1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 static cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_UNOP_ABBREV, 116 FUNCTION_INST_UNOP_FLAGS_ABBREV, 117 FUNCTION_INST_BINOP_ABBREV, 118 FUNCTION_INST_BINOP_FLAGS_ABBREV, 119 FUNCTION_INST_CAST_ABBREV, 120 FUNCTION_INST_RET_VOID_ABBREV, 121 FUNCTION_INST_RET_VAL_ABBREV, 122 FUNCTION_INST_UNREACHABLE_ABBREV, 123 FUNCTION_INST_GEP_ABBREV, 124 }; 125 126 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 127 /// file type. 128 class BitcodeWriterBase { 129 protected: 130 /// The stream created and owned by the client. 131 BitstreamWriter &Stream; 132 133 StringTableBuilder &StrtabBuilder; 134 135 public: 136 /// Constructs a BitcodeWriterBase object that writes to the provided 137 /// \p Stream. 138 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 139 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 140 141 protected: 142 void writeBitcodeHeader(); 143 void writeModuleVersion(); 144 }; 145 146 void BitcodeWriterBase::writeModuleVersion() { 147 // VERSION: [version#] 148 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 149 } 150 151 /// Base class to manage the module bitcode writing, currently subclassed for 152 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 153 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 154 protected: 155 /// The Module to write to bitcode. 156 const Module &M; 157 158 /// Enumerates ids for all values in the module. 159 ValueEnumerator VE; 160 161 /// Optional per-module index to write for ThinLTO. 162 const ModuleSummaryIndex *Index; 163 164 /// Map that holds the correspondence between GUIDs in the summary index, 165 /// that came from indirect call profiles, and a value id generated by this 166 /// class to use in the VST and summary block records. 167 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 168 169 /// Tracks the last value id recorded in the GUIDToValueMap. 170 unsigned GlobalValueId; 171 172 /// Saves the offset of the VSTOffset record that must eventually be 173 /// backpatched with the offset of the actual VST. 174 uint64_t VSTOffsetPlaceholder = 0; 175 176 public: 177 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 178 /// writing to the provided \p Buffer. 179 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 180 BitstreamWriter &Stream, 181 bool ShouldPreserveUseListOrder, 182 const ModuleSummaryIndex *Index) 183 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 184 VE(M, ShouldPreserveUseListOrder), Index(Index) { 185 // Assign ValueIds to any callee values in the index that came from 186 // indirect call profiles and were recorded as a GUID not a Value* 187 // (which would have been assigned an ID by the ValueEnumerator). 188 // The starting ValueId is just after the number of values in the 189 // ValueEnumerator, so that they can be emitted in the VST. 190 GlobalValueId = VE.getValues().size(); 191 if (!Index) 192 return; 193 for (const auto &GUIDSummaryLists : *Index) 194 // Examine all summaries for this GUID. 195 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 196 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 197 // For each call in the function summary, see if the call 198 // is to a GUID (which means it is for an indirect call, 199 // otherwise we would have a Value for it). If so, synthesize 200 // a value id. 201 for (auto &CallEdge : FS->calls()) 202 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 203 assignValueId(CallEdge.first.getGUID()); 204 } 205 206 protected: 207 void writePerModuleGlobalValueSummary(); 208 209 private: 210 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 211 GlobalValueSummary *Summary, 212 unsigned ValueID, 213 unsigned FSCallsAbbrev, 214 unsigned FSCallsProfileAbbrev, 215 const Function &F); 216 void writeModuleLevelReferences(const GlobalVariable &V, 217 SmallVector<uint64_t, 64> &NameVals, 218 unsigned FSModRefsAbbrev, 219 unsigned FSModVTableRefsAbbrev); 220 221 void assignValueId(GlobalValue::GUID ValGUID) { 222 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 223 } 224 225 unsigned getValueId(GlobalValue::GUID ValGUID) { 226 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 227 // Expect that any GUID value had a value Id assigned by an 228 // earlier call to assignValueId. 229 assert(VMI != GUIDToValueIdMap.end() && 230 "GUID does not have assigned value Id"); 231 return VMI->second; 232 } 233 234 // Helper to get the valueId for the type of value recorded in VI. 235 unsigned getValueId(ValueInfo VI) { 236 if (!VI.haveGVs() || !VI.getValue()) 237 return getValueId(VI.getGUID()); 238 return VE.getValueID(VI.getValue()); 239 } 240 241 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 242 }; 243 244 /// Class to manage the bitcode writing for a module. 245 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 246 /// Pointer to the buffer allocated by caller for bitcode writing. 247 const SmallVectorImpl<char> &Buffer; 248 249 /// True if a module hash record should be written. 250 bool GenerateHash; 251 252 /// If non-null, when GenerateHash is true, the resulting hash is written 253 /// into ModHash. 254 ModuleHash *ModHash; 255 256 SHA1 Hasher; 257 258 /// The start bit of the identification block. 259 uint64_t BitcodeStartBit; 260 261 public: 262 /// Constructs a ModuleBitcodeWriter object for the given Module, 263 /// writing to the provided \p Buffer. 264 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 265 StringTableBuilder &StrtabBuilder, 266 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 267 const ModuleSummaryIndex *Index, bool GenerateHash, 268 ModuleHash *ModHash = nullptr) 269 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 270 ShouldPreserveUseListOrder, Index), 271 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 272 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 273 274 /// Emit the current module to the bitstream. 275 void write(); 276 277 private: 278 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 279 280 size_t addToStrtab(StringRef Str); 281 282 void writeAttributeGroupTable(); 283 void writeAttributeTable(); 284 void writeTypeTable(); 285 void writeComdats(); 286 void writeValueSymbolTableForwardDecl(); 287 void writeModuleInfo(); 288 void writeValueAsMetadata(const ValueAsMetadata *MD, 289 SmallVectorImpl<uint64_t> &Record); 290 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 unsigned createDILocationAbbrev(); 293 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned &Abbrev); 295 unsigned createGenericDINodeAbbrev(); 296 void writeGenericDINode(const GenericDINode *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 298 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 void writeDIEnumerator(const DIEnumerator *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 302 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIStringType(const DIStringType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDIDerivedType(const DIDerivedType *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDICompositeType(const DICompositeType *N, 309 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 310 void writeDISubroutineType(const DISubroutineType *N, 311 SmallVectorImpl<uint64_t> &Record, 312 unsigned Abbrev); 313 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 314 unsigned Abbrev); 315 void writeDICompileUnit(const DICompileUnit *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubprogram(const DISubprogram *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDILexicalBlock(const DILexicalBlock *N, 320 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 321 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 322 SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDICommonBlock(const DICommonBlock *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIGlobalVariable(const DIGlobalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDILocalVariable(const DILocalVariable *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDILabel(const DILabel *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIExpression(const DIExpression *N, 348 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 349 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 350 SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIObjCProperty(const DIObjCProperty *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDIImportedEntity(const DIImportedEntity *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 unsigned createNamedMetadataAbbrev(); 358 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 359 unsigned createMetadataStringsAbbrev(); 360 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 361 SmallVectorImpl<uint64_t> &Record); 362 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 363 SmallVectorImpl<uint64_t> &Record, 364 std::vector<unsigned> *MDAbbrevs = nullptr, 365 std::vector<uint64_t> *IndexPos = nullptr); 366 void writeModuleMetadata(); 367 void writeFunctionMetadata(const Function &F); 368 void writeFunctionMetadataAttachment(const Function &F); 369 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 370 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 371 const GlobalObject &GO); 372 void writeModuleMetadataKinds(); 373 void writeOperandBundleTags(); 374 void writeSyncScopeNames(); 375 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 376 void writeModuleConstants(); 377 bool pushValueAndType(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void writeOperandBundles(const CallBase &CB, unsigned InstID); 380 void pushValue(const Value *V, unsigned InstID, 381 SmallVectorImpl<unsigned> &Vals); 382 void pushValueSigned(const Value *V, unsigned InstID, 383 SmallVectorImpl<uint64_t> &Vals); 384 void writeInstruction(const Instruction &I, unsigned InstID, 385 SmallVectorImpl<unsigned> &Vals); 386 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 387 void writeGlobalValueSymbolTable( 388 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 389 void writeUseList(UseListOrder &&Order); 390 void writeUseListBlock(const Function *F); 391 void 392 writeFunction(const Function &F, 393 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 394 void writeBlockInfo(); 395 void writeModuleHash(size_t BlockStartPos); 396 397 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 398 return unsigned(SSID); 399 } 400 401 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 402 }; 403 404 /// Class to manage the bitcode writing for a combined index. 405 class IndexBitcodeWriter : public BitcodeWriterBase { 406 /// The combined index to write to bitcode. 407 const ModuleSummaryIndex &Index; 408 409 /// When writing a subset of the index for distributed backends, client 410 /// provides a map of modules to the corresponding GUIDs/summaries to write. 411 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 412 413 /// Map that holds the correspondence between the GUID used in the combined 414 /// index and a value id generated by this class to use in references. 415 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 416 417 /// Tracks the last value id recorded in the GUIDToValueMap. 418 unsigned GlobalValueId = 0; 419 420 public: 421 /// Constructs a IndexBitcodeWriter object for the given combined index, 422 /// writing to the provided \p Buffer. When writing a subset of the index 423 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 424 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 425 const ModuleSummaryIndex &Index, 426 const std::map<std::string, GVSummaryMapTy> 427 *ModuleToSummariesForIndex = nullptr) 428 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 429 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 430 // Assign unique value ids to all summaries to be written, for use 431 // in writing out the call graph edges. Save the mapping from GUID 432 // to the new global value id to use when writing those edges, which 433 // are currently saved in the index in terms of GUID. 434 forEachSummary([&](GVInfo I, bool) { 435 GUIDToValueIdMap[I.first] = ++GlobalValueId; 436 }); 437 } 438 439 /// The below iterator returns the GUID and associated summary. 440 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 441 442 /// Calls the callback for each value GUID and summary to be written to 443 /// bitcode. This hides the details of whether they are being pulled from the 444 /// entire index or just those in a provided ModuleToSummariesForIndex map. 445 template<typename Functor> 446 void forEachSummary(Functor Callback) { 447 if (ModuleToSummariesForIndex) { 448 for (auto &M : *ModuleToSummariesForIndex) 449 for (auto &Summary : M.second) { 450 Callback(Summary, false); 451 // Ensure aliasee is handled, e.g. for assigning a valueId, 452 // even if we are not importing the aliasee directly (the 453 // imported alias will contain a copy of aliasee). 454 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 455 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 456 } 457 } else { 458 for (auto &Summaries : Index) 459 for (auto &Summary : Summaries.second.SummaryList) 460 Callback({Summaries.first, Summary.get()}, false); 461 } 462 } 463 464 /// Calls the callback for each entry in the modulePaths StringMap that 465 /// should be written to the module path string table. This hides the details 466 /// of whether they are being pulled from the entire index or just those in a 467 /// provided ModuleToSummariesForIndex map. 468 template <typename Functor> void forEachModule(Functor Callback) { 469 if (ModuleToSummariesForIndex) { 470 for (const auto &M : *ModuleToSummariesForIndex) { 471 const auto &MPI = Index.modulePaths().find(M.first); 472 if (MPI == Index.modulePaths().end()) { 473 // This should only happen if the bitcode file was empty, in which 474 // case we shouldn't be importing (the ModuleToSummariesForIndex 475 // would only include the module we are writing and index for). 476 assert(ModuleToSummariesForIndex->size() == 1); 477 continue; 478 } 479 Callback(*MPI); 480 } 481 } else { 482 for (const auto &MPSE : Index.modulePaths()) 483 Callback(MPSE); 484 } 485 } 486 487 /// Main entry point for writing a combined index to bitcode. 488 void write(); 489 490 private: 491 void writeModStrings(); 492 void writeCombinedGlobalValueSummary(); 493 494 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 495 auto VMI = GUIDToValueIdMap.find(ValGUID); 496 if (VMI == GUIDToValueIdMap.end()) 497 return None; 498 return VMI->second; 499 } 500 501 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 502 }; 503 504 } // end anonymous namespace 505 506 static unsigned getEncodedCastOpcode(unsigned Opcode) { 507 switch (Opcode) { 508 default: llvm_unreachable("Unknown cast instruction!"); 509 case Instruction::Trunc : return bitc::CAST_TRUNC; 510 case Instruction::ZExt : return bitc::CAST_ZEXT; 511 case Instruction::SExt : return bitc::CAST_SEXT; 512 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 513 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 514 case Instruction::UIToFP : return bitc::CAST_UITOFP; 515 case Instruction::SIToFP : return bitc::CAST_SITOFP; 516 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 517 case Instruction::FPExt : return bitc::CAST_FPEXT; 518 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 519 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 520 case Instruction::BitCast : return bitc::CAST_BITCAST; 521 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 522 } 523 } 524 525 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 526 switch (Opcode) { 527 default: llvm_unreachable("Unknown binary instruction!"); 528 case Instruction::FNeg: return bitc::UNOP_FNEG; 529 } 530 } 531 532 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 533 switch (Opcode) { 534 default: llvm_unreachable("Unknown binary instruction!"); 535 case Instruction::Add: 536 case Instruction::FAdd: return bitc::BINOP_ADD; 537 case Instruction::Sub: 538 case Instruction::FSub: return bitc::BINOP_SUB; 539 case Instruction::Mul: 540 case Instruction::FMul: return bitc::BINOP_MUL; 541 case Instruction::UDiv: return bitc::BINOP_UDIV; 542 case Instruction::FDiv: 543 case Instruction::SDiv: return bitc::BINOP_SDIV; 544 case Instruction::URem: return bitc::BINOP_UREM; 545 case Instruction::FRem: 546 case Instruction::SRem: return bitc::BINOP_SREM; 547 case Instruction::Shl: return bitc::BINOP_SHL; 548 case Instruction::LShr: return bitc::BINOP_LSHR; 549 case Instruction::AShr: return bitc::BINOP_ASHR; 550 case Instruction::And: return bitc::BINOP_AND; 551 case Instruction::Or: return bitc::BINOP_OR; 552 case Instruction::Xor: return bitc::BINOP_XOR; 553 } 554 } 555 556 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 557 switch (Op) { 558 default: llvm_unreachable("Unknown RMW operation!"); 559 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 560 case AtomicRMWInst::Add: return bitc::RMW_ADD; 561 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 562 case AtomicRMWInst::And: return bitc::RMW_AND; 563 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 564 case AtomicRMWInst::Or: return bitc::RMW_OR; 565 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 566 case AtomicRMWInst::Max: return bitc::RMW_MAX; 567 case AtomicRMWInst::Min: return bitc::RMW_MIN; 568 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 569 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 570 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 571 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 572 } 573 } 574 575 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 576 switch (Ordering) { 577 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 578 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 579 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 580 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 581 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 582 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 583 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 584 } 585 llvm_unreachable("Invalid ordering"); 586 } 587 588 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 589 StringRef Str, unsigned AbbrevToUse) { 590 SmallVector<unsigned, 64> Vals; 591 592 // Code: [strchar x N] 593 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 594 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 595 AbbrevToUse = 0; 596 Vals.push_back(Str[i]); 597 } 598 599 // Emit the finished record. 