1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIGlobalVariable(const DIGlobalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDILocalVariable(const DILocalVariable *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDILabel(const DILabel *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIExpression(const DIExpression *N, 359 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 360 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDIObjCProperty(const DIObjCProperty *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDIImportedEntity(const DIImportedEntity *N, 366 SmallVectorImpl<uint64_t> &Record, 367 unsigned Abbrev); 368 unsigned createNamedMetadataAbbrev(); 369 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 370 unsigned createMetadataStringsAbbrev(); 371 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 372 SmallVectorImpl<uint64_t> &Record); 373 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 374 SmallVectorImpl<uint64_t> &Record, 375 std::vector<unsigned> *MDAbbrevs = nullptr, 376 std::vector<uint64_t> *IndexPos = nullptr); 377 void writeModuleMetadata(); 378 void writeFunctionMetadata(const Function &F); 379 void writeFunctionMetadataAttachment(const Function &F); 380 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 381 const GlobalObject &GO); 382 void writeModuleMetadataKinds(); 383 void writeOperandBundleTags(); 384 void writeSyncScopeNames(); 385 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 386 void writeModuleConstants(); 387 bool pushValueAndType(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void writeOperandBundles(const CallBase &CB, unsigned InstID); 390 void pushValue(const Value *V, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void pushValueSigned(const Value *V, unsigned InstID, 393 SmallVectorImpl<uint64_t> &Vals); 394 void writeInstruction(const Instruction &I, unsigned InstID, 395 SmallVectorImpl<unsigned> &Vals); 396 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 397 void writeGlobalValueSymbolTable( 398 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 399 void writeUseList(UseListOrder &&Order); 400 void writeUseListBlock(const Function *F); 401 void 402 writeFunction(const Function &F, 403 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 404 void writeBlockInfo(); 405 void writeModuleHash(size_t BlockStartPos); 406 407 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 408 return unsigned(SSID); 409 } 410 411 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 412 }; 413 414 /// Class to manage the bitcode writing for a combined index. 415 class IndexBitcodeWriter : public BitcodeWriterBase { 416 /// The combined index to write to bitcode. 417 const ModuleSummaryIndex &Index; 418 419 /// When writing a subset of the index for distributed backends, client 420 /// provides a map of modules to the corresponding GUIDs/summaries to write. 421 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 422 423 /// Map that holds the correspondence between the GUID used in the combined 424 /// index and a value id generated by this class to use in references. 425 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 426 427 // The sorted stack id indices actually used in the summary entries being 428 // written, which will be a subset of those in the full index in the case of 429 // distributed indexes. 430 std::vector<unsigned> StackIdIndices; 431 432 /// Tracks the last value id recorded in the GUIDToValueMap. 433 unsigned GlobalValueId = 0; 434 435 /// Tracks the assignment of module paths in the module path string table to 436 /// an id assigned for use in summary references to the module path. 437 DenseMap<StringRef, uint64_t> ModuleIdMap; 438 439 public: 440 /// Constructs a IndexBitcodeWriter object for the given combined index, 441 /// writing to the provided \p Buffer. When writing a subset of the index 442 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 443 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 444 const ModuleSummaryIndex &Index, 445 const std::map<std::string, GVSummaryMapTy> 446 *ModuleToSummariesForIndex = nullptr) 447 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 448 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 449 // Assign unique value ids to all summaries to be written, for use 450 // in writing out the call graph edges. Save the mapping from GUID 451 // to the new global value id to use when writing those edges, which 452 // are currently saved in the index in terms of GUID. 453 forEachSummary([&](GVInfo I, bool IsAliasee) { 454 GUIDToValueIdMap[I.first] = ++GlobalValueId; 455 if (IsAliasee) 456 return; 457 auto *FS = dyn_cast<FunctionSummary>(I.second); 458 if (!FS) 459 return; 460 // Record all stack id indices actually used in the summary entries being 461 // written, so that we can compact them in the case of distributed ThinLTO 462 // indexes. 463 for (auto &CI : FS->callsites()) 464 for (auto Idx : CI.StackIdIndices) 465 StackIdIndices.push_back(Idx); 466 for (auto &AI : FS->allocs()) 467 for (auto &MIB : AI.MIBs) 468 for (auto Idx : MIB.StackIdIndices) 469 StackIdIndices.push_back(Idx); 470 }); 471 llvm::sort(StackIdIndices); 472 StackIdIndices.erase( 473 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 474 StackIdIndices.end()); 475 } 476 477 /// The below iterator returns the GUID and associated summary. 478 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 479 480 /// Calls the callback for each value GUID and summary to be written to 481 /// bitcode. This hides the details of whether they are being pulled from the 482 /// entire index or just those in a provided ModuleToSummariesForIndex map. 483 template<typename Functor> 484 void forEachSummary(Functor Callback) { 485 if (ModuleToSummariesForIndex) { 486 for (auto &M : *ModuleToSummariesForIndex) 487 for (auto &Summary : M.second) { 488 Callback(Summary, false); 489 // Ensure aliasee is handled, e.g. for assigning a valueId, 490 // even if we are not importing the aliasee directly (the 491 // imported alias will contain a copy of aliasee). 492 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 493 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 494 } 495 } else { 496 for (auto &Summaries : Index) 497 for (auto &Summary : Summaries.second.SummaryList) 498 Callback({Summaries.first, Summary.get()}, false); 499 } 500 } 501 502 /// Calls the callback for each entry in the modulePaths StringMap that 503 /// should be written to the module path string table. This hides the details 504 /// of whether they are being pulled from the entire index or just those in a 505 /// provided ModuleToSummariesForIndex map. 506 template <typename Functor> void forEachModule(Functor Callback) { 507 if (ModuleToSummariesForIndex) { 508 for (const auto &M : *ModuleToSummariesForIndex) { 509 const auto &MPI = Index.modulePaths().find(M.first); 510 if (MPI == Index.modulePaths().end()) { 511 // This should only happen if the bitcode file was empty, in which 512 // case we shouldn't be importing (the ModuleToSummariesForIndex 513 // would only include the module we are writing and index for). 514 assert(ModuleToSummariesForIndex->size() == 1); 515 continue; 516 } 517 Callback(*MPI); 518 } 519 } else { 520 // Since StringMap iteration order isn't guaranteed, order by path string 521 // first. 522 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 523 // map lookup. 524 std::vector<StringRef> ModulePaths; 525 for (auto &[ModPath, _] : Index.modulePaths()) 526 ModulePaths.push_back(ModPath); 527 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 528 for (auto &ModPath : ModulePaths) 529 Callback(*Index.modulePaths().find(ModPath)); 530 } 531 } 532 533 /// Main entry point for writing a combined index to bitcode. 534 void write(); 535 536 private: 537 void writeModStrings(); 538 void writeCombinedGlobalValueSummary(); 539 540 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 541 auto VMI = GUIDToValueIdMap.find(ValGUID); 542 if (VMI == GUIDToValueIdMap.end()) 543 return std::nullopt; 544 return VMI->second; 545 } 546 547 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 548 }; 549 550 } // end anonymous namespace 551 552 static unsigned getEncodedCastOpcode(unsigned Opcode) { 553 switch (Opcode) { 554 default: llvm_unreachable("Unknown cast instruction!"); 555 case Instruction::Trunc : return bitc::CAST_TRUNC; 556 case Instruction::ZExt : return bitc::CAST_ZEXT; 557 case Instruction::SExt : return bitc::CAST_SEXT; 558 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 559 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 560 case Instruction::UIToFP : return bitc::CAST_UITOFP; 561 case Instruction::SIToFP : return bitc::CAST_SITOFP; 562 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 563 case Instruction::FPExt : return bitc::CAST_FPEXT; 564 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 565 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 566 case Instruction::BitCast : return bitc::CAST_BITCAST; 567 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 568 } 569 } 570 571 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 572 switch (Opcode) { 573 default: llvm_unreachable("Unknown binary instruction!"); 574 case Instruction::FNeg: return bitc::UNOP_FNEG; 575 } 576 } 577 578 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 579 switch (Opcode) { 580 default: llvm_unreachable("Unknown binary instruction!"); 581 case Instruction::Add: 582 case Instruction::FAdd: return bitc::BINOP_ADD; 583 case Instruction::Sub: 584 case Instruction::FSub: return bitc::BINOP_SUB; 585 case Instruction::Mul: 586 case Instruction::FMul: return bitc::BINOP_MUL; 587 case Instruction::UDiv: return bitc::BINOP_UDIV; 588 case Instruction::FDiv: 589 case Instruction::SDiv: return bitc::BINOP_SDIV; 590 case Instruction::URem: return bitc::BINOP_UREM; 591 case Instruction::FRem: 592 case Instruction::SRem: return bitc::BINOP_SREM; 593 case Instruction::Shl: return bitc::BINOP_SHL; 594 case Instruction::LShr: return bitc::BINOP_LSHR; 595 case Instruction::AShr: return bitc::BINOP_ASHR; 596 case Instruction::And: return bitc::BINOP_AND; 597 case Instruction::Or: return bitc::BINOP_OR; 598 case Instruction::Xor: return bitc::BINOP_XOR; 599 } 600 } 601 602 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 603 switch (Op) { 604 default: llvm_unreachable("Unknown RMW operation!"); 605 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 606 case AtomicRMWInst::Add: return bitc::RMW_ADD; 607 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 608 case AtomicRMWInst::And: return bitc::RMW_AND; 609 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 610 case AtomicRMWInst::Or: return bitc::RMW_OR; 611 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 612 case AtomicRMWInst::Max: return bitc::RMW_MAX; 613 case AtomicRMWInst::Min: return bitc::RMW_MIN; 614 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 615 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 616 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 617 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 618 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 619 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 620 case AtomicRMWInst::UIncWrap: 621 return bitc::RMW_UINC_WRAP; 622 case AtomicRMWInst::UDecWrap: 623 return bitc::RMW_UDEC_WRAP; 624 } 625 } 626 627 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 628 switch (Ordering) { 629 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 630 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 631 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 632 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 633 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 634 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 635 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 636 } 637 llvm_unreachable("Invalid ordering"); 638 } 639 640 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 641 StringRef Str, unsigned AbbrevToUse) { 642 SmallVector<unsigned, 64> Vals; 643 644 // Code: [strchar x N] 645 for (char C : Str) { 646 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 647 AbbrevToUse = 0; 648 Vals.push_back(C); 649 } 650 651 // Emit the finished record. 652 Stream.EmitRecord(Code, Vals, AbbrevToUse); 653 } 654 655 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 656 switch (Kind) { 657 case Attribute::Alignment: 658 return bitc::ATTR_KIND_ALIGNMENT; 659 case Attribute::AllocAlign: 660 return bitc::ATTR_KIND_ALLOC_ALIGN; 661 case Attribute::AllocSize: 662 return bitc::ATTR_KIND_ALLOC_SIZE; 663 case Attribute::AlwaysInline: 664 return bitc::ATTR_KIND_ALWAYS_INLINE; 665 case Attribute::Builtin: 666 return bitc::ATTR_KIND_BUILTIN; 667 case Attribute::ByVal: 668 return bitc::ATTR_KIND_BY_VAL; 669 case Attribute::Convergent: 670 return bitc::ATTR_KIND_CONVERGENT; 671 case Attribute::InAlloca: 672 return bitc::ATTR_KIND_IN_ALLOCA; 673 case Attribute::Cold: 674 return bitc::ATTR_KIND_COLD; 675 case Attribute::DisableSanitizerInstrumentation: 676 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 677 case Attribute::FnRetThunkExtern: 678 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 679 case Attribute::Hot: 680 return bitc::ATTR_KIND_HOT; 681 case Attribute::ElementType: 682 return bitc::ATTR_KIND_ELEMENTTYPE; 683 case Attribute::InlineHint: 684 return bitc::ATTR_KIND_INLINE_HINT; 685 case Attribute::InReg: 686 return bitc::ATTR_KIND_IN_REG; 687 case Attribute::JumpTable: 688 return bitc::ATTR_KIND_JUMP_TABLE; 689 case Attribute::MinSize: 690 return bitc::ATTR_KIND_MIN_SIZE; 691 case Attribute::AllocatedPointer: 692 return bitc::ATTR_KIND_ALLOCATED_POINTER; 693 case Attribute::AllocKind: 694 return bitc::ATTR_KIND_ALLOC_KIND; 695 case Attribute::Memory: 696 return bitc::ATTR_KIND_MEMORY; 697 case Attribute::NoFPClass: 698 return bitc::ATTR_KIND_NOFPCLASS; 699 case Attribute::Naked: 700 return bitc::ATTR_KIND_NAKED; 701 case Attribute::Nest: 702 return bitc::ATTR_KIND_NEST; 703 case Attribute::NoAlias: 704 return bitc::ATTR_KIND_NO_ALIAS; 705 case Attribute::NoBuiltin: 706 return bitc::ATTR_KIND_NO_BUILTIN; 707 case Attribute::NoCallback: 708 return bitc::ATTR_KIND_NO_CALLBACK; 709 case Attribute::NoCapture: 710 return bitc::ATTR_KIND_NO_CAPTURE; 711 case Attribute::NoDuplicate: 712 return bitc::ATTR_KIND_NO_DUPLICATE; 713 case Attribute::NoFree: 714 return bitc::ATTR_KIND_NOFREE; 715 case Attribute::NoImplicitFloat: 716 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 717 case Attribute::NoInline: 718 return bitc::ATTR_KIND_NO_INLINE; 719 case Attribute::NoRecurse: 720 return bitc::ATTR_KIND_NO_RECURSE; 721 case Attribute::NoMerge: 722 return bitc::ATTR_KIND_NO_MERGE; 723 case Attribute::NonLazyBind: 724 return bitc::ATTR_KIND_NON_LAZY_BIND; 725 case Attribute::NonNull: 726 return bitc::ATTR_KIND_NON_NULL; 727 case Attribute::Dereferenceable: 728 return bitc::ATTR_KIND_DEREFERENCEABLE; 729 case Attribute::DereferenceableOrNull: 730 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 731 case Attribute::NoRedZone: 732 return bitc::ATTR_KIND_NO_RED_ZONE; 733 case Attribute::NoReturn: 734 return bitc::ATTR_KIND_NO_RETURN; 735 case Attribute::NoSync: 736 return bitc::ATTR_KIND_NOSYNC; 737 case Attribute::NoCfCheck: 738 return bitc::ATTR_KIND_NOCF_CHECK; 739 case Attribute::NoProfile: 740 return bitc::ATTR_KIND_NO_PROFILE; 741 case Attribute::SkipProfile: 742 return bitc::ATTR_KIND_SKIP_PROFILE; 743 case Attribute::NoUnwind: 744 return bitc::ATTR_KIND_NO_UNWIND; 745 case Attribute::NoSanitizeBounds: 746 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 747 case Attribute::NoSanitizeCoverage: 748 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 749 case Attribute::NullPointerIsValid: 750 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 751 case Attribute::OptimizeForDebugging: 752 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 753 case Attribute::OptForFuzzing: 754 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 755 case Attribute::OptimizeForSize: 756 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 757 case Attribute::OptimizeNone: 758 return bitc::ATTR_KIND_OPTIMIZE_NONE; 759 case Attribute::ReadNone: 760 return bitc::ATTR_KIND_READ_NONE; 761 case Attribute::ReadOnly: 762 return bitc::ATTR_KIND_READ_ONLY; 763 case Attribute::Returned: 764 return bitc::ATTR_KIND_RETURNED; 765 case Attribute::ReturnsTwice: 766 return bitc::ATTR_KIND_RETURNS_TWICE; 767 case Attribute::SExt: 768 return bitc::ATTR_KIND_S_EXT; 769 case Attribute::Speculatable: 770 return bitc::ATTR_KIND_SPECULATABLE; 771 case Attribute::StackAlignment: 772 return bitc::ATTR_KIND_STACK_ALIGNMENT; 773 case Attribute::StackProtect: 774 return bitc::ATTR_KIND_STACK_PROTECT; 775 case Attribute::StackProtectReq: 776 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 777 case Attribute::StackProtectStrong: 778 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 779 case Attribute::SafeStack: 780 return bitc::ATTR_KIND_SAFESTACK; 781 case Attribute::ShadowCallStack: 782 return bitc::ATTR_KIND_SHADOWCALLSTACK; 783 case Attribute::StrictFP: 784 return bitc::ATTR_KIND_STRICT_FP; 785 case Attribute::StructRet: 786 return bitc::ATTR_KIND_STRUCT_RET; 787 case Attribute::SanitizeAddress: 788 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 789 case Attribute::SanitizeHWAddress: 790 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 791 case Attribute::SanitizeThread: 792 return bitc::ATTR_KIND_SANITIZE_THREAD; 793 case Attribute::SanitizeMemory: 794 return bitc::ATTR_KIND_SANITIZE_MEMORY; 795 case Attribute::SpeculativeLoadHardening: 796 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 797 case Attribute::SwiftError: 798 return bitc::ATTR_KIND_SWIFT_ERROR; 799 case Attribute::SwiftSelf: 800 return bitc::ATTR_KIND_SWIFT_SELF; 801 case Attribute::SwiftAsync: 802 return bitc::ATTR_KIND_SWIFT_ASYNC; 803 case Attribute::UWTable: 804 return bitc::ATTR_KIND_UW_TABLE; 805 case Attribute::VScaleRange: 806 return bitc::ATTR_KIND_VSCALE_RANGE; 807 case Attribute::WillReturn: 808 return bitc::ATTR_KIND_WILLRETURN; 809 case Attribute::WriteOnly: 810 return bitc::ATTR_KIND_WRITEONLY; 811 case Attribute::ZExt: 812 return bitc::ATTR_KIND_Z_EXT; 813 case Attribute::ImmArg: 814 return bitc::ATTR_KIND_IMMARG; 815 case Attribute::SanitizeMemTag: 816 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 817 case Attribute::Preallocated: 818 return bitc::ATTR_KIND_PREALLOCATED; 819 case Attribute::NoUndef: 820 return bitc::ATTR_KIND_NOUNDEF; 821 case Attribute::ByRef: 822 return bitc::ATTR_KIND_BYREF; 823 case Attribute::MustProgress: 824 return bitc::ATTR_KIND_MUSTPROGRESS; 825 case Attribute::PresplitCoroutine: 826 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 827 case Attribute::EndAttrKinds: 828 llvm_unreachable("Can not encode end-attribute kinds marker."); 829 case Attribute::None: 830 llvm_unreachable("Can not encode none-attribute."); 831 case Attribute::EmptyKey: 832 case Attribute::TombstoneKey: 833 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 834 } 835 836 llvm_unreachable("Trying to encode unknown attribute"); 837 } 838 839 void ModuleBitcodeWriter::writeAttributeGroupTable() { 840 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 841 VE.getAttributeGroups(); 842 if (AttrGrps.empty()) return; 843 844 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 845 846 SmallVector<uint64_t, 64> Record; 847 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 848 unsigned AttrListIndex = Pair.first; 849 AttributeSet AS = Pair.second; 850 Record.push_back(VE.getAttributeGroupID(Pair)); 851 Record.push_back(AttrListIndex); 852 853 for (Attribute Attr : AS) { 854 if (Attr.isEnumAttribute()) { 855 Record.push_back(0); 856 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 857 } else if (Attr.isIntAttribute()) { 858 Record.push_back(1); 859 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 860 Record.push_back(Attr.getValueAsInt()); 861 } else if (Attr.isStringAttribute()) { 862 StringRef Kind = Attr.getKindAsString(); 863 StringRef Val = Attr.getValueAsString(); 864 865 Record.push_back(Val.empty() ? 3 : 4); 866 Record.append(Kind.begin(), Kind.end()); 867 Record.push_back(0); 868 if (!Val.empty()) { 869 Record.append(Val.begin(), Val.end()); 870 Record.push_back(0); 871 } 872 } else { 873 assert(Attr.isTypeAttribute()); 874 Type *Ty = Attr.getValueAsType(); 875 Record.push_back(Ty ? 6 : 5); 876 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 877 if (Ty) 878 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 879 } 880 } 881 882 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 883 Record.clear(); 884 } 885 886 Stream.ExitBlock(); 887 } 888 889 void ModuleBitcodeWriter::writeAttributeTable() { 890 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 891 if (Attrs.empty()) return; 892 893 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 894 895 SmallVector<uint64_t, 64> Record; 896 for (const AttributeList &AL : Attrs) { 897 for (unsigned i : AL.indexes()) { 898 AttributeSet AS = AL.getAttributes(i); 899 if (AS.hasAttributes()) 900 Record.push_back(VE.getAttributeGroupID({i, AS})); 901 } 902 903 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 904 Record.clear(); 905 } 906 907 Stream.ExitBlock(); 908 } 909 910 /// WriteTypeTable - Write out the type table for a module. 911 void ModuleBitcodeWriter::writeTypeTable() { 912 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 913 914 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 915 SmallVector<uint64_t, 64> TypeVals; 916 917 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 918 919 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 920 auto Abbv = std::make_shared<BitCodeAbbrev>(); 921 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 922 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 923 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 924 925 // Abbrev for TYPE_CODE_FUNCTION. 