1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/StringExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Bitcode/BitstreamWriter.h" 19 #include "llvm/Bitcode/LLVMBitCodes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/UseListOrder.h" 30 #include "llvm/IR/ValueSymbolTable.h" 31 #include "llvm/MC/StringTableBuilder.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/Program.h" 35 #include "llvm/Support/SHA1.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <cctype> 38 #include <map> 39 using namespace llvm; 40 41 namespace { 42 43 cl::opt<unsigned> 44 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 45 cl::desc("Number of metadatas above which we emit an index " 46 "to enable lazy-loading")); 47 /// These are manifest constants used by the bitcode writer. They do not need to 48 /// be kept in sync with the reader, but need to be consistent within this file. 49 enum { 50 // VALUE_SYMTAB_BLOCK abbrev id's. 51 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 52 VST_ENTRY_7_ABBREV, 53 VST_ENTRY_6_ABBREV, 54 VST_BBENTRY_6_ABBREV, 55 56 // CONSTANTS_BLOCK abbrev id's. 57 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 58 CONSTANTS_INTEGER_ABBREV, 59 CONSTANTS_CE_CAST_Abbrev, 60 CONSTANTS_NULL_Abbrev, 61 62 // FUNCTION_BLOCK abbrev id's. 63 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 64 FUNCTION_INST_BINOP_ABBREV, 65 FUNCTION_INST_BINOP_FLAGS_ABBREV, 66 FUNCTION_INST_CAST_ABBREV, 67 FUNCTION_INST_RET_VOID_ABBREV, 68 FUNCTION_INST_RET_VAL_ABBREV, 69 FUNCTION_INST_UNREACHABLE_ABBREV, 70 FUNCTION_INST_GEP_ABBREV, 71 }; 72 73 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 74 /// file type. 75 class BitcodeWriterBase { 76 protected: 77 /// The stream created and owned by the client. 78 BitstreamWriter &Stream; 79 80 public: 81 /// Constructs a BitcodeWriterBase object that writes to the provided 82 /// \p Stream. 83 BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {} 84 85 protected: 86 void writeBitcodeHeader(); 87 void writeModuleVersion(); 88 }; 89 90 void BitcodeWriterBase::writeModuleVersion() { 91 // VERSION: [version#] 92 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 93 } 94 95 /// Class to manage the bitcode writing for a module. 96 class ModuleBitcodeWriter : public BitcodeWriterBase { 97 /// Pointer to the buffer allocated by caller for bitcode writing. 98 const SmallVectorImpl<char> &Buffer; 99 100 StringTableBuilder &StrtabBuilder; 101 102 /// The Module to write to bitcode. 103 const Module &M; 104 105 /// Enumerates ids for all values in the module. 106 ValueEnumerator VE; 107 108 /// Optional per-module index to write for ThinLTO. 109 const ModuleSummaryIndex *Index; 110 111 /// True if a module hash record should be written. 112 bool GenerateHash; 113 114 /// If non-null, when GenerateHash is true, the resulting hash is written 115 /// into ModHash. When GenerateHash is false, that specified value 116 /// is used as the hash instead of computing from the generated bitcode. 117 /// Can be used to produce the same module hash for a minimized bitcode 118 /// used just for the thin link as in the regular full bitcode that will 119 /// be used in the backend. 120 ModuleHash *ModHash; 121 122 /// The start bit of the identification block. 123 uint64_t BitcodeStartBit; 124 125 /// Map that holds the correspondence between GUIDs in the summary index, 126 /// that came from indirect call profiles, and a value id generated by this 127 /// class to use in the VST and summary block records. 128 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 129 130 /// Tracks the last value id recorded in the GUIDToValueMap. 131 unsigned GlobalValueId; 132 133 /// Saves the offset of the VSTOffset record that must eventually be 134 /// backpatched with the offset of the actual VST. 135 uint64_t VSTOffsetPlaceholder = 0; 136 137 public: 138 /// Constructs a ModuleBitcodeWriter object for the given Module, 139 /// writing to the provided \p Buffer. 140 ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer, 141 StringTableBuilder &StrtabBuilder, 142 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 143 const ModuleSummaryIndex *Index, bool GenerateHash, 144 ModuleHash *ModHash = nullptr) 145 : BitcodeWriterBase(Stream), Buffer(Buffer), StrtabBuilder(StrtabBuilder), 146 M(*M), VE(*M, ShouldPreserveUseListOrder), Index(Index), 147 GenerateHash(GenerateHash), ModHash(ModHash), 148 BitcodeStartBit(Stream.GetCurrentBitNo()) { 149 // Assign ValueIds to any callee values in the index that came from 150 // indirect call profiles and were recorded as a GUID not a Value* 151 // (which would have been assigned an ID by the ValueEnumerator). 152 // The starting ValueId is just after the number of values in the 153 // ValueEnumerator, so that they can be emitted in the VST. 154 GlobalValueId = VE.getValues().size(); 155 if (!Index) 156 return; 157 for (const auto &GUIDSummaryLists : *Index) 158 // Examine all summaries for this GUID. 159 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 160 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 161 // For each call in the function summary, see if the call 162 // is to a GUID (which means it is for an indirect call, 163 // otherwise we would have a Value for it). If so, synthesize 164 // a value id. 165 for (auto &CallEdge : FS->calls()) 166 if (!CallEdge.first.getValue()) 167 assignValueId(CallEdge.first.getGUID()); 168 } 169 170 /// Emit the current module to the bitstream. 171 void write(); 172 173 private: 174 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 175 176 void writeAttributeGroupTable(); 177 void writeAttributeTable(); 178 void writeTypeTable(); 179 void writeComdats(); 180 void writeValueSymbolTableForwardDecl(); 181 void writeModuleInfo(); 182 void writeValueAsMetadata(const ValueAsMetadata *MD, 183 SmallVectorImpl<uint64_t> &Record); 184 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 185 unsigned Abbrev); 186 unsigned createDILocationAbbrev(); 187 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 188 unsigned &Abbrev); 189 unsigned createGenericDINodeAbbrev(); 190 void writeGenericDINode(const GenericDINode *N, 191 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 192 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 193 unsigned Abbrev); 194 void writeDIEnumerator(const DIEnumerator *N, 195 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 196 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 197 unsigned Abbrev); 198 void writeDIDerivedType(const DIDerivedType *N, 199 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 200 void writeDICompositeType(const DICompositeType *N, 201 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 202 void writeDISubroutineType(const DISubroutineType *N, 203 SmallVectorImpl<uint64_t> &Record, 204 unsigned Abbrev); 205 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 206 unsigned Abbrev); 207 void writeDICompileUnit(const DICompileUnit *N, 208 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 209 void writeDISubprogram(const DISubprogram *N, 210 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 211 void writeDILexicalBlock(const DILexicalBlock *N, 212 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 213 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 214 SmallVectorImpl<uint64_t> &Record, 215 unsigned Abbrev); 216 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 217 unsigned Abbrev); 218 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 219 unsigned Abbrev); 220 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 221 unsigned Abbrev); 222 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 223 unsigned Abbrev); 224 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 225 SmallVectorImpl<uint64_t> &Record, 226 unsigned Abbrev); 227 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 228 SmallVectorImpl<uint64_t> &Record, 229 unsigned Abbrev); 230 void writeDIGlobalVariable(const DIGlobalVariable *N, 231 SmallVectorImpl<uint64_t> &Record, 232 unsigned Abbrev); 233 void writeDILocalVariable(const DILocalVariable *N, 234 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 235 void writeDIExpression(const DIExpression *N, 236 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 237 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 238 SmallVectorImpl<uint64_t> &Record, 239 unsigned Abbrev); 240 void writeDIObjCProperty(const DIObjCProperty *N, 241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 242 void writeDIImportedEntity(const DIImportedEntity *N, 243 SmallVectorImpl<uint64_t> &Record, 244 unsigned Abbrev); 245 unsigned createNamedMetadataAbbrev(); 246 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 247 unsigned createMetadataStringsAbbrev(); 248 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 249 SmallVectorImpl<uint64_t> &Record); 250 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 251 SmallVectorImpl<uint64_t> &Record, 252 std::vector<unsigned> *MDAbbrevs = nullptr, 253 std::vector<uint64_t> *IndexPos = nullptr); 254 void writeModuleMetadata(); 255 void writeFunctionMetadata(const Function &F); 256 void writeFunctionMetadataAttachment(const Function &F); 257 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 258 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 259 const GlobalObject &GO); 260 void writeModuleMetadataKinds(); 261 void writeOperandBundleTags(); 262 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 263 void writeModuleConstants(); 264 bool pushValueAndType(const Value *V, unsigned InstID, 265 SmallVectorImpl<unsigned> &Vals); 266 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 267 void pushValue(const Value *V, unsigned InstID, 268 SmallVectorImpl<unsigned> &Vals); 269 void pushValueSigned(const Value *V, unsigned InstID, 270 SmallVectorImpl<uint64_t> &Vals); 271 void writeInstruction(const Instruction &I, unsigned InstID, 272 SmallVectorImpl<unsigned> &Vals); 273 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 274 void writeGlobalValueSymbolTable( 275 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 276 void writeUseList(UseListOrder &&Order); 277 void writeUseListBlock(const Function *F); 278 void 279 writeFunction(const Function &F, 280 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 281 void writeBlockInfo(); 282 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 283 GlobalValueSummary *Summary, 284 unsigned ValueID, 285 unsigned FSCallsAbbrev, 286 unsigned FSCallsProfileAbbrev, 287 const Function &F); 288 void writeModuleLevelReferences(const GlobalVariable &V, 289 SmallVector<uint64_t, 64> &NameVals, 290 unsigned FSModRefsAbbrev); 291 void writePerModuleGlobalValueSummary(); 292 void writeModuleHash(size_t BlockStartPos); 293 294 void assignValueId(GlobalValue::GUID ValGUID) { 295 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 296 } 297 unsigned getValueId(GlobalValue::GUID ValGUID) { 298 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 299 // Expect that any GUID value had a value Id assigned by an 300 // earlier call to assignValueId. 301 assert(VMI != GUIDToValueIdMap.end() && 302 "GUID does not have assigned value Id"); 303 return VMI->second; 304 } 305 // Helper to get the valueId for the type of value recorded in VI. 306 unsigned getValueId(ValueInfo VI) { 307 if (!VI.getValue()) 308 return getValueId(VI.getGUID()); 309 return VE.getValueID(VI.getValue()); 310 } 311 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 312 }; 313 314 /// Class to manage the bitcode writing for a combined index. 315 class IndexBitcodeWriter : public BitcodeWriterBase { 316 /// The combined index to write to bitcode. 317 const ModuleSummaryIndex &Index; 318 319 /// When writing a subset of the index for distributed backends, client 320 /// provides a map of modules to the corresponding GUIDs/summaries to write. 321 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 322 323 /// Map that holds the correspondence between the GUID used in the combined 324 /// index and a value id generated by this class to use in references. 325 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 326 327 /// Tracks the last value id recorded in the GUIDToValueMap. 328 unsigned GlobalValueId = 0; 329 330 public: 331 /// Constructs a IndexBitcodeWriter object for the given combined index, 332 /// writing to the provided \p Buffer. When writing a subset of the index 333 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 334 IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index, 335 const std::map<std::string, GVSummaryMapTy> 336 *ModuleToSummariesForIndex = nullptr) 337 : BitcodeWriterBase(Stream), Index(Index), 338 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 339 // Assign unique value ids to all summaries to be written, for use 340 // in writing out the call graph edges. Save the mapping from GUID 341 // to the new global value id to use when writing those edges, which 342 // are currently saved in the index in terms of GUID. 343 forEachSummary([&](GVInfo I) { 344 GUIDToValueIdMap[I.first] = ++GlobalValueId; 345 }); 346 } 347 348 /// The below iterator returns the GUID and associated summary. 349 typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo; 350 351 /// Calls the callback for each value GUID and summary to be written to 352 /// bitcode. This hides the details of whether they are being pulled from the 353 /// entire index or just those in a provided ModuleToSummariesForIndex map. 354 void forEachSummary(std::function<void(GVInfo)> Callback) { 355 if (ModuleToSummariesForIndex) { 356 for (auto &M : *ModuleToSummariesForIndex) 357 for (auto &Summary : M.second) 358 Callback(Summary); 359 } else { 360 for (auto &Summaries : Index) 361 for (auto &Summary : Summaries.second.SummaryList) 362 Callback({Summaries.first, Summary.get()}); 363 } 364 } 365 366 /// Main entry point for writing a combined index to bitcode. 367 void write(); 368 369 private: 370 void writeModStrings(); 371 void writeCombinedGlobalValueSummary(); 372 373 /// Indicates whether the provided \p ModulePath should be written into 374 /// the module string table, e.g. if full index written or if it is in 375 /// the provided subset. 376 bool doIncludeModule(StringRef ModulePath) { 377 return !ModuleToSummariesForIndex || 378 ModuleToSummariesForIndex->count(ModulePath); 379 } 380 381 bool hasValueId(GlobalValue::GUID ValGUID) { 382 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 383 return VMI != GUIDToValueIdMap.end(); 384 } 385 void assignValueId(GlobalValue::GUID ValGUID) { 386 unsigned &ValueId = GUIDToValueIdMap[ValGUID]; 387 if (ValueId == 0) 388 ValueId = ++GlobalValueId; 389 } 390 unsigned getValueId(GlobalValue::GUID ValGUID) { 391 auto VMI = GUIDToValueIdMap.find(ValGUID); 392 assert(VMI != GUIDToValueIdMap.end()); 393 return VMI->second; 394 } 395 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 396 }; 397 } // end anonymous namespace 398 399 static unsigned getEncodedCastOpcode(unsigned Opcode) { 400 switch (Opcode) { 401 default: llvm_unreachable("Unknown cast instruction!"); 402 case Instruction::Trunc : return bitc::CAST_TRUNC; 403 case Instruction::ZExt : return bitc::CAST_ZEXT; 404 case Instruction::SExt : return bitc::CAST_SEXT; 405 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 406 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 407 case Instruction::UIToFP : return bitc::CAST_UITOFP; 408 case Instruction::SIToFP : return bitc::CAST_SITOFP; 409 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 410 case Instruction::FPExt : return bitc::CAST_FPEXT; 411 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 412 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 413 case Instruction::BitCast : return bitc::CAST_BITCAST; 414 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 415 } 416 } 417 418 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 419 switch (Opcode) { 420 default: llvm_unreachable("Unknown binary instruction!"); 421 case Instruction::Add: 422 case Instruction::FAdd: return bitc::BINOP_ADD; 423 case Instruction::Sub: 424 case Instruction::FSub: return bitc::BINOP_SUB; 425 case Instruction::Mul: 426 case Instruction::FMul: return bitc::BINOP_MUL; 427 case Instruction::UDiv: return bitc::BINOP_UDIV; 428 case Instruction::FDiv: 429 case Instruction::SDiv: return bitc::BINOP_SDIV; 430 case Instruction::URem: return bitc::BINOP_UREM; 431 case Instruction::FRem: 432 case Instruction::SRem: return bitc::BINOP_SREM; 433 case Instruction::Shl: return bitc::BINOP_SHL; 434 case Instruction::LShr: return bitc::BINOP_LSHR; 435 case Instruction::AShr: return bitc::BINOP_ASHR; 436 case Instruction::And: return bitc::BINOP_AND; 437 case Instruction::Or: return bitc::BINOP_OR; 438 case Instruction::Xor: return bitc::BINOP_XOR; 439 } 440 } 441 442 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 443 switch (Op) { 444 default: llvm_unreachable("Unknown RMW operation!"); 445 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 446 case AtomicRMWInst::Add: return bitc::RMW_ADD; 447 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 448 case AtomicRMWInst::And: return bitc::RMW_AND; 449 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 450 case AtomicRMWInst::Or: return bitc::RMW_OR; 451 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 452 case AtomicRMWInst::Max: return bitc::RMW_MAX; 453 case AtomicRMWInst::Min: return bitc::RMW_MIN; 454 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 455 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 456 } 457 } 458 459 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 460 switch (Ordering) { 461 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 462 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 463 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 464 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 465 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 466 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 467 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 468 } 469 llvm_unreachable("Invalid ordering"); 470 } 471 472 static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) { 473 switch (SynchScope) { 474 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 475 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 476 } 477 llvm_unreachable("Invalid synch scope"); 478 } 479 480 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 481 StringRef Str, unsigned AbbrevToUse) { 482 SmallVector<unsigned, 64> Vals; 483 484 // Code: [strchar x N] 485 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 486 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 487 AbbrevToUse = 0; 488 Vals.push_back(Str[i]); 489 } 490 491 // Emit the finished record. 