1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_BINOP_ABBREV, 116 FUNCTION_INST_BINOP_FLAGS_ABBREV, 117 FUNCTION_INST_CAST_ABBREV, 118 FUNCTION_INST_RET_VOID_ABBREV, 119 FUNCTION_INST_RET_VAL_ABBREV, 120 FUNCTION_INST_UNREACHABLE_ABBREV, 121 FUNCTION_INST_GEP_ABBREV, 122 }; 123 124 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 125 /// file type. 126 class BitcodeWriterBase { 127 protected: 128 /// The stream created and owned by the client. 129 BitstreamWriter &Stream; 130 131 StringTableBuilder &StrtabBuilder; 132 133 public: 134 /// Constructs a BitcodeWriterBase object that writes to the provided 135 /// \p Stream. 136 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 137 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 138 139 protected: 140 void writeBitcodeHeader(); 141 void writeModuleVersion(); 142 }; 143 144 void BitcodeWriterBase::writeModuleVersion() { 145 // VERSION: [version#] 146 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 147 } 148 149 /// Base class to manage the module bitcode writing, currently subclassed for 150 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 151 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 152 protected: 153 /// The Module to write to bitcode. 154 const Module &M; 155 156 /// Enumerates ids for all values in the module. 157 ValueEnumerator VE; 158 159 /// Optional per-module index to write for ThinLTO. 160 const ModuleSummaryIndex *Index; 161 162 /// Map that holds the correspondence between GUIDs in the summary index, 163 /// that came from indirect call profiles, and a value id generated by this 164 /// class to use in the VST and summary block records. 165 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 166 167 /// Tracks the last value id recorded in the GUIDToValueMap. 168 unsigned GlobalValueId; 169 170 /// Saves the offset of the VSTOffset record that must eventually be 171 /// backpatched with the offset of the actual VST. 172 uint64_t VSTOffsetPlaceholder = 0; 173 174 public: 175 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 176 /// writing to the provided \p Buffer. 177 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 178 BitstreamWriter &Stream, 179 bool ShouldPreserveUseListOrder, 180 const ModuleSummaryIndex *Index) 181 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 182 VE(M, ShouldPreserveUseListOrder), Index(Index) { 183 // Assign ValueIds to any callee values in the index that came from 184 // indirect call profiles and were recorded as a GUID not a Value* 185 // (which would have been assigned an ID by the ValueEnumerator). 186 // The starting ValueId is just after the number of values in the 187 // ValueEnumerator, so that they can be emitted in the VST. 188 GlobalValueId = VE.getValues().size(); 189 if (!Index) 190 return; 191 for (const auto &GUIDSummaryLists : *Index) 192 // Examine all summaries for this GUID. 193 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 194 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 195 // For each call in the function summary, see if the call 196 // is to a GUID (which means it is for an indirect call, 197 // otherwise we would have a Value for it). If so, synthesize 198 // a value id. 199 for (auto &CallEdge : FS->calls()) 200 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 201 assignValueId(CallEdge.first.getGUID()); 202 } 203 204 protected: 205 void writePerModuleGlobalValueSummary(); 206 207 private: 208 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 209 GlobalValueSummary *Summary, 210 unsigned ValueID, 211 unsigned FSCallsAbbrev, 212 unsigned FSCallsProfileAbbrev, 213 const Function &F); 214 void writeModuleLevelReferences(const GlobalVariable &V, 215 SmallVector<uint64_t, 64> &NameVals, 216 unsigned FSModRefsAbbrev); 217 218 void assignValueId(GlobalValue::GUID ValGUID) { 219 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 220 } 221 222 unsigned getValueId(GlobalValue::GUID ValGUID) { 223 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 224 // Expect that any GUID value had a value Id assigned by an 225 // earlier call to assignValueId. 226 assert(VMI != GUIDToValueIdMap.end() && 227 "GUID does not have assigned value Id"); 228 return VMI->second; 229 } 230 231 // Helper to get the valueId for the type of value recorded in VI. 232 unsigned getValueId(ValueInfo VI) { 233 if (!VI.haveGVs() || !VI.getValue()) 234 return getValueId(VI.getGUID()); 235 return VE.getValueID(VI.getValue()); 236 } 237 238 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 239 }; 240 241 /// Class to manage the bitcode writing for a module. 242 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 243 /// Pointer to the buffer allocated by caller for bitcode writing. 244 const SmallVectorImpl<char> &Buffer; 245 246 /// True if a module hash record should be written. 247 bool GenerateHash; 248 249 /// If non-null, when GenerateHash is true, the resulting hash is written 250 /// into ModHash. 251 ModuleHash *ModHash; 252 253 SHA1 Hasher; 254 255 /// The start bit of the identification block. 256 uint64_t BitcodeStartBit; 257 258 public: 259 /// Constructs a ModuleBitcodeWriter object for the given Module, 260 /// writing to the provided \p Buffer. 261 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 262 StringTableBuilder &StrtabBuilder, 263 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 264 const ModuleSummaryIndex *Index, bool GenerateHash, 265 ModuleHash *ModHash = nullptr) 266 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 267 ShouldPreserveUseListOrder, Index), 268 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 269 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 270 271 /// Emit the current module to the bitstream. 272 void write(); 273 274 private: 275 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 276 277 size_t addToStrtab(StringRef Str); 278 279 void writeAttributeGroupTable(); 280 void writeAttributeTable(); 281 void writeTypeTable(); 282 void writeComdats(); 283 void writeValueSymbolTableForwardDecl(); 284 void writeModuleInfo(); 285 void writeValueAsMetadata(const ValueAsMetadata *MD, 286 SmallVectorImpl<uint64_t> &Record); 287 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 288 unsigned Abbrev); 289 unsigned createDILocationAbbrev(); 290 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned &Abbrev); 292 unsigned createGenericDINodeAbbrev(); 293 void writeGenericDINode(const GenericDINode *N, 294 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 295 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 296 unsigned Abbrev); 297 void writeDIEnumerator(const DIEnumerator *N, 298 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 299 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 300 unsigned Abbrev); 301 void writeDIDerivedType(const DIDerivedType *N, 302 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 303 void writeDICompositeType(const DICompositeType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDISubroutineType(const DISubroutineType *N, 306 SmallVectorImpl<uint64_t> &Record, 307 unsigned Abbrev); 308 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDICompileUnit(const DICompileUnit *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDISubprogram(const DISubprogram *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDILexicalBlock(const DILexicalBlock *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 322 unsigned Abbrev); 323 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 331 SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIGlobalVariable(const DIGlobalVariable *N, 334 SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDILocalVariable(const DILocalVariable *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILabel(const DILabel *N, 339 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 340 void writeDIExpression(const DIExpression *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIObjCProperty(const DIObjCProperty *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIImportedEntity(const DIImportedEntity *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 unsigned createNamedMetadataAbbrev(); 351 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 352 unsigned createMetadataStringsAbbrev(); 353 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 354 SmallVectorImpl<uint64_t> &Record); 355 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 356 SmallVectorImpl<uint64_t> &Record, 357 std::vector<unsigned> *MDAbbrevs = nullptr, 358 std::vector<uint64_t> *IndexPos = nullptr); 359 void writeModuleMetadata(); 360 void writeFunctionMetadata(const Function &F); 361 void writeFunctionMetadataAttachment(const Function &F); 362 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 363 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 364 const GlobalObject &GO); 365 void writeModuleMetadataKinds(); 366 void writeOperandBundleTags(); 367 void writeSyncScopeNames(); 368 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 369 void writeModuleConstants(); 370 bool pushValueAndType(const Value *V, unsigned InstID, 371 SmallVectorImpl<unsigned> &Vals); 372 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 373 void pushValue(const Value *V, unsigned InstID, 374 SmallVectorImpl<unsigned> &Vals); 375 void pushValueSigned(const Value *V, unsigned InstID, 376 SmallVectorImpl<uint64_t> &Vals); 377 void writeInstruction(const Instruction &I, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 380 void writeGlobalValueSymbolTable( 381 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 382 void writeUseList(UseListOrder &&Order); 383 void writeUseListBlock(const Function *F); 384 void 385 writeFunction(const Function &F, 386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 387 void writeBlockInfo(); 388 void writeModuleHash(size_t BlockStartPos); 389 390 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 391 return unsigned(SSID); 392 } 393 }; 394 395 /// Class to manage the bitcode writing for a combined index. 396 class IndexBitcodeWriter : public BitcodeWriterBase { 397 /// The combined index to write to bitcode. 398 const ModuleSummaryIndex &Index; 399 400 /// When writing a subset of the index for distributed backends, client 401 /// provides a map of modules to the corresponding GUIDs/summaries to write. 402 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 403 404 /// Map that holds the correspondence between the GUID used in the combined 405 /// index and a value id generated by this class to use in references. 406 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 407 408 /// Tracks the last value id recorded in the GUIDToValueMap. 409 unsigned GlobalValueId = 0; 410 411 public: 412 /// Constructs a IndexBitcodeWriter object for the given combined index, 413 /// writing to the provided \p Buffer. When writing a subset of the index 414 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 415 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 416 const ModuleSummaryIndex &Index, 417 const std::map<std::string, GVSummaryMapTy> 418 *ModuleToSummariesForIndex = nullptr) 419 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 420 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 421 // Assign unique value ids to all summaries to be written, for use 422 // in writing out the call graph edges. Save the mapping from GUID 423 // to the new global value id to use when writing those edges, which 424 // are currently saved in the index in terms of GUID. 425 forEachSummary([&](GVInfo I, bool) { 426 GUIDToValueIdMap[I.first] = ++GlobalValueId; 427 }); 428 } 429 430 /// The below iterator returns the GUID and associated summary. 431 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 432 433 /// Calls the callback for each value GUID and summary to be written to 434 /// bitcode. This hides the details of whether they are being pulled from the 435 /// entire index or just those in a provided ModuleToSummariesForIndex map. 436 template<typename Functor> 437 void forEachSummary(Functor Callback) { 438 if (ModuleToSummariesForIndex) { 439 for (auto &M : *ModuleToSummariesForIndex) 440 for (auto &Summary : M.second) { 441 Callback(Summary, false); 442 // Ensure aliasee is handled, e.g. for assigning a valueId, 443 // even if we are not importing the aliasee directly (the 444 // imported alias will contain a copy of aliasee). 445 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 446 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 447 } 448 } else { 449 for (auto &Summaries : Index) 450 for (auto &Summary : Summaries.second.SummaryList) 451 Callback({Summaries.first, Summary.get()}, false); 452 } 453 } 454 455 /// Calls the callback for each entry in the modulePaths StringMap that 456 /// should be written to the module path string table. This hides the details 457 /// of whether they are being pulled from the entire index or just those in a 458 /// provided ModuleToSummariesForIndex map. 459 template <typename Functor> void forEachModule(Functor Callback) { 460 if (ModuleToSummariesForIndex) { 461 for (const auto &M : *ModuleToSummariesForIndex) { 462 const auto &MPI = Index.modulePaths().find(M.first); 463 if (MPI == Index.modulePaths().end()) { 464 // This should only happen if the bitcode file was empty, in which 465 // case we shouldn't be importing (the ModuleToSummariesForIndex 466 // would only include the module we are writing and index for). 467 assert(ModuleToSummariesForIndex->size() == 1); 468 continue; 469 } 470 Callback(*MPI); 471 } 472 } else { 473 for (const auto &MPSE : Index.modulePaths()) 474 Callback(MPSE); 475 } 476 } 477 478 /// Main entry point for writing a combined index to bitcode. 