1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/Program.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 CurVersion = 0, 45 46 // VALUE_SYMTAB_BLOCK abbrev id's. 47 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 VST_ENTRY_7_ABBREV, 49 VST_ENTRY_6_ABBREV, 50 VST_BBENTRY_6_ABBREV, 51 52 // CONSTANTS_BLOCK abbrev id's. 53 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 CONSTANTS_INTEGER_ABBREV, 55 CONSTANTS_CE_CAST_Abbrev, 56 CONSTANTS_NULL_Abbrev, 57 58 // FUNCTION_BLOCK abbrev id's. 59 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 FUNCTION_INST_BINOP_ABBREV, 61 FUNCTION_INST_BINOP_FLAGS_ABBREV, 62 FUNCTION_INST_CAST_ABBREV, 63 FUNCTION_INST_RET_VOID_ABBREV, 64 FUNCTION_INST_RET_VAL_ABBREV, 65 FUNCTION_INST_UNREACHABLE_ABBREV 66 }; 67 68 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 69 switch (Opcode) { 70 default: llvm_unreachable("Unknown cast instruction!"); 71 case Instruction::Trunc : return bitc::CAST_TRUNC; 72 case Instruction::ZExt : return bitc::CAST_ZEXT; 73 case Instruction::SExt : return bitc::CAST_SEXT; 74 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 75 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 76 case Instruction::UIToFP : return bitc::CAST_UITOFP; 77 case Instruction::SIToFP : return bitc::CAST_SITOFP; 78 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 79 case Instruction::FPExt : return bitc::CAST_FPEXT; 80 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 81 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 82 case Instruction::BitCast : return bitc::CAST_BITCAST; 83 } 84 } 85 86 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 87 switch (Opcode) { 88 default: llvm_unreachable("Unknown binary instruction!"); 89 case Instruction::Add: 90 case Instruction::FAdd: return bitc::BINOP_ADD; 91 case Instruction::Sub: 92 case Instruction::FSub: return bitc::BINOP_SUB; 93 case Instruction::Mul: 94 case Instruction::FMul: return bitc::BINOP_MUL; 95 case Instruction::UDiv: return bitc::BINOP_UDIV; 96 case Instruction::FDiv: 97 case Instruction::SDiv: return bitc::BINOP_SDIV; 98 case Instruction::URem: return bitc::BINOP_UREM; 99 case Instruction::FRem: 100 case Instruction::SRem: return bitc::BINOP_SREM; 101 case Instruction::Shl: return bitc::BINOP_SHL; 102 case Instruction::LShr: return bitc::BINOP_LSHR; 103 case Instruction::AShr: return bitc::BINOP_ASHR; 104 case Instruction::And: return bitc::BINOP_AND; 105 case Instruction::Or: return bitc::BINOP_OR; 106 case Instruction::Xor: return bitc::BINOP_XOR; 107 } 108 } 109 110 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 111 switch (Op) { 112 default: llvm_unreachable("Unknown RMW operation!"); 113 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 114 case AtomicRMWInst::Add: return bitc::RMW_ADD; 115 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 116 case AtomicRMWInst::And: return bitc::RMW_AND; 117 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 118 case AtomicRMWInst::Or: return bitc::RMW_OR; 119 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 120 case AtomicRMWInst::Max: return bitc::RMW_MAX; 121 case AtomicRMWInst::Min: return bitc::RMW_MIN; 122 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 123 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 124 } 125 } 126 127 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 128 switch (Ordering) { 129 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 130 case Unordered: return bitc::ORDERING_UNORDERED; 131 case Monotonic: return bitc::ORDERING_MONOTONIC; 132 case Acquire: return bitc::ORDERING_ACQUIRE; 133 case Release: return bitc::ORDERING_RELEASE; 134 case AcquireRelease: return bitc::ORDERING_ACQREL; 135 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 136 } 137 } 138 139 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 140 switch (SynchScope) { 141 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 142 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 143 } 144 } 145 146 static void WriteStringRecord(unsigned Code, StringRef Str, 147 unsigned AbbrevToUse, BitstreamWriter &Stream) { 148 SmallVector<unsigned, 64> Vals; 149 150 // Code: [strchar x N] 151 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 152 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 153 AbbrevToUse = 0; 154 Vals.push_back(Str[i]); 155 } 156 157 // Emit the finished record. 158 Stream.EmitRecord(Code, Vals, AbbrevToUse); 159 } 160 161 // Emit information about parameter attributes. 162 static void WriteAttributeTable(const ValueEnumerator &VE, 163 BitstreamWriter &Stream) { 164 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 165 if (Attrs.empty()) return; 166 167 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 168 169 SmallVector<uint64_t, 64> Record; 170 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 171 const AttrListPtr &A = Attrs[i]; 172 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 173 const AttributeWithIndex &PAWI = A.getSlot(i); 174 Record.push_back(PAWI.Index); 175 176 // FIXME: remove in LLVM 3.0 177 // Store the alignment in the bitcode as a 16-bit raw value instead of a 178 // 5-bit log2 encoded value. Shift the bits above the alignment up by 179 // 11 bits. 180 uint64_t FauxAttr = PAWI.Attrs & 0xffff; 181 if (PAWI.Attrs & Attribute::Alignment) 182 FauxAttr |= (1ull<<16)<<(((PAWI.Attrs & Attribute::Alignment)-1) >> 16); 183 FauxAttr |= (PAWI.Attrs & (0x3FFull << 21)) << 11; 184 185 Record.push_back(FauxAttr); 186 } 187 188 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 189 Record.clear(); 190 } 191 192 Stream.ExitBlock(); 193 } 194 195 /// WriteTypeTable - Write out the type table for a module. 196 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 197 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 198 199 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 200 SmallVector<uint64_t, 64> TypeVals; 201 202 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 203 204 // Abbrev for TYPE_CODE_POINTER. 205 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 206 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 208 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 209 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 210 211 // Abbrev for TYPE_CODE_FUNCTION. 212 Abbv = new BitCodeAbbrev(); 213 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 217 218 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 219 220 // Abbrev for TYPE_CODE_STRUCT_ANON. 221 Abbv = new BitCodeAbbrev(); 222 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 226 227 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 228 229 // Abbrev for TYPE_CODE_STRUCT_NAME. 230 Abbv = new BitCodeAbbrev(); 231 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 234 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 235 236 // Abbrev for TYPE_CODE_STRUCT_NAMED. 237 Abbv = new BitCodeAbbrev(); 238 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 242 243 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 244 245 // Abbrev for TYPE_CODE_ARRAY. 246 Abbv = new BitCodeAbbrev(); 247 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 250 251 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 252 253 // Emit an entry count so the reader can reserve space. 