492 Stream.EmitRecord(Code, Vals, AbbrevToUse); 493 } 494 495 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 496 switch (Kind) { 497 case Attribute::Alignment: 498 return bitc::ATTR_KIND_ALIGNMENT; 499 case Attribute::AllocSize: 500 return bitc::ATTR_KIND_ALLOC_SIZE; 501 case Attribute::AlwaysInline: 502 return bitc::ATTR_KIND_ALWAYS_INLINE; 503 case Attribute::ArgMemOnly: 504 return bitc::ATTR_KIND_ARGMEMONLY; 505 case Attribute::Builtin: 506 return bitc::ATTR_KIND_BUILTIN; 507 case Attribute::ByVal: 508 return bitc::ATTR_KIND_BY_VAL; 509 case Attribute::Convergent: 510 return bitc::ATTR_KIND_CONVERGENT; 511 case Attribute::InAlloca: 512 return bitc::ATTR_KIND_IN_ALLOCA; 513 case Attribute::Cold: 514 return bitc::ATTR_KIND_COLD; 515 case Attribute::InaccessibleMemOnly: 516 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 517 case Attribute::InaccessibleMemOrArgMemOnly: 518 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 519 case Attribute::InlineHint: 520 return bitc::ATTR_KIND_INLINE_HINT; 521 case Attribute::InReg: 522 return bitc::ATTR_KIND_IN_REG; 523 case Attribute::JumpTable: 524 return bitc::ATTR_KIND_JUMP_TABLE; 525 case Attribute::MinSize: 526 return bitc::ATTR_KIND_MIN_SIZE; 527 case Attribute::Naked: 528 return bitc::ATTR_KIND_NAKED; 529 case Attribute::Nest: 530 return bitc::ATTR_KIND_NEST; 531 case Attribute::NoAlias: 532 return bitc::ATTR_KIND_NO_ALIAS; 533 case Attribute::NoBuiltin: 534 return bitc::ATTR_KIND_NO_BUILTIN; 535 case Attribute::NoCapture: 536 return bitc::ATTR_KIND_NO_CAPTURE; 537 case Attribute::NoDuplicate: 538 return bitc::ATTR_KIND_NO_DUPLICATE; 539 case Attribute::NoImplicitFloat: 540 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 541 case Attribute::NoInline: 542 return bitc::ATTR_KIND_NO_INLINE; 543 case Attribute::NoRecurse: 544 return bitc::ATTR_KIND_NO_RECURSE; 545 case Attribute::NonLazyBind: 546 return bitc::ATTR_KIND_NON_LAZY_BIND; 547 case Attribute::NonNull: 548 return bitc::ATTR_KIND_NON_NULL; 549 case Attribute::Dereferenceable: 550 return bitc::ATTR_KIND_DEREFERENCEABLE; 551 case Attribute::DereferenceableOrNull: 552 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 553 case Attribute::NoRedZone: 554 return bitc::ATTR_KIND_NO_RED_ZONE; 555 case Attribute::NoReturn: 556 return bitc::ATTR_KIND_NO_RETURN; 557 case Attribute::NoUnwind: 558 return bitc::ATTR_KIND_NO_UNWIND; 559 case Attribute::OptimizeForSize: 560 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 561 case Attribute::OptimizeNone: 562 return bitc::ATTR_KIND_OPTIMIZE_NONE; 563 case Attribute::ReadNone: 564 return bitc::ATTR_KIND_READ_NONE; 565 case Attribute::ReadOnly: 566 return bitc::ATTR_KIND_READ_ONLY; 567 case Attribute::Returned: 568 return bitc::ATTR_KIND_RETURNED; 569 case Attribute::ReturnsTwice: 570 return bitc::ATTR_KIND_RETURNS_TWICE; 571 case Attribute::SExt: 572 return bitc::ATTR_KIND_S_EXT; 573 case Attribute::Speculatable: 574 return bitc::ATTR_KIND_SPECULATABLE; 575 case Attribute::StackAlignment: 576 return bitc::ATTR_KIND_STACK_ALIGNMENT; 577 case Attribute::StackProtect: 578 return bitc::ATTR_KIND_STACK_PROTECT; 579 case Attribute::StackProtectReq: 580 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 581 case Attribute::StackProtectStrong: 582 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 583 case Attribute::SafeStack: 584 return bitc::ATTR_KIND_SAFESTACK; 585 case Attribute::StructRet: 586 return bitc::ATTR_KIND_STRUCT_RET; 587 case Attribute::SanitizeAddress: 588 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 589 case Attribute::SanitizeThread: 590 return bitc::ATTR_KIND_SANITIZE_THREAD; 591 case Attribute::SanitizeMemory: 592 return bitc::ATTR_KIND_SANITIZE_MEMORY; 593 case Attribute::SwiftError: 594 return bitc::ATTR_KIND_SWIFT_ERROR; 595 case Attribute::SwiftSelf: 596 return bitc::ATTR_KIND_SWIFT_SELF; 597 case Attribute::UWTable: 598 return bitc::ATTR_KIND_UW_TABLE; 599 case Attribute::WriteOnly: 600 return bitc::ATTR_KIND_WRITEONLY; 601 case Attribute::ZExt: 602 return bitc::ATTR_KIND_Z_EXT; 603 case Attribute::EndAttrKinds: 604 llvm_unreachable("Can not encode end-attribute kinds marker."); 605 case Attribute::None: 606 llvm_unreachable("Can not encode none-attribute."); 607 } 608 609 llvm_unreachable("Trying to encode unknown attribute"); 610 } 611 612 void ModuleBitcodeWriter::writeAttributeGroupTable() { 613 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 614 VE.getAttributeGroups(); 615 if (AttrGrps.empty()) return; 616 617 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 618 619 SmallVector<uint64_t, 64> Record; 620 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 621 unsigned AttrListIndex = Pair.first; 622 AttributeSet AS = Pair.second; 623 Record.push_back(VE.getAttributeGroupID(Pair)); 624 Record.push_back(AttrListIndex); 625 626 for (Attribute Attr : AS) { 627 if (Attr.isEnumAttribute()) { 628 Record.push_back(0); 629 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 630 } else if (Attr.isIntAttribute()) { 631 Record.push_back(1); 632 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 633 Record.push_back(Attr.getValueAsInt()); 634 } else { 635 StringRef Kind = Attr.getKindAsString(); 636 StringRef Val = Attr.getValueAsString(); 637 638 Record.push_back(Val.empty() ? 3 : 4); 639 Record.append(Kind.begin(), Kind.end()); 640 Record.push_back(0); 641 if (!Val.empty()) { 642 Record.append(Val.begin(), Val.end()); 643 Record.push_back(0); 644 } 645 } 646 } 647 648 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 649 Record.clear(); 650 } 651 652 Stream.ExitBlock(); 653 } 654 655 void ModuleBitcodeWriter::writeAttributeTable() { 656 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 657 if (Attrs.empty()) return; 658 659 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 660 661 SmallVector<uint64_t, 64> Record; 662 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 663 const AttributeList &A = Attrs[i]; 664 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 665 Record.push_back( 666 VE.getAttributeGroupID({A.getSlotIndex(i), A.getSlotAttributes(i)})); 667 668 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 669 Record.clear(); 670 } 671 672 Stream.ExitBlock(); 673 } 674 675 /// WriteTypeTable - Write out the type table for a module. 676 void ModuleBitcodeWriter::writeTypeTable() { 677 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 678 679 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 680 SmallVector<uint64_t, 64> TypeVals; 681 682 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 683 684 // Abbrev for TYPE_CODE_POINTER. 685 auto Abbv = std::make_shared<BitCodeAbbrev>(); 686 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 688 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 689 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 690 691 // Abbrev for TYPE_CODE_FUNCTION. 692 Abbv = std::make_shared<BitCodeAbbrev>(); 693 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 697 698 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 699 700 // Abbrev for TYPE_CODE_STRUCT_ANON. 701 Abbv = std::make_shared<BitCodeAbbrev>(); 702 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 706 707 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 708 709 // Abbrev for TYPE_CODE_STRUCT_NAME. 710 Abbv = std::make_shared<BitCodeAbbrev>(); 711 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 714 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 715 716 // Abbrev for TYPE_CODE_STRUCT_NAMED. 717 Abbv = std::make_shared<BitCodeAbbrev>(); 718 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 722 723 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 724 725 // Abbrev for TYPE_CODE_ARRAY. 726 Abbv = std::make_shared<BitCodeAbbrev>(); 727 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 730 731 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 732 733 // Emit an entry count so the reader can reserve space. 734 TypeVals.push_back(TypeList.size()); 735 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 736 TypeVals.clear(); 737 738 // Loop over all of the types, emitting each in turn. 739 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 740 Type *T = TypeList[i]; 741 int AbbrevToUse = 0; 742 unsigned Code = 0; 743 744 switch (T->getTypeID()) { 745 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 746 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 747 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 748 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 749 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 750 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 751 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 752 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 753 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 754 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 755 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 756 case Type::IntegerTyID: 757 // INTEGER: [width] 758 Code = bitc::TYPE_CODE_INTEGER; 759 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 760 break; 761 case Type::PointerTyID: { 762 PointerType *PTy = cast<PointerType>(T); 763 // POINTER: [pointee type, address space] 764 Code = bitc::TYPE_CODE_POINTER; 765 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 766 unsigned AddressSpace = PTy->getAddressSpace(); 767 TypeVals.push_back(AddressSpace); 768 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 769 break; 770 } 771 case Type::FunctionTyID: { 772 FunctionType *FT = cast<FunctionType>(T); 773 // FUNCTION: [isvararg, retty, paramty x N] 774 Code = bitc::TYPE_CODE_FUNCTION; 775 TypeVals.push_back(FT->isVarArg()); 776 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 777 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 778 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 779 AbbrevToUse = FunctionAbbrev; 780 break; 781 } 782 case Type::StructTyID: { 783 StructType *ST = cast<StructType>(T); 784 // STRUCT: [ispacked, eltty x N] 785 TypeVals.push_back(ST->isPacked()); 786 // Output all of the element types. 787 for (StructType::element_iterator I = ST->element_begin(), 788 E = ST->element_end(); I != E; ++I) 789 TypeVals.push_back(VE.getTypeID(*I)); 790 791 if (ST->isLiteral()) { 792 Code = bitc::TYPE_CODE_STRUCT_ANON; 793 AbbrevToUse = StructAnonAbbrev; 794 } else { 795 if (ST->isOpaque()) { 796 Code = bitc::TYPE_CODE_OPAQUE; 797 } else { 798 Code = bitc::TYPE_CODE_STRUCT_NAMED; 799 AbbrevToUse = StructNamedAbbrev; 800 } 801 802 // Emit the name if it is present. 803 if (!ST->getName().empty()) 804 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 805 StructNameAbbrev); 806 } 807 break; 808 } 809 case Type::ArrayTyID: { 810 ArrayType *AT = cast<ArrayType>(T); 811 // ARRAY: [numelts, eltty] 812 Code = bitc::TYPE_CODE_ARRAY; 813 TypeVals.push_back(AT->getNumElements()); 814 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 815 AbbrevToUse = ArrayAbbrev; 816 break; 817 } 818 case Type::VectorTyID: { 819 VectorType *VT = cast<VectorType>(T); 820 // VECTOR [numelts, eltty] 821 Code = bitc::TYPE_CODE_VECTOR; 822 TypeVals.push_back(VT->getNumElements()); 823 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 824 break; 825 } 826 } 827 828 // Emit the finished record. 829 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 830 TypeVals.clear(); 831 } 832 833 Stream.ExitBlock(); 834 } 835 836 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 837 switch (Linkage) { 838 case GlobalValue::ExternalLinkage: 839 return 0; 840 case GlobalValue::WeakAnyLinkage: 841 return 16; 842 case GlobalValue::AppendingLinkage: 843 return 2; 844 case GlobalValue::InternalLinkage: 845 return 3; 846 case GlobalValue::LinkOnceAnyLinkage: 847 return 18; 848 case GlobalValue::ExternalWeakLinkage: 849 return 7; 850 case GlobalValue::CommonLinkage: 851 return 8; 852 case GlobalValue::PrivateLinkage: 853 return 9; 854 case GlobalValue::WeakODRLinkage: 855 return 17; 856 case GlobalValue::LinkOnceODRLinkage: 857 return 19; 858 case GlobalValue::AvailableExternallyLinkage: 859 return 12; 860 } 861 llvm_unreachable("Invalid linkage"); 862 } 863 864 static unsigned getEncodedLinkage(const GlobalValue &GV) { 865 return getEncodedLinkage(GV.getLinkage()); 866 } 867 868 // Decode the flags for GlobalValue in the summary 869 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 870 uint64_t RawFlags = 0; 871 872 RawFlags |= Flags.NotEligibleToImport; // bool 873 RawFlags |= (Flags.LiveRoot << 1); 874 // Linkage don't need to be remapped at that time for the summary. Any future 875 // change to the getEncodedLinkage() function will need to be taken into 876 // account here as well. 877 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 878 879 return RawFlags; 880 } 881 882 static unsigned getEncodedVisibility(const GlobalValue &GV) { 883 switch (GV.getVisibility()) { 884 case GlobalValue::DefaultVisibility: return 0; 885 case GlobalValue::HiddenVisibility: return 1; 886 case GlobalValue::ProtectedVisibility: return 2; 887 } 888 llvm_unreachable("Invalid visibility"); 889 } 890 891 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 892 switch (GV.getDLLStorageClass()) { 893 case GlobalValue::DefaultStorageClass: return 0; 894 case GlobalValue::DLLImportStorageClass: return 1; 895 case GlobalValue::DLLExportStorageClass: return 2; 896 } 897 llvm_unreachable("Invalid DLL storage class"); 898 } 899 900 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 901 switch (GV.getThreadLocalMode()) { 902 case GlobalVariable::NotThreadLocal: return 0; 903 case GlobalVariable::GeneralDynamicTLSModel: return 1; 904 case GlobalVariable::LocalDynamicTLSModel: return 2; 905 case GlobalVariable::InitialExecTLSModel: return 3; 906 case GlobalVariable::LocalExecTLSModel: return 4; 907 } 908 llvm_unreachable("Invalid TLS model"); 909 } 910 911 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 912 switch (C.getSelectionKind()) { 913 case Comdat::Any: 914 return bitc::COMDAT_SELECTION_KIND_ANY; 915 case Comdat::ExactMatch: 916 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 917 case Comdat::Largest: 918 return bitc::COMDAT_SELECTION_KIND_LARGEST; 919 case Comdat::NoDuplicates: 920 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 921 case Comdat::SameSize: 922 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 923 } 924 llvm_unreachable("Invalid selection kind"); 925 } 926 927 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 928 switch (GV.getUnnamedAddr()) { 929 case GlobalValue::UnnamedAddr::None: return 0; 930 case GlobalValue::UnnamedAddr::Local: return 2; 931 case GlobalValue::UnnamedAddr::Global: return 1; 932 } 933 llvm_unreachable("Invalid unnamed_addr"); 934 } 935 936 void ModuleBitcodeWriter::writeComdats() { 937 SmallVector<unsigned, 64> Vals; 938 for (const Comdat *C : VE.getComdats()) { 939 // COMDAT: [strtab offset, strtab size, selection_kind] 940 Vals.push_back(StrtabBuilder.add(C->getName())); 941 Vals.push_back(C->getName().size()); 942 Vals.push_back(getEncodedComdatSelectionKind(*C)); 943 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 944 Vals.clear(); 945 } 946 } 947 948 /// Write a record that will eventually hold the word offset of the 949 /// module-level VST. For now the offset is 0, which will be backpatched 950 /// after the real VST is written. Saves the bit offset to backpatch. 951 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 952 // Write a placeholder value in for the offset of the real VST, 953 // which is written after the function blocks so that it can include 954 // the offset of each function. The placeholder offset will be 955 // updated when the real VST is written. 