 1402 } 1403 1404 void ModuleBitcodeWriter::writeValueAsMetadata( 1405 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1406 // Mimic an MDNode with a value as one operand. 1407 Value *V = MD->getValue(); 1408 Record.push_back(VE.getTypeID(V->getType())); 1409 Record.push_back(VE.getValueID(V)); 1410 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1411 Record.clear(); 1412 } 1413 1414 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1415 SmallVectorImpl<uint64_t> &Record, 1416 unsigned Abbrev) { 1417 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1418 Metadata *MD = N->getOperand(i); 1419 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1420 "Unexpected function-local metadata"); 1421 Record.push_back(VE.getMetadataOrNullID(MD)); 1422 } 1423 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1424 : bitc::METADATA_NODE, 1425 Record, Abbrev); 1426 Record.clear(); 1427 } 1428 1429 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1430 // Assume the column is usually under 128, and always output the inlined-at 1431 // location (it's never more expensive than building an array size 1). 1432 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1433 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1440 return Stream.EmitAbbrev(std::move(Abbv)); 1441 } 1442 1443 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1444 SmallVectorImpl<uint64_t> &Record, 1445 unsigned &Abbrev) { 1446 if (!Abbrev) 1447 Abbrev = createDILocationAbbrev(); 1448 1449 Record.push_back(N->isDistinct()); 1450 Record.push_back(N->getLine()); 1451 Record.push_back(N->getColumn()); 1452 Record.push_back(VE.getMetadataID(N->getScope())); 1453 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1454 Record.push_back(N->isImplicitCode()); 1455 1456 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1457 Record.clear(); 1458 } 1459 1460 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1461 // Assume the column is usually under 128, and always output the inlined-at 1462 // location (it's never more expensive than building an array size 1). 1463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1464 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1471 return Stream.EmitAbbrev(std::move(Abbv)); 1472 } 1473 1474 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1475 SmallVectorImpl<uint64_t> &Record, 1476 unsigned &Abbrev) { 1477 if (!Abbrev) 1478 Abbrev = createGenericDINodeAbbrev(); 1479 1480 Record.push_back(N->isDistinct()); 1481 Record.push_back(N->getTag()); 1482 Record.push_back(0); // Per-tag version field; unused for now. 1483 1484 for (auto &I : N->operands()) 1485 Record.push_back(VE.getMetadataOrNullID(I)); 1486 1487 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1488 Record.clear(); 1489 } 1490 1491 static uint64_t rotateSign(int64_t I) { 1492 uint64_t U = I; 1493 return I < 0 ? ~(U << 1) : U << 1; 1494 } 1495 1496 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1497 SmallVectorImpl<uint64_t> &Record, 1498 unsigned Abbrev) { 1499 const uint64_t Version = 1 << 1; 1500 Record.push_back((uint64_t)N->isDistinct() | Version); 1501 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1502 Record.push_back(rotateSign(N->getLowerBound())); 1503 1504 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1505 Record.clear(); 1506 } 1507 1508 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1509 SmallVectorImpl<uint64_t> &Record, 1510 unsigned Abbrev) { 1511 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1512 Record.push_back(rotateSign(N->getValue())); 1513 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1514 1515 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1516 Record.clear(); 1517 } 1518 1519 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1520 SmallVectorImpl<uint64_t> &Record, 1521 unsigned Abbrev) { 1522 Record.push_back(N->isDistinct()); 1523 Record.push_back(N->getTag()); 1524 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1525 Record.push_back(N->getSizeInBits()); 1526 Record.push_back(N->getAlignInBits()); 1527 Record.push_back(N->getEncoding()); 1528 Record.push_back(N->getFlags()); 1529 1530 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1531 Record.clear(); 1532 } 1533 1534 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1535 SmallVectorImpl<uint64_t> &Record, 1536 unsigned Abbrev) { 1537 Record.push_back(N->isDistinct()); 1538 Record.push_back(N->getTag()); 1539 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1540 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1541 Record.push_back(N->getLine()); 1542 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1544 Record.push_back(N->getSizeInBits()); 1545 Record.push_back(N->getAlignInBits()); 1546 Record.push_back(N->getOffsetInBits()); 1547 Record.push_back(N->getFlags()); 1548 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1549 1550 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1551 // that there is no DWARF address space associated with DIDerivedType. 1552 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1553 Record.push_back(*DWARFAddressSpace + 1); 1554 else 1555 Record.push_back(0); 1556 1557 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1558 Record.clear(); 1559 } 1560 1561 void ModuleBitcodeWriter::writeDICompositeType( 1562 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1563 unsigned Abbrev) { 1564 const unsigned IsNotUsedInOldTypeRef = 0x2; 1565 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1566 Record.push_back(N->getTag()); 1567 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1568 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1569 Record.push_back(N->getLine()); 1570 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1571 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1572 Record.push_back(N->getSizeInBits()); 1573 Record.push_back(N->getAlignInBits()); 1574 Record.push_back(N->getOffsetInBits()); 1575 Record.push_back(N->getFlags()); 1576 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1577 Record.push_back(N->getRuntimeLang()); 1578 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1581 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1582 1583 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1584 Record.clear(); 1585 } 1586 1587 void ModuleBitcodeWriter::writeDISubroutineType( 1588 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1589 unsigned Abbrev) { 1590 const unsigned HasNoOldTypeRefs = 0x2; 1591 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1592 Record.push_back(N->getFlags()); 1593 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1594 Record.push_back(N->getCC()); 1595 1596 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1597 Record.clear(); 1598 } 1599 1600 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1601 SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 Record.push_back(N->isDistinct()); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1606 if (N->getRawChecksum()) { 1607 Record.push_back(N->getRawChecksum()->Kind); 1608 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1609 } else { 1610 // Maintain backwards compatibility with the old internal representation of 1611 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1612 Record.push_back(0); 1613 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1614 } 1615 auto Source = N->getRawSource(); 1616 if (Source) 1617 Record.push_back(VE.getMetadataOrNullID(*Source)); 1618 1619 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1620 Record.clear(); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1624 SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 assert(N->isDistinct() && "Expected distinct compile units"); 1627 Record.push_back(/* IsDistinct */ true); 1628 Record.push_back(N->getSourceLanguage()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1631 Record.push_back(N->isOptimized()); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1633 Record.push_back(N->getRuntimeVersion()); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1635 Record.push_back(N->getEmissionKind()); 1636 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1638 Record.push_back(/* subprograms */ 0); 1639 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1640 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1641 Record.push_back(N->getDWOId()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1643 Record.push_back(N->getSplitDebugInlining()); 1644 Record.push_back(N->getDebugInfoForProfiling()); 1645 Record.push_back((unsigned)N->getNameTableKind()); 1646 1647 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1648 Record.clear(); 1649 } 1650 1651 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1652 SmallVectorImpl<uint64_t> &Record, 1653 unsigned Abbrev) { 1654 const uint64_t HasUnitFlag = 1 << 1; 1655 const uint64_t HasSPFlagsFlag = 1 << 2; 1656 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1657 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1661 Record.push_back(N->getLine()); 1662 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1663 Record.push_back(N->getScopeLine()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1665 Record.push_back(N->getSPFlags()); 1666 Record.push_back(N->getVirtualIndex()); 1667 Record.push_back(N->getFlags()); 1668 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1669 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1670 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1671 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1672 Record.push_back(N->getThisAdjustment()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1674 1675 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1676 Record.clear(); 1677 } 1678 1679 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1680 SmallVectorImpl<uint64_t> &Record, 1681 unsigned Abbrev) { 1682 Record.push_back(N->isDistinct()); 1683 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1684 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1685 Record.push_back(N->getLine()); 1686 Record.push_back(N->getColumn()); 1687 1688 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1689 Record.clear(); 1690 } 1691 1692 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1693 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1694 unsigned Abbrev) { 1695 Record.push_back(N->isDistinct()); 1696 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1698 Record.push_back(N->getDiscriminator()); 1699 1700 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1701 Record.clear(); 1702 } 1703 1704 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1705 SmallVectorImpl<uint64_t> &Record, 1706 unsigned Abbrev) { 1707 Record.push_back(N->isDistinct()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1712 Record.push_back(N->getLineNo()); 1713 1714 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1715 Record.clear(); 1716 } 1717 1718 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1719 SmallVectorImpl<uint64_t> &Record, 1720 unsigned Abbrev) { 1721 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1722 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1724 1725 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1726 Record.clear(); 1727 } 1728 1729 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1730 SmallVectorImpl<uint64_t> &Record, 1731 unsigned Abbrev) { 1732 Record.push_back(N->isDistinct()); 1733 Record.push_back(N->getMacinfoType()); 1734 Record.push_back(N->getLine()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1737 1738 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1739 Record.clear(); 1740 } 1741 1742 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1743 SmallVectorImpl<uint64_t> &Record, 1744 unsigned Abbrev) { 1745 Record.push_back(N->isDistinct()); 1746 Record.push_back(N->getMacinfoType()); 1747 Record.push_back(N->getLine()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1750 1751 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1752 Record.clear(); 1753 } 1754 1755 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1756 SmallVectorImpl<uint64_t> &Record, 1757 unsigned Abbrev) { 1758 Record.push_back(N->isDistinct()); 1759 for (auto &I : N->operands()) 1760 Record.push_back(VE.getMetadataOrNullID(I)); 1761 1762 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1763 Record.clear(); 1764 } 1765 1766 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1767 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1768 unsigned Abbrev) { 1769 Record.push_back(N->isDistinct()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1772 1773 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1774 Record.clear(); 1775 } 1776 1777 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1778 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1779 unsigned Abbrev) { 1780 Record.push_back(N->isDistinct()); 1781 Record.push_back(N->getTag()); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1785 1786 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1787 Record.clear(); 1788 } 1789 1790 void ModuleBitcodeWriter::writeDIGlobalVariable( 1791 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1792 unsigned Abbrev) { 1793 const uint64_t Version = 2 << 1; 1794 Record.push_back((uint64_t)N->isDistinct() | Version); 1795 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1799 Record.push_back(N->getLine()); 1800 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1801 Record.push_back(N->isLocalToUnit()); 1802 Record.push_back(N->isDefinition()); 1803 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1805 Record.push_back(N->getAlignInBits()); 1806 1807 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1808 Record.clear(); 1809 } 1810 1811 void ModuleBitcodeWriter::writeDILocalVariable( 1812 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1813 unsigned Abbrev) { 1814 // In order to support all possible bitcode formats in BitcodeReader we need 1815 // to distinguish the following cases: 1816 // 1) Record has no artificial tag (Record[1]), 1817 // has no obsolete inlinedAt field (Record[9]). 