254 TypeVals.push_back(TypeList.size()); 255 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 256 TypeVals.clear(); 257 258 // Loop over all of the types, emitting each in turn. 259 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 260 Type *T = TypeList[i]; 261 int AbbrevToUse = 0; 262 unsigned Code = 0; 263 264 switch (T->getTypeID()) { 265 default: llvm_unreachable("Unknown type!"); 266 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 267 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 268 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 269 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 270 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 271 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 272 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 273 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 274 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 275 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 276 case Type::IntegerTyID: 277 // INTEGER: [width] 278 Code = bitc::TYPE_CODE_INTEGER; 279 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 280 break; 281 case Type::PointerTyID: { 282 PointerType *PTy = cast<PointerType>(T); 283 // POINTER: [pointee type, address space] 284 Code = bitc::TYPE_CODE_POINTER; 285 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 286 unsigned AddressSpace = PTy->getAddressSpace(); 287 TypeVals.push_back(AddressSpace); 288 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 289 break; 290 } 291 case Type::FunctionTyID: { 292 FunctionType *FT = cast<FunctionType>(T); 293 // FUNCTION: [isvararg, retty, paramty x N] 294 Code = bitc::TYPE_CODE_FUNCTION; 295 TypeVals.push_back(FT->isVarArg()); 296 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 297 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 298 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 299 AbbrevToUse = FunctionAbbrev; 300 break; 301 } 302 case Type::StructTyID: { 303 StructType *ST = cast<StructType>(T); 304 // STRUCT: [ispacked, eltty x N] 305 TypeVals.push_back(ST->isPacked()); 306 // Output all of the element types. 307 for (StructType::element_iterator I = ST->element_begin(), 308 E = ST->element_end(); I != E; ++I) 309 TypeVals.push_back(VE.getTypeID(*I)); 310 311 if (ST->isLiteral()) { 312 Code = bitc::TYPE_CODE_STRUCT_ANON; 313 AbbrevToUse = StructAnonAbbrev; 314 } else { 315 if (ST->isOpaque()) { 316 Code = bitc::TYPE_CODE_OPAQUE; 317 } else { 318 Code = bitc::TYPE_CODE_STRUCT_NAMED; 319 AbbrevToUse = StructNamedAbbrev; 320 } 321 322 // Emit the name if it is present. 323 if (!ST->getName().empty()) 324 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 325 StructNameAbbrev, Stream); 326 } 327 break; 328 } 329 case Type::ArrayTyID: { 330 ArrayType *AT = cast<ArrayType>(T); 331 // ARRAY: [numelts, eltty] 332 Code = bitc::TYPE_CODE_ARRAY; 333 TypeVals.push_back(AT->getNumElements()); 334 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 335 AbbrevToUse = ArrayAbbrev; 336 break; 337 } 338 case Type::VectorTyID: { 339 VectorType *VT = cast<VectorType>(T); 340 // VECTOR [numelts, eltty] 341 Code = bitc::TYPE_CODE_VECTOR; 342 TypeVals.push_back(VT->getNumElements()); 343 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 344 break; 345 } 346 } 347 348 // Emit the finished record. 349 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 350 TypeVals.clear(); 351 } 352 353 Stream.ExitBlock(); 354 } 355 356 static unsigned getEncodedLinkage(const GlobalValue *GV) { 357 switch (GV->getLinkage()) { 358 case GlobalValue::ExternalLinkage: return 0; 359 case GlobalValue::WeakAnyLinkage: return 1; 360 case GlobalValue::AppendingLinkage: return 2; 361 case GlobalValue::InternalLinkage: return 3; 362 case GlobalValue::LinkOnceAnyLinkage: return 4; 363 case GlobalValue::DLLImportLinkage: return 5; 364 case GlobalValue::DLLExportLinkage: return 6; 365 case GlobalValue::ExternalWeakLinkage: return 7; 366 case GlobalValue::CommonLinkage: return 8; 367 case GlobalValue::PrivateLinkage: return 9; 368 case GlobalValue::WeakODRLinkage: return 10; 369 case GlobalValue::LinkOnceODRLinkage: return 11; 370 case GlobalValue::AvailableExternallyLinkage: return 12; 371 case GlobalValue::LinkerPrivateLinkage: return 13; 372 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 373 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 374 } 375 } 376 377 static unsigned getEncodedVisibility(const GlobalValue *GV) { 378 switch (GV->getVisibility()) { 379 case GlobalValue::DefaultVisibility: return 0; 380 case GlobalValue::HiddenVisibility: return 1; 381 case GlobalValue::ProtectedVisibility: return 2; 382 } 383 } 384 385 // Emit top-level description of module, including target triple, inline asm, 386 // descriptors for global variables, and function prototype info. 387 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 388 BitstreamWriter &Stream) { 389 // Emit the list of dependent libraries for the Module. 390 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 391 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 392 393 // Emit various pieces of data attached to a module. 394 if (!M->getTargetTriple().empty()) 395 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 396 0/*TODO*/, Stream); 397 if (!M->getDataLayout().empty()) 398 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 399 0/*TODO*/, Stream); 400 if (!M->getModuleInlineAsm().empty()) 401 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 402 0/*TODO*/, Stream); 403 404 // Emit information about sections and GC, computing how many there are. Also 405 // compute the maximum alignment value. 406 std::map<std::string, unsigned> SectionMap; 407 std::map<std::string, unsigned> GCMap; 408 unsigned MaxAlignment = 0; 409 unsigned MaxGlobalType = 0; 410 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 411 GV != E; ++GV) { 412 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 413 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 414 if (GV->hasSection()) { 415 // Give section names unique ID's. 416 unsigned &Entry = SectionMap[GV->getSection()]; 417 if (!Entry) { 418 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 419 0/*TODO*/, Stream); 420 Entry = SectionMap.size(); 421 } 422 } 423 } 424 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 425 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 426 if (F->hasSection()) { 427 // Give section names unique ID's. 428 unsigned &Entry = SectionMap[F->getSection()]; 429 if (!Entry) { 430 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 431 0/*TODO*/, Stream); 432 Entry = SectionMap.size(); 433 } 434 } 435 if (F->hasGC()) { 436 // Same for GC names. 437 unsigned &Entry = GCMap[F->getGC()]; 438 if (!Entry) { 439 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 440 0/*TODO*/, Stream); 441 Entry = GCMap.size(); 442 } 443 } 444 } 445 446 // Emit abbrev for globals, now that we know # sections and max alignment. 447 unsigned SimpleGVarAbbrev = 0; 448 if (!M->global_empty()) { 449 // Add an abbrev for common globals with no visibility or thread localness. 450 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 451 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 453 Log2_32_Ceil(MaxGlobalType+1))); 454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 457 if (MaxAlignment == 0) // Alignment. 458 Abbv->Add(BitCodeAbbrevOp(0)); 459 else { 460 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 462 Log2_32_Ceil(MaxEncAlignment+1))); 463 } 464 if (SectionMap.empty()) // Section. 465 Abbv->Add(BitCodeAbbrevOp(0)); 466 else 467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 468 Log2_32_Ceil(SectionMap.size()+1))); 469 // Don't bother emitting vis + thread local. 470 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 471 } 472 473 // Emit the global variable information. 474 SmallVector<unsigned, 64> Vals; 475 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 476 GV != E; ++GV) { 477 unsigned AbbrevToUse = 0; 478 479 // GLOBALVAR: [type, isconst, initid, 480 // linkage, alignment, section, visibility, threadlocal, 481 // unnamed_addr] 482 Vals.push_back(VE.getTypeID(GV->getType())); 483 Vals.push_back(GV->isConstant()); 484 Vals.push_back(GV->isDeclaration() ? 