956 auto Abbv = std::make_shared<BitCodeAbbrev>(); 957 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 958 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 959 // hold the real VST offset. Must use fixed instead of VBR as we don't 960 // know how many VBR chunks to reserve ahead of time. 961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 962 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 963 964 // Emit the placeholder 965 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 966 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 967 968 // Compute and save the bit offset to the placeholder, which will be 969 // patched when the real VST is written. We can simply subtract the 32-bit 970 // fixed size from the current bit number to get the location to backpatch. 971 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 972 } 973 974 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 975 976 /// Determine the encoding to use for the given string name and length. 977 static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) { 978 bool isChar6 = true; 979 for (const char *C = Str, *E = C + StrLen; C != E; ++C) { 980 if (isChar6) 981 isChar6 = BitCodeAbbrevOp::isChar6(*C); 982 if ((unsigned char)*C & 128) 983 // don't bother scanning the rest. 984 return SE_Fixed8; 985 } 986 if (isChar6) 987 return SE_Char6; 988 else 989 return SE_Fixed7; 990 } 991 992 /// Emit top-level description of module, including target triple, inline asm, 993 /// descriptors for global variables, and function prototype info. 994 /// Returns the bit offset to backpatch with the location of the real VST. 995 void ModuleBitcodeWriter::writeModuleInfo() { 996 // Emit various pieces of data attached to a module. 997 if (!M.getTargetTriple().empty()) 998 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 999 0 /*TODO*/); 1000 const std::string &DL = M.getDataLayoutStr(); 1001 if (!DL.empty()) 1002 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1003 if (!M.getModuleInlineAsm().empty()) 1004 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1005 0 /*TODO*/); 1006 1007 // Emit information about sections and GC, computing how many there are. Also 1008 // compute the maximum alignment value. 1009 std::map<std::string, unsigned> SectionMap; 1010 std::map<std::string, unsigned> GCMap; 1011 unsigned MaxAlignment = 0; 1012 unsigned MaxGlobalType = 0; 1013 for (const GlobalValue &GV : M.globals()) { 1014 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1015 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1016 if (GV.hasSection()) { 1017 // Give section names unique ID's. 1018 unsigned &Entry = SectionMap[GV.getSection()]; 1019 if (!Entry) { 1020 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1021 0 /*TODO*/); 1022 Entry = SectionMap.size(); 1023 } 1024 } 1025 } 1026 for (const Function &F : M) { 1027 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1028 if (F.hasSection()) { 1029 // Give section names unique ID's. 1030 unsigned &Entry = SectionMap[F.getSection()]; 1031 if (!Entry) { 1032 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1033 0 /*TODO*/); 1034 Entry = SectionMap.size(); 1035 } 1036 } 1037 if (F.hasGC()) { 1038 // Same for GC names. 1039 unsigned &Entry = GCMap[F.getGC()]; 1040 if (!Entry) { 1041 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1042 0 /*TODO*/); 1043 Entry = GCMap.size(); 1044 } 1045 } 1046 } 1047 1048 // Emit abbrev for globals, now that we know # sections and max alignment. 1049 unsigned SimpleGVarAbbrev = 0; 1050 if (!M.global_empty()) { 1051 // Add an abbrev for common globals with no visibility or thread localness. 1052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1053 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1055 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1057 Log2_32_Ceil(MaxGlobalType+1))); 1058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1059 //| explicitType << 1 1060 //| constant 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1063 if (MaxAlignment == 0) // Alignment. 1064 Abbv->Add(BitCodeAbbrevOp(0)); 1065 else { 1066 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1068 Log2_32_Ceil(MaxEncAlignment+1))); 1069 } 1070 if (SectionMap.empty()) // Section. 1071 Abbv->Add(BitCodeAbbrevOp(0)); 1072 else 1073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1074 Log2_32_Ceil(SectionMap.size()+1))); 1075 // Don't bother emitting vis + thread local. 1076 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1077 } 1078 1079 SmallVector<unsigned, 64> Vals; 1080 // Emit the module's source file name. 1081 { 1082 StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(), 1083 M.getSourceFileName().size()); 1084 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1085 if (Bits == SE_Char6) 1086 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1087 else if (Bits == SE_Fixed7) 1088 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1089 1090 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1091 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1092 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1094 Abbv->Add(AbbrevOpToUse); 1095 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1096 1097 for (const auto P : M.getSourceFileName()) 1098 Vals.push_back((unsigned char)P); 1099 1100 // Emit the finished record. 1101 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1102 Vals.clear(); 1103 } 1104 1105 // Emit the global variable information. 1106 for (const GlobalVariable &GV : M.globals()) { 1107 unsigned AbbrevToUse = 0; 1108 1109 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1110 // linkage, alignment, section, visibility, threadlocal, 1111 // unnamed_addr, externally_initialized, dllstorageclass, 1112 // comdat, attributes] 1113 Vals.push_back(StrtabBuilder.add(GV.getName())); 1114 Vals.push_back(GV.getName().size()); 1115 Vals.push_back(VE.getTypeID(GV.getValueType())); 1116 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1117 Vals.push_back(GV.isDeclaration() ? 0 : 1118 (VE.getValueID(GV.getInitializer()) + 1)); 1119 Vals.push_back(getEncodedLinkage(GV)); 1120 Vals.push_back(Log2_32(GV.getAlignment())+1); 1121 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1122 if (GV.isThreadLocal() || 1123 GV.getVisibility() != GlobalValue::DefaultVisibility || 1124 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1125 GV.isExternallyInitialized() || 1126 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1127 GV.hasComdat() || 1128 GV.hasAttributes()) { 1129 Vals.push_back(getEncodedVisibility(GV)); 1130 Vals.push_back(getEncodedThreadLocalMode(GV)); 1131 Vals.push_back(getEncodedUnnamedAddr(GV)); 1132 Vals.push_back(GV.isExternallyInitialized()); 1133 Vals.push_back(getEncodedDLLStorageClass(GV)); 1134 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1135 1136 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1137 Vals.push_back(VE.getAttributeListID(AL)); 1138 } else { 1139 AbbrevToUse = SimpleGVarAbbrev; 1140 } 1141 1142 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1143 Vals.clear(); 1144 } 1145 1146 // Emit the function proto information. 1147 for (const Function &F : M) { 1148 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1149 // linkage, paramattrs, alignment, section, visibility, gc, 1150 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1151 // prefixdata, personalityfn] 1152 Vals.push_back(StrtabBuilder.add(F.getName())); 1153 Vals.push_back(F.getName().size()); 1154 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1155 Vals.push_back(F.getCallingConv()); 1156 Vals.push_back(F.isDeclaration()); 1157 Vals.push_back(getEncodedLinkage(F)); 1158 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1159 Vals.push_back(Log2_32(F.getAlignment())+1); 1160 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1161 Vals.push_back(getEncodedVisibility(F)); 1162 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1163 Vals.push_back(getEncodedUnnamedAddr(F)); 1164 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1165 : 0); 1166 Vals.push_back(getEncodedDLLStorageClass(F)); 1167 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1168 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1169 : 0); 1170 Vals.push_back( 1171 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1172 1173 unsigned AbbrevToUse = 0; 1174 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1175 Vals.clear(); 1176 } 1177 1178 // Emit the alias information. 1179 for (const GlobalAlias &A : M.aliases()) { 1180 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1181 // visibility, dllstorageclass, threadlocal, unnamed_addr] 1182 Vals.push_back(StrtabBuilder.add(A.getName())); 1183 Vals.push_back(A.getName().size()); 1184 Vals.push_back(VE.getTypeID(A.getValueType())); 1185 Vals.push_back(A.getType()->getAddressSpace()); 1186 Vals.push_back(VE.getValueID(A.getAliasee())); 1187 Vals.push_back(getEncodedLinkage(A)); 1188 Vals.push_back(getEncodedVisibility(A)); 1189 Vals.push_back(getEncodedDLLStorageClass(A)); 1190 Vals.push_back(getEncodedThreadLocalMode(A)); 1191 Vals.push_back(getEncodedUnnamedAddr(A)); 1192 unsigned AbbrevToUse = 0; 1193 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1194 Vals.clear(); 1195 } 1196 1197 // Emit the ifunc information. 1198 for (const GlobalIFunc &I : M.ifuncs()) { 1199 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1200 // val#, linkage, visibility] 1201 Vals.push_back(StrtabBuilder.add(I.getName())); 1202 Vals.push_back(I.getName().size()); 1203 Vals.push_back(VE.getTypeID(I.getValueType())); 1204 Vals.push_back(I.getType()->getAddressSpace()); 1205 Vals.push_back(VE.getValueID(I.getResolver())); 1206 Vals.push_back(getEncodedLinkage(I)); 1207 Vals.push_back(getEncodedVisibility(I)); 1208 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1209 Vals.clear(); 1210 } 1211 1212 writeValueSymbolTableForwardDecl(); 1213 } 1214 1215 static uint64_t getOptimizationFlags(const Value *V) { 1216 uint64_t Flags = 0; 1217 1218 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1219 if (OBO->hasNoSignedWrap()) 1220 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1221 if (OBO->hasNoUnsignedWrap()) 1222 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1223 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1224 if (PEO->isExact()) 1225 Flags |= 1 << bitc::PEO_EXACT; 1226 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1227 if (FPMO->hasUnsafeAlgebra()) 1228 Flags |= FastMathFlags::UnsafeAlgebra; 1229 if (FPMO->hasNoNaNs()) 1230 Flags |= FastMathFlags::NoNaNs; 1231 if (FPMO->hasNoInfs()) 1232 Flags |= FastMathFlags::NoInfs; 1233 if (FPMO->hasNoSignedZeros()) 1234 Flags |= FastMathFlags::NoSignedZeros; 1235 if (FPMO->hasAllowReciprocal()) 1236 Flags |= FastMathFlags::AllowReciprocal; 1237 if (FPMO->hasAllowContract()) 1238 Flags |= FastMathFlags::AllowContract; 1239 } 1240 1241 return Flags; 1242 } 1243 1244 void ModuleBitcodeWriter::writeValueAsMetadata( 1245 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1246 // Mimic an MDNode with a value as one operand. 1247 Value *V = MD->getValue(); 1248 Record.push_back(VE.getTypeID(V->getType())); 1249 Record.push_back(VE.getValueID(V)); 1250 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1251 Record.clear(); 1252 } 1253 1254 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1255 SmallVectorImpl<uint64_t> &Record, 1256 unsigned Abbrev) { 1257 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1258 Metadata *MD = N->getOperand(i); 1259 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1260 "Unexpected function-local metadata"); 1261 Record.push_back(VE.getMetadataOrNullID(MD)); 1262 } 1263 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1264 : bitc::METADATA_NODE, 1265 Record, Abbrev); 1266 Record.clear(); 1267 } 1268 1269 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1270 // Assume the column is usually under 128, and always output the inlined-at 1271 // location (it's never more expensive than building an array size 1). 1272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1273 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1279 return Stream.EmitAbbrev(std::move(Abbv)); 1280 } 1281 1282 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1283 SmallVectorImpl<uint64_t> &Record, 1284 unsigned &Abbrev) { 1285 if (!Abbrev) 1286 Abbrev = createDILocationAbbrev(); 1287 1288 Record.push_back(N->isDistinct()); 1289 Record.push_back(N->getLine()); 1290 Record.push_back(N->getColumn()); 1291 Record.push_back(VE.getMetadataID(N->getScope())); 1292 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1293 1294 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1295 Record.clear(); 1296 } 1297 1298 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1299 // Assume the column is usually under 128, and always output the inlined-at 1300 // location (it's never more expensive than building an array size 1). 1301 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1302 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1309 return Stream.EmitAbbrev(std::move(Abbv)); 1310 } 1311 1312 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1313 SmallVectorImpl<uint64_t> &Record, 1314 unsigned &Abbrev) { 1315 if (!Abbrev) 1316 Abbrev = createGenericDINodeAbbrev(); 1317 1318 Record.push_back(N->isDistinct()); 1319 Record.push_back(N->getTag()); 1320 Record.push_back(0); // Per-tag version field; unused for now. 1321 1322 for (auto &I : N->operands()) 1323 Record.push_back(VE.getMetadataOrNullID(I)); 1324 1325 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1326 Record.clear(); 1327 } 1328 1329 static uint64_t rotateSign(int64_t I) { 1330 uint64_t U = I; 1331 return I < 0 ? ~(U << 1) : U << 1; 1332 } 1333 1334 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1335 SmallVectorImpl<uint64_t> &Record, 1336 unsigned Abbrev) { 1337 Record.push_back(N->isDistinct()); 1338 Record.push_back(N->getCount()); 1339 Record.push_back(rotateSign(N->getLowerBound())); 1340 1341 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1342 Record.clear(); 1343 } 1344 1345 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1346 SmallVectorImpl<uint64_t> &Record, 1347 unsigned Abbrev) { 1348 Record.push_back(N->isDistinct()); 1349 Record.push_back(rotateSign(N->getValue())); 1350 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1351 1352 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1353 Record.clear(); 1354 } 1355 1356 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1357 SmallVectorImpl<uint64_t> &Record, 1358 unsigned Abbrev) { 1359 Record.push_back(N->isDistinct()); 1360 Record.push_back(N->getTag()); 1361 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1362 Record.push_back(N->getSizeInBits()); 1363 Record.push_back(N->getAlignInBits()); 1364 Record.push_back(N->getEncoding()); 1365 1366 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1367 Record.clear(); 1368 } 1369 1370 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1371 SmallVectorImpl<uint64_t> &Record, 1372 unsigned Abbrev) { 1373 Record.push_back(N->isDistinct()); 1374 Record.push_back(N->getTag()); 1375 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1376 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1377 Record.push_back(N->getLine()); 1378 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1379 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1380 Record.push_back(N->getSizeInBits()); 1381 Record.push_back(N->getAlignInBits()); 1382 Record.push_back(N->getOffsetInBits()); 1383 Record.push_back(N->getFlags()); 1384 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1385 1386 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1387 // that there is no DWARF address space associated with DIDerivedType. 