1818 // In this case Record size will be 8, HasAlignment flag is false. 1819 // 2) Record has artificial tag (Record[1]), 1820 // has no obsolete inlignedAt field (Record[9]). 1821 // In this case Record size will be 9, HasAlignment flag is false. 1822 // 3) Record has both artificial tag (Record[1]) and 1823 // obsolete inlignedAt field (Record[9]). 1824 // In this case Record size will be 10, HasAlignment flag is false. 1825 // 4) Record has neither artificial tag, nor inlignedAt field, but 1826 // HasAlignment flag is true and Record[8] contains alignment value. 1827 const uint64_t HasAlignmentFlag = 1 << 1; 1828 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1829 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1832 Record.push_back(N->getLine()); 1833 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1834 Record.push_back(N->getArg()); 1835 Record.push_back(N->getFlags()); 1836 Record.push_back(N->getAlignInBits()); 1837 1838 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1839 Record.clear(); 1840 } 1841 1842 void ModuleBitcodeWriter::writeDILabel( 1843 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1844 unsigned Abbrev) { 1845 Record.push_back((uint64_t)N->isDistinct()); 1846 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1849 Record.push_back(N->getLine()); 1850 1851 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1852 Record.clear(); 1853 } 1854 1855 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1856 SmallVectorImpl<uint64_t> &Record, 1857 unsigned Abbrev) { 1858 Record.reserve(N->getElements().size() + 1); 1859 const uint64_t Version = 3 << 1; 1860 Record.push_back((uint64_t)N->isDistinct() | Version); 1861 Record.append(N->elements_begin(), N->elements_end()); 1862 1863 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1864 Record.clear(); 1865 } 1866 1867 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1868 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1869 unsigned Abbrev) { 1870 Record.push_back(N->isDistinct()); 1871 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1872 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1873 1874 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1875 Record.clear(); 1876 } 1877 1878 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1879 SmallVectorImpl<uint64_t> &Record, 1880 unsigned Abbrev) { 1881 Record.push_back(N->isDistinct()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1884 Record.push_back(N->getLine()); 1885 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1887 Record.push_back(N->getAttributes()); 1888 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1889 1890 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1891 Record.clear(); 1892 } 1893 1894 void ModuleBitcodeWriter::writeDIImportedEntity( 1895 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1896 unsigned Abbrev) { 1897 Record.push_back(N->isDistinct()); 1898 Record.push_back(N->getTag()); 1899 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1900 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1901 Record.push_back(N->getLine()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1903 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1904 1905 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1906 Record.clear(); 1907 } 1908 1909 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1910 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1911 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1914 return Stream.EmitAbbrev(std::move(Abbv)); 1915 } 1916 1917 void ModuleBitcodeWriter::writeNamedMetadata( 1918 SmallVectorImpl<uint64_t> &Record) { 1919 if (M.named_metadata_empty()) 1920 return; 1921 1922 unsigned Abbrev = createNamedMetadataAbbrev(); 1923 for (const NamedMDNode &NMD : M.named_metadata()) { 1924 // Write name. 1925 StringRef Str = NMD.getName(); 1926 Record.append(Str.bytes_begin(), Str.bytes_end()); 1927 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1928 Record.clear(); 1929 1930 // Write named metadata operands. 1931 for (const MDNode *N : NMD.operands()) 1932 Record.push_back(VE.getMetadataID(N)); 1933 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1934 Record.clear(); 1935 } 1936 } 1937 1938 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1939 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1940 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1944 return Stream.EmitAbbrev(std::move(Abbv)); 1945 } 1946 1947 /// Write out a record for MDString. 1948 /// 1949 /// All the metadata strings in a metadata block are emitted in a single 1950 /// record. The sizes and strings themselves are shoved into a blob. 1951 void ModuleBitcodeWriter::writeMetadataStrings( 1952 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1953 if (Strings.empty()) 1954 return; 1955 1956 // Start the record with the number of strings. 1957 Record.push_back(bitc::METADATA_STRINGS); 1958 Record.push_back(Strings.size()); 1959 1960 // Emit the sizes of the strings in the blob. 1961 SmallString<256> Blob; 1962 { 1963 BitstreamWriter W(Blob); 1964 for (const Metadata *MD : Strings) 1965 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1966 W.FlushToWord(); 1967 } 1968 1969 // Add the offset to the strings to the record. 1970 Record.push_back(Blob.size()); 1971 1972 // Add the strings to the blob. 1973 for (const Metadata *MD : Strings) 1974 Blob.append(cast<MDString>(MD)->getString()); 1975 1976 // Emit the final record. 1977 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1978 Record.clear(); 1979 } 1980 1981 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1982 enum MetadataAbbrev : unsigned { 1983 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1984 #include "llvm/IR/Metadata.def" 1985 LastPlusOne 1986 }; 1987 1988 void ModuleBitcodeWriter::writeMetadataRecords( 1989 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1990 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1991 if (MDs.empty()) 1992 return; 1993 1994 // Initialize MDNode abbreviations. 1995 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1996 #include "llvm/IR/Metadata.def" 1997 1998 for (const Metadata *MD : MDs) { 1999 if (IndexPos) 2000 IndexPos->push_back(Stream.GetCurrentBitNo()); 2001 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2002 assert(N->isResolved() && "Expected forward references to be resolved"); 2003 2004 switch (N->getMetadataID()) { 2005 default: 2006 llvm_unreachable("Invalid MDNode subclass"); 2007 #define HANDLE_MDNODE_LEAF(CLASS) \ 2008 case Metadata::CLASS##Kind: \ 2009 if (MDAbbrevs) \ 2010 write##CLASS(cast<CLASS>(N), Record, \ 2011 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2012 else \ 2013 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2014 continue; 2015 #include "llvm/IR/Metadata.def" 2016 } 2017 } 2018 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2019 } 2020 } 2021 2022 void ModuleBitcodeWriter::writeModuleMetadata() { 2023 if (!VE.hasMDs() && M.named_metadata_empty()) 2024 return; 2025 2026 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2027 SmallVector<uint64_t, 64> Record; 2028 2029 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2030 // block and load any metadata. 2031 std::vector<unsigned> MDAbbrevs; 2032 2033 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2034 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2035 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2036 createGenericDINodeAbbrev(); 2037 2038 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2039 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2042 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2043 2044 Abbv = std::make_shared<BitCodeAbbrev>(); 2045 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2048 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2049 2050 // Emit MDStrings together upfront. 2051 writeMetadataStrings(VE.getMDStrings(), Record); 2052 2053 // We only emit an index for the metadata record if we have more than a given 2054 // (naive) threshold of metadatas, otherwise it is not worth it. 2055 if (VE.getNonMDStrings().size() > IndexThreshold) { 2056 // Write a placeholder value in for the offset of the metadata index, 2057 // which is written after the records, so that it can include 2058 // the offset of each entry. The placeholder offset will be 2059 // updated after all records are emitted. 2060 uint64_t Vals[] = {0, 0}; 2061 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2062 } 2063 2064 // Compute and save the bit offset to the current position, which will be 2065 // patched when we emit the index later. We can simply subtract the 64-bit 2066 // fixed size from the current bit number to get the location to backpatch. 2067 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2068 2069 // This index will contain the bitpos for each individual record. 2070 std::vector<uint64_t> IndexPos; 2071 IndexPos.reserve(VE.getNonMDStrings().size()); 2072 2073 // Write all the records 2074 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2075 2076 if (VE.getNonMDStrings().size() > IndexThreshold) { 2077 // Now that we have emitted all the records we will emit the index. But 2078 // first 2079 // backpatch the forward reference so that the reader can skip the records 2080 // efficiently. 2081 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2082 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2083 2084 // Delta encode the index. 2085 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2086 for (auto &Elt : IndexPos) { 2087 auto EltDelta = Elt - PreviousValue; 2088 PreviousValue = Elt; 2089 Elt = EltDelta; 2090 } 2091 // Emit the index record. 2092 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2093 IndexPos.clear(); 2094 } 2095 2096 // Write the named metadata now. 2097 writeNamedMetadata(Record); 2098 2099 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2100 SmallVector<uint64_t, 4> Record; 2101 Record.push_back(VE.getValueID(&GO)); 2102 pushGlobalMetadataAttachment(Record, GO); 2103 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2104 }; 2105 for (const Function &F : M) 2106 if (F.isDeclaration() && F.hasMetadata()) 2107 AddDeclAttachedMetadata(F); 2108 // FIXME: Only store metadata for declarations here, and move data for global 2109 // variable definitions to a separate block (PR28134). 2110 for (const GlobalVariable &GV : M.globals()) 2111 if (GV.hasMetadata()) 2112 AddDeclAttachedMetadata(GV); 2113 2114 Stream.ExitBlock(); 2115 } 2116 2117 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2118 if (!VE.hasMDs()) 2119 return; 2120 2121 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2122 SmallVector<uint64_t, 64> Record; 2123 writeMetadataStrings(VE.getMDStrings(), Record); 2124 writeMetadataRecords(VE.getNonMDStrings(), Record); 2125 Stream.ExitBlock(); 2126 } 2127 2128 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2129 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2130 // [n x [id, mdnode]] 2131 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2132 GO.getAllMetadata(MDs); 2133 for (const auto &I : MDs) { 2134 Record.push_back(I.first); 2135 Record.push_back(VE.getMetadataID(I.second)); 2136 } 2137 } 2138 2139 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2140 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2141 2142 SmallVector<uint64_t, 64> Record; 2143 2144 if (F.hasMetadata()) { 2145 pushGlobalMetadataAttachment(Record, F); 2146 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2147 Record.clear(); 2148 } 2149 2150 // Write metadata attachments 2151 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2152 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2153 for (const BasicBlock &BB : F) 2154 for (const Instruction &I : BB) { 2155 MDs.clear(); 2156 I.getAllMetadataOtherThanDebugLoc(MDs); 2157 2158 // If no metadata, ignore instruction. 2159 if (MDs.empty()) continue; 2160 2161 Record.push_back(VE.getInstructionID(&I)); 2162 2163 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2164 Record.push_back(MDs[i].first); 2165 Record.push_back(VE.getMetadataID(MDs[i].second)); 2166 } 2167 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2168 Record.clear(); 2169 } 2170 2171 Stream.ExitBlock(); 2172 } 2173 2174 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2175 SmallVector<uint64_t, 64> Record; 2176 2177 // Write metadata kinds 2178 // METADATA_KIND - [n x [id, name]] 2179 SmallVector<StringRef, 8> Names; 2180 M.getMDKindNames(Names); 2181 2182 if (Names.empty()) return; 2183 2184 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2185 2186 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2187 Record.push_back(MDKindID); 2188 StringRef KName = Names[MDKindID]; 2189 Record.append(KName.begin(), KName.end()); 2190 2191 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2192 Record.clear(); 2193 } 2194 2195 Stream.ExitBlock(); 2196 } 2197 2198 void ModuleBitcodeWriter::writeOperandBundleTags() { 2199 // Write metadata kinds 2200 // 2201 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2202 // 2203 // OPERAND_BUNDLE_TAG - [strchr x N] 2204 2205 SmallVector<StringRef, 8> Tags; 2206 M.getOperandBundleTags(Tags); 2207 2208 if (Tags.empty()) 2209 return; 2210 2211 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2212 2213 SmallVector<uint64_t, 64> Record; 2214 2215 for (auto Tag : Tags) { 2216 Record.append(Tag.begin(), Tag.end()); 2217 2218 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2219 Record.clear(); 2220 } 2221 2222 Stream.ExitBlock(); 2223 } 2224 2225 void ModuleBitcodeWriter::writeSyncScopeNames() { 2226 SmallVector<StringRef, 8> SSNs; 2227 M.getContext().getSyncScopeNames(SSNs); 2228 if (SSNs.empty()) 2229 return; 2230 2231 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2232 2233 SmallVector<uint64_t, 64> Record; 2234 for (auto SSN : SSNs) { 2235 Record.append(SSN.begin(), SSN.end()); 2236 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2237 Record.clear(); 2238 } 2239 2240 Stream.ExitBlock(); 2241 } 2242 2243 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2244 if ((int64_t)V >= 0) 2245 Vals.push_back(V << 1); 2246 else 2247 Vals.push_back((-V << 1) | 1); 2248 } 2249 2250 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2251 bool isGlobal) { 2252 if (FirstVal == LastVal) return; 2253 2254 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2255 2256 unsigned AggregateAbbrev = 0; 2257 unsigned String8Abbrev = 0; 2258 unsigned CString7Abbrev = 0; 2259 unsigned CString6Abbrev = 0; 2260 // If this is a constant pool for the module, emit module-specific abbrevs. 