926 Abbv = std::make_shared<BitCodeAbbrev>(); 927 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 931 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 932 933 // Abbrev for TYPE_CODE_STRUCT_ANON. 934 Abbv = std::make_shared<BitCodeAbbrev>(); 935 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 939 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 940 941 // Abbrev for TYPE_CODE_STRUCT_NAME. 942 Abbv = std::make_shared<BitCodeAbbrev>(); 943 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 946 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 947 948 // Abbrev for TYPE_CODE_STRUCT_NAMED. 949 Abbv = std::make_shared<BitCodeAbbrev>(); 950 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 954 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 955 956 // Abbrev for TYPE_CODE_ARRAY. 957 Abbv = std::make_shared<BitCodeAbbrev>(); 958 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 961 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 962 963 // Emit an entry count so the reader can reserve space. 964 TypeVals.push_back(TypeList.size()); 965 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 966 TypeVals.clear(); 967 968 // Loop over all of the types, emitting each in turn. 969 for (Type *T : TypeList) { 970 int AbbrevToUse = 0; 971 unsigned Code = 0; 972 973 switch (T->getTypeID()) { 974 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 975 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 976 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 977 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 978 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 979 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 980 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 981 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 982 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 983 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 984 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 985 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 986 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 987 case Type::IntegerTyID: 988 // INTEGER: [width] 989 Code = bitc::TYPE_CODE_INTEGER; 990 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 991 break; 992 case Type::PointerTyID: { 993 PointerType *PTy = cast<PointerType>(T); 994 unsigned AddressSpace = PTy->getAddressSpace(); 995 // OPAQUE_POINTER: [address space] 996 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 997 TypeVals.push_back(AddressSpace); 998 if (AddressSpace == 0) 999 AbbrevToUse = OpaquePtrAbbrev; 1000 break; 1001 } 1002 case Type::FunctionTyID: { 1003 FunctionType *FT = cast<FunctionType>(T); 1004 // FUNCTION: [isvararg, retty, paramty x N] 1005 Code = bitc::TYPE_CODE_FUNCTION; 1006 TypeVals.push_back(FT->isVarArg()); 1007 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1008 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1009 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1010 AbbrevToUse = FunctionAbbrev; 1011 break; 1012 } 1013 case Type::StructTyID: { 1014 StructType *ST = cast<StructType>(T); 1015 // STRUCT: [ispacked, eltty x N] 1016 TypeVals.push_back(ST->isPacked()); 1017 // Output all of the element types. 1018 for (Type *ET : ST->elements()) 1019 TypeVals.push_back(VE.getTypeID(ET)); 1020 1021 if (ST->isLiteral()) { 1022 Code = bitc::TYPE_CODE_STRUCT_ANON; 1023 AbbrevToUse = StructAnonAbbrev; 1024 } else { 1025 if (ST->isOpaque()) { 1026 Code = bitc::TYPE_CODE_OPAQUE; 1027 } else { 1028 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1029 AbbrevToUse = StructNamedAbbrev; 1030 } 1031 1032 // Emit the name if it is present. 1033 if (!ST->getName().empty()) 1034 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1035 StructNameAbbrev); 1036 } 1037 break; 1038 } 1039 case Type::ArrayTyID: { 1040 ArrayType *AT = cast<ArrayType>(T); 1041 // ARRAY: [numelts, eltty] 1042 Code = bitc::TYPE_CODE_ARRAY; 1043 TypeVals.push_back(AT->getNumElements()); 1044 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1045 AbbrevToUse = ArrayAbbrev; 1046 break; 1047 } 1048 case Type::FixedVectorTyID: 1049 case Type::ScalableVectorTyID: { 1050 VectorType *VT = cast<VectorType>(T); 1051 // VECTOR [numelts, eltty] or 1052 // [numelts, eltty, scalable] 1053 Code = bitc::TYPE_CODE_VECTOR; 1054 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1055 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1056 if (isa<ScalableVectorType>(VT)) 1057 TypeVals.push_back(true); 1058 break; 1059 } 1060 case Type::TargetExtTyID: { 1061 TargetExtType *TET = cast<TargetExtType>(T); 1062 Code = bitc::TYPE_CODE_TARGET_TYPE; 1063 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1064 StructNameAbbrev); 1065 TypeVals.push_back(TET->getNumTypeParameters()); 1066 for (Type *InnerTy : TET->type_params()) 1067 TypeVals.push_back(VE.getTypeID(InnerTy)); 1068 for (unsigned IntParam : TET->int_params()) 1069 TypeVals.push_back(IntParam); 1070 break; 1071 } 1072 case Type::TypedPointerTyID: 1073 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1074 } 1075 1076 // Emit the finished record. 1077 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1078 TypeVals.clear(); 1079 } 1080 1081 Stream.ExitBlock(); 1082 } 1083 1084 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1085 switch (Linkage) { 1086 case GlobalValue::ExternalLinkage: 1087 return 0; 1088 case GlobalValue::WeakAnyLinkage: 1089 return 16; 1090 case GlobalValue::AppendingLinkage: 1091 return 2; 1092 case GlobalValue::InternalLinkage: 1093 return 3; 1094 case GlobalValue::LinkOnceAnyLinkage: 1095 return 18; 1096 case GlobalValue::ExternalWeakLinkage: 1097 return 7; 1098 case GlobalValue::CommonLinkage: 1099 return 8; 1100 case GlobalValue::PrivateLinkage: 1101 return 9; 1102 case GlobalValue::WeakODRLinkage: 1103 return 17; 1104 case GlobalValue::LinkOnceODRLinkage: 1105 return 19; 1106 case GlobalValue::AvailableExternallyLinkage: 1107 return 12; 1108 } 1109 llvm_unreachable("Invalid linkage"); 1110 } 1111 1112 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1113 return getEncodedLinkage(GV.getLinkage()); 1114 } 1115 1116 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1117 uint64_t RawFlags = 0; 1118 RawFlags |= Flags.ReadNone; 1119 RawFlags |= (Flags.ReadOnly << 1); 1120 RawFlags |= (Flags.NoRecurse << 2); 1121 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1122 RawFlags |= (Flags.NoInline << 4); 1123 RawFlags |= (Flags.AlwaysInline << 5); 1124 RawFlags |= (Flags.NoUnwind << 6); 1125 RawFlags |= (Flags.MayThrow << 7); 1126 RawFlags |= (Flags.HasUnknownCall << 8); 1127 RawFlags |= (Flags.MustBeUnreachable << 9); 1128 return RawFlags; 1129 } 1130 1131 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1132 // in BitcodeReader.cpp. 1133 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1134 uint64_t RawFlags = 0; 1135 1136 RawFlags |= Flags.NotEligibleToImport; // bool 1137 RawFlags |= (Flags.Live << 1); 1138 RawFlags |= (Flags.DSOLocal << 2); 1139 RawFlags |= (Flags.CanAutoHide << 3); 1140 1141 // Linkage don't need to be remapped at that time for the summary. Any future 1142 // change to the getEncodedLinkage() function will need to be taken into 1143 // account here as well. 1144 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1145 1146 RawFlags |= (Flags.Visibility << 8); // 2 bits 1147 1148 return RawFlags; 1149 } 1150 1151 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1152 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1153 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1154 return RawFlags; 1155 } 1156 1157 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1158 switch (GV.getVisibility()) { 1159 case GlobalValue::DefaultVisibility: return 0; 1160 case GlobalValue::HiddenVisibility: return 1; 1161 case GlobalValue::ProtectedVisibility: return 2; 1162 } 1163 llvm_unreachable("Invalid visibility"); 1164 } 1165 1166 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1167 switch (GV.getDLLStorageClass()) { 1168 case GlobalValue::DefaultStorageClass: return 0; 1169 case GlobalValue::DLLImportStorageClass: return 1; 1170 case GlobalValue::DLLExportStorageClass: return 2; 1171 } 1172 llvm_unreachable("Invalid DLL storage class"); 1173 } 1174 1175 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1176 switch (GV.getThreadLocalMode()) { 1177 case GlobalVariable::NotThreadLocal: return 0; 1178 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1179 case GlobalVariable::LocalDynamicTLSModel: return 2; 1180 case GlobalVariable::InitialExecTLSModel: return 3; 1181 case GlobalVariable::LocalExecTLSModel: return 4; 1182 } 1183 llvm_unreachable("Invalid TLS model"); 1184 } 1185 1186 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1187 switch (C.getSelectionKind()) { 1188 case Comdat::Any: 1189 return bitc::COMDAT_SELECTION_KIND_ANY; 1190 case Comdat::ExactMatch: 1191 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1192 case Comdat::Largest: 1193 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1194 case Comdat::NoDeduplicate: 1195 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1196 case Comdat::SameSize: 1197 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1198 } 1199 llvm_unreachable("Invalid selection kind"); 1200 } 1201 1202 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1203 switch (GV.getUnnamedAddr()) { 1204 case GlobalValue::UnnamedAddr::None: return 0; 1205 case GlobalValue::UnnamedAddr::Local: return 2; 1206 case GlobalValue::UnnamedAddr::Global: return 1; 1207 } 1208 llvm_unreachable("Invalid unnamed_addr"); 1209 } 1210 1211 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1212 if (GenerateHash) 1213 Hasher.update(Str); 1214 return StrtabBuilder.add(Str); 1215 } 1216 1217 void ModuleBitcodeWriter::writeComdats() { 1218 SmallVector<unsigned, 64> Vals; 1219 for (const Comdat *C : VE.getComdats()) { 1220 // COMDAT: [strtab offset, strtab size, selection_kind] 1221 Vals.push_back(addToStrtab(C->getName())); 1222 Vals.push_back(C->getName().size()); 1223 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1224 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1225 Vals.clear(); 1226 } 1227 } 1228 1229 /// Write a record that will eventually hold the word offset of the 1230 /// module-level VST. For now the offset is 0, which will be backpatched 1231 /// after the real VST is written. Saves the bit offset to backpatch. 1232 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1233 // Write a placeholder value in for the offset of the real VST, 1234 // which is written after the function blocks so that it can include 1235 // the offset of each function. The placeholder offset will be 1236 // updated when the real VST is written. 1237 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1238 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1239 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1240 // hold the real VST offset. Must use fixed instead of VBR as we don't 1241 // know how many VBR chunks to reserve ahead of time. 1242 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1243 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1244 1245 // Emit the placeholder 1246 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1247 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1248 1249 // Compute and save the bit offset to the placeholder, which will be 1250 // patched when the real VST is written. We can simply subtract the 32-bit 1251 // fixed size from the current bit number to get the location to backpatch. 1252 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1253 } 1254 1255 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1256 1257 /// Determine the encoding to use for the given string name and length. 1258 static StringEncoding getStringEncoding(StringRef Str) { 1259 bool isChar6 = true; 1260 for (char C : Str) { 1261 if (isChar6) 1262 isChar6 = BitCodeAbbrevOp::isChar6(C); 1263 if ((unsigned char)C & 128) 1264 // don't bother scanning the rest. 1265 return SE_Fixed8; 1266 } 1267 if (isChar6) 1268 return SE_Char6; 1269 return SE_Fixed7; 1270 } 1271 1272 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1273 "Sanitizer Metadata is too large for naive serialization."); 1274 static unsigned 1275 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1276 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1277 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1278 } 1279 1280 /// Emit top-level description of module, including target triple, inline asm, 1281 /// descriptors for global variables, and function prototype info. 1282 /// Returns the bit offset to backpatch with the location of the real VST. 1283 void ModuleBitcodeWriter::writeModuleInfo() { 1284 // Emit various pieces of data attached to a module. 1285 if (!M.getTargetTriple().empty()) 1286 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1287 0 /*TODO*/); 1288 const std::string &DL = M.getDataLayoutStr(); 1289 if (!DL.empty()) 1290 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1291 if (!M.getModuleInlineAsm().empty()) 1292 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1293 0 /*TODO*/); 1294 1295 // Emit information about sections and GC, computing how many there are. Also 1296 // compute the maximum alignment value. 1297 std::map<std::string, unsigned> SectionMap; 1298 std::map<std::string, unsigned> GCMap; 1299 MaybeAlign MaxAlignment; 1300 unsigned MaxGlobalType = 0; 1301 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1302 if (A) 1303 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1304 }; 1305 for (const GlobalVariable &GV : M.globals()) { 1306 UpdateMaxAlignment(GV.getAlign()); 1307 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1308 if (GV.hasSection()) { 1309 // Give section names unique ID's. 1310 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1311 if (!Entry) { 1312 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1313 0 /*TODO*/); 1314 Entry = SectionMap.size(); 1315 } 1316 } 1317 } 1318 for (const Function &F : M) { 1319 UpdateMaxAlignment(F.getAlign()); 1320 if (F.hasSection()) { 1321 // Give section names unique ID's. 1322 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1323 if (!Entry) { 1324 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1325 0 /*TODO*/); 1326 Entry = SectionMap.size(); 1327 } 1328 } 1329 if (F.hasGC()) { 1330 // Same for GC names. 1331 unsigned &Entry = GCMap[F.getGC()]; 1332 if (!Entry) { 1333 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1334 0 /*TODO*/); 1335 Entry = GCMap.size(); 1336 } 1337 } 1338 } 1339 1340 // Emit abbrev for globals, now that we know # sections and max alignment. 1341 unsigned SimpleGVarAbbrev = 0; 1342 if (!M.global_empty()) { 1343 // Add an abbrev for common globals with no visibility or thread localness. 1344 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1345 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1349 Log2_32_Ceil(MaxGlobalType+1))); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1351 //| explicitType << 1 1352 //| constant 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1355 if (!MaxAlignment) // Alignment. 1356 Abbv->Add(BitCodeAbbrevOp(0)); 1357 else { 1358 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1360 Log2_32_Ceil(MaxEncAlignment+1))); 1361 } 1362 if (SectionMap.empty()) // Section. 1363 Abbv->Add(BitCodeAbbrevOp(0)); 1364 else 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1366 Log2_32_Ceil(SectionMap.size()+1))); 1367 // Don't bother emitting vis + thread local. 1368 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1369 } 1370 1371 SmallVector<unsigned, 64> Vals; 1372 // Emit the module's source file name. 1373 { 1374 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1375 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1376 if (Bits == SE_Char6) 1377 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1378 else if (Bits == SE_Fixed7) 1379 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1380 1381 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1382 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1383 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1385 Abbv->Add(AbbrevOpToUse); 1386 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1387 1388 for (const auto P : M.getSourceFileName()) 1389 Vals.push_back((unsigned char)P); 1390 1391 // Emit the finished record. 1392 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1393 Vals.clear(); 1394 } 1395 1396 // Emit the global variable information. 1397 for (const GlobalVariable &GV : M.globals()) { 1398 unsigned AbbrevToUse = 0; 1399 1400 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1401 // linkage, alignment, section, visibility, threadlocal, 1402 // unnamed_addr, externally_initialized, dllstorageclass, 1403 // comdat, attributes, DSO_Local, GlobalSanitizer] 1404 Vals.push_back(addToStrtab(GV.getName())); 1405 Vals.push_back(GV.getName().size()); 1406 Vals.push_back(VE.getTypeID(GV.getValueType())); 1407 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1408 Vals.push_back(GV.isDeclaration() ? 0 : 1409 (VE.getValueID(GV.getInitializer()) + 1)); 1410 Vals.push_back(getEncodedLinkage(GV)); 1411 Vals.push_back(getEncodedAlign(GV.getAlign())); 1412 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1413 : 0); 1414 if (GV.isThreadLocal() || 1415 GV.getVisibility() != GlobalValue::DefaultVisibility || 1416 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1417 GV.isExternallyInitialized() || 1418 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1419 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1420 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1421 Vals.push_back(getEncodedVisibility(GV)); 1422 Vals.push_back(getEncodedThreadLocalMode(GV)); 1423 Vals.push_back(getEncodedUnnamedAddr(GV)); 1424 Vals.push_back(GV.isExternallyInitialized()); 1425 Vals.push_back(getEncodedDLLStorageClass(GV)); 1426 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1427 1428 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1429 Vals.push_back(VE.getAttributeListID(AL)); 1430 1431 Vals.push_back(GV.isDSOLocal()); 1432 Vals.push_back(addToStrtab(GV.getPartition())); 1433 Vals.push_back(GV.getPartition().size()); 1434 1435 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1436 GV.getSanitizerMetadata()) 1437 : 0)); 1438 } else { 1439 AbbrevToUse = SimpleGVarAbbrev; 1440 } 1441 1442 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1443 Vals.clear(); 1444 } 1445 1446 // Emit the function proto information. 1447 for (const Function &F : M) { 1448 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1449 // linkage, paramattrs, alignment, section, visibility, gc, 1450 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1451 // prefixdata, personalityfn, DSO_Local, addrspace] 1452 Vals.push_back(addToStrtab(F.getName())); 1453 Vals.push_back(F.getName().size()); 1454 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1455 Vals.push_back(F.getCallingConv()); 1456 Vals.push_back(F.isDeclaration()); 1457 Vals.push_back(getEncodedLinkage(F)); 1458 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1459 Vals.push_back(getEncodedAlign(F.getAlign())); 1460 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1461 : 0); 1462 Vals.push_back(getEncodedVisibility(F)); 1463 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1464 Vals.push_back(getEncodedUnnamedAddr(F)); 1465 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1466 : 0); 1467 Vals.push_back(getEncodedDLLStorageClass(F)); 1468 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1469 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1470 : 0); 1471 Vals.push_back( 1472 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1473 1474 Vals.push_back(F.isDSOLocal()); 1475 Vals.push_back(F.getAddressSpace()); 1476 Vals.push_back(addToStrtab(F.getPartition())); 1477 Vals.push_back(F.getPartition().size()); 1478 1479 unsigned AbbrevToUse = 0; 1480 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1481 Vals.clear(); 1482 } 1483 1484 // Emit the alias information. 1485 for (const GlobalAlias &A : M.aliases()) { 1486 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1487 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1488 // DSO_Local] 1489 Vals.push_back(addToStrtab(A.getName())); 1490 Vals.push_back(A.getName().size()); 1491 Vals.push_back(VE.getTypeID(A.getValueType())); 1492 Vals.push_back(A.getType()->getAddressSpace()); 1493 Vals.push_back(VE.getValueID(A.getAliasee())); 1494 Vals.push_back(getEncodedLinkage(A)); 1495 Vals.push_back(getEncodedVisibility(A)); 1496 Vals.push_back(getEncodedDLLStorageClass(A)); 1497 Vals.push_back(getEncodedThreadLocalMode(A)); 1498 Vals.push_back(getEncodedUnnamedAddr(A)); 1499 Vals.push_back(A.isDSOLocal()); 1500 Vals.push_back(addToStrtab(A.getPartition())); 1501 Vals.push_back(A.getPartition().size()); 1502 1503 unsigned AbbrevToUse = 0; 1504 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1505 Vals.clear(); 1506 } 1507 1508 // Emit the ifunc information. 