1388 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1389 Record.push_back(*DWARFAddressSpace + 1); 1390 else 1391 Record.push_back(0); 1392 1393 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1394 Record.clear(); 1395 } 1396 1397 void ModuleBitcodeWriter::writeDICompositeType( 1398 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1399 unsigned Abbrev) { 1400 const unsigned IsNotUsedInOldTypeRef = 0x2; 1401 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1402 Record.push_back(N->getTag()); 1403 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1404 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1405 Record.push_back(N->getLine()); 1406 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1407 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1408 Record.push_back(N->getSizeInBits()); 1409 Record.push_back(N->getAlignInBits()); 1410 Record.push_back(N->getOffsetInBits()); 1411 Record.push_back(N->getFlags()); 1412 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1413 Record.push_back(N->getRuntimeLang()); 1414 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1415 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1416 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1417 1418 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1419 Record.clear(); 1420 } 1421 1422 void ModuleBitcodeWriter::writeDISubroutineType( 1423 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1424 unsigned Abbrev) { 1425 const unsigned HasNoOldTypeRefs = 0x2; 1426 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1427 Record.push_back(N->getFlags()); 1428 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1429 Record.push_back(N->getCC()); 1430 1431 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1432 Record.clear(); 1433 } 1434 1435 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1436 SmallVectorImpl<uint64_t> &Record, 1437 unsigned Abbrev) { 1438 Record.push_back(N->isDistinct()); 1439 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1440 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1441 Record.push_back(N->getChecksumKind()); 1442 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum())); 1443 1444 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1445 Record.clear(); 1446 } 1447 1448 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1449 SmallVectorImpl<uint64_t> &Record, 1450 unsigned Abbrev) { 1451 assert(N->isDistinct() && "Expected distinct compile units"); 1452 Record.push_back(/* IsDistinct */ true); 1453 Record.push_back(N->getSourceLanguage()); 1454 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1455 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1456 Record.push_back(N->isOptimized()); 1457 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1458 Record.push_back(N->getRuntimeVersion()); 1459 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1460 Record.push_back(N->getEmissionKind()); 1461 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1462 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1463 Record.push_back(/* subprograms */ 0); 1464 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1465 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1466 Record.push_back(N->getDWOId()); 1467 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1468 Record.push_back(N->getSplitDebugInlining()); 1469 Record.push_back(N->getDebugInfoForProfiling()); 1470 1471 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1472 Record.clear(); 1473 } 1474 1475 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1476 SmallVectorImpl<uint64_t> &Record, 1477 unsigned Abbrev) { 1478 uint64_t HasUnitFlag = 1 << 1; 1479 Record.push_back(N->isDistinct() | HasUnitFlag); 1480 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1481 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1482 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1483 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1484 Record.push_back(N->getLine()); 1485 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1486 Record.push_back(N->isLocalToUnit()); 1487 Record.push_back(N->isDefinition()); 1488 Record.push_back(N->getScopeLine()); 1489 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1490 Record.push_back(N->getVirtuality()); 1491 Record.push_back(N->getVirtualIndex()); 1492 Record.push_back(N->getFlags()); 1493 Record.push_back(N->isOptimized()); 1494 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1495 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1496 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1497 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1498 Record.push_back(N->getThisAdjustment()); 1499 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1500 1501 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1502 Record.clear(); 1503 } 1504 1505 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1506 SmallVectorImpl<uint64_t> &Record, 1507 unsigned Abbrev) { 1508 Record.push_back(N->isDistinct()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1510 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1511 Record.push_back(N->getLine()); 1512 Record.push_back(N->getColumn()); 1513 1514 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1515 Record.clear(); 1516 } 1517 1518 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1519 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1520 unsigned Abbrev) { 1521 Record.push_back(N->isDistinct()); 1522 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1523 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1524 Record.push_back(N->getDiscriminator()); 1525 1526 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1527 Record.clear(); 1528 } 1529 1530 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1531 SmallVectorImpl<uint64_t> &Record, 1532 unsigned Abbrev) { 1533 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1534 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1536 1537 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1538 Record.clear(); 1539 } 1540 1541 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1542 SmallVectorImpl<uint64_t> &Record, 1543 unsigned Abbrev) { 1544 Record.push_back(N->isDistinct()); 1545 Record.push_back(N->getMacinfoType()); 1546 Record.push_back(N->getLine()); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1549 1550 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1551 Record.clear(); 1552 } 1553 1554 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1555 SmallVectorImpl<uint64_t> &Record, 1556 unsigned Abbrev) { 1557 Record.push_back(N->isDistinct()); 1558 Record.push_back(N->getMacinfoType()); 1559 Record.push_back(N->getLine()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1561 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1562 1563 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1564 Record.clear(); 1565 } 1566 1567 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1568 SmallVectorImpl<uint64_t> &Record, 1569 unsigned Abbrev) { 1570 Record.push_back(N->isDistinct()); 1571 for (auto &I : N->operands()) 1572 Record.push_back(VE.getMetadataOrNullID(I)); 1573 1574 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1579 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1580 unsigned Abbrev) { 1581 Record.push_back(N->isDistinct()); 1582 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1583 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1584 1585 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1586 Record.clear(); 1587 } 1588 1589 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1590 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1591 unsigned Abbrev) { 1592 Record.push_back(N->isDistinct()); 1593 Record.push_back(N->getTag()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1597 1598 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1599 Record.clear(); 1600 } 1601 1602 void ModuleBitcodeWriter::writeDIGlobalVariable( 1603 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1604 unsigned Abbrev) { 1605 const uint64_t Version = 1 << 1; 1606 Record.push_back((uint64_t)N->isDistinct() | Version); 1607 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1608 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1609 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1610 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1611 Record.push_back(N->getLine()); 1612 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1613 Record.push_back(N->isLocalToUnit()); 1614 Record.push_back(N->isDefinition()); 1615 Record.push_back(/* expr */ 0); 1616 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1617 Record.push_back(N->getAlignInBits()); 1618 1619 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1620 Record.clear(); 1621 } 1622 1623 void ModuleBitcodeWriter::writeDILocalVariable( 1624 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1625 unsigned Abbrev) { 1626 // In order to support all possible bitcode formats in BitcodeReader we need 1627 // to distinguish the following cases: 1628 // 1) Record has no artificial tag (Record[1]), 1629 // has no obsolete inlinedAt field (Record[9]). 1630 // In this case Record size will be 8, HasAlignment flag is false. 1631 // 2) Record has artificial tag (Record[1]), 1632 // has no obsolete inlignedAt field (Record[9]). 1633 // In this case Record size will be 9, HasAlignment flag is false. 1634 // 3) Record has both artificial tag (Record[1]) and 1635 // obsolete inlignedAt field (Record[9]). 1636 // In this case Record size will be 10, HasAlignment flag is false. 1637 // 4) Record has neither artificial tag, nor inlignedAt field, but 1638 // HasAlignment flag is true and Record[8] contains alignment value. 1639 const uint64_t HasAlignmentFlag = 1 << 1; 1640 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1641 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1642 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1643 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1644 Record.push_back(N->getLine()); 1645 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1646 Record.push_back(N->getArg()); 1647 Record.push_back(N->getFlags()); 1648 Record.push_back(N->getAlignInBits()); 1649 1650 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1651 Record.clear(); 1652 } 1653 1654 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1655 SmallVectorImpl<uint64_t> &Record, 1656 unsigned Abbrev) { 1657 Record.reserve(N->getElements().size() + 1); 1658 const uint64_t Version = 2 << 1; 1659 Record.push_back((uint64_t)N->isDistinct() | Version); 1660 Record.append(N->elements_begin(), N->elements_end()); 1661 1662 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1663 Record.clear(); 1664 } 1665 1666 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1667 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1668 unsigned Abbrev) { 1669 Record.push_back(N->isDistinct()); 1670 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1671 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1672 1673 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1674 Record.clear(); 1675 } 1676 1677 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1678 SmallVectorImpl<uint64_t> &Record, 1679 unsigned Abbrev) { 1680 Record.push_back(N->isDistinct()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1683 Record.push_back(N->getLine()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1686 Record.push_back(N->getAttributes()); 1687 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1688 1689 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1690 Record.clear(); 1691 } 1692 1693 void ModuleBitcodeWriter::writeDIImportedEntity( 1694 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1695 unsigned Abbrev) { 1696 Record.push_back(N->isDistinct()); 1697 Record.push_back(N->getTag()); 1698 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1699 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1700 Record.push_back(N->getLine()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1702 1703 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1704 Record.clear(); 1705 } 1706 1707 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1708 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1709 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1712 return Stream.EmitAbbrev(std::move(Abbv)); 1713 } 1714 1715 void ModuleBitcodeWriter::writeNamedMetadata( 1716 SmallVectorImpl<uint64_t> &Record) { 1717 if (M.named_metadata_empty()) 1718 return; 1719 1720 unsigned Abbrev = createNamedMetadataAbbrev(); 1721 for (const NamedMDNode &NMD : M.named_metadata()) { 1722 // Write name. 1723 StringRef Str = NMD.getName(); 1724 Record.append(Str.bytes_begin(), Str.bytes_end()); 1725 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1726 Record.clear(); 1727 1728 // Write named metadata operands. 1729 for (const MDNode *N : NMD.operands()) 1730 Record.push_back(VE.getMetadataID(N)); 1731 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1732 Record.clear(); 1733 } 1734 } 1735 1736 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1737 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1738 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1742 return Stream.EmitAbbrev(std::move(Abbv)); 1743 } 1744 1745 /// Write out a record for MDString. 1746 /// 1747 /// All the metadata strings in a metadata block are emitted in a single 1748 /// record. The sizes and strings themselves are shoved into a blob. 1749 void ModuleBitcodeWriter::writeMetadataStrings( 1750 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1751 if (Strings.empty()) 1752 return; 1753 1754 // Start the record with the number of strings. 1755 Record.push_back(bitc::METADATA_STRINGS); 1756 Record.push_back(Strings.size()); 1757 1758 // Emit the sizes of the strings in the blob. 1759 SmallString<256> Blob; 1760 { 1761 BitstreamWriter W(Blob); 1762 for (const Metadata *MD : Strings) 1763 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1764 W.FlushToWord(); 1765 } 1766 1767 // Add the offset to the strings to the record. 1768 Record.push_back(Blob.size()); 1769 1770 // Add the strings to the blob. 1771 for (const Metadata *MD : Strings) 1772 Blob.append(cast<MDString>(MD)->getString()); 1773 1774 // Emit the final record. 1775 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1776 Record.clear(); 1777 } 1778 1779 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1780 enum MetadataAbbrev : unsigned { 1781 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1782 #include "llvm/IR/Metadata.def" 1783 LastPlusOne 1784 }; 1785 1786 void ModuleBitcodeWriter::writeMetadataRecords( 1787 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1788 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1789 if (MDs.empty()) 1790 return; 1791 1792 // Initialize MDNode abbreviations. 1793 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1794 #include "llvm/IR/Metadata.def" 1795 1796 for (const Metadata *MD : MDs) { 1797 if (IndexPos) 1798 IndexPos->push_back(Stream.GetCurrentBitNo()); 1799 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1800 assert(N->isResolved() && "Expected forward references to be resolved"); 1801 1802 switch (N->getMetadataID()) { 1803 default: 1804 llvm_unreachable("Invalid MDNode subclass"); 1805 #define HANDLE_MDNODE_LEAF(CLASS) \ 1806 case Metadata::CLASS##Kind: \ 1807 if (MDAbbrevs) \ 1808 write##CLASS(cast<CLASS>(N), Record, \ 1809 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1810 else \ 1811 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1812 continue; 1813 #include "llvm/IR/Metadata.def" 1814 } 1815 } 1816 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1817 } 1818 } 1819 1820 void ModuleBitcodeWriter::writeModuleMetadata() { 1821 if (!VE.hasMDs() && M.named_metadata_empty()) 1822 return; 1823 1824 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1825 SmallVector<uint64_t, 64> Record; 1826 1827 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1828 // block and load any metadata. 1829 std::vector<unsigned> MDAbbrevs; 1830 1831 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1832 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1833 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1834 createGenericDINodeAbbrev(); 1835 1836 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1837 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1840 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1841 1842 Abbv = std::make_shared<BitCodeAbbrev>(); 1843 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1846 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1847 1848 // Emit MDStrings together upfront. 1849 writeMetadataStrings(VE.getMDStrings(), Record); 1850 1851 // We only emit an index for the metadata record if we have more than a given 1852 // (naive) threshold of metadatas, otherwise it is not worth it. 1853 if (VE.getNonMDStrings().size() > IndexThreshold) { 1854 // Write a placeholder value in for the offset of the metadata index, 1855 // which is written after the records, so that it can include 1856 // the offset of each entry. The placeholder offset will be 1857 // updated after all records are emitted. 1858 uint64_t Vals[] = {0, 0}; 1859 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1860 } 1861 1862 // Compute and save the bit offset to the current position, which will be 1863 // patched when we emit the index later. We can simply subtract the 64-bit 1864 // fixed size from the current bit number to get the location to backpatch. 1865 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1866 1867 // This index will contain the bitpos for each individual record. 1868 std::vector<uint64_t> IndexPos; 1869 IndexPos.reserve(VE.getNonMDStrings().size()); 1870 1871 // Write all the records 1872 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 1873 1874 if (VE.getNonMDStrings().size() > IndexThreshold) { 1875 // Now that we have emitted all the records we will emit the index. But 1876 // first 1877 // backpatch the forward reference so that the reader can skip the records 1878 // efficiently. 1879 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 1880 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 1881 1882 // Delta encode the index. 1883 uint64_t PreviousValue = IndexOffsetRecordBitPos; 1884 for (auto &Elt : IndexPos) { 1885 auto EltDelta = Elt - PreviousValue; 1886 PreviousValue = Elt; 1887 Elt = EltDelta; 1888 } 1889 // Emit the index record. 1890 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 1891 IndexPos.clear(); 1892 } 1893 1894 // Write the named metadata now. 1895 writeNamedMetadata(Record); 1896 1897 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 1898 SmallVector<uint64_t, 4> Record; 1899 Record.push_back(VE.getValueID(&GO)); 1900 pushGlobalMetadataAttachment(Record, GO); 1901 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 1902 }; 1903 for (const Function &F : M) 1904 if (F.isDeclaration() && F.hasMetadata()) 1905 AddDeclAttachedMetadata(F); 1906 // FIXME: Only store metadata for declarations here, and move data for global 1907 // variable definitions to a separate block (PR28134). 