2261 if (isGlobal) { 2262 // Abbrev for CST_CODE_AGGREGATE. 2263 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2264 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2267 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2268 2269 // Abbrev for CST_CODE_STRING. 2270 Abbv = std::make_shared<BitCodeAbbrev>(); 2271 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2274 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2275 // Abbrev for CST_CODE_CSTRING. 2276 Abbv = std::make_shared<BitCodeAbbrev>(); 2277 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2279 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2280 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2281 // Abbrev for CST_CODE_CSTRING. 2282 Abbv = std::make_shared<BitCodeAbbrev>(); 2283 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2286 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2287 } 2288 2289 SmallVector<uint64_t, 64> Record; 2290 2291 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2292 Type *LastTy = nullptr; 2293 for (unsigned i = FirstVal; i != LastVal; ++i) { 2294 const Value *V = Vals[i].first; 2295 // If we need to switch types, do so now. 2296 if (V->getType() != LastTy) { 2297 LastTy = V->getType(); 2298 Record.push_back(VE.getTypeID(LastTy)); 2299 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2300 CONSTANTS_SETTYPE_ABBREV); 2301 Record.clear(); 2302 } 2303 2304 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2305 Record.push_back(unsigned(IA->hasSideEffects()) | 2306 unsigned(IA->isAlignStack()) << 1 | 2307 unsigned(IA->getDialect()&1) << 2); 2308 2309 // Add the asm string. 2310 const std::string &AsmStr = IA->getAsmString(); 2311 Record.push_back(AsmStr.size()); 2312 Record.append(AsmStr.begin(), AsmStr.end()); 2313 2314 // Add the constraint string. 2315 const std::string &ConstraintStr = IA->getConstraintString(); 2316 Record.push_back(ConstraintStr.size()); 2317 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2318 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2319 Record.clear(); 2320 continue; 2321 } 2322 const Constant *C = cast<Constant>(V); 2323 unsigned Code = -1U; 2324 unsigned AbbrevToUse = 0; 2325 if (C->isNullValue()) { 2326 Code = bitc::CST_CODE_NULL; 2327 } else if (isa<UndefValue>(C)) { 2328 Code = bitc::CST_CODE_UNDEF; 2329 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2330 if (IV->getBitWidth() <= 64) { 2331 uint64_t V = IV->getSExtValue(); 2332 emitSignedInt64(Record, V); 2333 Code = bitc::CST_CODE_INTEGER; 2334 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2335 } else { // Wide integers, > 64 bits in size. 2336 // We have an arbitrary precision integer value to write whose 2337 // bit width is > 64. However, in canonical unsigned integer 2338 // format it is likely that the high bits are going to be zero. 2339 // So, we only write the number of active words. 2340 unsigned NWords = IV->getValue().getActiveWords(); 2341 const uint64_t *RawWords = IV->getValue().getRawData(); 2342 for (unsigned i = 0; i != NWords; ++i) { 2343 emitSignedInt64(Record, RawWords[i]); 2344 } 2345 Code = bitc::CST_CODE_WIDE_INTEGER; 2346 } 2347 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2348 Code = bitc::CST_CODE_FLOAT; 2349 Type *Ty = CFP->getType(); 2350 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2351 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2352 } else if (Ty->isX86_FP80Ty()) { 2353 // api needed to prevent premature destruction 2354 // bits are not in the same order as a normal i80 APInt, compensate. 2355 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2356 const uint64_t *p = api.getRawData(); 2357 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2358 Record.push_back(p[0] & 0xffffLL); 2359 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2360 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2361 const uint64_t *p = api.getRawData(); 2362 Record.push_back(p[0]); 2363 Record.push_back(p[1]); 2364 } else { 2365 assert(0 && "Unknown FP type!"); 2366 } 2367 } else if (isa<ConstantDataSequential>(C) && 2368 cast<ConstantDataSequential>(C)->isString()) { 2369 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2370 // Emit constant strings specially. 2371 unsigned NumElts = Str->getNumElements(); 2372 // If this is a null-terminated string, use the denser CSTRING encoding. 2373 if (Str->isCString()) { 2374 Code = bitc::CST_CODE_CSTRING; 2375 --NumElts; // Don't encode the null, which isn't allowed by char6. 2376 } else { 2377 Code = bitc::CST_CODE_STRING; 2378 AbbrevToUse = String8Abbrev; 2379 } 2380 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2381 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2382 for (unsigned i = 0; i != NumElts; ++i) { 2383 unsigned char V = Str->getElementAsInteger(i); 2384 Record.push_back(V); 2385 isCStr7 &= (V & 128) == 0; 2386 if (isCStrChar6) 2387 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2388 } 2389 2390 if (isCStrChar6) 2391 AbbrevToUse = CString6Abbrev; 2392 else if (isCStr7) 2393 AbbrevToUse = CString7Abbrev; 2394 } else if (const ConstantDataSequential *CDS = 2395 dyn_cast<ConstantDataSequential>(C)) { 2396 Code = bitc::CST_CODE_DATA; 2397 Type *EltTy = CDS->getType()->getElementType(); 2398 if (isa<IntegerType>(EltTy)) { 2399 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2400 Record.push_back(CDS->getElementAsInteger(i)); 2401 } else { 2402 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2403 Record.push_back( 2404 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2405 } 2406 } else if (isa<ConstantAggregate>(C)) { 2407 Code = bitc::CST_CODE_AGGREGATE; 2408 for (const Value *Op : C->operands()) 2409 Record.push_back(VE.getValueID(Op)); 2410 AbbrevToUse = AggregateAbbrev; 2411 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2412 switch (CE->getOpcode()) { 2413 default: 2414 if (Instruction::isCast(CE->getOpcode())) { 2415 Code = bitc::CST_CODE_CE_CAST; 2416 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2417 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2418 Record.push_back(VE.getValueID(C->getOperand(0))); 2419 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2420 } else { 2421 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2422 Code = bitc::CST_CODE_CE_BINOP; 2423 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2424 Record.push_back(VE.getValueID(C->getOperand(0))); 2425 Record.push_back(VE.getValueID(C->getOperand(1))); 2426 uint64_t Flags = getOptimizationFlags(CE); 2427 if (Flags != 0) 2428 Record.push_back(Flags); 2429 } 2430 break; 2431 case Instruction::FNeg: { 2432 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2433 Code = bitc::CST_CODE_CE_UNOP; 2434 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2435 Record.push_back(VE.getValueID(C->getOperand(0))); 2436 uint64_t Flags = getOptimizationFlags(CE); 2437 if (Flags != 0) 2438 Record.push_back(Flags); 2439 break; 2440 } 2441 case Instruction::GetElementPtr: { 2442 Code = bitc::CST_CODE_CE_GEP; 2443 const auto *GO = cast<GEPOperator>(C); 2444 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2445 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2446 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2447 Record.push_back((*Idx << 1) | GO->isInBounds()); 2448 } else if (GO->isInBounds()) 2449 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2450 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2451 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2452 Record.push_back(VE.getValueID(C->getOperand(i))); 2453 } 2454 break; 2455 } 2456 case Instruction::Select: 2457 Code = bitc::CST_CODE_CE_SELECT; 2458 Record.push_back(VE.getValueID(C->getOperand(0))); 2459 Record.push_back(VE.getValueID(C->getOperand(1))); 2460 Record.push_back(VE.getValueID(C->getOperand(2))); 2461 break; 2462 case Instruction::ExtractElement: 2463 Code = bitc::CST_CODE_CE_EXTRACTELT; 2464 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2465 Record.push_back(VE.getValueID(C->getOperand(0))); 2466 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2467 Record.push_back(VE.getValueID(C->getOperand(1))); 2468 break; 2469 case Instruction::InsertElement: 2470 Code = bitc::CST_CODE_CE_INSERTELT; 2471 Record.push_back(VE.getValueID(C->getOperand(0))); 2472 Record.push_back(VE.getValueID(C->getOperand(1))); 2473 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2474 Record.push_back(VE.getValueID(C->getOperand(2))); 2475 break; 2476 case Instruction::ShuffleVector: 2477 // If the return type and argument types are the same, this is a 2478 // standard shufflevector instruction. If the types are different, 2479 // then the shuffle is widening or truncating the input vectors, and 2480 // the argument type must also be encoded. 2481 if (C->getType() == C->getOperand(0)->getType()) { 2482 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2483 } else { 2484 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2485 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2486 } 2487 Record.push_back(VE.getValueID(C->getOperand(0))); 2488 Record.push_back(VE.getValueID(C->getOperand(1))); 2489 Record.push_back(VE.getValueID(C->getOperand(2))); 2490 break; 2491 case Instruction::ICmp: 2492 case Instruction::FCmp: 2493 Code = bitc::CST_CODE_CE_CMP; 2494 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2495 Record.push_back(VE.getValueID(C->getOperand(0))); 2496 Record.push_back(VE.getValueID(C->getOperand(1))); 2497 Record.push_back(CE->getPredicate()); 2498 break; 2499 } 2500 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2501 Code = bitc::CST_CODE_BLOCKADDRESS; 2502 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2503 Record.push_back(VE.getValueID(BA->getFunction())); 2504 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2505 } else { 2506 #ifndef NDEBUG 2507 C->dump(); 2508 #endif 2509 llvm_unreachable("Unknown constant!"); 2510 } 2511 Stream.EmitRecord(Code, Record, AbbrevToUse); 2512 Record.clear(); 2513 } 2514 2515 Stream.ExitBlock(); 2516 } 2517 2518 void ModuleBitcodeWriter::writeModuleConstants() { 2519 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2520 2521 // Find the first constant to emit, which is the first non-globalvalue value. 2522 // We know globalvalues have been emitted by WriteModuleInfo. 2523 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2524 if (!isa<GlobalValue>(Vals[i].first)) { 2525 writeConstants(i, Vals.size(), true); 2526 return; 2527 } 2528 } 2529 } 2530 2531 /// pushValueAndType - The file has to encode both the value and type id for 2532 /// many values, because we need to know what type to create for forward 2533 /// references. However, most operands are not forward references, so this type 2534 /// field is not needed. 2535 /// 2536 /// This function adds V's value ID to Vals. If the value ID is higher than the 2537 /// instruction ID, then it is a forward reference, and it also includes the 2538 /// type ID. The value ID that is written is encoded relative to the InstID. 2539 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2540 SmallVectorImpl<unsigned> &Vals) { 2541 unsigned ValID = VE.getValueID(V); 2542 // Make encoding relative to the InstID. 2543 Vals.push_back(InstID - ValID); 2544 if (ValID >= InstID) { 2545 Vals.push_back(VE.getTypeID(V->getType())); 2546 return true; 2547 } 2548 return false; 2549 } 2550 2551 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2552 unsigned InstID) { 2553 SmallVector<unsigned, 64> Record; 2554 LLVMContext &C = CS.getInstruction()->getContext(); 2555 2556 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2557 const auto &Bundle = CS.getOperandBundleAt(i); 2558 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2559 2560 for (auto &Input : Bundle.Inputs) 2561 pushValueAndType(Input, InstID, Record); 2562 2563 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2564 Record.clear(); 2565 } 2566 } 2567 2568 /// pushValue - Like pushValueAndType, but where the type of the value is 2569 /// omitted (perhaps it was already encoded in an earlier operand). 2570 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2571 SmallVectorImpl<unsigned> &Vals) { 2572 unsigned ValID = VE.getValueID(V); 2573 Vals.push_back(InstID - ValID); 2574 } 2575 2576 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2577 SmallVectorImpl<uint64_t> &Vals) { 2578 unsigned ValID = VE.getValueID(V); 2579 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2580 emitSignedInt64(Vals, diff); 2581 } 2582 2583 /// WriteInstruction - Emit an instruction to the specified stream. 