xref: /llvm-project/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision f4c6080ab820219c5bf78b0c2143e7fa194da296)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitcodeCommon.h"
28 #include "llvm/Bitcode/BitcodeReader.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Bitstream/BitCodes.h"
31 #include "llvm/Bitstream/BitstreamWriter.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 static cl::opt<unsigned>
86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                    cl::desc("Number of metadatas above which we emit an index "
88                             "to enable lazy-loading"));
89 static cl::opt<uint32_t> FlushThreshold(
90     "bitcode-flush-threshold", cl::Hidden, cl::init(512),
91     cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
92 
93 static cl::opt<bool> WriteRelBFToSummary(
94     "write-relbf-to-summary", cl::Hidden, cl::init(false),
95     cl::desc("Write relative block frequency to function summary "));
96 
97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
98 
99 namespace {
100 
101 /// These are manifest constants used by the bitcode writer. They do not need to
102 /// be kept in sync with the reader, but need to be consistent within this file.
103 enum {
104   // VALUE_SYMTAB_BLOCK abbrev id's.
105   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
106   VST_ENTRY_7_ABBREV,
107   VST_ENTRY_6_ABBREV,
108   VST_BBENTRY_6_ABBREV,
109 
110   // CONSTANTS_BLOCK abbrev id's.
111   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
112   CONSTANTS_INTEGER_ABBREV,
113   CONSTANTS_CE_CAST_Abbrev,
114   CONSTANTS_NULL_Abbrev,
115 
116   // FUNCTION_BLOCK abbrev id's.
117   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
118   FUNCTION_INST_UNOP_ABBREV,
119   FUNCTION_INST_UNOP_FLAGS_ABBREV,
120   FUNCTION_INST_BINOP_ABBREV,
121   FUNCTION_INST_BINOP_FLAGS_ABBREV,
122   FUNCTION_INST_CAST_ABBREV,
123   FUNCTION_INST_RET_VOID_ABBREV,
124   FUNCTION_INST_RET_VAL_ABBREV,
125   FUNCTION_INST_UNREACHABLE_ABBREV,
126   FUNCTION_INST_GEP_ABBREV,
127 };
128 
129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
130 /// file type.
131 class BitcodeWriterBase {
132 protected:
133   /// The stream created and owned by the client.
134   BitstreamWriter &Stream;
135 
136   StringTableBuilder &StrtabBuilder;
137 
138 public:
139   /// Constructs a BitcodeWriterBase object that writes to the provided
140   /// \p Stream.
141   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
142       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
143 
144 protected:
145   void writeBitcodeHeader();
146   void writeModuleVersion();
147 };
148 
149 void BitcodeWriterBase::writeModuleVersion() {
150   // VERSION: [version#]
151   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
152 }
153 
154 /// Base class to manage the module bitcode writing, currently subclassed for
155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
156 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
157 protected:
158   /// The Module to write to bitcode.
159   const Module &M;
160 
161   /// Enumerates ids for all values in the module.
162   ValueEnumerator VE;
163 
164   /// Optional per-module index to write for ThinLTO.
165   const ModuleSummaryIndex *Index;
166 
167   /// Map that holds the correspondence between GUIDs in the summary index,
168   /// that came from indirect call profiles, and a value id generated by this
169   /// class to use in the VST and summary block records.
170   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
171 
172   /// Tracks the last value id recorded in the GUIDToValueMap.
173   unsigned GlobalValueId;
174 
175   /// Saves the offset of the VSTOffset record that must eventually be
176   /// backpatched with the offset of the actual VST.
177   uint64_t VSTOffsetPlaceholder = 0;
178 
179 public:
180   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
181   /// writing to the provided \p Buffer.
182   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
183                           BitstreamWriter &Stream,
184                           bool ShouldPreserveUseListOrder,
185                           const ModuleSummaryIndex *Index)
186       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
187         VE(M, ShouldPreserveUseListOrder), Index(Index) {
188     // Assign ValueIds to any callee values in the index that came from
189     // indirect call profiles and were recorded as a GUID not a Value*
190     // (which would have been assigned an ID by the ValueEnumerator).
191     // The starting ValueId is just after the number of values in the
192     // ValueEnumerator, so that they can be emitted in the VST.
193     GlobalValueId = VE.getValues().size();
194     if (!Index)
195       return;
196     for (const auto &GUIDSummaryLists : *Index)
197       // Examine all summaries for this GUID.
198       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
199         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
200           // For each call in the function summary, see if the call
201           // is to a GUID (which means it is for an indirect call,
202           // otherwise we would have a Value for it). If so, synthesize
203           // a value id.
204           for (auto &CallEdge : FS->calls())
205             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
206               assignValueId(CallEdge.first.getGUID());
207   }
208 
209 protected:
210   void writePerModuleGlobalValueSummary();
211 
212 private:
213   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
214                                            GlobalValueSummary *Summary,
215                                            unsigned ValueID,
216                                            unsigned FSCallsAbbrev,
217                                            unsigned FSCallsProfileAbbrev,
218                                            const Function &F);
219   void writeModuleLevelReferences(const GlobalVariable &V,
220                                   SmallVector<uint64_t, 64> &NameVals,
221                                   unsigned FSModRefsAbbrev,
222                                   unsigned FSModVTableRefsAbbrev);
223 
224   void assignValueId(GlobalValue::GUID ValGUID) {
225     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
226   }
227 
228   unsigned getValueId(GlobalValue::GUID ValGUID) {
229     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
230     // Expect that any GUID value had a value Id assigned by an
231     // earlier call to assignValueId.
232     assert(VMI != GUIDToValueIdMap.end() &&
233            "GUID does not have assigned value Id");
234     return VMI->second;
235   }
236 
237   // Helper to get the valueId for the type of value recorded in VI.
238   unsigned getValueId(ValueInfo VI) {
239     if (!VI.haveGVs() || !VI.getValue())
240       return getValueId(VI.getGUID());
241     return VE.getValueID(VI.getValue());
242   }
243 
244   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
245 };
246 
247 /// Class to manage the bitcode writing for a module.
248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
249   /// Pointer to the buffer allocated by caller for bitcode writing.
250   const SmallVectorImpl<char> &Buffer;
251 
252   /// True if a module hash record should be written.
253   bool GenerateHash;
254 
255   /// If non-null, when GenerateHash is true, the resulting hash is written
256   /// into ModHash.
257   ModuleHash *ModHash;
258 
259   SHA1 Hasher;
260 
261   /// The start bit of the identification block.
262   uint64_t BitcodeStartBit;
263 
264 public:
265   /// Constructs a ModuleBitcodeWriter object for the given Module,
266   /// writing to the provided \p Buffer.
267   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
268                       StringTableBuilder &StrtabBuilder,
269                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
270                       const ModuleSummaryIndex *Index, bool GenerateHash,
271                       ModuleHash *ModHash = nullptr)
272       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
273                                 ShouldPreserveUseListOrder, Index),
274         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
275         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
276 
277   /// Emit the current module to the bitstream.
278   void write();
279 
280 private:
281   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
282 
283   size_t addToStrtab(StringRef Str);
284 
285   void writeAttributeGroupTable();
286   void writeAttributeTable();
287   void writeTypeTable();
288   void writeComdats();
289   void writeValueSymbolTableForwardDecl();
290   void writeModuleInfo();
291   void writeValueAsMetadata(const ValueAsMetadata *MD,
292                             SmallVectorImpl<uint64_t> &Record);
293   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
294                     unsigned Abbrev);
295   unsigned createDILocationAbbrev();
296   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
297                        unsigned &Abbrev);
298   unsigned createGenericDINodeAbbrev();
299   void writeGenericDINode(const GenericDINode *N,
300                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
301   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
302                        unsigned Abbrev);
303   void writeDIGenericSubrange(const DIGenericSubrange *N,
304                               SmallVectorImpl<uint64_t> &Record,
305                               unsigned Abbrev);
306   void writeDIEnumerator(const DIEnumerator *N,
307                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
309                         unsigned Abbrev);
310   void writeDIStringType(const DIStringType *N,
311                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312   void writeDIDerivedType(const DIDerivedType *N,
313                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314   void writeDICompositeType(const DICompositeType *N,
315                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316   void writeDISubroutineType(const DISubroutineType *N,
317                              SmallVectorImpl<uint64_t> &Record,
318                              unsigned Abbrev);
319   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
320                    unsigned Abbrev);
321   void writeDICompileUnit(const DICompileUnit *N,
322                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323   void writeDISubprogram(const DISubprogram *N,
324                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325   void writeDILexicalBlock(const DILexicalBlock *N,
326                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
328                                SmallVectorImpl<uint64_t> &Record,
329                                unsigned Abbrev);
330   void writeDICommonBlock(const DICommonBlock *N,
331                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
332   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
333                         unsigned Abbrev);
334   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
335                     unsigned Abbrev);
336   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
337                         unsigned Abbrev);
338   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
339                      unsigned Abbrev);
340   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
341                                     SmallVectorImpl<uint64_t> &Record,
342                                     unsigned Abbrev);
343   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
344                                      SmallVectorImpl<uint64_t> &Record,
345                                      unsigned Abbrev);
346   void writeDIGlobalVariable(const DIGlobalVariable *N,
347                              SmallVectorImpl<uint64_t> &Record,
348                              unsigned Abbrev);
349   void writeDILocalVariable(const DILocalVariable *N,
350                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
351   void writeDILabel(const DILabel *N,
352                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
353   void writeDIExpression(const DIExpression *N,
354                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
355   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
356                                        SmallVectorImpl<uint64_t> &Record,
357                                        unsigned Abbrev);
358   void writeDIObjCProperty(const DIObjCProperty *N,
359                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
360   void writeDIImportedEntity(const DIImportedEntity *N,
361                              SmallVectorImpl<uint64_t> &Record,
362                              unsigned Abbrev);
363   unsigned createNamedMetadataAbbrev();
364   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
365   unsigned createMetadataStringsAbbrev();
366   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
367                             SmallVectorImpl<uint64_t> &Record);
368   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
369                             SmallVectorImpl<uint64_t> &Record,
370                             std::vector<unsigned> *MDAbbrevs = nullptr,
371                             std::vector<uint64_t> *IndexPos = nullptr);
372   void writeModuleMetadata();
373   void writeFunctionMetadata(const Function &F);
374   void writeFunctionMetadataAttachment(const Function &F);
375   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
376   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
377                                     const GlobalObject &GO);
378   void writeModuleMetadataKinds();
379   void writeOperandBundleTags();
380   void writeSyncScopeNames();
381   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
382   void writeModuleConstants();
383   bool pushValueAndType(const Value *V, unsigned InstID,
384                         SmallVectorImpl<unsigned> &Vals);
385   void writeOperandBundles(const CallBase &CB, unsigned InstID);
386   void pushValue(const Value *V, unsigned InstID,
387                  SmallVectorImpl<unsigned> &Vals);
388   void pushValueSigned(const Value *V, unsigned InstID,
389                        SmallVectorImpl<uint64_t> &Vals);
390   void writeInstruction(const Instruction &I, unsigned InstID,
391                         SmallVectorImpl<unsigned> &Vals);
392   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
393   void writeGlobalValueSymbolTable(
394       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
395   void writeUseList(UseListOrder &&Order);
396   void writeUseListBlock(const Function *F);
397   void
398   writeFunction(const Function &F,
399                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
400   void writeBlockInfo();
401   void writeModuleHash(size_t BlockStartPos);
402 
403   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
404     return unsigned(SSID);
405   }
406 
407   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
408 };
409 
410 /// Class to manage the bitcode writing for a combined index.
411 class IndexBitcodeWriter : public BitcodeWriterBase {
412   /// The combined index to write to bitcode.
413   const ModuleSummaryIndex &Index;
414 
415   /// When writing a subset of the index for distributed backends, client
416   /// provides a map of modules to the corresponding GUIDs/summaries to write.
417   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
418 
419   /// Map that holds the correspondence between the GUID used in the combined
420   /// index and a value id generated by this class to use in references.
421   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
422 
423   /// Tracks the last value id recorded in the GUIDToValueMap.
424   unsigned GlobalValueId = 0;
425 
426 public:
427   /// Constructs a IndexBitcodeWriter object for the given combined index,
428   /// writing to the provided \p Buffer. When writing a subset of the index
429   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
430   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
431                      const ModuleSummaryIndex &Index,
432                      const std::map<std::string, GVSummaryMapTy>
433                          *ModuleToSummariesForIndex = nullptr)
434       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
435         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
436     // Assign unique value ids to all summaries to be written, for use
437     // in writing out the call graph edges. Save the mapping from GUID
438     // to the new global value id to use when writing those edges, which
439     // are currently saved in the index in terms of GUID.
440     forEachSummary([&](GVInfo I, bool) {
441       GUIDToValueIdMap[I.first] = ++GlobalValueId;
442     });
443   }
444 
445   /// The below iterator returns the GUID and associated summary.
446   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
447 
448   /// Calls the callback for each value GUID and summary to be written to
449   /// bitcode. This hides the details of whether they are being pulled from the
450   /// entire index or just those in a provided ModuleToSummariesForIndex map.
451   template<typename Functor>
452   void forEachSummary(Functor Callback) {
453     if (ModuleToSummariesForIndex) {
454       for (auto &M : *ModuleToSummariesForIndex)
455         for (auto &Summary : M.second) {
456           Callback(Summary, false);
457           // Ensure aliasee is handled, e.g. for assigning a valueId,
458           // even if we are not importing the aliasee directly (the
459           // imported alias will contain a copy of aliasee).
460           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
461             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
462         }
463     } else {
464       for (auto &Summaries : Index)
465         for (auto &Summary : Summaries.second.SummaryList)
466           Callback({Summaries.first, Summary.get()}, false);
467     }
468   }
469 
470   /// Calls the callback for each entry in the modulePaths StringMap that
471   /// should be written to the module path string table. This hides the details
472   /// of whether they are being pulled from the entire index or just those in a
473   /// provided ModuleToSummariesForIndex map.
474   template <typename Functor> void forEachModule(Functor Callback) {
475     if (ModuleToSummariesForIndex) {
476       for (const auto &M : *ModuleToSummariesForIndex) {
477         const auto &MPI = Index.modulePaths().find(M.first);
478         if (MPI == Index.modulePaths().end()) {
479           // This should only happen if the bitcode file was empty, in which
480           // case we shouldn't be importing (the ModuleToSummariesForIndex
481           // would only include the module we are writing and index for).
482           assert(ModuleToSummariesForIndex->size() == 1);
483           continue;
484         }
485         Callback(*MPI);
486       }
487     } else {
488       for (const auto &MPSE : Index.modulePaths())
489         Callback(MPSE);
490     }
491   }
492 
493   /// Main entry point for writing a combined index to bitcode.
494   void write();
495 
496 private:
497   void writeModStrings();
498   void writeCombinedGlobalValueSummary();
499 
500   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
501     auto VMI = GUIDToValueIdMap.find(ValGUID);
502     if (VMI == GUIDToValueIdMap.end())
503       return None;
504     return VMI->second;
505   }
506 
507   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
508 };
509 
510 } // end anonymous namespace
511 
512 static unsigned getEncodedCastOpcode(unsigned Opcode) {
513   switch (Opcode) {
514   default: llvm_unreachable("Unknown cast instruction!");
515   case Instruction::Trunc   : return bitc::CAST_TRUNC;
516   case Instruction::ZExt    : return bitc::CAST_ZEXT;
517   case Instruction::SExt    : return bitc::CAST_SEXT;
518   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
519   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
520   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
521   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
522   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
523   case Instruction::FPExt   : return bitc::CAST_FPEXT;
524   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
525   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
526   case Instruction::BitCast : return bitc::CAST_BITCAST;
527   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
528   }
529 }
530 
531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
532   switch (Opcode) {
533   default: llvm_unreachable("Unknown binary instruction!");
534   case Instruction::FNeg: return bitc::UNOP_FNEG;
535   }
536 }
537 
538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
539   switch (Opcode) {
540   default: llvm_unreachable("Unknown binary instruction!");
541   case Instruction::Add:
542   case Instruction::FAdd: return bitc::BINOP_ADD;
543   case Instruction::Sub:
544   case Instruction::FSub: return bitc::BINOP_SUB;
545   case Instruction::Mul:
546   case Instruction::FMul: return bitc::BINOP_MUL;
547   case Instruction::UDiv: return bitc::BINOP_UDIV;
548   case Instruction::FDiv:
549   case Instruction::SDiv: return bitc::BINOP_SDIV;
550   case Instruction::URem: return bitc::BINOP_UREM;
551   case Instruction::FRem:
552   case Instruction::SRem: return bitc::BINOP_SREM;
553   case Instruction::Shl:  return bitc::BINOP_SHL;
554   case Instruction::LShr: return bitc::BINOP_LSHR;
555   case Instruction::AShr: return bitc::BINOP_ASHR;
556   case Instruction::And:  return bitc::BINOP_AND;
557   case Instruction::Or:   return bitc::BINOP_OR;
558   case Instruction::Xor:  return bitc::BINOP_XOR;
559   }
560 }
561 
562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
563   switch (Op) {
564   default: llvm_unreachable("Unknown RMW operation!");
565   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
566   case AtomicRMWInst::Add: return bitc::RMW_ADD;
567   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
568   case AtomicRMWInst::And: return bitc::RMW_AND;
569   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
570   case AtomicRMWInst::Or: return bitc::RMW_OR;
571   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
572   case AtomicRMWInst::Max: return bitc::RMW_MAX;
573   case AtomicRMWInst::Min: return bitc::RMW_MIN;
574   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
575   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
576   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
577   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
578   }
579 }
580 
581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
582   switch (Ordering) {
583   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
584   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
585   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
586   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
587   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
588   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
589   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
590   }
591   llvm_unreachable("Invalid ordering");
592 }
593 
594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
595                               StringRef Str, unsigned AbbrevToUse) {
596   SmallVector<unsigned, 64> Vals;
597 
598   // Code: [strchar x N]
599   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
600     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
601       AbbrevToUse = 0;
602     Vals.push_back(Str[i]);
603   }
604 
605   // Emit the finished record.