1908 for (const GlobalVariable &GV : M.globals()) 1909 if (GV.hasMetadata()) 1910 AddDeclAttachedMetadata(GV); 1911 1912 Stream.ExitBlock(); 1913 } 1914 1915 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 1916 if (!VE.hasMDs()) 1917 return; 1918 1919 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1920 SmallVector<uint64_t, 64> Record; 1921 writeMetadataStrings(VE.getMDStrings(), Record); 1922 writeMetadataRecords(VE.getNonMDStrings(), Record); 1923 Stream.ExitBlock(); 1924 } 1925 1926 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 1927 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 1928 // [n x [id, mdnode]] 1929 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1930 GO.getAllMetadata(MDs); 1931 for (const auto &I : MDs) { 1932 Record.push_back(I.first); 1933 Record.push_back(VE.getMetadataID(I.second)); 1934 } 1935 } 1936 1937 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 1938 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1939 1940 SmallVector<uint64_t, 64> Record; 1941 1942 if (F.hasMetadata()) { 1943 pushGlobalMetadataAttachment(Record, F); 1944 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1945 Record.clear(); 1946 } 1947 1948 // Write metadata attachments 1949 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1950 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1951 for (const BasicBlock &BB : F) 1952 for (const Instruction &I : BB) { 1953 MDs.clear(); 1954 I.getAllMetadataOtherThanDebugLoc(MDs); 1955 1956 // If no metadata, ignore instruction. 1957 if (MDs.empty()) continue; 1958 1959 Record.push_back(VE.getInstructionID(&I)); 1960 1961 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1962 Record.push_back(MDs[i].first); 1963 Record.push_back(VE.getMetadataID(MDs[i].second)); 1964 } 1965 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1966 Record.clear(); 1967 } 1968 1969 Stream.ExitBlock(); 1970 } 1971 1972 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 1973 SmallVector<uint64_t, 64> Record; 1974 1975 // Write metadata kinds 1976 // METADATA_KIND - [n x [id, name]] 1977 SmallVector<StringRef, 8> Names; 1978 M.getMDKindNames(Names); 1979 1980 if (Names.empty()) return; 1981 1982 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 1983 1984 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1985 Record.push_back(MDKindID); 1986 StringRef KName = Names[MDKindID]; 1987 Record.append(KName.begin(), KName.end()); 1988 1989 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1990 Record.clear(); 1991 } 1992 1993 Stream.ExitBlock(); 1994 } 1995 1996 void ModuleBitcodeWriter::writeOperandBundleTags() { 1997 // Write metadata kinds 1998 // 1999 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2000 // 2001 // OPERAND_BUNDLE_TAG - [strchr x N] 2002 2003 SmallVector<StringRef, 8> Tags; 2004 M.getOperandBundleTags(Tags); 2005 2006 if (Tags.empty()) 2007 return; 2008 2009 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2010 2011 SmallVector<uint64_t, 64> Record; 2012 2013 for (auto Tag : Tags) { 2014 Record.append(Tag.begin(), Tag.end()); 2015 2016 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2017 Record.clear(); 2018 } 2019 2020 Stream.ExitBlock(); 2021 } 2022 2023 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2024 if ((int64_t)V >= 0) 2025 Vals.push_back(V << 1); 2026 else 2027 Vals.push_back((-V << 1) | 1); 2028 } 2029 2030 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2031 bool isGlobal) { 2032 if (FirstVal == LastVal) return; 2033 2034 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2035 2036 unsigned AggregateAbbrev = 0; 2037 unsigned String8Abbrev = 0; 2038 unsigned CString7Abbrev = 0; 2039 unsigned CString6Abbrev = 0; 2040 // If this is a constant pool for the module, emit module-specific abbrevs. 2041 if (isGlobal) { 2042 // Abbrev for CST_CODE_AGGREGATE. 2043 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2044 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2047 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2048 2049 // Abbrev for CST_CODE_STRING. 2050 Abbv = std::make_shared<BitCodeAbbrev>(); 2051 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2054 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2055 // Abbrev for CST_CODE_CSTRING. 2056 Abbv = std::make_shared<BitCodeAbbrev>(); 2057 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2060 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2061 // Abbrev for CST_CODE_CSTRING. 2062 Abbv = std::make_shared<BitCodeAbbrev>(); 2063 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2066 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2067 } 2068 2069 SmallVector<uint64_t, 64> Record; 2070 2071 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2072 Type *LastTy = nullptr; 2073 for (unsigned i = FirstVal; i != LastVal; ++i) { 2074 const Value *V = Vals[i].first; 2075 // If we need to switch types, do so now. 2076 if (V->getType() != LastTy) { 2077 LastTy = V->getType(); 2078 Record.push_back(VE.getTypeID(LastTy)); 2079 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2080 CONSTANTS_SETTYPE_ABBREV); 2081 Record.clear(); 2082 } 2083 2084 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2085 Record.push_back(unsigned(IA->hasSideEffects()) | 2086 unsigned(IA->isAlignStack()) << 1 | 2087 unsigned(IA->getDialect()&1) << 2); 2088 2089 // Add the asm string. 2090 const std::string &AsmStr = IA->getAsmString(); 2091 Record.push_back(AsmStr.size()); 2092 Record.append(AsmStr.begin(), AsmStr.end()); 2093 2094 // Add the constraint string. 2095 const std::string &ConstraintStr = IA->getConstraintString(); 2096 Record.push_back(ConstraintStr.size()); 2097 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2098 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2099 Record.clear(); 2100 continue; 2101 } 2102 const Constant *C = cast<Constant>(V); 2103 unsigned Code = -1U; 2104 unsigned AbbrevToUse = 0; 2105 if (C->isNullValue()) { 2106 Code = bitc::CST_CODE_NULL; 2107 } else if (isa<UndefValue>(C)) { 2108 Code = bitc::CST_CODE_UNDEF; 2109 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2110 if (IV->getBitWidth() <= 64) { 2111 uint64_t V = IV->getSExtValue(); 2112 emitSignedInt64(Record, V); 2113 Code = bitc::CST_CODE_INTEGER; 2114 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2115 } else { // Wide integers, > 64 bits in size. 2116 // We have an arbitrary precision integer value to write whose 2117 // bit width is > 64. However, in canonical unsigned integer 2118 // format it is likely that the high bits are going to be zero. 2119 // So, we only write the number of active words. 2120 unsigned NWords = IV->getValue().getActiveWords(); 2121 const uint64_t *RawWords = IV->getValue().getRawData(); 2122 for (unsigned i = 0; i != NWords; ++i) { 2123 emitSignedInt64(Record, RawWords[i]); 2124 } 2125 Code = bitc::CST_CODE_WIDE_INTEGER; 2126 } 2127 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2128 Code = bitc::CST_CODE_FLOAT; 2129 Type *Ty = CFP->getType(); 2130 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2131 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2132 } else if (Ty->isX86_FP80Ty()) { 2133 // api needed to prevent premature destruction 2134 // bits are not in the same order as a normal i80 APInt, compensate. 2135 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2136 const uint64_t *p = api.getRawData(); 2137 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2138 Record.push_back(p[0] & 0xffffLL); 2139 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2140 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2141 const uint64_t *p = api.getRawData(); 2142 Record.push_back(p[0]); 2143 Record.push_back(p[1]); 2144 } else { 2145 assert (0 && "Unknown FP type!"); 2146 } 2147 } else if (isa<ConstantDataSequential>(C) && 2148 cast<ConstantDataSequential>(C)->isString()) { 2149 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2150 // Emit constant strings specially. 2151 unsigned NumElts = Str->getNumElements(); 2152 // If this is a null-terminated string, use the denser CSTRING encoding. 2153 if (Str->isCString()) { 2154 Code = bitc::CST_CODE_CSTRING; 2155 --NumElts; // Don't encode the null, which isn't allowed by char6. 2156 } else { 2157 Code = bitc::CST_CODE_STRING; 2158 AbbrevToUse = String8Abbrev; 2159 } 2160 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2161 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2162 for (unsigned i = 0; i != NumElts; ++i) { 2163 unsigned char V = Str->getElementAsInteger(i); 2164 Record.push_back(V); 2165 isCStr7 &= (V & 128) == 0; 2166 if (isCStrChar6) 2167 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2168 } 2169 2170 if (isCStrChar6) 2171 AbbrevToUse = CString6Abbrev; 2172 else if (isCStr7) 2173 AbbrevToUse = CString7Abbrev; 2174 } else if (const ConstantDataSequential *CDS = 2175 dyn_cast<ConstantDataSequential>(C)) { 2176 Code = bitc::CST_CODE_DATA; 2177 Type *EltTy = CDS->getType()->getElementType(); 2178 if (isa<IntegerType>(EltTy)) { 2179 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2180 Record.push_back(CDS->getElementAsInteger(i)); 2181 } else { 2182 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2183 Record.push_back( 2184 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2185 } 2186 } else if (isa<ConstantAggregate>(C)) { 2187 Code = bitc::CST_CODE_AGGREGATE; 2188 for (const Value *Op : C->operands()) 2189 Record.push_back(VE.getValueID(Op)); 2190 AbbrevToUse = AggregateAbbrev; 2191 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2192 switch (CE->getOpcode()) { 2193 default: 2194 if (Instruction::isCast(CE->getOpcode())) { 2195 Code = bitc::CST_CODE_CE_CAST; 2196 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2197 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2198 Record.push_back(VE.getValueID(C->getOperand(0))); 2199 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2200 } else { 2201 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2202 Code = bitc::CST_CODE_CE_BINOP; 2203 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2204 Record.push_back(VE.getValueID(C->getOperand(0))); 2205 Record.push_back(VE.getValueID(C->getOperand(1))); 2206 uint64_t Flags = getOptimizationFlags(CE); 2207 if (Flags != 0) 2208 Record.push_back(Flags); 2209 } 2210 break; 2211 case Instruction::GetElementPtr: { 2212 Code = bitc::CST_CODE_CE_GEP; 2213 const auto *GO = cast<GEPOperator>(C); 2214 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2215 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2216 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2217 Record.push_back((*Idx << 1) | GO->isInBounds()); 2218 } else if (GO->isInBounds()) 2219 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2220 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2221 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2222 Record.push_back(VE.getValueID(C->getOperand(i))); 2223 } 2224 break; 2225 } 2226 case Instruction::Select: 2227 Code = bitc::CST_CODE_CE_SELECT; 2228 Record.push_back(VE.getValueID(C->getOperand(0))); 2229 Record.push_back(VE.getValueID(C->getOperand(1))); 2230 Record.push_back(VE.getValueID(C->getOperand(2))); 2231 break; 2232 case Instruction::ExtractElement: 2233 Code = bitc::CST_CODE_CE_EXTRACTELT; 2234 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2235 Record.push_back(VE.getValueID(C->getOperand(0))); 2236 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2237 Record.push_back(VE.getValueID(C->getOperand(1))); 2238 break; 2239 case Instruction::InsertElement: 2240 Code = bitc::CST_CODE_CE_INSERTELT; 2241 Record.push_back(VE.getValueID(C->getOperand(0))); 2242 Record.push_back(VE.getValueID(C->getOperand(1))); 2243 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2244 Record.push_back(VE.getValueID(C->getOperand(2))); 2245 break; 2246 case Instruction::ShuffleVector: 2247 // If the return type and argument types are the same, this is a 2248 // standard shufflevector instruction. If the types are different, 2249 // then the shuffle is widening or truncating the input vectors, and 2250 // the argument type must also be encoded. 2251 if (C->getType() == C->getOperand(0)->getType()) { 2252 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2253 } else { 2254 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2255 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2256 } 2257 Record.push_back(VE.getValueID(C->getOperand(0))); 2258 Record.push_back(VE.getValueID(C->getOperand(1))); 2259 Record.push_back(VE.getValueID(C->getOperand(2))); 2260 break; 2261 case Instruction::ICmp: 2262 case Instruction::FCmp: 2263 Code = bitc::CST_CODE_CE_CMP; 2264 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2265 Record.push_back(VE.getValueID(C->getOperand(0))); 2266 Record.push_back(VE.getValueID(C->getOperand(1))); 2267 Record.push_back(CE->getPredicate()); 2268 break; 2269 } 2270 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2271 Code = bitc::CST_CODE_BLOCKADDRESS; 2272 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2273 Record.push_back(VE.getValueID(BA->getFunction())); 2274 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2275 } else { 2276 #ifndef NDEBUG 2277 C->dump(); 2278 #endif 2279 llvm_unreachable("Unknown constant!"); 2280 } 2281 Stream.EmitRecord(Code, Record, AbbrevToUse); 2282 Record.clear(); 2283 } 2284 2285 Stream.ExitBlock(); 2286 } 2287 2288 void ModuleBitcodeWriter::writeModuleConstants() { 2289 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2290 2291 // Find the first constant to emit, which is the first non-globalvalue value. 2292 // We know globalvalues have been emitted by WriteModuleInfo. 2293 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2294 if (!isa<GlobalValue>(Vals[i].first)) { 2295 writeConstants(i, Vals.size(), true); 2296 return; 2297 } 2298 } 2299 } 2300 2301 /// pushValueAndType - The file has to encode both the value and type id for 2302 /// many values, because we need to know what type to create for forward 2303 /// references. However, most operands are not forward references, so this type 2304 /// field is not needed. 2305 /// 2306 /// This function adds V's value ID to Vals. If the value ID is higher than the 2307 /// instruction ID, then it is a forward reference, and it also includes the 2308 /// type ID. The value ID that is written is encoded relative to the InstID. 2309 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2310 SmallVectorImpl<unsigned> &Vals) { 2311 unsigned ValID = VE.getValueID(V); 2312 // Make encoding relative to the InstID. 2313 Vals.push_back(InstID - ValID); 2314 if (ValID >= InstID) { 2315 Vals.push_back(VE.getTypeID(V->getType())); 2316 return true; 2317 } 2318 return false; 2319 } 2320 2321 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2322 unsigned InstID) { 2323 SmallVector<unsigned, 64> Record; 2324 LLVMContext &C = CS.getInstruction()->getContext(); 2325 2326 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2327 const auto &Bundle = CS.getOperandBundleAt(i); 2328 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2329 2330 for (auto &Input : Bundle.Inputs) 2331 pushValueAndType(Input, InstID, Record); 2332 2333 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2334 Record.clear(); 2335 } 2336 } 2337 2338 /// pushValue - Like pushValueAndType, but where the type of the value is 2339 /// omitted (perhaps it was already encoded in an earlier operand). 2340 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2341 SmallVectorImpl<unsigned> &Vals) { 2342 unsigned ValID = VE.getValueID(V); 2343 Vals.push_back(InstID - ValID); 2344 } 2345 2346 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2347 SmallVectorImpl<uint64_t> &Vals) { 2348 unsigned ValID = VE.getValueID(V); 2349 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2350 emitSignedInt64(Vals, diff); 2351 } 2352 2353 /// WriteInstruction - Emit an instruction to the specified stream. 