600 Stream.EmitRecord(Code, Vals, AbbrevToUse); 601 } 602 603 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 604 switch (Kind) { 605 case Attribute::Alignment: 606 return bitc::ATTR_KIND_ALIGNMENT; 607 case Attribute::AllocSize: 608 return bitc::ATTR_KIND_ALLOC_SIZE; 609 case Attribute::AlwaysInline: 610 return bitc::ATTR_KIND_ALWAYS_INLINE; 611 case Attribute::ArgMemOnly: 612 return bitc::ATTR_KIND_ARGMEMONLY; 613 case Attribute::Builtin: 614 return bitc::ATTR_KIND_BUILTIN; 615 case Attribute::ByVal: 616 return bitc::ATTR_KIND_BY_VAL; 617 case Attribute::Convergent: 618 return bitc::ATTR_KIND_CONVERGENT; 619 case Attribute::InAlloca: 620 return bitc::ATTR_KIND_IN_ALLOCA; 621 case Attribute::Cold: 622 return bitc::ATTR_KIND_COLD; 623 case Attribute::InaccessibleMemOnly: 624 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 625 case Attribute::InaccessibleMemOrArgMemOnly: 626 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 627 case Attribute::InlineHint: 628 return bitc::ATTR_KIND_INLINE_HINT; 629 case Attribute::InReg: 630 return bitc::ATTR_KIND_IN_REG; 631 case Attribute::JumpTable: 632 return bitc::ATTR_KIND_JUMP_TABLE; 633 case Attribute::MinSize: 634 return bitc::ATTR_KIND_MIN_SIZE; 635 case Attribute::Naked: 636 return bitc::ATTR_KIND_NAKED; 637 case Attribute::Nest: 638 return bitc::ATTR_KIND_NEST; 639 case Attribute::NoAlias: 640 return bitc::ATTR_KIND_NO_ALIAS; 641 case Attribute::NoBuiltin: 642 return bitc::ATTR_KIND_NO_BUILTIN; 643 case Attribute::NoCapture: 644 return bitc::ATTR_KIND_NO_CAPTURE; 645 case Attribute::NoDuplicate: 646 return bitc::ATTR_KIND_NO_DUPLICATE; 647 case Attribute::NoFree: 648 return bitc::ATTR_KIND_NOFREE; 649 case Attribute::NoImplicitFloat: 650 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 651 case Attribute::NoInline: 652 return bitc::ATTR_KIND_NO_INLINE; 653 case Attribute::NoRecurse: 654 return bitc::ATTR_KIND_NO_RECURSE; 655 case Attribute::NoMerge: 656 return bitc::ATTR_KIND_NO_MERGE; 657 case Attribute::NonLazyBind: 658 return bitc::ATTR_KIND_NON_LAZY_BIND; 659 case Attribute::NonNull: 660 return bitc::ATTR_KIND_NON_NULL; 661 case Attribute::Dereferenceable: 662 return bitc::ATTR_KIND_DEREFERENCEABLE; 663 case Attribute::DereferenceableOrNull: 664 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 665 case Attribute::NoRedZone: 666 return bitc::ATTR_KIND_NO_RED_ZONE; 667 case Attribute::NoReturn: 668 return bitc::ATTR_KIND_NO_RETURN; 669 case Attribute::NoSync: 670 return bitc::ATTR_KIND_NOSYNC; 671 case Attribute::NoCfCheck: 672 return bitc::ATTR_KIND_NOCF_CHECK; 673 case Attribute::NoUnwind: 674 return bitc::ATTR_KIND_NO_UNWIND; 675 case Attribute::NullPointerIsValid: 676 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 677 case Attribute::OptForFuzzing: 678 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 679 case Attribute::OptimizeForSize: 680 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 681 case Attribute::OptimizeNone: 682 return bitc::ATTR_KIND_OPTIMIZE_NONE; 683 case Attribute::ReadNone: 684 return bitc::ATTR_KIND_READ_NONE; 685 case Attribute::ReadOnly: 686 return bitc::ATTR_KIND_READ_ONLY; 687 case Attribute::Returned: 688 return bitc::ATTR_KIND_RETURNED; 689 case Attribute::ReturnsTwice: 690 return bitc::ATTR_KIND_RETURNS_TWICE; 691 case Attribute::SExt: 692 return bitc::ATTR_KIND_S_EXT; 693 case Attribute::Speculatable: 694 return bitc::ATTR_KIND_SPECULATABLE; 695 case Attribute::StackAlignment: 696 return bitc::ATTR_KIND_STACK_ALIGNMENT; 697 case Attribute::StackProtect: 698 return bitc::ATTR_KIND_STACK_PROTECT; 699 case Attribute::StackProtectReq: 700 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 701 case Attribute::StackProtectStrong: 702 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 703 case Attribute::SafeStack: 704 return bitc::ATTR_KIND_SAFESTACK; 705 case Attribute::ShadowCallStack: 706 return bitc::ATTR_KIND_SHADOWCALLSTACK; 707 case Attribute::StrictFP: 708 return bitc::ATTR_KIND_STRICT_FP; 709 case Attribute::StructRet: 710 return bitc::ATTR_KIND_STRUCT_RET; 711 case Attribute::SanitizeAddress: 712 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 713 case Attribute::SanitizeHWAddress: 714 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 715 case Attribute::SanitizeThread: 716 return bitc::ATTR_KIND_SANITIZE_THREAD; 717 case Attribute::SanitizeMemory: 718 return bitc::ATTR_KIND_SANITIZE_MEMORY; 719 case Attribute::SpeculativeLoadHardening: 720 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 721 case Attribute::SwiftError: 722 return bitc::ATTR_KIND_SWIFT_ERROR; 723 case Attribute::SwiftSelf: 724 return bitc::ATTR_KIND_SWIFT_SELF; 725 case Attribute::UWTable: 726 return bitc::ATTR_KIND_UW_TABLE; 727 case Attribute::WillReturn: 728 return bitc::ATTR_KIND_WILLRETURN; 729 case Attribute::WriteOnly: 730 return bitc::ATTR_KIND_WRITEONLY; 731 case Attribute::ZExt: 732 return bitc::ATTR_KIND_Z_EXT; 733 case Attribute::ImmArg: 734 return bitc::ATTR_KIND_IMMARG; 735 case Attribute::SanitizeMemTag: 736 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 737 case Attribute::Preallocated: 738 return bitc::ATTR_KIND_PREALLOCATED; 739 case Attribute::NoUndef: 740 return bitc::ATTR_KIND_NOUNDEF; 741 case Attribute::ByRef: 742 return bitc::ATTR_KIND_BYREF; 743 case Attribute::EndAttrKinds: 744 llvm_unreachable("Can not encode end-attribute kinds marker."); 745 case Attribute::None: 746 llvm_unreachable("Can not encode none-attribute."); 747 case Attribute::EmptyKey: 748 case Attribute::TombstoneKey: 749 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 750 } 751 752 llvm_unreachable("Trying to encode unknown attribute"); 753 } 754 755 void ModuleBitcodeWriter::writeAttributeGroupTable() { 756 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 757 VE.getAttributeGroups(); 758 if (AttrGrps.empty()) return; 759 760 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 761 762 SmallVector<uint64_t, 64> Record; 763 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 764 unsigned AttrListIndex = Pair.first; 765 AttributeSet AS = Pair.second; 766 Record.push_back(VE.getAttributeGroupID(Pair)); 767 Record.push_back(AttrListIndex); 768 769 for (Attribute Attr : AS) { 770 if (Attr.isEnumAttribute()) { 771 Record.push_back(0); 772 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 773 } else if (Attr.isIntAttribute()) { 774 Record.push_back(1); 775 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 776 Record.push_back(Attr.getValueAsInt()); 777 } else if (Attr.isStringAttribute()) { 778 StringRef Kind = Attr.getKindAsString(); 779 StringRef Val = Attr.getValueAsString(); 780 781 Record.push_back(Val.empty() ? 3 : 4); 782 Record.append(Kind.begin(), Kind.end()); 783 Record.push_back(0); 784 if (!Val.empty()) { 785 Record.append(Val.begin(), Val.end()); 786 Record.push_back(0); 787 } 788 } else { 789 assert(Attr.isTypeAttribute()); 790 Type *Ty = Attr.getValueAsType(); 791 Record.push_back(Ty ? 6 : 5); 792 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 793 if (Ty) 794 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 795 } 796 } 797 798 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 799 Record.clear(); 800 } 801 802 Stream.ExitBlock(); 803 } 804 805 void ModuleBitcodeWriter::writeAttributeTable() { 806 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 807 if (Attrs.empty()) return; 808 809 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 810 811 SmallVector<uint64_t, 64> Record; 812 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 813 AttributeList AL = Attrs[i]; 814 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 815 AttributeSet AS = AL.getAttributes(i); 816 if (AS.hasAttributes()) 817 Record.push_back(VE.getAttributeGroupID({i, AS})); 818 } 819 820 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 821 Record.clear(); 822 } 823 824 Stream.ExitBlock(); 825 } 826 827 /// WriteTypeTable - Write out the type table for a module. 828 void ModuleBitcodeWriter::writeTypeTable() { 829 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 830 831 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 832 SmallVector<uint64_t, 64> TypeVals; 833 834 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 835 836 // Abbrev for TYPE_CODE_POINTER. 837 auto Abbv = std::make_shared<BitCodeAbbrev>(); 838 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 840 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 841 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 842 843 // Abbrev for TYPE_CODE_FUNCTION. 844 Abbv = std::make_shared<BitCodeAbbrev>(); 845 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 849 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 850 851 // Abbrev for TYPE_CODE_STRUCT_ANON. 852 Abbv = std::make_shared<BitCodeAbbrev>(); 853 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 857 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 858 859 // Abbrev for TYPE_CODE_STRUCT_NAME. 860 Abbv = std::make_shared<BitCodeAbbrev>(); 861 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 864 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 865 866 // Abbrev for TYPE_CODE_STRUCT_NAMED. 867 Abbv = std::make_shared<BitCodeAbbrev>(); 868 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 869 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 872 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 873 874 // Abbrev for TYPE_CODE_ARRAY. 875 Abbv = std::make_shared<BitCodeAbbrev>(); 876 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 879 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 880 881 // Emit an entry count so the reader can reserve space. 882 TypeVals.push_back(TypeList.size()); 883 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 884 TypeVals.clear(); 885 886 // Loop over all of the types, emitting each in turn. 887 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 888 Type *T = TypeList[i]; 889 int AbbrevToUse = 0; 890 unsigned Code = 0; 891 892 switch (T->getTypeID()) { 893 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 894 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 895 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 896 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 897 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 898 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 899 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 900 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 901 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 902 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 903 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 904 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 905 case Type::IntegerTyID: 906 // INTEGER: [width] 907 Code = bitc::TYPE_CODE_INTEGER; 908 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 909 break; 910 case Type::PointerTyID: { 911 PointerType *PTy = cast<PointerType>(T); 912 // POINTER: [pointee type, address space] 913 Code = bitc::TYPE_CODE_POINTER; 914 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 915 unsigned AddressSpace = PTy->getAddressSpace(); 916 TypeVals.push_back(AddressSpace); 917 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 918 break; 919 } 920 case Type::FunctionTyID: { 921 FunctionType *FT = cast<FunctionType>(T); 922 // FUNCTION: [isvararg, retty, paramty x N] 923 Code = bitc::TYPE_CODE_FUNCTION; 924 TypeVals.push_back(FT->isVarArg()); 925 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 926 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 927 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 928 AbbrevToUse = FunctionAbbrev; 929 break; 930 } 931 case Type::StructTyID: { 932 StructType *ST = cast<StructType>(T); 933 // STRUCT: [ispacked, eltty x N] 934 TypeVals.push_back(ST->isPacked()); 935 // Output all of the element types. 936 for (StructType::element_iterator I = ST->element_begin(), 937 E = ST->element_end(); I != E; ++I) 938 TypeVals.push_back(VE.getTypeID(*I)); 939 940 if (ST->isLiteral()) { 941 Code = bitc::TYPE_CODE_STRUCT_ANON; 942 AbbrevToUse = StructAnonAbbrev; 943 } else { 944 if (ST->isOpaque()) { 945 Code = bitc::TYPE_CODE_OPAQUE; 946 } else { 947 Code = bitc::TYPE_CODE_STRUCT_NAMED; 948 AbbrevToUse = StructNamedAbbrev; 949 } 950 951 // Emit the name if it is present. 952 if (!ST->getName().empty()) 953 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 954 StructNameAbbrev); 955 } 956 break; 957 } 958 case Type::ArrayTyID: { 959 ArrayType *AT = cast<ArrayType>(T); 960 // ARRAY: [numelts, eltty] 961 Code = bitc::TYPE_CODE_ARRAY; 962 TypeVals.push_back(AT->getNumElements()); 963 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 964 AbbrevToUse = ArrayAbbrev; 965 break; 966 } 967 case Type::FixedVectorTyID: 968 case Type::ScalableVectorTyID: { 969 VectorType *VT = cast<VectorType>(T); 970 // VECTOR [numelts, eltty] or 971 // [numelts, eltty, scalable] 972 Code = bitc::TYPE_CODE_VECTOR; 973 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 974 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 975 if (isa<ScalableVectorType>(VT)) 976 TypeVals.push_back(true); 977 break; 978 } 979 } 980 981 // Emit the finished record. 982 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 983 TypeVals.clear(); 984 } 985 986 Stream.ExitBlock(); 987 } 988 989 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 990 switch (Linkage) { 991 case GlobalValue::ExternalLinkage: 992 return 0; 993 case GlobalValue::WeakAnyLinkage: 994 return 16; 995 case GlobalValue::AppendingLinkage: 996 return 2; 997 case GlobalValue::InternalLinkage: 998 return 3; 999 case GlobalValue::LinkOnceAnyLinkage: 1000 return 18; 1001 case GlobalValue::ExternalWeakLinkage: 1002 return 7; 1003 case GlobalValue::CommonLinkage: 1004 return 8; 1005 case GlobalValue::PrivateLinkage: 1006 return 9; 1007 case GlobalValue::WeakODRLinkage: 1008 return 17; 1009 case GlobalValue::LinkOnceODRLinkage: 1010 return 19; 1011 case GlobalValue::AvailableExternallyLinkage: 1012 return 12; 1013 } 1014 llvm_unreachable("Invalid linkage"); 1015 } 1016 1017 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1018 return getEncodedLinkage(GV.getLinkage()); 1019 } 1020 1021 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1022 uint64_t RawFlags = 0; 1023 RawFlags |= Flags.ReadNone; 1024 RawFlags |= (Flags.ReadOnly << 1); 1025 RawFlags |= (Flags.NoRecurse << 2); 1026 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1027 RawFlags |= (Flags.NoInline << 4); 1028 RawFlags |= (Flags.AlwaysInline << 5); 1029 return RawFlags; 1030 } 1031 1032 // Decode the flags for GlobalValue in the summary 1033 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1034 uint64_t RawFlags = 0; 1035 1036 RawFlags |= Flags.NotEligibleToImport; // bool 1037 RawFlags |= (Flags.Live << 1); 1038 RawFlags |= (Flags.DSOLocal << 2); 1039 RawFlags |= (Flags.CanAutoHide << 3); 1040 1041 // Linkage don't need to be remapped at that time for the summary. Any future 1042 // change to the getEncodedLinkage() function will need to be taken into 1043 // account here as well. 1044 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1045 1046 return RawFlags; 1047 } 1048 1049 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1050 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1051 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1052 return RawFlags; 1053 } 1054 1055 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1056 switch (GV.getVisibility()) { 1057 case GlobalValue::DefaultVisibility: return 0; 1058 case GlobalValue::HiddenVisibility: return 1; 1059 case GlobalValue::ProtectedVisibility: return 2; 1060 } 1061 llvm_unreachable("Invalid visibility"); 1062 } 1063 1064 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1065 switch (GV.getDLLStorageClass()) { 1066 case GlobalValue::DefaultStorageClass: return 0; 1067 case GlobalValue::DLLImportStorageClass: return 1; 1068 case GlobalValue::DLLExportStorageClass: return 2; 1069 } 1070 llvm_unreachable("Invalid DLL storage class"); 1071 } 1072 1073 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1074 switch (GV.getThreadLocalMode()) { 1075 case GlobalVariable::NotThreadLocal: return 0; 1076 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1077 case GlobalVariable::LocalDynamicTLSModel: return 2; 1078 case GlobalVariable::InitialExecTLSModel: return 3; 1079 case GlobalVariable::LocalExecTLSModel: return 4; 1080 } 1081 llvm_unreachable("Invalid TLS model"); 1082 } 1083 1084 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1085 switch (C.getSelectionKind()) { 1086 case Comdat::Any: 1087 return bitc::COMDAT_SELECTION_KIND_ANY; 1088 case Comdat::ExactMatch: 1089 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1090 case Comdat::Largest: 1091 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1092 case Comdat::NoDuplicates: 1093 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1094 case Comdat::SameSize: 1095 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1096 } 1097 llvm_unreachable("Invalid selection kind"); 1098 } 1099 1100 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1101 switch (GV.getUnnamedAddr()) { 1102 case GlobalValue::UnnamedAddr::None: return 0; 1103 case GlobalValue::UnnamedAddr::Local: return 2; 1104 case GlobalValue::UnnamedAddr::Global: return 1; 1105 } 1106 llvm_unreachable("Invalid unnamed_addr"); 1107 } 1108 1109 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1110 if (GenerateHash) 1111 Hasher.update(Str); 1112 return StrtabBuilder.add(Str); 1113 } 1114 1115 void ModuleBitcodeWriter::writeComdats() { 1116 SmallVector<unsigned, 64> Vals; 1117 for (const Comdat *C : VE.getComdats()) { 1118 // COMDAT: [strtab offset, strtab size, selection_kind] 1119 Vals.push_back(addToStrtab(C->getName())); 1120 Vals.push_back(C->getName().size()); 1121 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1122 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1123 Vals.clear(); 1124 } 1125 } 1126 1127 /// Write a record that will eventually hold the word offset of the 1128 /// module-level VST. For now the offset is 0, which will be backpatched 1129 /// after the real VST is written. Saves the bit offset to backpatch. 1130 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1131 // Write a placeholder value in for the offset of the real VST, 1132 // which is written after the function blocks so that it can include 1133 // the offset of each function. The placeholder offset will be 1134 // updated when the real VST is written. 1135 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1136 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1137 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1138 // hold the real VST offset. Must use fixed instead of VBR as we don't 1139 // know how many VBR chunks to reserve ahead of time. 1140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1141 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1142 1143 // Emit the placeholder 1144 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1145 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1146 1147 // Compute and save the bit offset to the placeholder, which will be 1148 // patched when the real VST is written. We can simply subtract the 32-bit 1149 // fixed size from the current bit number to get the location to backpatch. 1150 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1151 } 1152 1153 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1154 1155 /// Determine the encoding to use for the given string name and length. 1156 static StringEncoding getStringEncoding(StringRef Str) { 1157 bool isChar6 = true; 1158 for (char C : Str) { 1159 if (isChar6) 1160 isChar6 = BitCodeAbbrevOp::isChar6(C); 1161 if ((unsigned char)C & 128) 1162 // don't bother scanning the rest. 1163 return SE_Fixed8; 1164 } 1165 if (isChar6) 1166 return SE_Char6; 1167 return SE_Fixed7; 1168 } 1169 1170 /// Emit top-level description of module, including target triple, inline asm, 1171 /// descriptors for global variables, and function prototype info. 1172 /// Returns the bit offset to backpatch with the location of the real VST. 1173 void ModuleBitcodeWriter::writeModuleInfo() { 1174 // Emit various pieces of data attached to a module. 1175 if (!M.getTargetTriple().empty()) 1176 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1177 0 /*TODO*/); 1178 const std::string &DL = M.getDataLayoutStr(); 1179 if (!DL.empty()) 1180 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1181 if (!M.getModuleInlineAsm().empty()) 1182 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1183 0 /*TODO*/); 1184 1185 // Emit information about sections and GC, computing how many there are. Also 1186 // compute the maximum alignment value. 1187 std::map<std::string, unsigned> SectionMap; 1188 std::map<std::string, unsigned> GCMap; 1189 MaybeAlign MaxAlignment; 1190 unsigned MaxGlobalType = 0; 1191 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1192 if (A) 1193 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1194 }; 1195 for (const GlobalVariable &GV : M.globals()) { 1196 UpdateMaxAlignment(GV.getAlign()); 1197 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1198 if (GV.hasSection()) { 1199 // Give section names unique ID's. 1200 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1201 if (!Entry) { 1202 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1203 0 /*TODO*/); 1204 Entry = SectionMap.size(); 1205 } 1206 } 1207 } 1208 for (const Function &F : M) { 1209 UpdateMaxAlignment(F.getAlign()); 1210 if (F.hasSection()) { 1211 // Give section names unique ID's. 1212 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1213 if (!Entry) { 1214 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1215 0 /*TODO*/); 1216 Entry = SectionMap.size(); 1217 } 1218 } 1219 if (F.hasGC()) { 1220 // Same for GC names. 1221 unsigned &Entry = GCMap[F.getGC()]; 1222 if (!Entry) { 1223 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1224 0 /*TODO*/); 1225 Entry = GCMap.size(); 1226 } 1227 } 1228 } 1229 1230 // Emit abbrev for globals, now that we know # sections and max alignment. 1231 unsigned SimpleGVarAbbrev = 0; 1232 if (!M.global_empty()) { 1233 // Add an abbrev for common globals with no visibility or thread localness. 1234 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1235 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1239 Log2_32_Ceil(MaxGlobalType+1))); 1240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1241 //| explicitType << 1 1242 //| constant 1243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1245 if (!MaxAlignment) // Alignment. 1246 Abbv->Add(BitCodeAbbrevOp(0)); 1247 else { 1248 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1250 Log2_32_Ceil(MaxEncAlignment+1))); 1251 } 1252 if (SectionMap.empty()) // Section. 1253 Abbv->Add(BitCodeAbbrevOp(0)); 1254 else 1255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1256 Log2_32_Ceil(SectionMap.size()+1))); 1257 // Don't bother emitting vis + thread local. 1258 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1259 } 1260 1261 SmallVector<unsigned, 64> Vals; 1262 // Emit the module's source file name. 1263 { 1264 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1265 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1266 if (Bits == SE_Char6) 1267 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1268 else if (Bits == SE_Fixed7) 1269 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1270 1271 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1273 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1275 Abbv->Add(AbbrevOpToUse); 1276 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1277 1278 for (const auto P : M.getSourceFileName()) 1279 Vals.push_back((unsigned char)P); 1280 1281 // Emit the finished record. 