606   Stream.EmitRecord(Code, Vals, AbbrevToUse);
607 }
608 
609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
610   switch (Kind) {
611   case Attribute::Alignment:
612     return bitc::ATTR_KIND_ALIGNMENT;
613   case Attribute::AllocSize:
614     return bitc::ATTR_KIND_ALLOC_SIZE;
615   case Attribute::AlwaysInline:
616     return bitc::ATTR_KIND_ALWAYS_INLINE;
617   case Attribute::ArgMemOnly:
618     return bitc::ATTR_KIND_ARGMEMONLY;
619   case Attribute::Builtin:
620     return bitc::ATTR_KIND_BUILTIN;
621   case Attribute::ByVal:
622     return bitc::ATTR_KIND_BY_VAL;
623   case Attribute::Convergent:
624     return bitc::ATTR_KIND_CONVERGENT;
625   case Attribute::InAlloca:
626     return bitc::ATTR_KIND_IN_ALLOCA;
627   case Attribute::Cold:
628     return bitc::ATTR_KIND_COLD;
629   case Attribute::InaccessibleMemOnly:
630     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
631   case Attribute::InaccessibleMemOrArgMemOnly:
632     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
633   case Attribute::InlineHint:
634     return bitc::ATTR_KIND_INLINE_HINT;
635   case Attribute::InReg:
636     return bitc::ATTR_KIND_IN_REG;
637   case Attribute::JumpTable:
638     return bitc::ATTR_KIND_JUMP_TABLE;
639   case Attribute::MinSize:
640     return bitc::ATTR_KIND_MIN_SIZE;
641   case Attribute::Naked:
642     return bitc::ATTR_KIND_NAKED;
643   case Attribute::Nest:
644     return bitc::ATTR_KIND_NEST;
645   case Attribute::NoAlias:
646     return bitc::ATTR_KIND_NO_ALIAS;
647   case Attribute::NoBuiltin:
648     return bitc::ATTR_KIND_NO_BUILTIN;
649   case Attribute::NoCapture:
650     return bitc::ATTR_KIND_NO_CAPTURE;
651   case Attribute::NoDuplicate:
652     return bitc::ATTR_KIND_NO_DUPLICATE;
653   case Attribute::NoFree:
654     return bitc::ATTR_KIND_NOFREE;
655   case Attribute::NoImplicitFloat:
656     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
657   case Attribute::NoInline:
658     return bitc::ATTR_KIND_NO_INLINE;
659   case Attribute::NoRecurse:
660     return bitc::ATTR_KIND_NO_RECURSE;
661   case Attribute::NoMerge:
662     return bitc::ATTR_KIND_NO_MERGE;
663   case Attribute::NonLazyBind:
664     return bitc::ATTR_KIND_NON_LAZY_BIND;
665   case Attribute::NonNull:
666     return bitc::ATTR_KIND_NON_NULL;
667   case Attribute::Dereferenceable:
668     return bitc::ATTR_KIND_DEREFERENCEABLE;
669   case Attribute::DereferenceableOrNull:
670     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
671   case Attribute::NoRedZone:
672     return bitc::ATTR_KIND_NO_RED_ZONE;
673   case Attribute::NoReturn:
674     return bitc::ATTR_KIND_NO_RETURN;
675   case Attribute::NoSync:
676     return bitc::ATTR_KIND_NOSYNC;
677   case Attribute::NoCfCheck:
678     return bitc::ATTR_KIND_NOCF_CHECK;
679   case Attribute::NoUnwind:
680     return bitc::ATTR_KIND_NO_UNWIND;
681   case Attribute::NullPointerIsValid:
682     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
683   case Attribute::OptForFuzzing:
684     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
685   case Attribute::OptimizeForSize:
686     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
687   case Attribute::OptimizeNone:
688     return bitc::ATTR_KIND_OPTIMIZE_NONE;
689   case Attribute::ReadNone:
690     return bitc::ATTR_KIND_READ_NONE;
691   case Attribute::ReadOnly:
692     return bitc::ATTR_KIND_READ_ONLY;
693   case Attribute::Returned:
694     return bitc::ATTR_KIND_RETURNED;
695   case Attribute::ReturnsTwice:
696     return bitc::ATTR_KIND_RETURNS_TWICE;
697   case Attribute::SExt:
698     return bitc::ATTR_KIND_S_EXT;
699   case Attribute::Speculatable:
700     return bitc::ATTR_KIND_SPECULATABLE;
701   case Attribute::StackAlignment:
702     return bitc::ATTR_KIND_STACK_ALIGNMENT;
703   case Attribute::StackProtect:
704     return bitc::ATTR_KIND_STACK_PROTECT;
705   case Attribute::StackProtectReq:
706     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
707   case Attribute::StackProtectStrong:
708     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
709   case Attribute::SafeStack:
710     return bitc::ATTR_KIND_SAFESTACK;
711   case Attribute::ShadowCallStack:
712     return bitc::ATTR_KIND_SHADOWCALLSTACK;
713   case Attribute::StrictFP:
714     return bitc::ATTR_KIND_STRICT_FP;
715   case Attribute::StructRet:
716     return bitc::ATTR_KIND_STRUCT_RET;
717   case Attribute::SanitizeAddress:
718     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
719   case Attribute::SanitizeHWAddress:
720     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
721   case Attribute::SanitizeThread:
722     return bitc::ATTR_KIND_SANITIZE_THREAD;
723   case Attribute::SanitizeMemory:
724     return bitc::ATTR_KIND_SANITIZE_MEMORY;
725   case Attribute::SpeculativeLoadHardening:
726     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
727   case Attribute::SwiftError:
728     return bitc::ATTR_KIND_SWIFT_ERROR;
729   case Attribute::SwiftSelf:
730     return bitc::ATTR_KIND_SWIFT_SELF;
731   case Attribute::UWTable:
732     return bitc::ATTR_KIND_UW_TABLE;
733   case Attribute::WillReturn:
734     return bitc::ATTR_KIND_WILLRETURN;
735   case Attribute::WriteOnly:
736     return bitc::ATTR_KIND_WRITEONLY;
737   case Attribute::ZExt:
738     return bitc::ATTR_KIND_Z_EXT;
739   case Attribute::ImmArg:
740     return bitc::ATTR_KIND_IMMARG;
741   case Attribute::SanitizeMemTag:
742     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
743   case Attribute::Preallocated:
744     return bitc::ATTR_KIND_PREALLOCATED;
745   case Attribute::NoUndef:
746     return bitc::ATTR_KIND_NOUNDEF;
747   case Attribute::ByRef:
748     return bitc::ATTR_KIND_BYREF;
749   case Attribute::MustProgress:
750     return bitc::ATTR_KIND_MUSTPROGRESS;
751   case Attribute::EndAttrKinds:
752     llvm_unreachable("Can not encode end-attribute kinds marker.");
753   case Attribute::None:
754     llvm_unreachable("Can not encode none-attribute.");
755   case Attribute::EmptyKey:
756   case Attribute::TombstoneKey:
757     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
758   }
759 
760   llvm_unreachable("Trying to encode unknown attribute");
761 }
762 
763 void ModuleBitcodeWriter::writeAttributeGroupTable() {
764   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
765       VE.getAttributeGroups();
766   if (AttrGrps.empty()) return;
767 
768   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
769 
770   SmallVector<uint64_t, 64> Record;
771   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
772     unsigned AttrListIndex = Pair.first;
773     AttributeSet AS = Pair.second;
774     Record.push_back(VE.getAttributeGroupID(Pair));
775     Record.push_back(AttrListIndex);
776 
777     for (Attribute Attr : AS) {
778       if (Attr.isEnumAttribute()) {
779         Record.push_back(0);
780         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
781       } else if (Attr.isIntAttribute()) {
782         Record.push_back(1);
783         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
784         Record.push_back(Attr.getValueAsInt());
785       } else if (Attr.isStringAttribute()) {
786         StringRef Kind = Attr.getKindAsString();
787         StringRef Val = Attr.getValueAsString();
788 
789         Record.push_back(Val.empty() ? 3 : 4);
790         Record.append(Kind.begin(), Kind.end());
791         Record.push_back(0);
792         if (!Val.empty()) {
793           Record.append(Val.begin(), Val.end());
794           Record.push_back(0);
795         }
796       } else {
797         assert(Attr.isTypeAttribute());
798         Type *Ty = Attr.getValueAsType();
799         Record.push_back(Ty ? 6 : 5);
800         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
801         if (Ty)
802           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
803       }
804     }
805 
806     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
807     Record.clear();
808   }
809 
810   Stream.ExitBlock();
811 }
812 
813 void ModuleBitcodeWriter::writeAttributeTable() {
814   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
815   if (Attrs.empty()) return;
816 
817   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
818 
819   SmallVector<uint64_t, 64> Record;
820   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
821     AttributeList AL = Attrs[i];
822     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
823       AttributeSet AS = AL.getAttributes(i);
824       if (AS.hasAttributes())
825         Record.push_back(VE.getAttributeGroupID({i, AS}));
826     }
827 
828     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
829     Record.clear();
830   }
831 
832   Stream.ExitBlock();
833 }
834 
835 /// WriteTypeTable - Write out the type table for a module.
836 void ModuleBitcodeWriter::writeTypeTable() {
837   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
838 
839   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
840   SmallVector<uint64_t, 64> TypeVals;
841 
842   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
843 
844   // Abbrev for TYPE_CODE_POINTER.
845   auto Abbv = std::make_shared<BitCodeAbbrev>();
846   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
847   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
848   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
849   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
850 
851   // Abbrev for TYPE_CODE_FUNCTION.
852   Abbv = std::make_shared<BitCodeAbbrev>();
853   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
854   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
855   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
856   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
857   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
858 
859   // Abbrev for TYPE_CODE_STRUCT_ANON.
860   Abbv = std::make_shared<BitCodeAbbrev>();
861   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
862   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
863   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
864   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
865   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
866 
867   // Abbrev for TYPE_CODE_STRUCT_NAME.
868   Abbv = std::make_shared<BitCodeAbbrev>();
869   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
870   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
871   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
872   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
873 
874   // Abbrev for TYPE_CODE_STRUCT_NAMED.
875   Abbv = std::make_shared<BitCodeAbbrev>();
876   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
877   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
878   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
879   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
880   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
881 
882   // Abbrev for TYPE_CODE_ARRAY.
883   Abbv = std::make_shared<BitCodeAbbrev>();
884   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
885   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
886   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
887   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
888 
889   // Emit an entry count so the reader can reserve space.
890   TypeVals.push_back(TypeList.size());
891   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
892   TypeVals.clear();
893 
894   // Loop over all of the types, emitting each in turn.
895   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
896     Type *T = TypeList[i];
897     int AbbrevToUse = 0;
898     unsigned Code = 0;
899 
900     switch (T->getTypeID()) {
901     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
902     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
903     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
904     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
905     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
906     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
907     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
908     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
909     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
910     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
911     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
912     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
913     case Type::IntegerTyID:
914       // INTEGER: [width]
915       Code = bitc::TYPE_CODE_INTEGER;
916       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
917       break;
918     case Type::PointerTyID: {
919       PointerType *PTy = cast<PointerType>(T);
920       // POINTER: [pointee type, address space]
921       Code = bitc::TYPE_CODE_POINTER;
922       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
923       unsigned AddressSpace = PTy->getAddressSpace();
924       TypeVals.push_back(AddressSpace);
925       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
926       break;
927     }
928     case Type::FunctionTyID: {
929       FunctionType *FT = cast<FunctionType>(T);
930       // FUNCTION: [isvararg, retty, paramty x N]
931       Code = bitc::TYPE_CODE_FUNCTION;
932       TypeVals.push_back(FT->isVarArg());
933       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
934       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
935         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
936       AbbrevToUse = FunctionAbbrev;
937       break;
938     }
939     case Type::StructTyID: {
940       StructType *ST = cast<StructType>(T);
941       // STRUCT: [ispacked, eltty x N]
942       TypeVals.push_back(ST->isPacked());
943       // Output all of the element types.
944       for (StructType::element_iterator I = ST->element_begin(),
945            E = ST->element_end(); I != E; ++I)
946         TypeVals.push_back(VE.getTypeID(*I));
947 
948       if (ST->isLiteral()) {
949         Code = bitc::TYPE_CODE_STRUCT_ANON;
950         AbbrevToUse = StructAnonAbbrev;
951       } else {
952         if (ST->isOpaque()) {
953           Code = bitc::TYPE_CODE_OPAQUE;
954         } else {
955           Code = bitc::TYPE_CODE_STRUCT_NAMED;
956           AbbrevToUse = StructNamedAbbrev;
957         }
958 
959         // Emit the name if it is present.
960         if (!ST->getName().empty())
961           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
962                             StructNameAbbrev);
963       }
964       break;
965     }
966     case Type::ArrayTyID: {
967       ArrayType *AT = cast<ArrayType>(T);
968       // ARRAY: [numelts, eltty]
969       Code = bitc::TYPE_CODE_ARRAY;
970       TypeVals.push_back(AT->getNumElements());
971       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
972       AbbrevToUse = ArrayAbbrev;
973       break;
974     }
975     case Type::FixedVectorTyID:
976     case Type::ScalableVectorTyID: {
977       VectorType *VT = cast<VectorType>(T);
978       // VECTOR [numelts, eltty] or
979       //        [numelts, eltty, scalable]
980       Code = bitc::TYPE_CODE_VECTOR;
981       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
982       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
983       if (isa<ScalableVectorType>(VT))
984         TypeVals.push_back(true);
985       break;
986     }
987     }
988 
989     // Emit the finished record.
990     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
991     TypeVals.clear();
992   }
993 
994   Stream.ExitBlock();
995 }
996 
997 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
998   switch (Linkage) {
999   case GlobalValue::ExternalLinkage:
1000     return 0;
1001   case GlobalValue::WeakAnyLinkage:
1002     return 16;
1003   case GlobalValue::AppendingLinkage:
1004     return 2;
1005   case GlobalValue::InternalLinkage:
1006     return 3;
1007   case GlobalValue::LinkOnceAnyLinkage:
1008     return 18;
1009   case GlobalValue::ExternalWeakLinkage:
1010     return 7;
1011   case GlobalValue::CommonLinkage:
1012     return 8;
1013   case GlobalValue::PrivateLinkage:
1014     return 9;
1015   case GlobalValue::WeakODRLinkage:
1016     return 17;
1017   case GlobalValue::LinkOnceODRLinkage:
1018     return 19;
1019   case GlobalValue::AvailableExternallyLinkage:
1020     return 12;
1021   }
1022   llvm_unreachable("Invalid linkage");
1023 }
1024 
1025 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1026   return getEncodedLinkage(GV.getLinkage());
1027 }
1028 
1029 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1030   uint64_t RawFlags = 0;
1031   RawFlags |= Flags.ReadNone;
1032   RawFlags |= (Flags.ReadOnly << 1);
1033   RawFlags |= (Flags.NoRecurse << 2);
1034   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1035   RawFlags |= (Flags.NoInline << 4);
1036   RawFlags |= (Flags.AlwaysInline << 5);
1037   return RawFlags;
1038 }
1039 
1040 // Decode the flags for GlobalValue in the summary
1041 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1042   uint64_t RawFlags = 0;
1043 
1044   RawFlags |= Flags.NotEligibleToImport; // bool
1045   RawFlags |= (Flags.Live << 1);
1046   RawFlags |= (Flags.DSOLocal << 2);
1047   RawFlags |= (Flags.CanAutoHide << 3);
1048 
1049   // Linkage don't need to be remapped at that time for the summary. Any future
1050   // change to the getEncodedLinkage() function will need to be taken into
1051   // account here as well.
1052   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1053 
1054   return RawFlags;
1055 }
1056 
1057 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1058   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1059                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1060   return RawFlags;
1061 }
1062 
1063 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1064   switch (GV.getVisibility()) {
1065   case GlobalValue::DefaultVisibility:   return 0;
1066   case GlobalValue::HiddenVisibility:    return 1;
1067   case GlobalValue::ProtectedVisibility: return 2;
1068   }
1069   llvm_unreachable("Invalid visibility");
1070 }
1071 
1072 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1073   switch (GV.getDLLStorageClass()) {
1074   case GlobalValue::DefaultStorageClass:   return 0;
1075   case GlobalValue::DLLImportStorageClass: return 1;
1076   case GlobalValue::DLLExportStorageClass: return 2;
1077   }
1078   llvm_unreachable("Invalid DLL storage class");
1079 }
1080 
1081 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1082   switch (GV.getThreadLocalMode()) {
1083     case GlobalVariable::NotThreadLocal:         return 0;
1084     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1085     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1086     case GlobalVariable::InitialExecTLSModel:    return 3;
1087     case GlobalVariable::LocalExecTLSModel:      return 4;
1088   }
1089   llvm_unreachable("Invalid TLS model");
1090 }
1091 
1092 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1093   switch (C.getSelectionKind()) {
1094   case Comdat::Any:
1095     return bitc::COMDAT_SELECTION_KIND_ANY;
1096   case Comdat::ExactMatch:
1097     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1098   case Comdat::Largest:
1099     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1100   case Comdat::NoDuplicates:
1101     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1102   case Comdat::SameSize:
1103     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1104   }
1105   llvm_unreachable("Invalid selection kind");
1106 }
1107 
1108 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1109   switch (GV.getUnnamedAddr()) {
1110   case GlobalValue::UnnamedAddr::None:   return 0;
1111   case GlobalValue::UnnamedAddr::Local:  return 2;
1112   case GlobalValue::UnnamedAddr::Global: return 1;
1113   }
1114   llvm_unreachable("Invalid unnamed_addr");
1115 }
1116 
1117 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1118   if (GenerateHash)
1119     Hasher.update(Str);
1120   return StrtabBuilder.add(Str);
1121 }
1122 
1123 void ModuleBitcodeWriter::writeComdats() {
1124   SmallVector<unsigned, 64> Vals;
1125   for (const Comdat *C : VE.getComdats()) {
1126     // COMDAT: [strtab offset, strtab size, selection_kind]
1127     Vals.push_back(addToStrtab(C->getName()));
1128     Vals.push_back(C->getName().size());
1129     Vals.push_back(getEncodedComdatSelectionKind(*C));
1130     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1131     Vals.clear();
1132   }
1133 }
1134 
1135 /// Write a record that will eventually hold the word offset of the
1136 /// module-level VST. For now the offset is 0, which will be backpatched
1137 /// after the real VST is written. Saves the bit offset to backpatch.
1138 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1139   // Write a placeholder value in for the offset of the real VST,
1140   // which is written after the function blocks so that it can include
1141   // the offset of each function. The placeholder offset will be
1142   // updated when the real VST is written.
1143   auto Abbv = std::make_shared<BitCodeAbbrev>();
1144   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1145   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1146   // hold the real VST offset. Must use fixed instead of VBR as we don't
1147   // know how many VBR chunks to reserve ahead of time.
1148   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1149   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1150 
1151   // Emit the placeholder
1152   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1153   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1154 
1155   // Compute and save the bit offset to the placeholder, which will be
1156   // patched when the real VST is written. We can simply subtract the 32-bit
1157   // fixed size from the current bit number to get the location to backpatch.
1158   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1159 }
1160 
1161 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1162 
1163 /// Determine the encoding to use for the given string name and length.
1164 static StringEncoding getStringEncoding(StringRef Str) {
1165   bool isChar6 = true;
1166   for (char C : Str) {
1167     if (isChar6)
1168       isChar6 = BitCodeAbbrevOp::isChar6(C);
1169     if ((unsigned char)C & 128)
1170       // don't bother scanning the rest.
1171       return SE_Fixed8;
1172   }
1173   if (isChar6)
1174     return SE_Char6;
1175   return SE_Fixed7;
1176 }
1177 
1178 /// Emit top-level description of module, including target triple, inline asm,
1179 /// descriptors for global variables, and function prototype info.
1180 /// Returns the bit offset to backpatch with the location of the real VST.
1181 void ModuleBitcodeWriter::writeModuleInfo() {
1182   // Emit various pieces of data attached to a module.
1183   if (!M.getTargetTriple().empty())
1184     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1185                       0 /*TODO*/);
1186   const std::string &DL = M.getDataLayoutStr();
1187   if (!DL.empty())
1188     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1189   if (!M.getModuleInlineAsm().empty())
1190     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1191                       0 /*TODO*/);
1192 
1193   // Emit information about sections and GC, computing how many there are. Also
1194   // compute the maximum alignment value.