1509 for (const GlobalIFunc &I : M.ifuncs()) { 1510 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1511 // val#, linkage, visibility, DSO_Local] 1512 Vals.push_back(addToStrtab(I.getName())); 1513 Vals.push_back(I.getName().size()); 1514 Vals.push_back(VE.getTypeID(I.getValueType())); 1515 Vals.push_back(I.getType()->getAddressSpace()); 1516 Vals.push_back(VE.getValueID(I.getResolver())); 1517 Vals.push_back(getEncodedLinkage(I)); 1518 Vals.push_back(getEncodedVisibility(I)); 1519 Vals.push_back(I.isDSOLocal()); 1520 Vals.push_back(addToStrtab(I.getPartition())); 1521 Vals.push_back(I.getPartition().size()); 1522 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1523 Vals.clear(); 1524 } 1525 1526 writeValueSymbolTableForwardDecl(); 1527 } 1528 1529 static uint64_t getOptimizationFlags(const Value *V) { 1530 uint64_t Flags = 0; 1531 1532 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1533 if (OBO->hasNoSignedWrap()) 1534 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1535 if (OBO->hasNoUnsignedWrap()) 1536 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1537 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1538 if (PEO->isExact()) 1539 Flags |= 1 << bitc::PEO_EXACT; 1540 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1541 if (FPMO->hasAllowReassoc()) 1542 Flags |= bitc::AllowReassoc; 1543 if (FPMO->hasNoNaNs()) 1544 Flags |= bitc::NoNaNs; 1545 if (FPMO->hasNoInfs()) 1546 Flags |= bitc::NoInfs; 1547 if (FPMO->hasNoSignedZeros()) 1548 Flags |= bitc::NoSignedZeros; 1549 if (FPMO->hasAllowReciprocal()) 1550 Flags |= bitc::AllowReciprocal; 1551 if (FPMO->hasAllowContract()) 1552 Flags |= bitc::AllowContract; 1553 if (FPMO->hasApproxFunc()) 1554 Flags |= bitc::ApproxFunc; 1555 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1556 if (NNI->hasNonNeg()) 1557 Flags |= 1 << bitc::PNNI_NON_NEG; 1558 } 1559 1560 return Flags; 1561 } 1562 1563 void ModuleBitcodeWriter::writeValueAsMetadata( 1564 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1565 // Mimic an MDNode with a value as one operand. 1566 Value *V = MD->getValue(); 1567 Record.push_back(VE.getTypeID(V->getType())); 1568 Record.push_back(VE.getValueID(V)); 1569 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1570 Record.clear(); 1571 } 1572 1573 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1574 SmallVectorImpl<uint64_t> &Record, 1575 unsigned Abbrev) { 1576 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1577 Metadata *MD = N->getOperand(i); 1578 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1579 "Unexpected function-local metadata"); 1580 Record.push_back(VE.getMetadataOrNullID(MD)); 1581 } 1582 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1583 : bitc::METADATA_NODE, 1584 Record, Abbrev); 1585 Record.clear(); 1586 } 1587 1588 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1589 // Assume the column is usually under 128, and always output the inlined-at 1590 // location (it's never more expensive than building an array size 1). 1591 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1592 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1599 return Stream.EmitAbbrev(std::move(Abbv)); 1600 } 1601 1602 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1603 SmallVectorImpl<uint64_t> &Record, 1604 unsigned &Abbrev) { 1605 if (!Abbrev) 1606 Abbrev = createDILocationAbbrev(); 1607 1608 Record.push_back(N->isDistinct()); 1609 Record.push_back(N->getLine()); 1610 Record.push_back(N->getColumn()); 1611 Record.push_back(VE.getMetadataID(N->getScope())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1613 Record.push_back(N->isImplicitCode()); 1614 1615 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1616 Record.clear(); 1617 } 1618 1619 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1620 // Assume the column is usually under 128, and always output the inlined-at 1621 // location (it's never more expensive than building an array size 1). 1622 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1623 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1630 return Stream.EmitAbbrev(std::move(Abbv)); 1631 } 1632 1633 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1634 SmallVectorImpl<uint64_t> &Record, 1635 unsigned &Abbrev) { 1636 if (!Abbrev) 1637 Abbrev = createGenericDINodeAbbrev(); 1638 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(N->getTag()); 1641 Record.push_back(0); // Per-tag version field; unused for now. 1642 1643 for (auto &I : N->operands()) 1644 Record.push_back(VE.getMetadataOrNullID(I)); 1645 1646 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1647 Record.clear(); 1648 } 1649 1650 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1651 SmallVectorImpl<uint64_t> &Record, 1652 unsigned Abbrev) { 1653 const uint64_t Version = 2 << 1; 1654 Record.push_back((uint64_t)N->isDistinct() | Version); 1655 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1659 1660 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1661 Record.clear(); 1662 } 1663 1664 void ModuleBitcodeWriter::writeDIGenericSubrange( 1665 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1666 unsigned Abbrev) { 1667 Record.push_back((uint64_t)N->isDistinct()); 1668 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1669 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1670 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1671 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1672 1673 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1674 Record.clear(); 1675 } 1676 1677 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1678 if ((int64_t)V >= 0) 1679 Vals.push_back(V << 1); 1680 else 1681 Vals.push_back((-V << 1) | 1); 1682 } 1683 1684 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1685 // We have an arbitrary precision integer value to write whose 1686 // bit width is > 64. However, in canonical unsigned integer 1687 // format it is likely that the high bits are going to be zero. 1688 // So, we only write the number of active words. 1689 unsigned NumWords = A.getActiveWords(); 1690 const uint64_t *RawData = A.getRawData(); 1691 for (unsigned i = 0; i < NumWords; i++) 1692 emitSignedInt64(Vals, RawData[i]); 1693 } 1694 1695 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1696 SmallVectorImpl<uint64_t> &Record, 1697 unsigned Abbrev) { 1698 const uint64_t IsBigInt = 1 << 2; 1699 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1700 Record.push_back(N->getValue().getBitWidth()); 1701 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1702 emitWideAPInt(Record, N->getValue()); 1703 1704 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1705 Record.clear(); 1706 } 1707 1708 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1709 SmallVectorImpl<uint64_t> &Record, 1710 unsigned Abbrev) { 1711 Record.push_back(N->isDistinct()); 1712 Record.push_back(N->getTag()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1714 Record.push_back(N->getSizeInBits()); 1715 Record.push_back(N->getAlignInBits()); 1716 Record.push_back(N->getEncoding()); 1717 Record.push_back(N->getFlags()); 1718 1719 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1720 Record.clear(); 1721 } 1722 1723 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1724 SmallVectorImpl<uint64_t> &Record, 1725 unsigned Abbrev) { 1726 Record.push_back(N->isDistinct()); 1727 Record.push_back(N->getTag()); 1728 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1729 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1730 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1731 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1732 Record.push_back(N->getSizeInBits()); 1733 Record.push_back(N->getAlignInBits()); 1734 Record.push_back(N->getEncoding()); 1735 1736 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1737 Record.clear(); 1738 } 1739 1740 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1741 SmallVectorImpl<uint64_t> &Record, 1742 unsigned Abbrev) { 1743 Record.push_back(N->isDistinct()); 1744 Record.push_back(N->getTag()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1747 Record.push_back(N->getLine()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1750 Record.push_back(N->getSizeInBits()); 1751 Record.push_back(N->getAlignInBits()); 1752 Record.push_back(N->getOffsetInBits()); 1753 Record.push_back(N->getFlags()); 1754 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1755 1756 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1757 // that there is no DWARF address space associated with DIDerivedType. 1758 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1759 Record.push_back(*DWARFAddressSpace + 1); 1760 else 1761 Record.push_back(0); 1762 1763 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1764 1765 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1766 Record.clear(); 1767 } 1768 1769 void ModuleBitcodeWriter::writeDICompositeType( 1770 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1771 unsigned Abbrev) { 1772 const unsigned IsNotUsedInOldTypeRef = 0x2; 1773 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1774 Record.push_back(N->getTag()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1777 Record.push_back(N->getLine()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1780 Record.push_back(N->getSizeInBits()); 1781 Record.push_back(N->getAlignInBits()); 1782 Record.push_back(N->getOffsetInBits()); 1783 Record.push_back(N->getFlags()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1785 Record.push_back(N->getRuntimeLang()); 1786 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1787 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1795 1796 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1797 Record.clear(); 1798 } 1799 1800 void ModuleBitcodeWriter::writeDISubroutineType( 1801 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1802 unsigned Abbrev) { 1803 const unsigned HasNoOldTypeRefs = 0x2; 1804 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1805 Record.push_back(N->getFlags()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1807 Record.push_back(N->getCC()); 1808 1809 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1810 Record.clear(); 1811 } 1812 1813 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1814 SmallVectorImpl<uint64_t> &Record, 1815 unsigned Abbrev) { 1816 Record.push_back(N->isDistinct()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1819 if (N->getRawChecksum()) { 1820 Record.push_back(N->getRawChecksum()->Kind); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1822 } else { 1823 // Maintain backwards compatibility with the old internal representation of 1824 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1825 Record.push_back(0); 1826 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1827 } 1828 auto Source = N->getRawSource(); 1829 if (Source) 1830 Record.push_back(VE.getMetadataOrNullID(Source)); 1831 1832 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1833 Record.clear(); 1834 } 1835 1836 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1837 SmallVectorImpl<uint64_t> &Record, 1838 unsigned Abbrev) { 1839 assert(N->isDistinct() && "Expected distinct compile units"); 1840 Record.push_back(/* IsDistinct */ true); 1841 Record.push_back(N->getSourceLanguage()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1844 Record.push_back(N->isOptimized()); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1846 Record.push_back(N->getRuntimeVersion()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1848 Record.push_back(N->getEmissionKind()); 1849 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1851 Record.push_back(/* subprograms */ 0); 1852 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1854 Record.push_back(N->getDWOId()); 1855 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1856 Record.push_back(N->getSplitDebugInlining()); 1857 Record.push_back(N->getDebugInfoForProfiling()); 1858 Record.push_back((unsigned)N->getNameTableKind()); 1859 Record.push_back(N->getRangesBaseAddress()); 1860 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1861 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1862 1863 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1864 Record.clear(); 1865 } 1866 1867 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1868 SmallVectorImpl<uint64_t> &Record, 1869 unsigned Abbrev) { 1870 const uint64_t HasUnitFlag = 1 << 1; 1871 const uint64_t HasSPFlagsFlag = 1 << 2; 1872 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1873 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1874 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1875 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1877 Record.push_back(N->getLine()); 1878 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1879 Record.push_back(N->getScopeLine()); 1880 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1881 Record.push_back(N->getSPFlags()); 1882 Record.push_back(N->getVirtualIndex()); 1883 Record.push_back(N->getFlags()); 1884 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1885 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1887 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1888 Record.push_back(N->getThisAdjustment()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1892 1893 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1894 Record.clear(); 1895 } 1896 1897 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1898 SmallVectorImpl<uint64_t> &Record, 1899 unsigned Abbrev) { 1900 Record.push_back(N->isDistinct()); 1901 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1902 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1903 Record.push_back(N->getLine()); 1904 Record.push_back(N->getColumn()); 1905 1906 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1907 Record.clear(); 1908 } 1909 1910 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1911 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1912 unsigned Abbrev) { 1913 Record.push_back(N->isDistinct()); 1914 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1915 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1916 Record.push_back(N->getDiscriminator()); 1917 1918 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1919 Record.clear(); 1920 } 1921 1922 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1923 SmallVectorImpl<uint64_t> &Record, 1924 unsigned Abbrev) { 1925 Record.push_back(N->isDistinct()); 1926 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1927 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1930 Record.push_back(N->getLineNo()); 1931 1932 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1933 Record.clear(); 1934 } 1935 1936 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1937 SmallVectorImpl<uint64_t> &Record, 1938 unsigned Abbrev) { 1939 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1940 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1942 1943 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1944 Record.clear(); 1945 } 1946 1947 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1948 SmallVectorImpl<uint64_t> &Record, 1949 unsigned Abbrev) { 1950 Record.push_back(N->isDistinct()); 1951 Record.push_back(N->getMacinfoType()); 1952 Record.push_back(N->getLine()); 1953 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1954 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1955 1956 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1957 Record.clear(); 1958 } 1959 1960 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1961 SmallVectorImpl<uint64_t> &Record, 1962 unsigned Abbrev) { 1963 Record.push_back(N->isDistinct()); 1964 Record.push_back(N->getMacinfoType()); 1965 Record.push_back(N->getLine()); 1966 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1967 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1968 1969 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1970 Record.clear(); 1971 } 1972 1973 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1974 SmallVectorImpl<uint64_t> &Record, 1975 unsigned Abbrev) { 1976 Record.reserve(N->getArgs().size()); 1977 for (ValueAsMetadata *MD : N->getArgs()) 1978 Record.push_back(VE.getMetadataID(MD)); 1979 1980 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1981 Record.clear(); 1982 } 1983 1984 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1985 SmallVectorImpl<uint64_t> &Record, 1986 unsigned Abbrev) { 1987 Record.push_back(N->isDistinct()); 1988 for (auto &I : N->operands()) 1989 Record.push_back(VE.getMetadataOrNullID(I)); 1990 Record.push_back(N->getLineNo()); 1991 Record.push_back(N->getIsDecl()); 1992 1993 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1994 Record.clear(); 1995 } 1996 1997 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 1998 SmallVectorImpl<uint64_t> &Record, 1999 unsigned Abbrev) { 2000 // There are no arguments for this metadata type. 2001 Record.push_back(N->isDistinct()); 2002 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2003 Record.clear(); 2004 } 2005 2006 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2007 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2008 unsigned Abbrev) { 2009 Record.push_back(N->isDistinct()); 2010 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2011 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2012 Record.push_back(N->isDefault()); 2013 2014 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2015 Record.clear(); 2016 } 2017 2018 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2019 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2020 unsigned Abbrev) { 2021 Record.push_back(N->isDistinct()); 2022 Record.push_back(N->getTag()); 2023 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2024 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2025 Record.push_back(N->isDefault()); 2026 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2027 2028 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2029 Record.clear(); 2030 } 2031 2032 void ModuleBitcodeWriter::writeDIGlobalVariable( 2033 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2034 unsigned Abbrev) { 2035 const uint64_t Version = 2 << 1; 2036 Record.push_back((uint64_t)N->isDistinct() | Version); 2037 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2038 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2039 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2041 Record.push_back(N->getLine()); 2042 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2043 Record.push_back(N->isLocalToUnit()); 2044 Record.push_back(N->isDefinition()); 2045 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2046 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2047 Record.push_back(N->getAlignInBits()); 2048 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2049 2050 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2051 Record.clear(); 2052 } 2053 2054 void ModuleBitcodeWriter::writeDILocalVariable( 2055 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2056 unsigned Abbrev) { 2057 // In order to support all possible bitcode formats in BitcodeReader we need 2058 // to distinguish the following cases: 2059 // 1) Record has no artificial tag (Record[1]), 2060 // has no obsolete inlinedAt field (Record[9]). 2061 // In this case Record size will be 8, HasAlignment flag is false. 2062 // 2) Record has artificial tag (Record[1]), 2063 // has no obsolete inlignedAt field (Record[9]). 2064 // In this case Record size will be 9, HasAlignment flag is false. 2065 // 3) Record has both artificial tag (Record[1]) and 2066 // obsolete inlignedAt field (Record[9]). 2067 // In this case Record size will be 10, HasAlignment flag is false. 2068 // 4) Record has neither artificial tag, nor inlignedAt field, but 2069 // HasAlignment flag is true and Record[8] contains alignment value. 2070 const uint64_t HasAlignmentFlag = 1 << 1; 2071 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2072 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2073 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2074 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2075 Record.push_back(N->getLine()); 2076 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2077 Record.push_back(N->getArg()); 2078 Record.push_back(N->getFlags()); 2079 Record.push_back(N->getAlignInBits()); 2080 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2081 2082 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2083 Record.clear(); 2084 } 2085 2086 void ModuleBitcodeWriter::writeDILabel( 2087 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2088 unsigned Abbrev) { 2089 Record.push_back((uint64_t)N->isDistinct()); 2090 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2091 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2092 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2093 Record.push_back(N->getLine()); 2094 2095 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2096 Record.clear(); 2097 } 2098 2099 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2100 SmallVectorImpl<uint64_t> &Record, 2101 unsigned Abbrev) { 2102 Record.reserve(N->getElements().size() + 1); 2103 const uint64_t Version = 3 << 1; 2104 Record.push_back((uint64_t)N->isDistinct() | Version); 2105 Record.append(N->elements_begin(), N->elements_end()); 2106 2107 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2108 Record.clear(); 2109 } 2110 2111 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2112 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2113 unsigned Abbrev) { 2114 Record.push_back(N->isDistinct()); 2115 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2116 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2117 2118 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2119 Record.clear(); 2120 } 2121 2122 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2123 SmallVectorImpl<uint64_t> &Record, 2124 unsigned Abbrev) { 2125 Record.push_back(N->isDistinct()); 2126 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2127 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2128 Record.push_back(N->getLine()); 2129 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2130 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2131 Record.push_back(N->getAttributes()); 2132 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2133 2134 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2135 Record.clear(); 2136 } 2137 2138 void ModuleBitcodeWriter::writeDIImportedEntity( 2139 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2140 unsigned Abbrev) { 2141 Record.push_back(N->isDistinct()); 2142 Record.push_back(N->getTag()); 2143 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2144 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2145 Record.push_back(N->getLine()); 2146 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2147 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2148 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2149 2150 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2151 Record.clear(); 2152 } 2153 2154 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2155 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2156 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2159 return Stream.EmitAbbrev(std::move(Abbv)); 2160 } 2161 2162 void ModuleBitcodeWriter::writeNamedMetadata( 2163 SmallVectorImpl<uint64_t> &Record) { 2164 if (M.named_metadata_empty()) 2165 return; 2166 2167 unsigned Abbrev = createNamedMetadataAbbrev(); 2168 for (const NamedMDNode &NMD : M.named_metadata()) { 2169 // Write name. 2170 StringRef Str = NMD.getName(); 2171 Record.append(Str.bytes_begin(), Str.bytes_end()); 2172 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2173 Record.clear(); 2174 2175 // Write named metadata operands. 