479 void write(); 480 481 private: 482 void writeModStrings(); 483 void writeCombinedGlobalValueSummary(); 484 485 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 486 auto VMI = GUIDToValueIdMap.find(ValGUID); 487 if (VMI == GUIDToValueIdMap.end()) 488 return None; 489 return VMI->second; 490 } 491 492 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 493 }; 494 495 } // end anonymous namespace 496 497 static unsigned getEncodedCastOpcode(unsigned Opcode) { 498 switch (Opcode) { 499 default: llvm_unreachable("Unknown cast instruction!"); 500 case Instruction::Trunc : return bitc::CAST_TRUNC; 501 case Instruction::ZExt : return bitc::CAST_ZEXT; 502 case Instruction::SExt : return bitc::CAST_SEXT; 503 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 504 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 505 case Instruction::UIToFP : return bitc::CAST_UITOFP; 506 case Instruction::SIToFP : return bitc::CAST_SITOFP; 507 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 508 case Instruction::FPExt : return bitc::CAST_FPEXT; 509 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 510 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 511 case Instruction::BitCast : return bitc::CAST_BITCAST; 512 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 513 } 514 } 515 516 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 517 switch (Opcode) { 518 default: llvm_unreachable("Unknown binary instruction!"); 519 case Instruction::Add: 520 case Instruction::FAdd: return bitc::BINOP_ADD; 521 case Instruction::Sub: 522 case Instruction::FSub: return bitc::BINOP_SUB; 523 case Instruction::Mul: 524 case Instruction::FMul: return bitc::BINOP_MUL; 525 case Instruction::UDiv: return bitc::BINOP_UDIV; 526 case Instruction::FDiv: 527 case Instruction::SDiv: return bitc::BINOP_SDIV; 528 case Instruction::URem: return bitc::BINOP_UREM; 529 case Instruction::FRem: 530 case Instruction::SRem: return bitc::BINOP_SREM; 531 case Instruction::Shl: return bitc::BINOP_SHL; 532 case Instruction::LShr: return bitc::BINOP_LSHR; 533 case Instruction::AShr: return bitc::BINOP_ASHR; 534 case Instruction::And: return bitc::BINOP_AND; 535 case Instruction::Or: return bitc::BINOP_OR; 536 case Instruction::Xor: return bitc::BINOP_XOR; 537 } 538 } 539 540 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 541 switch (Op) { 542 default: llvm_unreachable("Unknown RMW operation!"); 543 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 544 case AtomicRMWInst::Add: return bitc::RMW_ADD; 545 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 546 case AtomicRMWInst::And: return bitc::RMW_AND; 547 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 548 case AtomicRMWInst::Or: return bitc::RMW_OR; 549 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 550 case AtomicRMWInst::Max: return bitc::RMW_MAX; 551 case AtomicRMWInst::Min: return bitc::RMW_MIN; 552 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 553 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 554 } 555 } 556 557 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 558 switch (Ordering) { 559 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 560 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 561 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 562 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 563 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 564 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 565 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 566 } 567 llvm_unreachable("Invalid ordering"); 568 } 569 570 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 571 StringRef Str, unsigned AbbrevToUse) { 572 SmallVector<unsigned, 64> Vals; 573 574 // Code: [strchar x N] 575 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 576 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 577 AbbrevToUse = 0; 578 Vals.push_back(Str[i]); 579 } 580 581 // Emit the finished record. 582 Stream.EmitRecord(Code, Vals, AbbrevToUse); 583 } 584 585 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 586 switch (Kind) { 587 case Attribute::Alignment: 588 return bitc::ATTR_KIND_ALIGNMENT; 589 case Attribute::AllocSize: 590 return bitc::ATTR_KIND_ALLOC_SIZE; 591 case Attribute::AlwaysInline: 592 return bitc::ATTR_KIND_ALWAYS_INLINE; 593 case Attribute::ArgMemOnly: 594 return bitc::ATTR_KIND_ARGMEMONLY; 595 case Attribute::Builtin: 596 return bitc::ATTR_KIND_BUILTIN; 597 case Attribute::ByVal: 598 return bitc::ATTR_KIND_BY_VAL; 599 case Attribute::Convergent: 600 return bitc::ATTR_KIND_CONVERGENT; 601 case Attribute::InAlloca: 602 return bitc::ATTR_KIND_IN_ALLOCA; 603 case Attribute::Cold: 604 return bitc::ATTR_KIND_COLD; 605 case Attribute::InaccessibleMemOnly: 606 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 607 case Attribute::InaccessibleMemOrArgMemOnly: 608 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 609 case Attribute::InlineHint: 610 return bitc::ATTR_KIND_INLINE_HINT; 611 case Attribute::InReg: 612 return bitc::ATTR_KIND_IN_REG; 613 case Attribute::JumpTable: 614 return bitc::ATTR_KIND_JUMP_TABLE; 615 case Attribute::MinSize: 616 return bitc::ATTR_KIND_MIN_SIZE; 617 case Attribute::Naked: 618 return bitc::ATTR_KIND_NAKED; 619 case Attribute::Nest: 620 return bitc::ATTR_KIND_NEST; 621 case Attribute::NoAlias: 622 return bitc::ATTR_KIND_NO_ALIAS; 623 case Attribute::NoBuiltin: 624 return bitc::ATTR_KIND_NO_BUILTIN; 625 case Attribute::NoCapture: 626 return bitc::ATTR_KIND_NO_CAPTURE; 627 case Attribute::NoDuplicate: 628 return bitc::ATTR_KIND_NO_DUPLICATE; 629 case Attribute::NoImplicitFloat: 630 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 631 case Attribute::NoInline: 632 return bitc::ATTR_KIND_NO_INLINE; 633 case Attribute::NoRecurse: 634 return bitc::ATTR_KIND_NO_RECURSE; 635 case Attribute::NonLazyBind: 636 return bitc::ATTR_KIND_NON_LAZY_BIND; 637 case Attribute::NonNull: 638 return bitc::ATTR_KIND_NON_NULL; 639 case Attribute::Dereferenceable: 640 return bitc::ATTR_KIND_DEREFERENCEABLE; 641 case Attribute::DereferenceableOrNull: 642 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 643 case Attribute::NoRedZone: 644 return bitc::ATTR_KIND_NO_RED_ZONE; 645 case Attribute::NoReturn: 646 return bitc::ATTR_KIND_NO_RETURN; 647 case Attribute::NoCfCheck: 648 return bitc::ATTR_KIND_NOCF_CHECK; 649 case Attribute::NoUnwind: 650 return bitc::ATTR_KIND_NO_UNWIND; 651 case Attribute::OptForFuzzing: 652 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 653 case Attribute::OptimizeForSize: 654 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 655 case Attribute::OptimizeNone: 656 return bitc::ATTR_KIND_OPTIMIZE_NONE; 657 case Attribute::ReadNone: 658 return bitc::ATTR_KIND_READ_NONE; 659 case Attribute::ReadOnly: 660 return bitc::ATTR_KIND_READ_ONLY; 661 case Attribute::Returned: 662 return bitc::ATTR_KIND_RETURNED; 663 case Attribute::ReturnsTwice: 664 return bitc::ATTR_KIND_RETURNS_TWICE; 665 case Attribute::SExt: 666 return bitc::ATTR_KIND_S_EXT; 667 case Attribute::Speculatable: 668 return bitc::ATTR_KIND_SPECULATABLE; 669 case Attribute::StackAlignment: 670 return bitc::ATTR_KIND_STACK_ALIGNMENT; 671 case Attribute::StackProtect: 672 return bitc::ATTR_KIND_STACK_PROTECT; 673 case Attribute::StackProtectReq: 674 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 675 case Attribute::StackProtectStrong: 676 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 677 case Attribute::SafeStack: 678 return bitc::ATTR_KIND_SAFESTACK; 679 case Attribute::ShadowCallStack: 680 return bitc::ATTR_KIND_SHADOWCALLSTACK; 681 case Attribute::StrictFP: 682 return bitc::ATTR_KIND_STRICT_FP; 683 case Attribute::StructRet: 684 return bitc::ATTR_KIND_STRUCT_RET; 685 case Attribute::SanitizeAddress: 686 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 687 case Attribute::SanitizeHWAddress: 688 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 689 case Attribute::SanitizeThread: 690 return bitc::ATTR_KIND_SANITIZE_THREAD; 691 case Attribute::SanitizeMemory: 692 return bitc::ATTR_KIND_SANITIZE_MEMORY; 693 case Attribute::SpeculativeLoadHardening: 694 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 695 case Attribute::SwiftError: 696 return bitc::ATTR_KIND_SWIFT_ERROR; 697 case Attribute::SwiftSelf: 698 return bitc::ATTR_KIND_SWIFT_SELF; 699 case Attribute::UWTable: 700 return bitc::ATTR_KIND_UW_TABLE; 701 case Attribute::WriteOnly: 702 return bitc::ATTR_KIND_WRITEONLY; 703 case Attribute::ZExt: 704 return bitc::ATTR_KIND_Z_EXT; 705 case Attribute::EndAttrKinds: 706 llvm_unreachable("Can not encode end-attribute kinds marker."); 707 case Attribute::None: 708 llvm_unreachable("Can not encode none-attribute."); 709 } 710 711 llvm_unreachable("Trying to encode unknown attribute"); 712 } 713 714 void ModuleBitcodeWriter::writeAttributeGroupTable() { 715 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 716 VE.getAttributeGroups(); 717 if (AttrGrps.empty()) return; 718 719 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 720 721 SmallVector<uint64_t, 64> Record; 722 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 723 unsigned AttrListIndex = Pair.first; 724 AttributeSet AS = Pair.second; 725 Record.push_back(VE.getAttributeGroupID(Pair)); 726 Record.push_back(AttrListIndex); 727 728 for (Attribute Attr : AS) { 729 if (Attr.isEnumAttribute()) { 730 Record.push_back(0); 731 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 732 } else if (Attr.isIntAttribute()) { 733 Record.push_back(1); 734 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 735 Record.push_back(Attr.getValueAsInt()); 736 } else { 737 StringRef Kind = Attr.getKindAsString(); 738 StringRef Val = Attr.getValueAsString(); 739 740 Record.push_back(Val.empty() ? 3 : 4); 741 Record.append(Kind.begin(), Kind.end()); 742 Record.push_back(0); 743 if (!Val.empty()) { 744 Record.append(Val.begin(), Val.end()); 745 Record.push_back(0); 746 } 747 } 748 } 749 750 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 751 Record.clear(); 752 } 753 754 Stream.ExitBlock(); 755 } 756 757 void ModuleBitcodeWriter::writeAttributeTable() { 758 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 759 if (Attrs.empty()) return; 760 761 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 762 763 SmallVector<uint64_t, 64> Record; 764 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 765 AttributeList AL = Attrs[i]; 766 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 767 AttributeSet AS = AL.getAttributes(i); 768 if (AS.hasAttributes()) 769 Record.push_back(VE.getAttributeGroupID({i, AS})); 770 } 771 772 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 773 Record.clear(); 774 } 775 776 Stream.ExitBlock(); 777 } 778 779 /// WriteTypeTable - Write out the type table for a module. 780 void ModuleBitcodeWriter::writeTypeTable() { 781 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 782 783 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 784 SmallVector<uint64_t, 64> TypeVals; 785 786 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 787 788 // Abbrev for TYPE_CODE_POINTER. 789 auto Abbv = std::make_shared<BitCodeAbbrev>(); 790 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 792 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 793 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 794 795 // Abbrev for TYPE_CODE_FUNCTION. 796 Abbv = std::make_shared<BitCodeAbbrev>(); 797 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 801 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 802 803 // Abbrev for TYPE_CODE_STRUCT_ANON. 804 Abbv = std::make_shared<BitCodeAbbrev>(); 805 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 809 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_NAME. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 816 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 817 818 // Abbrev for TYPE_CODE_STRUCT_NAMED. 819 Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Abbrev for TYPE_CODE_ARRAY. 827 Abbv = std::make_shared<BitCodeAbbrev>(); 828 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 831 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 832 833 // Emit an entry count so the reader can reserve space. 834 TypeVals.push_back(TypeList.size()); 835 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 836 TypeVals.clear(); 837 838 // Loop over all of the types, emitting each in turn. 839 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 840 Type *T = TypeList[i]; 841 int AbbrevToUse = 0; 842 unsigned Code = 0; 843 844 switch (T->getTypeID()) { 845 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 846 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 847 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 848 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 849 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 850 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 851 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 852 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 853 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 854 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 855 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 856 case Type::IntegerTyID: 857 // INTEGER: [width] 858 Code = bitc::TYPE_CODE_INTEGER; 859 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 860 break; 861 case Type::PointerTyID: { 862 PointerType *PTy = cast<PointerType>(T); 863 // POINTER: [pointee type, address space] 864 Code = bitc::TYPE_CODE_POINTER; 865 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 866 unsigned AddressSpace = PTy->getAddressSpace(); 867 TypeVals.push_back(AddressSpace); 868 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 869 break; 870 } 871 case Type::FunctionTyID: { 872 FunctionType *FT = cast<FunctionType>(T); 873 // FUNCTION: [isvararg, retty, paramty x N] 874 Code = bitc::TYPE_CODE_FUNCTION; 875 TypeVals.push_back(FT->isVarArg()); 876 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 877 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 878 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 879 AbbrevToUse = FunctionAbbrev; 880 break; 881 } 882 case Type::StructTyID: { 883 StructType *ST = cast<StructType>(T); 884 // STRUCT: [ispacked, eltty x N] 885 TypeVals.push_back(ST->isPacked()); 886 // Output all of the element types. 887 for (StructType::element_iterator I = ST->element_begin(), 888 E = ST->element_end(); I != E; ++I) 889 TypeVals.push_back(VE.getTypeID(*I)); 890 891 if (ST->isLiteral()) { 892 Code = bitc::TYPE_CODE_STRUCT_ANON; 893 AbbrevToUse = StructAnonAbbrev; 894 } else { 895 if (ST->isOpaque()) { 896 Code = bitc::TYPE_CODE_OPAQUE; 897 } else { 898 Code = bitc::TYPE_CODE_STRUCT_NAMED; 899 AbbrevToUse = StructNamedAbbrev; 900 } 901 902 // Emit the name if it is present. 903 if (!ST->getName().empty()) 904 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 905 StructNameAbbrev); 906 } 907 break; 908 } 909 case Type::ArrayTyID: { 910 ArrayType *AT = cast<ArrayType>(T); 911 // ARRAY: [numelts, eltty] 912 Code = bitc::TYPE_CODE_ARRAY; 913 TypeVals.push_back(AT->getNumElements()); 914 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 915 AbbrevToUse = ArrayAbbrev; 916 break; 917 } 918 case Type::VectorTyID: { 919 VectorType *VT = cast<VectorType>(T); 920 // VECTOR [numelts, eltty] 921 Code = bitc::TYPE_CODE_VECTOR; 922 TypeVals.push_back(VT->getNumElements()); 923 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 924 break; 925 } 926 } 927 928 // Emit the finished record. 