1282 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1283 Vals.clear(); 1284 } 1285 1286 // Emit the global variable information. 1287 for (const GlobalVariable &GV : M.globals()) { 1288 unsigned AbbrevToUse = 0; 1289 1290 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1291 // linkage, alignment, section, visibility, threadlocal, 1292 // unnamed_addr, externally_initialized, dllstorageclass, 1293 // comdat, attributes, DSO_Local] 1294 Vals.push_back(addToStrtab(GV.getName())); 1295 Vals.push_back(GV.getName().size()); 1296 Vals.push_back(VE.getTypeID(GV.getValueType())); 1297 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1298 Vals.push_back(GV.isDeclaration() ? 0 : 1299 (VE.getValueID(GV.getInitializer()) + 1)); 1300 Vals.push_back(getEncodedLinkage(GV)); 1301 Vals.push_back(getEncodedAlign(GV.getAlign())); 1302 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1303 : 0); 1304 if (GV.isThreadLocal() || 1305 GV.getVisibility() != GlobalValue::DefaultVisibility || 1306 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1307 GV.isExternallyInitialized() || 1308 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1309 GV.hasComdat() || 1310 GV.hasAttributes() || 1311 GV.isDSOLocal() || 1312 GV.hasPartition()) { 1313 Vals.push_back(getEncodedVisibility(GV)); 1314 Vals.push_back(getEncodedThreadLocalMode(GV)); 1315 Vals.push_back(getEncodedUnnamedAddr(GV)); 1316 Vals.push_back(GV.isExternallyInitialized()); 1317 Vals.push_back(getEncodedDLLStorageClass(GV)); 1318 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1319 1320 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1321 Vals.push_back(VE.getAttributeListID(AL)); 1322 1323 Vals.push_back(GV.isDSOLocal()); 1324 Vals.push_back(addToStrtab(GV.getPartition())); 1325 Vals.push_back(GV.getPartition().size()); 1326 } else { 1327 AbbrevToUse = SimpleGVarAbbrev; 1328 } 1329 1330 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1331 Vals.clear(); 1332 } 1333 1334 // Emit the function proto information. 1335 for (const Function &F : M) { 1336 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1337 // linkage, paramattrs, alignment, section, visibility, gc, 1338 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1339 // prefixdata, personalityfn, DSO_Local, addrspace] 1340 Vals.push_back(addToStrtab(F.getName())); 1341 Vals.push_back(F.getName().size()); 1342 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1343 Vals.push_back(F.getCallingConv()); 1344 Vals.push_back(F.isDeclaration()); 1345 Vals.push_back(getEncodedLinkage(F)); 1346 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1347 Vals.push_back(getEncodedAlign(F.getAlign())); 1348 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1349 : 0); 1350 Vals.push_back(getEncodedVisibility(F)); 1351 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1352 Vals.push_back(getEncodedUnnamedAddr(F)); 1353 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1354 : 0); 1355 Vals.push_back(getEncodedDLLStorageClass(F)); 1356 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1357 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1358 : 0); 1359 Vals.push_back( 1360 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1361 1362 Vals.push_back(F.isDSOLocal()); 1363 Vals.push_back(F.getAddressSpace()); 1364 Vals.push_back(addToStrtab(F.getPartition())); 1365 Vals.push_back(F.getPartition().size()); 1366 1367 unsigned AbbrevToUse = 0; 1368 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1369 Vals.clear(); 1370 } 1371 1372 // Emit the alias information. 1373 for (const GlobalAlias &A : M.aliases()) { 1374 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1375 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1376 // DSO_Local] 1377 Vals.push_back(addToStrtab(A.getName())); 1378 Vals.push_back(A.getName().size()); 1379 Vals.push_back(VE.getTypeID(A.getValueType())); 1380 Vals.push_back(A.getType()->getAddressSpace()); 1381 Vals.push_back(VE.getValueID(A.getAliasee())); 1382 Vals.push_back(getEncodedLinkage(A)); 1383 Vals.push_back(getEncodedVisibility(A)); 1384 Vals.push_back(getEncodedDLLStorageClass(A)); 1385 Vals.push_back(getEncodedThreadLocalMode(A)); 1386 Vals.push_back(getEncodedUnnamedAddr(A)); 1387 Vals.push_back(A.isDSOLocal()); 1388 Vals.push_back(addToStrtab(A.getPartition())); 1389 Vals.push_back(A.getPartition().size()); 1390 1391 unsigned AbbrevToUse = 0; 1392 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1393 Vals.clear(); 1394 } 1395 1396 // Emit the ifunc information. 1397 for (const GlobalIFunc &I : M.ifuncs()) { 1398 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1399 // val#, linkage, visibility, DSO_Local] 1400 Vals.push_back(addToStrtab(I.getName())); 1401 Vals.push_back(I.getName().size()); 1402 Vals.push_back(VE.getTypeID(I.getValueType())); 1403 Vals.push_back(I.getType()->getAddressSpace()); 1404 Vals.push_back(VE.getValueID(I.getResolver())); 1405 Vals.push_back(getEncodedLinkage(I)); 1406 Vals.push_back(getEncodedVisibility(I)); 1407 Vals.push_back(I.isDSOLocal()); 1408 Vals.push_back(addToStrtab(I.getPartition())); 1409 Vals.push_back(I.getPartition().size()); 1410 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1411 Vals.clear(); 1412 } 1413 1414 writeValueSymbolTableForwardDecl(); 1415 } 1416 1417 static uint64_t getOptimizationFlags(const Value *V) { 1418 uint64_t Flags = 0; 1419 1420 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1421 if (OBO->hasNoSignedWrap()) 1422 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1423 if (OBO->hasNoUnsignedWrap()) 1424 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1425 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1426 if (PEO->isExact()) 1427 Flags |= 1 << bitc::PEO_EXACT; 1428 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1429 if (FPMO->hasAllowReassoc()) 1430 Flags |= bitc::AllowReassoc; 1431 if (FPMO->hasNoNaNs()) 1432 Flags |= bitc::NoNaNs; 1433 if (FPMO->hasNoInfs()) 1434 Flags |= bitc::NoInfs; 1435 if (FPMO->hasNoSignedZeros()) 1436 Flags |= bitc::NoSignedZeros; 1437 if (FPMO->hasAllowReciprocal()) 1438 Flags |= bitc::AllowReciprocal; 1439 if (FPMO->hasAllowContract()) 1440 Flags |= bitc::AllowContract; 1441 if (FPMO->hasApproxFunc()) 1442 Flags |= bitc::ApproxFunc; 1443 } 1444 1445 return Flags; 1446 } 1447 1448 void ModuleBitcodeWriter::writeValueAsMetadata( 1449 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1450 // Mimic an MDNode with a value as one operand. 1451 Value *V = MD->getValue(); 1452 Record.push_back(VE.getTypeID(V->getType())); 1453 Record.push_back(VE.getValueID(V)); 1454 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1455 Record.clear(); 1456 } 1457 1458 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1459 SmallVectorImpl<uint64_t> &Record, 1460 unsigned Abbrev) { 1461 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1462 Metadata *MD = N->getOperand(i); 1463 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1464 "Unexpected function-local metadata"); 1465 Record.push_back(VE.getMetadataOrNullID(MD)); 1466 } 1467 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1468 : bitc::METADATA_NODE, 1469 Record, Abbrev); 1470 Record.clear(); 1471 } 1472 1473 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1474 // Assume the column is usually under 128, and always output the inlined-at 1475 // location (it's never more expensive than building an array size 1). 1476 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1477 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1484 return Stream.EmitAbbrev(std::move(Abbv)); 1485 } 1486 1487 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1488 SmallVectorImpl<uint64_t> &Record, 1489 unsigned &Abbrev) { 1490 if (!Abbrev) 1491 Abbrev = createDILocationAbbrev(); 1492 1493 Record.push_back(N->isDistinct()); 1494 Record.push_back(N->getLine()); 1495 Record.push_back(N->getColumn()); 1496 Record.push_back(VE.getMetadataID(N->getScope())); 1497 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1498 Record.push_back(N->isImplicitCode()); 1499 1500 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1501 Record.clear(); 1502 } 1503 1504 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1505 // Assume the column is usually under 128, and always output the inlined-at 1506 // location (it's never more expensive than building an array size 1). 1507 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1508 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1515 return Stream.EmitAbbrev(std::move(Abbv)); 1516 } 1517 1518 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1519 SmallVectorImpl<uint64_t> &Record, 1520 unsigned &Abbrev) { 1521 if (!Abbrev) 1522 Abbrev = createGenericDINodeAbbrev(); 1523 1524 Record.push_back(N->isDistinct()); 1525 Record.push_back(N->getTag()); 1526 Record.push_back(0); // Per-tag version field; unused for now. 1527 1528 for (auto &I : N->operands()) 1529 Record.push_back(VE.getMetadataOrNullID(I)); 1530 1531 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1532 Record.clear(); 1533 } 1534 1535 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1536 SmallVectorImpl<uint64_t> &Record, 1537 unsigned Abbrev) { 1538 const uint64_t Version = 2 << 1; 1539 Record.push_back((uint64_t)N->isDistinct() | Version); 1540 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1542 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1543 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1544 1545 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1550 if ((int64_t)V >= 0) 1551 Vals.push_back(V << 1); 1552 else 1553 Vals.push_back((-V << 1) | 1); 1554 } 1555 1556 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1557 // We have an arbitrary precision integer value to write whose 1558 // bit width is > 64. However, in canonical unsigned integer 1559 // format it is likely that the high bits are going to be zero. 1560 // So, we only write the number of active words. 1561 unsigned NumWords = A.getActiveWords(); 1562 const uint64_t *RawData = A.getRawData(); 1563 for (unsigned i = 0; i < NumWords; i++) 1564 emitSignedInt64(Vals, RawData[i]); 1565 } 1566 1567 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1568 SmallVectorImpl<uint64_t> &Record, 1569 unsigned Abbrev) { 1570 const uint64_t IsBigInt = 1 << 2; 1571 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1572 Record.push_back(N->getValue().getBitWidth()); 1573 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1574 emitWideAPInt(Record, N->getValue()); 1575 1576 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1577 Record.clear(); 1578 } 1579 1580 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1581 SmallVectorImpl<uint64_t> &Record, 1582 unsigned Abbrev) { 1583 Record.push_back(N->isDistinct()); 1584 Record.push_back(N->getTag()); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1586 Record.push_back(N->getSizeInBits()); 1587 Record.push_back(N->getAlignInBits()); 1588 Record.push_back(N->getEncoding()); 1589 Record.push_back(N->getFlags()); 1590 1591 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1592 Record.clear(); 1593 } 1594 1595 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1596 SmallVectorImpl<uint64_t> &Record, 1597 unsigned Abbrev) { 1598 Record.push_back(N->isDistinct()); 1599 Record.push_back(N->getTag()); 1600 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1601 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1602 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1603 Record.push_back(N->getSizeInBits()); 1604 Record.push_back(N->getAlignInBits()); 1605 Record.push_back(N->getEncoding()); 1606 1607 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1612 SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 Record.push_back(N->isDistinct()); 1615 Record.push_back(N->getTag()); 1616 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1618 Record.push_back(N->getLine()); 1619 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1621 Record.push_back(N->getSizeInBits()); 1622 Record.push_back(N->getAlignInBits()); 1623 Record.push_back(N->getOffsetInBits()); 1624 Record.push_back(N->getFlags()); 1625 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1626 1627 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1628 // that there is no DWARF address space associated with DIDerivedType. 1629 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1630 Record.push_back(*DWARFAddressSpace + 1); 1631 else 1632 Record.push_back(0); 1633 1634 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1635 Record.clear(); 1636 } 1637 1638 void ModuleBitcodeWriter::writeDICompositeType( 1639 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1640 unsigned Abbrev) { 1641 const unsigned IsNotUsedInOldTypeRef = 0x2; 1642 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1643 Record.push_back(N->getTag()); 1644 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1645 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1646 Record.push_back(N->getLine()); 1647 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1649 Record.push_back(N->getSizeInBits()); 1650 Record.push_back(N->getAlignInBits()); 1651 Record.push_back(N->getOffsetInBits()); 1652 Record.push_back(N->getFlags()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1654 Record.push_back(N->getRuntimeLang()); 1655 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1662 1663 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDISubroutineType( 1668 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 const unsigned HasNoOldTypeRefs = 0x2; 1671 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1672 Record.push_back(N->getFlags()); 1673 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1674 Record.push_back(N->getCC()); 1675 1676 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1681 SmallVectorImpl<uint64_t> &Record, 1682 unsigned Abbrev) { 1683 Record.push_back(N->isDistinct()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1686 if (N->getRawChecksum()) { 1687 Record.push_back(N->getRawChecksum()->Kind); 1688 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1689 } else { 1690 // Maintain backwards compatibility with the old internal representation of 1691 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1692 Record.push_back(0); 1693 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1694 } 1695 auto Source = N->getRawSource(); 1696 if (Source) 1697 Record.push_back(VE.getMetadataOrNullID(*Source)); 1698 1699 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1704 SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 assert(N->isDistinct() && "Expected distinct compile units"); 1707 Record.push_back(/* IsDistinct */ true); 1708 Record.push_back(N->getSourceLanguage()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1711 Record.push_back(N->isOptimized()); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1713 Record.push_back(N->getRuntimeVersion()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1715 Record.push_back(N->getEmissionKind()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1717 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1718 Record.push_back(/* subprograms */ 0); 1719 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1720 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1721 Record.push_back(N->getDWOId()); 1722 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1723 Record.push_back(N->getSplitDebugInlining()); 1724 Record.push_back(N->getDebugInfoForProfiling()); 1725 Record.push_back((unsigned)N->getNameTableKind()); 1726 Record.push_back(N->getRangesBaseAddress()); 1727 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1729 1730 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1731 Record.clear(); 1732 } 1733 1734 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1735 SmallVectorImpl<uint64_t> &Record, 1736 unsigned Abbrev) { 1737 const uint64_t HasUnitFlag = 1 << 1; 1738 const uint64_t HasSPFlagsFlag = 1 << 2; 1739 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1740 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1743 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1744 Record.push_back(N->getLine()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1746 Record.push_back(N->getScopeLine()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1748 Record.push_back(N->getSPFlags()); 1749 Record.push_back(N->getVirtualIndex()); 1750 Record.push_back(N->getFlags()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1755 Record.push_back(N->getThisAdjustment()); 1756 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1757 1758 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1759 Record.clear(); 1760 } 1761 1762 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1763 SmallVectorImpl<uint64_t> &Record, 1764 unsigned Abbrev) { 1765 Record.push_back(N->isDistinct()); 1766 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1768 Record.push_back(N->getLine()); 1769 Record.push_back(N->getColumn()); 1770 1771 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1772 Record.clear(); 1773 } 1774 1775 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1776 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1777 unsigned Abbrev) { 1778 Record.push_back(N->isDistinct()); 1779 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1781 Record.push_back(N->getDiscriminator()); 1782 1783 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1784 Record.clear(); 1785 } 1786 1787 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1788 SmallVectorImpl<uint64_t> &Record, 1789 unsigned Abbrev) { 1790 Record.push_back(N->isDistinct()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1795 Record.push_back(N->getLineNo()); 1796 1797 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1798 Record.clear(); 1799 } 1800 1801 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1802 SmallVectorImpl<uint64_t> &Record, 1803 unsigned Abbrev) { 1804 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1805 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1807 1808 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1809 Record.clear(); 1810 } 1811 1812 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1813 SmallVectorImpl<uint64_t> &Record, 1814 unsigned Abbrev) { 1815 Record.push_back(N->isDistinct()); 1816 Record.push_back(N->getMacinfoType()); 1817 Record.push_back(N->getLine()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1819 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1820 1821 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1822 Record.clear(); 1823 } 1824 1825 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1826 SmallVectorImpl<uint64_t> &Record, 1827 unsigned Abbrev) { 1828 Record.push_back(N->isDistinct()); 1829 Record.push_back(N->getMacinfoType()); 1830 Record.push_back(N->getLine()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1833 1834 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1835 Record.clear(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1839 SmallVectorImpl<uint64_t> &Record, 1840 unsigned Abbrev) { 1841 Record.push_back(N->isDistinct()); 1842 for (auto &I : N->operands()) 1843 Record.push_back(VE.getMetadataOrNullID(I)); 1844 Record.push_back(N->getLineNo()); 1845 1846 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1847 Record.clear(); 1848 } 1849 1850 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1851 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1852 unsigned Abbrev) { 1853 Record.push_back(N->isDistinct()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1856 Record.push_back(N->isDefault()); 1857 1858 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1859 Record.clear(); 1860 } 1861 1862 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1863 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1864 unsigned Abbrev) { 1865 Record.push_back(N->isDistinct()); 1866 Record.push_back(N->getTag()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1869 Record.push_back(N->isDefault()); 1870 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1871 1872 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1873 Record.clear(); 1874 } 1875 1876 void ModuleBitcodeWriter::writeDIGlobalVariable( 1877 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1878 unsigned Abbrev) { 1879 const uint64_t Version = 2 << 1; 1880 Record.push_back((uint64_t)N->isDistinct() | Version); 1881 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1884 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1885 Record.push_back(N->getLine()); 1886 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1887 Record.push_back(N->isLocalToUnit()); 1888 Record.push_back(N->isDefinition()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1891 Record.push_back(N->getAlignInBits()); 1892 1893 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1894 Record.clear(); 1895 } 1896 1897 void ModuleBitcodeWriter::writeDILocalVariable( 1898 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1899 unsigned Abbrev) { 1900 // In order to support all possible bitcode formats in BitcodeReader we need 1901 // to distinguish the following cases: 1902 // 1) Record has no artificial tag (Record[1]), 1903 // has no obsolete inlinedAt field (Record[9]). 