2584 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2585 unsigned InstID, 2586 SmallVectorImpl<unsigned> &Vals) { 2587 unsigned Code = 0; 2588 unsigned AbbrevToUse = 0; 2589 VE.setInstructionID(&I); 2590 switch (I.getOpcode()) { 2591 default: 2592 if (Instruction::isCast(I.getOpcode())) { 2593 Code = bitc::FUNC_CODE_INST_CAST; 2594 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2595 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2596 Vals.push_back(VE.getTypeID(I.getType())); 2597 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2598 } else { 2599 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2600 Code = bitc::FUNC_CODE_INST_BINOP; 2601 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2602 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2603 pushValue(I.getOperand(1), InstID, Vals); 2604 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2605 uint64_t Flags = getOptimizationFlags(&I); 2606 if (Flags != 0) { 2607 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2608 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2609 Vals.push_back(Flags); 2610 } 2611 } 2612 break; 2613 case Instruction::FNeg: { 2614 Code = bitc::FUNC_CODE_INST_UNOP; 2615 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2616 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2617 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2618 uint64_t Flags = getOptimizationFlags(&I); 2619 if (Flags != 0) { 2620 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2621 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2622 Vals.push_back(Flags); 2623 } 2624 break; 2625 } 2626 case Instruction::GetElementPtr: { 2627 Code = bitc::FUNC_CODE_INST_GEP; 2628 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2629 auto &GEPInst = cast<GetElementPtrInst>(I); 2630 Vals.push_back(GEPInst.isInBounds()); 2631 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2632 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2633 pushValueAndType(I.getOperand(i), InstID, Vals); 2634 break; 2635 } 2636 case Instruction::ExtractValue: { 2637 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2638 pushValueAndType(I.getOperand(0), InstID, Vals); 2639 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2640 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2641 break; 2642 } 2643 case Instruction::InsertValue: { 2644 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2645 pushValueAndType(I.getOperand(0), InstID, Vals); 2646 pushValueAndType(I.getOperand(1), InstID, Vals); 2647 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2648 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2649 break; 2650 } 2651 case Instruction::Select: { 2652 Code = bitc::FUNC_CODE_INST_VSELECT; 2653 pushValueAndType(I.getOperand(1), InstID, Vals); 2654 pushValue(I.getOperand(2), InstID, Vals); 2655 pushValueAndType(I.getOperand(0), InstID, Vals); 2656 uint64_t Flags = getOptimizationFlags(&I); 2657 if (Flags != 0) 2658 Vals.push_back(Flags); 2659 break; 2660 } 2661 case Instruction::ExtractElement: 2662 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2663 pushValueAndType(I.getOperand(0), InstID, Vals); 2664 pushValueAndType(I.getOperand(1), InstID, Vals); 2665 break; 2666 case Instruction::InsertElement: 2667 Code = bitc::FUNC_CODE_INST_INSERTELT; 2668 pushValueAndType(I.getOperand(0), InstID, Vals); 2669 pushValue(I.getOperand(1), InstID, Vals); 2670 pushValueAndType(I.getOperand(2), InstID, Vals); 2671 break; 2672 case Instruction::ShuffleVector: 2673 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2674 pushValueAndType(I.getOperand(0), InstID, Vals); 2675 pushValue(I.getOperand(1), InstID, Vals); 2676 pushValue(I.getOperand(2), InstID, Vals); 2677 break; 2678 case Instruction::ICmp: 2679 case Instruction::FCmp: { 2680 // compare returning Int1Ty or vector of Int1Ty 2681 Code = bitc::FUNC_CODE_INST_CMP2; 2682 pushValueAndType(I.getOperand(0), InstID, Vals); 2683 pushValue(I.getOperand(1), InstID, Vals); 2684 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2685 uint64_t Flags = getOptimizationFlags(&I); 2686 if (Flags != 0) 2687 Vals.push_back(Flags); 2688 break; 2689 } 2690 2691 case Instruction::Ret: 2692 { 2693 Code = bitc::FUNC_CODE_INST_RET; 2694 unsigned NumOperands = I.getNumOperands(); 2695 if (NumOperands == 0) 2696 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2697 else if (NumOperands == 1) { 2698 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2699 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2700 } else { 2701 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2702 pushValueAndType(I.getOperand(i), InstID, Vals); 2703 } 2704 } 2705 break; 2706 case Instruction::Br: 2707 { 2708 Code = bitc::FUNC_CODE_INST_BR; 2709 const BranchInst &II = cast<BranchInst>(I); 2710 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2711 if (II.isConditional()) { 2712 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2713 pushValue(II.getCondition(), InstID, Vals); 2714 } 2715 } 2716 break; 2717 case Instruction::Switch: 2718 { 2719 Code = bitc::FUNC_CODE_INST_SWITCH; 2720 const SwitchInst &SI = cast<SwitchInst>(I); 2721 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2722 pushValue(SI.getCondition(), InstID, Vals); 2723 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2724 for (auto Case : SI.cases()) { 2725 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2726 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2727 } 2728 } 2729 break; 2730 case Instruction::IndirectBr: 2731 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2732 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2733 // Encode the address operand as relative, but not the basic blocks. 2734 pushValue(I.getOperand(0), InstID, Vals); 2735 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2736 Vals.push_back(VE.getValueID(I.getOperand(i))); 2737 break; 2738 2739 case Instruction::Invoke: { 2740 const InvokeInst *II = cast<InvokeInst>(&I); 2741 const Value *Callee = II->getCalledValue(); 2742 FunctionType *FTy = II->getFunctionType(); 2743 2744 if (II->hasOperandBundles()) 2745 writeOperandBundles(II, InstID); 2746 2747 Code = bitc::FUNC_CODE_INST_INVOKE; 2748 2749 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2750 Vals.push_back(II->getCallingConv() | 1 << 13); 2751 Vals.push_back(VE.getValueID(II->getNormalDest())); 2752 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2753 Vals.push_back(VE.getTypeID(FTy)); 2754 pushValueAndType(Callee, InstID, Vals); 2755 2756 // Emit value #'s for the fixed parameters. 2757 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2758 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2759 2760 // Emit type/value pairs for varargs params. 2761 if (FTy->isVarArg()) { 2762 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2763 i != e; ++i) 2764 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2765 } 2766 break; 2767 } 2768 case Instruction::Resume: 2769 Code = bitc::FUNC_CODE_INST_RESUME; 2770 pushValueAndType(I.getOperand(0), InstID, Vals); 2771 break; 2772 case Instruction::CleanupRet: { 2773 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2774 const auto &CRI = cast<CleanupReturnInst>(I); 2775 pushValue(CRI.getCleanupPad(), InstID, Vals); 2776 if (CRI.hasUnwindDest()) 2777 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2778 break; 2779 } 2780 case Instruction::CatchRet: { 2781 Code = bitc::FUNC_CODE_INST_CATCHRET; 2782 const auto &CRI = cast<CatchReturnInst>(I); 2783 pushValue(CRI.getCatchPad(), InstID, Vals); 2784 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2785 break; 2786 } 2787 case Instruction::CleanupPad: 2788 case Instruction::CatchPad: { 2789 const auto &FuncletPad = cast<FuncletPadInst>(I); 2790 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2791 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2792 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2793 2794 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2795 Vals.push_back(NumArgOperands); 2796 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2797 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2798 break; 2799 } 2800 case Instruction::CatchSwitch: { 2801 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2802 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2803 2804 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2805 2806 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2807 Vals.push_back(NumHandlers); 2808 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2809 Vals.push_back(VE.getValueID(CatchPadBB)); 2810 2811 if (CatchSwitch.hasUnwindDest()) 2812 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2813 break; 2814 } 2815 case Instruction::CallBr: { 2816 const CallBrInst *CBI = cast<CallBrInst>(&I); 2817 const Value *Callee = CBI->getCalledValue(); 2818 FunctionType *FTy = CBI->getFunctionType(); 2819 2820 if (CBI->hasOperandBundles()) 2821 writeOperandBundles(CBI, InstID); 2822 2823 Code = bitc::FUNC_CODE_INST_CALLBR; 2824 2825 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2826 2827 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2828 1 << bitc::CALL_EXPLICIT_TYPE); 2829 2830 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2831 Vals.push_back(CBI->getNumIndirectDests()); 2832 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2833 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2834 2835 Vals.push_back(VE.getTypeID(FTy)); 2836 pushValueAndType(Callee, InstID, Vals); 2837 2838 // Emit value #'s for the fixed parameters. 2839 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2840 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2841 2842 // Emit type/value pairs for varargs params. 2843 if (FTy->isVarArg()) { 2844 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2845 i != e; ++i) 2846 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2847 } 2848 break; 2849 } 2850 case Instruction::Unreachable: 2851 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2852 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2853 break; 2854 2855 case Instruction::PHI: { 2856 const PHINode &PN = cast<PHINode>(I); 2857 Code = bitc::FUNC_CODE_INST_PHI; 2858 // With the newer instruction encoding, forward references could give 2859 // negative valued IDs. This is most common for PHIs, so we use 2860 // signed VBRs. 2861 SmallVector<uint64_t, 128> Vals64; 2862 Vals64.push_back(VE.getTypeID(PN.getType())); 2863 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2864 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2865 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2866 } 2867 // Emit a Vals64 vector and exit. 2868 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2869 Vals64.clear(); 2870 return; 2871 } 2872 2873 case Instruction::LandingPad: { 2874 const LandingPadInst &LP = cast<LandingPadInst>(I); 2875 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2876 Vals.push_back(VE.getTypeID(LP.getType())); 2877 Vals.push_back(LP.isCleanup()); 2878 Vals.push_back(LP.getNumClauses()); 2879 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2880 if (LP.isCatch(I)) 2881 Vals.push_back(LandingPadInst::Catch); 2882 else 2883 Vals.push_back(LandingPadInst::Filter); 2884 pushValueAndType(LP.getClause(I), InstID, Vals); 2885 } 2886 break; 2887 } 2888 2889 case Instruction::Alloca: { 2890 Code = bitc::FUNC_CODE_INST_ALLOCA; 2891 const AllocaInst &AI = cast<AllocaInst>(I); 2892 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2893 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2894 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2895 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2896 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2897 "not enough bits for maximum alignment"); 2898 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2899 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2900 AlignRecord |= 1 << 6; 2901 AlignRecord |= AI.isSwiftError() << 7; 2902 Vals.push_back(AlignRecord); 2903 break; 2904 } 2905 2906 case Instruction::Load: 2907 if (cast<LoadInst>(I).isAtomic()) { 2908 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2909 pushValueAndType(I.getOperand(0), InstID, Vals); 2910 } else { 2911 Code = bitc::FUNC_CODE_INST_LOAD; 2912 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2913 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2914 } 2915 Vals.push_back(VE.getTypeID(I.getType())); 2916 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2917 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2918 if (cast<LoadInst>(I).isAtomic()) { 2919 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2920 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2921 } 2922 break; 2923 case Instruction::Store: 2924 if (cast<StoreInst>(I).isAtomic()) 2925 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2926 else 2927 Code = bitc::FUNC_CODE_INST_STORE; 2928 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2929 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2930 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2931 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2932 if (cast<StoreInst>(I).isAtomic()) { 2933 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2934 Vals.push_back( 2935 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2936 } 2937 break; 2938 case Instruction::AtomicCmpXchg: 2939 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2940 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2941 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2942 pushValue(I.getOperand(2), InstID, Vals); // newval. 