929 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 930 TypeVals.clear(); 931 } 932 933 Stream.ExitBlock(); 934 } 935 936 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 937 switch (Linkage) { 938 case GlobalValue::ExternalLinkage: 939 return 0; 940 case GlobalValue::WeakAnyLinkage: 941 return 16; 942 case GlobalValue::AppendingLinkage: 943 return 2; 944 case GlobalValue::InternalLinkage: 945 return 3; 946 case GlobalValue::LinkOnceAnyLinkage: 947 return 18; 948 case GlobalValue::ExternalWeakLinkage: 949 return 7; 950 case GlobalValue::CommonLinkage: 951 return 8; 952 case GlobalValue::PrivateLinkage: 953 return 9; 954 case GlobalValue::WeakODRLinkage: 955 return 17; 956 case GlobalValue::LinkOnceODRLinkage: 957 return 19; 958 case GlobalValue::AvailableExternallyLinkage: 959 return 12; 960 } 961 llvm_unreachable("Invalid linkage"); 962 } 963 964 static unsigned getEncodedLinkage(const GlobalValue &GV) { 965 return getEncodedLinkage(GV.getLinkage()); 966 } 967 968 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 969 uint64_t RawFlags = 0; 970 RawFlags |= Flags.ReadNone; 971 RawFlags |= (Flags.ReadOnly << 1); 972 RawFlags |= (Flags.NoRecurse << 2); 973 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 974 return RawFlags; 975 } 976 977 // Decode the flags for GlobalValue in the summary 978 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 979 uint64_t RawFlags = 0; 980 981 RawFlags |= Flags.NotEligibleToImport; // bool 982 RawFlags |= (Flags.Live << 1); 983 RawFlags |= (Flags.DSOLocal << 2); 984 985 // Linkage don't need to be remapped at that time for the summary. Any future 986 // change to the getEncodedLinkage() function will need to be taken into 987 // account here as well. 988 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 989 990 return RawFlags; 991 } 992 993 static unsigned getEncodedVisibility(const GlobalValue &GV) { 994 switch (GV.getVisibility()) { 995 case GlobalValue::DefaultVisibility: return 0; 996 case GlobalValue::HiddenVisibility: return 1; 997 case GlobalValue::ProtectedVisibility: return 2; 998 } 999 llvm_unreachable("Invalid visibility"); 1000 } 1001 1002 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1003 switch (GV.getDLLStorageClass()) { 1004 case GlobalValue::DefaultStorageClass: return 0; 1005 case GlobalValue::DLLImportStorageClass: return 1; 1006 case GlobalValue::DLLExportStorageClass: return 2; 1007 } 1008 llvm_unreachable("Invalid DLL storage class"); 1009 } 1010 1011 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1012 switch (GV.getThreadLocalMode()) { 1013 case GlobalVariable::NotThreadLocal: return 0; 1014 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1015 case GlobalVariable::LocalDynamicTLSModel: return 2; 1016 case GlobalVariable::InitialExecTLSModel: return 3; 1017 case GlobalVariable::LocalExecTLSModel: return 4; 1018 } 1019 llvm_unreachable("Invalid TLS model"); 1020 } 1021 1022 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1023 switch (C.getSelectionKind()) { 1024 case Comdat::Any: 1025 return bitc::COMDAT_SELECTION_KIND_ANY; 1026 case Comdat::ExactMatch: 1027 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1028 case Comdat::Largest: 1029 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1030 case Comdat::NoDuplicates: 1031 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1032 case Comdat::SameSize: 1033 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1034 } 1035 llvm_unreachable("Invalid selection kind"); 1036 } 1037 1038 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1039 switch (GV.getUnnamedAddr()) { 1040 case GlobalValue::UnnamedAddr::None: return 0; 1041 case GlobalValue::UnnamedAddr::Local: return 2; 1042 case GlobalValue::UnnamedAddr::Global: return 1; 1043 } 1044 llvm_unreachable("Invalid unnamed_addr"); 1045 } 1046 1047 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1048 if (GenerateHash) 1049 Hasher.update(Str); 1050 return StrtabBuilder.add(Str); 1051 } 1052 1053 void ModuleBitcodeWriter::writeComdats() { 1054 SmallVector<unsigned, 64> Vals; 1055 for (const Comdat *C : VE.getComdats()) { 1056 // COMDAT: [strtab offset, strtab size, selection_kind] 1057 Vals.push_back(addToStrtab(C->getName())); 1058 Vals.push_back(C->getName().size()); 1059 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1060 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1061 Vals.clear(); 1062 } 1063 } 1064 1065 /// Write a record that will eventually hold the word offset of the 1066 /// module-level VST. For now the offset is 0, which will be backpatched 1067 /// after the real VST is written. Saves the bit offset to backpatch. 1068 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1069 // Write a placeholder value in for the offset of the real VST, 1070 // which is written after the function blocks so that it can include 1071 // the offset of each function. The placeholder offset will be 1072 // updated when the real VST is written. 1073 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1074 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1075 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1076 // hold the real VST offset. Must use fixed instead of VBR as we don't 1077 // know how many VBR chunks to reserve ahead of time. 1078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1079 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1080 1081 // Emit the placeholder 1082 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1083 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1084 1085 // Compute and save the bit offset to the placeholder, which will be 1086 // patched when the real VST is written. We can simply subtract the 32-bit 1087 // fixed size from the current bit number to get the location to backpatch. 1088 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1089 } 1090 1091 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1092 1093 /// Determine the encoding to use for the given string name and length. 1094 static StringEncoding getStringEncoding(StringRef Str) { 1095 bool isChar6 = true; 1096 for (char C : Str) { 1097 if (isChar6) 1098 isChar6 = BitCodeAbbrevOp::isChar6(C); 1099 if ((unsigned char)C & 128) 1100 // don't bother scanning the rest. 1101 return SE_Fixed8; 1102 } 1103 if (isChar6) 1104 return SE_Char6; 1105 return SE_Fixed7; 1106 } 1107 1108 /// Emit top-level description of module, including target triple, inline asm, 1109 /// descriptors for global variables, and function prototype info. 1110 /// Returns the bit offset to backpatch with the location of the real VST. 1111 void ModuleBitcodeWriter::writeModuleInfo() { 1112 // Emit various pieces of data attached to a module. 1113 if (!M.getTargetTriple().empty()) 1114 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1115 0 /*TODO*/); 1116 const std::string &DL = M.getDataLayoutStr(); 1117 if (!DL.empty()) 1118 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1119 if (!M.getModuleInlineAsm().empty()) 1120 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1121 0 /*TODO*/); 1122 1123 // Emit information about sections and GC, computing how many there are. Also 1124 // compute the maximum alignment value. 1125 std::map<std::string, unsigned> SectionMap; 1126 std::map<std::string, unsigned> GCMap; 1127 unsigned MaxAlignment = 0; 1128 unsigned MaxGlobalType = 0; 1129 for (const GlobalValue &GV : M.globals()) { 1130 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1131 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1132 if (GV.hasSection()) { 1133 // Give section names unique ID's. 1134 unsigned &Entry = SectionMap[GV.getSection()]; 1135 if (!Entry) { 1136 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1137 0 /*TODO*/); 1138 Entry = SectionMap.size(); 1139 } 1140 } 1141 } 1142 for (const Function &F : M) { 1143 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1144 if (F.hasSection()) { 1145 // Give section names unique ID's. 1146 unsigned &Entry = SectionMap[F.getSection()]; 1147 if (!Entry) { 1148 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1149 0 /*TODO*/); 1150 Entry = SectionMap.size(); 1151 } 1152 } 1153 if (F.hasGC()) { 1154 // Same for GC names. 1155 unsigned &Entry = GCMap[F.getGC()]; 1156 if (!Entry) { 1157 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1158 0 /*TODO*/); 1159 Entry = GCMap.size(); 1160 } 1161 } 1162 } 1163 1164 // Emit abbrev for globals, now that we know # sections and max alignment. 1165 unsigned SimpleGVarAbbrev = 0; 1166 if (!M.global_empty()) { 1167 // Add an abbrev for common globals with no visibility or thread localness. 1168 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1169 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1173 Log2_32_Ceil(MaxGlobalType+1))); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1175 //| explicitType << 1 1176 //| constant 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1179 if (MaxAlignment == 0) // Alignment. 1180 Abbv->Add(BitCodeAbbrevOp(0)); 1181 else { 1182 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1184 Log2_32_Ceil(MaxEncAlignment+1))); 1185 } 1186 if (SectionMap.empty()) // Section. 1187 Abbv->Add(BitCodeAbbrevOp(0)); 1188 else 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1190 Log2_32_Ceil(SectionMap.size()+1))); 1191 // Don't bother emitting vis + thread local. 1192 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1193 } 1194 1195 SmallVector<unsigned, 64> Vals; 1196 // Emit the module's source file name. 1197 { 1198 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1199 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1200 if (Bits == SE_Char6) 1201 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1202 else if (Bits == SE_Fixed7) 1203 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1204 1205 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1206 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1207 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1209 Abbv->Add(AbbrevOpToUse); 1210 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1211 1212 for (const auto P : M.getSourceFileName()) 1213 Vals.push_back((unsigned char)P); 1214 1215 // Emit the finished record. 1216 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1217 Vals.clear(); 1218 } 1219 1220 // Emit the global variable information. 1221 for (const GlobalVariable &GV : M.globals()) { 1222 unsigned AbbrevToUse = 0; 1223 1224 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1225 // linkage, alignment, section, visibility, threadlocal, 1226 // unnamed_addr, externally_initialized, dllstorageclass, 1227 // comdat, attributes, DSO_Local] 1228 Vals.push_back(addToStrtab(GV.getName())); 1229 Vals.push_back(GV.getName().size()); 1230 Vals.push_back(VE.getTypeID(GV.getValueType())); 1231 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1232 Vals.push_back(GV.isDeclaration() ? 0 : 1233 (VE.getValueID(GV.getInitializer()) + 1)); 1234 Vals.push_back(getEncodedLinkage(GV)); 1235 Vals.push_back(Log2_32(GV.getAlignment())+1); 1236 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1237 if (GV.isThreadLocal() || 1238 GV.getVisibility() != GlobalValue::DefaultVisibility || 1239 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1240 GV.isExternallyInitialized() || 1241 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1242 GV.hasComdat() || 1243 GV.hasAttributes() || 1244 GV.isDSOLocal()) { 1245 Vals.push_back(getEncodedVisibility(GV)); 1246 Vals.push_back(getEncodedThreadLocalMode(GV)); 1247 Vals.push_back(getEncodedUnnamedAddr(GV)); 1248 Vals.push_back(GV.isExternallyInitialized()); 1249 Vals.push_back(getEncodedDLLStorageClass(GV)); 1250 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1251 1252 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1253 Vals.push_back(VE.getAttributeListID(AL)); 1254 1255 Vals.push_back(GV.isDSOLocal()); 1256 } else { 1257 AbbrevToUse = SimpleGVarAbbrev; 1258 } 1259 1260 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1261 Vals.clear(); 1262 } 1263 1264 // Emit the function proto information. 1265 for (const Function &F : M) { 1266 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1267 // linkage, paramattrs, alignment, section, visibility, gc, 1268 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1269 // prefixdata, personalityfn, DSO_Local, addrspace] 1270 Vals.push_back(addToStrtab(F.getName())); 1271 Vals.push_back(F.getName().size()); 1272 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1273 Vals.push_back(F.getCallingConv()); 1274 Vals.push_back(F.isDeclaration()); 1275 Vals.push_back(getEncodedLinkage(F)); 1276 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1277 Vals.push_back(Log2_32(F.getAlignment())+1); 1278 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1279 Vals.push_back(getEncodedVisibility(F)); 1280 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1281 Vals.push_back(getEncodedUnnamedAddr(F)); 1282 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1283 : 0); 1284 Vals.push_back(getEncodedDLLStorageClass(F)); 1285 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1286 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1287 : 0); 1288 Vals.push_back( 1289 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1290 1291 Vals.push_back(F.isDSOLocal()); 1292 Vals.push_back(F.getAddressSpace()); 1293 1294 unsigned AbbrevToUse = 0; 1295 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1296 Vals.clear(); 1297 } 1298 1299 // Emit the alias information. 1300 for (const GlobalAlias &A : M.aliases()) { 1301 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1302 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1303 // DSO_Local] 1304 Vals.push_back(addToStrtab(A.getName())); 1305 Vals.push_back(A.getName().size()); 1306 Vals.push_back(VE.getTypeID(A.getValueType())); 1307 Vals.push_back(A.getType()->getAddressSpace()); 1308 Vals.push_back(VE.getValueID(A.getAliasee())); 1309 Vals.push_back(getEncodedLinkage(A)); 1310 Vals.push_back(getEncodedVisibility(A)); 1311 Vals.push_back(getEncodedDLLStorageClass(A)); 1312 Vals.push_back(getEncodedThreadLocalMode(A)); 1313 Vals.push_back(getEncodedUnnamedAddr(A)); 1314 Vals.push_back(A.isDSOLocal()); 1315 1316 unsigned AbbrevToUse = 0; 1317 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1318 Vals.clear(); 1319 } 1320 1321 // Emit the ifunc information. 