0 : 485 (VE.getValueID(GV->getInitializer()) + 1)); 486 Vals.push_back(getEncodedLinkage(GV)); 487 Vals.push_back(Log2_32(GV->getAlignment())+1); 488 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 489 if (GV->isThreadLocal() || 490 GV->getVisibility() != GlobalValue::DefaultVisibility || 491 GV->hasUnnamedAddr()) { 492 Vals.push_back(getEncodedVisibility(GV)); 493 Vals.push_back(GV->isThreadLocal()); 494 Vals.push_back(GV->hasUnnamedAddr()); 495 } else { 496 AbbrevToUse = SimpleGVarAbbrev; 497 } 498 499 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 500 Vals.clear(); 501 } 502 503 // Emit the function proto information. 504 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 505 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 506 // section, visibility, gc, unnamed_addr] 507 Vals.push_back(VE.getTypeID(F->getType())); 508 Vals.push_back(F->getCallingConv()); 509 Vals.push_back(F->isDeclaration()); 510 Vals.push_back(getEncodedLinkage(F)); 511 Vals.push_back(VE.getAttributeID(F->getAttributes())); 512 Vals.push_back(Log2_32(F->getAlignment())+1); 513 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 514 Vals.push_back(getEncodedVisibility(F)); 515 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 516 Vals.push_back(F->hasUnnamedAddr()); 517 518 unsigned AbbrevToUse = 0; 519 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 520 Vals.clear(); 521 } 522 523 // Emit the alias information. 524 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 525 AI != E; ++AI) { 526 // ALIAS: [alias type, aliasee val#, linkage, visibility] 527 Vals.push_back(VE.getTypeID(AI->getType())); 528 Vals.push_back(VE.getValueID(AI->getAliasee())); 529 Vals.push_back(getEncodedLinkage(AI)); 530 Vals.push_back(getEncodedVisibility(AI)); 531 unsigned AbbrevToUse = 0; 532 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 533 Vals.clear(); 534 } 535 } 536 537 static uint64_t GetOptimizationFlags(const Value *V) { 538 uint64_t Flags = 0; 539 540 if (const OverflowingBinaryOperator *OBO = 541 dyn_cast<OverflowingBinaryOperator>(V)) { 542 if (OBO->hasNoSignedWrap()) 543 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 544 if (OBO->hasNoUnsignedWrap()) 545 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 546 } else if (const PossiblyExactOperator *PEO = 547 dyn_cast<PossiblyExactOperator>(V)) { 548 if (PEO->isExact()) 549 Flags |= 1 << bitc::PEO_EXACT; 550 } 551 552 return Flags; 553 } 554 555 static void WriteMDNode(const MDNode *N, 556 const ValueEnumerator &VE, 557 BitstreamWriter &Stream, 558 SmallVector<uint64_t, 64> &Record) { 559 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 560 if (N->getOperand(i)) { 561 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 562 Record.push_back(VE.getValueID(N->getOperand(i))); 563 } else { 564 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 565 Record.push_back(0); 566 } 567 } 568 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 569 bitc::METADATA_NODE; 570 Stream.EmitRecord(MDCode, Record, 0); 571 Record.clear(); 572 } 573 574 static void WriteModuleMetadata(const Module *M, 575 const ValueEnumerator &VE, 576 BitstreamWriter &Stream) { 577 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 578 bool StartedMetadataBlock = false; 579 unsigned MDSAbbrev = 0; 580 SmallVector<uint64_t, 64> Record; 581 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 582 583 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 584 if (!N->isFunctionLocal() || !N->getFunction()) { 585 if (!StartedMetadataBlock) { 586 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 587 StartedMetadataBlock = true; 588 } 589 WriteMDNode(N, VE, Stream, Record); 590 } 591 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 592 if (!StartedMetadataBlock) { 593 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 594 595 // Abbrev for METADATA_STRING. 596 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 597 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 600 MDSAbbrev = Stream.EmitAbbrev(Abbv); 601 StartedMetadataBlock = true; 602 } 603 604 // Code: [strchar x N] 605 Record.append(MDS->begin(), MDS->end()); 606 607 // Emit the finished record. 608 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 609 Record.clear(); 610 } 611 } 612 613 // Write named metadata. 614 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 615 E = M->named_metadata_end(); I != E; ++I) { 616 const NamedMDNode *NMD = I; 617 if (!StartedMetadataBlock) { 618 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 619 StartedMetadataBlock = true; 620 } 621 622 // Write name. 623 StringRef Str = NMD->getName(); 624 for (unsigned i = 0, e = Str.size(); i != e; ++i) 625 Record.push_back(Str[i]); 626 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 627 Record.clear(); 628 629 // Write named metadata operands. 630 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 631 Record.push_back(VE.getValueID(NMD->getOperand(i))); 632 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 633 Record.clear(); 634 } 635 636 if (StartedMetadataBlock) 637 Stream.ExitBlock(); 638 } 639 640 static void WriteFunctionLocalMetadata(const Function &F, 641 const ValueEnumerator &VE, 642 BitstreamWriter &Stream) { 643 bool StartedMetadataBlock = false; 644 SmallVector<uint64_t, 64> Record; 645 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 646 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 647 if (const MDNode *N = Vals[i]) 648 if (N->isFunctionLocal() && N->getFunction() == &F) { 649 if (!StartedMetadataBlock) { 650 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 651 StartedMetadataBlock = true; 652 } 653 WriteMDNode(N, VE, Stream, Record); 654 } 655 656 if (StartedMetadataBlock) 657 Stream.ExitBlock(); 658 } 659 660 static void WriteMetadataAttachment(const Function &F, 661 const ValueEnumerator &VE, 662 BitstreamWriter &Stream) { 663 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 664 665 SmallVector<uint64_t, 64> Record; 666 667 // Write metadata attachments 668 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 669 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 670 671 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 672 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 673 I != E; ++I) { 674 MDs.clear(); 675 I->getAllMetadataOtherThanDebugLoc(MDs); 676 677 // If no metadata, ignore instruction. 678 if (MDs.empty()) continue; 679 680 Record.push_back(VE.getInstructionID(I)); 681 682 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 683 Record.push_back(MDs[i].first); 684 Record.push_back(VE.getValueID(MDs[i].second)); 685 } 686 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 687 Record.clear(); 688 } 689 690 Stream.ExitBlock(); 691 } 692 693 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 694 SmallVector<uint64_t, 64> Record; 695 696 // Write metadata kinds 697 // METADATA_KIND - [n x [id, name]] 698 SmallVector<StringRef, 4> Names; 699 M->getMDKindNames(Names); 700 701 if (Names.empty()) return; 702 703 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 704 705 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 706 Record.push_back(MDKindID); 707 StringRef KName = Names[MDKindID]; 708 Record.append(KName.begin(), KName.end()); 709 710 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 711 Record.clear(); 712 } 713 714 Stream.ExitBlock(); 715 } 716 717 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 718 const ValueEnumerator &VE, 719 BitstreamWriter &Stream, bool isGlobal) { 720 if (FirstVal == LastVal) return; 721 722 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 723 724 unsigned AggregateAbbrev = 0; 725 unsigned String8Abbrev = 0; 726 unsigned CString7Abbrev = 0; 727 unsigned CString6Abbrev = 0; 728 // If this is a constant pool for the module, emit module-specific abbrevs. 729 if (isGlobal) { 730 // Abbrev for CST_CODE_AGGREGATE. 731 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 732 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 735 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 736 737 // Abbrev for CST_CODE_STRING. 