2354 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2355 unsigned InstID, 2356 SmallVectorImpl<unsigned> &Vals) { 2357 unsigned Code = 0; 2358 unsigned AbbrevToUse = 0; 2359 VE.setInstructionID(&I); 2360 switch (I.getOpcode()) { 2361 default: 2362 if (Instruction::isCast(I.getOpcode())) { 2363 Code = bitc::FUNC_CODE_INST_CAST; 2364 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2365 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2366 Vals.push_back(VE.getTypeID(I.getType())); 2367 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2368 } else { 2369 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2370 Code = bitc::FUNC_CODE_INST_BINOP; 2371 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2372 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2373 pushValue(I.getOperand(1), InstID, Vals); 2374 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2375 uint64_t Flags = getOptimizationFlags(&I); 2376 if (Flags != 0) { 2377 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2378 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2379 Vals.push_back(Flags); 2380 } 2381 } 2382 break; 2383 2384 case Instruction::GetElementPtr: { 2385 Code = bitc::FUNC_CODE_INST_GEP; 2386 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2387 auto &GEPInst = cast<GetElementPtrInst>(I); 2388 Vals.push_back(GEPInst.isInBounds()); 2389 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2390 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2391 pushValueAndType(I.getOperand(i), InstID, Vals); 2392 break; 2393 } 2394 case Instruction::ExtractValue: { 2395 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2396 pushValueAndType(I.getOperand(0), InstID, Vals); 2397 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2398 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2399 break; 2400 } 2401 case Instruction::InsertValue: { 2402 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2403 pushValueAndType(I.getOperand(0), InstID, Vals); 2404 pushValueAndType(I.getOperand(1), InstID, Vals); 2405 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2406 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2407 break; 2408 } 2409 case Instruction::Select: 2410 Code = bitc::FUNC_CODE_INST_VSELECT; 2411 pushValueAndType(I.getOperand(1), InstID, Vals); 2412 pushValue(I.getOperand(2), InstID, Vals); 2413 pushValueAndType(I.getOperand(0), InstID, Vals); 2414 break; 2415 case Instruction::ExtractElement: 2416 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2417 pushValueAndType(I.getOperand(0), InstID, Vals); 2418 pushValueAndType(I.getOperand(1), InstID, Vals); 2419 break; 2420 case Instruction::InsertElement: 2421 Code = bitc::FUNC_CODE_INST_INSERTELT; 2422 pushValueAndType(I.getOperand(0), InstID, Vals); 2423 pushValue(I.getOperand(1), InstID, Vals); 2424 pushValueAndType(I.getOperand(2), InstID, Vals); 2425 break; 2426 case Instruction::ShuffleVector: 2427 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2428 pushValueAndType(I.getOperand(0), InstID, Vals); 2429 pushValue(I.getOperand(1), InstID, Vals); 2430 pushValue(I.getOperand(2), InstID, Vals); 2431 break; 2432 case Instruction::ICmp: 2433 case Instruction::FCmp: { 2434 // compare returning Int1Ty or vector of Int1Ty 2435 Code = bitc::FUNC_CODE_INST_CMP2; 2436 pushValueAndType(I.getOperand(0), InstID, Vals); 2437 pushValue(I.getOperand(1), InstID, Vals); 2438 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2439 uint64_t Flags = getOptimizationFlags(&I); 2440 if (Flags != 0) 2441 Vals.push_back(Flags); 2442 break; 2443 } 2444 2445 case Instruction::Ret: 2446 { 2447 Code = bitc::FUNC_CODE_INST_RET; 2448 unsigned NumOperands = I.getNumOperands(); 2449 if (NumOperands == 0) 2450 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2451 else if (NumOperands == 1) { 2452 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2453 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2454 } else { 2455 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2456 pushValueAndType(I.getOperand(i), InstID, Vals); 2457 } 2458 } 2459 break; 2460 case Instruction::Br: 2461 { 2462 Code = bitc::FUNC_CODE_INST_BR; 2463 const BranchInst &II = cast<BranchInst>(I); 2464 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2465 if (II.isConditional()) { 2466 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2467 pushValue(II.getCondition(), InstID, Vals); 2468 } 2469 } 2470 break; 2471 case Instruction::Switch: 2472 { 2473 Code = bitc::FUNC_CODE_INST_SWITCH; 2474 const SwitchInst &SI = cast<SwitchInst>(I); 2475 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2476 pushValue(SI.getCondition(), InstID, Vals); 2477 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2478 for (auto Case : SI.cases()) { 2479 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2480 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2481 } 2482 } 2483 break; 2484 case Instruction::IndirectBr: 2485 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2486 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2487 // Encode the address operand as relative, but not the basic blocks. 2488 pushValue(I.getOperand(0), InstID, Vals); 2489 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2490 Vals.push_back(VE.getValueID(I.getOperand(i))); 2491 break; 2492 2493 case Instruction::Invoke: { 2494 const InvokeInst *II = cast<InvokeInst>(&I); 2495 const Value *Callee = II->getCalledValue(); 2496 FunctionType *FTy = II->getFunctionType(); 2497 2498 if (II->hasOperandBundles()) 2499 writeOperandBundles(II, InstID); 2500 2501 Code = bitc::FUNC_CODE_INST_INVOKE; 2502 2503 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2504 Vals.push_back(II->getCallingConv() | 1 << 13); 2505 Vals.push_back(VE.getValueID(II->getNormalDest())); 2506 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2507 Vals.push_back(VE.getTypeID(FTy)); 2508 pushValueAndType(Callee, InstID, Vals); 2509 2510 // Emit value #'s for the fixed parameters. 2511 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2512 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2513 2514 // Emit type/value pairs for varargs params. 2515 if (FTy->isVarArg()) { 2516 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2517 i != e; ++i) 2518 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2519 } 2520 break; 2521 } 2522 case Instruction::Resume: 2523 Code = bitc::FUNC_CODE_INST_RESUME; 2524 pushValueAndType(I.getOperand(0), InstID, Vals); 2525 break; 2526 case Instruction::CleanupRet: { 2527 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2528 const auto &CRI = cast<CleanupReturnInst>(I); 2529 pushValue(CRI.getCleanupPad(), InstID, Vals); 2530 if (CRI.hasUnwindDest()) 2531 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2532 break; 2533 } 2534 case Instruction::CatchRet: { 2535 Code = bitc::FUNC_CODE_INST_CATCHRET; 2536 const auto &CRI = cast<CatchReturnInst>(I); 2537 pushValue(CRI.getCatchPad(), InstID, Vals); 2538 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2539 break; 2540 } 2541 case Instruction::CleanupPad: 2542 case Instruction::CatchPad: { 2543 const auto &FuncletPad = cast<FuncletPadInst>(I); 2544 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2545 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2546 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2547 2548 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2549 Vals.push_back(NumArgOperands); 2550 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2551 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2552 break; 2553 } 2554 case Instruction::CatchSwitch: { 2555 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2556 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2557 2558 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2559 2560 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2561 Vals.push_back(NumHandlers); 2562 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2563 Vals.push_back(VE.getValueID(CatchPadBB)); 2564 2565 if (CatchSwitch.hasUnwindDest()) 2566 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2567 break; 2568 } 2569 case Instruction::Unreachable: 2570 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2571 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2572 break; 2573 2574 case Instruction::PHI: { 2575 const PHINode &PN = cast<PHINode>(I); 2576 Code = bitc::FUNC_CODE_INST_PHI; 2577 // With the newer instruction encoding, forward references could give 2578 // negative valued IDs. This is most common for PHIs, so we use 2579 // signed VBRs. 2580 SmallVector<uint64_t, 128> Vals64; 2581 Vals64.push_back(VE.getTypeID(PN.getType())); 2582 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2583 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2584 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2585 } 2586 // Emit a Vals64 vector and exit. 2587 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2588 Vals64.clear(); 2589 return; 2590 } 2591 2592 case Instruction::LandingPad: { 2593 const LandingPadInst &LP = cast<LandingPadInst>(I); 2594 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2595 Vals.push_back(VE.getTypeID(LP.getType())); 2596 Vals.push_back(LP.isCleanup()); 2597 Vals.push_back(LP.getNumClauses()); 2598 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2599 if (LP.isCatch(I)) 2600 Vals.push_back(LandingPadInst::Catch); 2601 else 2602 Vals.push_back(LandingPadInst::Filter); 2603 pushValueAndType(LP.getClause(I), InstID, Vals); 2604 } 2605 break; 2606 } 2607 2608 case Instruction::Alloca: { 2609 Code = bitc::FUNC_CODE_INST_ALLOCA; 2610 const AllocaInst &AI = cast<AllocaInst>(I); 2611 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2612 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2613 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2614 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2615 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2616 "not enough bits for maximum alignment"); 2617 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2618 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2619 AlignRecord |= 1 << 6; 2620 AlignRecord |= AI.isSwiftError() << 7; 2621 Vals.push_back(AlignRecord); 2622 break; 2623 } 2624 2625 case Instruction::Load: 2626 if (cast<LoadInst>(I).isAtomic()) { 2627 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2628 pushValueAndType(I.getOperand(0), InstID, Vals); 2629 } else { 2630 Code = bitc::FUNC_CODE_INST_LOAD; 2631 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2632 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2633 } 2634 Vals.push_back(VE.getTypeID(I.getType())); 2635 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2636 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2637 if (cast<LoadInst>(I).isAtomic()) { 2638 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2639 Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 2640 } 2641 break; 2642 case Instruction::Store: 2643 if (cast<StoreInst>(I).isAtomic()) 2644 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2645 else 2646 Code = bitc::FUNC_CODE_INST_STORE; 2647 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2648 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2649 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2650 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2651 if (cast<StoreInst>(I).isAtomic()) { 2652 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2653 Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 2654 } 2655 break; 2656 case Instruction::AtomicCmpXchg: 2657 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2658 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2659 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2660 pushValue(I.getOperand(2), InstID, Vals); // newval. 2661 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2662 Vals.push_back( 2663 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2664 Vals.push_back( 2665 getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope())); 2666 Vals.push_back( 2667 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2668 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2669 break; 2670 case Instruction::AtomicRMW: 2671 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2672 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2673 pushValue(I.getOperand(1), InstID, Vals); // val. 2674 Vals.push_back( 2675 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2676 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2677 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2678 Vals.push_back( 2679 getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope())); 2680 break; 2681 case Instruction::Fence: 2682 Code = bitc::FUNC_CODE_INST_FENCE; 2683 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2684 Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 2685 break; 2686 case Instruction::Call: { 2687 const CallInst &CI = cast<CallInst>(I); 2688 FunctionType *FTy = CI.getFunctionType(); 2689 2690 if (CI.hasOperandBundles()) 2691 writeOperandBundles(&CI, InstID); 2692 2693 Code = bitc::FUNC_CODE_INST_CALL; 2694 2695 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2696 2697 unsigned Flags = getOptimizationFlags(&I); 2698 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2699 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2700 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2701 1 << bitc::CALL_EXPLICIT_TYPE | 2702 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2703 unsigned(Flags != 0) << bitc::CALL_FMF); 2704 if (Flags != 0) 2705 Vals.push_back(Flags); 2706 2707 Vals.push_back(VE.getTypeID(FTy)); 2708 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2709 2710 // Emit value #'s for the fixed parameters. 2711 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2712 // Check for labels (can happen with asm labels). 2713 if (FTy->getParamType(i)->isLabelTy()) 2714 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2715 else 2716 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2717 } 2718 2719 // Emit type/value pairs for varargs params. 2720 if (FTy->isVarArg()) { 2721 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2722 i != e; ++i) 2723 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2724 } 2725 break; 2726 } 2727 case Instruction::VAArg: 2728 Code = bitc::FUNC_CODE_INST_VAARG; 2729 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2730 pushValue(I.getOperand(0), InstID, Vals); // valist. 2731 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2732 break; 2733 } 2734 2735 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2736 Vals.clear(); 2737 } 2738 2739 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2740 /// to allow clients to efficiently find the function body. 2741 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2742 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2743 // Get the offset of the VST we are writing, and backpatch it into 2744 // the VST forward declaration record. 2745 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2746 // The BitcodeStartBit was the stream offset of the identification block. 2747 VSTOffset -= bitcodeStartBit(); 2748 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2749 // Note that we add 1 here because the offset is relative to one word 2750 // before the start of the identification block, which was historically 2751 // always the start of the regular bitcode header. 2752 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2753 2754 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2755 2756 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2757 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2760 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2761 2762 for (const Function &F : M) { 2763 uint64_t Record[2]; 2764 2765 if (F.isDeclaration()) 2766 continue; 2767 2768 Record[0] = VE.getValueID(&F); 2769 2770 // Save the word offset of the function (from the start of the 2771 // actual bitcode written to the stream). 2772 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2773 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2774 // Note that we add 1 here because the offset is relative to one word 2775 // before the start of the identification block, which was historically 2776 // always the start of the regular bitcode header. 2777 Record[1] = BitcodeIndex / 32 + 1; 2778 2779 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2780 } 2781 2782 Stream.ExitBlock(); 2783 } 2784 2785 /// Emit names for arguments, instructions and basic blocks in a function. 2786 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2787 const ValueSymbolTable &VST) { 2788 if (VST.empty()) 2789 return; 2790 2791 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2792 2793 // FIXME: Set up the abbrev, we know how many values there are! 2794 // FIXME: We know if the type names can use 7-bit ascii. 2795 SmallVector<uint64_t, 64> NameVals; 2796 2797 for (const ValueName &Name : VST) { 2798 // Figure out the encoding to use for the name. 2799 StringEncoding Bits = 2800 getStringEncoding(Name.getKeyData(), Name.getKeyLength()); 2801 2802 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2803 NameVals.push_back(VE.getValueID(Name.getValue())); 2804 2805 // VST_CODE_ENTRY: [valueid, namechar x N] 2806 // VST_CODE_BBENTRY: [bbid, namechar x N] 2807 unsigned Code; 2808 if (isa<BasicBlock>(Name.getValue())) { 2809 Code = bitc::VST_CODE_BBENTRY; 2810 if (Bits == SE_Char6) 2811 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2812 } else { 2813 Code = bitc::VST_CODE_ENTRY; 2814 if (Bits == SE_Char6) 2815 AbbrevToUse = VST_ENTRY_6_ABBREV; 2816 else if (Bits == SE_Fixed7) 2817 AbbrevToUse = VST_ENTRY_7_ABBREV; 2818 } 2819 2820 for (const auto P : Name.getKey()) 2821 NameVals.push_back((unsigned char)P); 2822 2823 // Emit the finished record. 2824 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2825 NameVals.clear(); 2826 } 2827 2828 Stream.ExitBlock(); 2829 } 2830 2831 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2832 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2833 unsigned Code; 2834 if (isa<BasicBlock>(Order.V)) 2835 Code = bitc::USELIST_CODE_BB; 2836 else 2837 Code = bitc::USELIST_CODE_DEFAULT; 2838 2839 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2840 Record.push_back(VE.getValueID(Order.V)); 2841 Stream.EmitRecord(Code, Record); 2842 } 2843 2844 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2845 assert(VE.shouldPreserveUseListOrder() && 2846 "Expected to be preserving use-list order"); 2847 2848 auto hasMore = [&]() { 2849 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2850 }; 2851 if (!hasMore()) 2852 // Nothing to do. 2853 return; 2854 2855 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2856 while (hasMore()) { 2857 writeUseList(std::move(VE.UseListOrders.back())); 2858 VE.UseListOrders.pop_back(); 2859 } 2860 Stream.ExitBlock(); 2861 } 2862 2863 /// Emit a function body to the module stream. 