1904 // In this case Record size will be 8, HasAlignment flag is false. 1905 // 2) Record has artificial tag (Record[1]), 1906 // has no obsolete inlignedAt field (Record[9]). 1907 // In this case Record size will be 9, HasAlignment flag is false. 1908 // 3) Record has both artificial tag (Record[1]) and 1909 // obsolete inlignedAt field (Record[9]). 1910 // In this case Record size will be 10, HasAlignment flag is false. 1911 // 4) Record has neither artificial tag, nor inlignedAt field, but 1912 // HasAlignment flag is true and Record[8] contains alignment value. 1913 const uint64_t HasAlignmentFlag = 1 << 1; 1914 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1915 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1916 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1918 Record.push_back(N->getLine()); 1919 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1920 Record.push_back(N->getArg()); 1921 Record.push_back(N->getFlags()); 1922 Record.push_back(N->getAlignInBits()); 1923 1924 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1925 Record.clear(); 1926 } 1927 1928 void ModuleBitcodeWriter::writeDILabel( 1929 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1930 unsigned Abbrev) { 1931 Record.push_back((uint64_t)N->isDistinct()); 1932 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1935 Record.push_back(N->getLine()); 1936 1937 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1938 Record.clear(); 1939 } 1940 1941 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1942 SmallVectorImpl<uint64_t> &Record, 1943 unsigned Abbrev) { 1944 Record.reserve(N->getElements().size() + 1); 1945 const uint64_t Version = 3 << 1; 1946 Record.push_back((uint64_t)N->isDistinct() | Version); 1947 Record.append(N->elements_begin(), N->elements_end()); 1948 1949 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1950 Record.clear(); 1951 } 1952 1953 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1954 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1955 unsigned Abbrev) { 1956 Record.push_back(N->isDistinct()); 1957 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1958 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1959 1960 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1961 Record.clear(); 1962 } 1963 1964 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1965 SmallVectorImpl<uint64_t> &Record, 1966 unsigned Abbrev) { 1967 Record.push_back(N->isDistinct()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1969 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1970 Record.push_back(N->getLine()); 1971 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1972 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1973 Record.push_back(N->getAttributes()); 1974 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1975 1976 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1977 Record.clear(); 1978 } 1979 1980 void ModuleBitcodeWriter::writeDIImportedEntity( 1981 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1982 unsigned Abbrev) { 1983 Record.push_back(N->isDistinct()); 1984 Record.push_back(N->getTag()); 1985 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1986 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1987 Record.push_back(N->getLine()); 1988 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1989 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1990 1991 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1992 Record.clear(); 1993 } 1994 1995 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1996 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1997 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2000 return Stream.EmitAbbrev(std::move(Abbv)); 2001 } 2002 2003 void ModuleBitcodeWriter::writeNamedMetadata( 2004 SmallVectorImpl<uint64_t> &Record) { 2005 if (M.named_metadata_empty()) 2006 return; 2007 2008 unsigned Abbrev = createNamedMetadataAbbrev(); 2009 for (const NamedMDNode &NMD : M.named_metadata()) { 2010 // Write name. 2011 StringRef Str = NMD.getName(); 2012 Record.append(Str.bytes_begin(), Str.bytes_end()); 2013 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2014 Record.clear(); 2015 2016 // Write named metadata operands. 2017 for (const MDNode *N : NMD.operands()) 2018 Record.push_back(VE.getMetadataID(N)); 2019 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2020 Record.clear(); 2021 } 2022 } 2023 2024 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2025 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2026 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2030 return Stream.EmitAbbrev(std::move(Abbv)); 2031 } 2032 2033 /// Write out a record for MDString. 2034 /// 2035 /// All the metadata strings in a metadata block are emitted in a single 2036 /// record. The sizes and strings themselves are shoved into a blob. 2037 void ModuleBitcodeWriter::writeMetadataStrings( 2038 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2039 if (Strings.empty()) 2040 return; 2041 2042 // Start the record with the number of strings. 2043 Record.push_back(bitc::METADATA_STRINGS); 2044 Record.push_back(Strings.size()); 2045 2046 // Emit the sizes of the strings in the blob. 2047 SmallString<256> Blob; 2048 { 2049 BitstreamWriter W(Blob); 2050 for (const Metadata *MD : Strings) 2051 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2052 W.FlushToWord(); 2053 } 2054 2055 // Add the offset to the strings to the record. 2056 Record.push_back(Blob.size()); 2057 2058 // Add the strings to the blob. 2059 for (const Metadata *MD : Strings) 2060 Blob.append(cast<MDString>(MD)->getString()); 2061 2062 // Emit the final record. 2063 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2064 Record.clear(); 2065 } 2066 2067 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2068 enum MetadataAbbrev : unsigned { 2069 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2070 #include "llvm/IR/Metadata.def" 2071 LastPlusOne 2072 }; 2073 2074 void ModuleBitcodeWriter::writeMetadataRecords( 2075 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2076 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2077 if (MDs.empty()) 2078 return; 2079 2080 // Initialize MDNode abbreviations. 2081 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2082 #include "llvm/IR/Metadata.def" 2083 2084 for (const Metadata *MD : MDs) { 2085 if (IndexPos) 2086 IndexPos->push_back(Stream.GetCurrentBitNo()); 2087 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2088 assert(N->isResolved() && "Expected forward references to be resolved"); 2089 2090 switch (N->getMetadataID()) { 2091 default: 2092 llvm_unreachable("Invalid MDNode subclass"); 2093 #define HANDLE_MDNODE_LEAF(CLASS) \ 2094 case Metadata::CLASS##Kind: \ 2095 if (MDAbbrevs) \ 2096 write##CLASS(cast<CLASS>(N), Record, \ 2097 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2098 else \ 2099 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2100 continue; 2101 #include "llvm/IR/Metadata.def" 2102 } 2103 } 2104 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2105 } 2106 } 2107 2108 void ModuleBitcodeWriter::writeModuleMetadata() { 2109 if (!VE.hasMDs() && M.named_metadata_empty()) 2110 return; 2111 2112 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2113 SmallVector<uint64_t, 64> Record; 2114 2115 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2116 // block and load any metadata. 2117 std::vector<unsigned> MDAbbrevs; 2118 2119 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2120 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2121 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2122 createGenericDINodeAbbrev(); 2123 2124 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2125 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2128 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2129 2130 Abbv = std::make_shared<BitCodeAbbrev>(); 2131 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2134 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2135 2136 // Emit MDStrings together upfront. 2137 writeMetadataStrings(VE.getMDStrings(), Record); 2138 2139 // We only emit an index for the metadata record if we have more than a given 2140 // (naive) threshold of metadatas, otherwise it is not worth it. 2141 if (VE.getNonMDStrings().size() > IndexThreshold) { 2142 // Write a placeholder value in for the offset of the metadata index, 2143 // which is written after the records, so that it can include 2144 // the offset of each entry. The placeholder offset will be 2145 // updated after all records are emitted. 2146 uint64_t Vals[] = {0, 0}; 2147 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2148 } 2149 2150 // Compute and save the bit offset to the current position, which will be 2151 // patched when we emit the index later. We can simply subtract the 64-bit 2152 // fixed size from the current bit number to get the location to backpatch. 2153 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2154 2155 // This index will contain the bitpos for each individual record. 2156 std::vector<uint64_t> IndexPos; 2157 IndexPos.reserve(VE.getNonMDStrings().size()); 2158 2159 // Write all the records 2160 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2161 2162 if (VE.getNonMDStrings().size() > IndexThreshold) { 2163 // Now that we have emitted all the records we will emit the index. But 2164 // first 2165 // backpatch the forward reference so that the reader can skip the records 2166 // efficiently. 2167 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2168 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2169 2170 // Delta encode the index. 2171 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2172 for (auto &Elt : IndexPos) { 2173 auto EltDelta = Elt - PreviousValue; 2174 PreviousValue = Elt; 2175 Elt = EltDelta; 2176 } 2177 // Emit the index record. 2178 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2179 IndexPos.clear(); 2180 } 2181 2182 // Write the named metadata now. 2183 writeNamedMetadata(Record); 2184 2185 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2186 SmallVector<uint64_t, 4> Record; 2187 Record.push_back(VE.getValueID(&GO)); 2188 pushGlobalMetadataAttachment(Record, GO); 2189 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2190 }; 2191 for (const Function &F : M) 2192 if (F.isDeclaration() && F.hasMetadata()) 2193 AddDeclAttachedMetadata(F); 2194 // FIXME: Only store metadata for declarations here, and move data for global 2195 // variable definitions to a separate block (PR28134). 2196 for (const GlobalVariable &GV : M.globals()) 2197 if (GV.hasMetadata()) 2198 AddDeclAttachedMetadata(GV); 2199 2200 Stream.ExitBlock(); 2201 } 2202 2203 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2204 if (!VE.hasMDs()) 2205 return; 2206 2207 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2208 SmallVector<uint64_t, 64> Record; 2209 writeMetadataStrings(VE.getMDStrings(), Record); 2210 writeMetadataRecords(VE.getNonMDStrings(), Record); 2211 Stream.ExitBlock(); 2212 } 2213 2214 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2215 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2216 // [n x [id, mdnode]] 2217 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2218 GO.getAllMetadata(MDs); 2219 for (const auto &I : MDs) { 2220 Record.push_back(I.first); 2221 Record.push_back(VE.getMetadataID(I.second)); 2222 } 2223 } 2224 2225 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2226 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2227 2228 SmallVector<uint64_t, 64> Record; 2229 2230 if (F.hasMetadata()) { 2231 pushGlobalMetadataAttachment(Record, F); 2232 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2233 Record.clear(); 2234 } 2235 2236 // Write metadata attachments 2237 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2238 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2239 for (const BasicBlock &BB : F) 2240 for (const Instruction &I : BB) { 2241 MDs.clear(); 2242 I.getAllMetadataOtherThanDebugLoc(MDs); 2243 2244 // If no metadata, ignore instruction. 2245 if (MDs.empty()) continue; 2246 2247 Record.push_back(VE.getInstructionID(&I)); 2248 2249 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2250 Record.push_back(MDs[i].first); 2251 Record.push_back(VE.getMetadataID(MDs[i].second)); 2252 } 2253 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2254 Record.clear(); 2255 } 2256 2257 Stream.ExitBlock(); 2258 } 2259 2260 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2261 SmallVector<uint64_t, 64> Record; 2262 2263 // Write metadata kinds 2264 // METADATA_KIND - [n x [id, name]] 2265 SmallVector<StringRef, 8> Names; 2266 M.getMDKindNames(Names); 2267 2268 if (Names.empty()) return; 2269 2270 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2271 2272 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2273 Record.push_back(MDKindID); 2274 StringRef KName = Names[MDKindID]; 2275 Record.append(KName.begin(), KName.end()); 2276 2277 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2278 Record.clear(); 2279 } 2280 2281 Stream.ExitBlock(); 2282 } 2283 2284 void ModuleBitcodeWriter::writeOperandBundleTags() { 2285 // Write metadata kinds 2286 // 2287 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2288 // 2289 // OPERAND_BUNDLE_TAG - [strchr x N] 2290 2291 SmallVector<StringRef, 8> Tags; 2292 M.getOperandBundleTags(Tags); 2293 2294 if (Tags.empty()) 2295 return; 2296 2297 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2298 2299 SmallVector<uint64_t, 64> Record; 2300 2301 for (auto Tag : Tags) { 2302 Record.append(Tag.begin(), Tag.end()); 2303 2304 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2305 Record.clear(); 2306 } 2307 2308 Stream.ExitBlock(); 2309 } 2310 2311 void ModuleBitcodeWriter::writeSyncScopeNames() { 2312 SmallVector<StringRef, 8> SSNs; 2313 M.getContext().getSyncScopeNames(SSNs); 2314 if (SSNs.empty()) 2315 return; 2316 2317 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2318 2319 SmallVector<uint64_t, 64> Record; 2320 for (auto SSN : SSNs) { 2321 Record.append(SSN.begin(), SSN.end()); 2322 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2323 Record.clear(); 2324 } 2325 2326 Stream.ExitBlock(); 2327 } 2328 2329 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2330 bool isGlobal) { 2331 if (FirstVal == LastVal) return; 2332 2333 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2334 2335 unsigned AggregateAbbrev = 0; 2336 unsigned String8Abbrev = 0; 2337 unsigned CString7Abbrev = 0; 2338 unsigned CString6Abbrev = 0; 2339 // If this is a constant pool for the module, emit module-specific abbrevs. 2340 if (isGlobal) { 2341 // Abbrev for CST_CODE_AGGREGATE. 2342 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2343 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2346 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2347 2348 // Abbrev for CST_CODE_STRING. 2349 Abbv = std::make_shared<BitCodeAbbrev>(); 2350 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2353 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2354 // Abbrev for CST_CODE_CSTRING. 2355 Abbv = std::make_shared<BitCodeAbbrev>(); 2356 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2359 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2360 // Abbrev for CST_CODE_CSTRING. 2361 Abbv = std::make_shared<BitCodeAbbrev>(); 2362 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2365 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2366 } 2367 2368 SmallVector<uint64_t, 64> Record; 2369 2370 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2371 Type *LastTy = nullptr; 2372 for (unsigned i = FirstVal; i != LastVal; ++i) { 2373 const Value *V = Vals[i].first; 2374 // If we need to switch types, do so now. 2375 if (V->getType() != LastTy) { 2376 LastTy = V->getType(); 2377 Record.push_back(VE.getTypeID(LastTy)); 2378 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2379 CONSTANTS_SETTYPE_ABBREV); 2380 Record.clear(); 2381 } 2382 2383 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2384 Record.push_back(unsigned(IA->hasSideEffects()) | 2385 unsigned(IA->isAlignStack()) << 1 | 2386 unsigned(IA->getDialect()&1) << 2); 2387 2388 // Add the asm string. 2389 const std::string &AsmStr = IA->getAsmString(); 2390 Record.push_back(AsmStr.size()); 2391 Record.append(AsmStr.begin(), AsmStr.end()); 2392 2393 // Add the constraint string. 2394 const std::string &ConstraintStr = IA->getConstraintString(); 2395 Record.push_back(ConstraintStr.size()); 2396 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2397 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2398 Record.clear(); 2399 continue; 2400 } 2401 const Constant *C = cast<Constant>(V); 2402 unsigned Code = -1U; 2403 unsigned AbbrevToUse = 0; 2404 if (C->isNullValue()) { 2405 Code = bitc::CST_CODE_NULL; 2406 } else if (isa<UndefValue>(C)) { 2407 Code = bitc::CST_CODE_UNDEF; 2408 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2409 if (IV->getBitWidth() <= 64) { 2410 uint64_t V = IV->getSExtValue(); 2411 emitSignedInt64(Record, V); 2412 Code = bitc::CST_CODE_INTEGER; 2413 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2414 } else { // Wide integers, > 64 bits in size. 2415 emitWideAPInt(Record, IV->getValue()); 2416 Code = bitc::CST_CODE_WIDE_INTEGER; 2417 } 2418 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2419 Code = bitc::CST_CODE_FLOAT; 2420 Type *Ty = CFP->getType(); 2421 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2422 Ty->isDoubleTy()) { 2423 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2424 } else if (Ty->isX86_FP80Ty()) { 2425 // api needed to prevent premature destruction 2426 // bits are not in the same order as a normal i80 APInt, compensate. 2427 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2428 const uint64_t *p = api.getRawData(); 2429 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2430 Record.push_back(p[0] & 0xffffLL); 2431 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2432 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2433 const uint64_t *p = api.getRawData(); 2434 Record.push_back(p[0]); 2435 Record.push_back(p[1]); 2436 } else { 2437 assert(0 && "Unknown FP type!"); 2438 } 2439 } else if (isa<ConstantDataSequential>(C) && 2440 cast<ConstantDataSequential>(C)->isString()) { 2441 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2442 // Emit constant strings specially. 2443 unsigned NumElts = Str->getNumElements(); 2444 // If this is a null-terminated string, use the denser CSTRING encoding. 2445 if (Str->isCString()) { 2446 Code = bitc::CST_CODE_CSTRING; 2447 --NumElts; // Don't encode the null, which isn't allowed by char6. 