1195   std::map<std::string, unsigned> SectionMap;
1196   std::map<std::string, unsigned> GCMap;
1197   MaybeAlign MaxAlignment;
1198   unsigned MaxGlobalType = 0;
1199   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1200     if (A)
1201       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1202   };
1203   for (const GlobalVariable &GV : M.globals()) {
1204     UpdateMaxAlignment(GV.getAlign());
1205     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1206     if (GV.hasSection()) {
1207       // Give section names unique ID's.
1208       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1209       if (!Entry) {
1210         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1211                           0 /*TODO*/);
1212         Entry = SectionMap.size();
1213       }
1214     }
1215   }
1216   for (const Function &F : M) {
1217     UpdateMaxAlignment(F.getAlign());
1218     if (F.hasSection()) {
1219       // Give section names unique ID's.
1220       unsigned &Entry = SectionMap[std::string(F.getSection())];
1221       if (!Entry) {
1222         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1223                           0 /*TODO*/);
1224         Entry = SectionMap.size();
1225       }
1226     }
1227     if (F.hasGC()) {
1228       // Same for GC names.
1229       unsigned &Entry = GCMap[F.getGC()];
1230       if (!Entry) {
1231         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1232                           0 /*TODO*/);
1233         Entry = GCMap.size();
1234       }
1235     }
1236   }
1237 
1238   // Emit abbrev for globals, now that we know # sections and max alignment.
1239   unsigned SimpleGVarAbbrev = 0;
1240   if (!M.global_empty()) {
1241     // Add an abbrev for common globals with no visibility or thread localness.
1242     auto Abbv = std::make_shared<BitCodeAbbrev>();
1243     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1244     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1245     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1246     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1247                               Log2_32_Ceil(MaxGlobalType+1)));
1248     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1249                                                            //| explicitType << 1
1250                                                            //| constant
1251     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1252     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1253     if (!MaxAlignment)                                     // Alignment.
1254       Abbv->Add(BitCodeAbbrevOp(0));
1255     else {
1256       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1257       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1258                                Log2_32_Ceil(MaxEncAlignment+1)));
1259     }
1260     if (SectionMap.empty())                                    // Section.
1261       Abbv->Add(BitCodeAbbrevOp(0));
1262     else
1263       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1264                                Log2_32_Ceil(SectionMap.size()+1)));
1265     // Don't bother emitting vis + thread local.
1266     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1267   }
1268 
1269   SmallVector<unsigned, 64> Vals;
1270   // Emit the module's source file name.
1271   {
1272     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1273     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1274     if (Bits == SE_Char6)
1275       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1276     else if (Bits == SE_Fixed7)
1277       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1278 
1279     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1280     auto Abbv = std::make_shared<BitCodeAbbrev>();
1281     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1282     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1283     Abbv->Add(AbbrevOpToUse);
1284     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1285 
1286     for (const auto P : M.getSourceFileName())
1287       Vals.push_back((unsigned char)P);
1288 
1289     // Emit the finished record.
1290     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1291     Vals.clear();
1292   }
1293 
1294   // Emit the global variable information.
1295   for (const GlobalVariable &GV : M.globals()) {
1296     unsigned AbbrevToUse = 0;
1297 
1298     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1299     //             linkage, alignment, section, visibility, threadlocal,
1300     //             unnamed_addr, externally_initialized, dllstorageclass,
1301     //             comdat, attributes, DSO_Local]
1302     Vals.push_back(addToStrtab(GV.getName()));
1303     Vals.push_back(GV.getName().size());
1304     Vals.push_back(VE.getTypeID(GV.getValueType()));
1305     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1306     Vals.push_back(GV.isDeclaration() ? 0 :
1307                    (VE.getValueID(GV.getInitializer()) + 1));
1308     Vals.push_back(getEncodedLinkage(GV));
1309     Vals.push_back(getEncodedAlign(GV.getAlign()));
1310     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1311                                    : 0);
1312     if (GV.isThreadLocal() ||
1313         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1314         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1315         GV.isExternallyInitialized() ||
1316         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1317         GV.hasComdat() ||
1318         GV.hasAttributes() ||
1319         GV.isDSOLocal() ||
1320         GV.hasPartition()) {
1321       Vals.push_back(getEncodedVisibility(GV));
1322       Vals.push_back(getEncodedThreadLocalMode(GV));
1323       Vals.push_back(getEncodedUnnamedAddr(GV));
1324       Vals.push_back(GV.isExternallyInitialized());
1325       Vals.push_back(getEncodedDLLStorageClass(GV));
1326       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1327 
1328       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1329       Vals.push_back(VE.getAttributeListID(AL));
1330 
1331       Vals.push_back(GV.isDSOLocal());
1332       Vals.push_back(addToStrtab(GV.getPartition()));
1333       Vals.push_back(GV.getPartition().size());
1334     } else {
1335       AbbrevToUse = SimpleGVarAbbrev;
1336     }
1337 
1338     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1339     Vals.clear();
1340   }
1341 
1342   // Emit the function proto information.
1343   for (const Function &F : M) {
1344     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1345     //             linkage, paramattrs, alignment, section, visibility, gc,
1346     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1347     //             prefixdata, personalityfn, DSO_Local, addrspace]
1348     Vals.push_back(addToStrtab(F.getName()));
1349     Vals.push_back(F.getName().size());
1350     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1351     Vals.push_back(F.getCallingConv());
1352     Vals.push_back(F.isDeclaration());
1353     Vals.push_back(getEncodedLinkage(F));
1354     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1355     Vals.push_back(getEncodedAlign(F.getAlign()));
1356     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1357                                   : 0);
1358     Vals.push_back(getEncodedVisibility(F));
1359     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1360     Vals.push_back(getEncodedUnnamedAddr(F));
1361     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1362                                        : 0);
1363     Vals.push_back(getEncodedDLLStorageClass(F));
1364     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1365     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1366                                      : 0);
1367     Vals.push_back(
1368         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1369 
1370     Vals.push_back(F.isDSOLocal());
1371     Vals.push_back(F.getAddressSpace());
1372     Vals.push_back(addToStrtab(F.getPartition()));
1373     Vals.push_back(F.getPartition().size());
1374 
1375     unsigned AbbrevToUse = 0;
1376     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1377     Vals.clear();
1378   }
1379 
1380   // Emit the alias information.
1381   for (const GlobalAlias &A : M.aliases()) {
1382     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1383     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1384     //         DSO_Local]
1385     Vals.push_back(addToStrtab(A.getName()));
1386     Vals.push_back(A.getName().size());
1387     Vals.push_back(VE.getTypeID(A.getValueType()));
1388     Vals.push_back(A.getType()->getAddressSpace());
1389     Vals.push_back(VE.getValueID(A.getAliasee()));
1390     Vals.push_back(getEncodedLinkage(A));
1391     Vals.push_back(getEncodedVisibility(A));
1392     Vals.push_back(getEncodedDLLStorageClass(A));
1393     Vals.push_back(getEncodedThreadLocalMode(A));
1394     Vals.push_back(getEncodedUnnamedAddr(A));
1395     Vals.push_back(A.isDSOLocal());
1396     Vals.push_back(addToStrtab(A.getPartition()));
1397     Vals.push_back(A.getPartition().size());
1398 
1399     unsigned AbbrevToUse = 0;
1400     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1401     Vals.clear();
1402   }
1403 
1404   // Emit the ifunc information.
1405   for (const GlobalIFunc &I : M.ifuncs()) {
1406     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1407     //         val#, linkage, visibility, DSO_Local]
1408     Vals.push_back(addToStrtab(I.getName()));
1409     Vals.push_back(I.getName().size());
1410     Vals.push_back(VE.getTypeID(I.getValueType()));
1411     Vals.push_back(I.getType()->getAddressSpace());
1412     Vals.push_back(VE.getValueID(I.getResolver()));
1413     Vals.push_back(getEncodedLinkage(I));
1414     Vals.push_back(getEncodedVisibility(I));
1415     Vals.push_back(I.isDSOLocal());
1416     Vals.push_back(addToStrtab(I.getPartition()));
1417     Vals.push_back(I.getPartition().size());
1418     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1419     Vals.clear();
1420   }
1421 
1422   writeValueSymbolTableForwardDecl();
1423 }
1424 
1425 static uint64_t getOptimizationFlags(const Value *V) {
1426   uint64_t Flags = 0;
1427 
1428   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1429     if (OBO->hasNoSignedWrap())
1430       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1431     if (OBO->hasNoUnsignedWrap())
1432       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1433   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1434     if (PEO->isExact())
1435       Flags |= 1 << bitc::PEO_EXACT;
1436   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1437     if (FPMO->hasAllowReassoc())
1438       Flags |= bitc::AllowReassoc;
1439     if (FPMO->hasNoNaNs())
1440       Flags |= bitc::NoNaNs;
1441     if (FPMO->hasNoInfs())
1442       Flags |= bitc::NoInfs;
1443     if (FPMO->hasNoSignedZeros())
1444       Flags |= bitc::NoSignedZeros;
1445     if (FPMO->hasAllowReciprocal())
1446       Flags |= bitc::AllowReciprocal;
1447     if (FPMO->hasAllowContract())
1448       Flags |= bitc::AllowContract;
1449     if (FPMO->hasApproxFunc())
1450       Flags |= bitc::ApproxFunc;
1451   }
1452 
1453   return Flags;
1454 }
1455 
1456 void ModuleBitcodeWriter::writeValueAsMetadata(
1457     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1458   // Mimic an MDNode with a value as one operand.
1459   Value *V = MD->getValue();
1460   Record.push_back(VE.getTypeID(V->getType()));
1461   Record.push_back(VE.getValueID(V));
1462   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1463   Record.clear();
1464 }
1465 
1466 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1467                                        SmallVectorImpl<uint64_t> &Record,
1468                                        unsigned Abbrev) {
1469   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1470     Metadata *MD = N->getOperand(i);
1471     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1472            "Unexpected function-local metadata");
1473     Record.push_back(VE.getMetadataOrNullID(MD));
1474   }
1475   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1476                                     : bitc::METADATA_NODE,
1477                     Record, Abbrev);
1478   Record.clear();
1479 }
1480 
1481 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1482   // Assume the column is usually under 128, and always output the inlined-at
1483   // location (it's never more expensive than building an array size 1).
1484   auto Abbv = std::make_shared<BitCodeAbbrev>();
1485   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1486   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1487   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1488   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1489   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1490   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1491   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1492   return Stream.EmitAbbrev(std::move(Abbv));
1493 }
1494 
1495 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1496                                           SmallVectorImpl<uint64_t> &Record,
1497                                           unsigned &Abbrev) {
1498   if (!Abbrev)
1499     Abbrev = createDILocationAbbrev();
1500 
1501   Record.push_back(N->isDistinct());
1502   Record.push_back(N->getLine());
1503   Record.push_back(N->getColumn());
1504   Record.push_back(VE.getMetadataID(N->getScope()));
1505   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1506   Record.push_back(N->isImplicitCode());
1507 
1508   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1509   Record.clear();
1510 }
1511 
1512 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1513   // Assume the column is usually under 128, and always output the inlined-at
1514   // location (it's never more expensive than building an array size 1).
1515   auto Abbv = std::make_shared<BitCodeAbbrev>();
1516   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1517   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1518   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1519   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1520   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1521   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1522   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1523   return Stream.EmitAbbrev(std::move(Abbv));
1524 }
1525 
1526 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1527                                              SmallVectorImpl<uint64_t> &Record,
1528                                              unsigned &Abbrev) {
1529   if (!Abbrev)
1530     Abbrev = createGenericDINodeAbbrev();
1531 
1532   Record.push_back(N->isDistinct());
1533   Record.push_back(N->getTag());
1534   Record.push_back(0); // Per-tag version field; unused for now.
1535 
1536   for (auto &I : N->operands())
1537     Record.push_back(VE.getMetadataOrNullID(I));
1538 
1539   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1540   Record.clear();
1541 }
1542 
1543 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1544                                           SmallVectorImpl<uint64_t> &Record,
1545                                           unsigned Abbrev) {
1546   const uint64_t Version = 2 << 1;
1547   Record.push_back((uint64_t)N->isDistinct() | Version);
1548   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1549   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1550   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1551   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1552 
1553   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1554   Record.clear();
1555 }
1556 
1557 void ModuleBitcodeWriter::writeDIGenericSubrange(
1558     const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1559     unsigned Abbrev) {
1560   Record.push_back((uint64_t)N->isDistinct());
1561   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1562   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1563   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1564   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1565 
1566   Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1567   Record.clear();
1568 }
1569 
1570 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1571   if ((int64_t)V >= 0)
1572     Vals.push_back(V << 1);
1573   else
1574     Vals.push_back((-V << 1) | 1);
1575 }
1576 
1577 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1578   // We have an arbitrary precision integer value to write whose
1579   // bit width is > 64. However, in canonical unsigned integer
1580   // format it is likely that the high bits are going to be zero.
1581   // So, we only write the number of active words.
1582   unsigned NumWords = A.getActiveWords();
1583   const uint64_t *RawData = A.getRawData();
1584   for (unsigned i = 0; i < NumWords; i++)
1585     emitSignedInt64(Vals, RawData[i]);
1586 }
1587 
1588 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1589                                             SmallVectorImpl<uint64_t> &Record,
1590                                             unsigned Abbrev) {
1591   const uint64_t IsBigInt = 1 << 2;
1592   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1593   Record.push_back(N->getValue().getBitWidth());
1594   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1595   emitWideAPInt(Record, N->getValue());
1596 
1597   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1598   Record.clear();
1599 }
1600 
1601 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1602                                            SmallVectorImpl<uint64_t> &Record,
1603                                            unsigned Abbrev) {
1604   Record.push_back(N->isDistinct());
1605   Record.push_back(N->getTag());
1606   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1607   Record.push_back(N->getSizeInBits());
1608   Record.push_back(N->getAlignInBits());
1609   Record.push_back(N->getEncoding());
1610   Record.push_back(N->getFlags());
1611 
1612   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1613   Record.clear();
1614 }
1615 
1616 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1617                                             SmallVectorImpl<uint64_t> &Record,
1618                                             unsigned Abbrev) {
1619   Record.push_back(N->isDistinct());
1620   Record.push_back(N->getTag());
1621   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1622   Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1623   Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1624   Record.push_back(N->getSizeInBits());
1625   Record.push_back(N->getAlignInBits());
1626   Record.push_back(N->getEncoding());
1627 
1628   Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1629   Record.clear();
1630 }
1631 
1632 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1633                                              SmallVectorImpl<uint64_t> &Record,
1634                                              unsigned Abbrev) {
1635   Record.push_back(N->isDistinct());
1636   Record.push_back(N->getTag());
1637   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1638   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1639   Record.push_back(N->getLine());
1640   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1641   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1642   Record.push_back(N->getSizeInBits());
1643   Record.push_back(N->getAlignInBits());
1644   Record.push_back(N->getOffsetInBits());
1645   Record.push_back(N->getFlags());
1646   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1647 
1648   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1649   // that there is no DWARF address space associated with DIDerivedType.
1650   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1651     Record.push_back(*DWARFAddressSpace + 1);
1652   else
1653     Record.push_back(0);
1654 
1655   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1656   Record.clear();
1657 }
1658 
1659 void ModuleBitcodeWriter::writeDICompositeType(
1660     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1661     unsigned Abbrev) {
1662   const unsigned IsNotUsedInOldTypeRef = 0x2;
1663   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1664   Record.push_back(N->getTag());
1665   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1666   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1667   Record.push_back(N->getLine());
1668   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1669   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1670   Record.push_back(N->getSizeInBits());
1671   Record.push_back(N->getAlignInBits());
1672   Record.push_back(N->getOffsetInBits());
1673   Record.push_back(N->getFlags());
1674   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1675   Record.push_back(N->getRuntimeLang());
1676   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1677   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1678   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1679   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1680   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1681   Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1682   Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1683   Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1684 
1685   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1686   Record.clear();
1687 }
1688 
1689 void ModuleBitcodeWriter::writeDISubroutineType(
1690     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1691     unsigned Abbrev) {
1692   const unsigned HasNoOldTypeRefs = 0x2;
1693   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1694   Record.push_back(N->getFlags());
1695   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1696   Record.push_back(N->getCC());
1697 
1698   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1699   Record.clear();
1700 }
1701 
1702 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1703                                       SmallVectorImpl<uint64_t> &Record,
1704                                       unsigned Abbrev) {
1705   Record.push_back(N->isDistinct());
1706   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1707   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1708   if (N->getRawChecksum()) {
1709     Record.push_back(N->getRawChecksum()->Kind);
1710     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1711   } else {
1712     // Maintain backwards compatibility with the old internal representation of
1713     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1714     Record.push_back(0);
1715     Record.push_back(VE.getMetadataOrNullID(nullptr));
1716   }
1717   auto Source = N->getRawSource();
1718   if (Source)
1719     Record.push_back(VE.getMetadataOrNullID(*Source));
1720 
1721   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1722   Record.clear();
1723 }
1724 
1725 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1726                                              SmallVectorImpl<uint64_t> &Record,
1727                                              unsigned Abbrev) {
1728   assert(N->isDistinct() && "Expected distinct compile units");
1729   Record.push_back(/* IsDistinct */ true);
1730   Record.push_back(N->getSourceLanguage());
1731   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1732   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1733   Record.push_back(N->isOptimized());
1734   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1735   Record.push_back(N->getRuntimeVersion());
1736   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1737   Record.push_back(N->getEmissionKind());
1738   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1739   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1740   Record.push_back(/* subprograms */ 0);
1741   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1742   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1743   Record.push_back(N->getDWOId());
1744   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1745   Record.push_back(N->getSplitDebugInlining());
1746   Record.push_back(N->getDebugInfoForProfiling());
1747   Record.push_back((unsigned)N->getNameTableKind());
1748   Record.push_back(N->getRangesBaseAddress());
1749   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1750   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1751 
1752   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1753   Record.clear();
1754 }
1755 
1756 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1757                                             SmallVectorImpl<uint64_t> &Record,
1758                                             unsigned Abbrev) {
1759   const uint64_t HasUnitFlag = 1 << 1;
1760   const uint64_t HasSPFlagsFlag = 1 << 2;
1761   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1762   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1763   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1764   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1765   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1766   Record.push_back(N->getLine());
1767   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1768   Record.push_back(N->getScopeLine());
1769   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1770   Record.push_back(N->getSPFlags());
1771   Record.push_back(N->getVirtualIndex());
1772   Record.push_back(N->getFlags());
1773   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1774   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1775   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1776   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1777   Record.push_back(N->getThisAdjustment());
1778   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1779 
1780   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1781   Record.clear();
1782 }
1783 
1784 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1785                                               SmallVectorImpl<uint64_t> &Record,
1786                                               unsigned Abbrev) {
1787   Record.push_back(N->isDistinct());
1788   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1789   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1790   Record.push_back(N->getLine());
1791   Record.push_back(N->getColumn());
1792 
1793   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1794   Record.clear();
1795 }
1796 
1797 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1798     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1799     unsigned Abbrev) {
1800   Record.push_back(N->isDistinct());
1801   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1802   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1803   Record.push_back(N->getDiscriminator());
1804 
1805   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1806   Record.clear();
1807 }
1808 
1809 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1810                                              SmallVectorImpl<uint64_t> &Record,
1811                                              unsigned Abbrev) {
1812   Record.push_back(N->isDistinct());
1813   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1814   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1815   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1816   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1817   Record.push_back(N->getLineNo());
1818 
1819   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1820   Record.clear();
1821 }
1822 
1823 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1824                                            SmallVectorImpl<uint64_t> &Record,
1825                                            unsigned Abbrev) {
1826   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1827   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1828   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1829 
1830   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1831   Record.clear();
1832 }
1833 
1834 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1835                                        SmallVectorImpl<uint64_t> &Record,
1836                                        unsigned Abbrev) {
1837   Record.push_back(N->isDistinct());
1838   Record.push_back(N->getMacinfoType());
1839   Record.push_back(N->getLine());
1840   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1841   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1842 
1843   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1844   Record.clear();
1845 }
1846 
1847 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1848                                            SmallVectorImpl<uint64_t> &Record,
1849                                            unsigned Abbrev) {
1850   Record.push_back(N->isDistinct());
1851   Record.push_back(N->getMacinfoType());
1852   Record.push_back(N->getLine());
1853   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1854   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1855 
1856   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1857   Record.clear();
1858 }
1859 
1860 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1861                                         SmallVectorImpl<uint64_t> &Record,
1862                                         unsigned Abbrev) {
1863   Record.push_back(N->isDistinct());
1864   for (auto &I : N->operands())
1865     Record.push_back(VE.getMetadataOrNullID(I));
1866   Record.push_back(N->getLineNo());
1867 
1868   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1869   Record.clear();
1870 }
1871 
1872 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1873     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1874     unsigned Abbrev) {
1875   Record.push_back(N->isDistinct());
1876   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1877   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1878   Record.push_back(N->isDefault());
1879 
1880   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1881   Record.clear();
1882 }
1883 
1884 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1885     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1886     unsigned Abbrev) {
1887   Record.push_back(N->isDistinct());
1888   Record.push_back(N->getTag());
1889   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1890   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1891   Record.push_back(N->isDefault());
1892   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1893 
1894   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1895   Record.clear();
1896 }
1897 
1898 void ModuleBitcodeWriter::writeDIGlobalVariable(
1899     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1900     unsigned Abbrev) {
1901   const uint64_t Version = 2 << 1;
1902   Record.push_back((uint64_t)N->isDistinct() | Version);
1903   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1904   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1905   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1906   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1907   Record.push_back(N->getLine());
1908   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1909   Record.push_back(N->isLocalToUnit());
1910   Record.push_back(N->isDefinition());
1911   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1912   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1913   Record.push_back(N->getAlignInBits());
1914 
1915   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1916   Record.clear();
1917 }
1918 
1919 void ModuleBitcodeWriter::writeDILocalVariable(
1920     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1921     unsigned Abbrev) {
1922   // In order to support all possible bitcode formats in BitcodeReader we need
1923   // to distinguish the following cases:
1924   // 1) Record has no artificial tag (Record[1]),
1925   //   has no obsolete inlinedAt field (Record[9]).