2943 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2944 Vals.push_back( 2945 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2946 Vals.push_back( 2947 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2948 Vals.push_back( 2949 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2950 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2951 break; 2952 case Instruction::AtomicRMW: 2953 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2954 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2955 pushValue(I.getOperand(1), InstID, Vals); // val. 2956 Vals.push_back( 2957 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2958 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2959 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2960 Vals.push_back( 2961 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2962 break; 2963 case Instruction::Fence: 2964 Code = bitc::FUNC_CODE_INST_FENCE; 2965 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2966 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2967 break; 2968 case Instruction::Call: { 2969 const CallInst &CI = cast<CallInst>(I); 2970 FunctionType *FTy = CI.getFunctionType(); 2971 2972 if (CI.hasOperandBundles()) 2973 writeOperandBundles(&CI, InstID); 2974 2975 Code = bitc::FUNC_CODE_INST_CALL; 2976 2977 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2978 2979 unsigned Flags = getOptimizationFlags(&I); 2980 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2981 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2982 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2983 1 << bitc::CALL_EXPLICIT_TYPE | 2984 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2985 unsigned(Flags != 0) << bitc::CALL_FMF); 2986 if (Flags != 0) 2987 Vals.push_back(Flags); 2988 2989 Vals.push_back(VE.getTypeID(FTy)); 2990 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2991 2992 // Emit value #'s for the fixed parameters. 2993 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2994 // Check for labels (can happen with asm labels). 2995 if (FTy->getParamType(i)->isLabelTy()) 2996 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2997 else 2998 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2999 } 3000 3001 // Emit type/value pairs for varargs params. 3002 if (FTy->isVarArg()) { 3003 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3004 i != e; ++i) 3005 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3006 } 3007 break; 3008 } 3009 case Instruction::VAArg: 3010 Code = bitc::FUNC_CODE_INST_VAARG; 3011 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3012 pushValue(I.getOperand(0), InstID, Vals); // valist. 3013 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3014 break; 3015 } 3016 3017 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3018 Vals.clear(); 3019 } 3020 3021 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3022 /// to allow clients to efficiently find the function body. 3023 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3024 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3025 // Get the offset of the VST we are writing, and backpatch it into 3026 // the VST forward declaration record. 3027 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3028 // The BitcodeStartBit was the stream offset of the identification block. 3029 VSTOffset -= bitcodeStartBit(); 3030 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3031 // Note that we add 1 here because the offset is relative to one word 3032 // before the start of the identification block, which was historically 3033 // always the start of the regular bitcode header. 3034 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3035 3036 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3037 3038 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3039 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3042 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3043 3044 for (const Function &F : M) { 3045 uint64_t Record[2]; 3046 3047 if (F.isDeclaration()) 3048 continue; 3049 3050 Record[0] = VE.getValueID(&F); 3051 3052 // Save the word offset of the function (from the start of the 3053 // actual bitcode written to the stream). 3054 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3055 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3056 // Note that we add 1 here because the offset is relative to one word 3057 // before the start of the identification block, which was historically 3058 // always the start of the regular bitcode header. 3059 Record[1] = BitcodeIndex / 32 + 1; 3060 3061 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3062 } 3063 3064 Stream.ExitBlock(); 3065 } 3066 3067 /// Emit names for arguments, instructions and basic blocks in a function. 3068 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3069 const ValueSymbolTable &VST) { 3070 if (VST.empty()) 3071 return; 3072 3073 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3074 3075 // FIXME: Set up the abbrev, we know how many values there are! 3076 // FIXME: We know if the type names can use 7-bit ascii. 3077 SmallVector<uint64_t, 64> NameVals; 3078 3079 for (const ValueName &Name : VST) { 3080 // Figure out the encoding to use for the name. 3081 StringEncoding Bits = getStringEncoding(Name.getKey()); 3082 3083 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3084 NameVals.push_back(VE.getValueID(Name.getValue())); 3085 3086 // VST_CODE_ENTRY: [valueid, namechar x N] 3087 // VST_CODE_BBENTRY: [bbid, namechar x N] 3088 unsigned Code; 3089 if (isa<BasicBlock>(Name.getValue())) { 3090 Code = bitc::VST_CODE_BBENTRY; 3091 if (Bits == SE_Char6) 3092 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3093 } else { 3094 Code = bitc::VST_CODE_ENTRY; 3095 if (Bits == SE_Char6) 3096 AbbrevToUse = VST_ENTRY_6_ABBREV; 3097 else if (Bits == SE_Fixed7) 3098 AbbrevToUse = VST_ENTRY_7_ABBREV; 3099 } 3100 3101 for (const auto P : Name.getKey()) 3102 NameVals.push_back((unsigned char)P); 3103 3104 // Emit the finished record. 3105 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3106 NameVals.clear(); 3107 } 3108 3109 Stream.ExitBlock(); 3110 } 3111 3112 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3113 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3114 unsigned Code; 3115 if (isa<BasicBlock>(Order.V)) 3116 Code = bitc::USELIST_CODE_BB; 3117 else 3118 Code = bitc::USELIST_CODE_DEFAULT; 3119 3120 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3121 Record.push_back(VE.getValueID(Order.V)); 3122 Stream.EmitRecord(Code, Record); 3123 } 3124 3125 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3126 assert(VE.shouldPreserveUseListOrder() && 3127 "Expected to be preserving use-list order"); 3128 3129 auto hasMore = [&]() { 3130 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3131 }; 3132 if (!hasMore()) 3133 // Nothing to do. 3134 return; 3135 3136 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3137 while (hasMore()) { 3138 writeUseList(std::move(VE.UseListOrders.back())); 3139 VE.UseListOrders.pop_back(); 3140 } 3141 Stream.ExitBlock(); 3142 } 3143 3144 /// Emit a function body to the module stream. 3145 void ModuleBitcodeWriter::writeFunction( 3146 const Function &F, 3147 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3148 // Save the bitcode index of the start of this function block for recording 3149 // in the VST. 3150 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3151 3152 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3153 VE.incorporateFunction(F); 3154 3155 SmallVector<unsigned, 64> Vals; 3156 3157 // Emit the number of basic blocks, so the reader can create them ahead of 3158 // time. 3159 Vals.push_back(VE.getBasicBlocks().size()); 3160 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3161 Vals.clear(); 3162 3163 // If there are function-local constants, emit them now. 3164 unsigned CstStart, CstEnd; 3165 VE.getFunctionConstantRange(CstStart, CstEnd); 3166 writeConstants(CstStart, CstEnd, false); 3167 3168 // If there is function-local metadata, emit it now. 3169 writeFunctionMetadata(F); 3170 3171 // Keep a running idea of what the instruction ID is. 3172 unsigned InstID = CstEnd; 3173 3174 bool NeedsMetadataAttachment = F.hasMetadata(); 3175 3176 DILocation *LastDL = nullptr; 3177 // Finally, emit all the instructions, in order. 3178 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3179 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3180 I != E; ++I) { 3181 writeInstruction(*I, InstID, Vals); 3182 3183 if (!I->getType()->isVoidTy()) 3184 ++InstID; 3185 3186 // If the instruction has metadata, write a metadata attachment later. 3187 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3188 3189 // If the instruction has a debug location, emit it. 3190 DILocation *DL = I->getDebugLoc(); 3191 if (!DL) 3192 continue; 3193 3194 if (DL == LastDL) { 3195 // Just repeat the same debug loc as last time. 3196 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3197 continue; 3198 } 3199 3200 Vals.push_back(DL->getLine()); 3201 Vals.push_back(DL->getColumn()); 3202 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3203 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3204 Vals.push_back(DL->isImplicitCode()); 3205 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3206 Vals.clear(); 3207 3208 LastDL = DL; 3209 } 3210 3211 // Emit names for all the instructions etc. 3212 if (auto *Symtab = F.getValueSymbolTable()) 3213 writeFunctionLevelValueSymbolTable(*Symtab); 3214 3215 if (NeedsMetadataAttachment) 3216 writeFunctionMetadataAttachment(F); 3217 if (VE.shouldPreserveUseListOrder()) 3218 writeUseListBlock(&F); 3219 VE.purgeFunction(); 3220 Stream.ExitBlock(); 3221 } 3222 3223 // Emit blockinfo, which defines the standard abbreviations etc. 3224 void ModuleBitcodeWriter::writeBlockInfo() { 3225 // We only want to emit block info records for blocks that have multiple 3226 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3227 // Other blocks can define their abbrevs inline. 3228 Stream.EnterBlockInfoBlock(); 3229 3230 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3231 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3236 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3237 VST_ENTRY_8_ABBREV) 3238 llvm_unreachable("Unexpected abbrev ordering!"); 3239 } 3240 3241 { // 7-bit fixed width VST_CODE_ENTRY strings. 3242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3243 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3247 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3248 VST_ENTRY_7_ABBREV) 3249 llvm_unreachable("Unexpected abbrev ordering!"); 3250 } 3251 { // 6-bit char6 VST_CODE_ENTRY strings. 3252 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3253 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3257 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3258 VST_ENTRY_6_ABBREV) 3259 llvm_unreachable("Unexpected abbrev ordering!"); 3260 } 3261 { // 6-bit char6 VST_CODE_BBENTRY strings. 3262 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3263 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3264 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3267 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3268 VST_BBENTRY_6_ABBREV) 3269 llvm_unreachable("Unexpected abbrev ordering!"); 3270 } 3271 3272 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3273 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3274 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3276 VE.computeBitsRequiredForTypeIndicies())); 3277 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3278 CONSTANTS_SETTYPE_ABBREV) 3279 llvm_unreachable("Unexpected abbrev ordering!"); 3280 } 3281 3282 { // INTEGER abbrev for CONSTANTS_BLOCK. 3283 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3284 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3286 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3287 CONSTANTS_INTEGER_ABBREV) 3288 llvm_unreachable("Unexpected abbrev ordering!"); 3289 } 3290 3291 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3292 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3293 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3296 VE.computeBitsRequiredForTypeIndicies())); 3297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3298 3299 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3300 CONSTANTS_CE_CAST_Abbrev) 3301 llvm_unreachable("Unexpected abbrev ordering!"); 3302 } 3303 { // NULL abbrev for CONSTANTS_BLOCK. 3304 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3305 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3306 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3307 CONSTANTS_NULL_Abbrev) 3308 llvm_unreachable("Unexpected abbrev ordering!"); 3309 } 3310 3311 // FIXME: This should only use space for first class types! 3312 3313 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3314 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3315 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3318 VE.computeBitsRequiredForTypeIndicies())); 3319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3321 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3322 FUNCTION_INST_LOAD_ABBREV) 3323 llvm_unreachable("Unexpected abbrev ordering!"); 3324 } 3325 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3327 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3330 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3331 FUNCTION_INST_UNOP_ABBREV) 3332 llvm_unreachable("Unexpected abbrev ordering!"); 3333 } 3334 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3335 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3336 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3340 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3341 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3342 llvm_unreachable("Unexpected abbrev ordering!"); 3343 } 3344 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3345 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3346 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3350 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3351 FUNCTION_INST_BINOP_ABBREV) 3352 llvm_unreachable("Unexpected abbrev ordering!"); 3353 } 3354 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3355 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3356 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3361 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3362 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3363 llvm_unreachable("Unexpected abbrev ordering!"); 3364 } 3365 { // INST_CAST abbrev for FUNCTION_BLOCK. 