2176 for (const MDNode *N : NMD.operands()) 2177 Record.push_back(VE.getMetadataID(N)); 2178 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2179 Record.clear(); 2180 } 2181 } 2182 2183 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2184 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2185 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2189 return Stream.EmitAbbrev(std::move(Abbv)); 2190 } 2191 2192 /// Write out a record for MDString. 2193 /// 2194 /// All the metadata strings in a metadata block are emitted in a single 2195 /// record. The sizes and strings themselves are shoved into a blob. 2196 void ModuleBitcodeWriter::writeMetadataStrings( 2197 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2198 if (Strings.empty()) 2199 return; 2200 2201 // Start the record with the number of strings. 2202 Record.push_back(bitc::METADATA_STRINGS); 2203 Record.push_back(Strings.size()); 2204 2205 // Emit the sizes of the strings in the blob. 2206 SmallString<256> Blob; 2207 { 2208 BitstreamWriter W(Blob); 2209 for (const Metadata *MD : Strings) 2210 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2211 W.FlushToWord(); 2212 } 2213 2214 // Add the offset to the strings to the record. 2215 Record.push_back(Blob.size()); 2216 2217 // Add the strings to the blob. 2218 for (const Metadata *MD : Strings) 2219 Blob.append(cast<MDString>(MD)->getString()); 2220 2221 // Emit the final record. 2222 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2223 Record.clear(); 2224 } 2225 2226 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2227 enum MetadataAbbrev : unsigned { 2228 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2229 #include "llvm/IR/Metadata.def" 2230 LastPlusOne 2231 }; 2232 2233 void ModuleBitcodeWriter::writeMetadataRecords( 2234 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2235 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2236 if (MDs.empty()) 2237 return; 2238 2239 // Initialize MDNode abbreviations. 2240 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2241 #include "llvm/IR/Metadata.def" 2242 2243 for (const Metadata *MD : MDs) { 2244 if (IndexPos) 2245 IndexPos->push_back(Stream.GetCurrentBitNo()); 2246 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2247 assert(N->isResolved() && "Expected forward references to be resolved"); 2248 2249 switch (N->getMetadataID()) { 2250 default: 2251 llvm_unreachable("Invalid MDNode subclass"); 2252 #define HANDLE_MDNODE_LEAF(CLASS) \ 2253 case Metadata::CLASS##Kind: \ 2254 if (MDAbbrevs) \ 2255 write##CLASS(cast<CLASS>(N), Record, \ 2256 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2257 else \ 2258 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2259 continue; 2260 #include "llvm/IR/Metadata.def" 2261 } 2262 } 2263 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2264 } 2265 } 2266 2267 void ModuleBitcodeWriter::writeModuleMetadata() { 2268 if (!VE.hasMDs() && M.named_metadata_empty()) 2269 return; 2270 2271 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2272 SmallVector<uint64_t, 64> Record; 2273 2274 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2275 // block and load any metadata. 2276 std::vector<unsigned> MDAbbrevs; 2277 2278 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2279 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2280 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2281 createGenericDINodeAbbrev(); 2282 2283 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2284 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2285 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2287 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2288 2289 Abbv = std::make_shared<BitCodeAbbrev>(); 2290 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2293 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2294 2295 // Emit MDStrings together upfront. 2296 writeMetadataStrings(VE.getMDStrings(), Record); 2297 2298 // We only emit an index for the metadata record if we have more than a given 2299 // (naive) threshold of metadatas, otherwise it is not worth it. 2300 if (VE.getNonMDStrings().size() > IndexThreshold) { 2301 // Write a placeholder value in for the offset of the metadata index, 2302 // which is written after the records, so that it can include 2303 // the offset of each entry. The placeholder offset will be 2304 // updated after all records are emitted. 2305 uint64_t Vals[] = {0, 0}; 2306 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2307 } 2308 2309 // Compute and save the bit offset to the current position, which will be 2310 // patched when we emit the index later. We can simply subtract the 64-bit 2311 // fixed size from the current bit number to get the location to backpatch. 2312 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2313 2314 // This index will contain the bitpos for each individual record. 2315 std::vector<uint64_t> IndexPos; 2316 IndexPos.reserve(VE.getNonMDStrings().size()); 2317 2318 // Write all the records 2319 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2320 2321 if (VE.getNonMDStrings().size() > IndexThreshold) { 2322 // Now that we have emitted all the records we will emit the index. But 2323 // first 2324 // backpatch the forward reference so that the reader can skip the records 2325 // efficiently. 2326 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2327 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2328 2329 // Delta encode the index. 2330 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2331 for (auto &Elt : IndexPos) { 2332 auto EltDelta = Elt - PreviousValue; 2333 PreviousValue = Elt; 2334 Elt = EltDelta; 2335 } 2336 // Emit the index record. 2337 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2338 IndexPos.clear(); 2339 } 2340 2341 // Write the named metadata now. 2342 writeNamedMetadata(Record); 2343 2344 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2345 SmallVector<uint64_t, 4> Record; 2346 Record.push_back(VE.getValueID(&GO)); 2347 pushGlobalMetadataAttachment(Record, GO); 2348 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2349 }; 2350 for (const Function &F : M) 2351 if (F.isDeclaration() && F.hasMetadata()) 2352 AddDeclAttachedMetadata(F); 2353 // FIXME: Only store metadata for declarations here, and move data for global 2354 // variable definitions to a separate block (PR28134). 2355 for (const GlobalVariable &GV : M.globals()) 2356 if (GV.hasMetadata()) 2357 AddDeclAttachedMetadata(GV); 2358 2359 Stream.ExitBlock(); 2360 } 2361 2362 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2363 if (!VE.hasMDs()) 2364 return; 2365 2366 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2367 SmallVector<uint64_t, 64> Record; 2368 writeMetadataStrings(VE.getMDStrings(), Record); 2369 writeMetadataRecords(VE.getNonMDStrings(), Record); 2370 Stream.ExitBlock(); 2371 } 2372 2373 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2374 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2375 // [n x [id, mdnode]] 2376 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2377 GO.getAllMetadata(MDs); 2378 for (const auto &I : MDs) { 2379 Record.push_back(I.first); 2380 Record.push_back(VE.getMetadataID(I.second)); 2381 } 2382 } 2383 2384 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2385 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2386 2387 SmallVector<uint64_t, 64> Record; 2388 2389 if (F.hasMetadata()) { 2390 pushGlobalMetadataAttachment(Record, F); 2391 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2392 Record.clear(); 2393 } 2394 2395 // Write metadata attachments 2396 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2397 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2398 for (const BasicBlock &BB : F) 2399 for (const Instruction &I : BB) { 2400 MDs.clear(); 2401 I.getAllMetadataOtherThanDebugLoc(MDs); 2402 2403 // If no metadata, ignore instruction. 2404 if (MDs.empty()) continue; 2405 2406 Record.push_back(VE.getInstructionID(&I)); 2407 2408 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2409 Record.push_back(MDs[i].first); 2410 Record.push_back(VE.getMetadataID(MDs[i].second)); 2411 } 2412 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2413 Record.clear(); 2414 } 2415 2416 Stream.ExitBlock(); 2417 } 2418 2419 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2420 SmallVector<uint64_t, 64> Record; 2421 2422 // Write metadata kinds 2423 // METADATA_KIND - [n x [id, name]] 2424 SmallVector<StringRef, 8> Names; 2425 M.getMDKindNames(Names); 2426 2427 if (Names.empty()) return; 2428 2429 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2430 2431 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2432 Record.push_back(MDKindID); 2433 StringRef KName = Names[MDKindID]; 2434 Record.append(KName.begin(), KName.end()); 2435 2436 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2437 Record.clear(); 2438 } 2439 2440 Stream.ExitBlock(); 2441 } 2442 2443 void ModuleBitcodeWriter::writeOperandBundleTags() { 2444 // Write metadata kinds 2445 // 2446 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2447 // 2448 // OPERAND_BUNDLE_TAG - [strchr x N] 2449 2450 SmallVector<StringRef, 8> Tags; 2451 M.getOperandBundleTags(Tags); 2452 2453 if (Tags.empty()) 2454 return; 2455 2456 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2457 2458 SmallVector<uint64_t, 64> Record; 2459 2460 for (auto Tag : Tags) { 2461 Record.append(Tag.begin(), Tag.end()); 2462 2463 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2464 Record.clear(); 2465 } 2466 2467 Stream.ExitBlock(); 2468 } 2469 2470 void ModuleBitcodeWriter::writeSyncScopeNames() { 2471 SmallVector<StringRef, 8> SSNs; 2472 M.getContext().getSyncScopeNames(SSNs); 2473 if (SSNs.empty()) 2474 return; 2475 2476 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2477 2478 SmallVector<uint64_t, 64> Record; 2479 for (auto SSN : SSNs) { 2480 Record.append(SSN.begin(), SSN.end()); 2481 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2482 Record.clear(); 2483 } 2484 2485 Stream.ExitBlock(); 2486 } 2487 2488 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2489 bool isGlobal) { 2490 if (FirstVal == LastVal) return; 2491 2492 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2493 2494 unsigned AggregateAbbrev = 0; 2495 unsigned String8Abbrev = 0; 2496 unsigned CString7Abbrev = 0; 2497 unsigned CString6Abbrev = 0; 2498 // If this is a constant pool for the module, emit module-specific abbrevs. 2499 if (isGlobal) { 2500 // Abbrev for CST_CODE_AGGREGATE. 2501 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2502 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2505 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2506 2507 // Abbrev for CST_CODE_STRING. 2508 Abbv = std::make_shared<BitCodeAbbrev>(); 2509 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2512 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2513 // Abbrev for CST_CODE_CSTRING. 2514 Abbv = std::make_shared<BitCodeAbbrev>(); 2515 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2518 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2519 // Abbrev for CST_CODE_CSTRING. 2520 Abbv = std::make_shared<BitCodeAbbrev>(); 2521 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2524 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2525 } 2526 2527 SmallVector<uint64_t, 64> Record; 2528 2529 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2530 Type *LastTy = nullptr; 2531 for (unsigned i = FirstVal; i != LastVal; ++i) { 2532 const Value *V = Vals[i].first; 2533 // If we need to switch types, do so now. 2534 if (V->getType() != LastTy) { 2535 LastTy = V->getType(); 2536 Record.push_back(VE.getTypeID(LastTy)); 2537 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2538 CONSTANTS_SETTYPE_ABBREV); 2539 Record.clear(); 2540 } 2541 2542 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2543 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2544 Record.push_back( 2545 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2546 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2547 2548 // Add the asm string. 2549 const std::string &AsmStr = IA->getAsmString(); 2550 Record.push_back(AsmStr.size()); 2551 Record.append(AsmStr.begin(), AsmStr.end()); 2552 2553 // Add the constraint string. 2554 const std::string &ConstraintStr = IA->getConstraintString(); 2555 Record.push_back(ConstraintStr.size()); 2556 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2557 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2558 Record.clear(); 2559 continue; 2560 } 2561 const Constant *C = cast<Constant>(V); 2562 unsigned Code = -1U; 2563 unsigned AbbrevToUse = 0; 2564 if (C->isNullValue()) { 2565 Code = bitc::CST_CODE_NULL; 2566 } else if (isa<PoisonValue>(C)) { 2567 Code = bitc::CST_CODE_POISON; 2568 } else if (isa<UndefValue>(C)) { 2569 Code = bitc::CST_CODE_UNDEF; 2570 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2571 if (IV->getBitWidth() <= 64) { 2572 uint64_t V = IV->getSExtValue(); 2573 emitSignedInt64(Record, V); 2574 Code = bitc::CST_CODE_INTEGER; 2575 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2576 } else { // Wide integers, > 64 bits in size. 2577 emitWideAPInt(Record, IV->getValue()); 2578 Code = bitc::CST_CODE_WIDE_INTEGER; 2579 } 2580 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2581 Code = bitc::CST_CODE_FLOAT; 2582 Type *Ty = CFP->getType(); 2583 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2584 Ty->isDoubleTy()) { 2585 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2586 } else if (Ty->isX86_FP80Ty()) { 2587 // api needed to prevent premature destruction 2588 // bits are not in the same order as a normal i80 APInt, compensate. 2589 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2590 const uint64_t *p = api.getRawData(); 2591 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2592 Record.push_back(p[0] & 0xffffLL); 2593 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2594 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2595 const uint64_t *p = api.getRawData(); 2596 Record.push_back(p[0]); 2597 Record.push_back(p[1]); 2598 } else { 2599 assert(0 && "Unknown FP type!"); 2600 } 2601 } else if (isa<ConstantDataSequential>(C) && 2602 cast<ConstantDataSequential>(C)->isString()) { 2603 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2604 // Emit constant strings specially. 2605 unsigned NumElts = Str->getNumElements(); 2606 // If this is a null-terminated string, use the denser CSTRING encoding. 2607 if (Str->isCString()) { 2608 Code = bitc::CST_CODE_CSTRING; 2609 --NumElts; // Don't encode the null, which isn't allowed by char6. 2610 } else { 2611 Code = bitc::CST_CODE_STRING; 2612 AbbrevToUse = String8Abbrev; 2613 } 2614 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2615 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2616 for (unsigned i = 0; i != NumElts; ++i) { 2617 unsigned char V = Str->getElementAsInteger(i); 2618 Record.push_back(V); 2619 isCStr7 &= (V & 128) == 0; 2620 if (isCStrChar6) 2621 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2622 } 2623 2624 if (isCStrChar6) 2625 AbbrevToUse = CString6Abbrev; 2626 else if (isCStr7) 2627 AbbrevToUse = CString7Abbrev; 2628 } else if (const ConstantDataSequential *CDS = 2629 dyn_cast<ConstantDataSequential>(C)) { 2630 Code = bitc::CST_CODE_DATA; 2631 Type *EltTy = CDS->getElementType(); 2632 if (isa<IntegerType>(EltTy)) { 2633 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2634 Record.push_back(CDS->getElementAsInteger(i)); 2635 } else { 2636 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2637 Record.push_back( 2638 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2639 } 2640 } else if (isa<ConstantAggregate>(C)) { 2641 Code = bitc::CST_CODE_AGGREGATE; 2642 for (const Value *Op : C->operands()) 2643 Record.push_back(VE.getValueID(Op)); 2644 AbbrevToUse = AggregateAbbrev; 2645 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2646 switch (CE->getOpcode()) { 2647 default: 2648 if (Instruction::isCast(CE->getOpcode())) { 2649 Code = bitc::CST_CODE_CE_CAST; 2650 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2651 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2652 Record.push_back(VE.getValueID(C->getOperand(0))); 2653 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2654 } else { 2655 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2656 Code = bitc::CST_CODE_CE_BINOP; 2657 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2658 Record.push_back(VE.getValueID(C->getOperand(0))); 2659 Record.push_back(VE.getValueID(C->getOperand(1))); 2660 uint64_t Flags = getOptimizationFlags(CE); 2661 if (Flags != 0) 2662 Record.push_back(Flags); 2663 } 2664 break; 2665 case Instruction::FNeg: { 2666 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2667 Code = bitc::CST_CODE_CE_UNOP; 2668 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2669 Record.push_back(VE.getValueID(C->getOperand(0))); 2670 uint64_t Flags = getOptimizationFlags(CE); 2671 if (Flags != 0) 2672 Record.push_back(Flags); 2673 break; 2674 } 2675 case Instruction::GetElementPtr: { 2676 Code = bitc::CST_CODE_CE_GEP; 2677 const auto *GO = cast<GEPOperator>(C); 2678 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2679 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2680 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2681 Record.push_back((*Idx << 1) | GO->isInBounds()); 2682 } else if (GO->isInBounds()) 2683 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2684 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2685 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2686 Record.push_back(VE.getValueID(C->getOperand(i))); 2687 } 2688 break; 2689 } 2690 case Instruction::ExtractElement: 2691 Code = bitc::CST_CODE_CE_EXTRACTELT; 2692 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2693 Record.push_back(VE.getValueID(C->getOperand(0))); 2694 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2695 Record.push_back(VE.getValueID(C->getOperand(1))); 2696 break; 2697 case Instruction::InsertElement: 2698 Code = bitc::CST_CODE_CE_INSERTELT; 2699 Record.push_back(VE.getValueID(C->getOperand(0))); 2700 Record.push_back(VE.getValueID(C->getOperand(1))); 2701 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2702 Record.push_back(VE.getValueID(C->getOperand(2))); 2703 break; 2704 case Instruction::ShuffleVector: 2705 // If the return type and argument types are the same, this is a 2706 // standard shufflevector instruction. If the types are different, 2707 // then the shuffle is widening or truncating the input vectors, and 2708 // the argument type must also be encoded. 2709 if (C->getType() == C->getOperand(0)->getType()) { 2710 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2711 } else { 2712 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2713 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2714 } 2715 Record.push_back(VE.getValueID(C->getOperand(0))); 2716 Record.push_back(VE.getValueID(C->getOperand(1))); 2717 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2718 break; 2719 case Instruction::ICmp: 2720 case Instruction::FCmp: 2721 Code = bitc::CST_CODE_CE_CMP; 2722 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2723 Record.push_back(VE.getValueID(C->getOperand(0))); 2724 Record.push_back(VE.getValueID(C->getOperand(1))); 2725 Record.push_back(CE->getPredicate()); 2726 break; 2727 } 2728 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2729 Code = bitc::CST_CODE_BLOCKADDRESS; 2730 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2731 Record.push_back(VE.getValueID(BA->getFunction())); 2732 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2733 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2734 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2735 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2736 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2737 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2738 Code = bitc::CST_CODE_NO_CFI_VALUE; 2739 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2740 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2741 } else { 2742 #ifndef NDEBUG 2743 C->dump(); 2744 #endif 2745 llvm_unreachable("Unknown constant!"); 2746 } 2747 Stream.EmitRecord(Code, Record, AbbrevToUse); 2748 Record.clear(); 2749 } 2750 2751 Stream.ExitBlock(); 2752 } 2753 2754 void ModuleBitcodeWriter::writeModuleConstants() { 2755 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2756 2757 // Find the first constant to emit, which is the first non-globalvalue value. 