738 Abbv = new BitCodeAbbrev(); 739 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 742 String8Abbrev = Stream.EmitAbbrev(Abbv); 743 // Abbrev for CST_CODE_CSTRING. 744 Abbv = new BitCodeAbbrev(); 745 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 748 CString7Abbrev = Stream.EmitAbbrev(Abbv); 749 // Abbrev for CST_CODE_CSTRING. 750 Abbv = new BitCodeAbbrev(); 751 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 754 CString6Abbrev = Stream.EmitAbbrev(Abbv); 755 } 756 757 SmallVector<uint64_t, 64> Record; 758 759 const ValueEnumerator::ValueList &Vals = VE.getValues(); 760 Type *LastTy = 0; 761 for (unsigned i = FirstVal; i != LastVal; ++i) { 762 const Value *V = Vals[i].first; 763 // If we need to switch types, do so now. 764 if (V->getType() != LastTy) { 765 LastTy = V->getType(); 766 Record.push_back(VE.getTypeID(LastTy)); 767 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 768 CONSTANTS_SETTYPE_ABBREV); 769 Record.clear(); 770 } 771 772 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 773 Record.push_back(unsigned(IA->hasSideEffects()) | 774 unsigned(IA->isAlignStack()) << 1); 775 776 // Add the asm string. 777 const std::string &AsmStr = IA->getAsmString(); 778 Record.push_back(AsmStr.size()); 779 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 780 Record.push_back(AsmStr[i]); 781 782 // Add the constraint string. 783 const std::string &ConstraintStr = IA->getConstraintString(); 784 Record.push_back(ConstraintStr.size()); 785 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 786 Record.push_back(ConstraintStr[i]); 787 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 788 Record.clear(); 789 continue; 790 } 791 const Constant *C = cast<Constant>(V); 792 unsigned Code = -1U; 793 unsigned AbbrevToUse = 0; 794 if (C->isNullValue()) { 795 Code = bitc::CST_CODE_NULL; 796 } else if (isa<UndefValue>(C)) { 797 Code = bitc::CST_CODE_UNDEF; 798 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 799 if (IV->getBitWidth() <= 64) { 800 uint64_t V = IV->getSExtValue(); 801 if ((int64_t)V >= 0) 802 Record.push_back(V << 1); 803 else 804 Record.push_back((-V << 1) | 1); 805 Code = bitc::CST_CODE_INTEGER; 806 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 807 } else { // Wide integers, > 64 bits in size. 808 // We have an arbitrary precision integer value to write whose 809 // bit width is > 64. However, in canonical unsigned integer 810 // format it is likely that the high bits are going to be zero. 811 // So, we only write the number of active words. 812 unsigned NWords = IV->getValue().getActiveWords(); 813 const uint64_t *RawWords = IV->getValue().getRawData(); 814 for (unsigned i = 0; i != NWords; ++i) { 815 int64_t V = RawWords[i]; 816 if (V >= 0) 817 Record.push_back(V << 1); 818 else 819 Record.push_back((-V << 1) | 1); 820 } 821 Code = bitc::CST_CODE_WIDE_INTEGER; 822 } 823 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 824 Code = bitc::CST_CODE_FLOAT; 825 Type *Ty = CFP->getType(); 826 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 827 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 828 } else if (Ty->isX86_FP80Ty()) { 829 // api needed to prevent premature destruction 830 // bits are not in the same order as a normal i80 APInt, compensate. 831 APInt api = CFP->getValueAPF().bitcastToAPInt(); 832 const uint64_t *p = api.getRawData(); 833 Record.push_back((p[1] << 48) | (p[0] >> 16)); 834 Record.push_back(p[0] & 0xffffLL); 835 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 836 APInt api = CFP->getValueAPF().bitcastToAPInt(); 837 const uint64_t *p = api.getRawData(); 838 Record.push_back(p[0]); 839 Record.push_back(p[1]); 840 } else { 841 assert (0 && "Unknown FP type!"); 842 } 843 } else if (isa<ConstantArray>(C) && cast<ConstantArray>(C)->isString()) { 844 const ConstantArray *CA = cast<ConstantArray>(C); 845 // Emit constant strings specially. 846 unsigned NumOps = CA->getNumOperands(); 847 // If this is a null-terminated string, use the denser CSTRING encoding. 848 if (CA->getOperand(NumOps-1)->isNullValue()) { 849 Code = bitc::CST_CODE_CSTRING; 850 --NumOps; // Don't encode the null, which isn't allowed by char6. 851 } else { 852 Code = bitc::CST_CODE_STRING; 853 AbbrevToUse = String8Abbrev; 854 } 855 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 856 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 857 for (unsigned i = 0; i != NumOps; ++i) { 858 unsigned char V = cast<ConstantInt>(CA->getOperand(i))->getZExtValue(); 859 Record.push_back(V); 860 isCStr7 &= (V & 128) == 0; 861 if (isCStrChar6) 862 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 863 } 864 865 if (isCStrChar6) 866 AbbrevToUse = CString6Abbrev; 867 else if (isCStr7) 868 AbbrevToUse = CString7Abbrev; 869 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 870 isa<ConstantVector>(V)) { 871 Code = bitc::CST_CODE_AGGREGATE; 872 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 873 Record.push_back(VE.getValueID(C->getOperand(i))); 874 AbbrevToUse = AggregateAbbrev; 875 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 876 switch (CE->getOpcode()) { 877 default: 878 if (Instruction::isCast(CE->getOpcode())) { 879 Code = bitc::CST_CODE_CE_CAST; 880 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 881 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 882 Record.push_back(VE.getValueID(C->getOperand(0))); 883 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 884 } else { 885 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 886 Code = bitc::CST_CODE_CE_BINOP; 887 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 888 Record.push_back(VE.getValueID(C->getOperand(0))); 889 Record.push_back(VE.getValueID(C->getOperand(1))); 890 uint64_t Flags = GetOptimizationFlags(CE); 891 if (Flags != 0) 892 Record.push_back(Flags); 893 } 894 break; 895 case Instruction::GetElementPtr: 896 Code = bitc::CST_CODE_CE_GEP; 897 if (cast<GEPOperator>(C)->isInBounds()) 898 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 899 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 900 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 901 Record.push_back(VE.getValueID(C->getOperand(i))); 902 } 903 break; 904 case Instruction::Select: 905 Code = bitc::CST_CODE_CE_SELECT; 906 Record.push_back(VE.getValueID(C->getOperand(0))); 907 Record.push_back(VE.getValueID(C->getOperand(1))); 908 Record.push_back(VE.getValueID(C->getOperand(2))); 909 break; 910 case Instruction::ExtractElement: 911 Code = bitc::CST_CODE_CE_EXTRACTELT; 912 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 913 Record.push_back(VE.getValueID(C->getOperand(0))); 914 Record.push_back(VE.getValueID(C->getOperand(1))); 915 break; 916 case Instruction::InsertElement: 917 Code = bitc::CST_CODE_CE_INSERTELT; 918 Record.push_back(VE.getValueID(C->getOperand(0))); 919 Record.push_back(VE.getValueID(C->getOperand(1))); 920 Record.push_back(VE.getValueID(C->getOperand(2))); 921 break; 922 case Instruction::ShuffleVector: 923 // If the return type and argument types are the same, this is a 924 // standard shufflevector instruction. If the types are different, 925 // then the shuffle is widening or truncating the input vectors, and 926 // the argument type must also be encoded. 