1322 for (const GlobalIFunc &I : M.ifuncs()) { 1323 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1324 // val#, linkage, visibility, DSO_Local] 1325 Vals.push_back(addToStrtab(I.getName())); 1326 Vals.push_back(I.getName().size()); 1327 Vals.push_back(VE.getTypeID(I.getValueType())); 1328 Vals.push_back(I.getType()->getAddressSpace()); 1329 Vals.push_back(VE.getValueID(I.getResolver())); 1330 Vals.push_back(getEncodedLinkage(I)); 1331 Vals.push_back(getEncodedVisibility(I)); 1332 Vals.push_back(I.isDSOLocal()); 1333 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1334 Vals.clear(); 1335 } 1336 1337 writeValueSymbolTableForwardDecl(); 1338 } 1339 1340 static uint64_t getOptimizationFlags(const Value *V) { 1341 uint64_t Flags = 0; 1342 1343 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1344 if (OBO->hasNoSignedWrap()) 1345 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1346 if (OBO->hasNoUnsignedWrap()) 1347 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1348 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1349 if (PEO->isExact()) 1350 Flags |= 1 << bitc::PEO_EXACT; 1351 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1352 if (FPMO->hasAllowReassoc()) 1353 Flags |= bitc::AllowReassoc; 1354 if (FPMO->hasNoNaNs()) 1355 Flags |= bitc::NoNaNs; 1356 if (FPMO->hasNoInfs()) 1357 Flags |= bitc::NoInfs; 1358 if (FPMO->hasNoSignedZeros()) 1359 Flags |= bitc::NoSignedZeros; 1360 if (FPMO->hasAllowReciprocal()) 1361 Flags |= bitc::AllowReciprocal; 1362 if (FPMO->hasAllowContract()) 1363 Flags |= bitc::AllowContract; 1364 if (FPMO->hasApproxFunc()) 1365 Flags |= bitc::ApproxFunc; 1366 } 1367 1368 return Flags; 1369 } 1370 1371 void ModuleBitcodeWriter::writeValueAsMetadata( 1372 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1373 // Mimic an MDNode with a value as one operand. 1374 Value *V = MD->getValue(); 1375 Record.push_back(VE.getTypeID(V->getType())); 1376 Record.push_back(VE.getValueID(V)); 1377 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1378 Record.clear(); 1379 } 1380 1381 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1382 SmallVectorImpl<uint64_t> &Record, 1383 unsigned Abbrev) { 1384 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1385 Metadata *MD = N->getOperand(i); 1386 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1387 "Unexpected function-local metadata"); 1388 Record.push_back(VE.getMetadataOrNullID(MD)); 1389 } 1390 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1391 : bitc::METADATA_NODE, 1392 Record, Abbrev); 1393 Record.clear(); 1394 } 1395 1396 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1397 // Assume the column is usually under 128, and always output the inlined-at 1398 // location (it's never more expensive than building an array size 1). 1399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1400 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1407 return Stream.EmitAbbrev(std::move(Abbv)); 1408 } 1409 1410 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1411 SmallVectorImpl<uint64_t> &Record, 1412 unsigned &Abbrev) { 1413 if (!Abbrev) 1414 Abbrev = createDILocationAbbrev(); 1415 1416 Record.push_back(N->isDistinct()); 1417 Record.push_back(N->getLine()); 1418 Record.push_back(N->getColumn()); 1419 Record.push_back(VE.getMetadataID(N->getScope())); 1420 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1421 Record.push_back(N->isImplicitCode()); 1422 1423 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1424 Record.clear(); 1425 } 1426 1427 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1428 // Assume the column is usually under 128, and always output the inlined-at 1429 // location (it's never more expensive than building an array size 1). 1430 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1431 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1435 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1438 return Stream.EmitAbbrev(std::move(Abbv)); 1439 } 1440 1441 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1442 SmallVectorImpl<uint64_t> &Record, 1443 unsigned &Abbrev) { 1444 if (!Abbrev) 1445 Abbrev = createGenericDINodeAbbrev(); 1446 1447 Record.push_back(N->isDistinct()); 1448 Record.push_back(N->getTag()); 1449 Record.push_back(0); // Per-tag version field; unused for now. 1450 1451 for (auto &I : N->operands()) 1452 Record.push_back(VE.getMetadataOrNullID(I)); 1453 1454 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1455 Record.clear(); 1456 } 1457 1458 static uint64_t rotateSign(int64_t I) { 1459 uint64_t U = I; 1460 return I < 0 ? ~(U << 1) : U << 1; 1461 } 1462 1463 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1464 SmallVectorImpl<uint64_t> &Record, 1465 unsigned Abbrev) { 1466 const uint64_t Version = 1 << 1; 1467 Record.push_back((uint64_t)N->isDistinct() | Version); 1468 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1469 Record.push_back(rotateSign(N->getLowerBound())); 1470 1471 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1472 Record.clear(); 1473 } 1474 1475 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1476 SmallVectorImpl<uint64_t> &Record, 1477 unsigned Abbrev) { 1478 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1479 Record.push_back(rotateSign(N->getValue())); 1480 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1481 1482 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1483 Record.clear(); 1484 } 1485 1486 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1487 SmallVectorImpl<uint64_t> &Record, 1488 unsigned Abbrev) { 1489 Record.push_back(N->isDistinct()); 1490 Record.push_back(N->getTag()); 1491 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1492 Record.push_back(N->getSizeInBits()); 1493 Record.push_back(N->getAlignInBits()); 1494 Record.push_back(N->getEncoding()); 1495 Record.push_back(N->getFlags()); 1496 1497 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1498 Record.clear(); 1499 } 1500 1501 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1502 SmallVectorImpl<uint64_t> &Record, 1503 unsigned Abbrev) { 1504 Record.push_back(N->isDistinct()); 1505 Record.push_back(N->getTag()); 1506 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1507 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1508 Record.push_back(N->getLine()); 1509 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1510 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1511 Record.push_back(N->getSizeInBits()); 1512 Record.push_back(N->getAlignInBits()); 1513 Record.push_back(N->getOffsetInBits()); 1514 Record.push_back(N->getFlags()); 1515 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1516 1517 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1518 // that there is no DWARF address space associated with DIDerivedType. 1519 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1520 Record.push_back(*DWARFAddressSpace + 1); 1521 else 1522 Record.push_back(0); 1523 1524 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1525 Record.clear(); 1526 } 1527 1528 void ModuleBitcodeWriter::writeDICompositeType( 1529 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1530 unsigned Abbrev) { 1531 const unsigned IsNotUsedInOldTypeRef = 0x2; 1532 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1533 Record.push_back(N->getTag()); 1534 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1536 Record.push_back(N->getLine()); 1537 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1538 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1539 Record.push_back(N->getSizeInBits()); 1540 Record.push_back(N->getAlignInBits()); 1541 Record.push_back(N->getOffsetInBits()); 1542 Record.push_back(N->getFlags()); 1543 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1544 Record.push_back(N->getRuntimeLang()); 1545 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1546 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1547 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1549 1550 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1551 Record.clear(); 1552 } 1553 1554 void ModuleBitcodeWriter::writeDISubroutineType( 1555 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1556 unsigned Abbrev) { 1557 const unsigned HasNoOldTypeRefs = 0x2; 1558 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1559 Record.push_back(N->getFlags()); 1560 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1561 Record.push_back(N->getCC()); 1562 1563 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1564 Record.clear(); 1565 } 1566 1567 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1568 SmallVectorImpl<uint64_t> &Record, 1569 unsigned Abbrev) { 1570 Record.push_back(N->isDistinct()); 1571 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1572 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1573 if (N->getRawChecksum()) { 1574 Record.push_back(N->getRawChecksum()->Kind); 1575 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1576 } else { 1577 // Maintain backwards compatibility with the old internal representation of 1578 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1579 Record.push_back(0); 1580 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1581 } 1582 auto Source = N->getRawSource(); 1583 if (Source) 1584 Record.push_back(VE.getMetadataOrNullID(*Source)); 1585 1586 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1587 Record.clear(); 1588 } 1589 1590 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1591 SmallVectorImpl<uint64_t> &Record, 1592 unsigned Abbrev) { 1593 assert(N->isDistinct() && "Expected distinct compile units"); 1594 Record.push_back(/* IsDistinct */ true); 1595 Record.push_back(N->getSourceLanguage()); 1596 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1598 Record.push_back(N->isOptimized()); 1599 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1600 Record.push_back(N->getRuntimeVersion()); 1601 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1602 Record.push_back(N->getEmissionKind()); 1603 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1605 Record.push_back(/* subprograms */ 0); 1606 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1608 Record.push_back(N->getDWOId()); 1609 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1610 Record.push_back(N->getSplitDebugInlining()); 1611 Record.push_back(N->getDebugInfoForProfiling()); 1612 Record.push_back((unsigned)N->getNameTableKind()); 1613 1614 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1615 Record.clear(); 1616 } 1617 1618 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1619 SmallVectorImpl<uint64_t> &Record, 1620 unsigned Abbrev) { 1621 uint64_t HasUnitFlag = 1 << 1; 1622 Record.push_back(N->isDistinct() | HasUnitFlag); 1623 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1624 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1627 Record.push_back(N->getLine()); 1628 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1629 Record.push_back(N->isLocalToUnit()); 1630 Record.push_back(N->isDefinition()); 1631 Record.push_back(N->getScopeLine()); 1632 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1633 Record.push_back(N->getVirtuality()); 1634 Record.push_back(N->getVirtualIndex()); 1635 Record.push_back(N->getFlags()); 1636 Record.push_back(N->isOptimized()); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1638 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1639 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1640 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1641 Record.push_back(N->getThisAdjustment()); 1642 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1643 1644 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1645 Record.clear(); 1646 } 1647 1648 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1649 SmallVectorImpl<uint64_t> &Record, 1650 unsigned Abbrev) { 1651 Record.push_back(N->isDistinct()); 1652 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1653 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1654 Record.push_back(N->getLine()); 1655 Record.push_back(N->getColumn()); 1656 1657 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1662 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.push_back(N->isDistinct()); 1665 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1666 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1667 Record.push_back(N->getDiscriminator()); 1668 1669 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1674 SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1677 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1679 1680 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1681 Record.clear(); 1682 } 1683 1684 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1685 SmallVectorImpl<uint64_t> &Record, 1686 unsigned Abbrev) { 1687 Record.push_back(N->isDistinct()); 1688 Record.push_back(N->getMacinfoType()); 1689 Record.push_back(N->getLine()); 1690 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1692 1693 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1694 Record.clear(); 1695 } 1696 1697 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1698 SmallVectorImpl<uint64_t> &Record, 1699 unsigned Abbrev) { 1700 Record.push_back(N->isDistinct()); 1701 Record.push_back(N->getMacinfoType()); 1702 Record.push_back(N->getLine()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1704 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1705 1706 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1707 Record.clear(); 1708 } 1709 1710 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1711 SmallVectorImpl<uint64_t> &Record, 1712 unsigned Abbrev) { 1713 Record.push_back(N->isDistinct()); 1714 for (auto &I : N->operands()) 1715 Record.push_back(VE.getMetadataOrNullID(I)); 1716 1717 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1718 Record.clear(); 1719 } 1720 1721 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1722 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1723 unsigned Abbrev) { 1724 Record.push_back(N->isDistinct()); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1727 1728 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1729 Record.clear(); 1730 } 1731 1732 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1733 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1734 unsigned Abbrev) { 1735 Record.push_back(N->isDistinct()); 1736 Record.push_back(N->getTag()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1740 1741 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1742 Record.clear(); 1743 } 1744 1745 void ModuleBitcodeWriter::writeDIGlobalVariable( 1746 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1747 unsigned Abbrev) { 1748 const uint64_t Version = 1 << 1; 1749 Record.push_back((uint64_t)N->isDistinct() | Version); 1750 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1754 Record.push_back(N->getLine()); 1755 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1756 Record.push_back(N->isLocalToUnit()); 1757 Record.push_back(N->isDefinition()); 1758 Record.push_back(/* expr */ 0); 1759 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1760 Record.push_back(N->getAlignInBits()); 1761 1762 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1763 Record.clear(); 1764 } 1765 1766 void ModuleBitcodeWriter::writeDILocalVariable( 1767 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1768 unsigned Abbrev) { 1769 // In order to support all possible bitcode formats in BitcodeReader we need 1770 // to distinguish the following cases: 1771 // 1) Record has no artificial tag (Record[1]), 1772 // has no obsolete inlinedAt field (Record[9]). 