2758 // We know globalvalues have been emitted by WriteModuleInfo. 2759 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2760 if (!isa<GlobalValue>(Vals[i].first)) { 2761 writeConstants(i, Vals.size(), true); 2762 return; 2763 } 2764 } 2765 } 2766 2767 /// pushValueAndType - The file has to encode both the value and type id for 2768 /// many values, because we need to know what type to create for forward 2769 /// references. However, most operands are not forward references, so this type 2770 /// field is not needed. 2771 /// 2772 /// This function adds V's value ID to Vals. If the value ID is higher than the 2773 /// instruction ID, then it is a forward reference, and it also includes the 2774 /// type ID. The value ID that is written is encoded relative to the InstID. 2775 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2776 SmallVectorImpl<unsigned> &Vals) { 2777 unsigned ValID = VE.getValueID(V); 2778 // Make encoding relative to the InstID. 2779 Vals.push_back(InstID - ValID); 2780 if (ValID >= InstID) { 2781 Vals.push_back(VE.getTypeID(V->getType())); 2782 return true; 2783 } 2784 return false; 2785 } 2786 2787 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2788 unsigned InstID) { 2789 SmallVector<unsigned, 64> Record; 2790 LLVMContext &C = CS.getContext(); 2791 2792 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2793 const auto &Bundle = CS.getOperandBundleAt(i); 2794 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2795 2796 for (auto &Input : Bundle.Inputs) 2797 pushValueAndType(Input, InstID, Record); 2798 2799 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2800 Record.clear(); 2801 } 2802 } 2803 2804 /// pushValue - Like pushValueAndType, but where the type of the value is 2805 /// omitted (perhaps it was already encoded in an earlier operand). 2806 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2807 SmallVectorImpl<unsigned> &Vals) { 2808 unsigned ValID = VE.getValueID(V); 2809 Vals.push_back(InstID - ValID); 2810 } 2811 2812 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2813 SmallVectorImpl<uint64_t> &Vals) { 2814 unsigned ValID = VE.getValueID(V); 2815 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2816 emitSignedInt64(Vals, diff); 2817 } 2818 2819 /// WriteInstruction - Emit an instruction to the specified stream. 2820 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2821 unsigned InstID, 2822 SmallVectorImpl<unsigned> &Vals) { 2823 unsigned Code = 0; 2824 unsigned AbbrevToUse = 0; 2825 VE.setInstructionID(&I); 2826 switch (I.getOpcode()) { 2827 default: 2828 if (Instruction::isCast(I.getOpcode())) { 2829 Code = bitc::FUNC_CODE_INST_CAST; 2830 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2831 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2832 Vals.push_back(VE.getTypeID(I.getType())); 2833 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2834 uint64_t Flags = getOptimizationFlags(&I); 2835 if (Flags != 0) { 2836 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2837 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2838 Vals.push_back(Flags); 2839 } 2840 } else { 2841 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2842 Code = bitc::FUNC_CODE_INST_BINOP; 2843 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2844 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2845 pushValue(I.getOperand(1), InstID, Vals); 2846 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2847 uint64_t Flags = getOptimizationFlags(&I); 2848 if (Flags != 0) { 2849 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2850 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2851 Vals.push_back(Flags); 2852 } 2853 } 2854 break; 2855 case Instruction::FNeg: { 2856 Code = bitc::FUNC_CODE_INST_UNOP; 2857 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2858 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2859 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2860 uint64_t Flags = getOptimizationFlags(&I); 2861 if (Flags != 0) { 2862 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2863 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2864 Vals.push_back(Flags); 2865 } 2866 break; 2867 } 2868 case Instruction::GetElementPtr: { 2869 Code = bitc::FUNC_CODE_INST_GEP; 2870 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2871 auto &GEPInst = cast<GetElementPtrInst>(I); 2872 Vals.push_back(GEPInst.isInBounds()); 2873 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2874 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2875 pushValueAndType(I.getOperand(i), InstID, Vals); 2876 break; 2877 } 2878 case Instruction::ExtractValue: { 2879 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2880 pushValueAndType(I.getOperand(0), InstID, Vals); 2881 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2882 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2883 break; 2884 } 2885 case Instruction::InsertValue: { 2886 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2887 pushValueAndType(I.getOperand(0), InstID, Vals); 2888 pushValueAndType(I.getOperand(1), InstID, Vals); 2889 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2890 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2891 break; 2892 } 2893 case Instruction::Select: { 2894 Code = bitc::FUNC_CODE_INST_VSELECT; 2895 pushValueAndType(I.getOperand(1), InstID, Vals); 2896 pushValue(I.getOperand(2), InstID, Vals); 2897 pushValueAndType(I.getOperand(0), InstID, Vals); 2898 uint64_t Flags = getOptimizationFlags(&I); 2899 if (Flags != 0) 2900 Vals.push_back(Flags); 2901 break; 2902 } 2903 case Instruction::ExtractElement: 2904 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2905 pushValueAndType(I.getOperand(0), InstID, Vals); 2906 pushValueAndType(I.getOperand(1), InstID, Vals); 2907 break; 2908 case Instruction::InsertElement: 2909 Code = bitc::FUNC_CODE_INST_INSERTELT; 2910 pushValueAndType(I.getOperand(0), InstID, Vals); 2911 pushValue(I.getOperand(1), InstID, Vals); 2912 pushValueAndType(I.getOperand(2), InstID, Vals); 2913 break; 2914 case Instruction::ShuffleVector: 2915 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2916 pushValueAndType(I.getOperand(0), InstID, Vals); 2917 pushValue(I.getOperand(1), InstID, Vals); 2918 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2919 Vals); 2920 break; 2921 case Instruction::ICmp: 2922 case Instruction::FCmp: { 2923 // compare returning Int1Ty or vector of Int1Ty 2924 Code = bitc::FUNC_CODE_INST_CMP2; 2925 pushValueAndType(I.getOperand(0), InstID, Vals); 2926 pushValue(I.getOperand(1), InstID, Vals); 2927 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2928 uint64_t Flags = getOptimizationFlags(&I); 2929 if (Flags != 0) 2930 Vals.push_back(Flags); 2931 break; 2932 } 2933 2934 case Instruction::Ret: 2935 { 2936 Code = bitc::FUNC_CODE_INST_RET; 2937 unsigned NumOperands = I.getNumOperands(); 2938 if (NumOperands == 0) 2939 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2940 else if (NumOperands == 1) { 2941 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2942 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2943 } else { 2944 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2945 pushValueAndType(I.getOperand(i), InstID, Vals); 2946 } 2947 } 2948 break; 2949 case Instruction::Br: 2950 { 2951 Code = bitc::FUNC_CODE_INST_BR; 2952 const BranchInst &II = cast<BranchInst>(I); 2953 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2954 if (II.isConditional()) { 2955 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2956 pushValue(II.getCondition(), InstID, Vals); 2957 } 2958 } 2959 break; 2960 case Instruction::Switch: 2961 { 2962 Code = bitc::FUNC_CODE_INST_SWITCH; 2963 const SwitchInst &SI = cast<SwitchInst>(I); 2964 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2965 pushValue(SI.getCondition(), InstID, Vals); 2966 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2967 for (auto Case : SI.cases()) { 2968 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2969 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2970 } 2971 } 2972 break; 2973 case Instruction::IndirectBr: 2974 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2975 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2976 // Encode the address operand as relative, but not the basic blocks. 2977 pushValue(I.getOperand(0), InstID, Vals); 2978 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2979 Vals.push_back(VE.getValueID(I.getOperand(i))); 2980 break; 2981 2982 case Instruction::Invoke: { 2983 const InvokeInst *II = cast<InvokeInst>(&I); 2984 const Value *Callee = II->getCalledOperand(); 2985 FunctionType *FTy = II->getFunctionType(); 2986 2987 if (II->hasOperandBundles()) 2988 writeOperandBundles(*II, InstID); 2989 2990 Code = bitc::FUNC_CODE_INST_INVOKE; 2991 2992 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2993 Vals.push_back(II->getCallingConv() | 1 << 13); 2994 Vals.push_back(VE.getValueID(II->getNormalDest())); 2995 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2996 Vals.push_back(VE.getTypeID(FTy)); 2997 pushValueAndType(Callee, InstID, Vals); 2998 2999 // Emit value #'s for the fixed parameters. 3000 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3001 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3002 3003 // Emit type/value pairs for varargs params. 3004 if (FTy->isVarArg()) { 3005 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3006 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3007 } 3008 break; 3009 } 3010 case Instruction::Resume: 3011 Code = bitc::FUNC_CODE_INST_RESUME; 3012 pushValueAndType(I.getOperand(0), InstID, Vals); 3013 break; 3014 case Instruction::CleanupRet: { 3015 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3016 const auto &CRI = cast<CleanupReturnInst>(I); 3017 pushValue(CRI.getCleanupPad(), InstID, Vals); 3018 if (CRI.hasUnwindDest()) 3019 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3020 break; 3021 } 3022 case Instruction::CatchRet: { 3023 Code = bitc::FUNC_CODE_INST_CATCHRET; 3024 const auto &CRI = cast<CatchReturnInst>(I); 3025 pushValue(CRI.getCatchPad(), InstID, Vals); 3026 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3027 break; 3028 } 3029 case Instruction::CleanupPad: 3030 case Instruction::CatchPad: { 3031 const auto &FuncletPad = cast<FuncletPadInst>(I); 3032 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3033 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3034 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3035 3036 unsigned NumArgOperands = FuncletPad.arg_size(); 3037 Vals.push_back(NumArgOperands); 3038 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3039 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3040 break; 3041 } 3042 case Instruction::CatchSwitch: { 3043 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3044 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3045 3046 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3047 3048 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3049 Vals.push_back(NumHandlers); 3050 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3051 Vals.push_back(VE.getValueID(CatchPadBB)); 3052 3053 if (CatchSwitch.hasUnwindDest()) 3054 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3055 break; 3056 } 3057 case Instruction::CallBr: { 3058 const CallBrInst *CBI = cast<CallBrInst>(&I); 3059 const Value *Callee = CBI->getCalledOperand(); 3060 FunctionType *FTy = CBI->getFunctionType(); 3061 3062 if (CBI->hasOperandBundles()) 3063 writeOperandBundles(*CBI, InstID); 3064 3065 Code = bitc::FUNC_CODE_INST_CALLBR; 3066 3067 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3068 3069 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3070 1 << bitc::CALL_EXPLICIT_TYPE); 3071 3072 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3073 Vals.push_back(CBI->getNumIndirectDests()); 3074 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3075 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3076 3077 Vals.push_back(VE.getTypeID(FTy)); 3078 pushValueAndType(Callee, InstID, Vals); 3079 3080 // Emit value #'s for the fixed parameters. 3081 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3082 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3083 3084 // Emit type/value pairs for varargs params. 3085 if (FTy->isVarArg()) { 3086 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3087 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3088 } 3089 break; 3090 } 3091 case Instruction::Unreachable: 3092 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3093 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3094 break; 3095 3096 case Instruction::PHI: { 3097 const PHINode &PN = cast<PHINode>(I); 3098 Code = bitc::FUNC_CODE_INST_PHI; 3099 // With the newer instruction encoding, forward references could give 3100 // negative valued IDs. This is most common for PHIs, so we use 3101 // signed VBRs. 3102 SmallVector<uint64_t, 128> Vals64; 3103 Vals64.push_back(VE.getTypeID(PN.getType())); 3104 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3105 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3106 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3107 } 3108 3109 uint64_t Flags = getOptimizationFlags(&I); 3110 if (Flags != 0) 3111 Vals64.push_back(Flags); 3112 3113 // Emit a Vals64 vector and exit. 3114 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3115 Vals64.clear(); 3116 return; 3117 } 3118 3119 case Instruction::LandingPad: { 3120 const LandingPadInst &LP = cast<LandingPadInst>(I); 3121 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3122 Vals.push_back(VE.getTypeID(LP.getType())); 3123 Vals.push_back(LP.isCleanup()); 3124 Vals.push_back(LP.getNumClauses()); 3125 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3126 if (LP.isCatch(I)) 3127 Vals.push_back(LandingPadInst::Catch); 3128 else 3129 Vals.push_back(LandingPadInst::Filter); 3130 pushValueAndType(LP.getClause(I), InstID, Vals); 3131 } 3132 break; 3133 } 3134 3135 case Instruction::Alloca: { 3136 Code = bitc::FUNC_CODE_INST_ALLOCA; 3137 const AllocaInst &AI = cast<AllocaInst>(I); 3138 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3139 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3140 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3141 using APV = AllocaPackedValues; 3142 unsigned Record = 0; 3143 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3144 Bitfield::set<APV::AlignLower>( 3145 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3146 Bitfield::set<APV::AlignUpper>(Record, 3147 EncodedAlign >> APV::AlignLower::Bits); 3148 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3149 Bitfield::set<APV::ExplicitType>(Record, true); 3150 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3151 Vals.push_back(Record); 3152 3153 unsigned AS = AI.getAddressSpace(); 3154 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3155 Vals.push_back(AS); 3156 break; 3157 } 3158 3159 case Instruction::Load: 3160 if (cast<LoadInst>(I).isAtomic()) { 3161 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3162 pushValueAndType(I.getOperand(0), InstID, Vals); 3163 } else { 3164 Code = bitc::FUNC_CODE_INST_LOAD; 3165 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3166 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3167 } 3168 Vals.push_back(VE.getTypeID(I.getType())); 3169 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3170 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3171 if (cast<LoadInst>(I).isAtomic()) { 3172 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3173 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3174 } 3175 break; 3176 case Instruction::Store: 3177 if (cast<StoreInst>(I).isAtomic()) 3178 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3179 else 3180 Code = bitc::FUNC_CODE_INST_STORE; 3181 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3182 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3183 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3184 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3185 if (cast<StoreInst>(I).isAtomic()) { 3186 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3187 Vals.push_back( 3188 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3189 } 3190 break; 3191 case Instruction::AtomicCmpXchg: 3192 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3193 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3194 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3195 pushValue(I.getOperand(2), InstID, Vals); // newval. 3196 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3197 Vals.push_back( 3198 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3199 Vals.push_back( 3200 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3201 Vals.push_back( 3202 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3203 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3204 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3205 break; 3206 case Instruction::AtomicRMW: 3207 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3208 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3209 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3210 Vals.push_back( 3211 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3212 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3213 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3214 Vals.push_back( 3215 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3216 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3217 break; 3218 case Instruction::Fence: 3219 Code = bitc::FUNC_CODE_INST_FENCE; 3220 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3221 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3222 break; 3223 case Instruction::Call: { 3224 const CallInst &CI = cast<CallInst>(I); 3225 FunctionType *FTy = CI.getFunctionType(); 3226 3227 if (CI.hasOperandBundles()) 3228 writeOperandBundles(CI, InstID); 3229 3230 Code = bitc::FUNC_CODE_INST_CALL; 3231 3232 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3233 3234 unsigned Flags = getOptimizationFlags(&I); 3235 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3236 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3237 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3238 1 << bitc::CALL_EXPLICIT_TYPE | 3239 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3240 unsigned(Flags != 0) << bitc::CALL_FMF); 3241 if (Flags != 0) 3242 Vals.push_back(Flags); 3243 3244 Vals.push_back(VE.getTypeID(FTy)); 3245 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3246 3247 // Emit value #'s for the fixed parameters. 3248 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3249 // Check for labels (can happen with asm labels). 3250 if (FTy->getParamType(i)->isLabelTy()) 3251 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3252 else 3253 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3254 } 3255 3256 // Emit type/value pairs for varargs params. 3257 if (FTy->isVarArg()) { 3258 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3259 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3260 } 3261 break; 3262 } 3263 case Instruction::VAArg: 3264 Code = bitc::FUNC_CODE_INST_VAARG; 3265 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3266 pushValue(I.getOperand(0), InstID, Vals); // valist. 3267 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3268 break; 3269 case Instruction::Freeze: 3270 Code = bitc::FUNC_CODE_INST_FREEZE; 3271 pushValueAndType(I.getOperand(0), InstID, Vals); 3272 break; 3273 } 3274 3275 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3276 Vals.clear(); 3277 } 3278 3279 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3280 /// to allow clients to efficiently find the function body. 3281 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3282 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3283 // Get the offset of the VST we are writing, and backpatch it into 3284 // the VST forward declaration record. 3285 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3286 // The BitcodeStartBit was the stream offset of the identification block. 3287 VSTOffset -= bitcodeStartBit(); 3288 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3289 // Note that we add 1 here because the offset is relative to one word 3290 // before the start of the identification block, which was historically 3291 // always the start of the regular bitcode header. 3292 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3293 3294 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3295 3296 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3297 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3300 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3301 3302 for (const Function &F : M) { 3303 uint64_t Record[2]; 3304 3305 if (F.isDeclaration()) 3306 continue; 3307 3308 Record[0] = VE.getValueID(&F); 3309 3310 // Save the word offset of the function (from the start of the 3311 // actual bitcode written to the stream). 3312 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3313 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3314 // Note that we add 1 here because the offset is relative to one word 3315 // before the start of the identification block, which was historically 3316 // always the start of the regular bitcode header. 3317 Record[1] = BitcodeIndex / 32 + 1; 3318 3319 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3320 } 3321 3322 Stream.ExitBlock(); 3323 } 3324 3325 /// Emit names for arguments, instructions and basic blocks in a function. 3326 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3327 const ValueSymbolTable &VST) { 3328 if (VST.empty()) 3329 return; 3330 3331 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3332 3333 // FIXME: Set up the abbrev, we know how many values there are! 3334 // FIXME: We know if the type names can use 7-bit ascii. 