927 if (C->getType() == C->getOperand(0)->getType()) { 928 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 929 } else { 930 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 931 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 932 } 933 Record.push_back(VE.getValueID(C->getOperand(0))); 934 Record.push_back(VE.getValueID(C->getOperand(1))); 935 Record.push_back(VE.getValueID(C->getOperand(2))); 936 break; 937 case Instruction::ICmp: 938 case Instruction::FCmp: 939 Code = bitc::CST_CODE_CE_CMP; 940 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 941 Record.push_back(VE.getValueID(C->getOperand(0))); 942 Record.push_back(VE.getValueID(C->getOperand(1))); 943 Record.push_back(CE->getPredicate()); 944 break; 945 } 946 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 947 Code = bitc::CST_CODE_BLOCKADDRESS; 948 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 949 Record.push_back(VE.getValueID(BA->getFunction())); 950 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 951 } else { 952 #ifndef NDEBUG 953 C->dump(); 954 #endif 955 llvm_unreachable("Unknown constant!"); 956 } 957 Stream.EmitRecord(Code, Record, AbbrevToUse); 958 Record.clear(); 959 } 960 961 Stream.ExitBlock(); 962 } 963 964 static void WriteModuleConstants(const ValueEnumerator &VE, 965 BitstreamWriter &Stream) { 966 const ValueEnumerator::ValueList &Vals = VE.getValues(); 967 968 // Find the first constant to emit, which is the first non-globalvalue value. 969 // We know globalvalues have been emitted by WriteModuleInfo. 970 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 971 if (!isa<GlobalValue>(Vals[i].first)) { 972 WriteConstants(i, Vals.size(), VE, Stream, true); 973 return; 974 } 975 } 976 } 977 978 /// PushValueAndType - The file has to encode both the value and type id for 979 /// many values, because we need to know what type to create for forward 980 /// references. However, most operands are not forward references, so this type 981 /// field is not needed. 982 /// 983 /// This function adds V's value ID to Vals. If the value ID is higher than the 984 /// instruction ID, then it is a forward reference, and it also includes the 985 /// type ID. 986 static bool PushValueAndType(const Value *V, unsigned InstID, 987 SmallVector<unsigned, 64> &Vals, 988 ValueEnumerator &VE) { 989 unsigned ValID = VE.getValueID(V); 990 Vals.push_back(ValID); 991 if (ValID >= InstID) { 992 Vals.push_back(VE.getTypeID(V->getType())); 993 return true; 994 } 995 return false; 996 } 997 998 /// WriteInstruction - Emit an instruction to the specified stream. 999 static void WriteInstruction(const Instruction &I, unsigned InstID, 1000 ValueEnumerator &VE, BitstreamWriter &Stream, 1001 SmallVector<unsigned, 64> &Vals) { 1002 unsigned Code = 0; 1003 unsigned AbbrevToUse = 0; 1004 VE.setInstructionID(&I); 1005 switch (I.getOpcode()) { 1006 default: 1007 if (Instruction::isCast(I.getOpcode())) { 1008 Code = bitc::FUNC_CODE_INST_CAST; 1009 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1010 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1011 Vals.push_back(VE.getTypeID(I.getType())); 1012 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1013 } else { 1014 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1015 Code = bitc::FUNC_CODE_INST_BINOP; 1016 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1017 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1018 Vals.push_back(VE.getValueID(I.getOperand(1))); 1019 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1020 uint64_t Flags = GetOptimizationFlags(&I); 1021 if (Flags != 0) { 1022 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1023 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1024 Vals.push_back(Flags); 1025 } 1026 } 1027 break; 1028 1029 case Instruction::GetElementPtr: 1030 Code = bitc::FUNC_CODE_INST_GEP; 1031 if (cast<GEPOperator>(&I)->isInBounds()) 1032 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1033 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1034 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1035 break; 1036 case Instruction::ExtractValue: { 1037 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1038 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1039 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1040 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1041 Vals.push_back(*i); 1042 break; 1043 } 1044 case Instruction::InsertValue: { 1045 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1046 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1047 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1048 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1049 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1050 Vals.push_back(*i); 1051 break; 1052 } 1053 case Instruction::Select: 1054 Code = bitc::FUNC_CODE_INST_VSELECT; 1055 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1056 Vals.push_back(VE.getValueID(I.getOperand(2))); 1057 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1058 break; 1059 case Instruction::ExtractElement: 1060 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1061 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1062 Vals.push_back(VE.getValueID(I.getOperand(1))); 1063 break; 1064 case Instruction::InsertElement: 1065 Code = bitc::FUNC_CODE_INST_INSERTELT; 1066 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1067 Vals.push_back(VE.getValueID(I.getOperand(1))); 1068 Vals.push_back(VE.getValueID(I.getOperand(2))); 1069 break; 1070 case Instruction::ShuffleVector: 1071 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1072 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1073 Vals.push_back(VE.getValueID(I.getOperand(1))); 1074 Vals.push_back(VE.getValueID(I.getOperand(2))); 1075 break; 1076 case Instruction::ICmp: 1077 case Instruction::FCmp: 1078 // compare returning Int1Ty or vector of Int1Ty 1079 Code = bitc::FUNC_CODE_INST_CMP2; 1080 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1081 Vals.push_back(VE.getValueID(I.getOperand(1))); 1082 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1083 break; 1084 1085 case Instruction::Ret: 1086 { 1087 Code = bitc::FUNC_CODE_INST_RET; 1088 unsigned NumOperands = I.getNumOperands(); 1089 if (NumOperands == 0) 1090 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1091 else if (NumOperands == 1) { 1092 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1093 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1094 } else { 1095 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1096 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1097 } 1098 } 1099 break; 1100 case Instruction::Br: 1101 { 1102 Code = bitc::FUNC_CODE_INST_BR; 1103 BranchInst &II = cast<BranchInst>(I); 1104 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1105 if (II.isConditional()) { 1106 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1107 Vals.push_back(VE.getValueID(II.getCondition())); 1108 } 1109 } 1110 break; 1111 case Instruction::Switch: 1112 Code = bitc::FUNC_CODE_INST_SWITCH; 1113 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1114 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1115 Vals.push_back(VE.getValueID(I.getOperand(i))); 1116 break; 1117 case Instruction::IndirectBr: 1118 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1119 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1120 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1121 Vals.push_back(VE.getValueID(I.getOperand(i))); 1122 break; 1123 1124 case Instruction::Invoke: { 1125 const InvokeInst *II = cast<InvokeInst>(&I); 1126 const Value *Callee(II->getCalledValue()); 1127 PointerType *PTy = cast<PointerType>(Callee->getType()); 1128 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1129 Code = bitc::FUNC_CODE_INST_INVOKE; 1130 1131 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1132 Vals.push_back(II->getCallingConv()); 1133 Vals.push_back(VE.getValueID(II->getNormalDest())); 1134 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1135 PushValueAndType(Callee, InstID, Vals, VE); 1136 1137 // Emit value #'s for the fixed parameters. 1138 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1139 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1140 1141 // Emit type/value pairs for varargs params. 