2448 } else { 2449 Code = bitc::CST_CODE_STRING; 2450 AbbrevToUse = String8Abbrev; 2451 } 2452 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2453 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2454 for (unsigned i = 0; i != NumElts; ++i) { 2455 unsigned char V = Str->getElementAsInteger(i); 2456 Record.push_back(V); 2457 isCStr7 &= (V & 128) == 0; 2458 if (isCStrChar6) 2459 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2460 } 2461 2462 if (isCStrChar6) 2463 AbbrevToUse = CString6Abbrev; 2464 else if (isCStr7) 2465 AbbrevToUse = CString7Abbrev; 2466 } else if (const ConstantDataSequential *CDS = 2467 dyn_cast<ConstantDataSequential>(C)) { 2468 Code = bitc::CST_CODE_DATA; 2469 Type *EltTy = CDS->getElementType(); 2470 if (isa<IntegerType>(EltTy)) { 2471 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2472 Record.push_back(CDS->getElementAsInteger(i)); 2473 } else { 2474 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2475 Record.push_back( 2476 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2477 } 2478 } else if (isa<ConstantAggregate>(C)) { 2479 Code = bitc::CST_CODE_AGGREGATE; 2480 for (const Value *Op : C->operands()) 2481 Record.push_back(VE.getValueID(Op)); 2482 AbbrevToUse = AggregateAbbrev; 2483 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2484 switch (CE->getOpcode()) { 2485 default: 2486 if (Instruction::isCast(CE->getOpcode())) { 2487 Code = bitc::CST_CODE_CE_CAST; 2488 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2489 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2490 Record.push_back(VE.getValueID(C->getOperand(0))); 2491 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2492 } else { 2493 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2494 Code = bitc::CST_CODE_CE_BINOP; 2495 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2496 Record.push_back(VE.getValueID(C->getOperand(0))); 2497 Record.push_back(VE.getValueID(C->getOperand(1))); 2498 uint64_t Flags = getOptimizationFlags(CE); 2499 if (Flags != 0) 2500 Record.push_back(Flags); 2501 } 2502 break; 2503 case Instruction::FNeg: { 2504 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2505 Code = bitc::CST_CODE_CE_UNOP; 2506 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2507 Record.push_back(VE.getValueID(C->getOperand(0))); 2508 uint64_t Flags = getOptimizationFlags(CE); 2509 if (Flags != 0) 2510 Record.push_back(Flags); 2511 break; 2512 } 2513 case Instruction::GetElementPtr: { 2514 Code = bitc::CST_CODE_CE_GEP; 2515 const auto *GO = cast<GEPOperator>(C); 2516 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2517 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2518 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2519 Record.push_back((*Idx << 1) | GO->isInBounds()); 2520 } else if (GO->isInBounds()) 2521 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2522 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2523 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2524 Record.push_back(VE.getValueID(C->getOperand(i))); 2525 } 2526 break; 2527 } 2528 case Instruction::Select: 2529 Code = bitc::CST_CODE_CE_SELECT; 2530 Record.push_back(VE.getValueID(C->getOperand(0))); 2531 Record.push_back(VE.getValueID(C->getOperand(1))); 2532 Record.push_back(VE.getValueID(C->getOperand(2))); 2533 break; 2534 case Instruction::ExtractElement: 2535 Code = bitc::CST_CODE_CE_EXTRACTELT; 2536 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2537 Record.push_back(VE.getValueID(C->getOperand(0))); 2538 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2539 Record.push_back(VE.getValueID(C->getOperand(1))); 2540 break; 2541 case Instruction::InsertElement: 2542 Code = bitc::CST_CODE_CE_INSERTELT; 2543 Record.push_back(VE.getValueID(C->getOperand(0))); 2544 Record.push_back(VE.getValueID(C->getOperand(1))); 2545 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2546 Record.push_back(VE.getValueID(C->getOperand(2))); 2547 break; 2548 case Instruction::ShuffleVector: 2549 // If the return type and argument types are the same, this is a 2550 // standard shufflevector instruction. If the types are different, 2551 // then the shuffle is widening or truncating the input vectors, and 2552 // the argument type must also be encoded. 2553 if (C->getType() == C->getOperand(0)->getType()) { 2554 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2555 } else { 2556 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2557 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2558 } 2559 Record.push_back(VE.getValueID(C->getOperand(0))); 2560 Record.push_back(VE.getValueID(C->getOperand(1))); 2561 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2562 break; 2563 case Instruction::ICmp: 2564 case Instruction::FCmp: 2565 Code = bitc::CST_CODE_CE_CMP; 2566 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2567 Record.push_back(VE.getValueID(C->getOperand(0))); 2568 Record.push_back(VE.getValueID(C->getOperand(1))); 2569 Record.push_back(CE->getPredicate()); 2570 break; 2571 } 2572 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2573 Code = bitc::CST_CODE_BLOCKADDRESS; 2574 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2575 Record.push_back(VE.getValueID(BA->getFunction())); 2576 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2577 } else { 2578 #ifndef NDEBUG 2579 C->dump(); 2580 #endif 2581 llvm_unreachable("Unknown constant!"); 2582 } 2583 Stream.EmitRecord(Code, Record, AbbrevToUse); 2584 Record.clear(); 2585 } 2586 2587 Stream.ExitBlock(); 2588 } 2589 2590 void ModuleBitcodeWriter::writeModuleConstants() { 2591 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2592 2593 // Find the first constant to emit, which is the first non-globalvalue value. 2594 // We know globalvalues have been emitted by WriteModuleInfo. 2595 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2596 if (!isa<GlobalValue>(Vals[i].first)) { 2597 writeConstants(i, Vals.size(), true); 2598 return; 2599 } 2600 } 2601 } 2602 2603 /// pushValueAndType - The file has to encode both the value and type id for 2604 /// many values, because we need to know what type to create for forward 2605 /// references. However, most operands are not forward references, so this type 2606 /// field is not needed. 2607 /// 2608 /// This function adds V's value ID to Vals. If the value ID is higher than the 2609 /// instruction ID, then it is a forward reference, and it also includes the 2610 /// type ID. The value ID that is written is encoded relative to the InstID. 2611 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2612 SmallVectorImpl<unsigned> &Vals) { 2613 unsigned ValID = VE.getValueID(V); 2614 // Make encoding relative to the InstID. 2615 Vals.push_back(InstID - ValID); 2616 if (ValID >= InstID) { 2617 Vals.push_back(VE.getTypeID(V->getType())); 2618 return true; 2619 } 2620 return false; 2621 } 2622 2623 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2624 unsigned InstID) { 2625 SmallVector<unsigned, 64> Record; 2626 LLVMContext &C = CS.getContext(); 2627 2628 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2629 const auto &Bundle = CS.getOperandBundleAt(i); 2630 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2631 2632 for (auto &Input : Bundle.Inputs) 2633 pushValueAndType(Input, InstID, Record); 2634 2635 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2636 Record.clear(); 2637 } 2638 } 2639 2640 /// pushValue - Like pushValueAndType, but where the type of the value is 2641 /// omitted (perhaps it was already encoded in an earlier operand). 2642 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2643 SmallVectorImpl<unsigned> &Vals) { 2644 unsigned ValID = VE.getValueID(V); 2645 Vals.push_back(InstID - ValID); 2646 } 2647 2648 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2649 SmallVectorImpl<uint64_t> &Vals) { 2650 unsigned ValID = VE.getValueID(V); 2651 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2652 emitSignedInt64(Vals, diff); 2653 } 2654 2655 /// WriteInstruction - Emit an instruction to the specified stream. 2656 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2657 unsigned InstID, 2658 SmallVectorImpl<unsigned> &Vals) { 2659 unsigned Code = 0; 2660 unsigned AbbrevToUse = 0; 2661 VE.setInstructionID(&I); 2662 switch (I.getOpcode()) { 2663 default: 2664 if (Instruction::isCast(I.getOpcode())) { 2665 Code = bitc::FUNC_CODE_INST_CAST; 2666 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2667 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2668 Vals.push_back(VE.getTypeID(I.getType())); 2669 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2670 } else { 2671 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2672 Code = bitc::FUNC_CODE_INST_BINOP; 2673 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2674 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2675 pushValue(I.getOperand(1), InstID, Vals); 2676 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2677 uint64_t Flags = getOptimizationFlags(&I); 2678 if (Flags != 0) { 2679 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2680 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2681 Vals.push_back(Flags); 2682 } 2683 } 2684 break; 2685 case Instruction::FNeg: { 2686 Code = bitc::FUNC_CODE_INST_UNOP; 2687 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2688 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2689 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2690 uint64_t Flags = getOptimizationFlags(&I); 2691 if (Flags != 0) { 2692 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2693 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2694 Vals.push_back(Flags); 2695 } 2696 break; 2697 } 2698 case Instruction::GetElementPtr: { 2699 Code = bitc::FUNC_CODE_INST_GEP; 2700 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2701 auto &GEPInst = cast<GetElementPtrInst>(I); 2702 Vals.push_back(GEPInst.isInBounds()); 2703 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2704 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2705 pushValueAndType(I.getOperand(i), InstID, Vals); 2706 break; 2707 } 2708 case Instruction::ExtractValue: { 2709 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2710 pushValueAndType(I.getOperand(0), InstID, Vals); 2711 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2712 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2713 break; 2714 } 2715 case Instruction::InsertValue: { 2716 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2717 pushValueAndType(I.getOperand(0), InstID, Vals); 2718 pushValueAndType(I.getOperand(1), InstID, Vals); 2719 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2720 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2721 break; 2722 } 2723 case Instruction::Select: { 2724 Code = bitc::FUNC_CODE_INST_VSELECT; 2725 pushValueAndType(I.getOperand(1), InstID, Vals); 2726 pushValue(I.getOperand(2), InstID, Vals); 2727 pushValueAndType(I.getOperand(0), InstID, Vals); 2728 uint64_t Flags = getOptimizationFlags(&I); 2729 if (Flags != 0) 2730 Vals.push_back(Flags); 2731 break; 2732 } 2733 case Instruction::ExtractElement: 2734 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2735 pushValueAndType(I.getOperand(0), InstID, Vals); 2736 pushValueAndType(I.getOperand(1), InstID, Vals); 2737 break; 2738 case Instruction::InsertElement: 2739 Code = bitc::FUNC_CODE_INST_INSERTELT; 2740 pushValueAndType(I.getOperand(0), InstID, Vals); 2741 pushValue(I.getOperand(1), InstID, Vals); 2742 pushValueAndType(I.getOperand(2), InstID, Vals); 2743 break; 2744 case Instruction::ShuffleVector: 2745 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2746 pushValueAndType(I.getOperand(0), InstID, Vals); 2747 pushValue(I.getOperand(1), InstID, Vals); 2748 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2749 Vals); 2750 break; 2751 case Instruction::ICmp: 2752 case Instruction::FCmp: { 2753 // compare returning Int1Ty or vector of Int1Ty 2754 Code = bitc::FUNC_CODE_INST_CMP2; 2755 pushValueAndType(I.getOperand(0), InstID, Vals); 2756 pushValue(I.getOperand(1), InstID, Vals); 2757 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2758 uint64_t Flags = getOptimizationFlags(&I); 2759 if (Flags != 0) 2760 Vals.push_back(Flags); 2761 break; 2762 } 2763 2764 case Instruction::Ret: 2765 { 2766 Code = bitc::FUNC_CODE_INST_RET; 2767 unsigned NumOperands = I.getNumOperands(); 2768 if (NumOperands == 0) 2769 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2770 else if (NumOperands == 1) { 2771 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2772 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2773 } else { 2774 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2775 pushValueAndType(I.getOperand(i), InstID, Vals); 2776 } 2777 } 2778 break; 2779 case Instruction::Br: 2780 { 2781 Code = bitc::FUNC_CODE_INST_BR; 2782 const BranchInst &II = cast<BranchInst>(I); 2783 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2784 if (II.isConditional()) { 2785 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2786 pushValue(II.getCondition(), InstID, Vals); 2787 } 2788 } 2789 break; 2790 case Instruction::Switch: 2791 { 2792 Code = bitc::FUNC_CODE_INST_SWITCH; 2793 const SwitchInst &SI = cast<SwitchInst>(I); 2794 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2795 pushValue(SI.getCondition(), InstID, Vals); 2796 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2797 for (auto Case : SI.cases()) { 2798 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2799 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2800 } 2801 } 2802 break; 2803 case Instruction::IndirectBr: 2804 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2805 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2806 // Encode the address operand as relative, but not the basic blocks. 2807 pushValue(I.getOperand(0), InstID, Vals); 2808 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2809 Vals.push_back(VE.getValueID(I.getOperand(i))); 2810 break; 2811 2812 case Instruction::Invoke: { 2813 const InvokeInst *II = cast<InvokeInst>(&I); 2814 const Value *Callee = II->getCalledOperand(); 2815 FunctionType *FTy = II->getFunctionType(); 2816 2817 if (II->hasOperandBundles()) 2818 writeOperandBundles(*II, InstID); 2819 2820 Code = bitc::FUNC_CODE_INST_INVOKE; 2821 2822 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2823 Vals.push_back(II->getCallingConv() | 1 << 13); 2824 Vals.push_back(VE.getValueID(II->getNormalDest())); 2825 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2826 Vals.push_back(VE.getTypeID(FTy)); 2827 pushValueAndType(Callee, InstID, Vals); 2828 2829 // Emit value #'s for the fixed parameters. 2830 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2831 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2832 2833 // Emit type/value pairs for varargs params. 2834 if (FTy->isVarArg()) { 2835 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2836 i != e; ++i) 2837 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2838 } 2839 break; 2840 } 2841 case Instruction::Resume: 2842 Code = bitc::FUNC_CODE_INST_RESUME; 2843 pushValueAndType(I.getOperand(0), InstID, Vals); 2844 break; 2845 case Instruction::CleanupRet: { 2846 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2847 const auto &CRI = cast<CleanupReturnInst>(I); 2848 pushValue(CRI.getCleanupPad(), InstID, Vals); 2849 if (CRI.hasUnwindDest()) 2850 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2851 break; 2852 } 2853 case Instruction::CatchRet: { 2854 Code = bitc::FUNC_CODE_INST_CATCHRET; 2855 const auto &CRI = cast<CatchReturnInst>(I); 2856 pushValue(CRI.getCatchPad(), InstID, Vals); 2857 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2858 break; 2859 } 2860 case Instruction::CleanupPad: 2861 case Instruction::CatchPad: { 2862 const auto &FuncletPad = cast<FuncletPadInst>(I); 2863 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2864 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2865 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2866 2867 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2868 Vals.push_back(NumArgOperands); 2869 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2870 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2871 break; 2872 } 2873 case Instruction::CatchSwitch: { 2874 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2875 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2876 2877 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2878 2879 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2880 Vals.push_back(NumHandlers); 2881 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2882 Vals.push_back(VE.getValueID(CatchPadBB)); 2883 2884 if (CatchSwitch.hasUnwindDest()) 2885 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2886 break; 2887 } 2888 case Instruction::CallBr: { 2889 const CallBrInst *CBI = cast<CallBrInst>(&I); 2890 const Value *Callee = CBI->getCalledOperand(); 2891 FunctionType *FTy = CBI->getFunctionType(); 2892 2893 if (CBI->hasOperandBundles()) 2894 writeOperandBundles(*CBI, InstID); 2895 2896 Code = bitc::FUNC_CODE_INST_CALLBR; 2897 2898 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2899 2900 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2901 1 << bitc::CALL_EXPLICIT_TYPE); 2902 2903 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2904 Vals.push_back(CBI->getNumIndirectDests()); 2905 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2906 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2907 2908 Vals.push_back(VE.getTypeID(FTy)); 2909 pushValueAndType(Callee, InstID, Vals); 2910 2911 // Emit value #'s for the fixed parameters. 2912 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2913 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2914 2915 // Emit type/value pairs for varargs params. 2916 if (FTy->isVarArg()) { 2917 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2918 i != e; ++i) 2919 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2920 } 2921 break; 2922 } 2923 case Instruction::Unreachable: 2924 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2925 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2926 break; 2927 2928 case Instruction::PHI: { 2929 const PHINode &PN = cast<PHINode>(I); 2930 Code = bitc::FUNC_CODE_INST_PHI; 2931 // With the newer instruction encoding, forward references could give 2932 // negative valued IDs. This is most common for PHIs, so we use 2933 // signed VBRs. 2934 SmallVector<uint64_t, 128> Vals64; 2935 Vals64.push_back(VE.getTypeID(PN.getType())); 2936 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2937 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2938 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2939 } 2940 2941 uint64_t Flags = getOptimizationFlags(&I); 2942 if (Flags != 0) 2943 Vals64.push_back(Flags); 2944 2945 // Emit a Vals64 vector and exit. 2946 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2947 Vals64.clear(); 2948 return; 2949 } 2950 2951 case Instruction::LandingPad: { 2952 const LandingPadInst &LP = cast<LandingPadInst>(I); 2953 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2954 Vals.push_back(VE.getTypeID(LP.getType())); 2955 Vals.push_back(LP.isCleanup()); 2956 Vals.push_back(LP.getNumClauses()); 2957 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2958 if (LP.isCatch(I)) 2959 Vals.push_back(LandingPadInst::Catch); 2960 else 2961 Vals.push_back(LandingPadInst::Filter); 2962 pushValueAndType(LP.getClause(I), InstID, Vals); 2963 } 2964 break; 2965 } 2966 2967 case Instruction::Alloca: { 2968 Code = bitc::FUNC_CODE_INST_ALLOCA; 2969 const AllocaInst &AI = cast<AllocaInst>(I); 2970 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2971 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2972 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2973 using APV = AllocaPackedValues; 2974 unsigned Record = 0; 2975 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 2976 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 2977 Bitfield::set<APV::ExplicitType>(Record, true); 2978 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 2979 Vals.push_back(Record); 2980 break; 2981 } 2982 2983 case Instruction::Load: 2984 if (cast<LoadInst>(I).isAtomic()) { 2985 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2986 pushValueAndType(I.getOperand(0), InstID, Vals); 2987 } else { 2988 Code = bitc::FUNC_CODE_INST_LOAD; 2989 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2990 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2991 } 2992 Vals.push_back(VE.getTypeID(I.getType())); 2993 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 2994 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2995 if (cast<LoadInst>(I).isAtomic()) { 2996 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2997 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2998 } 2999 break; 3000 case Instruction::Store: 3001 if (cast<StoreInst>(I).isAtomic()) 3002 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3003 else 3004 Code = bitc::FUNC_CODE_INST_STORE; 3005 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3006 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3007 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3008 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3009 if (cast<StoreInst>(I).isAtomic()) { 3010 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3011 Vals.push_back( 3012 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3013 } 3014 break; 3015 case Instruction::AtomicCmpXchg: 3016 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3017 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3018 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3019 pushValue(I.getOperand(2), InstID, Vals); // newval. 