3366 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3367 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3370 VE.computeBitsRequiredForTypeIndicies())); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3372 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3373 FUNCTION_INST_CAST_ABBREV) 3374 llvm_unreachable("Unexpected abbrev ordering!"); 3375 } 3376 3377 { // INST_RET abbrev for FUNCTION_BLOCK. 3378 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3379 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3380 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3381 FUNCTION_INST_RET_VOID_ABBREV) 3382 llvm_unreachable("Unexpected abbrev ordering!"); 3383 } 3384 { // INST_RET abbrev for FUNCTION_BLOCK. 3385 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3386 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3388 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3389 FUNCTION_INST_RET_VAL_ABBREV) 3390 llvm_unreachable("Unexpected abbrev ordering!"); 3391 } 3392 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3393 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3394 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3395 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3396 FUNCTION_INST_UNREACHABLE_ABBREV) 3397 llvm_unreachable("Unexpected abbrev ordering!"); 3398 } 3399 { 3400 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3401 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3404 Log2_32_Ceil(VE.getTypes().size() + 1))); 3405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3407 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3408 FUNCTION_INST_GEP_ABBREV) 3409 llvm_unreachable("Unexpected abbrev ordering!"); 3410 } 3411 3412 Stream.ExitBlock(); 3413 } 3414 3415 /// Write the module path strings, currently only used when generating 3416 /// a combined index file. 3417 void IndexBitcodeWriter::writeModStrings() { 3418 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3419 3420 // TODO: See which abbrev sizes we actually need to emit 3421 3422 // 8-bit fixed-width MST_ENTRY strings. 3423 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3424 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3428 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3429 3430 // 7-bit fixed width MST_ENTRY strings. 3431 Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3436 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3437 3438 // 6-bit char6 MST_ENTRY strings. 3439 Abbv = std::make_shared<BitCodeAbbrev>(); 3440 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3444 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3445 3446 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3447 Abbv = std::make_shared<BitCodeAbbrev>(); 3448 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3454 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3455 3456 SmallVector<unsigned, 64> Vals; 3457 forEachModule( 3458 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3459 StringRef Key = MPSE.getKey(); 3460 const auto &Value = MPSE.getValue(); 3461 StringEncoding Bits = getStringEncoding(Key); 3462 unsigned AbbrevToUse = Abbrev8Bit; 3463 if (Bits == SE_Char6) 3464 AbbrevToUse = Abbrev6Bit; 3465 else if (Bits == SE_Fixed7) 3466 AbbrevToUse = Abbrev7Bit; 3467 3468 Vals.push_back(Value.first); 3469 Vals.append(Key.begin(), Key.end()); 3470 3471 // Emit the finished record. 3472 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3473 3474 // Emit an optional hash for the module now 3475 const auto &Hash = Value.second; 3476 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3477 Vals.assign(Hash.begin(), Hash.end()); 3478 // Emit the hash record. 3479 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3480 } 3481 3482 Vals.clear(); 3483 }); 3484 Stream.ExitBlock(); 3485 } 3486 3487 /// Write the function type metadata related records that need to appear before 3488 /// a function summary entry (whether per-module or combined). 3489 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3490 FunctionSummary *FS) { 3491 if (!FS->type_tests().empty()) 3492 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3493 3494 SmallVector<uint64_t, 64> Record; 3495 3496 auto WriteVFuncIdVec = [&](uint64_t Ty, 3497 ArrayRef<FunctionSummary::VFuncId> VFs) { 3498 if (VFs.empty()) 3499 return; 3500 Record.clear(); 3501 for (auto &VF : VFs) { 3502 Record.push_back(VF.GUID); 3503 Record.push_back(VF.Offset); 3504 } 3505 Stream.EmitRecord(Ty, Record); 3506 }; 3507 3508 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3509 FS->type_test_assume_vcalls()); 3510 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3511 FS->type_checked_load_vcalls()); 3512 3513 auto WriteConstVCallVec = [&](uint64_t Ty, 3514 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3515 for (auto &VC : VCs) { 3516 Record.clear(); 3517 Record.push_back(VC.VFunc.GUID); 3518 Record.push_back(VC.VFunc.Offset); 3519 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3520 Stream.EmitRecord(Ty, Record); 3521 } 3522 }; 3523 3524 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3525 FS->type_test_assume_const_vcalls()); 3526 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3527 FS->type_checked_load_const_vcalls()); 3528 } 3529 3530 /// Collect type IDs from type tests used by function. 3531 static void 3532 getReferencedTypeIds(FunctionSummary *FS, 3533 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3534 if (!FS->type_tests().empty()) 3535 for (auto &TT : FS->type_tests()) 3536 ReferencedTypeIds.insert(TT); 3537 3538 auto GetReferencedTypesFromVFuncIdVec = 3539 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3540 for (auto &VF : VFs) 3541 ReferencedTypeIds.insert(VF.GUID); 3542 }; 3543 3544 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3545 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3546 3547 auto GetReferencedTypesFromConstVCallVec = 3548 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3549 for (auto &VC : VCs) 3550 ReferencedTypeIds.insert(VC.VFunc.GUID); 3551 }; 3552 3553 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3554 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3555 } 3556 3557 static void writeWholeProgramDevirtResolutionByArg( 3558 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3559 const WholeProgramDevirtResolution::ByArg &ByArg) { 3560 NameVals.push_back(args.size()); 3561 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3562 3563 NameVals.push_back(ByArg.TheKind); 3564 NameVals.push_back(ByArg.Info); 3565 NameVals.push_back(ByArg.Byte); 3566 NameVals.push_back(ByArg.Bit); 3567 } 3568 3569 static void writeWholeProgramDevirtResolution( 3570 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3571 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3572 NameVals.push_back(Id); 3573 3574 NameVals.push_back(Wpd.TheKind); 3575 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3576 NameVals.push_back(Wpd.SingleImplName.size()); 3577 3578 NameVals.push_back(Wpd.ResByArg.size()); 3579 for (auto &A : Wpd.ResByArg) 3580 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3581 } 3582 3583 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3584 StringTableBuilder &StrtabBuilder, 3585 const std::string &Id, 3586 const TypeIdSummary &Summary) { 3587 NameVals.push_back(StrtabBuilder.add(Id)); 3588 NameVals.push_back(Id.size()); 3589 3590 NameVals.push_back(Summary.TTRes.TheKind); 3591 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3592 NameVals.push_back(Summary.TTRes.AlignLog2); 3593 NameVals.push_back(Summary.TTRes.SizeM1); 3594 NameVals.push_back(Summary.TTRes.BitMask); 3595 NameVals.push_back(Summary.TTRes.InlineBits); 3596 3597 for (auto &W : Summary.WPDRes) 3598 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3599 W.second); 3600 } 3601 3602 // Helper to emit a single function summary record. 3603 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3604 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3605 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3606 const Function &F) { 3607 NameVals.push_back(ValueID); 3608 3609 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3610 writeFunctionTypeMetadataRecords(Stream, FS); 3611 3612 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3613 NameVals.push_back(FS->instCount()); 3614 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3615 NameVals.push_back(FS->refs().size()); 3616 NameVals.push_back(FS->immutableRefCount()); 3617 3618 for (auto &RI : FS->refs()) 3619 NameVals.push_back(VE.getValueID(RI.getValue())); 3620 3621 bool HasProfileData = 3622 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3623 for (auto &ECI : FS->calls()) { 3624 NameVals.push_back(getValueId(ECI.first)); 3625 if (HasProfileData) 3626 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3627 else if (WriteRelBFToSummary) 3628 NameVals.push_back(ECI.second.RelBlockFreq); 3629 } 3630 3631 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3632 unsigned Code = 3633 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3634 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3635 : bitc::FS_PERMODULE)); 3636 3637 // Emit the finished record. 3638 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3639 NameVals.clear(); 3640 } 3641 3642 // Collect the global value references in the given variable's initializer, 3643 // and emit them in a summary record. 3644 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3645 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3646 unsigned FSModRefsAbbrev) { 3647 auto VI = Index->getValueInfo(V.getGUID()); 3648 if (!VI || VI.getSummaryList().empty()) { 3649 // Only declarations should not have a summary (a declaration might however 3650 // have a summary if the def was in module level asm). 3651 assert(V.isDeclaration()); 3652 return; 3653 } 3654 auto *Summary = VI.getSummaryList()[0].get(); 3655 NameVals.push_back(VE.getValueID(&V)); 3656 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3657 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3658 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3659 3660 unsigned SizeBeforeRefs = NameVals.size(); 3661 for (auto &RI : VS->refs()) 3662 NameVals.push_back(VE.getValueID(RI.getValue())); 3663 // Sort the refs for determinism output, the vector returned by FS->refs() has 3664 // been initialized from a DenseSet. 3665 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3666 3667 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3668 FSModRefsAbbrev); 3669 NameVals.clear(); 3670 } 3671 3672 // Current version for the summary. 3673 // This is bumped whenever we introduce changes in the way some record are 3674 // interpreted, like flags for instance. 3675 static const uint64_t INDEX_VERSION = 6; 3676 3677 /// Emit the per-module summary section alongside the rest of 3678 /// the module's bitcode. 3679 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3680 // By default we compile with ThinLTO if the module has a summary, but the 3681 // client can request full LTO with a module flag. 3682 bool IsThinLTO = true; 3683 if (auto *MD = 3684 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3685 IsThinLTO = MD->getZExtValue(); 3686 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3687 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3688 4); 3689 3690 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3691 3692 // Write the index flags. 3693 uint64_t Flags = 0; 3694 // Bits 1-3 are set only in the combined index, skip them. 3695 if (Index->enableSplitLTOUnit()) 3696 Flags |= 0x8; 3697 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3698 3699 if (Index->begin() == Index->end()) { 3700 Stream.ExitBlock(); 3701 return; 3702 } 3703 3704 for (const auto &GVI : valueIds()) { 3705 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3706 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3707 } 3708 3709 // Abbrev for FS_PERMODULE_PROFILE. 3710 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3711 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3718 // numrefs x valueid, n x (valueid, hotness) 3719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3721 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3722 3723 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3724 Abbv = std::make_shared<BitCodeAbbrev>(); 3725 if (WriteRelBFToSummary) 3726 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3727 else 3728 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3735 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3738 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3739 3740 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3741 Abbv = std::make_shared<BitCodeAbbrev>(); 3742 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3747 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3748 3749 // Abbrev for FS_ALIAS. 3750 Abbv = std::make_shared<BitCodeAbbrev>(); 3751 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3755 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3756 3757 SmallVector<uint64_t, 64> NameVals; 3758 // Iterate over the list of functions instead of the Index to 3759 // ensure the ordering is stable. 