1773 // In this case Record size will be 8, HasAlignment flag is false. 1774 // 2) Record has artificial tag (Record[1]), 1775 // has no obsolete inlignedAt field (Record[9]). 1776 // In this case Record size will be 9, HasAlignment flag is false. 1777 // 3) Record has both artificial tag (Record[1]) and 1778 // obsolete inlignedAt field (Record[9]). 1779 // In this case Record size will be 10, HasAlignment flag is false. 1780 // 4) Record has neither artificial tag, nor inlignedAt field, but 1781 // HasAlignment flag is true and Record[8] contains alignment value. 1782 const uint64_t HasAlignmentFlag = 1 << 1; 1783 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1784 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1787 Record.push_back(N->getLine()); 1788 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1789 Record.push_back(N->getArg()); 1790 Record.push_back(N->getFlags()); 1791 Record.push_back(N->getAlignInBits()); 1792 1793 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1794 Record.clear(); 1795 } 1796 1797 void ModuleBitcodeWriter::writeDILabel( 1798 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1799 unsigned Abbrev) { 1800 Record.push_back((uint64_t)N->isDistinct()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(N->getLine()); 1805 1806 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1807 Record.clear(); 1808 } 1809 1810 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1811 SmallVectorImpl<uint64_t> &Record, 1812 unsigned Abbrev) { 1813 Record.reserve(N->getElements().size() + 1); 1814 const uint64_t Version = 3 << 1; 1815 Record.push_back((uint64_t)N->isDistinct() | Version); 1816 Record.append(N->elements_begin(), N->elements_end()); 1817 1818 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1819 Record.clear(); 1820 } 1821 1822 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1823 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1824 unsigned Abbrev) { 1825 Record.push_back(N->isDistinct()); 1826 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1828 1829 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1830 Record.clear(); 1831 } 1832 1833 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1834 SmallVectorImpl<uint64_t> &Record, 1835 unsigned Abbrev) { 1836 Record.push_back(N->isDistinct()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1838 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1839 Record.push_back(N->getLine()); 1840 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1841 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1842 Record.push_back(N->getAttributes()); 1843 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1844 1845 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1846 Record.clear(); 1847 } 1848 1849 void ModuleBitcodeWriter::writeDIImportedEntity( 1850 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1851 unsigned Abbrev) { 1852 Record.push_back(N->isDistinct()); 1853 Record.push_back(N->getTag()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1856 Record.push_back(N->getLine()); 1857 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1858 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1859 1860 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1861 Record.clear(); 1862 } 1863 1864 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1865 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1866 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1869 return Stream.EmitAbbrev(std::move(Abbv)); 1870 } 1871 1872 void ModuleBitcodeWriter::writeNamedMetadata( 1873 SmallVectorImpl<uint64_t> &Record) { 1874 if (M.named_metadata_empty()) 1875 return; 1876 1877 unsigned Abbrev = createNamedMetadataAbbrev(); 1878 for (const NamedMDNode &NMD : M.named_metadata()) { 1879 // Write name. 1880 StringRef Str = NMD.getName(); 1881 Record.append(Str.bytes_begin(), Str.bytes_end()); 1882 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1883 Record.clear(); 1884 1885 // Write named metadata operands. 1886 for (const MDNode *N : NMD.operands()) 1887 Record.push_back(VE.getMetadataID(N)); 1888 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1889 Record.clear(); 1890 } 1891 } 1892 1893 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1894 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1895 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1899 return Stream.EmitAbbrev(std::move(Abbv)); 1900 } 1901 1902 /// Write out a record for MDString. 1903 /// 1904 /// All the metadata strings in a metadata block are emitted in a single 1905 /// record. The sizes and strings themselves are shoved into a blob. 1906 void ModuleBitcodeWriter::writeMetadataStrings( 1907 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1908 if (Strings.empty()) 1909 return; 1910 1911 // Start the record with the number of strings. 1912 Record.push_back(bitc::METADATA_STRINGS); 1913 Record.push_back(Strings.size()); 1914 1915 // Emit the sizes of the strings in the blob. 1916 SmallString<256> Blob; 1917 { 1918 BitstreamWriter W(Blob); 1919 for (const Metadata *MD : Strings) 1920 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1921 W.FlushToWord(); 1922 } 1923 1924 // Add the offset to the strings to the record. 1925 Record.push_back(Blob.size()); 1926 1927 // Add the strings to the blob. 1928 for (const Metadata *MD : Strings) 1929 Blob.append(cast<MDString>(MD)->getString()); 1930 1931 // Emit the final record. 1932 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1933 Record.clear(); 1934 } 1935 1936 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1937 enum MetadataAbbrev : unsigned { 1938 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1939 #include "llvm/IR/Metadata.def" 1940 LastPlusOne 1941 }; 1942 1943 void ModuleBitcodeWriter::writeMetadataRecords( 1944 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1945 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1946 if (MDs.empty()) 1947 return; 1948 1949 // Initialize MDNode abbreviations. 1950 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1951 #include "llvm/IR/Metadata.def" 1952 1953 for (const Metadata *MD : MDs) { 1954 if (IndexPos) 1955 IndexPos->push_back(Stream.GetCurrentBitNo()); 1956 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1957 assert(N->isResolved() && "Expected forward references to be resolved"); 1958 1959 switch (N->getMetadataID()) { 1960 default: 1961 llvm_unreachable("Invalid MDNode subclass"); 1962 #define HANDLE_MDNODE_LEAF(CLASS) \ 1963 case Metadata::CLASS##Kind: \ 1964 if (MDAbbrevs) \ 1965 write##CLASS(cast<CLASS>(N), Record, \ 1966 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1967 else \ 1968 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1969 continue; 1970 #include "llvm/IR/Metadata.def" 1971 } 1972 } 1973 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1974 } 1975 } 1976 1977 void ModuleBitcodeWriter::writeModuleMetadata() { 1978 if (!VE.hasMDs() && M.named_metadata_empty()) 1979 return; 1980 1981 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1982 SmallVector<uint64_t, 64> Record; 1983 1984 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1985 // block and load any metadata. 1986 std::vector<unsigned> MDAbbrevs; 1987 1988 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1989 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1990 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1991 createGenericDINodeAbbrev(); 1992 1993 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1994 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1996 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1997 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1998 1999 Abbv = std::make_shared<BitCodeAbbrev>(); 2000 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2003 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2004 2005 // Emit MDStrings together upfront. 2006 writeMetadataStrings(VE.getMDStrings(), Record); 2007 2008 // We only emit an index for the metadata record if we have more than a given 2009 // (naive) threshold of metadatas, otherwise it is not worth it. 2010 if (VE.getNonMDStrings().size() > IndexThreshold) { 2011 // Write a placeholder value in for the offset of the metadata index, 2012 // which is written after the records, so that it can include 2013 // the offset of each entry. The placeholder offset will be 2014 // updated after all records are emitted. 2015 uint64_t Vals[] = {0, 0}; 2016 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2017 } 2018 2019 // Compute and save the bit offset to the current position, which will be 2020 // patched when we emit the index later. We can simply subtract the 64-bit 2021 // fixed size from the current bit number to get the location to backpatch. 2022 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2023 2024 // This index will contain the bitpos for each individual record. 2025 std::vector<uint64_t> IndexPos; 2026 IndexPos.reserve(VE.getNonMDStrings().size()); 2027 2028 // Write all the records 2029 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2030 2031 if (VE.getNonMDStrings().size() > IndexThreshold) { 2032 // Now that we have emitted all the records we will emit the index. But 2033 // first 2034 // backpatch the forward reference so that the reader can skip the records 2035 // efficiently. 2036 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2037 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2038 2039 // Delta encode the index. 2040 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2041 for (auto &Elt : IndexPos) { 2042 auto EltDelta = Elt - PreviousValue; 2043 PreviousValue = Elt; 2044 Elt = EltDelta; 2045 } 2046 // Emit the index record. 2047 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2048 IndexPos.clear(); 2049 } 2050 2051 // Write the named metadata now. 2052 writeNamedMetadata(Record); 2053 2054 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2055 SmallVector<uint64_t, 4> Record; 2056 Record.push_back(VE.getValueID(&GO)); 2057 pushGlobalMetadataAttachment(Record, GO); 2058 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2059 }; 2060 for (const Function &F : M) 2061 if (F.isDeclaration() && F.hasMetadata()) 2062 AddDeclAttachedMetadata(F); 2063 // FIXME: Only store metadata for declarations here, and move data for global 2064 // variable definitions to a separate block (PR28134). 2065 for (const GlobalVariable &GV : M.globals()) 2066 if (GV.hasMetadata()) 2067 AddDeclAttachedMetadata(GV); 2068 2069 Stream.ExitBlock(); 2070 } 2071 2072 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2073 if (!VE.hasMDs()) 2074 return; 2075 2076 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2077 SmallVector<uint64_t, 64> Record; 2078 writeMetadataStrings(VE.getMDStrings(), Record); 2079 writeMetadataRecords(VE.getNonMDStrings(), Record); 2080 Stream.ExitBlock(); 2081 } 2082 2083 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2084 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2085 // [n x [id, mdnode]] 2086 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2087 GO.getAllMetadata(MDs); 2088 for (const auto &I : MDs) { 2089 Record.push_back(I.first); 2090 Record.push_back(VE.getMetadataID(I.second)); 2091 } 2092 } 2093 2094 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2095 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2096 2097 SmallVector<uint64_t, 64> Record; 2098 2099 if (F.hasMetadata()) { 2100 pushGlobalMetadataAttachment(Record, F); 2101 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2102 Record.clear(); 2103 } 2104 2105 // Write metadata attachments 2106 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2107 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2108 for (const BasicBlock &BB : F) 2109 for (const Instruction &I : BB) { 2110 MDs.clear(); 2111 I.getAllMetadataOtherThanDebugLoc(MDs); 2112 2113 // If no metadata, ignore instruction. 2114 if (MDs.empty()) continue; 2115 2116 Record.push_back(VE.getInstructionID(&I)); 2117 2118 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2119 Record.push_back(MDs[i].first); 2120 Record.push_back(VE.getMetadataID(MDs[i].second)); 2121 } 2122 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2123 Record.clear(); 2124 } 2125 2126 Stream.ExitBlock(); 2127 } 2128 2129 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2130 SmallVector<uint64_t, 64> Record; 2131 2132 // Write metadata kinds 2133 // METADATA_KIND - [n x [id, name]] 2134 SmallVector<StringRef, 8> Names; 2135 M.getMDKindNames(Names); 2136 2137 if (Names.empty()) return; 2138 2139 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2140 2141 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2142 Record.push_back(MDKindID); 2143 StringRef KName = Names[MDKindID]; 2144 Record.append(KName.begin(), KName.end()); 2145 2146 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2147 Record.clear(); 2148 } 2149 2150 Stream.ExitBlock(); 2151 } 2152 2153 void ModuleBitcodeWriter::writeOperandBundleTags() { 2154 // Write metadata kinds 2155 // 2156 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2157 // 2158 // OPERAND_BUNDLE_TAG - [strchr x N] 2159 2160 SmallVector<StringRef, 8> Tags; 2161 M.getOperandBundleTags(Tags); 2162 2163 if (Tags.empty()) 2164 return; 2165 2166 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2167 2168 SmallVector<uint64_t, 64> Record; 2169 2170 for (auto Tag : Tags) { 2171 Record.append(Tag.begin(), Tag.end()); 2172 2173 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2174 Record.clear(); 2175 } 2176 2177 Stream.ExitBlock(); 2178 } 2179 2180 void ModuleBitcodeWriter::writeSyncScopeNames() { 2181 SmallVector<StringRef, 8> SSNs; 2182 M.getContext().getSyncScopeNames(SSNs); 2183 if (SSNs.empty()) 2184 return; 2185 2186 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2187 2188 SmallVector<uint64_t, 64> Record; 2189 for (auto SSN : SSNs) { 2190 Record.append(SSN.begin(), SSN.end()); 2191 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2192 Record.clear(); 2193 } 2194 2195 Stream.ExitBlock(); 2196 } 2197 2198 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2199 if ((int64_t)V >= 0) 2200 Vals.push_back(V << 1); 2201 else 2202 Vals.push_back((-V << 1) | 1); 2203 } 2204 2205 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2206 bool isGlobal) { 2207 if (FirstVal == LastVal) return; 2208 2209 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2210 2211 unsigned AggregateAbbrev = 0; 2212 unsigned String8Abbrev = 0; 2213 unsigned CString7Abbrev = 0; 2214 unsigned CString6Abbrev = 0; 2215 // If this is a constant pool for the module, emit module-specific abbrevs. 