3020 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3021 Vals.push_back( 3022 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3023 Vals.push_back( 3024 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3025 Vals.push_back( 3026 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3027 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3028 break; 3029 case Instruction::AtomicRMW: 3030 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3031 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3032 pushValue(I.getOperand(1), InstID, Vals); // val. 3033 Vals.push_back( 3034 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3035 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3036 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3037 Vals.push_back( 3038 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3039 break; 3040 case Instruction::Fence: 3041 Code = bitc::FUNC_CODE_INST_FENCE; 3042 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3043 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3044 break; 3045 case Instruction::Call: { 3046 const CallInst &CI = cast<CallInst>(I); 3047 FunctionType *FTy = CI.getFunctionType(); 3048 3049 if (CI.hasOperandBundles()) 3050 writeOperandBundles(CI, InstID); 3051 3052 Code = bitc::FUNC_CODE_INST_CALL; 3053 3054 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3055 3056 unsigned Flags = getOptimizationFlags(&I); 3057 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3058 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3059 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3060 1 << bitc::CALL_EXPLICIT_TYPE | 3061 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3062 unsigned(Flags != 0) << bitc::CALL_FMF); 3063 if (Flags != 0) 3064 Vals.push_back(Flags); 3065 3066 Vals.push_back(VE.getTypeID(FTy)); 3067 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3068 3069 // Emit value #'s for the fixed parameters. 3070 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3071 // Check for labels (can happen with asm labels). 3072 if (FTy->getParamType(i)->isLabelTy()) 3073 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3074 else 3075 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3076 } 3077 3078 // Emit type/value pairs for varargs params. 3079 if (FTy->isVarArg()) { 3080 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3081 i != e; ++i) 3082 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3083 } 3084 break; 3085 } 3086 case Instruction::VAArg: 3087 Code = bitc::FUNC_CODE_INST_VAARG; 3088 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3089 pushValue(I.getOperand(0), InstID, Vals); // valist. 3090 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3091 break; 3092 case Instruction::Freeze: 3093 Code = bitc::FUNC_CODE_INST_FREEZE; 3094 pushValueAndType(I.getOperand(0), InstID, Vals); 3095 break; 3096 } 3097 3098 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3099 Vals.clear(); 3100 } 3101 3102 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3103 /// to allow clients to efficiently find the function body. 3104 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3105 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3106 // Get the offset of the VST we are writing, and backpatch it into 3107 // the VST forward declaration record. 3108 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3109 // The BitcodeStartBit was the stream offset of the identification block. 3110 VSTOffset -= bitcodeStartBit(); 3111 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3112 // Note that we add 1 here because the offset is relative to one word 3113 // before the start of the identification block, which was historically 3114 // always the start of the regular bitcode header. 3115 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3116 3117 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3118 3119 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3120 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3123 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3124 3125 for (const Function &F : M) { 3126 uint64_t Record[2]; 3127 3128 if (F.isDeclaration()) 3129 continue; 3130 3131 Record[0] = VE.getValueID(&F); 3132 3133 // Save the word offset of the function (from the start of the 3134 // actual bitcode written to the stream). 3135 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3136 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3137 // Note that we add 1 here because the offset is relative to one word 3138 // before the start of the identification block, which was historically 3139 // always the start of the regular bitcode header. 3140 Record[1] = BitcodeIndex / 32 + 1; 3141 3142 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3143 } 3144 3145 Stream.ExitBlock(); 3146 } 3147 3148 /// Emit names for arguments, instructions and basic blocks in a function. 3149 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3150 const ValueSymbolTable &VST) { 3151 if (VST.empty()) 3152 return; 3153 3154 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3155 3156 // FIXME: Set up the abbrev, we know how many values there are! 3157 // FIXME: We know if the type names can use 7-bit ascii. 3158 SmallVector<uint64_t, 64> NameVals; 3159 3160 for (const ValueName &Name : VST) { 3161 // Figure out the encoding to use for the name. 3162 StringEncoding Bits = getStringEncoding(Name.getKey()); 3163 3164 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3165 NameVals.push_back(VE.getValueID(Name.getValue())); 3166 3167 // VST_CODE_ENTRY: [valueid, namechar x N] 3168 // VST_CODE_BBENTRY: [bbid, namechar x N] 3169 unsigned Code; 3170 if (isa<BasicBlock>(Name.getValue())) { 3171 Code = bitc::VST_CODE_BBENTRY; 3172 if (Bits == SE_Char6) 3173 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3174 } else { 3175 Code = bitc::VST_CODE_ENTRY; 3176 if (Bits == SE_Char6) 3177 AbbrevToUse = VST_ENTRY_6_ABBREV; 3178 else if (Bits == SE_Fixed7) 3179 AbbrevToUse = VST_ENTRY_7_ABBREV; 3180 } 3181 3182 for (const auto P : Name.getKey()) 3183 NameVals.push_back((unsigned char)P); 3184 3185 // Emit the finished record. 3186 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3187 NameVals.clear(); 3188 } 3189 3190 Stream.ExitBlock(); 3191 } 3192 3193 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3194 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3195 unsigned Code; 3196 if (isa<BasicBlock>(Order.V)) 3197 Code = bitc::USELIST_CODE_BB; 3198 else 3199 Code = bitc::USELIST_CODE_DEFAULT; 3200 3201 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3202 Record.push_back(VE.getValueID(Order.V)); 3203 Stream.EmitRecord(Code, Record); 3204 } 3205 3206 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3207 assert(VE.shouldPreserveUseListOrder() && 3208 "Expected to be preserving use-list order"); 3209 3210 auto hasMore = [&]() { 3211 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3212 }; 3213 if (!hasMore()) 3214 // Nothing to do. 3215 return; 3216 3217 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3218 while (hasMore()) { 3219 writeUseList(std::move(VE.UseListOrders.back())); 3220 VE.UseListOrders.pop_back(); 3221 } 3222 Stream.ExitBlock(); 3223 } 3224 3225 /// Emit a function body to the module stream. 3226 void ModuleBitcodeWriter::writeFunction( 3227 const Function &F, 3228 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3229 // Save the bitcode index of the start of this function block for recording 3230 // in the VST. 3231 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3232 3233 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3234 VE.incorporateFunction(F); 3235 3236 SmallVector<unsigned, 64> Vals; 3237 3238 // Emit the number of basic blocks, so the reader can create them ahead of 3239 // time. 3240 Vals.push_back(VE.getBasicBlocks().size()); 3241 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3242 Vals.clear(); 3243 3244 // If there are function-local constants, emit them now. 3245 unsigned CstStart, CstEnd; 3246 VE.getFunctionConstantRange(CstStart, CstEnd); 3247 writeConstants(CstStart, CstEnd, false); 3248 3249 // If there is function-local metadata, emit it now. 3250 writeFunctionMetadata(F); 3251 3252 // Keep a running idea of what the instruction ID is. 3253 unsigned InstID = CstEnd; 3254 3255 bool NeedsMetadataAttachment = F.hasMetadata(); 3256 3257 DILocation *LastDL = nullptr; 3258 // Finally, emit all the instructions, in order. 3259 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3260 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3261 I != E; ++I) { 3262 writeInstruction(*I, InstID, Vals); 3263 3264 if (!I->getType()->isVoidTy()) 3265 ++InstID; 3266 3267 // If the instruction has metadata, write a metadata attachment later. 3268 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3269 3270 // If the instruction has a debug location, emit it. 3271 DILocation *DL = I->getDebugLoc(); 3272 if (!DL) 3273 continue; 3274 3275 if (DL == LastDL) { 3276 // Just repeat the same debug loc as last time. 3277 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3278 continue; 3279 } 3280 3281 Vals.push_back(DL->getLine()); 3282 Vals.push_back(DL->getColumn()); 3283 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3284 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3285 Vals.push_back(DL->isImplicitCode()); 3286 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3287 Vals.clear(); 3288 3289 LastDL = DL; 3290 } 3291 3292 // Emit names for all the instructions etc. 3293 if (auto *Symtab = F.getValueSymbolTable()) 3294 writeFunctionLevelValueSymbolTable(*Symtab); 3295 3296 if (NeedsMetadataAttachment) 3297 writeFunctionMetadataAttachment(F); 3298 if (VE.shouldPreserveUseListOrder()) 3299 writeUseListBlock(&F); 3300 VE.purgeFunction(); 3301 Stream.ExitBlock(); 3302 } 3303 3304 // Emit blockinfo, which defines the standard abbreviations etc. 3305 void ModuleBitcodeWriter::writeBlockInfo() { 3306 // We only want to emit block info records for blocks that have multiple 3307 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3308 // Other blocks can define their abbrevs inline. 3309 Stream.EnterBlockInfoBlock(); 3310 3311 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3312 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3317 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3318 VST_ENTRY_8_ABBREV) 3319 llvm_unreachable("Unexpected abbrev ordering!"); 3320 } 3321 3322 { // 7-bit fixed width VST_CODE_ENTRY strings. 3323 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3324 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3328 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3329 VST_ENTRY_7_ABBREV) 3330 llvm_unreachable("Unexpected abbrev ordering!"); 3331 } 3332 { // 6-bit char6 VST_CODE_ENTRY strings. 3333 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3334 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3338 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3339 VST_ENTRY_6_ABBREV) 3340 llvm_unreachable("Unexpected abbrev ordering!"); 3341 } 3342 { // 6-bit char6 VST_CODE_BBENTRY strings. 3343 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3344 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3348 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3349 VST_BBENTRY_6_ABBREV) 3350 llvm_unreachable("Unexpected abbrev ordering!"); 3351 } 3352 3353 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3354 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3355 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3357 VE.computeBitsRequiredForTypeIndicies())); 3358 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3359 CONSTANTS_SETTYPE_ABBREV) 3360 llvm_unreachable("Unexpected abbrev ordering!"); 3361 } 3362 3363 { // INTEGER abbrev for CONSTANTS_BLOCK. 3364 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3365 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3367 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3368 CONSTANTS_INTEGER_ABBREV) 3369 llvm_unreachable("Unexpected abbrev ordering!"); 3370 } 3371 3372 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3373 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3374 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3377 VE.computeBitsRequiredForTypeIndicies())); 3378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3379 3380 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3381 CONSTANTS_CE_CAST_Abbrev) 3382 llvm_unreachable("Unexpected abbrev ordering!"); 3383 } 3384 { // NULL abbrev for CONSTANTS_BLOCK. 3385 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3386 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3387 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3388 CONSTANTS_NULL_Abbrev) 3389 llvm_unreachable("Unexpected abbrev ordering!"); 3390 } 3391 3392 // FIXME: This should only use space for first class types! 3393 3394 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3395 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3396 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3399 VE.computeBitsRequiredForTypeIndicies())); 3400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3402 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3403 FUNCTION_INST_LOAD_ABBREV) 3404 llvm_unreachable("Unexpected abbrev ordering!"); 3405 } 3406 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3407 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3408 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3411 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3412 FUNCTION_INST_UNOP_ABBREV) 3413 llvm_unreachable("Unexpected abbrev ordering!"); 3414 } 3415 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3416 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3417 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3421 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3422 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3423 llvm_unreachable("Unexpected abbrev ordering!"); 3424 } 3425 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3426 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3427 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3431 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3432 FUNCTION_INST_BINOP_ABBREV) 3433 llvm_unreachable("Unexpected abbrev ordering!"); 3434 } 3435 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3437 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3442 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3443 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3444 llvm_unreachable("Unexpected abbrev ordering!"); 3445 } 3446 { // INST_CAST abbrev for FUNCTION_BLOCK. 3447 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3448 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3451 VE.computeBitsRequiredForTypeIndicies())); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3453 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3454 FUNCTION_INST_CAST_ABBREV) 3455 llvm_unreachable("Unexpected abbrev ordering!"); 3456 } 3457 3458 { // INST_RET abbrev for FUNCTION_BLOCK. 3459 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3460 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3461 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3462 FUNCTION_INST_RET_VOID_ABBREV) 3463 llvm_unreachable("Unexpected abbrev ordering!"); 3464 } 3465 { // INST_RET abbrev for FUNCTION_BLOCK. 3466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3469 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3470 FUNCTION_INST_RET_VAL_ABBREV) 3471 llvm_unreachable("Unexpected abbrev ordering!"); 3472 } 3473 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3476 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3477 FUNCTION_INST_UNREACHABLE_ABBREV) 3478 llvm_unreachable("Unexpected abbrev ordering!"); 3479 } 3480 { 3481 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3482 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3485 Log2_32_Ceil(VE.getTypes().size() + 1))); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3488 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3489 FUNCTION_INST_GEP_ABBREV) 3490 llvm_unreachable("Unexpected abbrev ordering!"); 3491 } 3492 3493 Stream.ExitBlock(); 3494 } 3495 3496 /// Write the module path strings, currently only used when generating 3497 /// a combined index file. 3498 void IndexBitcodeWriter::writeModStrings() { 3499 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3500 3501 // TODO: See which abbrev sizes we actually need to emit 3502 3503 // 8-bit fixed-width MST_ENTRY strings. 3504 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3505 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3509 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3510 3511 // 7-bit fixed width MST_ENTRY strings. 3512 Abbv = std::make_shared<BitCodeAbbrev>(); 3513 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3517 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3518 3519 // 6-bit char6 MST_ENTRY strings. 3520 Abbv = std::make_shared<BitCodeAbbrev>(); 3521 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3525 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3526 3527 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3528 Abbv = std::make_shared<BitCodeAbbrev>(); 3529 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3535 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3536 3537 SmallVector<unsigned, 64> Vals; 3538 forEachModule( 3539 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3540 StringRef Key = MPSE.getKey(); 3541 const auto &Value = MPSE.getValue(); 3542 StringEncoding Bits = getStringEncoding(Key); 3543 unsigned AbbrevToUse = Abbrev8Bit; 3544 if (Bits == SE_Char6) 3545 AbbrevToUse = Abbrev6Bit; 3546 else if (Bits == SE_Fixed7) 3547 AbbrevToUse = Abbrev7Bit; 3548 3549 Vals.push_back(Value.first); 3550 Vals.append(Key.begin(), Key.end()); 3551 3552 // Emit the finished record. 3553 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3554 3555 // Emit an optional hash for the module now 3556 const auto &Hash = Value.second; 3557 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3558 Vals.assign(Hash.begin(), Hash.end()); 3559 // Emit the hash record. 3560 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3561 } 3562 3563 Vals.clear(); 3564 }); 3565 Stream.ExitBlock(); 3566 } 3567 3568 /// Write the function type metadata related records that need to appear before 3569 /// a function summary entry (whether per-module or combined). 3570 template <typename Fn> 3571 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3572 FunctionSummary *FS, 3573 Fn GetValueID) { 3574 if (!FS->type_tests().empty()) 3575 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3576 3577 SmallVector<uint64_t, 64> Record; 3578 3579 auto WriteVFuncIdVec = [&](uint64_t Ty, 3580 ArrayRef<FunctionSummary::VFuncId> VFs) { 3581 if (VFs.empty()) 3582 return; 3583 Record.clear(); 3584 for (auto &VF : VFs) { 3585 Record.push_back(VF.GUID); 3586 Record.push_back(VF.Offset); 3587 } 3588 Stream.EmitRecord(Ty, Record); 3589 }; 3590 3591 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3592 FS->type_test_assume_vcalls()); 3593 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3594 FS->type_checked_load_vcalls()); 3595 3596 auto WriteConstVCallVec = [&](uint64_t Ty, 3597 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3598 for (auto &VC : VCs) { 3599 Record.clear(); 3600 Record.push_back(VC.VFunc.GUID); 3601 Record.push_back(VC.VFunc.Offset); 3602 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3603 Stream.EmitRecord(Ty, Record); 3604 } 3605 }; 3606 3607 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3608 FS->type_test_assume_const_vcalls()); 3609 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3610 FS->type_checked_load_const_vcalls()); 3611 3612 auto WriteRange = [&](ConstantRange Range) { 3613 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3614 assert(Range.getLower().getNumWords() == 1); 3615 assert(Range.getUpper().getNumWords() == 1); 3616 emitSignedInt64(Record, *Range.getLower().getRawData()); 3617 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3618 }; 3619 3620 if (!FS->paramAccesses().empty()) { 3621 Record.clear(); 3622 for (auto &Arg : FS->paramAccesses()) { 3623 size_t UndoSize = Record.size(); 3624 Record.push_back(Arg.ParamNo); 3625 WriteRange(Arg.Use); 3626 Record.push_back(Arg.Calls.size()); 3627 for (auto &Call : Arg.Calls) { 3628 Record.push_back(Call.ParamNo); 3629 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3630 if (!ValueID) { 3631 // If ValueID is unknown we can't drop just this call, we must drop 3632 // entire parameter. 3633 Record.resize(UndoSize); 3634 break; 3635 } 3636 Record.push_back(*ValueID); 3637 WriteRange(Call.Offsets); 3638 } 3639 } 3640 if (!Record.empty()) 3641 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3642 } 3643 } 3644 3645 /// Collect type IDs from type tests used by function. 