3335 SmallVector<uint64_t, 64> NameVals; 3336 3337 for (const ValueName &Name : VST) { 3338 // Figure out the encoding to use for the name. 3339 StringEncoding Bits = getStringEncoding(Name.getKey()); 3340 3341 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3342 NameVals.push_back(VE.getValueID(Name.getValue())); 3343 3344 // VST_CODE_ENTRY: [valueid, namechar x N] 3345 // VST_CODE_BBENTRY: [bbid, namechar x N] 3346 unsigned Code; 3347 if (isa<BasicBlock>(Name.getValue())) { 3348 Code = bitc::VST_CODE_BBENTRY; 3349 if (Bits == SE_Char6) 3350 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3351 } else { 3352 Code = bitc::VST_CODE_ENTRY; 3353 if (Bits == SE_Char6) 3354 AbbrevToUse = VST_ENTRY_6_ABBREV; 3355 else if (Bits == SE_Fixed7) 3356 AbbrevToUse = VST_ENTRY_7_ABBREV; 3357 } 3358 3359 for (const auto P : Name.getKey()) 3360 NameVals.push_back((unsigned char)P); 3361 3362 // Emit the finished record. 3363 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3364 NameVals.clear(); 3365 } 3366 3367 Stream.ExitBlock(); 3368 } 3369 3370 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3371 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3372 unsigned Code; 3373 if (isa<BasicBlock>(Order.V)) 3374 Code = bitc::USELIST_CODE_BB; 3375 else 3376 Code = bitc::USELIST_CODE_DEFAULT; 3377 3378 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3379 Record.push_back(VE.getValueID(Order.V)); 3380 Stream.EmitRecord(Code, Record); 3381 } 3382 3383 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3384 assert(VE.shouldPreserveUseListOrder() && 3385 "Expected to be preserving use-list order"); 3386 3387 auto hasMore = [&]() { 3388 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3389 }; 3390 if (!hasMore()) 3391 // Nothing to do. 3392 return; 3393 3394 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3395 while (hasMore()) { 3396 writeUseList(std::move(VE.UseListOrders.back())); 3397 VE.UseListOrders.pop_back(); 3398 } 3399 Stream.ExitBlock(); 3400 } 3401 3402 /// Emit a function body to the module stream. 3403 void ModuleBitcodeWriter::writeFunction( 3404 const Function &F, 3405 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3406 // Save the bitcode index of the start of this function block for recording 3407 // in the VST. 3408 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3409 3410 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3411 VE.incorporateFunction(F); 3412 3413 SmallVector<unsigned, 64> Vals; 3414 3415 // Emit the number of basic blocks, so the reader can create them ahead of 3416 // time. 3417 Vals.push_back(VE.getBasicBlocks().size()); 3418 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3419 Vals.clear(); 3420 3421 // If there are function-local constants, emit them now. 3422 unsigned CstStart, CstEnd; 3423 VE.getFunctionConstantRange(CstStart, CstEnd); 3424 writeConstants(CstStart, CstEnd, false); 3425 3426 // If there is function-local metadata, emit it now. 3427 writeFunctionMetadata(F); 3428 3429 // Keep a running idea of what the instruction ID is. 3430 unsigned InstID = CstEnd; 3431 3432 bool NeedsMetadataAttachment = F.hasMetadata(); 3433 3434 DILocation *LastDL = nullptr; 3435 SmallSetVector<Function *, 4> BlockAddressUsers; 3436 3437 // Finally, emit all the instructions, in order. 3438 for (const BasicBlock &BB : F) { 3439 for (const Instruction &I : BB) { 3440 writeInstruction(I, InstID, Vals); 3441 3442 if (!I.getType()->isVoidTy()) 3443 ++InstID; 3444 3445 // If the instruction has metadata, write a metadata attachment later. 3446 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3447 3448 // If the instruction has a debug location, emit it. 3449 DILocation *DL = I.getDebugLoc(); 3450 if (!DL) 3451 continue; 3452 3453 if (DL == LastDL) { 3454 // Just repeat the same debug loc as last time. 3455 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3456 continue; 3457 } 3458 3459 Vals.push_back(DL->getLine()); 3460 Vals.push_back(DL->getColumn()); 3461 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3462 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3463 Vals.push_back(DL->isImplicitCode()); 3464 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3465 Vals.clear(); 3466 3467 LastDL = DL; 3468 } 3469 3470 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3471 SmallVector<Value *> Worklist{BA}; 3472 SmallPtrSet<Value *, 8> Visited{BA}; 3473 while (!Worklist.empty()) { 3474 Value *V = Worklist.pop_back_val(); 3475 for (User *U : V->users()) { 3476 if (auto *I = dyn_cast<Instruction>(U)) { 3477 Function *P = I->getFunction(); 3478 if (P != &F) 3479 BlockAddressUsers.insert(P); 3480 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3481 Visited.insert(U).second) 3482 Worklist.push_back(U); 3483 } 3484 } 3485 } 3486 } 3487 3488 if (!BlockAddressUsers.empty()) { 3489 Vals.resize(BlockAddressUsers.size()); 3490 for (auto I : llvm::enumerate(BlockAddressUsers)) 3491 Vals[I.index()] = VE.getValueID(I.value()); 3492 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3493 Vals.clear(); 3494 } 3495 3496 // Emit names for all the instructions etc. 3497 if (auto *Symtab = F.getValueSymbolTable()) 3498 writeFunctionLevelValueSymbolTable(*Symtab); 3499 3500 if (NeedsMetadataAttachment) 3501 writeFunctionMetadataAttachment(F); 3502 if (VE.shouldPreserveUseListOrder()) 3503 writeUseListBlock(&F); 3504 VE.purgeFunction(); 3505 Stream.ExitBlock(); 3506 } 3507 3508 // Emit blockinfo, which defines the standard abbreviations etc. 3509 void ModuleBitcodeWriter::writeBlockInfo() { 3510 // We only want to emit block info records for blocks that have multiple 3511 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3512 // Other blocks can define their abbrevs inline. 3513 Stream.EnterBlockInfoBlock(); 3514 3515 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3516 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3521 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3522 VST_ENTRY_8_ABBREV) 3523 llvm_unreachable("Unexpected abbrev ordering!"); 3524 } 3525 3526 { // 7-bit fixed width VST_CODE_ENTRY strings. 3527 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3528 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3532 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3533 VST_ENTRY_7_ABBREV) 3534 llvm_unreachable("Unexpected abbrev ordering!"); 3535 } 3536 { // 6-bit char6 VST_CODE_ENTRY strings. 3537 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3538 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3542 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3543 VST_ENTRY_6_ABBREV) 3544 llvm_unreachable("Unexpected abbrev ordering!"); 3545 } 3546 { // 6-bit char6 VST_CODE_BBENTRY strings. 3547 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3548 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3552 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3553 VST_BBENTRY_6_ABBREV) 3554 llvm_unreachable("Unexpected abbrev ordering!"); 3555 } 3556 3557 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3558 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3559 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3561 VE.computeBitsRequiredForTypeIndicies())); 3562 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3563 CONSTANTS_SETTYPE_ABBREV) 3564 llvm_unreachable("Unexpected abbrev ordering!"); 3565 } 3566 3567 { // INTEGER abbrev for CONSTANTS_BLOCK. 3568 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3569 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3571 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3572 CONSTANTS_INTEGER_ABBREV) 3573 llvm_unreachable("Unexpected abbrev ordering!"); 3574 } 3575 3576 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3577 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3578 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3581 VE.computeBitsRequiredForTypeIndicies())); 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3583 3584 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3585 CONSTANTS_CE_CAST_Abbrev) 3586 llvm_unreachable("Unexpected abbrev ordering!"); 3587 } 3588 { // NULL abbrev for CONSTANTS_BLOCK. 3589 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3590 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3591 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3592 CONSTANTS_NULL_Abbrev) 3593 llvm_unreachable("Unexpected abbrev ordering!"); 3594 } 3595 3596 // FIXME: This should only use space for first class types! 3597 3598 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3599 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3600 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3603 VE.computeBitsRequiredForTypeIndicies())); 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3606 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3607 FUNCTION_INST_LOAD_ABBREV) 3608 llvm_unreachable("Unexpected abbrev ordering!"); 3609 } 3610 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3611 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3612 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3615 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3616 FUNCTION_INST_UNOP_ABBREV) 3617 llvm_unreachable("Unexpected abbrev ordering!"); 3618 } 3619 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3620 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3621 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3622 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3623 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3625 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3626 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3627 llvm_unreachable("Unexpected abbrev ordering!"); 3628 } 3629 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3630 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3631 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3635 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3636 FUNCTION_INST_BINOP_ABBREV) 3637 llvm_unreachable("Unexpected abbrev ordering!"); 3638 } 3639 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3640 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3641 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3646 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3647 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3648 llvm_unreachable("Unexpected abbrev ordering!"); 3649 } 3650 { // INST_CAST abbrev for FUNCTION_BLOCK. 3651 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3652 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3655 VE.computeBitsRequiredForTypeIndicies())); 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3657 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3658 FUNCTION_INST_CAST_ABBREV) 3659 llvm_unreachable("Unexpected abbrev ordering!"); 3660 } 3661 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3662 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3663 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3666 VE.computeBitsRequiredForTypeIndicies())); 3667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3669 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3670 FUNCTION_INST_CAST_FLAGS_ABBREV) 3671 llvm_unreachable("Unexpected abbrev ordering!"); 3672 } 3673 3674 { // INST_RET abbrev for FUNCTION_BLOCK. 3675 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3676 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3677 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3678 FUNCTION_INST_RET_VOID_ABBREV) 3679 llvm_unreachable("Unexpected abbrev ordering!"); 3680 } 3681 { // INST_RET abbrev for FUNCTION_BLOCK. 3682 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3683 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3684 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3685 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3686 FUNCTION_INST_RET_VAL_ABBREV) 3687 llvm_unreachable("Unexpected abbrev ordering!"); 3688 } 3689 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3690 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3691 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3692 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3693 FUNCTION_INST_UNREACHABLE_ABBREV) 3694 llvm_unreachable("Unexpected abbrev ordering!"); 3695 } 3696 { 3697 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3698 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3701 Log2_32_Ceil(VE.getTypes().size() + 1))); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3704 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3705 FUNCTION_INST_GEP_ABBREV) 3706 llvm_unreachable("Unexpected abbrev ordering!"); 3707 } 3708 3709 Stream.ExitBlock(); 3710 } 3711 3712 /// Write the module path strings, currently only used when generating 3713 /// a combined index file. 3714 void IndexBitcodeWriter::writeModStrings() { 3715 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3716 3717 // TODO: See which abbrev sizes we actually need to emit 3718 3719 // 8-bit fixed-width MST_ENTRY strings. 3720 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3721 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3725 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3726 3727 // 7-bit fixed width MST_ENTRY strings. 3728 Abbv = std::make_shared<BitCodeAbbrev>(); 3729 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3733 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3734 3735 // 6-bit char6 MST_ENTRY strings. 3736 Abbv = std::make_shared<BitCodeAbbrev>(); 3737 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3739 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3740 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3741 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3742 3743 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3744 Abbv = std::make_shared<BitCodeAbbrev>(); 3745 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3747 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3751 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3752 3753 SmallVector<unsigned, 64> Vals; 3754 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3755 StringRef Key = MPSE.getKey(); 3756 const auto &Hash = MPSE.getValue(); 3757 StringEncoding Bits = getStringEncoding(Key); 3758 unsigned AbbrevToUse = Abbrev8Bit; 3759 if (Bits == SE_Char6) 3760 AbbrevToUse = Abbrev6Bit; 3761 else if (Bits == SE_Fixed7) 3762 AbbrevToUse = Abbrev7Bit; 3763 3764 auto ModuleId = ModuleIdMap.size(); 3765 ModuleIdMap[Key] = ModuleId; 3766 Vals.push_back(ModuleId); 3767 Vals.append(Key.begin(), Key.end()); 3768 3769 // Emit the finished record. 3770 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3771 3772 // Emit an optional hash for the module now 3773 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3774 Vals.assign(Hash.begin(), Hash.end()); 3775 // Emit the hash record. 3776 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3777 } 3778 3779 Vals.clear(); 3780 }); 3781 Stream.ExitBlock(); 3782 } 3783 3784 /// Write the function type metadata related records that need to appear before 3785 /// a function summary entry (whether per-module or combined). 3786 template <typename Fn> 3787 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3788 FunctionSummary *FS, 3789 Fn GetValueID) { 3790 if (!FS->type_tests().empty()) 3791 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3792 3793 SmallVector<uint64_t, 64> Record; 3794 3795 auto WriteVFuncIdVec = [&](uint64_t Ty, 3796 ArrayRef<FunctionSummary::VFuncId> VFs) { 3797 if (VFs.empty()) 3798 return; 3799 Record.clear(); 3800 for (auto &VF : VFs) { 3801 Record.push_back(VF.GUID); 3802 Record.push_back(VF.Offset); 3803 } 3804 Stream.EmitRecord(Ty, Record); 3805 }; 3806 3807 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3808 FS->type_test_assume_vcalls()); 3809 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3810 FS->type_checked_load_vcalls()); 3811 3812 auto WriteConstVCallVec = [&](uint64_t Ty, 3813 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3814 for (auto &VC : VCs) { 3815 Record.clear(); 3816 Record.push_back(VC.VFunc.GUID); 3817 Record.push_back(VC.VFunc.Offset); 3818 llvm::append_range(Record, VC.Args); 3819 Stream.EmitRecord(Ty, Record); 3820 } 3821 }; 3822 3823 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3824 FS->type_test_assume_const_vcalls()); 3825 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3826 FS->type_checked_load_const_vcalls()); 3827 3828 auto WriteRange = [&](ConstantRange Range) { 3829 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3830 assert(Range.getLower().getNumWords() == 1); 3831 assert(Range.getUpper().getNumWords() == 1); 3832 emitSignedInt64(Record, *Range.getLower().getRawData()); 3833 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3834 }; 3835 3836 if (!FS->paramAccesses().empty()) { 3837 Record.clear(); 3838 for (auto &Arg : FS->paramAccesses()) { 3839 size_t UndoSize = Record.size(); 3840 Record.push_back(Arg.ParamNo); 3841 WriteRange(Arg.Use); 3842 Record.push_back(Arg.Calls.size()); 3843 for (auto &Call : Arg.Calls) { 3844 Record.push_back(Call.ParamNo); 3845 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3846 if (!ValueID) { 3847 // If ValueID is unknown we can't drop just this call, we must drop 3848 // entire parameter. 3849 Record.resize(UndoSize); 3850 break; 3851 } 3852 Record.push_back(*ValueID); 3853 WriteRange(Call.Offsets); 3854 } 3855 } 3856 if (!Record.empty()) 3857 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3858 } 3859 } 3860 3861 /// Collect type IDs from type tests used by function. 3862 static void 3863 getReferencedTypeIds(FunctionSummary *FS, 3864 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3865 if (!FS->type_tests().empty()) 3866 for (auto &TT : FS->type_tests()) 3867 ReferencedTypeIds.insert(TT); 3868 3869 auto GetReferencedTypesFromVFuncIdVec = 3870 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3871 for (auto &VF : VFs) 3872 ReferencedTypeIds.insert(VF.GUID); 3873 }; 3874 3875 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3876 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3877 3878 auto GetReferencedTypesFromConstVCallVec = 3879 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3880 for (auto &VC : VCs) 3881 ReferencedTypeIds.insert(VC.VFunc.GUID); 3882 }; 3883 3884 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3885 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3886 } 3887 3888 static void writeWholeProgramDevirtResolutionByArg( 3889 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3890 const WholeProgramDevirtResolution::ByArg &ByArg) { 3891 NameVals.push_back(args.size()); 3892 llvm::append_range(NameVals, args); 3893 3894 NameVals.push_back(ByArg.TheKind); 3895 NameVals.push_back(ByArg.Info); 3896 NameVals.push_back(ByArg.Byte); 3897 NameVals.push_back(ByArg.Bit); 3898 } 3899 3900 static void writeWholeProgramDevirtResolution( 3901 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3902 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3903 NameVals.push_back(Id); 3904 3905 NameVals.push_back(Wpd.TheKind); 3906 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3907 NameVals.push_back(Wpd.SingleImplName.size()); 3908 3909 NameVals.push_back(Wpd.ResByArg.size()); 3910 for (auto &A : Wpd.ResByArg) 3911 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3912 } 3913 3914 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3915 StringTableBuilder &StrtabBuilder, 3916 const std::string &Id, 3917 const TypeIdSummary &Summary) { 3918 NameVals.push_back(StrtabBuilder.add(Id)); 3919 NameVals.push_back(Id.size()); 3920 3921 NameVals.push_back(Summary.TTRes.TheKind); 3922 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3923 NameVals.push_back(Summary.TTRes.AlignLog2); 3924 NameVals.push_back(Summary.TTRes.SizeM1); 3925 NameVals.push_back(Summary.TTRes.BitMask); 3926 NameVals.push_back(Summary.TTRes.InlineBits); 3927 3928 for (auto &W : Summary.WPDRes) 3929 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3930 W.second); 3931 } 3932 3933 static void writeTypeIdCompatibleVtableSummaryRecord( 3934 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3935 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3936 ValueEnumerator &VE) { 3937 NameVals.push_back(StrtabBuilder.add(Id)); 3938 NameVals.push_back(Id.size()); 3939 3940 for (auto &P : Summary) { 3941 NameVals.push_back(P.AddressPointOffset); 3942 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3943 } 3944 } 3945 3946 static void writeFunctionHeapProfileRecords( 3947 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3948 unsigned AllocAbbrev, bool PerModule, 3949 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3950 std::function<unsigned(unsigned)> GetStackIndex) { 3951 SmallVector<uint64_t> Record; 3952 3953 for (auto &CI : FS->callsites()) { 3954 Record.clear(); 3955 // Per module callsite clones should always have a single entry of 3956 // value 0. 3957 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3958 Record.push_back(GetValueID(CI.Callee)); 3959 if (!PerModule) { 3960 Record.push_back(CI.StackIdIndices.size()); 3961 Record.push_back(CI.Clones.size()); 3962 } 3963 for (auto Id : CI.StackIdIndices) 3964 Record.push_back(GetStackIndex(Id)); 3965 if (!PerModule) { 3966 for (auto V : CI.Clones) 3967 Record.push_back(V); 3968 } 3969 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3970 : bitc::FS_COMBINED_CALLSITE_INFO, 3971 Record, CallsiteAbbrev); 3972 } 3973 3974 for (auto &AI : FS->allocs()) { 3975 Record.clear(); 3976 // Per module alloc versions should always have a single entry of 3977 // value 0. 