1142 if (FTy->isVarArg()) { 1143 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1144 i != e; ++i) 1145 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1146 } 1147 break; 1148 } 1149 case Instruction::Resume: 1150 Code = bitc::FUNC_CODE_INST_RESUME; 1151 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1152 break; 1153 case Instruction::Unwind: 1154 Code = bitc::FUNC_CODE_INST_UNWIND; 1155 break; 1156 case Instruction::Unreachable: 1157 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1158 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1159 break; 1160 1161 case Instruction::PHI: { 1162 const PHINode &PN = cast<PHINode>(I); 1163 Code = bitc::FUNC_CODE_INST_PHI; 1164 Vals.push_back(VE.getTypeID(PN.getType())); 1165 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1166 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1167 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1168 } 1169 break; 1170 } 1171 1172 case Instruction::LandingPad: { 1173 const LandingPadInst &LP = cast<LandingPadInst>(I); 1174 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1175 Vals.push_back(VE.getTypeID(LP.getType())); 1176 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1177 Vals.push_back(LP.isCleanup()); 1178 Vals.push_back(LP.getNumClauses()); 1179 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1180 if (LP.isCatch(I)) 1181 Vals.push_back(LandingPadInst::Catch); 1182 else 1183 Vals.push_back(LandingPadInst::Filter); 1184 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1185 } 1186 break; 1187 } 1188 1189 case Instruction::Alloca: 1190 Code = bitc::FUNC_CODE_INST_ALLOCA; 1191 Vals.push_back(VE.getTypeID(I.getType())); 1192 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1193 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1194 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1195 break; 1196 1197 case Instruction::Load: 1198 if (cast<LoadInst>(I).isAtomic()) { 1199 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1200 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1201 } else { 1202 Code = bitc::FUNC_CODE_INST_LOAD; 1203 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1204 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1205 } 1206 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1207 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1208 if (cast<LoadInst>(I).isAtomic()) { 1209 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1210 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1211 } 1212 break; 1213 case Instruction::Store: 1214 if (cast<StoreInst>(I).isAtomic()) 1215 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1216 else 1217 Code = bitc::FUNC_CODE_INST_STORE; 1218 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1219 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1220 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1221 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1222 if (cast<StoreInst>(I).isAtomic()) { 1223 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1224 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1225 } 1226 break; 1227 case Instruction::AtomicCmpXchg: 1228 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1229 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1230 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1231 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1232 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1233 Vals.push_back(GetEncodedOrdering( 1234 cast<AtomicCmpXchgInst>(I).getOrdering())); 1235 Vals.push_back(GetEncodedSynchScope( 1236 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1237 break; 1238 case Instruction::AtomicRMW: 1239 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1240 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1241 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1242 Vals.push_back(GetEncodedRMWOperation( 1243 cast<AtomicRMWInst>(I).getOperation())); 1244 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1245 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1246 Vals.push_back(GetEncodedSynchScope( 1247 cast<AtomicRMWInst>(I).getSynchScope())); 1248 break; 1249 case Instruction::Fence: 1250 Code = bitc::FUNC_CODE_INST_FENCE; 1251 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1252 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1253 break; 1254 case Instruction::Call: { 1255 const CallInst &CI = cast<CallInst>(I); 1256 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1257 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1258 1259 Code = bitc::FUNC_CODE_INST_CALL; 1260 1261 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1262 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1263 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1264 1265 // Emit value #'s for the fixed parameters. 1266 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1267 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1268 1269 // Emit type/value pairs for varargs params. 1270 if (FTy->isVarArg()) { 1271 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1272 i != e; ++i) 1273 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1274 } 1275 break; 1276 } 1277 case Instruction::VAArg: 1278 Code = bitc::FUNC_CODE_INST_VAARG; 1279 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1280 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1281 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1282 break; 1283 } 1284 1285 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1286 Vals.clear(); 1287 } 1288 1289 // Emit names for globals/functions etc. 1290 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1291 const ValueEnumerator &VE, 1292 BitstreamWriter &Stream) { 1293 if (VST.empty()) return; 1294 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1295 1296 // FIXME: Set up the abbrev, we know how many values there are! 1297 // FIXME: We know if the type names can use 7-bit ascii. 1298 SmallVector<unsigned, 64> NameVals; 1299 1300 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1301 SI != SE; ++SI) { 1302 1303 const ValueName &Name = *SI; 1304 1305 // Figure out the encoding to use for the name. 1306 bool is7Bit = true; 1307 bool isChar6 = true; 1308 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1309 C != E; ++C) { 1310 if (isChar6) 1311 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1312 if ((unsigned char)*C & 128) { 1313 is7Bit = false; 1314 break; // don't bother scanning the rest. 1315 } 1316 } 1317 1318 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1319 1320 // VST_ENTRY: [valueid, namechar x N] 1321 // VST_BBENTRY: [bbid, namechar x N] 1322 unsigned Code; 1323 if (isa<BasicBlock>(SI->getValue())) { 1324 Code = bitc::VST_CODE_BBENTRY; 1325 if (isChar6) 1326 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1327 } else { 1328 Code = bitc::VST_CODE_ENTRY; 1329 if (isChar6) 1330 AbbrevToUse = VST_ENTRY_6_ABBREV; 1331 else if (is7Bit) 1332 AbbrevToUse = VST_ENTRY_7_ABBREV; 1333 } 1334 1335 NameVals.push_back(VE.getValueID(SI->getValue())); 1336 for (const char *P = Name.getKeyData(), 1337 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1338 NameVals.push_back((unsigned char)*P); 1339 1340 // Emit the finished record. 1341 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1342 NameVals.clear(); 1343 } 1344 Stream.ExitBlock(); 1345 } 1346 1347 /// WriteFunction - Emit a function body to the module stream. 1348 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1349 BitstreamWriter &Stream) { 1350 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1351 VE.incorporateFunction(F); 1352 1353 SmallVector<unsigned, 64> Vals; 1354 1355 // Emit the number of basic blocks, so the reader can create them ahead of 1356 // time. 1357 Vals.push_back(VE.getBasicBlocks().size()); 1358 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1359 Vals.clear(); 1360 1361 // If there are function-local constants, emit them now. 1362 unsigned CstStart, CstEnd; 1363 VE.getFunctionConstantRange(CstStart, CstEnd); 1364 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1365 1366 // If there is function-local metadata, emit it now. 1367 WriteFunctionLocalMetadata(F, VE, Stream); 1368 1369 // Keep a running idea of what the instruction ID is. 1370 unsigned InstID = CstEnd; 1371 1372 bool NeedsMetadataAttachment = false; 1373 1374 DebugLoc LastDL; 1375 1376 // Finally, emit all the instructions, in order. 