1926   //   In this case Record size will be 8, HasAlignment flag is false.
1927   // 2) Record has artificial tag (Record[1]),
1928   //   has no obsolete inlignedAt field (Record[9]).
1929   //   In this case Record size will be 9, HasAlignment flag is false.
1930   // 3) Record has both artificial tag (Record[1]) and
1931   //   obsolete inlignedAt field (Record[9]).
1932   //   In this case Record size will be 10, HasAlignment flag is false.
1933   // 4) Record has neither artificial tag, nor inlignedAt field, but
1934   //   HasAlignment flag is true and Record[8] contains alignment value.
1935   const uint64_t HasAlignmentFlag = 1 << 1;
1936   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1937   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1938   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1939   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1940   Record.push_back(N->getLine());
1941   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1942   Record.push_back(N->getArg());
1943   Record.push_back(N->getFlags());
1944   Record.push_back(N->getAlignInBits());
1945 
1946   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1947   Record.clear();
1948 }
1949 
1950 void ModuleBitcodeWriter::writeDILabel(
1951     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1952     unsigned Abbrev) {
1953   Record.push_back((uint64_t)N->isDistinct());
1954   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1955   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1956   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1957   Record.push_back(N->getLine());
1958 
1959   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
1960   Record.clear();
1961 }
1962 
1963 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
1964                                             SmallVectorImpl<uint64_t> &Record,
1965                                             unsigned Abbrev) {
1966   Record.reserve(N->getElements().size() + 1);
1967   const uint64_t Version = 3 << 1;
1968   Record.push_back((uint64_t)N->isDistinct() | Version);
1969   Record.append(N->elements_begin(), N->elements_end());
1970 
1971   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1972   Record.clear();
1973 }
1974 
1975 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
1976     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
1977     unsigned Abbrev) {
1978   Record.push_back(N->isDistinct());
1979   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
1980   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
1981 
1982   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
1983   Record.clear();
1984 }
1985 
1986 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1987                                               SmallVectorImpl<uint64_t> &Record,
1988                                               unsigned Abbrev) {
1989   Record.push_back(N->isDistinct());
1990   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1991   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1992   Record.push_back(N->getLine());
1993   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
1994   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
1995   Record.push_back(N->getAttributes());
1996   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1997 
1998   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
1999   Record.clear();
2000 }
2001 
2002 void ModuleBitcodeWriter::writeDIImportedEntity(
2003     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2004     unsigned Abbrev) {
2005   Record.push_back(N->isDistinct());
2006   Record.push_back(N->getTag());
2007   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2008   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2009   Record.push_back(N->getLine());
2010   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2011   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2012 
2013   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2014   Record.clear();
2015 }
2016 
2017 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2018   auto Abbv = std::make_shared<BitCodeAbbrev>();
2019   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2020   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2021   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2022   return Stream.EmitAbbrev(std::move(Abbv));
2023 }
2024 
2025 void ModuleBitcodeWriter::writeNamedMetadata(
2026     SmallVectorImpl<uint64_t> &Record) {
2027   if (M.named_metadata_empty())
2028     return;
2029 
2030   unsigned Abbrev = createNamedMetadataAbbrev();
2031   for (const NamedMDNode &NMD : M.named_metadata()) {
2032     // Write name.
2033     StringRef Str = NMD.getName();
2034     Record.append(Str.bytes_begin(), Str.bytes_end());
2035     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2036     Record.clear();
2037 
2038     // Write named metadata operands.
2039     for (const MDNode *N : NMD.operands())
2040       Record.push_back(VE.getMetadataID(N));
2041     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2042     Record.clear();
2043   }
2044 }
2045 
2046 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2047   auto Abbv = std::make_shared<BitCodeAbbrev>();
2048   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2049   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2050   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2051   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2052   return Stream.EmitAbbrev(std::move(Abbv));
2053 }
2054 
2055 /// Write out a record for MDString.
2056 ///
2057 /// All the metadata strings in a metadata block are emitted in a single
2058 /// record.  The sizes and strings themselves are shoved into a blob.
2059 void ModuleBitcodeWriter::writeMetadataStrings(
2060     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2061   if (Strings.empty())
2062     return;
2063 
2064   // Start the record with the number of strings.
2065   Record.push_back(bitc::METADATA_STRINGS);
2066   Record.push_back(Strings.size());
2067 
2068   // Emit the sizes of the strings in the blob.
2069   SmallString<256> Blob;
2070   {
2071     BitstreamWriter W(Blob);
2072     for (const Metadata *MD : Strings)
2073       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2074     W.FlushToWord();
2075   }
2076 
2077   // Add the offset to the strings to the record.
2078   Record.push_back(Blob.size());
2079 
2080   // Add the strings to the blob.
2081   for (const Metadata *MD : Strings)
2082     Blob.append(cast<MDString>(MD)->getString());
2083 
2084   // Emit the final record.
2085   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2086   Record.clear();
2087 }
2088 
2089 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2090 enum MetadataAbbrev : unsigned {
2091 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2092 #include "llvm/IR/Metadata.def"
2093   LastPlusOne
2094 };
2095 
2096 void ModuleBitcodeWriter::writeMetadataRecords(
2097     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2098     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2099   if (MDs.empty())
2100     return;
2101 
2102   // Initialize MDNode abbreviations.
2103 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2104 #include "llvm/IR/Metadata.def"
2105 
2106   for (const Metadata *MD : MDs) {
2107     if (IndexPos)
2108       IndexPos->push_back(Stream.GetCurrentBitNo());
2109     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2110       assert(N->isResolved() && "Expected forward references to be resolved");
2111 
2112       switch (N->getMetadataID()) {
2113       default:
2114         llvm_unreachable("Invalid MDNode subclass");
2115 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2116   case Metadata::CLASS##Kind:                                                  \
2117     if (MDAbbrevs)                                                             \
2118       write##CLASS(cast<CLASS>(N), Record,                                     \
2119                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2120     else                                                                       \
2121       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2122     continue;
2123 #include "llvm/IR/Metadata.def"
2124       }
2125     }
2126     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2127   }
2128 }
2129 
2130 void ModuleBitcodeWriter::writeModuleMetadata() {
2131   if (!VE.hasMDs() && M.named_metadata_empty())
2132     return;
2133 
2134   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2135   SmallVector<uint64_t, 64> Record;
2136 
2137   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2138   // block and load any metadata.
2139   std::vector<unsigned> MDAbbrevs;
2140 
2141   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2142   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2143   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2144       createGenericDINodeAbbrev();
2145 
2146   auto Abbv = std::make_shared<BitCodeAbbrev>();
2147   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2148   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2149   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2150   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2151 
2152   Abbv = std::make_shared<BitCodeAbbrev>();
2153   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2154   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2155   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2156   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2157 
2158   // Emit MDStrings together upfront.
2159   writeMetadataStrings(VE.getMDStrings(), Record);
2160 
2161   // We only emit an index for the metadata record if we have more than a given
2162   // (naive) threshold of metadatas, otherwise it is not worth it.
2163   if (VE.getNonMDStrings().size() > IndexThreshold) {
2164     // Write a placeholder value in for the offset of the metadata index,
2165     // which is written after the records, so that it can include
2166     // the offset of each entry. The placeholder offset will be
2167     // updated after all records are emitted.
2168     uint64_t Vals[] = {0, 0};
2169     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2170   }
2171 
2172   // Compute and save the bit offset to the current position, which will be
2173   // patched when we emit the index later. We can simply subtract the 64-bit
2174   // fixed size from the current bit number to get the location to backpatch.
2175   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2176 
2177   // This index will contain the bitpos for each individual record.
2178   std::vector<uint64_t> IndexPos;
2179   IndexPos.reserve(VE.getNonMDStrings().size());
2180 
2181   // Write all the records
2182   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2183 
2184   if (VE.getNonMDStrings().size() > IndexThreshold) {
2185     // Now that we have emitted all the records we will emit the index. But
2186     // first
2187     // backpatch the forward reference so that the reader can skip the records
2188     // efficiently.
2189     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2190                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2191 
2192     // Delta encode the index.
2193     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2194     for (auto &Elt : IndexPos) {
2195       auto EltDelta = Elt - PreviousValue;
2196       PreviousValue = Elt;
2197       Elt = EltDelta;
2198     }
2199     // Emit the index record.
2200     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2201     IndexPos.clear();
2202   }
2203 
2204   // Write the named metadata now.
2205   writeNamedMetadata(Record);
2206 
2207   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2208     SmallVector<uint64_t, 4> Record;
2209     Record.push_back(VE.getValueID(&GO));
2210     pushGlobalMetadataAttachment(Record, GO);
2211     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2212   };
2213   for (const Function &F : M)
2214     if (F.isDeclaration() && F.hasMetadata())
2215       AddDeclAttachedMetadata(F);
2216   // FIXME: Only store metadata for declarations here, and move data for global
2217   // variable definitions to a separate block (PR28134).
2218   for (const GlobalVariable &GV : M.globals())
2219     if (GV.hasMetadata())
2220       AddDeclAttachedMetadata(GV);
2221 
2222   Stream.ExitBlock();
2223 }
2224 
2225 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2226   if (!VE.hasMDs())
2227     return;
2228 
2229   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2230   SmallVector<uint64_t, 64> Record;
2231   writeMetadataStrings(VE.getMDStrings(), Record);
2232   writeMetadataRecords(VE.getNonMDStrings(), Record);
2233   Stream.ExitBlock();
2234 }
2235 
2236 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2237     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2238   // [n x [id, mdnode]]
2239   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2240   GO.getAllMetadata(MDs);
2241   for (const auto &I : MDs) {
2242     Record.push_back(I.first);
2243     Record.push_back(VE.getMetadataID(I.second));
2244   }
2245 }
2246 
2247 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2248   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2249 
2250   SmallVector<uint64_t, 64> Record;
2251 
2252   if (F.hasMetadata()) {
2253     pushGlobalMetadataAttachment(Record, F);
2254     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2255     Record.clear();
2256   }
2257 
2258   // Write metadata attachments
2259   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2260   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2261   for (const BasicBlock &BB : F)
2262     for (const Instruction &I : BB) {
2263       MDs.clear();
2264       I.getAllMetadataOtherThanDebugLoc(MDs);
2265 
2266       // If no metadata, ignore instruction.
2267       if (MDs.empty()) continue;
2268 
2269       Record.push_back(VE.getInstructionID(&I));
2270 
2271       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2272         Record.push_back(MDs[i].first);
2273         Record.push_back(VE.getMetadataID(MDs[i].second));
2274       }
2275       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2276       Record.clear();
2277     }
2278 
2279   Stream.ExitBlock();
2280 }
2281 
2282 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2283   SmallVector<uint64_t, 64> Record;
2284 
2285   // Write metadata kinds
2286   // METADATA_KIND - [n x [id, name]]
2287   SmallVector<StringRef, 8> Names;
2288   M.getMDKindNames(Names);
2289 
2290   if (Names.empty()) return;
2291 
2292   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2293 
2294   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2295     Record.push_back(MDKindID);
2296     StringRef KName = Names[MDKindID];
2297     Record.append(KName.begin(), KName.end());
2298 
2299     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2300     Record.clear();
2301   }
2302 
2303   Stream.ExitBlock();
2304 }
2305 
2306 void ModuleBitcodeWriter::writeOperandBundleTags() {
2307   // Write metadata kinds
2308   //
2309   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2310   //
2311   // OPERAND_BUNDLE_TAG - [strchr x N]
2312 
2313   SmallVector<StringRef, 8> Tags;
2314   M.getOperandBundleTags(Tags);
2315 
2316   if (Tags.empty())
2317     return;
2318 
2319   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2320 
2321   SmallVector<uint64_t, 64> Record;
2322 
2323   for (auto Tag : Tags) {
2324     Record.append(Tag.begin(), Tag.end());
2325 
2326     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2327     Record.clear();
2328   }
2329 
2330   Stream.ExitBlock();
2331 }
2332 
2333 void ModuleBitcodeWriter::writeSyncScopeNames() {
2334   SmallVector<StringRef, 8> SSNs;
2335   M.getContext().getSyncScopeNames(SSNs);
2336   if (SSNs.empty())
2337     return;
2338 
2339   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2340 
2341   SmallVector<uint64_t, 64> Record;
2342   for (auto SSN : SSNs) {
2343     Record.append(SSN.begin(), SSN.end());
2344     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2345     Record.clear();
2346   }
2347 
2348   Stream.ExitBlock();
2349 }
2350 
2351 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2352                                          bool isGlobal) {
2353   if (FirstVal == LastVal) return;
2354 
2355   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2356 
2357   unsigned AggregateAbbrev = 0;
2358   unsigned String8Abbrev = 0;
2359   unsigned CString7Abbrev = 0;
2360   unsigned CString6Abbrev = 0;
2361   // If this is a constant pool for the module, emit module-specific abbrevs.
2362   if (isGlobal) {
2363     // Abbrev for CST_CODE_AGGREGATE.
2364     auto Abbv = std::make_shared<BitCodeAbbrev>();
2365     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2366     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2367     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2368     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2369 
2370     // Abbrev for CST_CODE_STRING.
2371     Abbv = std::make_shared<BitCodeAbbrev>();
2372     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2373     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2374     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2375     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2376     // Abbrev for CST_CODE_CSTRING.
2377     Abbv = std::make_shared<BitCodeAbbrev>();
2378     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2379     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2380     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2381     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2382     // Abbrev for CST_CODE_CSTRING.
2383     Abbv = std::make_shared<BitCodeAbbrev>();
2384     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2385     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2386     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2387     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2388   }
2389 
2390   SmallVector<uint64_t, 64> Record;
2391 
2392   const ValueEnumerator::ValueList &Vals = VE.getValues();
2393   Type *LastTy = nullptr;
2394   for (unsigned i = FirstVal; i != LastVal; ++i) {
2395     const Value *V = Vals[i].first;
2396     // If we need to switch types, do so now.
2397     if (V->getType() != LastTy) {
2398       LastTy = V->getType();
2399       Record.push_back(VE.getTypeID(LastTy));
2400       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2401                         CONSTANTS_SETTYPE_ABBREV);
2402       Record.clear();
2403     }
2404 
2405     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2406       Record.push_back(unsigned(IA->hasSideEffects()) |
2407                        unsigned(IA->isAlignStack()) << 1 |
2408                        unsigned(IA->getDialect()&1) << 2);
2409 
2410       // Add the asm string.
2411       const std::string &AsmStr = IA->getAsmString();
2412       Record.push_back(AsmStr.size());
2413       Record.append(AsmStr.begin(), AsmStr.end());
2414 
2415       // Add the constraint string.
2416       const std::string &ConstraintStr = IA->getConstraintString();
2417       Record.push_back(ConstraintStr.size());
2418       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2419       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2420       Record.clear();
2421       continue;
2422     }
2423     const Constant *C = cast<Constant>(V);
2424     unsigned Code = -1U;
2425     unsigned AbbrevToUse = 0;
2426     if (C->isNullValue()) {
2427       Code = bitc::CST_CODE_NULL;
2428     } else if (isa<UndefValue>(C)) {
2429       Code = bitc::CST_CODE_UNDEF;
2430     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2431       if (IV->getBitWidth() <= 64) {
2432         uint64_t V = IV->getSExtValue();
2433         emitSignedInt64(Record, V);
2434         Code = bitc::CST_CODE_INTEGER;
2435         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2436       } else {                             // Wide integers, > 64 bits in size.
2437         emitWideAPInt(Record, IV->getValue());
2438         Code = bitc::CST_CODE_WIDE_INTEGER;
2439       }
2440     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2441       Code = bitc::CST_CODE_FLOAT;
2442       Type *Ty = CFP->getType();
2443       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2444           Ty->isDoubleTy()) {
2445         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2446       } else if (Ty->isX86_FP80Ty()) {
2447         // api needed to prevent premature destruction
2448         // bits are not in the same order as a normal i80 APInt, compensate.
2449         APInt api = CFP->getValueAPF().bitcastToAPInt();
2450         const uint64_t *p = api.getRawData();
2451         Record.push_back((p[1] << 48) | (p[0] >> 16));
2452         Record.push_back(p[0] & 0xffffLL);
2453       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2454         APInt api = CFP->getValueAPF().bitcastToAPInt();
2455         const uint64_t *p = api.getRawData();
2456         Record.push_back(p[0]);
2457         Record.push_back(p[1]);
2458       } else {
2459         assert(0 && "Unknown FP type!");
2460       }
2461     } else if (isa<ConstantDataSequential>(C) &&
2462                cast<ConstantDataSequential>(C)->isString()) {
2463       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2464       // Emit constant strings specially.