3646 static void 3647 getReferencedTypeIds(FunctionSummary *FS, 3648 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3649 if (!FS->type_tests().empty()) 3650 for (auto &TT : FS->type_tests()) 3651 ReferencedTypeIds.insert(TT); 3652 3653 auto GetReferencedTypesFromVFuncIdVec = 3654 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3655 for (auto &VF : VFs) 3656 ReferencedTypeIds.insert(VF.GUID); 3657 }; 3658 3659 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3660 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3661 3662 auto GetReferencedTypesFromConstVCallVec = 3663 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3664 for (auto &VC : VCs) 3665 ReferencedTypeIds.insert(VC.VFunc.GUID); 3666 }; 3667 3668 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3669 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3670 } 3671 3672 static void writeWholeProgramDevirtResolutionByArg( 3673 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3674 const WholeProgramDevirtResolution::ByArg &ByArg) { 3675 NameVals.push_back(args.size()); 3676 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3677 3678 NameVals.push_back(ByArg.TheKind); 3679 NameVals.push_back(ByArg.Info); 3680 NameVals.push_back(ByArg.Byte); 3681 NameVals.push_back(ByArg.Bit); 3682 } 3683 3684 static void writeWholeProgramDevirtResolution( 3685 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3686 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3687 NameVals.push_back(Id); 3688 3689 NameVals.push_back(Wpd.TheKind); 3690 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3691 NameVals.push_back(Wpd.SingleImplName.size()); 3692 3693 NameVals.push_back(Wpd.ResByArg.size()); 3694 for (auto &A : Wpd.ResByArg) 3695 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3696 } 3697 3698 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3699 StringTableBuilder &StrtabBuilder, 3700 const std::string &Id, 3701 const TypeIdSummary &Summary) { 3702 NameVals.push_back(StrtabBuilder.add(Id)); 3703 NameVals.push_back(Id.size()); 3704 3705 NameVals.push_back(Summary.TTRes.TheKind); 3706 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3707 NameVals.push_back(Summary.TTRes.AlignLog2); 3708 NameVals.push_back(Summary.TTRes.SizeM1); 3709 NameVals.push_back(Summary.TTRes.BitMask); 3710 NameVals.push_back(Summary.TTRes.InlineBits); 3711 3712 for (auto &W : Summary.WPDRes) 3713 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3714 W.second); 3715 } 3716 3717 static void writeTypeIdCompatibleVtableSummaryRecord( 3718 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3719 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3720 ValueEnumerator &VE) { 3721 NameVals.push_back(StrtabBuilder.add(Id)); 3722 NameVals.push_back(Id.size()); 3723 3724 for (auto &P : Summary) { 3725 NameVals.push_back(P.AddressPointOffset); 3726 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3727 } 3728 } 3729 3730 // Helper to emit a single function summary record. 3731 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3732 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3733 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3734 const Function &F) { 3735 NameVals.push_back(ValueID); 3736 3737 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3738 3739 writeFunctionTypeMetadataRecords( 3740 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3741 return {VE.getValueID(VI.getValue())}; 3742 }); 3743 3744 auto SpecialRefCnts = FS->specialRefCounts(); 3745 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3746 NameVals.push_back(FS->instCount()); 3747 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3748 NameVals.push_back(FS->refs().size()); 3749 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3750 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3751 3752 for (auto &RI : FS->refs()) 3753 NameVals.push_back(VE.getValueID(RI.getValue())); 3754 3755 bool HasProfileData = 3756 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3757 for (auto &ECI : FS->calls()) { 3758 NameVals.push_back(getValueId(ECI.first)); 3759 if (HasProfileData) 3760 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3761 else if (WriteRelBFToSummary) 3762 NameVals.push_back(ECI.second.RelBlockFreq); 3763 } 3764 3765 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3766 unsigned Code = 3767 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3768 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3769 : bitc::FS_PERMODULE)); 3770 3771 // Emit the finished record. 3772 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3773 NameVals.clear(); 3774 } 3775 3776 // Collect the global value references in the given variable's initializer, 3777 // and emit them in a summary record. 3778 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3779 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3780 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3781 auto VI = Index->getValueInfo(V.getGUID()); 3782 if (!VI || VI.getSummaryList().empty()) { 3783 // Only declarations should not have a summary (a declaration might however 3784 // have a summary if the def was in module level asm). 3785 assert(V.isDeclaration()); 3786 return; 3787 } 3788 auto *Summary = VI.getSummaryList()[0].get(); 3789 NameVals.push_back(VE.getValueID(&V)); 3790 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3791 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3792 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3793 3794 auto VTableFuncs = VS->vTableFuncs(); 3795 if (!VTableFuncs.empty()) 3796 NameVals.push_back(VS->refs().size()); 3797 3798 unsigned SizeBeforeRefs = NameVals.size(); 3799 for (auto &RI : VS->refs()) 3800 NameVals.push_back(VE.getValueID(RI.getValue())); 3801 // Sort the refs for determinism output, the vector returned by FS->refs() has 3802 // been initialized from a DenseSet. 3803 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3804 3805 if (VTableFuncs.empty()) 3806 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3807 FSModRefsAbbrev); 3808 else { 3809 // VTableFuncs pairs should already be sorted by offset. 3810 for (auto &P : VTableFuncs) { 3811 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3812 NameVals.push_back(P.VTableOffset); 3813 } 3814 3815 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3816 FSModVTableRefsAbbrev); 3817 } 3818 NameVals.clear(); 3819 } 3820 3821 /// Emit the per-module summary section alongside the rest of 3822 /// the module's bitcode. 3823 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3824 // By default we compile with ThinLTO if the module has a summary, but the 3825 // client can request full LTO with a module flag. 3826 bool IsThinLTO = true; 3827 if (auto *MD = 3828 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3829 IsThinLTO = MD->getZExtValue(); 3830 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3831 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3832 4); 3833 3834 Stream.EmitRecord( 3835 bitc::FS_VERSION, 3836 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3837 3838 // Write the index flags. 3839 uint64_t Flags = 0; 3840 // Bits 1-3 are set only in the combined index, skip them. 3841 if (Index->enableSplitLTOUnit()) 3842 Flags |= 0x8; 3843 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3844 3845 if (Index->begin() == Index->end()) { 3846 Stream.ExitBlock(); 3847 return; 3848 } 3849 3850 for (const auto &GVI : valueIds()) { 3851 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3852 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3853 } 3854 3855 // Abbrev for FS_PERMODULE_PROFILE. 3856 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3857 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3861 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3865 // numrefs x valueid, n x (valueid, hotness) 3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3868 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3869 3870 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3871 Abbv = std::make_shared<BitCodeAbbrev>(); 3872 if (WriteRelBFToSummary) 3873 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3874 else 3875 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3883 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3886 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3887 3888 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3889 Abbv = std::make_shared<BitCodeAbbrev>(); 3890 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3891 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3892 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3895 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3896 3897 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3898 Abbv = std::make_shared<BitCodeAbbrev>(); 3899 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3900 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3903 // numrefs x valueid, n x (valueid , offset) 3904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3906 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3907 3908 // Abbrev for FS_ALIAS. 3909 Abbv = std::make_shared<BitCodeAbbrev>(); 3910 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3914 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3915 3916 // Abbrev for FS_TYPE_ID_METADATA 3917 Abbv = std::make_shared<BitCodeAbbrev>(); 3918 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3921 // n x (valueid , offset) 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3924 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3925 3926 SmallVector<uint64_t, 64> NameVals; 3927 // Iterate over the list of functions instead of the Index to 3928 // ensure the ordering is stable. 3929 for (const Function &F : M) { 3930 // Summary emission does not support anonymous functions, they have to 3931 // renamed using the anonymous function renaming pass. 3932 if (!F.hasName()) 3933 report_fatal_error("Unexpected anonymous function when writing summary"); 3934 3935 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3936 if (!VI || VI.getSummaryList().empty()) { 3937 // Only declarations should not have a summary (a declaration might 3938 // however have a summary if the def was in module level asm). 3939 assert(F.isDeclaration()); 3940 continue; 3941 } 3942 auto *Summary = VI.getSummaryList()[0].get(); 3943 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3944 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3945 } 3946 3947 // Capture references from GlobalVariable initializers, which are outside 3948 // of a function scope. 3949 for (const GlobalVariable &G : M.globals()) 3950 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3951 FSModVTableRefsAbbrev); 3952 3953 for (const GlobalAlias &A : M.aliases()) { 3954 auto *Aliasee = A.getBaseObject(); 3955 if (!Aliasee->hasName()) 3956 // Nameless function don't have an entry in the summary, skip it. 3957 continue; 3958 auto AliasId = VE.getValueID(&A); 3959 auto AliaseeId = VE.getValueID(Aliasee); 3960 NameVals.push_back(AliasId); 3961 auto *Summary = Index->getGlobalValueSummary(A); 3962 AliasSummary *AS = cast<AliasSummary>(Summary); 3963 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3964 NameVals.push_back(AliaseeId); 3965 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3966 NameVals.clear(); 3967 } 3968 3969 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3970 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3971 S.second, VE); 3972 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3973 TypeIdCompatibleVtableAbbrev); 3974 NameVals.clear(); 3975 } 3976 3977 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 3978 ArrayRef<uint64_t>{Index->getBlockCount()}); 3979 3980 Stream.ExitBlock(); 3981 } 3982 3983 /// Emit the combined summary section into the combined index file. 3984 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3985 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3986 Stream.EmitRecord( 3987 bitc::FS_VERSION, 3988 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3989 3990 // Write the index flags. 3991 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3992 3993 for (const auto &GVI : valueIds()) { 3994 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3995 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3996 } 3997 3998 // Abbrev for FS_COMBINED. 3999 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4000 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4003 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4010 // numrefs x valueid, n x (valueid) 4011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4013 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4014 4015 // Abbrev for FS_COMBINED_PROFILE. 4016 Abbv = std::make_shared<BitCodeAbbrev>(); 4017 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4027 // numrefs x valueid, n x (valueid, hotness) 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4030 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4031 4032 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4033 Abbv = std::make_shared<BitCodeAbbrev>(); 4034 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4040 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4041 4042 // Abbrev for FS_COMBINED_ALIAS. 4043 Abbv = std::make_shared<BitCodeAbbrev>(); 4044 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4049 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4050 4051 // The aliases are emitted as a post-pass, and will point to the value 4052 // id of the aliasee. Save them in a vector for post-processing. 4053 SmallVector<AliasSummary *, 64> Aliases; 4054 4055 // Save the value id for each summary for alias emission. 4056 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4057 4058 SmallVector<uint64_t, 64> NameVals; 4059 4060 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4061 // with the type ids referenced by this index file. 4062 std::set<GlobalValue::GUID> ReferencedTypeIds; 4063 4064 // For local linkage, we also emit the original name separately 4065 // immediately after the record. 4066 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4067 if (!GlobalValue::isLocalLinkage(S.linkage())) 4068 return; 4069 NameVals.push_back(S.getOriginalName()); 4070 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4071 NameVals.clear(); 4072 }; 4073 4074 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4075 forEachSummary([&](GVInfo I, bool IsAliasee) { 4076 GlobalValueSummary *S = I.second; 4077 assert(S); 4078 DefOrUseGUIDs.insert(I.first); 4079 for (const ValueInfo &VI : S->refs()) 4080 DefOrUseGUIDs.insert(VI.getGUID()); 4081 4082 auto ValueId = getValueId(I.first); 4083 assert(ValueId); 4084 SummaryToValueIdMap[S] = *ValueId; 4085 4086 // If this is invoked for an aliasee, we want to record the above 4087 // mapping, but then not emit a summary entry (if the aliasee is 4088 // to be imported, we will invoke this separately with IsAliasee=false). 4089 if (IsAliasee) 4090 return; 4091 4092 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4093 // Will process aliases as a post-pass because the reader wants all 4094 // global to be loaded first. 4095 Aliases.push_back(AS); 4096 return; 4097 } 4098 4099 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4100 NameVals.push_back(*ValueId); 4101 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4102 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4103 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4104 for (auto &RI : VS->refs()) { 4105 auto RefValueId = getValueId(RI.getGUID()); 4106 if (!RefValueId) 4107 continue; 4108 NameVals.push_back(*RefValueId); 4109 } 4110 4111 // Emit the finished record. 4112 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4113 FSModRefsAbbrev); 4114 NameVals.clear(); 4115 MaybeEmitOriginalName(*S); 4116 return; 4117 } 4118 4119 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4120 GlobalValue::GUID GUID = VI.getGUID(); 4121 Optional<unsigned> CallValueId = getValueId(GUID); 4122 if (CallValueId) 4123 return CallValueId; 4124 // For SamplePGO, the indirect call targets for local functions will 4125 // have its original name annotated in profile. We try to find the 4126 // corresponding PGOFuncName as the GUID. 4127 GUID = Index.getGUIDFromOriginalID(GUID); 4128 if (!GUID) 4129 return None; 4130 CallValueId = getValueId(GUID); 4131 if (!CallValueId) 4132 return None; 4133 // The mapping from OriginalId to GUID may return a GUID 4134 // that corresponds to a static variable. Filter it out here. 4135 // This can happen when 4136 // 1) There is a call to a library function which does not have 4137 // a CallValidId; 4138 // 2) There is a static variable with the OriginalGUID identical 4139 // to the GUID of the library function in 1); 4140 // When this happens, the logic for SamplePGO kicks in and 4141 // the static variable in 2) will be found, which needs to be 4142 // filtered out. 4143 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4144 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4145 return None; 4146 return CallValueId; 4147 }; 4148 4149 auto *FS = cast<FunctionSummary>(S); 4150 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4151 getReferencedTypeIds(FS, ReferencedTypeIds); 4152 4153 NameVals.push_back(*ValueId); 4154 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4155 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4156 NameVals.push_back(FS->instCount()); 4157 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4158 NameVals.push_back(FS->entryCount()); 4159 4160 // Fill in below 4161 NameVals.push_back(0); // numrefs 4162 NameVals.push_back(0); // rorefcnt 4163 NameVals.push_back(0); // worefcnt 4164 4165 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4166 for (auto &RI : FS->refs()) { 4167 auto RefValueId = getValueId(RI.getGUID()); 4168 if (!RefValueId) 4169 continue; 4170 NameVals.push_back(*RefValueId); 4171 if (RI.isReadOnly()) 4172 RORefCnt++; 4173 else if (RI.isWriteOnly()) 4174 WORefCnt++; 4175 Count++; 4176 } 4177 NameVals[6] = Count; 4178 NameVals[7] = RORefCnt; 4179 NameVals[8] = WORefCnt; 4180 4181 bool HasProfileData = false; 4182 for (auto &EI : FS->calls()) { 4183 HasProfileData |= 4184 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4185 if (HasProfileData) 4186 break; 4187 } 4188 4189 for (auto &EI : FS->calls()) { 4190 // If this GUID doesn't have a value id, it doesn't have a function 4191 // summary and we don't need to record any calls to it. 4192 Optional<unsigned> CallValueId = GetValueId(EI.first); 4193 if (!CallValueId) 4194 continue; 4195 NameVals.push_back(*CallValueId); 4196 if (HasProfileData) 4197 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4198 } 4199 4200 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4201 unsigned Code = 4202 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4203 4204 // Emit the finished record. 4205 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4206 NameVals.clear(); 4207 MaybeEmitOriginalName(*S); 4208 }); 4209 4210 for (auto *AS : Aliases) { 4211 auto AliasValueId = SummaryToValueIdMap[AS]; 4212 assert(AliasValueId); 4213 NameVals.push_back(AliasValueId); 4214 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4215 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4216 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4217 assert(AliaseeValueId); 4218 NameVals.push_back(AliaseeValueId); 4219 4220 // Emit the finished record. 4221 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4222 NameVals.clear(); 4223 MaybeEmitOriginalName(*AS); 4224 4225 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4226 getReferencedTypeIds(FS, ReferencedTypeIds); 4227 } 4228 4229 if (!Index.cfiFunctionDefs().empty()) { 4230 for (auto &S : Index.cfiFunctionDefs()) { 4231 if (DefOrUseGUIDs.count( 4232 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4233 NameVals.push_back(StrtabBuilder.add(S)); 4234 NameVals.push_back(S.size()); 4235 } 4236 } 4237 if (!NameVals.empty()) { 4238 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4239 NameVals.clear(); 4240 } 4241 } 4242 4243 if (!Index.cfiFunctionDecls().empty()) { 4244 for (auto &S : Index.cfiFunctionDecls()) { 4245 if (DefOrUseGUIDs.count( 4246 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4247 NameVals.push_back(StrtabBuilder.add(S)); 4248 NameVals.push_back(S.size()); 4249 } 4250 } 4251 if (!NameVals.empty()) { 4252 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4253 NameVals.clear(); 4254 } 4255 } 4256 4257 // Walk the GUIDs that were referenced, and write the 4258 // corresponding type id records. 4259 for (auto &T : ReferencedTypeIds) { 4260 auto TidIter = Index.typeIds().equal_range(T); 4261 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4262 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4263 It->second.second); 4264 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4265 NameVals.clear(); 4266 } 4267 } 4268 4269 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4270 ArrayRef<uint64_t>{Index.getBlockCount()}); 4271 4272 Stream.ExitBlock(); 4273 } 4274 4275 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4276 /// current llvm version, and a record for the epoch number. 