1377 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1378 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1379 I != E; ++I) { 1380 WriteInstruction(*I, InstID, VE, Stream, Vals); 1381 1382 if (!I->getType()->isVoidTy()) 1383 ++InstID; 1384 1385 // If the instruction has metadata, write a metadata attachment later. 1386 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1387 1388 // If the instruction has a debug location, emit it. 1389 DebugLoc DL = I->getDebugLoc(); 1390 if (DL.isUnknown()) { 1391 // nothing todo. 1392 } else if (DL == LastDL) { 1393 // Just repeat the same debug loc as last time. 1394 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1395 } else { 1396 MDNode *Scope, *IA; 1397 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1398 1399 Vals.push_back(DL.getLine()); 1400 Vals.push_back(DL.getCol()); 1401 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1402 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1403 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1404 Vals.clear(); 1405 1406 LastDL = DL; 1407 } 1408 } 1409 1410 // Emit names for all the instructions etc. 1411 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1412 1413 if (NeedsMetadataAttachment) 1414 WriteMetadataAttachment(F, VE, Stream); 1415 VE.purgeFunction(); 1416 Stream.ExitBlock(); 1417 } 1418 1419 // Emit blockinfo, which defines the standard abbreviations etc. 1420 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1421 // We only want to emit block info records for blocks that have multiple 1422 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1423 // blocks can defined their abbrevs inline. 1424 Stream.EnterBlockInfoBlock(2); 1425 1426 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1427 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1432 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1433 Abbv) != VST_ENTRY_8_ABBREV) 1434 llvm_unreachable("Unexpected abbrev ordering!"); 1435 } 1436 1437 { // 7-bit fixed width VST_ENTRY strings. 1438 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1439 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1443 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1444 Abbv) != VST_ENTRY_7_ABBREV) 1445 llvm_unreachable("Unexpected abbrev ordering!"); 1446 } 1447 { // 6-bit char6 VST_ENTRY strings. 1448 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1449 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1453 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1454 Abbv) != VST_ENTRY_6_ABBREV) 1455 llvm_unreachable("Unexpected abbrev ordering!"); 1456 } 1457 { // 6-bit char6 VST_BBENTRY strings. 1458 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1459 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1463 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1464 Abbv) != VST_BBENTRY_6_ABBREV) 1465 llvm_unreachable("Unexpected abbrev ordering!"); 1466 } 1467 1468 1469 1470 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1471 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1472 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1474 Log2_32_Ceil(VE.getTypes().size()+1))); 1475 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1476 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1477 llvm_unreachable("Unexpected abbrev ordering!"); 1478 } 1479 1480 { // INTEGER abbrev for CONSTANTS_BLOCK. 1481 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1482 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1484 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1485 Abbv) != CONSTANTS_INTEGER_ABBREV) 1486 llvm_unreachable("Unexpected abbrev ordering!"); 1487 } 1488 1489 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1490 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1491 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1494 Log2_32_Ceil(VE.getTypes().size()+1))); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1496 1497 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1498 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1499 llvm_unreachable("Unexpected abbrev ordering!"); 1500 } 1501 { // NULL abbrev for CONSTANTS_BLOCK. 1502 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1503 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1504 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1505 Abbv) != CONSTANTS_NULL_Abbrev) 1506 llvm_unreachable("Unexpected abbrev ordering!"); 1507 } 1508 1509 // FIXME: This should only use space for first class types! 1510 1511 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1512 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1513 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1517 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1518 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1519 llvm_unreachable("Unexpected abbrev ordering!"); 1520 } 1521 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1522 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1523 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1527 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1528 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1529 llvm_unreachable("Unexpected abbrev ordering!"); 1530 } 1531 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1532 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1533 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1538 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1539 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1540 llvm_unreachable("Unexpected abbrev ordering!"); 1541 } 1542 { // INST_CAST abbrev for FUNCTION_BLOCK. 1543 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1544 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1547 Log2_32_Ceil(VE.getTypes().size()+1))); 1548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1549 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1550 Abbv) != FUNCTION_INST_CAST_ABBREV) 1551 llvm_unreachable("Unexpected abbrev ordering!"); 1552 } 1553 1554 { // INST_RET abbrev for FUNCTION_BLOCK. 1555 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1556 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1557 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1558 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1559 llvm_unreachable("Unexpected abbrev ordering!"); 1560 } 1561 { // INST_RET abbrev for FUNCTION_BLOCK. 1562 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1563 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1565 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1566 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1567 llvm_unreachable("Unexpected abbrev ordering!"); 1568 } 1569 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1570 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1571 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1572 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1573 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1574 llvm_unreachable("Unexpected abbrev ordering!"); 1575 } 1576 1577 Stream.ExitBlock(); 1578 } 1579 1580 // Sort the Users based on the order in which the reader parses the bitcode 1581 // file. 1582 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1583 // TODO: Implement. 1584 return true; 1585 } 1586 1587 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1588 BitstreamWriter &Stream) { 1589 1590 // One or zero uses can't get out of order. 1591 if (V->use_empty() || V->hasNUses(1)) 1592 return; 1593 1594 // Make a copy of the in-memory use-list for sorting. 