2465       unsigned NumElts = Str->getNumElements();
2466       // If this is a null-terminated string, use the denser CSTRING encoding.
2467       if (Str->isCString()) {
2468         Code = bitc::CST_CODE_CSTRING;
2469         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2470       } else {
2471         Code = bitc::CST_CODE_STRING;
2472         AbbrevToUse = String8Abbrev;
2473       }
2474       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2475       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2476       for (unsigned i = 0; i != NumElts; ++i) {
2477         unsigned char V = Str->getElementAsInteger(i);
2478         Record.push_back(V);
2479         isCStr7 &= (V & 128) == 0;
2480         if (isCStrChar6)
2481           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2482       }
2483 
2484       if (isCStrChar6)
2485         AbbrevToUse = CString6Abbrev;
2486       else if (isCStr7)
2487         AbbrevToUse = CString7Abbrev;
2488     } else if (const ConstantDataSequential *CDS =
2489                   dyn_cast<ConstantDataSequential>(C)) {
2490       Code = bitc::CST_CODE_DATA;
2491       Type *EltTy = CDS->getElementType();
2492       if (isa<IntegerType>(EltTy)) {
2493         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2494           Record.push_back(CDS->getElementAsInteger(i));
2495       } else {
2496         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2497           Record.push_back(
2498               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2499       }
2500     } else if (isa<ConstantAggregate>(C)) {
2501       Code = bitc::CST_CODE_AGGREGATE;
2502       for (const Value *Op : C->operands())
2503         Record.push_back(VE.getValueID(Op));
2504       AbbrevToUse = AggregateAbbrev;
2505     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2506       switch (CE->getOpcode()) {
2507       default:
2508         if (Instruction::isCast(CE->getOpcode())) {
2509           Code = bitc::CST_CODE_CE_CAST;
2510           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2511           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2512           Record.push_back(VE.getValueID(C->getOperand(0)));
2513           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2514         } else {
2515           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2516           Code = bitc::CST_CODE_CE_BINOP;
2517           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2518           Record.push_back(VE.getValueID(C->getOperand(0)));
2519           Record.push_back(VE.getValueID(C->getOperand(1)));
2520           uint64_t Flags = getOptimizationFlags(CE);
2521           if (Flags != 0)
2522             Record.push_back(Flags);
2523         }
2524         break;
2525       case Instruction::FNeg: {
2526         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2527         Code = bitc::CST_CODE_CE_UNOP;
2528         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2529         Record.push_back(VE.getValueID(C->getOperand(0)));
2530         uint64_t Flags = getOptimizationFlags(CE);
2531         if (Flags != 0)
2532           Record.push_back(Flags);
2533         break;
2534       }
2535       case Instruction::GetElementPtr: {
2536         Code = bitc::CST_CODE_CE_GEP;
2537         const auto *GO = cast<GEPOperator>(C);
2538         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2539         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2540           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2541           Record.push_back((*Idx << 1) | GO->isInBounds());
2542         } else if (GO->isInBounds())
2543           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2544         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2545           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2546           Record.push_back(VE.getValueID(C->getOperand(i)));
2547         }
2548         break;
2549       }
2550       case Instruction::Select:
2551         Code = bitc::CST_CODE_CE_SELECT;
2552         Record.push_back(VE.getValueID(C->getOperand(0)));
2553         Record.push_back(VE.getValueID(C->getOperand(1)));
2554         Record.push_back(VE.getValueID(C->getOperand(2)));
2555         break;
2556       case Instruction::ExtractElement:
2557         Code = bitc::CST_CODE_CE_EXTRACTELT;
2558         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2559         Record.push_back(VE.getValueID(C->getOperand(0)));
2560         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2561         Record.push_back(VE.getValueID(C->getOperand(1)));
2562         break;
2563       case Instruction::InsertElement:
2564         Code = bitc::CST_CODE_CE_INSERTELT;
2565         Record.push_back(VE.getValueID(C->getOperand(0)));
2566         Record.push_back(VE.getValueID(C->getOperand(1)));
2567         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2568         Record.push_back(VE.getValueID(C->getOperand(2)));
2569         break;
2570       case Instruction::ShuffleVector:
2571         // If the return type and argument types are the same, this is a
2572         // standard shufflevector instruction.  If the types are different,
2573         // then the shuffle is widening or truncating the input vectors, and
2574         // the argument type must also be encoded.
2575         if (C->getType() == C->getOperand(0)->getType()) {
2576           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2577         } else {
2578           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2579           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2580         }
2581         Record.push_back(VE.getValueID(C->getOperand(0)));
2582         Record.push_back(VE.getValueID(C->getOperand(1)));
2583         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2584         break;
2585       case Instruction::ICmp:
2586       case Instruction::FCmp:
2587         Code = bitc::CST_CODE_CE_CMP;
2588         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2589         Record.push_back(VE.getValueID(C->getOperand(0)));
2590         Record.push_back(VE.getValueID(C->getOperand(1)));
2591         Record.push_back(CE->getPredicate());
2592         break;
2593       }
2594     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2595       Code = bitc::CST_CODE_BLOCKADDRESS;
2596       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2597       Record.push_back(VE.getValueID(BA->getFunction()));
2598       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2599     } else {
2600 #ifndef NDEBUG
2601       C->dump();
2602 #endif
2603       llvm_unreachable("Unknown constant!");
2604     }
2605     Stream.EmitRecord(Code, Record, AbbrevToUse);
2606     Record.clear();
2607   }
2608 
2609   Stream.ExitBlock();
2610 }
2611 
2612 void ModuleBitcodeWriter::writeModuleConstants() {
2613   const ValueEnumerator::ValueList &Vals = VE.getValues();
2614 
2615   // Find the first constant to emit, which is the first non-globalvalue value.
2616   // We know globalvalues have been emitted by WriteModuleInfo.
2617   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2618     if (!isa<GlobalValue>(Vals[i].first)) {
2619       writeConstants(i, Vals.size(), true);
2620       return;
2621     }
2622   }
2623 }
2624 
2625 /// pushValueAndType - The file has to encode both the value and type id for
2626 /// many values, because we need to know what type to create for forward
2627 /// references.  However, most operands are not forward references, so this type
2628 /// field is not needed.
2629 ///
2630 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2631 /// instruction ID, then it is a forward reference, and it also includes the
2632 /// type ID.  The value ID that is written is encoded relative to the InstID.
2633 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2634                                            SmallVectorImpl<unsigned> &Vals) {
2635   unsigned ValID = VE.getValueID(V);
2636   // Make encoding relative to the InstID.
2637   Vals.push_back(InstID - ValID);
2638   if (ValID >= InstID) {
2639     Vals.push_back(VE.getTypeID(V->getType()));
2640     return true;
2641   }
2642   return false;
2643 }
2644 
2645 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2646                                               unsigned InstID) {
2647   SmallVector<unsigned, 64> Record;
2648   LLVMContext &C = CS.getContext();
2649 
2650   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2651     const auto &Bundle = CS.getOperandBundleAt(i);
2652     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2653 
2654     for (auto &Input : Bundle.Inputs)
2655       pushValueAndType(Input, InstID, Record);
2656 
2657     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2658     Record.clear();
2659   }
2660 }
2661 
2662 /// pushValue - Like pushValueAndType, but where the type of the value is
2663 /// omitted (perhaps it was already encoded in an earlier operand).
2664 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2665                                     SmallVectorImpl<unsigned> &Vals) {
2666   unsigned ValID = VE.getValueID(V);
2667   Vals.push_back(InstID - ValID);
2668 }
2669 
2670 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2671                                           SmallVectorImpl<uint64_t> &Vals) {
2672   unsigned ValID = VE.getValueID(V);
2673   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2674   emitSignedInt64(Vals, diff);
2675 }
2676 
2677 /// WriteInstruction - Emit an instruction to the specified stream.
2678 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2679                                            unsigned InstID,
2680                                            SmallVectorImpl<unsigned> &Vals) {
2681   unsigned Code = 0;
2682   unsigned AbbrevToUse = 0;
2683   VE.setInstructionID(&I);
2684   switch (I.getOpcode()) {
2685   default:
2686     if (Instruction::isCast(I.getOpcode())) {
2687       Code = bitc::FUNC_CODE_INST_CAST;
2688       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2689         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2690       Vals.push_back(VE.getTypeID(I.getType()));
2691       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2692     } else {
2693       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2694       Code = bitc::FUNC_CODE_INST_BINOP;
2695       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2696         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2697       pushValue(I.getOperand(1), InstID, Vals);
2698       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2699       uint64_t Flags = getOptimizationFlags(&I);
2700       if (Flags != 0) {
2701         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2702           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2703         Vals.push_back(Flags);
2704       }
2705     }
2706     break;
2707   case Instruction::FNeg: {
2708     Code = bitc::FUNC_CODE_INST_UNOP;
2709     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2710       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2711     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2712     uint64_t Flags = getOptimizationFlags(&I);
2713     if (Flags != 0) {
2714       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2715         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2716       Vals.push_back(Flags);
2717     }
2718     break;
2719   }
2720   case Instruction::GetElementPtr: {
2721     Code = bitc::FUNC_CODE_INST_GEP;
2722     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2723     auto &GEPInst = cast<GetElementPtrInst>(I);
2724     Vals.push_back(GEPInst.isInBounds());
2725     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2726     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2727       pushValueAndType(I.getOperand(i), InstID, Vals);
2728     break;
2729   }
2730   case Instruction::ExtractValue: {
2731     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2732     pushValueAndType(I.getOperand(0), InstID, Vals);
2733     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2734     Vals.append(EVI->idx_begin(), EVI->idx_end());
2735     break;
2736   }
2737   case Instruction::InsertValue: {
2738     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2739     pushValueAndType(I.getOperand(0), InstID, Vals);
2740     pushValueAndType(I.getOperand(1), InstID, Vals);
2741     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2742     Vals.append(IVI->idx_begin(), IVI->idx_end());
2743     break;
2744   }
2745   case Instruction::Select: {
2746     Code = bitc::FUNC_CODE_INST_VSELECT;
2747     pushValueAndType(I.getOperand(1), InstID, Vals);
2748     pushValue(I.getOperand(2), InstID, Vals);
2749     pushValueAndType(I.getOperand(0), InstID, Vals);
2750     uint64_t Flags = getOptimizationFlags(&I);
2751     if (Flags != 0)
2752       Vals.push_back(Flags);
2753     break;
2754   }
2755   case Instruction::ExtractElement:
2756     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2757     pushValueAndType(I.getOperand(0), InstID, Vals);
2758     pushValueAndType(I.getOperand(1), InstID, Vals);
2759     break;
2760   case Instruction::InsertElement:
2761     Code = bitc::FUNC_CODE_INST_INSERTELT;
2762     pushValueAndType(I.getOperand(0), InstID, Vals);
2763     pushValue(I.getOperand(1), InstID, Vals);
2764     pushValueAndType(I.getOperand(2), InstID, Vals);
2765     break;
2766   case Instruction::ShuffleVector:
2767     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2768     pushValueAndType(I.getOperand(0), InstID, Vals);
2769     pushValue(I.getOperand(1), InstID, Vals);
2770     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2771               Vals);
2772     break;
2773   case Instruction::ICmp:
2774   case Instruction::FCmp: {
2775     // compare returning Int1Ty or vector of Int1Ty
2776     Code = bitc::FUNC_CODE_INST_CMP2;
2777     pushValueAndType(I.getOperand(0), InstID, Vals);
2778     pushValue(I.getOperand(1), InstID, Vals);
2779     Vals.push_back(cast<CmpInst>(I).getPredicate());
2780     uint64_t Flags = getOptimizationFlags(&I);
2781     if (Flags != 0)
2782       Vals.push_back(Flags);
2783     break;
2784   }
2785 
2786   case Instruction::Ret:
2787     {
2788       Code = bitc::FUNC_CODE_INST_RET;
2789       unsigned NumOperands = I.getNumOperands();
2790       if (NumOperands == 0)
2791         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2792       else if (NumOperands == 1) {
2793         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2794           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2795       } else {
2796         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2797           pushValueAndType(I.getOperand(i), InstID, Vals);
2798       }
2799     }
2800     break;
2801   case Instruction::Br:
2802     {
2803       Code = bitc::FUNC_CODE_INST_BR;
2804       const BranchInst &II = cast<BranchInst>(I);
2805       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2806       if (II.isConditional()) {
2807         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2808         pushValue(II.getCondition(), InstID, Vals);
2809       }
2810     }
2811     break;
2812   case Instruction::Switch:
2813     {
2814       Code = bitc::FUNC_CODE_INST_SWITCH;
2815       const SwitchInst &SI = cast<SwitchInst>(I);
2816       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2817       pushValue(SI.getCondition(), InstID, Vals);
2818       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2819       for (auto Case : SI.cases()) {
2820         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2821         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2822       }
2823     }
2824     break;
2825   case Instruction::IndirectBr:
2826     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2827     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2828     // Encode the address operand as relative, but not the basic blocks.
2829     pushValue(I.getOperand(0), InstID, Vals);
2830     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2831       Vals.push_back(VE.getValueID(I.getOperand(i)));
2832     break;
2833 
2834   case Instruction::Invoke: {
2835     const InvokeInst *II = cast<InvokeInst>(&I);
2836     const Value *Callee = II->getCalledOperand();
2837     FunctionType *FTy = II->getFunctionType();
2838 
2839     if (II->hasOperandBundles())
2840       writeOperandBundles(*II, InstID);
2841 
2842     Code = bitc::FUNC_CODE_INST_INVOKE;
2843 
2844     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2845     Vals.push_back(II->getCallingConv() | 1 << 13);
2846     Vals.push_back(VE.getValueID(II->getNormalDest()));
2847     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2848     Vals.push_back(VE.getTypeID(FTy));
2849     pushValueAndType(Callee, InstID, Vals);
2850 
2851     // Emit value #'s for the fixed parameters.
2852     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2853       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2854 
2855     // Emit type/value pairs for varargs params.
2856     if (FTy->isVarArg()) {
2857       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2858            i != e; ++i)
2859         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2860     }
2861     break;
2862   }
2863   case Instruction::Resume:
2864     Code = bitc::FUNC_CODE_INST_RESUME;
2865     pushValueAndType(I.getOperand(0), InstID, Vals);
2866     break;
2867   case Instruction::CleanupRet: {
2868     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2869     const auto &CRI = cast<CleanupReturnInst>(I);
2870     pushValue(CRI.getCleanupPad(), InstID, Vals);
2871     if (CRI.hasUnwindDest())
2872       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2873     break;
2874   }
2875   case Instruction::CatchRet: {
2876     Code = bitc::FUNC_CODE_INST_CATCHRET;
2877     const auto &CRI = cast<CatchReturnInst>(I);
2878     pushValue(CRI.getCatchPad(), InstID, Vals);
2879     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2880     break;
2881   }
2882   case Instruction::CleanupPad:
2883   case Instruction::CatchPad: {
2884     const auto &FuncletPad = cast<FuncletPadInst>(I);
2885     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2886                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2887     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2888 
2889     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2890     Vals.push_back(NumArgOperands);
2891     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2892       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2893     break;
2894   }
2895   case Instruction::CatchSwitch: {
2896     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2897     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2898 
2899     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2900 
2901     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2902     Vals.push_back(NumHandlers);
2903     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2904       Vals.push_back(VE.getValueID(CatchPadBB));
2905 
2906     if (CatchSwitch.hasUnwindDest())
2907       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2908     break;
2909   }
2910   case Instruction::CallBr: {
2911     const CallBrInst *CBI = cast<CallBrInst>(&I);
2912     const Value *Callee = CBI->getCalledOperand();
2913     FunctionType *FTy = CBI->getFunctionType();
2914 
2915     if (CBI->hasOperandBundles())
2916       writeOperandBundles(*CBI, InstID);
2917 
2918     Code = bitc::FUNC_CODE_INST_CALLBR;
2919 
2920     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2921 
2922     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2923                    1 << bitc::CALL_EXPLICIT_TYPE);
2924 
2925     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2926     Vals.push_back(CBI->getNumIndirectDests());
2927     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2928       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2929 
2930     Vals.push_back(VE.getTypeID(FTy));
2931     pushValueAndType(Callee, InstID, Vals);
2932 
2933     // Emit value #'s for the fixed parameters.
2934     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2935       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2936 
2937     // Emit type/value pairs for varargs params.
2938     if (FTy->isVarArg()) {
2939       for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2940            i != e; ++i)
2941         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2942     }
2943     break;
2944   }
2945   case Instruction::Unreachable:
2946     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2947     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2948     break;
2949 
2950   case Instruction::PHI: {
2951     const PHINode &PN = cast<PHINode>(I);
2952     Code = bitc::FUNC_CODE_INST_PHI;
2953     // With the newer instruction encoding, forward references could give
2954     // negative valued IDs.  This is most common for PHIs, so we use
2955     // signed VBRs.
2956     SmallVector<uint64_t, 128> Vals64;
2957     Vals64.push_back(VE.getTypeID(PN.getType()));
2958     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2959       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2960       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2961     }
2962 
2963     uint64_t Flags = getOptimizationFlags(&I);
2964     if (Flags != 0)
2965       Vals64.push_back(Flags);
2966 
2967     // Emit a Vals64 vector and exit.
2968     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2969     Vals64.clear();
2970     return;
2971   }
2972 
2973   case Instruction::LandingPad: {
2974     const LandingPadInst &LP = cast<LandingPadInst>(I);
2975     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2976     Vals.push_back(VE.getTypeID(LP.getType()));
2977     Vals.push_back(LP.isCleanup());
2978     Vals.push_back(LP.getNumClauses());
2979     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2980       if (LP.isCatch(I))
2981         Vals.push_back(LandingPadInst::Catch);
2982       else
2983         Vals.push_back(LandingPadInst::Filter);
2984       pushValueAndType(LP.getClause(I), InstID, Vals);
2985     }
2986     break;
2987   }
2988 
2989   case Instruction::Alloca: {
2990     Code = bitc::FUNC_CODE_INST_ALLOCA;
2991     const AllocaInst &AI = cast<AllocaInst>(I);
2992     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
2993     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2994     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2995     using APV = AllocaPackedValues;
2996     unsigned Record = 0;
2997     Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign()));
2998     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
2999     Bitfield::set<APV::ExplicitType>(Record, true);
3000     Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3001     Vals.push_back(Record);
3002     break;
3003   }
3004 
3005   case Instruction::Load:
3006     if (cast<LoadInst>(I).isAtomic()) {
3007       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3008       pushValueAndType(I.getOperand(0), InstID, Vals);
3009     } else {
3010       Code = bitc::FUNC_CODE_INST_LOAD;
3011       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3012         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3013     }
3014     Vals.push_back(VE.getTypeID(I.getType()));
3015     Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3016     Vals.push_back(cast<LoadInst>(I).isVolatile());
3017     if (cast<LoadInst>(I).isAtomic()) {
3018       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3019       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3020     }
3021     break;
3022   case Instruction::Store:
3023     if (cast<StoreInst>(I).isAtomic())
3024       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3025     else
3026       Code = bitc::FUNC_CODE_INST_STORE;
3027     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3028     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3029     Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3030     Vals.push_back(cast<StoreInst>(I).isVolatile());
3031     if (cast<StoreInst>(I).isAtomic()) {
3032       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3033       Vals.push_back(
3034           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3035     }
3036     break;
3037   case Instruction::AtomicCmpXchg:
3038     Code = bitc::FUNC_CODE_INST_CMPXCHG;
3039     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3040     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3041     pushValue(I.getOperand(2), InstID, Vals);        // newval.