3760 for (const Function &F : M) { 3761 // Summary emission does not support anonymous functions, they have to 3762 // renamed using the anonymous function renaming pass. 3763 if (!F.hasName()) 3764 report_fatal_error("Unexpected anonymous function when writing summary"); 3765 3766 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3767 if (!VI || VI.getSummaryList().empty()) { 3768 // Only declarations should not have a summary (a declaration might 3769 // however have a summary if the def was in module level asm). 3770 assert(F.isDeclaration()); 3771 continue; 3772 } 3773 auto *Summary = VI.getSummaryList()[0].get(); 3774 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3775 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3776 } 3777 3778 // Capture references from GlobalVariable initializers, which are outside 3779 // of a function scope. 3780 for (const GlobalVariable &G : M.globals()) 3781 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3782 3783 for (const GlobalAlias &A : M.aliases()) { 3784 auto *Aliasee = A.getBaseObject(); 3785 if (!Aliasee->hasName()) 3786 // Nameless function don't have an entry in the summary, skip it. 3787 continue; 3788 auto AliasId = VE.getValueID(&A); 3789 auto AliaseeId = VE.getValueID(Aliasee); 3790 NameVals.push_back(AliasId); 3791 auto *Summary = Index->getGlobalValueSummary(A); 3792 AliasSummary *AS = cast<AliasSummary>(Summary); 3793 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3794 NameVals.push_back(AliaseeId); 3795 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3796 NameVals.clear(); 3797 } 3798 3799 Stream.ExitBlock(); 3800 } 3801 3802 /// Emit the combined summary section into the combined index file. 3803 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3804 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3805 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3806 3807 // Write the index flags. 3808 uint64_t Flags = 0; 3809 if (Index.withGlobalValueDeadStripping()) 3810 Flags |= 0x1; 3811 if (Index.skipModuleByDistributedBackend()) 3812 Flags |= 0x2; 3813 if (Index.hasSyntheticEntryCounts()) 3814 Flags |= 0x4; 3815 if (Index.enableSplitLTOUnit()) 3816 Flags |= 0x8; 3817 if (Index.partiallySplitLTOUnits()) 3818 Flags |= 0x10; 3819 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3820 3821 for (const auto &GVI : valueIds()) { 3822 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3823 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3824 } 3825 3826 // Abbrev for FS_COMBINED. 3827 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3828 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3837 // numrefs x valueid, n x (valueid) 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3840 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3841 3842 // Abbrev for FS_COMBINED_PROFILE. 3843 Abbv = std::make_shared<BitCodeAbbrev>(); 3844 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3850 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // immutablerefcnt 3852 // numrefs x valueid, n x (valueid, hotness) 3853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3855 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3856 3857 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3858 Abbv = std::make_shared<BitCodeAbbrev>(); 3859 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3865 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3866 3867 // Abbrev for FS_COMBINED_ALIAS. 3868 Abbv = std::make_shared<BitCodeAbbrev>(); 3869 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3874 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3875 3876 // The aliases are emitted as a post-pass, and will point to the value 3877 // id of the aliasee. Save them in a vector for post-processing. 3878 SmallVector<AliasSummary *, 64> Aliases; 3879 3880 // Save the value id for each summary for alias emission. 3881 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3882 3883 SmallVector<uint64_t, 64> NameVals; 3884 3885 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3886 // with the type ids referenced by this index file. 3887 std::set<GlobalValue::GUID> ReferencedTypeIds; 3888 3889 // For local linkage, we also emit the original name separately 3890 // immediately after the record. 3891 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3892 if (!GlobalValue::isLocalLinkage(S.linkage())) 3893 return; 3894 NameVals.push_back(S.getOriginalName()); 3895 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3896 NameVals.clear(); 3897 }; 3898 3899 forEachSummary([&](GVInfo I, bool IsAliasee) { 3900 GlobalValueSummary *S = I.second; 3901 assert(S); 3902 3903 auto ValueId = getValueId(I.first); 3904 assert(ValueId); 3905 SummaryToValueIdMap[S] = *ValueId; 3906 3907 // If this is invoked for an aliasee, we want to record the above 3908 // mapping, but then not emit a summary entry (if the aliasee is 3909 // to be imported, we will invoke this separately with IsAliasee=false). 3910 if (IsAliasee) 3911 return; 3912 3913 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3914 // Will process aliases as a post-pass because the reader wants all 3915 // global to be loaded first. 3916 Aliases.push_back(AS); 3917 return; 3918 } 3919 3920 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3921 NameVals.push_back(*ValueId); 3922 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3923 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3924 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3925 for (auto &RI : VS->refs()) { 3926 auto RefValueId = getValueId(RI.getGUID()); 3927 if (!RefValueId) 3928 continue; 3929 NameVals.push_back(*RefValueId); 3930 } 3931 3932 // Emit the finished record. 3933 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3934 FSModRefsAbbrev); 3935 NameVals.clear(); 3936 MaybeEmitOriginalName(*S); 3937 return; 3938 } 3939 3940 auto *FS = cast<FunctionSummary>(S); 3941 writeFunctionTypeMetadataRecords(Stream, FS); 3942 getReferencedTypeIds(FS, ReferencedTypeIds); 3943 3944 NameVals.push_back(*ValueId); 3945 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3946 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3947 NameVals.push_back(FS->instCount()); 3948 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3949 NameVals.push_back(FS->entryCount()); 3950 3951 // Fill in below 3952 NameVals.push_back(0); // numrefs 3953 NameVals.push_back(0); // immutablerefcnt 3954 3955 unsigned Count = 0, ImmutableRefCnt = 0; 3956 for (auto &RI : FS->refs()) { 3957 auto RefValueId = getValueId(RI.getGUID()); 3958 if (!RefValueId) 3959 continue; 3960 NameVals.push_back(*RefValueId); 3961 if (RI.isReadOnly()) 3962 ImmutableRefCnt++; 3963 Count++; 3964 } 3965 NameVals[6] = Count; 3966 NameVals[7] = ImmutableRefCnt; 3967 3968 bool HasProfileData = false; 3969 for (auto &EI : FS->calls()) { 3970 HasProfileData |= 3971 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3972 if (HasProfileData) 3973 break; 3974 } 3975 3976 for (auto &EI : FS->calls()) { 3977 // If this GUID doesn't have a value id, it doesn't have a function 3978 // summary and we don't need to record any calls to it. 3979 GlobalValue::GUID GUID = EI.first.getGUID(); 3980 auto CallValueId = getValueId(GUID); 3981 if (!CallValueId) { 3982 // For SamplePGO, the indirect call targets for local functions will 3983 // have its original name annotated in profile. We try to find the 3984 // corresponding PGOFuncName as the GUID. 3985 GUID = Index.getGUIDFromOriginalID(GUID); 3986 if (GUID == 0) 3987 continue; 3988 CallValueId = getValueId(GUID); 3989 if (!CallValueId) 3990 continue; 3991 // The mapping from OriginalId to GUID may return a GUID 3992 // that corresponds to a static variable. Filter it out here. 3993 // This can happen when 3994 // 1) There is a call to a library function which does not have 3995 // a CallValidId; 3996 // 2) There is a static variable with the OriginalGUID identical 3997 // to the GUID of the library function in 1); 3998 // When this happens, the logic for SamplePGO kicks in and 3999 // the static variable in 2) will be found, which needs to be 4000 // filtered out. 4001 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4002 if (GVSum && 4003 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4004 continue; 4005 } 4006 NameVals.push_back(*CallValueId); 4007 if (HasProfileData) 4008 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4009 } 4010 4011 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4012 unsigned Code = 4013 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4014 4015 // Emit the finished record. 4016 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4017 NameVals.clear(); 4018 MaybeEmitOriginalName(*S); 4019 }); 4020 4021 for (auto *AS : Aliases) { 4022 auto AliasValueId = SummaryToValueIdMap[AS]; 4023 assert(AliasValueId); 4024 NameVals.push_back(AliasValueId); 4025 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4026 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4027 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4028 assert(AliaseeValueId); 4029 NameVals.push_back(AliaseeValueId); 4030 4031 // Emit the finished record. 4032 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4033 NameVals.clear(); 4034 MaybeEmitOriginalName(*AS); 4035 4036 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4037 getReferencedTypeIds(FS, ReferencedTypeIds); 4038 } 4039 4040 if (!Index.cfiFunctionDefs().empty()) { 4041 for (auto &S : Index.cfiFunctionDefs()) { 4042 NameVals.push_back(StrtabBuilder.add(S)); 4043 NameVals.push_back(S.size()); 4044 } 4045 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4046 NameVals.clear(); 4047 } 4048 4049 if (!Index.cfiFunctionDecls().empty()) { 4050 for (auto &S : Index.cfiFunctionDecls()) { 4051 NameVals.push_back(StrtabBuilder.add(S)); 4052 NameVals.push_back(S.size()); 4053 } 4054 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4055 NameVals.clear(); 4056 } 4057 4058 // Walk the GUIDs that were referenced, and write the 4059 // corresponding type id records. 4060 for (auto &T : ReferencedTypeIds) { 4061 auto TidIter = Index.typeIds().equal_range(T); 4062 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4063 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4064 It->second.second); 4065 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4066 NameVals.clear(); 4067 } 4068 } 4069 4070 Stream.ExitBlock(); 4071 } 4072 4073 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4074 /// current llvm version, and a record for the epoch number. 4075 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4076 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4077 4078 // Write the "user readable" string identifying the bitcode producer 4079 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4080 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4083 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4084 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4085 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4086 4087 // Write the epoch version 4088 Abbv = std::make_shared<BitCodeAbbrev>(); 4089 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4091 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4092 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4093 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4094 Stream.ExitBlock(); 4095 } 4096 4097 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4098 // Emit the module's hash. 4099 // MODULE_CODE_HASH: [5*i32] 4100 if (GenerateHash) { 4101 uint32_t Vals[5]; 4102 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4103 Buffer.size() - BlockStartPos)); 4104 StringRef Hash = Hasher.result(); 4105 for (int Pos = 0; Pos < 20; Pos += 4) { 4106 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4107 } 4108 4109 // Emit the finished record. 4110 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4111 4112 if (ModHash) 4113 // Save the written hash value. 4114 llvm::copy(Vals, std::begin(*ModHash)); 4115 } 4116 } 4117 4118 void ModuleBitcodeWriter::write() { 4119 writeIdentificationBlock(Stream); 4120 4121 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4122 size_t BlockStartPos = Buffer.size(); 4123 4124 writeModuleVersion(); 4125 4126 // Emit blockinfo, which defines the standard abbreviations etc. 4127 writeBlockInfo(); 4128 4129 // Emit information about attribute groups. 4130 writeAttributeGroupTable(); 4131 4132 // Emit information about parameter attributes. 4133 writeAttributeTable(); 4134 4135 // Emit information describing all of the types in the module. 4136 writeTypeTable(); 4137 4138 writeComdats(); 4139 4140 // Emit top-level description of module, including target triple, inline asm, 4141 // descriptors for global variables, and function prototype info. 4142 writeModuleInfo(); 4143 4144 // Emit constants. 4145 writeModuleConstants(); 4146 4147 // Emit metadata kind names. 4148 writeModuleMetadataKinds(); 4149 4150 // Emit metadata. 4151 writeModuleMetadata(); 4152 4153 // Emit module-level use-lists. 4154 if (VE.shouldPreserveUseListOrder()) 4155 writeUseListBlock(nullptr); 4156 4157 writeOperandBundleTags(); 4158 writeSyncScopeNames(); 4159 4160 // Emit function bodies. 4161 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4162 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4163 if (!F->isDeclaration()) 4164 writeFunction(*F, FunctionToBitcodeIndex); 4165 4166 // Need to write after the above call to WriteFunction which populates 4167 // the summary information in the index. 