2864 void ModuleBitcodeWriter::writeFunction( 2865 const Function &F, 2866 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2867 // Save the bitcode index of the start of this function block for recording 2868 // in the VST. 2869 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 2870 2871 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2872 VE.incorporateFunction(F); 2873 2874 SmallVector<unsigned, 64> Vals; 2875 2876 // Emit the number of basic blocks, so the reader can create them ahead of 2877 // time. 2878 Vals.push_back(VE.getBasicBlocks().size()); 2879 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2880 Vals.clear(); 2881 2882 // If there are function-local constants, emit them now. 2883 unsigned CstStart, CstEnd; 2884 VE.getFunctionConstantRange(CstStart, CstEnd); 2885 writeConstants(CstStart, CstEnd, false); 2886 2887 // If there is function-local metadata, emit it now. 2888 writeFunctionMetadata(F); 2889 2890 // Keep a running idea of what the instruction ID is. 2891 unsigned InstID = CstEnd; 2892 2893 bool NeedsMetadataAttachment = F.hasMetadata(); 2894 2895 DILocation *LastDL = nullptr; 2896 // Finally, emit all the instructions, in order. 2897 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2898 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2899 I != E; ++I) { 2900 writeInstruction(*I, InstID, Vals); 2901 2902 if (!I->getType()->isVoidTy()) 2903 ++InstID; 2904 2905 // If the instruction has metadata, write a metadata attachment later. 2906 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2907 2908 // If the instruction has a debug location, emit it. 2909 DILocation *DL = I->getDebugLoc(); 2910 if (!DL) 2911 continue; 2912 2913 if (DL == LastDL) { 2914 // Just repeat the same debug loc as last time. 2915 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2916 continue; 2917 } 2918 2919 Vals.push_back(DL->getLine()); 2920 Vals.push_back(DL->getColumn()); 2921 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 2922 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 2923 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2924 Vals.clear(); 2925 2926 LastDL = DL; 2927 } 2928 2929 // Emit names for all the instructions etc. 2930 if (auto *Symtab = F.getValueSymbolTable()) 2931 writeFunctionLevelValueSymbolTable(*Symtab); 2932 2933 if (NeedsMetadataAttachment) 2934 writeFunctionMetadataAttachment(F); 2935 if (VE.shouldPreserveUseListOrder()) 2936 writeUseListBlock(&F); 2937 VE.purgeFunction(); 2938 Stream.ExitBlock(); 2939 } 2940 2941 // Emit blockinfo, which defines the standard abbreviations etc. 2942 void ModuleBitcodeWriter::writeBlockInfo() { 2943 // We only want to emit block info records for blocks that have multiple 2944 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2945 // Other blocks can define their abbrevs inline. 2946 Stream.EnterBlockInfoBlock(); 2947 2948 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 2949 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2954 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2955 VST_ENTRY_8_ABBREV) 2956 llvm_unreachable("Unexpected abbrev ordering!"); 2957 } 2958 2959 { // 7-bit fixed width VST_CODE_ENTRY strings. 2960 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2961 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2965 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2966 VST_ENTRY_7_ABBREV) 2967 llvm_unreachable("Unexpected abbrev ordering!"); 2968 } 2969 { // 6-bit char6 VST_CODE_ENTRY strings. 2970 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2971 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2975 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2976 VST_ENTRY_6_ABBREV) 2977 llvm_unreachable("Unexpected abbrev ordering!"); 2978 } 2979 { // 6-bit char6 VST_CODE_BBENTRY strings. 2980 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2981 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2985 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 2986 VST_BBENTRY_6_ABBREV) 2987 llvm_unreachable("Unexpected abbrev ordering!"); 2988 } 2989 2990 2991 2992 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2993 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2994 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2996 VE.computeBitsRequiredForTypeIndicies())); 2997 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 2998 CONSTANTS_SETTYPE_ABBREV) 2999 llvm_unreachable("Unexpected abbrev ordering!"); 3000 } 3001 3002 { // INTEGER abbrev for CONSTANTS_BLOCK. 3003 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3004 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3006 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3007 CONSTANTS_INTEGER_ABBREV) 3008 llvm_unreachable("Unexpected abbrev ordering!"); 3009 } 3010 3011 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3012 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3013 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3016 VE.computeBitsRequiredForTypeIndicies())); 3017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3018 3019 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3020 CONSTANTS_CE_CAST_Abbrev) 3021 llvm_unreachable("Unexpected abbrev ordering!"); 3022 } 3023 { // NULL abbrev for CONSTANTS_BLOCK. 3024 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3025 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3026 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3027 CONSTANTS_NULL_Abbrev) 3028 llvm_unreachable("Unexpected abbrev ordering!"); 3029 } 3030 3031 // FIXME: This should only use space for first class types! 3032 3033 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3034 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3035 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3038 VE.computeBitsRequiredForTypeIndicies())); 3039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3041 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3042 FUNCTION_INST_LOAD_ABBREV) 3043 llvm_unreachable("Unexpected abbrev ordering!"); 3044 } 3045 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3046 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3047 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3051 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3052 FUNCTION_INST_BINOP_ABBREV) 3053 llvm_unreachable("Unexpected abbrev ordering!"); 3054 } 3055 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3056 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3057 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 3062 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3063 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3064 llvm_unreachable("Unexpected abbrev ordering!"); 3065 } 3066 { // INST_CAST abbrev for FUNCTION_BLOCK. 3067 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3068 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3071 VE.computeBitsRequiredForTypeIndicies())); 3072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3073 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3074 FUNCTION_INST_CAST_ABBREV) 3075 llvm_unreachable("Unexpected abbrev ordering!"); 3076 } 3077 3078 { // INST_RET abbrev for FUNCTION_BLOCK. 3079 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3080 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3081 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3082 FUNCTION_INST_RET_VOID_ABBREV) 3083 llvm_unreachable("Unexpected abbrev ordering!"); 3084 } 3085 { // INST_RET abbrev for FUNCTION_BLOCK. 3086 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3087 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3088 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3089 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3090 FUNCTION_INST_RET_VAL_ABBREV) 3091 llvm_unreachable("Unexpected abbrev ordering!"); 3092 } 3093 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3094 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3095 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3096 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3097 FUNCTION_INST_UNREACHABLE_ABBREV) 3098 llvm_unreachable("Unexpected abbrev ordering!"); 3099 } 3100 { 3101 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3102 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3105 Log2_32_Ceil(VE.getTypes().size() + 1))); 3106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3108 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3109 FUNCTION_INST_GEP_ABBREV) 3110 llvm_unreachable("Unexpected abbrev ordering!"); 3111 } 3112 3113 Stream.ExitBlock(); 3114 } 3115 3116 /// Write the module path strings, currently only used when generating 3117 /// a combined index file. 3118 void IndexBitcodeWriter::writeModStrings() { 3119 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3120 3121 // TODO: See which abbrev sizes we actually need to emit 3122 3123 // 8-bit fixed-width MST_ENTRY strings. 3124 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3125 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3129 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3130 3131 // 7-bit fixed width MST_ENTRY strings. 3132 Abbv = std::make_shared<BitCodeAbbrev>(); 3133 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3137 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3138 3139 // 6-bit char6 MST_ENTRY strings. 3140 Abbv = std::make_shared<BitCodeAbbrev>(); 3141 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3145 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3146 3147 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3148 Abbv = std::make_shared<BitCodeAbbrev>(); 3149 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3155 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3156 3157 SmallVector<unsigned, 64> Vals; 3158 for (const auto &MPSE : Index.modulePaths()) { 3159 if (!doIncludeModule(MPSE.getKey())) 3160 continue; 3161 StringEncoding Bits = 3162 getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size()); 3163 unsigned AbbrevToUse = Abbrev8Bit; 3164 if (Bits == SE_Char6) 3165 AbbrevToUse = Abbrev6Bit; 3166 else if (Bits == SE_Fixed7) 3167 AbbrevToUse = Abbrev7Bit; 3168 3169 Vals.push_back(MPSE.getValue().first); 3170 3171 for (const auto P : MPSE.getKey()) 3172 Vals.push_back((unsigned char)P); 3173 3174 // Emit the finished record. 3175 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3176 3177 Vals.clear(); 3178 // Emit an optional hash for the module now 3179 auto &Hash = MPSE.getValue().second; 3180 bool AllZero = true; // Detect if the hash is empty, and do not generate it 3181 for (auto Val : Hash) { 3182 if (Val) 3183 AllZero = false; 3184 Vals.push_back(Val); 3185 } 3186 if (!AllZero) { 3187 // Emit the hash record. 3188 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3189 } 3190 3191 Vals.clear(); 3192 } 3193 Stream.ExitBlock(); 3194 } 3195 3196 /// Write the function type metadata related records that need to appear before 3197 /// a function summary entry (whether per-module or combined). 3198 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3199 FunctionSummary *FS) { 3200 if (!FS->type_tests().empty()) 3201 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3202 3203 SmallVector<uint64_t, 64> Record; 3204 3205 auto WriteVFuncIdVec = [&](uint64_t Ty, 3206 ArrayRef<FunctionSummary::VFuncId> VFs) { 3207 if (VFs.empty()) 3208 return; 3209 Record.clear(); 3210 for (auto &VF : VFs) { 3211 Record.push_back(VF.GUID); 3212 Record.push_back(VF.Offset); 3213 } 3214 Stream.EmitRecord(Ty, Record); 3215 }; 3216 3217 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3218 FS->type_test_assume_vcalls()); 3219 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3220 FS->type_checked_load_vcalls()); 3221 3222 auto WriteConstVCallVec = [&](uint64_t Ty, 3223 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3224 for (auto &VC : VCs) { 3225 Record.clear(); 3226 Record.push_back(VC.VFunc.GUID); 3227 Record.push_back(VC.VFunc.Offset); 3228 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3229 Stream.EmitRecord(Ty, Record); 3230 } 3231 }; 3232 3233 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3234 FS->type_test_assume_const_vcalls()); 3235 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3236 FS->type_checked_load_const_vcalls()); 3237 } 3238 3239 // Helper to emit a single function summary record. 3240 void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord( 3241 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3242 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3243 const Function &F) { 3244 NameVals.push_back(ValueID); 3245 3246 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3247 writeFunctionTypeMetadataRecords(Stream, FS); 3248 3249 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3250 NameVals.push_back(FS->instCount()); 3251 NameVals.push_back(FS->refs().size()); 3252 3253 for (auto &RI : FS->refs()) 3254 NameVals.push_back(VE.getValueID(RI.getValue())); 3255 3256 bool HasProfileData = F.getEntryCount().hasValue(); 3257 for (auto &ECI : FS->calls()) { 3258 NameVals.push_back(getValueId(ECI.first)); 3259 if (HasProfileData) 3260 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3261 } 3262 3263 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3264 unsigned Code = 3265 (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE); 3266 3267 // Emit the finished record. 3268 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3269 NameVals.clear(); 3270 } 3271 3272 // Collect the global value references in the given variable's initializer, 3273 // and emit them in a summary record. 3274 void ModuleBitcodeWriter::writeModuleLevelReferences( 3275 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3276 unsigned FSModRefsAbbrev) { 3277 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3278 if (!VI || VI.getSummaryList().empty()) { 3279 // Only declarations should not have a summary (a declaration might however 3280 // have a summary if the def was in module level asm). 3281 assert(V.isDeclaration()); 3282 return; 3283 } 3284 auto *Summary = VI.getSummaryList()[0].get(); 3285 NameVals.push_back(VE.getValueID(&V)); 3286 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3287 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3288 3289 unsigned SizeBeforeRefs = NameVals.size(); 3290 for (auto &RI : VS->refs()) 3291 NameVals.push_back(VE.getValueID(RI.getValue())); 3292 // Sort the refs for determinism output, the vector returned by FS->refs() has 3293 // been initialized from a DenseSet. 3294 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3295 3296 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3297 FSModRefsAbbrev); 3298 NameVals.clear(); 3299 } 3300 3301 // Current version for the summary. 3302 // This is bumped whenever we introduce changes in the way some record are 3303 // interpreted, like flags for instance. 3304 static const uint64_t INDEX_VERSION = 3; 3305 3306 /// Emit the per-module summary section alongside the rest of 3307 /// the module's bitcode. 3308 void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() { 3309 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 3310 3311 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3312 3313 if (Index->begin() == Index->end()) { 3314 Stream.ExitBlock(); 3315 return; 3316 } 3317 3318 for (const auto &GVI : valueIds()) { 3319 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3320 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3321 } 3322 3323 // Abbrev for FS_PERMODULE. 3324 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3325 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3330 // numrefs x valueid, n x (valueid) 3331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3333 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3334 3335 // Abbrev for FS_PERMODULE_PROFILE. 3336 Abbv = std::make_shared<BitCodeAbbrev>(); 3337 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3342 // numrefs x valueid, n x (valueid, hotness) 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3345 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3346 3347 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3348 Abbv = std::make_shared<BitCodeAbbrev>(); 3349 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3354 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3355 3356 // Abbrev for FS_ALIAS. 3357 Abbv = std::make_shared<BitCodeAbbrev>(); 3358 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3362 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3363 3364 SmallVector<uint64_t, 64> NameVals; 3365 // Iterate over the list of functions instead of the Index to 3366 // ensure the ordering is stable. 3367 for (const Function &F : M) { 3368 // Summary emission does not support anonymous functions, they have to 3369 // renamed using the anonymous function renaming pass. 3370 if (!F.hasName()) 3371 report_fatal_error("Unexpected anonymous function when writing summary"); 3372 3373 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3374 if (!VI || VI.getSummaryList().empty()) { 3375 // Only declarations should not have a summary (a declaration might 3376 // however have a summary if the def was in module level asm). 