3042     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3043     Vals.push_back(
3044         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3045     Vals.push_back(
3046         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3047     Vals.push_back(
3048         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3049     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3050     break;
3051   case Instruction::AtomicRMW:
3052     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3053     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3054     pushValue(I.getOperand(1), InstID, Vals);        // val.
3055     Vals.push_back(
3056         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3057     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3058     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3059     Vals.push_back(
3060         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3061     break;
3062   case Instruction::Fence:
3063     Code = bitc::FUNC_CODE_INST_FENCE;
3064     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3065     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3066     break;
3067   case Instruction::Call: {
3068     const CallInst &CI = cast<CallInst>(I);
3069     FunctionType *FTy = CI.getFunctionType();
3070 
3071     if (CI.hasOperandBundles())
3072       writeOperandBundles(CI, InstID);
3073 
3074     Code = bitc::FUNC_CODE_INST_CALL;
3075 
3076     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3077 
3078     unsigned Flags = getOptimizationFlags(&I);
3079     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3080                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3081                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3082                    1 << bitc::CALL_EXPLICIT_TYPE |
3083                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3084                    unsigned(Flags != 0) << bitc::CALL_FMF);
3085     if (Flags != 0)
3086       Vals.push_back(Flags);
3087 
3088     Vals.push_back(VE.getTypeID(FTy));
3089     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3090 
3091     // Emit value #'s for the fixed parameters.
3092     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3093       // Check for labels (can happen with asm labels).
3094       if (FTy->getParamType(i)->isLabelTy())
3095         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3096       else
3097         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3098     }
3099 
3100     // Emit type/value pairs for varargs params.
3101     if (FTy->isVarArg()) {
3102       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3103            i != e; ++i)
3104         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3105     }
3106     break;
3107   }
3108   case Instruction::VAArg:
3109     Code = bitc::FUNC_CODE_INST_VAARG;
3110     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3111     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3112     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3113     break;
3114   case Instruction::Freeze:
3115     Code = bitc::FUNC_CODE_INST_FREEZE;
3116     pushValueAndType(I.getOperand(0), InstID, Vals);
3117     break;
3118   }
3119 
3120   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3121   Vals.clear();
3122 }
3123 
3124 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3125 /// to allow clients to efficiently find the function body.
3126 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3127   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3128   // Get the offset of the VST we are writing, and backpatch it into
3129   // the VST forward declaration record.
3130   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3131   // The BitcodeStartBit was the stream offset of the identification block.
3132   VSTOffset -= bitcodeStartBit();
3133   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3134   // Note that we add 1 here because the offset is relative to one word
3135   // before the start of the identification block, which was historically
3136   // always the start of the regular bitcode header.
3137   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3138 
3139   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3140 
3141   auto Abbv = std::make_shared<BitCodeAbbrev>();
3142   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3143   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3144   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3145   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3146 
3147   for (const Function &F : M) {
3148     uint64_t Record[2];
3149 
3150     if (F.isDeclaration())
3151       continue;
3152 
3153     Record[0] = VE.getValueID(&F);
3154 
3155     // Save the word offset of the function (from the start of the
3156     // actual bitcode written to the stream).
3157     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3158     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3159     // Note that we add 1 here because the offset is relative to one word
3160     // before the start of the identification block, which was historically
3161     // always the start of the regular bitcode header.
3162     Record[1] = BitcodeIndex / 32 + 1;
3163 
3164     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3165   }
3166 
3167   Stream.ExitBlock();
3168 }
3169 
3170 /// Emit names for arguments, instructions and basic blocks in a function.
3171 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3172     const ValueSymbolTable &VST) {
3173   if (VST.empty())
3174     return;
3175 
3176   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3177 
3178   // FIXME: Set up the abbrev, we know how many values there are!
3179   // FIXME: We know if the type names can use 7-bit ascii.
3180   SmallVector<uint64_t, 64> NameVals;
3181 
3182   for (const ValueName &Name : VST) {
3183     // Figure out the encoding to use for the name.
3184     StringEncoding Bits = getStringEncoding(Name.getKey());
3185 
3186     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3187     NameVals.push_back(VE.getValueID(Name.getValue()));
3188 
3189     // VST_CODE_ENTRY:   [valueid, namechar x N]
3190     // VST_CODE_BBENTRY: [bbid, namechar x N]
3191     unsigned Code;
3192     if (isa<BasicBlock>(Name.getValue())) {
3193       Code = bitc::VST_CODE_BBENTRY;
3194       if (Bits == SE_Char6)
3195         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3196     } else {
3197       Code = bitc::VST_CODE_ENTRY;
3198       if (Bits == SE_Char6)
3199         AbbrevToUse = VST_ENTRY_6_ABBREV;
3200       else if (Bits == SE_Fixed7)
3201         AbbrevToUse = VST_ENTRY_7_ABBREV;
3202     }
3203 
3204     for (const auto P : Name.getKey())
3205       NameVals.push_back((unsigned char)P);
3206 
3207     // Emit the finished record.
3208     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3209     NameVals.clear();
3210   }
3211 
3212   Stream.ExitBlock();
3213 }
3214 
3215 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3216   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3217   unsigned Code;
3218   if (isa<BasicBlock>(Order.V))
3219     Code = bitc::USELIST_CODE_BB;
3220   else
3221     Code = bitc::USELIST_CODE_DEFAULT;
3222 
3223   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3224   Record.push_back(VE.getValueID(Order.V));
3225   Stream.EmitRecord(Code, Record);
3226 }
3227 
3228 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3229   assert(VE.shouldPreserveUseListOrder() &&
3230          "Expected to be preserving use-list order");
3231 
3232   auto hasMore = [&]() {
3233     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3234   };
3235   if (!hasMore())
3236     // Nothing to do.
3237     return;
3238 
3239   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3240   while (hasMore()) {
3241     writeUseList(std::move(VE.UseListOrders.back()));
3242     VE.UseListOrders.pop_back();
3243   }
3244   Stream.ExitBlock();
3245 }
3246 
3247 /// Emit a function body to the module stream.
3248 void ModuleBitcodeWriter::writeFunction(
3249     const Function &F,
3250     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3251   // Save the bitcode index of the start of this function block for recording
3252   // in the VST.
3253   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3254 
3255   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3256   VE.incorporateFunction(F);
3257 
3258   SmallVector<unsigned, 64> Vals;
3259 
3260   // Emit the number of basic blocks, so the reader can create them ahead of
3261   // time.
3262   Vals.push_back(VE.getBasicBlocks().size());
3263   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3264   Vals.clear();
3265 
3266   // If there are function-local constants, emit them now.
3267   unsigned CstStart, CstEnd;
3268   VE.getFunctionConstantRange(CstStart, CstEnd);
3269   writeConstants(CstStart, CstEnd, false);
3270 
3271   // If there is function-local metadata, emit it now.
3272   writeFunctionMetadata(F);
3273 
3274   // Keep a running idea of what the instruction ID is.
3275   unsigned InstID = CstEnd;
3276 
3277   bool NeedsMetadataAttachment = F.hasMetadata();
3278 
3279   DILocation *LastDL = nullptr;
3280   // Finally, emit all the instructions, in order.
3281   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3282     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3283          I != E; ++I) {
3284       writeInstruction(*I, InstID, Vals);
3285 
3286       if (!I->getType()->isVoidTy())
3287         ++InstID;
3288 
3289       // If the instruction has metadata, write a metadata attachment later.
3290       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3291 
3292       // If the instruction has a debug location, emit it.
3293       DILocation *DL = I->getDebugLoc();
3294       if (!DL)
3295         continue;
3296 
3297       if (DL == LastDL) {
3298         // Just repeat the same debug loc as last time.
3299         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3300         continue;
3301       }
3302 
3303       Vals.push_back(DL->getLine());
3304       Vals.push_back(DL->getColumn());
3305       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3306       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3307       Vals.push_back(DL->isImplicitCode());
3308       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3309       Vals.clear();
3310 
3311       LastDL = DL;
3312     }
3313 
3314   // Emit names for all the instructions etc.
3315   if (auto *Symtab = F.getValueSymbolTable())
3316     writeFunctionLevelValueSymbolTable(*Symtab);
3317 
3318   if (NeedsMetadataAttachment)
3319     writeFunctionMetadataAttachment(F);
3320   if (VE.shouldPreserveUseListOrder())
3321     writeUseListBlock(&F);
3322   VE.purgeFunction();
3323   Stream.ExitBlock();
3324 }
3325 
3326 // Emit blockinfo, which defines the standard abbreviations etc.
3327 void ModuleBitcodeWriter::writeBlockInfo() {
3328   // We only want to emit block info records for blocks that have multiple
3329   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3330   // Other blocks can define their abbrevs inline.
3331   Stream.EnterBlockInfoBlock();
3332 
3333   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3334     auto Abbv = std::make_shared<BitCodeAbbrev>();
3335     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3336     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3337     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3338     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3339     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3340         VST_ENTRY_8_ABBREV)
3341       llvm_unreachable("Unexpected abbrev ordering!");
3342   }
3343 
3344   { // 7-bit fixed width VST_CODE_ENTRY strings.
3345     auto Abbv = std::make_shared<BitCodeAbbrev>();
3346     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3347     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3348     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3349     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3350     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3351         VST_ENTRY_7_ABBREV)
3352       llvm_unreachable("Unexpected abbrev ordering!");
3353   }
3354   { // 6-bit char6 VST_CODE_ENTRY strings.
3355     auto Abbv = std::make_shared<BitCodeAbbrev>();
3356     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3357     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3358     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3359     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3360     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3361         VST_ENTRY_6_ABBREV)
3362       llvm_unreachable("Unexpected abbrev ordering!");
3363   }
3364   { // 6-bit char6 VST_CODE_BBENTRY strings.
3365     auto Abbv = std::make_shared<BitCodeAbbrev>();
3366     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3367     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3368     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3369     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3370     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3371         VST_BBENTRY_6_ABBREV)
3372       llvm_unreachable("Unexpected abbrev ordering!");
3373   }
3374 
3375   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3376     auto Abbv = std::make_shared<BitCodeAbbrev>();
3377     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3378     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3379                               VE.computeBitsRequiredForTypeIndicies()));
3380     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3381         CONSTANTS_SETTYPE_ABBREV)
3382       llvm_unreachable("Unexpected abbrev ordering!");
3383   }
3384 
3385   { // INTEGER abbrev for CONSTANTS_BLOCK.
3386     auto Abbv = std::make_shared<BitCodeAbbrev>();
3387     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3388     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3389     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3390         CONSTANTS_INTEGER_ABBREV)
3391       llvm_unreachable("Unexpected abbrev ordering!");
3392   }
3393 
3394   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3395     auto Abbv = std::make_shared<BitCodeAbbrev>();
3396     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3397     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3398     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3399                               VE.computeBitsRequiredForTypeIndicies()));
3400     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3401 
3402     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3403         CONSTANTS_CE_CAST_Abbrev)
3404       llvm_unreachable("Unexpected abbrev ordering!");
3405   }
3406   { // NULL abbrev for CONSTANTS_BLOCK.
3407     auto Abbv = std::make_shared<BitCodeAbbrev>();
3408     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3409     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3410         CONSTANTS_NULL_Abbrev)
3411       llvm_unreachable("Unexpected abbrev ordering!");
3412   }
3413 
3414   // FIXME: This should only use space for first class types!
3415 
3416   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3417     auto Abbv = std::make_shared<BitCodeAbbrev>();
3418     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3419     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3420     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3421                               VE.computeBitsRequiredForTypeIndicies()));
3422     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3423     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3424     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3425         FUNCTION_INST_LOAD_ABBREV)
3426       llvm_unreachable("Unexpected abbrev ordering!");
3427   }
3428   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3429     auto Abbv = std::make_shared<BitCodeAbbrev>();
3430     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3431     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3432     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3433     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3434         FUNCTION_INST_UNOP_ABBREV)
3435       llvm_unreachable("Unexpected abbrev ordering!");
3436   }
3437   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3438     auto Abbv = std::make_shared<BitCodeAbbrev>();
3439     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3440     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3441     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3443     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3444         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3445       llvm_unreachable("Unexpected abbrev ordering!");
3446   }
3447   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3448     auto Abbv = std::make_shared<BitCodeAbbrev>();
3449     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3450     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3451     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3452     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3453     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3454         FUNCTION_INST_BINOP_ABBREV)
3455       llvm_unreachable("Unexpected abbrev ordering!");
3456   }
3457   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3458     auto Abbv = std::make_shared<BitCodeAbbrev>();
3459     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3460     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3461     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3462     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3463     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3464     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3465         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3466       llvm_unreachable("Unexpected abbrev ordering!");
3467   }
3468   { // INST_CAST abbrev for FUNCTION_BLOCK.
3469     auto Abbv = std::make_shared<BitCodeAbbrev>();
3470     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3471     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3472     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3473                               VE.computeBitsRequiredForTypeIndicies()));
3474     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3475     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3476         FUNCTION_INST_CAST_ABBREV)
3477       llvm_unreachable("Unexpected abbrev ordering!");
3478   }
3479 
3480   { // INST_RET abbrev for FUNCTION_BLOCK.
3481     auto Abbv = std::make_shared<BitCodeAbbrev>();
3482     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3483     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3484         FUNCTION_INST_RET_VOID_ABBREV)
3485       llvm_unreachable("Unexpected abbrev ordering!");
3486   }
3487   { // INST_RET abbrev for FUNCTION_BLOCK.
3488     auto Abbv = std::make_shared<BitCodeAbbrev>();
3489     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3490     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3491     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3492         FUNCTION_INST_RET_VAL_ABBREV)
3493       llvm_unreachable("Unexpected abbrev ordering!");
3494   }
3495   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3496     auto Abbv = std::make_shared<BitCodeAbbrev>();
3497     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3498     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3499         FUNCTION_INST_UNREACHABLE_ABBREV)
3500       llvm_unreachable("Unexpected abbrev ordering!");
3501   }
3502   {
3503     auto Abbv = std::make_shared<BitCodeAbbrev>();
3504     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3505     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3506     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3507                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3509     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3510     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3511         FUNCTION_INST_GEP_ABBREV)
3512       llvm_unreachable("Unexpected abbrev ordering!");
3513   }
3514 
3515   Stream.ExitBlock();
3516 }
3517 
3518 /// Write the module path strings, currently only used when generating
3519 /// a combined index file.
3520 void IndexBitcodeWriter::writeModStrings() {
3521   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3522 
3523   // TODO: See which abbrev sizes we actually need to emit
3524 
3525   // 8-bit fixed-width MST_ENTRY strings.
3526   auto Abbv = std::make_shared<BitCodeAbbrev>();
3527   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3528   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3529   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3530   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3531   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3532 
3533   // 7-bit fixed width MST_ENTRY strings.
3534   Abbv = std::make_shared<BitCodeAbbrev>();
3535   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3536   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3537   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3538   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3539   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3540 
3541   // 6-bit char6 MST_ENTRY strings.
3542   Abbv = std::make_shared<BitCodeAbbrev>();
3543   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3544   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3545   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3546   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3547   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3548 
3549   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3550   Abbv = std::make_shared<BitCodeAbbrev>();
3551   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3552   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3553   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3554   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3555   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3556   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3557   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3558 
3559   SmallVector<unsigned, 64> Vals;
3560   forEachModule(
3561       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3562         StringRef Key = MPSE.getKey();
3563         const auto &Value = MPSE.getValue();
3564         StringEncoding Bits = getStringEncoding(Key);
3565         unsigned AbbrevToUse = Abbrev8Bit;
3566         if (Bits == SE_Char6)
3567           AbbrevToUse = Abbrev6Bit;
3568         else if (Bits == SE_Fixed7)
3569           AbbrevToUse = Abbrev7Bit;
3570 
3571         Vals.push_back(Value.first);
3572         Vals.append(Key.begin(), Key.end());
3573 
3574         // Emit the finished record.
3575         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3576 
3577         // Emit an optional hash for the module now
3578         const auto &Hash = Value.second;
3579         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3580           Vals.assign(Hash.begin(), Hash.end());
3581           // Emit the hash record.
3582           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3583         }
3584 
3585         Vals.clear();
3586       });
3587   Stream.ExitBlock();
3588 }
3589 
3590 /// Write the function type metadata related records that need to appear before
3591 /// a function summary entry (whether per-module or combined).
3592 template <typename Fn>
3593 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3594                                              FunctionSummary *FS,
3595                                              Fn GetValueID) {
3596   if (!FS->type_tests().empty())
3597     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3598 
3599   SmallVector<uint64_t, 64> Record;
3600 
3601   auto WriteVFuncIdVec = [&](uint64_t Ty,
3602                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3603     if (VFs.empty())
3604       return;
3605     Record.clear();
3606     for (auto &VF : VFs) {
3607       Record.push_back(VF.GUID);
3608       Record.push_back(VF.Offset);
3609     }
3610     Stream.EmitRecord(Ty, Record);
3611   };
3612 
3613   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3614                   FS->type_test_assume_vcalls());
3615   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3616                   FS->type_checked_load_vcalls());
3617 
3618   auto WriteConstVCallVec = [&](uint64_t Ty,
3619                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3620     for (auto &VC : VCs) {
3621       Record.clear();
3622       Record.push_back(VC.VFunc.GUID);
3623       Record.push_back(VC.VFunc.Offset);
3624       Record.insert(Record.end(), VC.Args.begin(), VC.Args.end());
3625       Stream.EmitRecord(Ty, Record);
3626     }
3627   };
3628 
3629   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3630                      FS->type_test_assume_const_vcalls());
3631   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3632                      FS->type_checked_load_const_vcalls());
3633 
3634   auto WriteRange = [&](ConstantRange Range) {
3635     Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3636     assert(Range.getLower().getNumWords() == 1);
3637     assert(Range.getUpper().getNumWords() == 1);
3638     emitSignedInt64(Record, *Range.getLower().getRawData());
3639     emitSignedInt64(Record, *Range.getUpper().getRawData());
3640   };
3641 
3642   if (!FS->paramAccesses().empty()) {
3643     Record.clear();
3644     for (auto &Arg : FS->paramAccesses()) {
3645       size_t UndoSize = Record.size();
3646       Record.push_back(Arg.ParamNo);
3647       WriteRange(Arg.Use);
3648       Record.push_back(Arg.Calls.size());
3649       for (auto &Call : Arg.Calls) {
3650         Record.push_back(Call.ParamNo);
3651         Optional<unsigned> ValueID = GetValueID(Call.Callee);
3652         if (!ValueID) {
3653           // If ValueID is unknown we can't drop just this call, we must drop
3654           // entire parameter.
3655           Record.resize(UndoSize);
3656           break;
3657         }
3658         Record.push_back(*ValueID);
3659         WriteRange(Call.Offsets);
3660       }
3661     }
3662     if (!Record.empty())
3663       Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3664   }
3665 }
3666 
3667 /// Collect type IDs from type tests used by function.