3978 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3979 if (!PerModule) { 3980 Record.push_back(AI.MIBs.size()); 3981 Record.push_back(AI.Versions.size()); 3982 } 3983 for (auto &MIB : AI.MIBs) { 3984 Record.push_back((uint8_t)MIB.AllocType); 3985 Record.push_back(MIB.StackIdIndices.size()); 3986 for (auto Id : MIB.StackIdIndices) 3987 Record.push_back(GetStackIndex(Id)); 3988 } 3989 if (!PerModule) { 3990 for (auto V : AI.Versions) 3991 Record.push_back(V); 3992 } 3993 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 3994 : bitc::FS_COMBINED_ALLOC_INFO, 3995 Record, AllocAbbrev); 3996 } 3997 } 3998 3999 // Helper to emit a single function summary record. 4000 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4001 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4002 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 4003 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 4004 NameVals.push_back(ValueID); 4005 4006 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4007 4008 writeFunctionTypeMetadataRecords( 4009 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4010 return {VE.getValueID(VI.getValue())}; 4011 }); 4012 4013 writeFunctionHeapProfileRecords( 4014 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4015 /*PerModule*/ true, 4016 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4017 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4018 4019 auto SpecialRefCnts = FS->specialRefCounts(); 4020 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4021 NameVals.push_back(FS->instCount()); 4022 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4023 NameVals.push_back(FS->refs().size()); 4024 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4025 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4026 4027 for (auto &RI : FS->refs()) 4028 NameVals.push_back(VE.getValueID(RI.getValue())); 4029 4030 bool HasProfileData = 4031 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4032 for (auto &ECI : FS->calls()) { 4033 NameVals.push_back(getValueId(ECI.first)); 4034 if (HasProfileData) 4035 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4036 else if (WriteRelBFToSummary) 4037 NameVals.push_back(ECI.second.RelBlockFreq); 4038 } 4039 4040 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4041 unsigned Code = 4042 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4043 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4044 : bitc::FS_PERMODULE)); 4045 4046 // Emit the finished record. 4047 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4048 NameVals.clear(); 4049 } 4050 4051 // Collect the global value references in the given variable's initializer, 4052 // and emit them in a summary record. 4053 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4054 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4055 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4056 auto VI = Index->getValueInfo(V.getGUID()); 4057 if (!VI || VI.getSummaryList().empty()) { 4058 // Only declarations should not have a summary (a declaration might however 4059 // have a summary if the def was in module level asm). 4060 assert(V.isDeclaration()); 4061 return; 4062 } 4063 auto *Summary = VI.getSummaryList()[0].get(); 4064 NameVals.push_back(VE.getValueID(&V)); 4065 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4066 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4067 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4068 4069 auto VTableFuncs = VS->vTableFuncs(); 4070 if (!VTableFuncs.empty()) 4071 NameVals.push_back(VS->refs().size()); 4072 4073 unsigned SizeBeforeRefs = NameVals.size(); 4074 for (auto &RI : VS->refs()) 4075 NameVals.push_back(VE.getValueID(RI.getValue())); 4076 // Sort the refs for determinism output, the vector returned by FS->refs() has 4077 // been initialized from a DenseSet. 4078 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4079 4080 if (VTableFuncs.empty()) 4081 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4082 FSModRefsAbbrev); 4083 else { 4084 // VTableFuncs pairs should already be sorted by offset. 4085 for (auto &P : VTableFuncs) { 4086 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4087 NameVals.push_back(P.VTableOffset); 4088 } 4089 4090 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4091 FSModVTableRefsAbbrev); 4092 } 4093 NameVals.clear(); 4094 } 4095 4096 /// Emit the per-module summary section alongside the rest of 4097 /// the module's bitcode. 4098 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4099 // By default we compile with ThinLTO if the module has a summary, but the 4100 // client can request full LTO with a module flag. 4101 bool IsThinLTO = true; 4102 if (auto *MD = 4103 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4104 IsThinLTO = MD->getZExtValue(); 4105 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4106 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4107 4); 4108 4109 Stream.EmitRecord( 4110 bitc::FS_VERSION, 4111 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4112 4113 // Write the index flags. 4114 uint64_t Flags = 0; 4115 // Bits 1-3 are set only in the combined index, skip them. 4116 if (Index->enableSplitLTOUnit()) 4117 Flags |= 0x8; 4118 if (Index->hasUnifiedLTO()) 4119 Flags |= 0x200; 4120 4121 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4122 4123 if (Index->begin() == Index->end()) { 4124 Stream.ExitBlock(); 4125 return; 4126 } 4127 4128 for (const auto &GVI : valueIds()) { 4129 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4130 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4131 } 4132 4133 if (!Index->stackIds().empty()) { 4134 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4135 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4136 // numids x stackid 4137 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4138 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4139 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4140 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4141 } 4142 4143 // Abbrev for FS_PERMODULE_PROFILE. 4144 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4145 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4153 // numrefs x valueid, n x (valueid, hotness) 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4156 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4157 4158 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4159 Abbv = std::make_shared<BitCodeAbbrev>(); 4160 if (WriteRelBFToSummary) 4161 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4162 else 4163 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4171 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4174 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4175 4176 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4177 Abbv = std::make_shared<BitCodeAbbrev>(); 4178 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4183 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4184 4185 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4186 Abbv = std::make_shared<BitCodeAbbrev>(); 4187 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4191 // numrefs x valueid, n x (valueid , offset) 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4194 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4195 4196 // Abbrev for FS_ALIAS. 4197 Abbv = std::make_shared<BitCodeAbbrev>(); 4198 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4200 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4202 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4203 4204 // Abbrev for FS_TYPE_ID_METADATA 4205 Abbv = std::make_shared<BitCodeAbbrev>(); 4206 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4209 // n x (valueid , offset) 4210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4212 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4213 4214 Abbv = std::make_shared<BitCodeAbbrev>(); 4215 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4217 // n x stackidindex 4218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4220 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4221 4222 Abbv = std::make_shared<BitCodeAbbrev>(); 4223 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4224 // n x (alloc type, numstackids, numstackids x stackidindex) 4225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4227 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4228 4229 SmallVector<uint64_t, 64> NameVals; 4230 // Iterate over the list of functions instead of the Index to 4231 // ensure the ordering is stable. 4232 for (const Function &F : M) { 4233 // Summary emission does not support anonymous functions, they have to 4234 // renamed using the anonymous function renaming pass. 4235 if (!F.hasName()) 4236 report_fatal_error("Unexpected anonymous function when writing summary"); 4237 4238 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4239 if (!VI || VI.getSummaryList().empty()) { 4240 // Only declarations should not have a summary (a declaration might 4241 // however have a summary if the def was in module level asm). 4242 assert(F.isDeclaration()); 4243 continue; 4244 } 4245 auto *Summary = VI.getSummaryList()[0].get(); 4246 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4247 FSCallsAbbrev, FSCallsProfileAbbrev, 4248 CallsiteAbbrev, AllocAbbrev, F); 4249 } 4250 4251 // Capture references from GlobalVariable initializers, which are outside 4252 // of a function scope. 4253 for (const GlobalVariable &G : M.globals()) 4254 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4255 FSModVTableRefsAbbrev); 4256 4257 for (const GlobalAlias &A : M.aliases()) { 4258 auto *Aliasee = A.getAliaseeObject(); 4259 // Skip ifunc and nameless functions which don't have an entry in the 4260 // summary. 4261 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4262 continue; 4263 auto AliasId = VE.getValueID(&A); 4264 auto AliaseeId = VE.getValueID(Aliasee); 4265 NameVals.push_back(AliasId); 4266 auto *Summary = Index->getGlobalValueSummary(A); 4267 AliasSummary *AS = cast<AliasSummary>(Summary); 4268 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4269 NameVals.push_back(AliaseeId); 4270 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4271 NameVals.clear(); 4272 } 4273 4274 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4275 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4276 S.second, VE); 4277 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4278 TypeIdCompatibleVtableAbbrev); 4279 NameVals.clear(); 4280 } 4281 4282 if (Index->getBlockCount()) 4283 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4284 ArrayRef<uint64_t>{Index->getBlockCount()}); 4285 4286 Stream.ExitBlock(); 4287 } 4288 4289 /// Emit the combined summary section into the combined index file. 4290 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4291 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4292 Stream.EmitRecord( 4293 bitc::FS_VERSION, 4294 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4295 4296 // Write the index flags. 4297 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4298 4299 for (const auto &GVI : valueIds()) { 4300 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4301 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4302 } 4303 4304 if (!StackIdIndices.empty()) { 4305 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4306 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4307 // numids x stackid 4308 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4309 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4310 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4311 // Write the stack ids used by this index, which will be a subset of those in 4312 // the full index in the case of distributed indexes. 4313 std::vector<uint64_t> StackIds; 4314 for (auto &I : StackIdIndices) 4315 StackIds.push_back(Index.getStackIdAtIndex(I)); 4316 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4317 } 4318 4319 // Abbrev for FS_COMBINED. 4320 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4321 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4331 // numrefs x valueid, n x (valueid) 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4334 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4335 4336 // Abbrev for FS_COMBINED_PROFILE. 4337 Abbv = std::make_shared<BitCodeAbbrev>(); 4338 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4348 // numrefs x valueid, n x (valueid, hotness) 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4351 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4352 4353 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4354 Abbv = std::make_shared<BitCodeAbbrev>(); 4355 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4361 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4362 4363 // Abbrev for FS_COMBINED_ALIAS. 4364 Abbv = std::make_shared<BitCodeAbbrev>(); 4365 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4370 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4371 4372 Abbv = std::make_shared<BitCodeAbbrev>(); 4373 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4377 // numstackindices x stackidindex, numver x version 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4380 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4381 4382 Abbv = std::make_shared<BitCodeAbbrev>(); 4383 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4386 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4387 // numver x version 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4390 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4391 4392 // The aliases are emitted as a post-pass, and will point to the value 4393 // id of the aliasee. Save them in a vector for post-processing. 4394 SmallVector<AliasSummary *, 64> Aliases; 4395 4396 // Save the value id for each summary for alias emission. 4397 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4398 4399 SmallVector<uint64_t, 64> NameVals; 4400 4401 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4402 // with the type ids referenced by this index file. 4403 std::set<GlobalValue::GUID> ReferencedTypeIds; 4404 4405 // For local linkage, we also emit the original name separately 4406 // immediately after the record. 4407 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4408 // We don't need to emit the original name if we are writing the index for 4409 // distributed backends (in which case ModuleToSummariesForIndex is 4410 // non-null). The original name is only needed during the thin link, since 4411 // for SamplePGO the indirect call targets for local functions have 4412 // have the original name annotated in profile. 4413 // Continue to emit it when writing out the entire combined index, which is 4414 // used in testing the thin link via llvm-lto. 4415 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4416 return; 4417 NameVals.push_back(S.getOriginalName()); 4418 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4419 NameVals.clear(); 4420 }; 4421 4422 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4423 forEachSummary([&](GVInfo I, bool IsAliasee) { 4424 GlobalValueSummary *S = I.second; 4425 assert(S); 4426 DefOrUseGUIDs.insert(I.first); 4427 for (const ValueInfo &VI : S->refs()) 4428 DefOrUseGUIDs.insert(VI.getGUID()); 4429 4430 auto ValueId = getValueId(I.first); 4431 assert(ValueId); 4432 SummaryToValueIdMap[S] = *ValueId; 4433 4434 // If this is invoked for an aliasee, we want to record the above 4435 // mapping, but then not emit a summary entry (if the aliasee is 4436 // to be imported, we will invoke this separately with IsAliasee=false). 4437 if (IsAliasee) 4438 return; 4439 4440 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4441 // Will process aliases as a post-pass because the reader wants all 4442 // global to be loaded first. 4443 Aliases.push_back(AS); 4444 return; 4445 } 4446 4447 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4448 NameVals.push_back(*ValueId); 4449 assert(ModuleIdMap.count(VS->modulePath())); 4450 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4451 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4452 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4453 for (auto &RI : VS->refs()) { 4454 auto RefValueId = getValueId(RI.getGUID()); 4455 if (!RefValueId) 4456 continue; 4457 NameVals.push_back(*RefValueId); 4458 } 4459 4460 // Emit the finished record. 4461 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4462 FSModRefsAbbrev); 4463 NameVals.clear(); 4464 MaybeEmitOriginalName(*S); 4465 return; 4466 } 4467 4468 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4469 if (!VI) 4470 return std::nullopt; 4471 return getValueId(VI.getGUID()); 4472 }; 4473 4474 auto *FS = cast<FunctionSummary>(S); 4475 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4476 getReferencedTypeIds(FS, ReferencedTypeIds); 4477 4478 writeFunctionHeapProfileRecords( 4479 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4480 /*PerModule*/ false, 4481 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4482 std::optional<unsigned> ValueID = GetValueId(VI); 4483 // This can happen in shared index files for distributed ThinLTO if 4484 // the callee function summary is not included. Record 0 which we 4485 // will have to deal with conservatively when doing any kind of 4486 // validation in the ThinLTO backends. 4487 if (!ValueID) 4488 return 0; 4489 return *ValueID; 4490 }, 4491 /*GetStackIndex*/ [&](unsigned I) { 4492 // Get the corresponding index into the list of StackIdIndices 4493 // actually being written for this combined index (which may be a 4494 // subset in the case of distributed indexes). 4495 auto Lower = llvm::lower_bound(StackIdIndices, I); 4496 return std::distance(StackIdIndices.begin(), Lower); 4497 }); 4498 4499 NameVals.push_back(*ValueId); 4500 assert(ModuleIdMap.count(FS->modulePath())); 4501 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4502 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4503 NameVals.push_back(FS->instCount()); 4504 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4505 NameVals.push_back(FS->entryCount()); 4506 4507 // Fill in below 4508 NameVals.push_back(0); // numrefs 4509 NameVals.push_back(0); // rorefcnt 4510 NameVals.push_back(0); // worefcnt 4511 4512 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4513 for (auto &RI : FS->refs()) { 4514 auto RefValueId = getValueId(RI.getGUID()); 4515 if (!RefValueId) 4516 continue; 4517 NameVals.push_back(*RefValueId); 4518 if (RI.isReadOnly()) 4519 RORefCnt++; 4520 else if (RI.isWriteOnly()) 4521 WORefCnt++; 4522 Count++; 4523 } 4524 NameVals[6] = Count; 4525 NameVals[7] = RORefCnt; 4526 NameVals[8] = WORefCnt; 4527 4528 bool HasProfileData = false; 4529 for (auto &EI : FS->calls()) { 4530 HasProfileData |= 4531 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4532 if (HasProfileData) 4533 break; 4534 } 4535 4536 for (auto &EI : FS->calls()) { 4537 // If this GUID doesn't have a value id, it doesn't have a function 4538 // summary and we don't need to record any calls to it. 4539 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4540 if (!CallValueId) 4541 continue; 4542 NameVals.push_back(*CallValueId); 4543 if (HasProfileData) 4544 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4545 } 4546 4547 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4548 unsigned Code = 4549 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4550 4551 // Emit the finished record. 4552 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4553 NameVals.clear(); 4554 MaybeEmitOriginalName(*S); 4555 }); 4556 4557 for (auto *AS : Aliases) { 4558 auto AliasValueId = SummaryToValueIdMap[AS]; 4559 assert(AliasValueId); 4560 NameVals.push_back(AliasValueId); 4561 assert(ModuleIdMap.count(AS->modulePath())); 4562 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4563 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4564 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4565 assert(AliaseeValueId); 4566 NameVals.push_back(AliaseeValueId); 4567 4568 // Emit the finished record. 4569 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4570 NameVals.clear(); 4571 MaybeEmitOriginalName(*AS); 4572 4573 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4574 getReferencedTypeIds(FS, ReferencedTypeIds); 4575 } 4576 4577 if (!Index.cfiFunctionDefs().empty()) { 4578 for (auto &S : Index.cfiFunctionDefs()) { 4579 if (DefOrUseGUIDs.count( 4580 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4581 NameVals.push_back(StrtabBuilder.add(S)); 4582 NameVals.push_back(S.size()); 4583 } 4584 } 4585 if (!NameVals.empty()) { 4586 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4587 NameVals.clear(); 4588 } 4589 } 4590 4591 if (!Index.cfiFunctionDecls().empty()) { 4592 for (auto &S : Index.cfiFunctionDecls()) { 4593 if (DefOrUseGUIDs.count( 4594 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4595 NameVals.push_back(StrtabBuilder.add(S)); 4596 NameVals.push_back(S.size()); 4597 } 4598 } 4599 if (!NameVals.empty()) { 4600 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4601 NameVals.clear(); 4602 } 4603 } 4604 4605 // Walk the GUIDs that were referenced, and write the 4606 // corresponding type id records. 4607 for (auto &T : ReferencedTypeIds) { 4608 auto TidIter = Index.typeIds().equal_range(T); 4609 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4610 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4611 It->second.second); 4612 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4613 NameVals.clear(); 4614 } 4615 } 4616 4617 if (Index.getBlockCount()) 4618 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4619 ArrayRef<uint64_t>{Index.getBlockCount()}); 4620 4621 Stream.ExitBlock(); 4622 } 4623 4624 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4625 /// current llvm version, and a record for the epoch number. 