1595 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1596 SmallVector<const User*, 8> UseList; 1597 UseList.reserve(UseListSize); 1598 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1599 I != E; ++I) { 1600 const User *U = *I; 1601 UseList.push_back(U); 1602 } 1603 1604 // Sort the copy based on the order read by the BitcodeReader. 1605 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1606 1607 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1608 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1609 1610 // TODO: Emit the USELIST_CODE_ENTRYs. 1611 } 1612 1613 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1614 BitstreamWriter &Stream) { 1615 VE.incorporateFunction(*F); 1616 1617 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1618 AI != AE; ++AI) 1619 WriteUseList(AI, VE, Stream); 1620 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1621 ++BB) { 1622 WriteUseList(BB, VE, Stream); 1623 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1624 ++II) { 1625 WriteUseList(II, VE, Stream); 1626 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1627 OI != E; ++OI) { 1628 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1629 isa<InlineAsm>(*OI)) 1630 WriteUseList(*OI, VE, Stream); 1631 } 1632 } 1633 } 1634 VE.purgeFunction(); 1635 } 1636 1637 // Emit use-lists. 1638 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1639 BitstreamWriter &Stream) { 1640 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1641 1642 // XXX: this modifies the module, but in a way that should never change the 1643 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1644 // contain entries in the use_list that do not exist in the Module and are 1645 // not stored in the .bc file. 1646 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1647 I != E; ++I) 1648 I->removeDeadConstantUsers(); 1649 1650 // Write the global variables. 1651 for (Module::const_global_iterator GI = M->global_begin(), 1652 GE = M->global_end(); GI != GE; ++GI) { 1653 WriteUseList(GI, VE, Stream); 1654 1655 // Write the global variable initializers. 1656 if (GI->hasInitializer()) 1657 WriteUseList(GI->getInitializer(), VE, Stream); 1658 } 1659 1660 // Write the functions. 1661 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1662 WriteUseList(FI, VE, Stream); 1663 if (!FI->isDeclaration()) 1664 WriteFunctionUseList(FI, VE, Stream); 1665 } 1666 1667 // Write the aliases. 1668 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1669 AI != AE; ++AI) { 1670 WriteUseList(AI, VE, Stream); 1671 WriteUseList(AI->getAliasee(), VE, Stream); 1672 } 1673 1674 Stream.ExitBlock(); 1675 } 1676 1677 /// WriteModule - Emit the specified module to the bitstream. 1678 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1679 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1680 1681 // Emit the version number if it is non-zero. 1682 if (CurVersion) { 1683 SmallVector<unsigned, 1> Vals; 1684 Vals.push_back(CurVersion); 1685 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1686 } 1687 1688 // Analyze the module, enumerating globals, functions, etc. 1689 ValueEnumerator VE(M); 1690 1691 // Emit blockinfo, which defines the standard abbreviations etc. 1692 WriteBlockInfo(VE, Stream); 1693 1694 // Emit information about parameter attributes. 1695 WriteAttributeTable(VE, Stream); 1696 1697 // Emit information describing all of the types in the module. 1698 WriteTypeTable(VE, Stream); 1699 1700 // Emit top-level description of module, including target triple, inline asm, 1701 // descriptors for global variables, and function prototype info. 1702 WriteModuleInfo(M, VE, Stream); 1703 1704 // Emit constants. 1705 WriteModuleConstants(VE, Stream); 1706 1707 // Emit metadata. 1708 WriteModuleMetadata(M, VE, Stream); 1709 1710 // Emit function bodies. 1711 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1712 if (!F->isDeclaration()) 1713 WriteFunction(*F, VE, Stream); 1714 1715 // Emit metadata. 1716 WriteModuleMetadataStore(M, Stream); 1717 1718 // Emit names for globals/functions etc. 1719 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1720 1721 // Emit use-lists. 1722 if (EnablePreserveUseListOrdering) 1723 WriteModuleUseLists(M, VE, Stream); 1724 1725 Stream.ExitBlock(); 1726 } 1727 1728 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1729 /// header and trailer to make it compatible with the system archiver. To do 1730 /// this we emit the following header, and then emit a trailer that pads the 1731 /// file out to be a multiple of 16 bytes. 1732 /// 1733 /// struct bc_header { 1734 /// uint32_t Magic; // 0x0B17C0DE 1735 /// uint32_t Version; // Version, currently always 0. 1736 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1737 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1738 /// uint32_t CPUType; // CPU specifier. 1739 /// ... potentially more later ... 1740 /// }; 1741 enum { 1742 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1743 DarwinBCHeaderSize = 5*4 1744 }; 1745 1746 static void EmitDarwinBCHeader(BitstreamWriter &Stream, const Triple &TT) { 1747 unsigned CPUType = ~0U; 1748 1749 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1750 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1751 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1752 // specific constants here because they are implicitly part of the Darwin ABI. 1753 enum { 1754 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1755 DARWIN_CPU_TYPE_X86 = 7, 1756 DARWIN_CPU_TYPE_ARM = 12, 1757 DARWIN_CPU_TYPE_POWERPC = 18 1758 }; 1759 1760 Triple::ArchType Arch = TT.getArch(); 1761 if (Arch == Triple::x86_64) 1762 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1763 else if (Arch == Triple::x86) 1764 CPUType = DARWIN_CPU_TYPE_X86; 1765 else if (Arch == Triple::ppc) 1766 CPUType = DARWIN_CPU_TYPE_POWERPC; 1767 else if (Arch == Triple::ppc64) 1768 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1769 else if (Arch == Triple::arm || Arch == Triple::thumb) 1770 CPUType = DARWIN_CPU_TYPE_ARM; 1771 1772 // Traditional Bitcode starts after header. 1773 unsigned BCOffset = DarwinBCHeaderSize; 1774 1775 Stream.Emit(0x0B17C0DE, 32); 1776 Stream.Emit(0 , 32); // Version. 1777 Stream.Emit(BCOffset , 32); 1778 Stream.Emit(0 , 32); // Filled in later. 1779 Stream.Emit(CPUType , 32); 1780 } 1781 1782 /// EmitDarwinBCTrailer - Emit the darwin epilog after the bitcode file and 1783 /// finalize the header. 1784 static void EmitDarwinBCTrailer(BitstreamWriter &Stream, unsigned BufferSize) { 1785 // Update the size field in the header. 1786 Stream.BackpatchWord(DarwinBCSizeFieldOffset, BufferSize-DarwinBCHeaderSize); 1787 1788 // If the file is not a multiple of 16 bytes, insert dummy padding. 1789 while (BufferSize & 15) { 1790 Stream.Emit(0, 8); 1791 ++BufferSize; 1792 } 1793 } 1794 1795 1796 /// WriteBitcodeToFile - Write the specified module to the specified output 1797 /// stream. 1798 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1799 std::vector<unsigned char> Buffer; 1800 BitstreamWriter Stream(Buffer); 1801 1802 Buffer.reserve(256*1024); 1803 1804 WriteBitcodeToStream( M, Stream ); 1805 1806 // Write the generated bitstream to "Out". 1807 Out.write((char*)&Buffer.front(), Buffer.size()); 1808 } 1809 1810 /// WriteBitcodeToStream - Write the specified module to the specified output 1811 /// stream. 1812 void llvm::WriteBitcodeToStream(const Module *M, BitstreamWriter &Stream) { 1813 // If this is darwin or another generic macho target, emit a file header and 1814 // trailer if needed. 1815 Triple TT(M->getTargetTriple()); 1816 if (TT.isOSDarwin()) 1817 EmitDarwinBCHeader(Stream, TT); 1818 1819 // Emit the file header. 1820 Stream.Emit((unsigned)'B', 8); 1821 Stream.Emit((unsigned)'C', 8); 1822 Stream.Emit(0x0, 4); 1823 Stream.Emit(0xC, 4); 1824 Stream.Emit(0xE, 4); 1825 Stream.Emit(0xD, 4); 1826 1827 // Emit the module. 1828 WriteModule(M, Stream); 1829 1830 if (TT.isOSDarwin()) 1831 EmitDarwinBCTrailer(Stream, Stream.getBuffer().size()); 1832 } 1833