3668 static void
3669 getReferencedTypeIds(FunctionSummary *FS,
3670                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3671   if (!FS->type_tests().empty())
3672     for (auto &TT : FS->type_tests())
3673       ReferencedTypeIds.insert(TT);
3674 
3675   auto GetReferencedTypesFromVFuncIdVec =
3676       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3677         for (auto &VF : VFs)
3678           ReferencedTypeIds.insert(VF.GUID);
3679       };
3680 
3681   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3682   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3683 
3684   auto GetReferencedTypesFromConstVCallVec =
3685       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3686         for (auto &VC : VCs)
3687           ReferencedTypeIds.insert(VC.VFunc.GUID);
3688       };
3689 
3690   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3691   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3692 }
3693 
3694 static void writeWholeProgramDevirtResolutionByArg(
3695     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3696     const WholeProgramDevirtResolution::ByArg &ByArg) {
3697   NameVals.push_back(args.size());
3698   NameVals.insert(NameVals.end(), args.begin(), args.end());
3699 
3700   NameVals.push_back(ByArg.TheKind);
3701   NameVals.push_back(ByArg.Info);
3702   NameVals.push_back(ByArg.Byte);
3703   NameVals.push_back(ByArg.Bit);
3704 }
3705 
3706 static void writeWholeProgramDevirtResolution(
3707     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3708     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3709   NameVals.push_back(Id);
3710 
3711   NameVals.push_back(Wpd.TheKind);
3712   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3713   NameVals.push_back(Wpd.SingleImplName.size());
3714 
3715   NameVals.push_back(Wpd.ResByArg.size());
3716   for (auto &A : Wpd.ResByArg)
3717     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3718 }
3719 
3720 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3721                                      StringTableBuilder &StrtabBuilder,
3722                                      const std::string &Id,
3723                                      const TypeIdSummary &Summary) {
3724   NameVals.push_back(StrtabBuilder.add(Id));
3725   NameVals.push_back(Id.size());
3726 
3727   NameVals.push_back(Summary.TTRes.TheKind);
3728   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3729   NameVals.push_back(Summary.TTRes.AlignLog2);
3730   NameVals.push_back(Summary.TTRes.SizeM1);
3731   NameVals.push_back(Summary.TTRes.BitMask);
3732   NameVals.push_back(Summary.TTRes.InlineBits);
3733 
3734   for (auto &W : Summary.WPDRes)
3735     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3736                                       W.second);
3737 }
3738 
3739 static void writeTypeIdCompatibleVtableSummaryRecord(
3740     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3741     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3742     ValueEnumerator &VE) {
3743   NameVals.push_back(StrtabBuilder.add(Id));
3744   NameVals.push_back(Id.size());
3745 
3746   for (auto &P : Summary) {
3747     NameVals.push_back(P.AddressPointOffset);
3748     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3749   }
3750 }
3751 
3752 // Helper to emit a single function summary record.
3753 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3754     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3755     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3756     const Function &F) {
3757   NameVals.push_back(ValueID);
3758 
3759   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3760 
3761   writeFunctionTypeMetadataRecords(
3762       Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> {
3763         return {VE.getValueID(VI.getValue())};
3764       });
3765 
3766   auto SpecialRefCnts = FS->specialRefCounts();
3767   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3768   NameVals.push_back(FS->instCount());
3769   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3770   NameVals.push_back(FS->refs().size());
3771   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3772   NameVals.push_back(SpecialRefCnts.second); // worefcnt
3773 
3774   for (auto &RI : FS->refs())
3775     NameVals.push_back(VE.getValueID(RI.getValue()));
3776 
3777   bool HasProfileData =
3778       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3779   for (auto &ECI : FS->calls()) {
3780     NameVals.push_back(getValueId(ECI.first));
3781     if (HasProfileData)
3782       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3783     else if (WriteRelBFToSummary)
3784       NameVals.push_back(ECI.second.RelBlockFreq);
3785   }
3786 
3787   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3788   unsigned Code =
3789       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3790                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3791                                              : bitc::FS_PERMODULE));
3792 
3793   // Emit the finished record.
3794   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3795   NameVals.clear();
3796 }
3797 
3798 // Collect the global value references in the given variable's initializer,
3799 // and emit them in a summary record.
3800 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3801     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3802     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3803   auto VI = Index->getValueInfo(V.getGUID());
3804   if (!VI || VI.getSummaryList().empty()) {
3805     // Only declarations should not have a summary (a declaration might however
3806     // have a summary if the def was in module level asm).
3807     assert(V.isDeclaration());
3808     return;
3809   }
3810   auto *Summary = VI.getSummaryList()[0].get();
3811   NameVals.push_back(VE.getValueID(&V));
3812   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3813   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3814   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3815 
3816   auto VTableFuncs = VS->vTableFuncs();
3817   if (!VTableFuncs.empty())
3818     NameVals.push_back(VS->refs().size());
3819 
3820   unsigned SizeBeforeRefs = NameVals.size();
3821   for (auto &RI : VS->refs())
3822     NameVals.push_back(VE.getValueID(RI.getValue()));
3823   // Sort the refs for determinism output, the vector returned by FS->refs() has
3824   // been initialized from a DenseSet.
3825   llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
3826 
3827   if (VTableFuncs.empty())
3828     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3829                       FSModRefsAbbrev);
3830   else {
3831     // VTableFuncs pairs should already be sorted by offset.
3832     for (auto &P : VTableFuncs) {
3833       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3834       NameVals.push_back(P.VTableOffset);
3835     }
3836 
3837     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3838                       FSModVTableRefsAbbrev);
3839   }
3840   NameVals.clear();
3841 }
3842 
3843 /// Emit the per-module summary section alongside the rest of
3844 /// the module's bitcode.
3845 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3846   // By default we compile with ThinLTO if the module has a summary, but the
3847   // client can request full LTO with a module flag.
3848   bool IsThinLTO = true;
3849   if (auto *MD =
3850           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3851     IsThinLTO = MD->getZExtValue();
3852   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3853                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3854                        4);
3855 
3856   Stream.EmitRecord(
3857       bitc::FS_VERSION,
3858       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3859 
3860   // Write the index flags.
3861   uint64_t Flags = 0;
3862   // Bits 1-3 are set only in the combined index, skip them.
3863   if (Index->enableSplitLTOUnit())
3864     Flags |= 0x8;
3865   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3866 
3867   if (Index->begin() == Index->end()) {
3868     Stream.ExitBlock();
3869     return;
3870   }
3871 
3872   for (const auto &GVI : valueIds()) {
3873     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3874                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3875   }
3876 
3877   // Abbrev for FS_PERMODULE_PROFILE.
3878   auto Abbv = std::make_shared<BitCodeAbbrev>();
3879   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3880   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3881   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3882   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3883   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3884   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3885   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3886   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3887   // numrefs x valueid, n x (valueid, hotness)
3888   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3889   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3890   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3891 
3892   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3893   Abbv = std::make_shared<BitCodeAbbrev>();
3894   if (WriteRelBFToSummary)
3895     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3896   else
3897     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3898   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3899   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3900   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3901   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3902   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3903   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3904   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3905   // numrefs x valueid, n x (valueid [, rel_block_freq])
3906   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3907   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3908   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3909 
3910   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3911   Abbv = std::make_shared<BitCodeAbbrev>();
3912   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3913   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3914   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3915   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3916   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3917   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3918 
3919   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3920   Abbv = std::make_shared<BitCodeAbbrev>();
3921   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3922   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3923   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3924   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3925   // numrefs x valueid, n x (valueid , offset)
3926   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3927   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3928   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3929 
3930   // Abbrev for FS_ALIAS.
3931   Abbv = std::make_shared<BitCodeAbbrev>();
3932   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3933   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3934   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3935   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3936   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3937 
3938   // Abbrev for FS_TYPE_ID_METADATA
3939   Abbv = std::make_shared<BitCodeAbbrev>();
3940   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3941   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3942   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3943   // n x (valueid , offset)
3944   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3945   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3946   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3947 
3948   SmallVector<uint64_t, 64> NameVals;
3949   // Iterate over the list of functions instead of the Index to
3950   // ensure the ordering is stable.
3951   for (const Function &F : M) {
3952     // Summary emission does not support anonymous functions, they have to
3953     // renamed using the anonymous function renaming pass.
3954     if (!F.hasName())
3955       report_fatal_error("Unexpected anonymous function when writing summary");
3956 
3957     ValueInfo VI = Index->getValueInfo(F.getGUID());
3958     if (!VI || VI.getSummaryList().empty()) {
3959       // Only declarations should not have a summary (a declaration might
3960       // however have a summary if the def was in module level asm).
3961       assert(F.isDeclaration());
3962       continue;
3963     }
3964     auto *Summary = VI.getSummaryList()[0].get();
3965     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
3966                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
3967   }
3968 
3969   // Capture references from GlobalVariable initializers, which are outside
3970   // of a function scope.
3971   for (const GlobalVariable &G : M.globals())
3972     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
3973                                FSModVTableRefsAbbrev);
3974 
3975   for (const GlobalAlias &A : M.aliases()) {
3976     auto *Aliasee = A.getBaseObject();
3977     if (!Aliasee->hasName())
3978       // Nameless function don't have an entry in the summary, skip it.
3979       continue;
3980     auto AliasId = VE.getValueID(&A);
3981     auto AliaseeId = VE.getValueID(Aliasee);
3982     NameVals.push_back(AliasId);
3983     auto *Summary = Index->getGlobalValueSummary(A);
3984     AliasSummary *AS = cast<AliasSummary>(Summary);
3985     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
3986     NameVals.push_back(AliaseeId);
3987     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
3988     NameVals.clear();
3989   }
3990 
3991   for (auto &S : Index->typeIdCompatibleVtableMap()) {
3992     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
3993                                              S.second, VE);
3994     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
3995                       TypeIdCompatibleVtableAbbrev);
3996     NameVals.clear();
3997   }
3998 
3999   Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4000                     ArrayRef<uint64_t>{Index->getBlockCount()});
4001 
4002   Stream.ExitBlock();
4003 }
4004 
4005 /// Emit the combined summary section into the combined index file.
4006 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4007   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
4008   Stream.EmitRecord(
4009       bitc::FS_VERSION,
4010       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4011 
4012   // Write the index flags.
4013   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4014 
4015   for (const auto &GVI : valueIds()) {
4016     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4017                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4018   }
4019 
4020   // Abbrev for FS_COMBINED.
4021   auto Abbv = std::make_shared<BitCodeAbbrev>();
4022   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4023   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4024   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4025   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4026   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4027   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4028   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4029   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4030   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4031   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4032   // numrefs x valueid, n x (valueid)
4033   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4034   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4035   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4036 
4037   // Abbrev for FS_COMBINED_PROFILE.
4038   Abbv = std::make_shared<BitCodeAbbrev>();
4039   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4040   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4041   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4042   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4043   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4044   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4045   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4046   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4047   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4048   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4049   // numrefs x valueid, n x (valueid, hotness)
4050   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4051   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4052   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4053 
4054   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4055   Abbv = std::make_shared<BitCodeAbbrev>();
4056   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4057   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4058   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4059   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4060   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4061   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4062   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4063 
4064   // Abbrev for FS_COMBINED_ALIAS.
4065   Abbv = std::make_shared<BitCodeAbbrev>();
4066   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4067   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4068   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4069   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4070   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4071   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4072 
4073   // The aliases are emitted as a post-pass, and will point to the value
4074   // id of the aliasee. Save them in a vector for post-processing.
4075   SmallVector<AliasSummary *, 64> Aliases;
4076 
4077   // Save the value id for each summary for alias emission.
4078   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4079 
4080   SmallVector<uint64_t, 64> NameVals;
4081 
4082   // Set that will be populated during call to writeFunctionTypeMetadataRecords
4083   // with the type ids referenced by this index file.
4084   std::set<GlobalValue::GUID> ReferencedTypeIds;
4085 
4086   // For local linkage, we also emit the original name separately
4087   // immediately after the record.
4088   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4089     if (!GlobalValue::isLocalLinkage(S.linkage()))
4090       return;
4091     NameVals.push_back(S.getOriginalName());
4092     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4093     NameVals.clear();
4094   };
4095 
4096   std::set<GlobalValue::GUID> DefOrUseGUIDs;
4097   forEachSummary([&](GVInfo I, bool IsAliasee) {
4098     GlobalValueSummary *S = I.second;
4099     assert(S);
4100     DefOrUseGUIDs.insert(I.first);
4101     for (const ValueInfo &VI : S->refs())
4102       DefOrUseGUIDs.insert(VI.getGUID());
4103 
4104     auto ValueId = getValueId(I.first);
4105     assert(ValueId);
4106     SummaryToValueIdMap[S] = *ValueId;
4107 
4108     // If this is invoked for an aliasee, we want to record the above
4109     // mapping, but then not emit a summary entry (if the aliasee is
4110     // to be imported, we will invoke this separately with IsAliasee=false).
4111     if (IsAliasee)
4112       return;
4113 
4114     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4115       // Will process aliases as a post-pass because the reader wants all
4116       // global to be loaded first.
4117       Aliases.push_back(AS);
4118       return;
4119     }
4120 
4121     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4122       NameVals.push_back(*ValueId);
4123       NameVals.push_back(Index.getModuleId(VS->modulePath()));
4124       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4125       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4126       for (auto &RI : VS->refs()) {
4127         auto RefValueId = getValueId(RI.getGUID());
4128         if (!RefValueId)
4129           continue;
4130         NameVals.push_back(*RefValueId);
4131       }
4132 
4133       // Emit the finished record.
4134       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4135                         FSModRefsAbbrev);
4136       NameVals.clear();
4137       MaybeEmitOriginalName(*S);
4138       return;
4139     }
4140 
4141     auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> {
4142       GlobalValue::GUID GUID = VI.getGUID();
4143       Optional<unsigned> CallValueId = getValueId(GUID);
4144       if (CallValueId)
4145         return CallValueId;
4146       // For SamplePGO, the indirect call targets for local functions will
4147       // have its original name annotated in profile. We try to find the
4148       // corresponding PGOFuncName as the GUID.
4149       GUID = Index.getGUIDFromOriginalID(GUID);
4150       if (!GUID)
4151         return None;
4152       CallValueId = getValueId(GUID);
4153       if (!CallValueId)
4154         return None;
4155       // The mapping from OriginalId to GUID may return a GUID
4156       // that corresponds to a static variable. Filter it out here.
4157       // This can happen when
4158       // 1) There is a call to a library function which does not have
4159       // a CallValidId;
4160       // 2) There is a static variable with the  OriginalGUID identical
4161       // to the GUID of the library function in 1);
4162       // When this happens, the logic for SamplePGO kicks in and
4163       // the static variable in 2) will be found, which needs to be
4164       // filtered out.
4165       auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4166       if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4167         return None;
4168       return CallValueId;
4169     };
4170 
4171     auto *FS = cast<FunctionSummary>(S);
4172     writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4173     getReferencedTypeIds(FS, ReferencedTypeIds);
4174 
4175     NameVals.push_back(*ValueId);
4176     NameVals.push_back(Index.getModuleId(FS->modulePath()));
4177     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4178     NameVals.push_back(FS->instCount());
4179     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4180     NameVals.push_back(FS->entryCount());
4181 
4182     // Fill in below
4183     NameVals.push_back(0); // numrefs
4184     NameVals.push_back(0); // rorefcnt
4185     NameVals.push_back(0); // worefcnt
4186 
4187     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4188     for (auto &RI : FS->refs()) {
4189       auto RefValueId = getValueId(RI.getGUID());
4190       if (!RefValueId)
4191         continue;
4192       NameVals.push_back(*RefValueId);
4193       if (RI.isReadOnly())
4194         RORefCnt++;
4195       else if (RI.isWriteOnly())
4196         WORefCnt++;
4197       Count++;
4198     }
4199     NameVals[6] = Count;
4200     NameVals[7] = RORefCnt;
4201     NameVals[8] = WORefCnt;
4202 
4203     bool HasProfileData = false;
4204     for (auto &EI : FS->calls()) {
4205       HasProfileData |=
4206           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4207       if (HasProfileData)
4208         break;
4209     }
4210 
4211     for (auto &EI : FS->calls()) {
4212       // If this GUID doesn't have a value id, it doesn't have a function
4213       // summary and we don't need to record any calls to it.
4214       Optional<unsigned> CallValueId = GetValueId(EI.first);
4215       if (!CallValueId)
4216         continue;
4217       NameVals.push_back(*CallValueId);
4218       if (HasProfileData)
4219         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4220     }
4221 
4222     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4223     unsigned Code =
4224         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4225 
4226     // Emit the finished record.
4227     Stream.EmitRecord(Code, NameVals, FSAbbrev);
4228     NameVals.clear();
4229     MaybeEmitOriginalName(*S);
4230   });
4231 
4232   for (auto *AS : Aliases) {
4233     auto AliasValueId = SummaryToValueIdMap[AS];
4234     assert(AliasValueId);
4235     NameVals.push_back(AliasValueId);
4236     NameVals.push_back(Index.getModuleId(AS->modulePath()));
4237     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4238     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4239     assert(AliaseeValueId);
4240     NameVals.push_back(AliaseeValueId);
4241 
4242     // Emit the finished record.
4243     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4244     NameVals.clear();
4245     MaybeEmitOriginalName(*AS);
4246 
4247     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4248       getReferencedTypeIds(FS, ReferencedTypeIds);
4249   }
4250 
4251   if (!Index.cfiFunctionDefs().empty()) {
4252     for (auto &S : Index.cfiFunctionDefs()) {
4253       if (DefOrUseGUIDs.count(
4254               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4255         NameVals.push_back(StrtabBuilder.add(S));
4256         NameVals.push_back(S.size());
4257       }
4258     }
4259     if (!NameVals.empty()) {
4260       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4261       NameVals.clear();
4262     }
4263   }
4264 
4265   if (!Index.cfiFunctionDecls().empty()) {
4266     for (auto &S : Index.cfiFunctionDecls()) {
4267       if (DefOrUseGUIDs.count(
4268               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4269         NameVals.push_back(StrtabBuilder.add(S));
4270         NameVals.push_back(S.size());
4271       }
4272     }
4273     if (!NameVals.empty()) {
4274       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4275       NameVals.clear();
4276     }
4277   }
4278 
4279   // Walk the GUIDs that were referenced, and write the
4280   // corresponding type id records.
4281   for (auto &T : ReferencedTypeIds) {
4282     auto TidIter = Index.typeIds().equal_range(T);
4283     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4284       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4285                                It->second.second);
4286       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4287       NameVals.clear();
4288     }
4289   }
4290 
4291   Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4292                     ArrayRef<uint64_t>{Index.getBlockCount()});
4293 
4294   Stream.ExitBlock();
4295 }
4296 
4297 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4298 /// current llvm version, and a record for the epoch number.
4299 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4300   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4301 
4302   // Write the "user readable" string identifying the bitcode producer
4303   auto Abbv = std::make_shared<BitCodeAbbrev>();
4304   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4305   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4306   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4307   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4308   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4309                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4310 
4311   // Write the epoch version
4312   Abbv = std::make_shared<BitCodeAbbrev>();
4313   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4314   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4315   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4316   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4317   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4318   Stream.ExitBlock();
4319 }
4320 
4321 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4322   // Emit the module's hash.
4323   // MODULE_CODE_HASH: [5*i32]
4324   if (GenerateHash) {
4325     uint32_t Vals[5];
4326     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4327                                     Buffer.size() - BlockStartPos));
4328     StringRef Hash = Hasher.result();
4329     for (int Pos = 0; Pos < 20; Pos += 4) {
4330       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4331     }
4332 
4333     // Emit the finished record.