3377 assert(F.isDeclaration()); 3378 continue; 3379 } 3380 auto *Summary = VI.getSummaryList()[0].get(); 3381 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3382 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3383 } 3384 3385 // Capture references from GlobalVariable initializers, which are outside 3386 // of a function scope. 3387 for (const GlobalVariable &G : M.globals()) 3388 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3389 3390 for (const GlobalAlias &A : M.aliases()) { 3391 auto *Aliasee = A.getBaseObject(); 3392 if (!Aliasee->hasName()) 3393 // Nameless function don't have an entry in the summary, skip it. 3394 continue; 3395 auto AliasId = VE.getValueID(&A); 3396 auto AliaseeId = VE.getValueID(Aliasee); 3397 NameVals.push_back(AliasId); 3398 auto *Summary = Index->getGlobalValueSummary(A); 3399 AliasSummary *AS = cast<AliasSummary>(Summary); 3400 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3401 NameVals.push_back(AliaseeId); 3402 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3403 NameVals.clear(); 3404 } 3405 3406 Stream.ExitBlock(); 3407 } 3408 3409 /// Emit the combined summary section into the combined index file. 3410 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3411 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3412 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3413 3414 // Create value IDs for undefined references. 3415 forEachSummary([&](GVInfo I) { 3416 if (auto *VS = dyn_cast<GlobalVarSummary>(I.second)) { 3417 for (auto &RI : VS->refs()) 3418 assignValueId(RI.getGUID()); 3419 return; 3420 } 3421 3422 auto *FS = dyn_cast<FunctionSummary>(I.second); 3423 if (!FS) 3424 return; 3425 for (auto &RI : FS->refs()) 3426 assignValueId(RI.getGUID()); 3427 3428 for (auto &EI : FS->calls()) { 3429 GlobalValue::GUID GUID = EI.first.getGUID(); 3430 if (!hasValueId(GUID)) { 3431 // For SamplePGO, the indirect call targets for local functions will 3432 // have its original name annotated in profile. We try to find the 3433 // corresponding PGOFuncName as the GUID. 3434 GUID = Index.getGUIDFromOriginalID(GUID); 3435 if (GUID == 0 || !hasValueId(GUID)) 3436 continue; 3437 } 3438 assignValueId(GUID); 3439 } 3440 }); 3441 3442 for (const auto &GVI : valueIds()) { 3443 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3444 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3445 } 3446 3447 // Abbrev for FS_COMBINED. 3448 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3449 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3455 // numrefs x valueid, n x (valueid) 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3458 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3459 3460 // Abbrev for FS_COMBINED_PROFILE. 3461 Abbv = std::make_shared<BitCodeAbbrev>(); 3462 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3468 // numrefs x valueid, n x (valueid, hotness) 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3471 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3472 3473 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3474 Abbv = std::make_shared<BitCodeAbbrev>(); 3475 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3481 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3482 3483 // Abbrev for FS_COMBINED_ALIAS. 3484 Abbv = std::make_shared<BitCodeAbbrev>(); 3485 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3490 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3491 3492 // The aliases are emitted as a post-pass, and will point to the value 3493 // id of the aliasee. Save them in a vector for post-processing. 3494 SmallVector<AliasSummary *, 64> Aliases; 3495 3496 // Save the value id for each summary for alias emission. 3497 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3498 3499 SmallVector<uint64_t, 64> NameVals; 3500 3501 // For local linkage, we also emit the original name separately 3502 // immediately after the record. 3503 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3504 if (!GlobalValue::isLocalLinkage(S.linkage())) 3505 return; 3506 NameVals.push_back(S.getOriginalName()); 3507 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3508 NameVals.clear(); 3509 }; 3510 3511 forEachSummary([&](GVInfo I) { 3512 GlobalValueSummary *S = I.second; 3513 assert(S); 3514 3515 assert(hasValueId(I.first)); 3516 unsigned ValueId = getValueId(I.first); 3517 SummaryToValueIdMap[S] = ValueId; 3518 3519 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3520 // Will process aliases as a post-pass because the reader wants all 3521 // global to be loaded first. 3522 Aliases.push_back(AS); 3523 return; 3524 } 3525 3526 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3527 NameVals.push_back(ValueId); 3528 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3529 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3530 for (auto &RI : VS->refs()) { 3531 NameVals.push_back(getValueId(RI.getGUID())); 3532 } 3533 3534 // Emit the finished record. 3535 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3536 FSModRefsAbbrev); 3537 NameVals.clear(); 3538 MaybeEmitOriginalName(*S); 3539 return; 3540 } 3541 3542 auto *FS = cast<FunctionSummary>(S); 3543 writeFunctionTypeMetadataRecords(Stream, FS); 3544 3545 NameVals.push_back(ValueId); 3546 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3547 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3548 NameVals.push_back(FS->instCount()); 3549 NameVals.push_back(FS->refs().size()); 3550 3551 for (auto &RI : FS->refs()) { 3552 NameVals.push_back(getValueId(RI.getGUID())); 3553 } 3554 3555 bool HasProfileData = false; 3556 for (auto &EI : FS->calls()) { 3557 HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown; 3558 if (HasProfileData) 3559 break; 3560 } 3561 3562 for (auto &EI : FS->calls()) { 3563 // If this GUID doesn't have a value id, it doesn't have a function 3564 // summary and we don't need to record any calls to it. 3565 GlobalValue::GUID GUID = EI.first.getGUID(); 3566 if (!hasValueId(GUID)) { 3567 // For SamplePGO, the indirect call targets for local functions will 3568 // have its original name annotated in profile. We try to find the 3569 // corresponding PGOFuncName as the GUID. 3570 GUID = Index.getGUIDFromOriginalID(GUID); 3571 if (GUID == 0 || !hasValueId(GUID)) 3572 continue; 3573 } 3574 NameVals.push_back(getValueId(GUID)); 3575 if (HasProfileData) 3576 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3577 } 3578 3579 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3580 unsigned Code = 3581 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3582 3583 // Emit the finished record. 3584 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3585 NameVals.clear(); 3586 MaybeEmitOriginalName(*S); 3587 }); 3588 3589 for (auto *AS : Aliases) { 3590 auto AliasValueId = SummaryToValueIdMap[AS]; 3591 assert(AliasValueId); 3592 NameVals.push_back(AliasValueId); 3593 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3594 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3595 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3596 assert(AliaseeValueId); 3597 NameVals.push_back(AliaseeValueId); 3598 3599 // Emit the finished record. 3600 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3601 NameVals.clear(); 3602 MaybeEmitOriginalName(*AS); 3603 } 3604 3605 Stream.ExitBlock(); 3606 } 3607 3608 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3609 /// current llvm version, and a record for the epoch number. 3610 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3611 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3612 3613 // Write the "user readable" string identifying the bitcode producer 3614 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3615 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3618 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3619 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3620 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3621 3622 // Write the epoch version 3623 Abbv = std::make_shared<BitCodeAbbrev>(); 3624 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3626 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3627 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3628 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3629 Stream.ExitBlock(); 3630 } 3631 3632 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3633 // Emit the module's hash. 3634 // MODULE_CODE_HASH: [5*i32] 3635 if (GenerateHash) { 3636 SHA1 Hasher; 3637 uint32_t Vals[5]; 3638 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3639 Buffer.size() - BlockStartPos)); 3640 StringRef Hash = Hasher.result(); 3641 for (int Pos = 0; Pos < 20; Pos += 4) { 3642 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3643 } 3644 3645 // Emit the finished record. 3646 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3647 3648 if (ModHash) 3649 // Save the written hash value. 3650 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3651 } else if (ModHash) 3652 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 3653 } 3654 3655 void ModuleBitcodeWriter::write() { 3656 writeIdentificationBlock(Stream); 3657 3658 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3659 size_t BlockStartPos = Buffer.size(); 3660 3661 writeModuleVersion(); 3662 3663 // Emit blockinfo, which defines the standard abbreviations etc. 3664 writeBlockInfo(); 3665 3666 // Emit information about attribute groups. 3667 writeAttributeGroupTable(); 3668 3669 // Emit information about parameter attributes. 3670 writeAttributeTable(); 3671 3672 // Emit information describing all of the types in the module. 3673 writeTypeTable(); 3674 3675 writeComdats(); 3676 3677 // Emit top-level description of module, including target triple, inline asm, 3678 // descriptors for global variables, and function prototype info. 3679 writeModuleInfo(); 3680 3681 // Emit constants. 3682 writeModuleConstants(); 3683 3684 // Emit metadata kind names. 3685 writeModuleMetadataKinds(); 3686 3687 // Emit metadata. 3688 writeModuleMetadata(); 3689 3690 // Emit module-level use-lists. 3691 if (VE.shouldPreserveUseListOrder()) 3692 writeUseListBlock(nullptr); 3693 3694 writeOperandBundleTags(); 3695 3696 // Emit function bodies. 3697 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3698 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3699 if (!F->isDeclaration()) 3700 writeFunction(*F, FunctionToBitcodeIndex); 3701 3702 // Need to write after the above call to WriteFunction which populates 3703 // the summary information in the index. 3704 if (Index) 3705 writePerModuleGlobalValueSummary(); 3706 3707 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3708 3709 writeModuleHash(BlockStartPos); 3710 3711 Stream.ExitBlock(); 3712 } 3713 3714 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3715 uint32_t &Position) { 3716 support::endian::write32le(&Buffer[Position], Value); 3717 Position += 4; 3718 } 3719 3720 /// If generating a bc file on darwin, we have to emit a 3721 /// header and trailer to make it compatible with the system archiver. To do 3722 /// this we emit the following header, and then emit a trailer that pads the 3723 /// file out to be a multiple of 16 bytes. 3724 /// 3725 /// struct bc_header { 3726 /// uint32_t Magic; // 0x0B17C0DE 3727 /// uint32_t Version; // Version, currently always 0. 3728 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3729 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3730 /// uint32_t CPUType; // CPU specifier. 3731 /// ... potentially more later ... 3732 /// }; 3733 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3734 const Triple &TT) { 3735 unsigned CPUType = ~0U; 3736 3737 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3738 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3739 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3740 // specific constants here because they are implicitly part of the Darwin ABI. 3741 enum { 3742 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3743 DARWIN_CPU_TYPE_X86 = 7, 3744 DARWIN_CPU_TYPE_ARM = 12, 3745 DARWIN_CPU_TYPE_POWERPC = 18 3746 }; 3747 3748 Triple::ArchType Arch = TT.getArch(); 3749 if (Arch == Triple::x86_64) 3750 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3751 else if (Arch == Triple::x86) 3752 CPUType = DARWIN_CPU_TYPE_X86; 3753 else if (Arch == Triple::ppc) 3754 CPUType = DARWIN_CPU_TYPE_POWERPC; 3755 else if (Arch == Triple::ppc64) 3756 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 3757 else if (Arch == Triple::arm || Arch == Triple::thumb) 3758 CPUType = DARWIN_CPU_TYPE_ARM; 3759 3760 // Traditional Bitcode starts after header. 3761 assert(Buffer.size() >= BWH_HeaderSize && 3762 "Expected header size to be reserved"); 3763 unsigned BCOffset = BWH_HeaderSize; 3764 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 3765 3766 // Write the magic and version. 3767 unsigned Position = 0; 3768 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 3769 writeInt32ToBuffer(0, Buffer, Position); // Version. 3770 writeInt32ToBuffer(BCOffset, Buffer, Position); 3771 writeInt32ToBuffer(BCSize, Buffer, Position); 3772 writeInt32ToBuffer(CPUType, Buffer, Position); 3773 3774 // If the file is not a multiple of 16 bytes, insert dummy padding. 3775 while (Buffer.size() & 15) 3776 Buffer.push_back(0); 3777 } 3778 3779 /// Helper to write the header common to all bitcode files. 3780 static void writeBitcodeHeader(BitstreamWriter &Stream) { 3781 // Emit the file header. 3782 Stream.Emit((unsigned)'B', 8); 3783 Stream.Emit((unsigned)'C', 8); 3784 Stream.Emit(0x0, 4); 3785 Stream.Emit(0xC, 4); 3786 Stream.Emit(0xE, 4); 3787 Stream.Emit(0xD, 4); 3788 } 3789 3790 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 3791 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 3792 writeBitcodeHeader(*Stream); 3793 } 3794 3795 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 3796 3797 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 3798 Stream->EnterSubblock(Block, 3); 3799 3800 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3801 Abbv->Add(BitCodeAbbrevOp(Record)); 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 3803 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 3804 3805 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 3806 3807 Stream->ExitBlock(); 3808 } 3809 3810 void BitcodeWriter::writeStrtab() { 3811 assert(!WroteStrtab); 3812 3813 std::vector<char> Strtab; 3814 StrtabBuilder.finalizeInOrder(); 3815 Strtab.resize(StrtabBuilder.getSize()); 3816 StrtabBuilder.write((uint8_t *)Strtab.data()); 3817 3818 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 3819 {Strtab.data(), Strtab.size()}); 3820 3821 WroteStrtab = true; 3822 } 3823 3824 void BitcodeWriter::copyStrtab(StringRef Strtab) { 3825 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 3826 WroteStrtab = true; 3827 } 3828 3829 void BitcodeWriter::writeModule(const Module *M, 3830 bool ShouldPreserveUseListOrder, 3831 const ModuleSummaryIndex *Index, 3832 bool GenerateHash, ModuleHash *ModHash) { 3833 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 3834 ShouldPreserveUseListOrder, Index, 3835 GenerateHash, ModHash); 3836 ModuleWriter.write(); 3837 } 3838 3839 /// WriteBitcodeToFile - Write the specified module to the specified output 3840 /// stream. 3841 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out, 3842 bool ShouldPreserveUseListOrder, 3843 const ModuleSummaryIndex *Index, 3844 bool GenerateHash, ModuleHash *ModHash) { 3845 SmallVector<char, 0> Buffer; 3846 Buffer.reserve(256*1024); 3847 3848 // If this is darwin or another generic macho target, reserve space for the 3849 // header. 3850 Triple TT(M->getTargetTriple()); 3851 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3852 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 3853 3854 BitcodeWriter Writer(Buffer); 3855 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 3856 ModHash); 3857 Writer.writeStrtab(); 3858 3859 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 3860 emitDarwinBCHeaderAndTrailer(Buffer, TT); 3861 3862 // Write the generated bitstream to "Out". 3863 Out.write((char*)&Buffer.front(), Buffer.size()); 3864 } 3865 3866 void IndexBitcodeWriter::write() { 3867 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3868 3869 writeModuleVersion(); 3870 3871 // Write the module paths in the combined index. 3872 writeModStrings(); 3873 3874 // Write the summary combined index records. 3875 writeCombinedGlobalValueSummary(); 3876 3877 Stream.ExitBlock(); 3878 } 3879 3880 // Write the specified module summary index to the given raw output stream, 3881 // where it will be written in a new bitcode block. This is used when 3882 // writing the combined index file for ThinLTO. When writing a subset of the 3883 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 3884 void llvm::WriteIndexToFile( 3885 const ModuleSummaryIndex &Index, raw_ostream &Out, 3886 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 3887 SmallVector<char, 0> Buffer; 3888 Buffer.reserve(256 * 1024); 3889 3890 BitstreamWriter Stream(Buffer); 3891 writeBitcodeHeader(Stream); 3892 3893 IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex); 3894 IndexWriter.write(); 3895 3896 Out.write((char *)&Buffer.front(), Buffer.size()); 3897 } 3898