4168 if (Index) 4169 writePerModuleGlobalValueSummary(); 4170 4171 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4172 4173 writeModuleHash(BlockStartPos); 4174 4175 Stream.ExitBlock(); 4176 } 4177 4178 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4179 uint32_t &Position) { 4180 support::endian::write32le(&Buffer[Position], Value); 4181 Position += 4; 4182 } 4183 4184 /// If generating a bc file on darwin, we have to emit a 4185 /// header and trailer to make it compatible with the system archiver. To do 4186 /// this we emit the following header, and then emit a trailer that pads the 4187 /// file out to be a multiple of 16 bytes. 4188 /// 4189 /// struct bc_header { 4190 /// uint32_t Magic; // 0x0B17C0DE 4191 /// uint32_t Version; // Version, currently always 0. 4192 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4193 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4194 /// uint32_t CPUType; // CPU specifier. 4195 /// ... potentially more later ... 4196 /// }; 4197 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4198 const Triple &TT) { 4199 unsigned CPUType = ~0U; 4200 4201 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4202 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4203 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4204 // specific constants here because they are implicitly part of the Darwin ABI. 4205 enum { 4206 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4207 DARWIN_CPU_TYPE_X86 = 7, 4208 DARWIN_CPU_TYPE_ARM = 12, 4209 DARWIN_CPU_TYPE_POWERPC = 18 4210 }; 4211 4212 Triple::ArchType Arch = TT.getArch(); 4213 if (Arch == Triple::x86_64) 4214 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4215 else if (Arch == Triple::x86) 4216 CPUType = DARWIN_CPU_TYPE_X86; 4217 else if (Arch == Triple::ppc) 4218 CPUType = DARWIN_CPU_TYPE_POWERPC; 4219 else if (Arch == Triple::ppc64) 4220 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4221 else if (Arch == Triple::arm || Arch == Triple::thumb) 4222 CPUType = DARWIN_CPU_TYPE_ARM; 4223 4224 // Traditional Bitcode starts after header. 4225 assert(Buffer.size() >= BWH_HeaderSize && 4226 "Expected header size to be reserved"); 4227 unsigned BCOffset = BWH_HeaderSize; 4228 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4229 4230 // Write the magic and version. 4231 unsigned Position = 0; 4232 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4233 writeInt32ToBuffer(0, Buffer, Position); // Version. 4234 writeInt32ToBuffer(BCOffset, Buffer, Position); 4235 writeInt32ToBuffer(BCSize, Buffer, Position); 4236 writeInt32ToBuffer(CPUType, Buffer, Position); 4237 4238 // If the file is not a multiple of 16 bytes, insert dummy padding. 4239 while (Buffer.size() & 15) 4240 Buffer.push_back(0); 4241 } 4242 4243 /// Helper to write the header common to all bitcode files. 4244 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4245 // Emit the file header. 4246 Stream.Emit((unsigned)'B', 8); 4247 Stream.Emit((unsigned)'C', 8); 4248 Stream.Emit(0x0, 4); 4249 Stream.Emit(0xC, 4); 4250 Stream.Emit(0xE, 4); 4251 Stream.Emit(0xD, 4); 4252 } 4253 4254 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4255 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4256 writeBitcodeHeader(*Stream); 4257 } 4258 4259 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4260 4261 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4262 Stream->EnterSubblock(Block, 3); 4263 4264 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4265 Abbv->Add(BitCodeAbbrevOp(Record)); 4266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4267 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4268 4269 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4270 4271 Stream->ExitBlock(); 4272 } 4273 4274 void BitcodeWriter::writeSymtab() { 4275 assert(!WroteStrtab && !WroteSymtab); 4276 4277 // If any module has module-level inline asm, we will require a registered asm 4278 // parser for the target so that we can create an accurate symbol table for 4279 // the module. 4280 for (Module *M : Mods) { 4281 if (M->getModuleInlineAsm().empty()) 4282 continue; 4283 4284 std::string Err; 4285 const Triple TT(M->getTargetTriple()); 4286 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4287 if (!T || !T->hasMCAsmParser()) 4288 return; 4289 } 4290 4291 WroteSymtab = true; 4292 SmallVector<char, 0> Symtab; 4293 // The irsymtab::build function may be unable to create a symbol table if the 4294 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4295 // table is not required for correctness, but we still want to be able to 4296 // write malformed modules to bitcode files, so swallow the error. 4297 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4298 consumeError(std::move(E)); 4299 return; 4300 } 4301 4302 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4303 {Symtab.data(), Symtab.size()}); 4304 } 4305 4306 void BitcodeWriter::writeStrtab() { 4307 assert(!WroteStrtab); 4308 4309 std::vector<char> Strtab; 4310 StrtabBuilder.finalizeInOrder(); 4311 Strtab.resize(StrtabBuilder.getSize()); 4312 StrtabBuilder.write((uint8_t *)Strtab.data()); 4313 4314 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4315 {Strtab.data(), Strtab.size()}); 4316 4317 WroteStrtab = true; 4318 } 4319 4320 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4321 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4322 WroteStrtab = true; 4323 } 4324 4325 void BitcodeWriter::writeModule(const Module &M, 4326 bool ShouldPreserveUseListOrder, 4327 const ModuleSummaryIndex *Index, 4328 bool GenerateHash, ModuleHash *ModHash) { 4329 assert(!WroteStrtab); 4330 4331 // The Mods vector is used by irsymtab::build, which requires non-const 4332 // Modules in case it needs to materialize metadata. But the bitcode writer 4333 // requires that the module is materialized, so we can cast to non-const here, 4334 // after checking that it is in fact materialized. 4335 assert(M.isMaterialized()); 4336 Mods.push_back(const_cast<Module *>(&M)); 4337 4338 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4339 ShouldPreserveUseListOrder, Index, 4340 GenerateHash, ModHash); 4341 ModuleWriter.write(); 4342 } 4343 4344 void BitcodeWriter::writeIndex( 4345 const ModuleSummaryIndex *Index, 4346 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4347 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4348 ModuleToSummariesForIndex); 4349 IndexWriter.write(); 4350 } 4351 4352 /// Write the specified module to the specified output stream. 4353 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4354 bool ShouldPreserveUseListOrder, 4355 const ModuleSummaryIndex *Index, 4356 bool GenerateHash, ModuleHash *ModHash) { 4357 SmallVector<char, 0> Buffer; 4358 Buffer.reserve(256*1024); 4359 4360 // If this is darwin or another generic macho target, reserve space for the 4361 // header. 4362 Triple TT(M.getTargetTriple()); 4363 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4364 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4365 4366 BitcodeWriter Writer(Buffer); 4367 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4368 ModHash); 4369 Writer.writeSymtab(); 4370 Writer.writeStrtab(); 4371 4372 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4373 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4374 4375 // Write the generated bitstream to "Out". 4376 Out.write((char*)&Buffer.front(), Buffer.size()); 4377 } 4378 4379 void IndexBitcodeWriter::write() { 4380 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4381 4382 writeModuleVersion(); 4383 4384 // Write the module paths in the combined index. 4385 writeModStrings(); 4386 4387 // Write the summary combined index records. 4388 writeCombinedGlobalValueSummary(); 4389 4390 Stream.ExitBlock(); 4391 } 4392 4393 // Write the specified module summary index to the given raw output stream, 4394 // where it will be written in a new bitcode block. This is used when 4395 // writing the combined index file for ThinLTO. When writing a subset of the 4396 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4397 void llvm::WriteIndexToFile( 4398 const ModuleSummaryIndex &Index, raw_ostream &Out, 4399 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4400 SmallVector<char, 0> Buffer; 4401 Buffer.reserve(256 * 1024); 4402 4403 BitcodeWriter Writer(Buffer); 4404 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4405 Writer.writeStrtab(); 4406 4407 Out.write((char *)&Buffer.front(), Buffer.size()); 4408 } 4409 4410 namespace { 4411 4412 /// Class to manage the bitcode writing for a thin link bitcode file. 4413 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4414 /// ModHash is for use in ThinLTO incremental build, generated while writing 4415 /// the module bitcode file. 4416 const ModuleHash *ModHash; 4417 4418 public: 4419 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4420 BitstreamWriter &Stream, 4421 const ModuleSummaryIndex &Index, 4422 const ModuleHash &ModHash) 4423 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4424 /*ShouldPreserveUseListOrder=*/false, &Index), 4425 ModHash(&ModHash) {} 4426 4427 void write(); 4428 4429 private: 4430 void writeSimplifiedModuleInfo(); 4431 }; 4432 4433 } // end anonymous namespace 4434 4435 // This function writes a simpilified module info for thin link bitcode file. 4436 // It only contains the source file name along with the name(the offset and 4437 // size in strtab) and linkage for global values. For the global value info 4438 // entry, in order to keep linkage at offset 5, there are three zeros used 4439 // as padding. 4440 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4441 SmallVector<unsigned, 64> Vals; 4442 // Emit the module's source file name. 4443 { 4444 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4445 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4446 if (Bits == SE_Char6) 4447 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4448 else if (Bits == SE_Fixed7) 4449 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4450 4451 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4452 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4453 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4455 Abbv->Add(AbbrevOpToUse); 4456 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4457 4458 for (const auto P : M.getSourceFileName()) 4459 Vals.push_back((unsigned char)P); 4460 4461 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4462 Vals.clear(); 4463 } 4464 4465 // Emit the global variable information. 4466 for (const GlobalVariable &GV : M.globals()) { 4467 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4468 Vals.push_back(StrtabBuilder.add(GV.getName())); 4469 Vals.push_back(GV.getName().size()); 4470 Vals.push_back(0); 4471 Vals.push_back(0); 4472 Vals.push_back(0); 4473 Vals.push_back(getEncodedLinkage(GV)); 4474 4475 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4476 Vals.clear(); 4477 } 4478 4479 // Emit the function proto information. 4480 for (const Function &F : M) { 4481 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4482 Vals.push_back(StrtabBuilder.add(F.getName())); 4483 Vals.push_back(F.getName().size()); 4484 Vals.push_back(0); 4485 Vals.push_back(0); 4486 Vals.push_back(0); 4487 Vals.push_back(getEncodedLinkage(F)); 4488 4489 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4490 Vals.clear(); 4491 } 4492 4493 // Emit the alias information. 4494 for (const GlobalAlias &A : M.aliases()) { 4495 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4496 Vals.push_back(StrtabBuilder.add(A.getName())); 4497 Vals.push_back(A.getName().size()); 4498 Vals.push_back(0); 4499 Vals.push_back(0); 4500 Vals.push_back(0); 4501 Vals.push_back(getEncodedLinkage(A)); 4502 4503 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4504 Vals.clear(); 4505 } 4506 4507 // Emit the ifunc information. 4508 for (const GlobalIFunc &I : M.ifuncs()) { 4509 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4510 Vals.push_back(StrtabBuilder.add(I.getName())); 4511 Vals.push_back(I.getName().size()); 4512 Vals.push_back(0); 4513 Vals.push_back(0); 4514 Vals.push_back(0); 4515 Vals.push_back(getEncodedLinkage(I)); 4516 4517 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4518 Vals.clear(); 4519 } 4520 } 4521 4522 void ThinLinkBitcodeWriter::write() { 4523 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4524 4525 writeModuleVersion(); 4526 4527 writeSimplifiedModuleInfo(); 4528 4529 writePerModuleGlobalValueSummary(); 4530 4531 // Write module hash. 4532 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4533 4534 Stream.ExitBlock(); 4535 } 4536 4537 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4538 const ModuleSummaryIndex &Index, 4539 const ModuleHash &ModHash) { 4540 assert(!WroteStrtab); 4541 4542 // The Mods vector is used by irsymtab::build, which requires non-const 4543 // Modules in case it needs to materialize metadata. But the bitcode writer 4544 // requires that the module is materialized, so we can cast to non-const here, 4545 // after checking that it is in fact materialized. 4546 assert(M.isMaterialized()); 4547 Mods.push_back(const_cast<Module *>(&M)); 4548 4549 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4550 ModHash); 4551 ThinLinkWriter.write(); 4552 } 4553 4554 // Write the specified thin link bitcode file to the given raw output stream, 4555 // where it will be written in a new bitcode block. This is used when 4556 // writing the per-module index file for ThinLTO. 4557 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4558 const ModuleSummaryIndex &Index, 4559 const ModuleHash &ModHash) { 4560 SmallVector<char, 0> Buffer; 4561 Buffer.reserve(256 * 1024); 4562 4563 BitcodeWriter Writer(Buffer); 4564 Writer.writeThinLinkBitcode(M, Index, ModHash); 4565 Writer.writeSymtab(); 4566 Writer.writeStrtab(); 4567 4568 Out.write((char *)&Buffer.front(), Buffer.size()); 4569 } 4570