4334     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4335 
4336     if (ModHash)
4337       // Save the written hash value.
4338       llvm::copy(Vals, std::begin(*ModHash));
4339   }
4340 }
4341 
4342 void ModuleBitcodeWriter::write() {
4343   writeIdentificationBlock(Stream);
4344 
4345   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4346   size_t BlockStartPos = Buffer.size();
4347 
4348   writeModuleVersion();
4349 
4350   // Emit blockinfo, which defines the standard abbreviations etc.
4351   writeBlockInfo();
4352 
4353   // Emit information describing all of the types in the module.
4354   writeTypeTable();
4355 
4356   // Emit information about attribute groups.
4357   writeAttributeGroupTable();
4358 
4359   // Emit information about parameter attributes.
4360   writeAttributeTable();
4361 
4362   writeComdats();
4363 
4364   // Emit top-level description of module, including target triple, inline asm,
4365   // descriptors for global variables, and function prototype info.
4366   writeModuleInfo();
4367 
4368   // Emit constants.
4369   writeModuleConstants();
4370 
4371   // Emit metadata kind names.
4372   writeModuleMetadataKinds();
4373 
4374   // Emit metadata.
4375   writeModuleMetadata();
4376 
4377   // Emit module-level use-lists.
4378   if (VE.shouldPreserveUseListOrder())
4379     writeUseListBlock(nullptr);
4380 
4381   writeOperandBundleTags();
4382   writeSyncScopeNames();
4383 
4384   // Emit function bodies.
4385   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4386   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4387     if (!F->isDeclaration())
4388       writeFunction(*F, FunctionToBitcodeIndex);
4389 
4390   // Need to write after the above call to WriteFunction which populates
4391   // the summary information in the index.
4392   if (Index)
4393     writePerModuleGlobalValueSummary();
4394 
4395   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4396 
4397   writeModuleHash(BlockStartPos);
4398 
4399   Stream.ExitBlock();
4400 }
4401 
4402 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4403                                uint32_t &Position) {
4404   support::endian::write32le(&Buffer[Position], Value);
4405   Position += 4;
4406 }
4407 
4408 /// If generating a bc file on darwin, we have to emit a
4409 /// header and trailer to make it compatible with the system archiver.  To do
4410 /// this we emit the following header, and then emit a trailer that pads the
4411 /// file out to be a multiple of 16 bytes.
4412 ///
4413 /// struct bc_header {
4414 ///   uint32_t Magic;         // 0x0B17C0DE
4415 ///   uint32_t Version;       // Version, currently always 0.
4416 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4417 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4418 ///   uint32_t CPUType;       // CPU specifier.
4419 ///   ... potentially more later ...
4420 /// };
4421 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4422                                          const Triple &TT) {
4423   unsigned CPUType = ~0U;
4424 
4425   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4426   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4427   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4428   // specific constants here because they are implicitly part of the Darwin ABI.
4429   enum {
4430     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4431     DARWIN_CPU_TYPE_X86        = 7,
4432     DARWIN_CPU_TYPE_ARM        = 12,
4433     DARWIN_CPU_TYPE_POWERPC    = 18
4434   };
4435 
4436   Triple::ArchType Arch = TT.getArch();
4437   if (Arch == Triple::x86_64)
4438     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4439   else if (Arch == Triple::x86)
4440     CPUType = DARWIN_CPU_TYPE_X86;
4441   else if (Arch == Triple::ppc)
4442     CPUType = DARWIN_CPU_TYPE_POWERPC;
4443   else if (Arch == Triple::ppc64)
4444     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4445   else if (Arch == Triple::arm || Arch == Triple::thumb)
4446     CPUType = DARWIN_CPU_TYPE_ARM;
4447 
4448   // Traditional Bitcode starts after header.
4449   assert(Buffer.size() >= BWH_HeaderSize &&
4450          "Expected header size to be reserved");
4451   unsigned BCOffset = BWH_HeaderSize;
4452   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4453 
4454   // Write the magic and version.
4455   unsigned Position = 0;
4456   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4457   writeInt32ToBuffer(0, Buffer, Position); // Version.
4458   writeInt32ToBuffer(BCOffset, Buffer, Position);
4459   writeInt32ToBuffer(BCSize, Buffer, Position);
4460   writeInt32ToBuffer(CPUType, Buffer, Position);
4461 
4462   // If the file is not a multiple of 16 bytes, insert dummy padding.
4463   while (Buffer.size() & 15)
4464     Buffer.push_back(0);
4465 }
4466 
4467 /// Helper to write the header common to all bitcode files.
4468 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4469   // Emit the file header.
4470   Stream.Emit((unsigned)'B', 8);
4471   Stream.Emit((unsigned)'C', 8);
4472   Stream.Emit(0x0, 4);
4473   Stream.Emit(0xC, 4);
4474   Stream.Emit(0xE, 4);
4475   Stream.Emit(0xD, 4);
4476 }
4477 
4478 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4479     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4480   writeBitcodeHeader(*Stream);
4481 }
4482 
4483 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4484 
4485 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4486   Stream->EnterSubblock(Block, 3);
4487 
4488   auto Abbv = std::make_shared<BitCodeAbbrev>();
4489   Abbv->Add(BitCodeAbbrevOp(Record));
4490   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4491   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4492 
4493   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4494 
4495   Stream->ExitBlock();
4496 }
4497 
4498 void BitcodeWriter::writeSymtab() {
4499   assert(!WroteStrtab && !WroteSymtab);
4500 
4501   // If any module has module-level inline asm, we will require a registered asm
4502   // parser for the target so that we can create an accurate symbol table for
4503   // the module.
4504   for (Module *M : Mods) {
4505     if (M->getModuleInlineAsm().empty())
4506       continue;
4507 
4508     std::string Err;
4509     const Triple TT(M->getTargetTriple());
4510     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4511     if (!T || !T->hasMCAsmParser())
4512       return;
4513   }
4514 
4515   WroteSymtab = true;
4516   SmallVector<char, 0> Symtab;
4517   // The irsymtab::build function may be unable to create a symbol table if the
4518   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4519   // table is not required for correctness, but we still want to be able to
4520   // write malformed modules to bitcode files, so swallow the error.
4521   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4522     consumeError(std::move(E));
4523     return;
4524   }
4525 
4526   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4527             {Symtab.data(), Symtab.size()});
4528 }
4529 
4530 void BitcodeWriter::writeStrtab() {
4531   assert(!WroteStrtab);
4532 
4533   std::vector<char> Strtab;
4534   StrtabBuilder.finalizeInOrder();
4535   Strtab.resize(StrtabBuilder.getSize());
4536   StrtabBuilder.write((uint8_t *)Strtab.data());
4537 
4538   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4539             {Strtab.data(), Strtab.size()});
4540 
4541   WroteStrtab = true;
4542 }
4543 
4544 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4545   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4546   WroteStrtab = true;
4547 }
4548 
4549 void BitcodeWriter::writeModule(const Module &M,
4550                                 bool ShouldPreserveUseListOrder,
4551                                 const ModuleSummaryIndex *Index,
4552                                 bool GenerateHash, ModuleHash *ModHash) {
4553   assert(!WroteStrtab);
4554 
4555   // The Mods vector is used by irsymtab::build, which requires non-const
4556   // Modules in case it needs to materialize metadata. But the bitcode writer
4557   // requires that the module is materialized, so we can cast to non-const here,
4558   // after checking that it is in fact materialized.
4559   assert(M.isMaterialized());
4560   Mods.push_back(const_cast<Module *>(&M));
4561 
4562   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4563                                    ShouldPreserveUseListOrder, Index,
4564                                    GenerateHash, ModHash);
4565   ModuleWriter.write();
4566 }
4567 
4568 void BitcodeWriter::writeIndex(
4569     const ModuleSummaryIndex *Index,
4570     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4571   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4572                                  ModuleToSummariesForIndex);
4573   IndexWriter.write();
4574 }
4575 
4576 /// Write the specified module to the specified output stream.
4577 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4578                               bool ShouldPreserveUseListOrder,
4579                               const ModuleSummaryIndex *Index,
4580                               bool GenerateHash, ModuleHash *ModHash) {
4581   SmallVector<char, 0> Buffer;
4582   Buffer.reserve(256*1024);
4583 
4584   // If this is darwin or another generic macho target, reserve space for the
4585   // header.
4586   Triple TT(M.getTargetTriple());
4587   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4588     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4589 
4590   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4591   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4592                      ModHash);
4593   Writer.writeSymtab();
4594   Writer.writeStrtab();
4595 
4596   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4597     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4598 
4599   // Write the generated bitstream to "Out".
4600   if (!Buffer.empty())
4601     Out.write((char *)&Buffer.front(), Buffer.size());
4602 }
4603 
4604 void IndexBitcodeWriter::write() {
4605   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4606 
4607   writeModuleVersion();
4608 
4609   // Write the module paths in the combined index.
4610   writeModStrings();
4611 
4612   // Write the summary combined index records.
4613   writeCombinedGlobalValueSummary();
4614 
4615   Stream.ExitBlock();
4616 }
4617 
4618 // Write the specified module summary index to the given raw output stream,
4619 // where it will be written in a new bitcode block. This is used when
4620 // writing the combined index file for ThinLTO. When writing a subset of the
4621 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4622 void llvm::WriteIndexToFile(
4623     const ModuleSummaryIndex &Index, raw_ostream &Out,
4624     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4625   SmallVector<char, 0> Buffer;
4626   Buffer.reserve(256 * 1024);
4627 
4628   BitcodeWriter Writer(Buffer);
4629   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4630   Writer.writeStrtab();
4631 
4632   Out.write((char *)&Buffer.front(), Buffer.size());
4633 }
4634 
4635 namespace {
4636 
4637 /// Class to manage the bitcode writing for a thin link bitcode file.
4638 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4639   /// ModHash is for use in ThinLTO incremental build, generated while writing
4640   /// the module bitcode file.
4641   const ModuleHash *ModHash;
4642 
4643 public:
4644   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4645                         BitstreamWriter &Stream,
4646                         const ModuleSummaryIndex &Index,
4647                         const ModuleHash &ModHash)
4648       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4649                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4650         ModHash(&ModHash) {}
4651 
4652   void write();
4653 
4654 private:
4655   void writeSimplifiedModuleInfo();
4656 };
4657 
4658 } // end anonymous namespace
4659 
4660 // This function writes a simpilified module info for thin link bitcode file.
4661 // It only contains the source file name along with the name(the offset and
4662 // size in strtab) and linkage for global values. For the global value info
4663 // entry, in order to keep linkage at offset 5, there are three zeros used
4664 // as padding.
4665 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4666   SmallVector<unsigned, 64> Vals;
4667   // Emit the module's source file name.
4668   {
4669     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4670     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4671     if (Bits == SE_Char6)
4672       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4673     else if (Bits == SE_Fixed7)
4674       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4675 
4676     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4677     auto Abbv = std::make_shared<BitCodeAbbrev>();
4678     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4679     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4680     Abbv->Add(AbbrevOpToUse);
4681     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4682 
4683     for (const auto P : M.getSourceFileName())
4684       Vals.push_back((unsigned char)P);
4685 
4686     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4687     Vals.clear();
4688   }
4689 
4690   // Emit the global variable information.
4691   for (const GlobalVariable &GV : M.globals()) {
4692     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4693     Vals.push_back(StrtabBuilder.add(GV.getName()));
4694     Vals.push_back(GV.getName().size());
4695     Vals.push_back(0);
4696     Vals.push_back(0);
4697     Vals.push_back(0);
4698     Vals.push_back(getEncodedLinkage(GV));
4699 
4700     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4701     Vals.clear();
4702   }
4703 
4704   // Emit the function proto information.
4705   for (const Function &F : M) {
4706     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4707     Vals.push_back(StrtabBuilder.add(F.getName()));
4708     Vals.push_back(F.getName().size());
4709     Vals.push_back(0);
4710     Vals.push_back(0);
4711     Vals.push_back(0);
4712     Vals.push_back(getEncodedLinkage(F));
4713 
4714     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4715     Vals.clear();
4716   }
4717 
4718   // Emit the alias information.
4719   for (const GlobalAlias &A : M.aliases()) {
4720     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4721     Vals.push_back(StrtabBuilder.add(A.getName()));
4722     Vals.push_back(A.getName().size());
4723     Vals.push_back(0);
4724     Vals.push_back(0);
4725     Vals.push_back(0);
4726     Vals.push_back(getEncodedLinkage(A));
4727 
4728     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4729     Vals.clear();
4730   }
4731 
4732   // Emit the ifunc information.
4733   for (const GlobalIFunc &I : M.ifuncs()) {
4734     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4735     Vals.push_back(StrtabBuilder.add(I.getName()));
4736     Vals.push_back(I.getName().size());
4737     Vals.push_back(0);
4738     Vals.push_back(0);
4739     Vals.push_back(0);
4740     Vals.push_back(getEncodedLinkage(I));
4741 
4742     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4743     Vals.clear();
4744   }
4745 }
4746 
4747 void ThinLinkBitcodeWriter::write() {
4748   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4749 
4750   writeModuleVersion();
4751 
4752   writeSimplifiedModuleInfo();
4753 
4754   writePerModuleGlobalValueSummary();
4755 
4756   // Write module hash.
4757   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4758 
4759   Stream.ExitBlock();
4760 }
4761 
4762 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4763                                          const ModuleSummaryIndex &Index,
4764                                          const ModuleHash &ModHash) {
4765   assert(!WroteStrtab);
4766 
4767   // The Mods vector is used by irsymtab::build, which requires non-const
4768   // Modules in case it needs to materialize metadata. But the bitcode writer
4769   // requires that the module is materialized, so we can cast to non-const here,
4770   // after checking that it is in fact materialized.
4771   assert(M.isMaterialized());
4772   Mods.push_back(const_cast<Module *>(&M));
4773 
4774   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4775                                        ModHash);
4776   ThinLinkWriter.write();
4777 }
4778 
4779 // Write the specified thin link bitcode file to the given raw output stream,
4780 // where it will be written in a new bitcode block. This is used when
4781 // writing the per-module index file for ThinLTO.
4782 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4783                                       const ModuleSummaryIndex &Index,
4784                                       const ModuleHash &ModHash) {
4785   SmallVector<char, 0> Buffer;
4786   Buffer.reserve(256 * 1024);
4787 
4788   BitcodeWriter Writer(Buffer);
4789   Writer.writeThinLinkBitcode(M, Index, ModHash);
4790   Writer.writeSymtab();
4791   Writer.writeStrtab();
4792 
4793   Out.write((char *)&Buffer.front(), Buffer.size());
4794 }
4795 
4796 static const char *getSectionNameForBitcode(const Triple &T) {
4797   switch (T.getObjectFormat()) {
4798   case Triple::MachO:
4799     return "__LLVM,__bitcode";
4800   case Triple::COFF:
4801   case Triple::ELF:
4802   case Triple::Wasm:
4803   case Triple::UnknownObjectFormat:
4804     return ".llvmbc";
4805   case Triple::GOFF:
4806     llvm_unreachable("GOFF is not yet implemented");
4807     break;
4808   case Triple::XCOFF:
4809     llvm_unreachable("XCOFF is not yet implemented");
4810     break;
4811   }
4812   llvm_unreachable("Unimplemented ObjectFormatType");
4813 }
4814 
4815 static const char *getSectionNameForCommandline(const Triple &T) {
4816   switch (T.getObjectFormat()) {
4817   case Triple::MachO:
4818     return "__LLVM,__cmdline";
4819   case Triple::COFF:
4820   case Triple::ELF:
4821   case Triple::Wasm:
4822   case Triple::UnknownObjectFormat:
4823     return ".llvmcmd";
4824   case Triple::GOFF:
4825     llvm_unreachable("GOFF is not yet implemented");
4826     break;
4827   case Triple::XCOFF:
4828     llvm_unreachable("XCOFF is not yet implemented");
4829     break;
4830   }
4831   llvm_unreachable("Unimplemented ObjectFormatType");
4832 }
4833 
4834 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4835                                 bool EmbedBitcode, bool EmbedCmdline,
4836                                 const std::vector<uint8_t> &CmdArgs) {
4837   // Save llvm.compiler.used and remove it.
4838   SmallVector<Constant *, 2> UsedArray;
4839   SmallPtrSet<GlobalValue *, 4> UsedGlobals;
4840   Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4841   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4842   for (auto *GV : UsedGlobals) {
4843     if (GV->getName() != "llvm.embedded.module" &&
4844         GV->getName() != "llvm.cmdline")
4845       UsedArray.push_back(
4846           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4847   }
4848   if (Used)
4849     Used->eraseFromParent();
4850 
4851   // Embed the bitcode for the llvm module.
4852   std::string Data;
4853   ArrayRef<uint8_t> ModuleData;
4854   Triple T(M.getTargetTriple());
4855 
4856   if (EmbedBitcode) {
4857     if (Buf.getBufferSize() == 0 ||
4858         !isBitcode((const unsigned char *)Buf.getBufferStart(),
4859                    (const unsigned char *)Buf.getBufferEnd())) {
4860       // If the input is LLVM Assembly, bitcode is produced by serializing
4861       // the module. Use-lists order need to be preserved in this case.
4862       llvm::raw_string_ostream OS(Data);
4863       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4864       ModuleData =
4865           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4866     } else
4867       // If the input is LLVM bitcode, write the input byte stream directly.
4868       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4869                                      Buf.getBufferSize());
4870   }
4871   llvm::Constant *ModuleConstant =
4872       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4873   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4874       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4875       ModuleConstant);
4876   GV->setSection(getSectionNameForBitcode(T));
4877   // Set alignment to 1 to prevent padding between two contributions from input
4878   // sections after linking.
4879   GV->setAlignment(Align(1));
4880   UsedArray.push_back(
4881       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4882   if (llvm::GlobalVariable *Old =
4883           M.getGlobalVariable("llvm.embedded.module", true)) {
4884     assert(Old->hasOneUse() &&
4885            "llvm.embedded.module can only be used once in llvm.compiler.used");
4886     GV->takeName(Old);
4887     Old->eraseFromParent();
4888   } else {
4889     GV->setName("llvm.embedded.module");
4890   }
4891 
4892   // Skip if only bitcode needs to be embedded.
4893   if (EmbedCmdline) {
4894     // Embed command-line options.
4895     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
4896                               CmdArgs.size());
4897     llvm::Constant *CmdConstant =
4898         llvm::ConstantDataArray::get(M.getContext(), CmdData);
4899     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
4900                                   llvm::GlobalValue::PrivateLinkage,
4901                                   CmdConstant);
4902     GV->setSection(getSectionNameForCommandline(T));
4903     GV->setAlignment(Align(1));
4904     UsedArray.push_back(
4905         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4906     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
4907       assert(Old->hasOneUse() &&
4908              "llvm.cmdline can only be used once in llvm.compiler.used");
4909       GV->takeName(Old);
4910       Old->eraseFromParent();
4911     } else {
4912       GV->setName("llvm.cmdline");
4913     }
4914   }
4915 
4916   if (UsedArray.empty())
4917     return;
4918 
4919   // Recreate llvm.compiler.used.
4920   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
4921   auto *NewUsed = new GlobalVariable(
4922       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
4923       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
4924   NewUsed->setSection("llvm.metadata");
4925 }
4926