2216 if (isGlobal) { 2217 // Abbrev for CST_CODE_AGGREGATE. 2218 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2219 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2221 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2222 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2223 2224 // Abbrev for CST_CODE_STRING. 2225 Abbv = std::make_shared<BitCodeAbbrev>(); 2226 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2229 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2230 // Abbrev for CST_CODE_CSTRING. 2231 Abbv = std::make_shared<BitCodeAbbrev>(); 2232 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2235 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2236 // Abbrev for CST_CODE_CSTRING. 2237 Abbv = std::make_shared<BitCodeAbbrev>(); 2238 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2239 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2240 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2241 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2242 } 2243 2244 SmallVector<uint64_t, 64> Record; 2245 2246 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2247 Type *LastTy = nullptr; 2248 for (unsigned i = FirstVal; i != LastVal; ++i) { 2249 const Value *V = Vals[i].first; 2250 // If we need to switch types, do so now. 2251 if (V->getType() != LastTy) { 2252 LastTy = V->getType(); 2253 Record.push_back(VE.getTypeID(LastTy)); 2254 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2255 CONSTANTS_SETTYPE_ABBREV); 2256 Record.clear(); 2257 } 2258 2259 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2260 Record.push_back(unsigned(IA->hasSideEffects()) | 2261 unsigned(IA->isAlignStack()) << 1 | 2262 unsigned(IA->getDialect()&1) << 2); 2263 2264 // Add the asm string. 2265 const std::string &AsmStr = IA->getAsmString(); 2266 Record.push_back(AsmStr.size()); 2267 Record.append(AsmStr.begin(), AsmStr.end()); 2268 2269 // Add the constraint string. 2270 const std::string &ConstraintStr = IA->getConstraintString(); 2271 Record.push_back(ConstraintStr.size()); 2272 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2273 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2274 Record.clear(); 2275 continue; 2276 } 2277 const Constant *C = cast<Constant>(V); 2278 unsigned Code = -1U; 2279 unsigned AbbrevToUse = 0; 2280 if (C->isNullValue()) { 2281 Code = bitc::CST_CODE_NULL; 2282 } else if (isa<UndefValue>(C)) { 2283 Code = bitc::CST_CODE_UNDEF; 2284 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2285 if (IV->getBitWidth() <= 64) { 2286 uint64_t V = IV->getSExtValue(); 2287 emitSignedInt64(Record, V); 2288 Code = bitc::CST_CODE_INTEGER; 2289 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2290 } else { // Wide integers, > 64 bits in size. 2291 // We have an arbitrary precision integer value to write whose 2292 // bit width is > 64. However, in canonical unsigned integer 2293 // format it is likely that the high bits are going to be zero. 2294 // So, we only write the number of active words. 2295 unsigned NWords = IV->getValue().getActiveWords(); 2296 const uint64_t *RawWords = IV->getValue().getRawData(); 2297 for (unsigned i = 0; i != NWords; ++i) { 2298 emitSignedInt64(Record, RawWords[i]); 2299 } 2300 Code = bitc::CST_CODE_WIDE_INTEGER; 2301 } 2302 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2303 Code = bitc::CST_CODE_FLOAT; 2304 Type *Ty = CFP->getType(); 2305 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2306 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2307 } else if (Ty->isX86_FP80Ty()) { 2308 // api needed to prevent premature destruction 2309 // bits are not in the same order as a normal i80 APInt, compensate. 2310 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2311 const uint64_t *p = api.getRawData(); 2312 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2313 Record.push_back(p[0] & 0xffffLL); 2314 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2315 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2316 const uint64_t *p = api.getRawData(); 2317 Record.push_back(p[0]); 2318 Record.push_back(p[1]); 2319 } else { 2320 assert(0 && "Unknown FP type!"); 2321 } 2322 } else if (isa<ConstantDataSequential>(C) && 2323 cast<ConstantDataSequential>(C)->isString()) { 2324 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2325 // Emit constant strings specially. 2326 unsigned NumElts = Str->getNumElements(); 2327 // If this is a null-terminated string, use the denser CSTRING encoding. 2328 if (Str->isCString()) { 2329 Code = bitc::CST_CODE_CSTRING; 2330 --NumElts; // Don't encode the null, which isn't allowed by char6. 2331 } else { 2332 Code = bitc::CST_CODE_STRING; 2333 AbbrevToUse = String8Abbrev; 2334 } 2335 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2336 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2337 for (unsigned i = 0; i != NumElts; ++i) { 2338 unsigned char V = Str->getElementAsInteger(i); 2339 Record.push_back(V); 2340 isCStr7 &= (V & 128) == 0; 2341 if (isCStrChar6) 2342 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2343 } 2344 2345 if (isCStrChar6) 2346 AbbrevToUse = CString6Abbrev; 2347 else if (isCStr7) 2348 AbbrevToUse = CString7Abbrev; 2349 } else if (const ConstantDataSequential *CDS = 2350 dyn_cast<ConstantDataSequential>(C)) { 2351 Code = bitc::CST_CODE_DATA; 2352 Type *EltTy = CDS->getType()->getElementType(); 2353 if (isa<IntegerType>(EltTy)) { 2354 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2355 Record.push_back(CDS->getElementAsInteger(i)); 2356 } else { 2357 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2358 Record.push_back( 2359 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2360 } 2361 } else if (isa<ConstantAggregate>(C)) { 2362 Code = bitc::CST_CODE_AGGREGATE; 2363 for (const Value *Op : C->operands()) 2364 Record.push_back(VE.getValueID(Op)); 2365 AbbrevToUse = AggregateAbbrev; 2366 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2367 switch (CE->getOpcode()) { 2368 default: 2369 if (Instruction::isCast(CE->getOpcode())) { 2370 Code = bitc::CST_CODE_CE_CAST; 2371 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2372 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2373 Record.push_back(VE.getValueID(C->getOperand(0))); 2374 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2375 } else { 2376 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2377 Code = bitc::CST_CODE_CE_BINOP; 2378 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2379 Record.push_back(VE.getValueID(C->getOperand(0))); 2380 Record.push_back(VE.getValueID(C->getOperand(1))); 2381 uint64_t Flags = getOptimizationFlags(CE); 2382 if (Flags != 0) 2383 Record.push_back(Flags); 2384 } 2385 break; 2386 case Instruction::GetElementPtr: { 2387 Code = bitc::CST_CODE_CE_GEP; 2388 const auto *GO = cast<GEPOperator>(C); 2389 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2390 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2391 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2392 Record.push_back((*Idx << 1) | GO->isInBounds()); 2393 } else if (GO->isInBounds()) 2394 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2395 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2396 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2397 Record.push_back(VE.getValueID(C->getOperand(i))); 2398 } 2399 break; 2400 } 2401 case Instruction::Select: 2402 Code = bitc::CST_CODE_CE_SELECT; 2403 Record.push_back(VE.getValueID(C->getOperand(0))); 2404 Record.push_back(VE.getValueID(C->getOperand(1))); 2405 Record.push_back(VE.getValueID(C->getOperand(2))); 2406 break; 2407 case Instruction::ExtractElement: 2408 Code = bitc::CST_CODE_CE_EXTRACTELT; 2409 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2410 Record.push_back(VE.getValueID(C->getOperand(0))); 2411 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2412 Record.push_back(VE.getValueID(C->getOperand(1))); 2413 break; 2414 case Instruction::InsertElement: 2415 Code = bitc::CST_CODE_CE_INSERTELT; 2416 Record.push_back(VE.getValueID(C->getOperand(0))); 2417 Record.push_back(VE.getValueID(C->getOperand(1))); 2418 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2419 Record.push_back(VE.getValueID(C->getOperand(2))); 2420 break; 2421 case Instruction::ShuffleVector: 2422 // If the return type and argument types are the same, this is a 2423 // standard shufflevector instruction. If the types are different, 2424 // then the shuffle is widening or truncating the input vectors, and 2425 // the argument type must also be encoded. 2426 if (C->getType() == C->getOperand(0)->getType()) { 2427 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2428 } else { 2429 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2430 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2431 } 2432 Record.push_back(VE.getValueID(C->getOperand(0))); 2433 Record.push_back(VE.getValueID(C->getOperand(1))); 2434 Record.push_back(VE.getValueID(C->getOperand(2))); 2435 break; 2436 case Instruction::ICmp: 2437 case Instruction::FCmp: 2438 Code = bitc::CST_CODE_CE_CMP; 2439 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2440 Record.push_back(VE.getValueID(C->getOperand(0))); 2441 Record.push_back(VE.getValueID(C->getOperand(1))); 2442 Record.push_back(CE->getPredicate()); 2443 break; 2444 } 2445 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2446 Code = bitc::CST_CODE_BLOCKADDRESS; 2447 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2448 Record.push_back(VE.getValueID(BA->getFunction())); 2449 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2450 } else { 2451 #ifndef NDEBUG 2452 C->dump(); 2453 #endif 2454 llvm_unreachable("Unknown constant!"); 2455 } 2456 Stream.EmitRecord(Code, Record, AbbrevToUse); 2457 Record.clear(); 2458 } 2459 2460 Stream.ExitBlock(); 2461 } 2462 2463 void ModuleBitcodeWriter::writeModuleConstants() { 2464 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2465 2466 // Find the first constant to emit, which is the first non-globalvalue value. 2467 // We know globalvalues have been emitted by WriteModuleInfo. 2468 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2469 if (!isa<GlobalValue>(Vals[i].first)) { 2470 writeConstants(i, Vals.size(), true); 2471 return; 2472 } 2473 } 2474 } 2475 2476 /// pushValueAndType - The file has to encode both the value and type id for 2477 /// many values, because we need to know what type to create for forward 2478 /// references. However, most operands are not forward references, so this type 2479 /// field is not needed. 2480 /// 2481 /// This function adds V's value ID to Vals. If the value ID is higher than the 2482 /// instruction ID, then it is a forward reference, and it also includes the 2483 /// type ID. The value ID that is written is encoded relative to the InstID. 2484 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2485 SmallVectorImpl<unsigned> &Vals) { 2486 unsigned ValID = VE.getValueID(V); 2487 // Make encoding relative to the InstID. 2488 Vals.push_back(InstID - ValID); 2489 if (ValID >= InstID) { 2490 Vals.push_back(VE.getTypeID(V->getType())); 2491 return true; 2492 } 2493 return false; 2494 } 2495 2496 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2497 unsigned InstID) { 2498 SmallVector<unsigned, 64> Record; 2499 LLVMContext &C = CS.getInstruction()->getContext(); 2500 2501 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2502 const auto &Bundle = CS.getOperandBundleAt(i); 2503 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2504 2505 for (auto &Input : Bundle.Inputs) 2506 pushValueAndType(Input, InstID, Record); 2507 2508 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2509 Record.clear(); 2510 } 2511 } 2512 2513 /// pushValue - Like pushValueAndType, but where the type of the value is 2514 /// omitted (perhaps it was already encoded in an earlier operand). 2515 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2516 SmallVectorImpl<unsigned> &Vals) { 2517 unsigned ValID = VE.getValueID(V); 2518 Vals.push_back(InstID - ValID); 2519 } 2520 2521 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2522 SmallVectorImpl<uint64_t> &Vals) { 2523 unsigned ValID = VE.getValueID(V); 2524 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2525 emitSignedInt64(Vals, diff); 2526 } 2527 2528 /// WriteInstruction - Emit an instruction to the specified stream. 2529 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2530 unsigned InstID, 2531 SmallVectorImpl<unsigned> &Vals) { 2532 unsigned Code = 0; 2533 unsigned AbbrevToUse = 0; 2534 VE.setInstructionID(&I); 2535 switch (I.getOpcode()) { 2536 default: 2537 if (Instruction::isCast(I.getOpcode())) { 2538 Code = bitc::FUNC_CODE_INST_CAST; 2539 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2540 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2541 Vals.push_back(VE.getTypeID(I.getType())); 2542 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2543 } else { 2544 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2545 Code = bitc::FUNC_CODE_INST_BINOP; 2546 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2547 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2548 pushValue(I.getOperand(1), InstID, Vals); 2549 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2550 uint64_t Flags = getOptimizationFlags(&I); 2551 if (Flags != 0) { 2552 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2553 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2554 Vals.push_back(Flags); 2555 } 2556 } 2557 break; 2558 2559 case Instruction::GetElementPtr: { 2560 Code = bitc::FUNC_CODE_INST_GEP; 2561 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2562 auto &GEPInst = cast<GetElementPtrInst>(I); 2563 Vals.push_back(GEPInst.isInBounds()); 2564 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2565 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2566 pushValueAndType(I.getOperand(i), InstID, Vals); 2567 break; 2568 } 2569 case Instruction::ExtractValue: { 2570 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2571 pushValueAndType(I.getOperand(0), InstID, Vals); 2572 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2573 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2574 break; 2575 } 2576 case Instruction::InsertValue: { 2577 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2578 pushValueAndType(I.getOperand(0), InstID, Vals); 2579 pushValueAndType(I.getOperand(1), InstID, Vals); 2580 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2581 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2582 break; 2583 } 2584 case Instruction::Select: 2585 Code = bitc::FUNC_CODE_INST_VSELECT; 2586 pushValueAndType(I.getOperand(1), InstID, Vals); 