4277 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4278 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4279 4280 // Write the "user readable" string identifying the bitcode producer 4281 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4282 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4285 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4286 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4287 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4288 4289 // Write the epoch version 4290 Abbv = std::make_shared<BitCodeAbbrev>(); 4291 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4293 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4294 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4295 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4296 Stream.ExitBlock(); 4297 } 4298 4299 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4300 // Emit the module's hash. 4301 // MODULE_CODE_HASH: [5*i32] 4302 if (GenerateHash) { 4303 uint32_t Vals[5]; 4304 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4305 Buffer.size() - BlockStartPos)); 4306 StringRef Hash = Hasher.result(); 4307 for (int Pos = 0; Pos < 20; Pos += 4) { 4308 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4309 } 4310 4311 // Emit the finished record. 4312 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4313 4314 if (ModHash) 4315 // Save the written hash value. 4316 llvm::copy(Vals, std::begin(*ModHash)); 4317 } 4318 } 4319 4320 void ModuleBitcodeWriter::write() { 4321 writeIdentificationBlock(Stream); 4322 4323 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4324 size_t BlockStartPos = Buffer.size(); 4325 4326 writeModuleVersion(); 4327 4328 // Emit blockinfo, which defines the standard abbreviations etc. 4329 writeBlockInfo(); 4330 4331 // Emit information describing all of the types in the module. 4332 writeTypeTable(); 4333 4334 // Emit information about attribute groups. 4335 writeAttributeGroupTable(); 4336 4337 // Emit information about parameter attributes. 4338 writeAttributeTable(); 4339 4340 writeComdats(); 4341 4342 // Emit top-level description of module, including target triple, inline asm, 4343 // descriptors for global variables, and function prototype info. 4344 writeModuleInfo(); 4345 4346 // Emit constants. 4347 writeModuleConstants(); 4348 4349 // Emit metadata kind names. 4350 writeModuleMetadataKinds(); 4351 4352 // Emit metadata. 4353 writeModuleMetadata(); 4354 4355 // Emit module-level use-lists. 4356 if (VE.shouldPreserveUseListOrder()) 4357 writeUseListBlock(nullptr); 4358 4359 writeOperandBundleTags(); 4360 writeSyncScopeNames(); 4361 4362 // Emit function bodies. 4363 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4364 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4365 if (!F->isDeclaration()) 4366 writeFunction(*F, FunctionToBitcodeIndex); 4367 4368 // Need to write after the above call to WriteFunction which populates 4369 // the summary information in the index. 4370 if (Index) 4371 writePerModuleGlobalValueSummary(); 4372 4373 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4374 4375 writeModuleHash(BlockStartPos); 4376 4377 Stream.ExitBlock(); 4378 } 4379 4380 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4381 uint32_t &Position) { 4382 support::endian::write32le(&Buffer[Position], Value); 4383 Position += 4; 4384 } 4385 4386 /// If generating a bc file on darwin, we have to emit a 4387 /// header and trailer to make it compatible with the system archiver. To do 4388 /// this we emit the following header, and then emit a trailer that pads the 4389 /// file out to be a multiple of 16 bytes. 4390 /// 4391 /// struct bc_header { 4392 /// uint32_t Magic; // 0x0B17C0DE 4393 /// uint32_t Version; // Version, currently always 0. 4394 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4395 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4396 /// uint32_t CPUType; // CPU specifier. 4397 /// ... potentially more later ... 4398 /// }; 4399 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4400 const Triple &TT) { 4401 unsigned CPUType = ~0U; 4402 4403 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4404 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4405 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4406 // specific constants here because they are implicitly part of the Darwin ABI. 4407 enum { 4408 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4409 DARWIN_CPU_TYPE_X86 = 7, 4410 DARWIN_CPU_TYPE_ARM = 12, 4411 DARWIN_CPU_TYPE_POWERPC = 18 4412 }; 4413 4414 Triple::ArchType Arch = TT.getArch(); 4415 if (Arch == Triple::x86_64) 4416 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4417 else if (Arch == Triple::x86) 4418 CPUType = DARWIN_CPU_TYPE_X86; 4419 else if (Arch == Triple::ppc) 4420 CPUType = DARWIN_CPU_TYPE_POWERPC; 4421 else if (Arch == Triple::ppc64) 4422 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4423 else if (Arch == Triple::arm || Arch == Triple::thumb) 4424 CPUType = DARWIN_CPU_TYPE_ARM; 4425 4426 // Traditional Bitcode starts after header. 4427 assert(Buffer.size() >= BWH_HeaderSize && 4428 "Expected header size to be reserved"); 4429 unsigned BCOffset = BWH_HeaderSize; 4430 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4431 4432 // Write the magic and version. 4433 unsigned Position = 0; 4434 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4435 writeInt32ToBuffer(0, Buffer, Position); // Version. 4436 writeInt32ToBuffer(BCOffset, Buffer, Position); 4437 writeInt32ToBuffer(BCSize, Buffer, Position); 4438 writeInt32ToBuffer(CPUType, Buffer, Position); 4439 4440 // If the file is not a multiple of 16 bytes, insert dummy padding. 4441 while (Buffer.size() & 15) 4442 Buffer.push_back(0); 4443 } 4444 4445 /// Helper to write the header common to all bitcode files. 4446 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4447 // Emit the file header. 4448 Stream.Emit((unsigned)'B', 8); 4449 Stream.Emit((unsigned)'C', 8); 4450 Stream.Emit(0x0, 4); 4451 Stream.Emit(0xC, 4); 4452 Stream.Emit(0xE, 4); 4453 Stream.Emit(0xD, 4); 4454 } 4455 4456 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4457 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4458 writeBitcodeHeader(*Stream); 4459 } 4460 4461 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4462 4463 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4464 Stream->EnterSubblock(Block, 3); 4465 4466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4467 Abbv->Add(BitCodeAbbrevOp(Record)); 4468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4469 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4470 4471 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4472 4473 Stream->ExitBlock(); 4474 } 4475 4476 void BitcodeWriter::writeSymtab() { 4477 assert(!WroteStrtab && !WroteSymtab); 4478 4479 // If any module has module-level inline asm, we will require a registered asm 4480 // parser for the target so that we can create an accurate symbol table for 4481 // the module. 4482 for (Module *M : Mods) { 4483 if (M->getModuleInlineAsm().empty()) 4484 continue; 4485 4486 std::string Err; 4487 const Triple TT(M->getTargetTriple()); 4488 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4489 if (!T || !T->hasMCAsmParser()) 4490 return; 4491 } 4492 4493 WroteSymtab = true; 4494 SmallVector<char, 0> Symtab; 4495 // The irsymtab::build function may be unable to create a symbol table if the 4496 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4497 // table is not required for correctness, but we still want to be able to 4498 // write malformed modules to bitcode files, so swallow the error. 4499 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4500 consumeError(std::move(E)); 4501 return; 4502 } 4503 4504 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4505 {Symtab.data(), Symtab.size()}); 4506 } 4507 4508 void BitcodeWriter::writeStrtab() { 4509 assert(!WroteStrtab); 4510 4511 std::vector<char> Strtab; 4512 StrtabBuilder.finalizeInOrder(); 4513 Strtab.resize(StrtabBuilder.getSize()); 4514 StrtabBuilder.write((uint8_t *)Strtab.data()); 4515 4516 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4517 {Strtab.data(), Strtab.size()}); 4518 4519 WroteStrtab = true; 4520 } 4521 4522 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4523 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4524 WroteStrtab = true; 4525 } 4526 4527 void BitcodeWriter::writeModule(const Module &M, 4528 bool ShouldPreserveUseListOrder, 4529 const ModuleSummaryIndex *Index, 4530 bool GenerateHash, ModuleHash *ModHash) { 4531 assert(!WroteStrtab); 4532 4533 // The Mods vector is used by irsymtab::build, which requires non-const 4534 // Modules in case it needs to materialize metadata. But the bitcode writer 4535 // requires that the module is materialized, so we can cast to non-const here, 4536 // after checking that it is in fact materialized. 4537 assert(M.isMaterialized()); 4538 Mods.push_back(const_cast<Module *>(&M)); 4539 4540 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4541 ShouldPreserveUseListOrder, Index, 4542 GenerateHash, ModHash); 4543 ModuleWriter.write(); 4544 } 4545 4546 void BitcodeWriter::writeIndex( 4547 const ModuleSummaryIndex *Index, 4548 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4549 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4550 ModuleToSummariesForIndex); 4551 IndexWriter.write(); 4552 } 4553 4554 /// Write the specified module to the specified output stream. 4555 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4556 bool ShouldPreserveUseListOrder, 4557 const ModuleSummaryIndex *Index, 4558 bool GenerateHash, ModuleHash *ModHash) { 4559 SmallVector<char, 0> Buffer; 4560 Buffer.reserve(256*1024); 4561 4562 // If this is darwin or another generic macho target, reserve space for the 4563 // header. 4564 Triple TT(M.getTargetTriple()); 4565 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4566 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4567 4568 BitcodeWriter Writer(Buffer); 4569 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4570 ModHash); 4571 Writer.writeSymtab(); 4572 Writer.writeStrtab(); 4573 4574 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4575 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4576 4577 // Write the generated bitstream to "Out". 4578 Out.write((char*)&Buffer.front(), Buffer.size()); 4579 } 4580 4581 void IndexBitcodeWriter::write() { 4582 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4583 4584 writeModuleVersion(); 4585 4586 // Write the module paths in the combined index. 4587 writeModStrings(); 4588 4589 // Write the summary combined index records. 4590 writeCombinedGlobalValueSummary(); 4591 4592 Stream.ExitBlock(); 4593 } 4594 4595 // Write the specified module summary index to the given raw output stream, 4596 // where it will be written in a new bitcode block. This is used when 4597 // writing the combined index file for ThinLTO. When writing a subset of the 4598 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4599 void llvm::WriteIndexToFile( 4600 const ModuleSummaryIndex &Index, raw_ostream &Out, 4601 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4602 SmallVector<char, 0> Buffer; 4603 Buffer.reserve(256 * 1024); 4604 4605 BitcodeWriter Writer(Buffer); 4606 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4607 Writer.writeStrtab(); 4608 4609 Out.write((char *)&Buffer.front(), Buffer.size()); 4610 } 4611 4612 namespace { 4613 4614 /// Class to manage the bitcode writing for a thin link bitcode file. 4615 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4616 /// ModHash is for use in ThinLTO incremental build, generated while writing 4617 /// the module bitcode file. 4618 const ModuleHash *ModHash; 4619 4620 public: 4621 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4622 BitstreamWriter &Stream, 4623 const ModuleSummaryIndex &Index, 4624 const ModuleHash &ModHash) 4625 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4626 /*ShouldPreserveUseListOrder=*/false, &Index), 4627 ModHash(&ModHash) {} 4628 4629 void write(); 4630 4631 private: 4632 void writeSimplifiedModuleInfo(); 4633 }; 4634 4635 } // end anonymous namespace 4636 4637 // This function writes a simpilified module info for thin link bitcode file. 4638 // It only contains the source file name along with the name(the offset and 4639 // size in strtab) and linkage for global values. For the global value info 4640 // entry, in order to keep linkage at offset 5, there are three zeros used 4641 // as padding. 4642 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4643 SmallVector<unsigned, 64> Vals; 4644 // Emit the module's source file name. 4645 { 4646 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4647 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4648 if (Bits == SE_Char6) 4649 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4650 else if (Bits == SE_Fixed7) 4651 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4652 4653 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4654 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4655 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4657 Abbv->Add(AbbrevOpToUse); 4658 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4659 4660 for (const auto P : M.getSourceFileName()) 4661 Vals.push_back((unsigned char)P); 4662 4663 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4664 Vals.clear(); 4665 } 4666 4667 // Emit the global variable information. 4668 for (const GlobalVariable &GV : M.globals()) { 4669 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4670 Vals.push_back(StrtabBuilder.add(GV.getName())); 4671 Vals.push_back(GV.getName().size()); 4672 Vals.push_back(0); 4673 Vals.push_back(0); 4674 Vals.push_back(0); 4675 Vals.push_back(getEncodedLinkage(GV)); 4676 4677 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4678 Vals.clear(); 4679 } 4680 4681 // Emit the function proto information. 4682 for (const Function &F : M) { 4683 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4684 Vals.push_back(StrtabBuilder.add(F.getName())); 4685 Vals.push_back(F.getName().size()); 4686 Vals.push_back(0); 4687 Vals.push_back(0); 4688 Vals.push_back(0); 4689 Vals.push_back(getEncodedLinkage(F)); 4690 4691 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4692 Vals.clear(); 4693 } 4694 4695 // Emit the alias information. 4696 for (const GlobalAlias &A : M.aliases()) { 4697 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4698 Vals.push_back(StrtabBuilder.add(A.getName())); 4699 Vals.push_back(A.getName().size()); 4700 Vals.push_back(0); 4701 Vals.push_back(0); 4702 Vals.push_back(0); 4703 Vals.push_back(getEncodedLinkage(A)); 4704 4705 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4706 Vals.clear(); 4707 } 4708 4709 // Emit the ifunc information. 4710 for (const GlobalIFunc &I : M.ifuncs()) { 4711 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4712 Vals.push_back(StrtabBuilder.add(I.getName())); 4713 Vals.push_back(I.getName().size()); 4714 Vals.push_back(0); 4715 Vals.push_back(0); 4716 Vals.push_back(0); 4717 Vals.push_back(getEncodedLinkage(I)); 4718 4719 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4720 Vals.clear(); 4721 } 4722 } 4723 4724 void ThinLinkBitcodeWriter::write() { 4725 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4726 4727 writeModuleVersion(); 4728 4729 writeSimplifiedModuleInfo(); 4730 4731 writePerModuleGlobalValueSummary(); 4732 4733 // Write module hash. 4734 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4735 4736 Stream.ExitBlock(); 4737 } 4738 4739 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4740 const ModuleSummaryIndex &Index, 4741 const ModuleHash &ModHash) { 4742 assert(!WroteStrtab); 4743 4744 // The Mods vector is used by irsymtab::build, which requires non-const 4745 // Modules in case it needs to materialize metadata. But the bitcode writer 4746 // requires that the module is materialized, so we can cast to non-const here, 4747 // after checking that it is in fact materialized. 4748 assert(M.isMaterialized()); 4749 Mods.push_back(const_cast<Module *>(&M)); 4750 4751 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4752 ModHash); 4753 ThinLinkWriter.write(); 4754 } 4755 4756 // Write the specified thin link bitcode file to the given raw output stream, 4757 // where it will be written in a new bitcode block. This is used when 4758 // writing the per-module index file for ThinLTO. 4759 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4760 const ModuleSummaryIndex &Index, 4761 const ModuleHash &ModHash) { 4762 SmallVector<char, 0> Buffer; 4763 Buffer.reserve(256 * 1024); 4764 4765 BitcodeWriter Writer(Buffer); 4766 Writer.writeThinLinkBitcode(M, Index, ModHash); 4767 Writer.writeSymtab(); 4768 Writer.writeStrtab(); 4769 4770 Out.write((char *)&Buffer.front(), Buffer.size()); 4771 } 4772 4773 static const char *getSectionNameForBitcode(const Triple &T) { 4774 switch (T.getObjectFormat()) { 4775 case Triple::MachO: 4776 return "__LLVM,__bitcode"; 4777 case Triple::COFF: 4778 case Triple::ELF: 4779 case Triple::Wasm: 4780 case Triple::UnknownObjectFormat: 4781 return ".llvmbc"; 4782 case Triple::GOFF: 4783 llvm_unreachable("GOFF is not yet implemented"); 4784 break; 4785 case Triple::XCOFF: 4786 llvm_unreachable("XCOFF is not yet implemented"); 4787 break; 4788 } 4789 llvm_unreachable("Unimplemented ObjectFormatType"); 4790 } 4791 4792 static const char *getSectionNameForCommandline(const Triple &T) { 4793 switch (T.getObjectFormat()) { 4794 case Triple::MachO: 4795 return "__LLVM,__cmdline"; 4796 case Triple::COFF: 4797 case Triple::ELF: 4798 case Triple::Wasm: 4799 case Triple::UnknownObjectFormat: 4800 return ".llvmcmd"; 4801 case Triple::GOFF: 4802 llvm_unreachable("GOFF is not yet implemented"); 4803 break; 4804 case Triple::XCOFF: 4805 llvm_unreachable("XCOFF is not yet implemented"); 4806 break; 4807 } 4808 llvm_unreachable("Unimplemented ObjectFormatType"); 4809 } 4810 4811 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4812 bool EmbedBitcode, bool EmbedMarker, 4813 const std::vector<uint8_t> *CmdArgs) { 4814 // Save llvm.compiler.used and remove it. 4815 SmallVector<Constant *, 2> UsedArray; 4816 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4817 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4818 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4819 for (auto *GV : UsedGlobals) { 4820 if (GV->getName() != "llvm.embedded.module" && 4821 GV->getName() != "llvm.cmdline") 4822 UsedArray.push_back( 4823 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4824 } 4825 if (Used) 4826 Used->eraseFromParent(); 4827 4828 // Embed the bitcode for the llvm module. 4829 std::string Data; 4830 ArrayRef<uint8_t> ModuleData; 4831 Triple T(M.getTargetTriple()); 4832 // Create a constant that contains the bitcode. 4833 // In case of embedding a marker, ignore the input Buf and use the empty 4834 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4835 if (EmbedBitcode) { 4836 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4837 (const unsigned char *)Buf.getBufferEnd())) { 4838 // If the input is LLVM Assembly, bitcode is produced by serializing 4839 // the module. Use-lists order need to be preserved in this case. 4840 llvm::raw_string_ostream OS(Data); 4841 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4842 ModuleData = 4843 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4844 } else 4845 // If the input is LLVM bitcode, write the input byte stream directly. 4846 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4847 Buf.getBufferSize()); 4848 } 4849 llvm::Constant *ModuleConstant = 4850 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4851 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4852 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4853 ModuleConstant); 4854 GV->setSection(getSectionNameForBitcode(T)); 4855 UsedArray.push_back( 4856 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4857 if (llvm::GlobalVariable *Old = 4858 M.getGlobalVariable("llvm.embedded.module", true)) { 4859 assert(Old->hasOneUse() && 4860 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4861 GV->takeName(Old); 4862 Old->eraseFromParent(); 4863 } else { 4864 GV->setName("llvm.embedded.module"); 4865 } 4866 4867 // Skip if only bitcode needs to be embedded. 4868 if (EmbedMarker) { 4869 // Embed command-line options. 4870 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4871 CmdArgs->size()); 4872 llvm::Constant *CmdConstant = 4873 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4874 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4875 llvm::GlobalValue::PrivateLinkage, 4876 CmdConstant); 4877 GV->setSection(getSectionNameForCommandline(T)); 4878 UsedArray.push_back( 4879 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4880 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4881 assert(Old->hasOneUse() && 4882 "llvm.cmdline can only be used once in llvm.compiler.used"); 4883 GV->takeName(Old); 4884 Old->eraseFromParent(); 4885 } else { 4886 GV->setName("llvm.cmdline"); 4887 } 4888 } 4889 4890 if (UsedArray.empty()) 4891 return; 4892 4893 // Recreate llvm.compiler.used. 4894 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4895 auto *NewUsed = new GlobalVariable( 4896 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4897 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4898 NewUsed->setSection("llvm.metadata"); 4899 } 4900