4626 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4627 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4628 4629 // Write the "user readable" string identifying the bitcode producer 4630 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4631 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4634 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4635 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4636 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4637 4638 // Write the epoch version 4639 Abbv = std::make_shared<BitCodeAbbrev>(); 4640 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4642 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4643 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4644 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4645 Stream.ExitBlock(); 4646 } 4647 4648 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4649 // Emit the module's hash. 4650 // MODULE_CODE_HASH: [5*i32] 4651 if (GenerateHash) { 4652 uint32_t Vals[5]; 4653 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4654 Buffer.size() - BlockStartPos)); 4655 std::array<uint8_t, 20> Hash = Hasher.result(); 4656 for (int Pos = 0; Pos < 20; Pos += 4) { 4657 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4658 } 4659 4660 // Emit the finished record. 4661 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4662 4663 if (ModHash) 4664 // Save the written hash value. 4665 llvm::copy(Vals, std::begin(*ModHash)); 4666 } 4667 } 4668 4669 void ModuleBitcodeWriter::write() { 4670 writeIdentificationBlock(Stream); 4671 4672 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4673 size_t BlockStartPos = Buffer.size(); 4674 4675 writeModuleVersion(); 4676 4677 // Emit blockinfo, which defines the standard abbreviations etc. 4678 writeBlockInfo(); 4679 4680 // Emit information describing all of the types in the module. 4681 writeTypeTable(); 4682 4683 // Emit information about attribute groups. 4684 writeAttributeGroupTable(); 4685 4686 // Emit information about parameter attributes. 4687 writeAttributeTable(); 4688 4689 writeComdats(); 4690 4691 // Emit top-level description of module, including target triple, inline asm, 4692 // descriptors for global variables, and function prototype info. 4693 writeModuleInfo(); 4694 4695 // Emit constants. 4696 writeModuleConstants(); 4697 4698 // Emit metadata kind names. 4699 writeModuleMetadataKinds(); 4700 4701 // Emit metadata. 4702 writeModuleMetadata(); 4703 4704 // Emit module-level use-lists. 4705 if (VE.shouldPreserveUseListOrder()) 4706 writeUseListBlock(nullptr); 4707 4708 writeOperandBundleTags(); 4709 writeSyncScopeNames(); 4710 4711 // Emit function bodies. 4712 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4713 for (const Function &F : M) 4714 if (!F.isDeclaration()) 4715 writeFunction(F, FunctionToBitcodeIndex); 4716 4717 // Need to write after the above call to WriteFunction which populates 4718 // the summary information in the index. 4719 if (Index) 4720 writePerModuleGlobalValueSummary(); 4721 4722 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4723 4724 writeModuleHash(BlockStartPos); 4725 4726 Stream.ExitBlock(); 4727 } 4728 4729 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4730 uint32_t &Position) { 4731 support::endian::write32le(&Buffer[Position], Value); 4732 Position += 4; 4733 } 4734 4735 /// If generating a bc file on darwin, we have to emit a 4736 /// header and trailer to make it compatible with the system archiver. To do 4737 /// this we emit the following header, and then emit a trailer that pads the 4738 /// file out to be a multiple of 16 bytes. 4739 /// 4740 /// struct bc_header { 4741 /// uint32_t Magic; // 0x0B17C0DE 4742 /// uint32_t Version; // Version, currently always 0. 4743 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4744 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4745 /// uint32_t CPUType; // CPU specifier. 4746 /// ... potentially more later ... 4747 /// }; 4748 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4749 const Triple &TT) { 4750 unsigned CPUType = ~0U; 4751 4752 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4753 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4754 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4755 // specific constants here because they are implicitly part of the Darwin ABI. 4756 enum { 4757 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4758 DARWIN_CPU_TYPE_X86 = 7, 4759 DARWIN_CPU_TYPE_ARM = 12, 4760 DARWIN_CPU_TYPE_POWERPC = 18 4761 }; 4762 4763 Triple::ArchType Arch = TT.getArch(); 4764 if (Arch == Triple::x86_64) 4765 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4766 else if (Arch == Triple::x86) 4767 CPUType = DARWIN_CPU_TYPE_X86; 4768 else if (Arch == Triple::ppc) 4769 CPUType = DARWIN_CPU_TYPE_POWERPC; 4770 else if (Arch == Triple::ppc64) 4771 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4772 else if (Arch == Triple::arm || Arch == Triple::thumb) 4773 CPUType = DARWIN_CPU_TYPE_ARM; 4774 4775 // Traditional Bitcode starts after header. 4776 assert(Buffer.size() >= BWH_HeaderSize && 4777 "Expected header size to be reserved"); 4778 unsigned BCOffset = BWH_HeaderSize; 4779 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4780 4781 // Write the magic and version. 4782 unsigned Position = 0; 4783 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4784 writeInt32ToBuffer(0, Buffer, Position); // Version. 4785 writeInt32ToBuffer(BCOffset, Buffer, Position); 4786 writeInt32ToBuffer(BCSize, Buffer, Position); 4787 writeInt32ToBuffer(CPUType, Buffer, Position); 4788 4789 // If the file is not a multiple of 16 bytes, insert dummy padding. 4790 while (Buffer.size() & 15) 4791 Buffer.push_back(0); 4792 } 4793 4794 /// Helper to write the header common to all bitcode files. 4795 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4796 // Emit the file header. 4797 Stream.Emit((unsigned)'B', 8); 4798 Stream.Emit((unsigned)'C', 8); 4799 Stream.Emit(0x0, 4); 4800 Stream.Emit(0xC, 4); 4801 Stream.Emit(0xE, 4); 4802 Stream.Emit(0xD, 4); 4803 } 4804 4805 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4806 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4807 writeBitcodeHeader(*Stream); 4808 } 4809 4810 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4811 4812 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4813 Stream->EnterSubblock(Block, 3); 4814 4815 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4816 Abbv->Add(BitCodeAbbrevOp(Record)); 4817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4818 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4819 4820 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4821 4822 Stream->ExitBlock(); 4823 } 4824 4825 void BitcodeWriter::writeSymtab() { 4826 assert(!WroteStrtab && !WroteSymtab); 4827 4828 // If any module has module-level inline asm, we will require a registered asm 4829 // parser for the target so that we can create an accurate symbol table for 4830 // the module. 4831 for (Module *M : Mods) { 4832 if (M->getModuleInlineAsm().empty()) 4833 continue; 4834 4835 std::string Err; 4836 const Triple TT(M->getTargetTriple()); 4837 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4838 if (!T || !T->hasMCAsmParser()) 4839 return; 4840 } 4841 4842 WroteSymtab = true; 4843 SmallVector<char, 0> Symtab; 4844 // The irsymtab::build function may be unable to create a symbol table if the 4845 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4846 // table is not required for correctness, but we still want to be able to 4847 // write malformed modules to bitcode files, so swallow the error. 4848 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4849 consumeError(std::move(E)); 4850 return; 4851 } 4852 4853 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4854 {Symtab.data(), Symtab.size()}); 4855 } 4856 4857 void BitcodeWriter::writeStrtab() { 4858 assert(!WroteStrtab); 4859 4860 std::vector<char> Strtab; 4861 StrtabBuilder.finalizeInOrder(); 4862 Strtab.resize(StrtabBuilder.getSize()); 4863 StrtabBuilder.write((uint8_t *)Strtab.data()); 4864 4865 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4866 {Strtab.data(), Strtab.size()}); 4867 4868 WroteStrtab = true; 4869 } 4870 4871 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4872 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4873 WroteStrtab = true; 4874 } 4875 4876 void BitcodeWriter::writeModule(const Module &M, 4877 bool ShouldPreserveUseListOrder, 4878 const ModuleSummaryIndex *Index, 4879 bool GenerateHash, ModuleHash *ModHash) { 4880 assert(!WroteStrtab); 4881 4882 // The Mods vector is used by irsymtab::build, which requires non-const 4883 // Modules in case it needs to materialize metadata. But the bitcode writer 4884 // requires that the module is materialized, so we can cast to non-const here, 4885 // after checking that it is in fact materialized. 4886 assert(M.isMaterialized()); 4887 Mods.push_back(const_cast<Module *>(&M)); 4888 4889 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4890 ShouldPreserveUseListOrder, Index, 4891 GenerateHash, ModHash); 4892 ModuleWriter.write(); 4893 } 4894 4895 void BitcodeWriter::writeIndex( 4896 const ModuleSummaryIndex *Index, 4897 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4898 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4899 ModuleToSummariesForIndex); 4900 IndexWriter.write(); 4901 } 4902 4903 /// Write the specified module to the specified output stream. 4904 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4905 bool ShouldPreserveUseListOrder, 4906 const ModuleSummaryIndex *Index, 4907 bool GenerateHash, ModuleHash *ModHash) { 4908 SmallVector<char, 0> Buffer; 4909 Buffer.reserve(256*1024); 4910 4911 // If this is darwin or another generic macho target, reserve space for the 4912 // header. 4913 Triple TT(M.getTargetTriple()); 4914 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4915 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4916 4917 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4918 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4919 ModHash); 4920 Writer.writeSymtab(); 4921 Writer.writeStrtab(); 4922 4923 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4924 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4925 4926 // Write the generated bitstream to "Out". 4927 if (!Buffer.empty()) 4928 Out.write((char *)&Buffer.front(), Buffer.size()); 4929 } 4930 4931 void IndexBitcodeWriter::write() { 4932 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4933 4934 writeModuleVersion(); 4935 4936 // Write the module paths in the combined index. 4937 writeModStrings(); 4938 4939 // Write the summary combined index records. 4940 writeCombinedGlobalValueSummary(); 4941 4942 Stream.ExitBlock(); 4943 } 4944 4945 // Write the specified module summary index to the given raw output stream, 4946 // where it will be written in a new bitcode block. This is used when 4947 // writing the combined index file for ThinLTO. When writing a subset of the 4948 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4949 void llvm::writeIndexToFile( 4950 const ModuleSummaryIndex &Index, raw_ostream &Out, 4951 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4952 SmallVector<char, 0> Buffer; 4953 Buffer.reserve(256 * 1024); 4954 4955 BitcodeWriter Writer(Buffer); 4956 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4957 Writer.writeStrtab(); 4958 4959 Out.write((char *)&Buffer.front(), Buffer.size()); 4960 } 4961 4962 namespace { 4963 4964 /// Class to manage the bitcode writing for a thin link bitcode file. 4965 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4966 /// ModHash is for use in ThinLTO incremental build, generated while writing 4967 /// the module bitcode file. 4968 const ModuleHash *ModHash; 4969 4970 public: 4971 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4972 BitstreamWriter &Stream, 4973 const ModuleSummaryIndex &Index, 4974 const ModuleHash &ModHash) 4975 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4976 /*ShouldPreserveUseListOrder=*/false, &Index), 4977 ModHash(&ModHash) {} 4978 4979 void write(); 4980 4981 private: 4982 void writeSimplifiedModuleInfo(); 4983 }; 4984 4985 } // end anonymous namespace 4986 4987 // This function writes a simpilified module info for thin link bitcode file. 4988 // It only contains the source file name along with the name(the offset and 4989 // size in strtab) and linkage for global values. For the global value info 4990 // entry, in order to keep linkage at offset 5, there are three zeros used 4991 // as padding. 4992 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4993 SmallVector<unsigned, 64> Vals; 4994 // Emit the module's source file name. 4995 { 4996 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4997 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4998 if (Bits == SE_Char6) 4999 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5000 else if (Bits == SE_Fixed7) 5001 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5002 5003 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5004 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5005 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5007 Abbv->Add(AbbrevOpToUse); 5008 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5009 5010 for (const auto P : M.getSourceFileName()) 5011 Vals.push_back((unsigned char)P); 5012 5013 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5014 Vals.clear(); 5015 } 5016 5017 // Emit the global variable information. 5018 for (const GlobalVariable &GV : M.globals()) { 5019 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5020 Vals.push_back(StrtabBuilder.add(GV.getName())); 5021 Vals.push_back(GV.getName().size()); 5022 Vals.push_back(0); 5023 Vals.push_back(0); 5024 Vals.push_back(0); 5025 Vals.push_back(getEncodedLinkage(GV)); 5026 5027 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5028 Vals.clear(); 5029 } 5030 5031 // Emit the function proto information. 5032 for (const Function &F : M) { 5033 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5034 Vals.push_back(StrtabBuilder.add(F.getName())); 5035 Vals.push_back(F.getName().size()); 5036 Vals.push_back(0); 5037 Vals.push_back(0); 5038 Vals.push_back(0); 5039 Vals.push_back(getEncodedLinkage(F)); 5040 5041 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5042 Vals.clear(); 5043 } 5044 5045 // Emit the alias information. 5046 for (const GlobalAlias &A : M.aliases()) { 5047 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5048 Vals.push_back(StrtabBuilder.add(A.getName())); 5049 Vals.push_back(A.getName().size()); 5050 Vals.push_back(0); 5051 Vals.push_back(0); 5052 Vals.push_back(0); 5053 Vals.push_back(getEncodedLinkage(A)); 5054 5055 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5056 Vals.clear(); 5057 } 5058 5059 // Emit the ifunc information. 5060 for (const GlobalIFunc &I : M.ifuncs()) { 5061 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5062 Vals.push_back(StrtabBuilder.add(I.getName())); 5063 Vals.push_back(I.getName().size()); 5064 Vals.push_back(0); 5065 Vals.push_back(0); 5066 Vals.push_back(0); 5067 Vals.push_back(getEncodedLinkage(I)); 5068 5069 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5070 Vals.clear(); 5071 } 5072 } 5073 5074 void ThinLinkBitcodeWriter::write() { 5075 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5076 5077 writeModuleVersion(); 5078 5079 writeSimplifiedModuleInfo(); 5080 5081 writePerModuleGlobalValueSummary(); 5082 5083 // Write module hash. 5084 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5085 5086 Stream.ExitBlock(); 5087 } 5088 5089 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5090 const ModuleSummaryIndex &Index, 5091 const ModuleHash &ModHash) { 5092 assert(!WroteStrtab); 5093 5094 // The Mods vector is used by irsymtab::build, which requires non-const 5095 // Modules in case it needs to materialize metadata. But the bitcode writer 5096 // requires that the module is materialized, so we can cast to non-const here, 5097 // after checking that it is in fact materialized. 5098 assert(M.isMaterialized()); 5099 Mods.push_back(const_cast<Module *>(&M)); 5100 5101 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5102 ModHash); 5103 ThinLinkWriter.write(); 5104 } 5105 5106 // Write the specified thin link bitcode file to the given raw output stream, 5107 // where it will be written in a new bitcode block. This is used when 5108 // writing the per-module index file for ThinLTO. 5109 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5110 const ModuleSummaryIndex &Index, 5111 const ModuleHash &ModHash) { 5112 SmallVector<char, 0> Buffer; 5113 Buffer.reserve(256 * 1024); 5114 5115 BitcodeWriter Writer(Buffer); 5116 Writer.writeThinLinkBitcode(M, Index, ModHash); 5117 Writer.writeSymtab(); 5118 Writer.writeStrtab(); 5119 5120 Out.write((char *)&Buffer.front(), Buffer.size()); 5121 } 5122 5123 static const char *getSectionNameForBitcode(const Triple &T) { 5124 switch (T.getObjectFormat()) { 5125 case Triple::MachO: 5126 return "__LLVM,__bitcode"; 5127 case Triple::COFF: 5128 case Triple::ELF: 5129 case Triple::Wasm: 5130 case Triple::UnknownObjectFormat: 5131 return ".llvmbc"; 5132 case Triple::GOFF: 5133 llvm_unreachable("GOFF is not yet implemented"); 5134 break; 5135 case Triple::SPIRV: 5136 llvm_unreachable("SPIRV is not yet implemented"); 5137 break; 5138 case Triple::XCOFF: 5139 llvm_unreachable("XCOFF is not yet implemented"); 5140 break; 5141 case Triple::DXContainer: 5142 llvm_unreachable("DXContainer is not yet implemented"); 5143 break; 5144 } 5145 llvm_unreachable("Unimplemented ObjectFormatType"); 5146 } 5147 5148 static const char *getSectionNameForCommandline(const Triple &T) { 5149 switch (T.getObjectFormat()) { 5150 case Triple::MachO: 5151 return "__LLVM,__cmdline"; 5152 case Triple::COFF: 5153 case Triple::ELF: 5154 case Triple::Wasm: 5155 case Triple::UnknownObjectFormat: 5156 return ".llvmcmd"; 5157 case Triple::GOFF: 5158 llvm_unreachable("GOFF is not yet implemented"); 5159 break; 5160 case Triple::SPIRV: 5161 llvm_unreachable("SPIRV is not yet implemented"); 5162 break; 5163 case Triple::XCOFF: 5164 llvm_unreachable("XCOFF is not yet implemented"); 5165 break; 5166 case Triple::DXContainer: 5167 llvm_unreachable("DXC is not yet implemented"); 5168 break; 5169 } 5170 llvm_unreachable("Unimplemented ObjectFormatType"); 5171 } 5172 5173 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5174 bool EmbedBitcode, bool EmbedCmdline, 5175 const std::vector<uint8_t> &CmdArgs) { 5176 // Save llvm.compiler.used and remove it. 5177 SmallVector<Constant *, 2> UsedArray; 5178 SmallVector<GlobalValue *, 4> UsedGlobals; 5179 Type *UsedElementType = Type::getInt8PtrTy(M.getContext()); 5180 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5181 for (auto *GV : UsedGlobals) { 5182 if (GV->getName() != "llvm.embedded.module" && 5183 GV->getName() != "llvm.cmdline") 5184 UsedArray.push_back( 5185 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5186 } 5187 if (Used) 5188 Used->eraseFromParent(); 5189 5190 // Embed the bitcode for the llvm module. 5191 std::string Data; 5192 ArrayRef<uint8_t> ModuleData; 5193 Triple T(M.getTargetTriple()); 5194 5195 if (EmbedBitcode) { 5196 if (Buf.getBufferSize() == 0 || 5197 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5198 (const unsigned char *)Buf.getBufferEnd())) { 5199 // If the input is LLVM Assembly, bitcode is produced by serializing 5200 // the module. Use-lists order need to be preserved in this case. 5201 llvm::raw_string_ostream OS(Data); 5202 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5203 ModuleData = 5204 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5205 } else 5206 // If the input is LLVM bitcode, write the input byte stream directly. 5207 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5208 Buf.getBufferSize()); 5209 } 5210 llvm::Constant *ModuleConstant = 5211 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5212 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5213 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5214 ModuleConstant); 5215 GV->setSection(getSectionNameForBitcode(T)); 5216 // Set alignment to 1 to prevent padding between two contributions from input 5217 // sections after linking. 5218 GV->setAlignment(Align(1)); 5219 UsedArray.push_back( 5220 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5221 if (llvm::GlobalVariable *Old = 5222 M.getGlobalVariable("llvm.embedded.module", true)) { 5223 assert(Old->hasZeroLiveUses() && 5224 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5225 GV->takeName(Old); 5226 Old->eraseFromParent(); 5227 } else { 5228 GV->setName("llvm.embedded.module"); 5229 } 5230 5231 // Skip if only bitcode needs to be embedded. 5232 if (EmbedCmdline) { 5233 // Embed command-line options. 5234 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5235 CmdArgs.size()); 5236 llvm::Constant *CmdConstant = 5237 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5238 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5239 llvm::GlobalValue::PrivateLinkage, 5240 CmdConstant); 5241 GV->setSection(getSectionNameForCommandline(T)); 5242 GV->setAlignment(Align(1)); 5243 UsedArray.push_back( 5244 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5245 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5246 assert(Old->hasZeroLiveUses() && 5247 "llvm.cmdline can only be used once in llvm.compiler.used"); 5248 GV->takeName(Old); 5249 Old->eraseFromParent(); 5250 } else { 5251 GV->setName("llvm.cmdline"); 5252 } 5253 } 5254 5255 if (UsedArray.empty()) 5256 return; 5257 5258 // Recreate llvm.compiler.used. 5259 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5260 auto *NewUsed = new GlobalVariable( 5261 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5262 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5263 NewUsed->setSection("llvm.metadata"); 5264 } 5265