2587 pushValue(I.getOperand(2), InstID, Vals); 2588 pushValueAndType(I.getOperand(0), InstID, Vals); 2589 break; 2590 case Instruction::ExtractElement: 2591 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2592 pushValueAndType(I.getOperand(0), InstID, Vals); 2593 pushValueAndType(I.getOperand(1), InstID, Vals); 2594 break; 2595 case Instruction::InsertElement: 2596 Code = bitc::FUNC_CODE_INST_INSERTELT; 2597 pushValueAndType(I.getOperand(0), InstID, Vals); 2598 pushValue(I.getOperand(1), InstID, Vals); 2599 pushValueAndType(I.getOperand(2), InstID, Vals); 2600 break; 2601 case Instruction::ShuffleVector: 2602 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2603 pushValueAndType(I.getOperand(0), InstID, Vals); 2604 pushValue(I.getOperand(1), InstID, Vals); 2605 pushValue(I.getOperand(2), InstID, Vals); 2606 break; 2607 case Instruction::ICmp: 2608 case Instruction::FCmp: { 2609 // compare returning Int1Ty or vector of Int1Ty 2610 Code = bitc::FUNC_CODE_INST_CMP2; 2611 pushValueAndType(I.getOperand(0), InstID, Vals); 2612 pushValue(I.getOperand(1), InstID, Vals); 2613 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2614 uint64_t Flags = getOptimizationFlags(&I); 2615 if (Flags != 0) 2616 Vals.push_back(Flags); 2617 break; 2618 } 2619 2620 case Instruction::Ret: 2621 { 2622 Code = bitc::FUNC_CODE_INST_RET; 2623 unsigned NumOperands = I.getNumOperands(); 2624 if (NumOperands == 0) 2625 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2626 else if (NumOperands == 1) { 2627 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2628 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2629 } else { 2630 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2631 pushValueAndType(I.getOperand(i), InstID, Vals); 2632 } 2633 } 2634 break; 2635 case Instruction::Br: 2636 { 2637 Code = bitc::FUNC_CODE_INST_BR; 2638 const BranchInst &II = cast<BranchInst>(I); 2639 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2640 if (II.isConditional()) { 2641 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2642 pushValue(II.getCondition(), InstID, Vals); 2643 } 2644 } 2645 break; 2646 case Instruction::Switch: 2647 { 2648 Code = bitc::FUNC_CODE_INST_SWITCH; 2649 const SwitchInst &SI = cast<SwitchInst>(I); 2650 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2651 pushValue(SI.getCondition(), InstID, Vals); 2652 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2653 for (auto Case : SI.cases()) { 2654 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2655 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2656 } 2657 } 2658 break; 2659 case Instruction::IndirectBr: 2660 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2661 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2662 // Encode the address operand as relative, but not the basic blocks. 2663 pushValue(I.getOperand(0), InstID, Vals); 2664 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2665 Vals.push_back(VE.getValueID(I.getOperand(i))); 2666 break; 2667 2668 case Instruction::Invoke: { 2669 const InvokeInst *II = cast<InvokeInst>(&I); 2670 const Value *Callee = II->getCalledValue(); 2671 FunctionType *FTy = II->getFunctionType(); 2672 2673 if (II->hasOperandBundles()) 2674 writeOperandBundles(II, InstID); 2675 2676 Code = bitc::FUNC_CODE_INST_INVOKE; 2677 2678 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2679 Vals.push_back(II->getCallingConv() | 1 << 13); 2680 Vals.push_back(VE.getValueID(II->getNormalDest())); 2681 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2682 Vals.push_back(VE.getTypeID(FTy)); 2683 pushValueAndType(Callee, InstID, Vals); 2684 2685 // Emit value #'s for the fixed parameters. 2686 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2687 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2688 2689 // Emit type/value pairs for varargs params. 2690 if (FTy->isVarArg()) { 2691 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2692 i != e; ++i) 2693 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2694 } 2695 break; 2696 } 2697 case Instruction::Resume: 2698 Code = bitc::FUNC_CODE_INST_RESUME; 2699 pushValueAndType(I.getOperand(0), InstID, Vals); 2700 break; 2701 case Instruction::CleanupRet: { 2702 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2703 const auto &CRI = cast<CleanupReturnInst>(I); 2704 pushValue(CRI.getCleanupPad(), InstID, Vals); 2705 if (CRI.hasUnwindDest()) 2706 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2707 break; 2708 } 2709 case Instruction::CatchRet: { 2710 Code = bitc::FUNC_CODE_INST_CATCHRET; 2711 const auto &CRI = cast<CatchReturnInst>(I); 2712 pushValue(CRI.getCatchPad(), InstID, Vals); 2713 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2714 break; 2715 } 2716 case Instruction::CleanupPad: 2717 case Instruction::CatchPad: { 2718 const auto &FuncletPad = cast<FuncletPadInst>(I); 2719 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2720 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2721 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2722 2723 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2724 Vals.push_back(NumArgOperands); 2725 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2726 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2727 break; 2728 } 2729 case Instruction::CatchSwitch: { 2730 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2731 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2732 2733 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2734 2735 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2736 Vals.push_back(NumHandlers); 2737 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2738 Vals.push_back(VE.getValueID(CatchPadBB)); 2739 2740 if (CatchSwitch.hasUnwindDest()) 2741 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2742 break; 2743 } 2744 case Instruction::Unreachable: 2745 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2746 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2747 break; 2748 2749 case Instruction::PHI: { 2750 const PHINode &PN = cast<PHINode>(I); 2751 Code = bitc::FUNC_CODE_INST_PHI; 2752 // With the newer instruction encoding, forward references could give 2753 // negative valued IDs. This is most common for PHIs, so we use 2754 // signed VBRs. 2755 SmallVector<uint64_t, 128> Vals64; 2756 Vals64.push_back(VE.getTypeID(PN.getType())); 2757 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2758 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2759 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2760 } 2761 // Emit a Vals64 vector and exit. 2762 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2763 Vals64.clear(); 2764 return; 2765 } 2766 2767 case Instruction::LandingPad: { 2768 const LandingPadInst &LP = cast<LandingPadInst>(I); 2769 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2770 Vals.push_back(VE.getTypeID(LP.getType())); 2771 Vals.push_back(LP.isCleanup()); 2772 Vals.push_back(LP.getNumClauses()); 2773 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2774 if (LP.isCatch(I)) 2775 Vals.push_back(LandingPadInst::Catch); 2776 else 2777 Vals.push_back(LandingPadInst::Filter); 2778 pushValueAndType(LP.getClause(I), InstID, Vals); 2779 } 2780 break; 2781 } 2782 2783 case Instruction::Alloca: { 2784 Code = bitc::FUNC_CODE_INST_ALLOCA; 2785 const AllocaInst &AI = cast<AllocaInst>(I); 2786 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2787 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2788 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2789 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2790 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2791 "not enough bits for maximum alignment"); 2792 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2793 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2794 AlignRecord |= 1 << 6; 2795 AlignRecord |= AI.isSwiftError() << 7; 2796 Vals.push_back(AlignRecord); 2797 break; 2798 } 2799 2800 case Instruction::Load: 2801 if (cast<LoadInst>(I).isAtomic()) { 2802 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2803 pushValueAndType(I.getOperand(0), InstID, Vals); 2804 } else { 2805 Code = bitc::FUNC_CODE_INST_LOAD; 2806 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2807 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2808 } 2809 Vals.push_back(VE.getTypeID(I.getType())); 2810 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2811 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2812 if (cast<LoadInst>(I).isAtomic()) { 2813 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2814 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2815 } 2816 break; 2817 case Instruction::Store: 2818 if (cast<StoreInst>(I).isAtomic()) 2819 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2820 else 2821 Code = bitc::FUNC_CODE_INST_STORE; 2822 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2823 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2824 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2825 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2826 if (cast<StoreInst>(I).isAtomic()) { 2827 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2828 Vals.push_back( 2829 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2830 } 2831 break; 2832 case Instruction::AtomicCmpXchg: 2833 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2834 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2835 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2836 pushValue(I.getOperand(2), InstID, Vals); // newval. 2837 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2838 Vals.push_back( 2839 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2840 Vals.push_back( 2841 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2842 Vals.push_back( 2843 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2844 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2845 break; 2846 case Instruction::AtomicRMW: 2847 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2848 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2849 pushValue(I.getOperand(1), InstID, Vals); // val. 2850 Vals.push_back( 2851 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2852 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2853 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2854 Vals.push_back( 2855 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2856 break; 2857 case Instruction::Fence: 2858 Code = bitc::FUNC_CODE_INST_FENCE; 2859 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2860 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2861 break; 2862 case Instruction::Call: { 2863 const CallInst &CI = cast<CallInst>(I); 2864 FunctionType *FTy = CI.getFunctionType(); 2865 2866 if (CI.hasOperandBundles()) 2867 writeOperandBundles(&CI, InstID); 2868 2869 Code = bitc::FUNC_CODE_INST_CALL; 2870 2871 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2872 2873 unsigned Flags = getOptimizationFlags(&I); 2874 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2875 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2876 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2877 1 << bitc::CALL_EXPLICIT_TYPE | 2878 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2879 unsigned(Flags != 0) << bitc::CALL_FMF); 2880 if (Flags != 0) 2881 Vals.push_back(Flags); 2882 2883 Vals.push_back(VE.getTypeID(FTy)); 2884 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2885 2886 // Emit value #'s for the fixed parameters. 2887 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2888 // Check for labels (can happen with asm labels). 2889 if (FTy->getParamType(i)->isLabelTy()) 2890 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2891 else 2892 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2893 } 2894 2895 // Emit type/value pairs for varargs params. 2896 if (FTy->isVarArg()) { 2897 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2898 i != e; ++i) 2899 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2900 } 2901 break; 2902 } 2903 case Instruction::VAArg: 2904 Code = bitc::FUNC_CODE_INST_VAARG; 2905 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2906 pushValue(I.getOperand(0), InstID, Vals); // valist. 2907 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2908 break; 2909 } 2910 2911 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2912 Vals.clear(); 2913 } 2914 2915 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2916 /// to allow clients to efficiently find the function body. 2917 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2918 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2919 // Get the offset of the VST we are writing, and backpatch it into 2920 // the VST forward declaration record. 2921 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2922 // The BitcodeStartBit was the stream offset of the identification block. 2923 VSTOffset -= bitcodeStartBit(); 2924 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2925 // Note that we add 1 here because the offset is relative to one word 2926 // before the start of the identification block, which was historically 2927 // always the start of the regular bitcode header. 2928 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2929 2930 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2931 2932 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2933 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2936 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2937 2938 for (const Function &F : M) { 2939 uint64_t Record[2]; 2940 2941 if (F.isDeclaration()) 2942 continue; 2943 2944 Record[0] = VE.getValueID(&F); 2945 2946 // Save the word offset of the function (from the start of the 2947 // actual bitcode written to the stream). 2948 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2949 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2950 // Note that we add 1 here because the offset is relative to one word 2951 // before the start of the identification block, which was historically 2952 // always the start of the regular bitcode header. 2953 Record[1] = BitcodeIndex / 32 + 1; 2954 2955 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2956 } 2957 2958 Stream.ExitBlock(); 2959 } 2960 2961 /// Emit names for arguments, instructions and basic blocks in a function. 2962 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2963 const ValueSymbolTable &VST) { 2964 if (VST.empty()) 2965 return; 2966 2967 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2968 2969 // FIXME: Set up the abbrev, we know how many values there are! 2970 // FIXME: We know if the type names can use 7-bit ascii. 2971 SmallVector<uint64_t, 64> NameVals; 2972 2973 for (const ValueName &Name : VST) { 2974 // Figure out the encoding to use for the name. 2975 StringEncoding Bits = getStringEncoding(Name.getKey()); 2976 2977 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2978 NameVals.push_back(VE.getValueID(Name.getValue())); 2979 2980 // VST_CODE_ENTRY: [valueid, namechar x N] 2981 // VST_CODE_BBENTRY: [bbid, namechar x N] 2982 unsigned Code; 2983 if (isa<BasicBlock>(Name.getValue())) { 2984 Code = bitc::VST_CODE_BBENTRY; 2985 if (Bits == SE_Char6) 2986 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2987 } else { 2988 Code = bitc::VST_CODE_ENTRY; 2989 if (Bits == SE_Char6) 2990 AbbrevToUse = VST_ENTRY_6_ABBREV; 2991 else if (Bits == SE_Fixed7) 2992 AbbrevToUse = VST_ENTRY_7_ABBREV; 2993 } 2994 2995 for (const auto P : Name.getKey()) 2996 NameVals.push_back((unsigned char)P); 2997 2998 // Emit the finished record. 2999 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3000 NameVals.clear(); 3001 } 3002 3003 Stream.ExitBlock(); 3004 } 3005 3006 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3007 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3008 unsigned Code; 3009 if (isa<BasicBlock>(Order.V)) 3010 Code = bitc::USELIST_CODE_BB; 3011 else 3012 Code = bitc::USELIST_CODE_DEFAULT; 3013 3014 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3015 Record.push_back(VE.getValueID(Order.V)); 3016 Stream.EmitRecord(Code, Record); 3017 } 3018 3019 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3020 assert(VE.shouldPreserveUseListOrder() && 3021 "Expected to be preserving use-list order"); 3022 3023 auto hasMore = [&]() { 3024 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3025 }; 3026 if (!hasMore()) 3027 // Nothing to do. 3028 return; 3029 3030 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3031 while (hasMore()) { 3032 writeUseList(std::move(VE.UseListOrders.back())); 3033 VE.UseListOrders.pop_back(); 3034 } 3035 Stream.ExitBlock(); 3036 } 3037 3038 /// Emit a function body to the module stream. 3039 void ModuleBitcodeWriter::writeFunction( 3040 const Function &F, 3041 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3042 // Save the bitcode index of the start of this function block for recording 3043 // in the VST. 3044 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3045 3046 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3047 VE.incorporateFunction(F); 3048 3049 SmallVector<unsigned, 64> Vals; 3050 3051 // Emit the number of basic blocks, so the reader can create them ahead of 3052 // time. 3053 Vals.push_back(VE.getBasicBlocks().size()); 3054 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3055 Vals.clear(); 3056 3057 // If there are function-local constants, emit them now. 3058 unsigned CstStart, CstEnd; 3059 VE.getFunctionConstantRange(CstStart, CstEnd); 3060 writeConstants(CstStart, CstEnd, false); 3061 3062 // If there is function-local metadata, emit it now. 3063 writeFunctionMetadata(F); 3064 3065 // Keep a running idea of what the instruction ID is. 3066 unsigned InstID = CstEnd; 3067 3068 bool NeedsMetadataAttachment = F.hasMetadata(); 3069 3070 DILocation *LastDL = nullptr; 3071 // Finally, emit all the instructions, in order. 3072 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3073 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3074 I != E; ++I) { 3075 writeInstruction(*I, InstID, Vals); 3076 3077 if (!I->getType()->isVoidTy()) 3078 ++InstID; 3079 3080 // If the instruction has metadata, write a metadata attachment later. 3081 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3082 3083 // If the instruction has a debug location, emit it. 3084 DILocation *DL = I->getDebugLoc(); 3085 if (!DL) 3086 continue; 3087 3088 if (DL == LastDL) { 3089 // Just repeat the same debug loc as last time. 3090 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3091 continue; 3092 } 3093 3094 Vals.push_back(DL->getLine()); 3095 Vals.push_back(DL->getColumn()); 3096 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3097 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3098 Vals.push_back(DL->isImplicitCode()); 3099 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3100 Vals.clear(); 3101 3102 LastDL = DL; 3103 } 3104 3105 // Emit names for all the instructions etc. 3106 if (auto *Symtab = F.getValueSymbolTable()) 3107 writeFunctionLevelValueSymbolTable(*Symtab); 3108 3109 if (NeedsMetadataAttachment) 3110 writeFunctionMetadataAttachment(F); 3111 if (VE.shouldPreserveUseListOrder()) 3112 writeUseListBlock(&F); 3113 VE.purgeFunction(); 3114 Stream.ExitBlock(); 3115 } 3116 3117 // Emit blockinfo, which defines the standard abbreviations etc. 3118 void ModuleBitcodeWriter::writeBlockInfo() { 3119 // We only want to emit block info records for blocks that have multiple 3120 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3121 // Other blocks can define their abbrevs inline. 3122 Stream.EnterBlockInfoBlock(); 3123 3124 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3125 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3130 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3131 VST_ENTRY_8_ABBREV) 3132 llvm_unreachable("Unexpected abbrev ordering!"); 3133 } 3134 3135 { // 7-bit fixed width VST_CODE_ENTRY strings. 3136 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3137 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3141 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3142 VST_ENTRY_7_ABBREV) 3143 llvm_unreachable("Unexpected abbrev ordering!"); 3144 } 3145 { // 6-bit char6 VST_CODE_ENTRY strings. 3146 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3147 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3151 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3152 VST_ENTRY_6_ABBREV) 3153 llvm_unreachable("Unexpected abbrev ordering!"); 3154 } 3155 { // 6-bit char6 VST_CODE_BBENTRY strings. 3156 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3157 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3161 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3162 VST_BBENTRY_6_ABBREV) 3163 llvm_unreachable("Unexpected abbrev ordering!"); 3164 } 3165 3166 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3167 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3168 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3170 VE.computeBitsRequiredForTypeIndicies())); 3171 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3172 CONSTANTS_SETTYPE_ABBREV) 3173 llvm_unreachable("Unexpected abbrev ordering!"); 3174 } 3175 3176 { // INTEGER abbrev for CONSTANTS_BLOCK. 3177 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3178 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3180 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3181 CONSTANTS_INTEGER_ABBREV) 3182 llvm_unreachable("Unexpected abbrev ordering!"); 3183 } 3184 3185 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3187 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3190 VE.computeBitsRequiredForTypeIndicies())); 3191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3192 3193 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3194 CONSTANTS_CE_CAST_Abbrev) 3195 llvm_unreachable("Unexpected abbrev ordering!"); 3196 } 3197 { // NULL abbrev for CONSTANTS_BLOCK. 3198 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3199 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3200 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3201 CONSTANTS_NULL_Abbrev) 3202 llvm_unreachable("Unexpected abbrev ordering!"); 3203 } 3204 3205 // FIXME: This should only use space for first class types! 3206 3207 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3208 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3209 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3212 VE.computeBitsRequiredForTypeIndicies())); 3213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3215 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3216 FUNCTION_INST_LOAD_ABBREV) 3217 llvm_unreachable("Unexpected abbrev ordering!"); 3218 } 3219 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3220 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3221 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3225 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3226 FUNCTION_INST_BINOP_ABBREV) 3227 llvm_unreachable("Unexpected abbrev ordering!"); 3228 } 3229 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3230 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3231 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3233 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3236 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3237 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3238 llvm_unreachable("Unexpected abbrev ordering!"); 3239 } 3240 { // INST_CAST abbrev for FUNCTION_BLOCK. 3241 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3242 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3245 VE.computeBitsRequiredForTypeIndicies())); 3246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3247 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3248 FUNCTION_INST_CAST_ABBREV) 3249 llvm_unreachable("Unexpected abbrev ordering!"); 3250 } 3251 3252 { // INST_RET abbrev for FUNCTION_BLOCK. 3253 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3254 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3255 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3256 FUNCTION_INST_RET_VOID_ABBREV) 3257 llvm_unreachable("Unexpected abbrev ordering!"); 3258 } 3259 { // INST_RET abbrev for FUNCTION_BLOCK. 3260 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3261 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3263 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3264 FUNCTION_INST_RET_VAL_ABBREV) 3265 llvm_unreachable("Unexpected abbrev ordering!"); 3266 } 3267 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3268 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3269 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3270 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3271 FUNCTION_INST_UNREACHABLE_ABBREV) 3272 llvm_unreachable("Unexpected abbrev ordering!"); 3273 } 3274 { 3275 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3276 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3279 Log2_32_Ceil(VE.getTypes().size() + 1))); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3282 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3283 FUNCTION_INST_GEP_ABBREV) 3284 llvm_unreachable("Unexpected abbrev ordering!"); 3285 } 3286 3287 Stream.ExitBlock(); 3288 } 3289 3290 /// Write the module path strings, currently only used when generating 3291 /// a combined index file. 3292 void IndexBitcodeWriter::writeModStrings() { 3293 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3294 3295 // TODO: See which abbrev sizes we actually need to emit 3296 3297 // 8-bit fixed-width MST_ENTRY strings. 3298 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3299 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3303 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3304 3305 // 7-bit fixed width MST_ENTRY strings. 3306 Abbv = std::make_shared<BitCodeAbbrev>(); 3307 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3311 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3312 3313 // 6-bit char6 MST_ENTRY strings. 3314 Abbv = std::make_shared<BitCodeAbbrev>(); 3315 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3319 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3320 3321 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3322 Abbv = std::make_shared<BitCodeAbbrev>(); 3323 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3329 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3330 3331 SmallVector<unsigned, 64> Vals; 3332 forEachModule( 3333 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3334 StringRef Key = MPSE.getKey(); 3335 const auto &Value = MPSE.getValue(); 3336 StringEncoding Bits = getStringEncoding(Key); 3337 unsigned AbbrevToUse = Abbrev8Bit; 3338 if (Bits == SE_Char6) 3339 AbbrevToUse = Abbrev6Bit; 3340 else if (Bits == SE_Fixed7) 3341 AbbrevToUse = Abbrev7Bit; 3342 3343 Vals.push_back(Value.first); 3344 Vals.append(Key.begin(), Key.end()); 3345 3346 // Emit the finished record. 3347 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3348 3349 // Emit an optional hash for the module now 3350 const auto &Hash = Value.second; 3351 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3352 Vals.assign(Hash.begin(), Hash.end()); 3353 // Emit the hash record. 3354 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3355 } 3356 3357 Vals.clear(); 3358 }); 3359 Stream.ExitBlock(); 3360 } 3361 3362 /// Write the function type metadata related records that need to appear before 3363 /// a function summary entry (whether per-module or combined). 3364 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3365 FunctionSummary *FS) { 3366 if (!FS->type_tests().empty()) 3367 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3368 3369 SmallVector<uint64_t, 64> Record; 3370 3371 auto WriteVFuncIdVec = [&](uint64_t Ty, 3372 ArrayRef<FunctionSummary::VFuncId> VFs) { 3373 if (VFs.empty()) 3374 return; 3375 Record.clear(); 3376 for (auto &VF : VFs) { 3377 Record.push_back(VF.GUID); 3378 Record.push_back(VF.Offset); 3379 } 3380 Stream.EmitRecord(Ty, Record); 3381 }; 3382 3383 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3384 FS->type_test_assume_vcalls()); 3385 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3386 FS->type_checked_load_vcalls()); 3387 3388 auto WriteConstVCallVec = [&](uint64_t Ty, 3389 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3390 for (auto &VC : VCs) { 3391 Record.clear(); 3392 Record.push_back(VC.VFunc.GUID); 3393 Record.push_back(VC.VFunc.Offset); 3394 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3395 Stream.EmitRecord(Ty, Record); 3396 } 3397 }; 3398 3399 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3400 FS->type_test_assume_const_vcalls()); 3401 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3402 FS->type_checked_load_const_vcalls()); 3403 } 3404 3405 /// Collect type IDs from type tests used by function. 3406 static void 3407 getReferencedTypeIds(FunctionSummary *FS, 3408 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3409 if (!FS->type_tests().empty()) 3410 for (auto &TT : FS->type_tests()) 3411 ReferencedTypeIds.insert(TT); 3412 3413 auto GetReferencedTypesFromVFuncIdVec = 3414 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3415 for (auto &VF : VFs) 3416 ReferencedTypeIds.insert(VF.GUID); 3417 }; 3418 3419 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3420 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3421 3422 auto GetReferencedTypesFromConstVCallVec = 3423 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3424 for (auto &VC : VCs) 3425 ReferencedTypeIds.insert(VC.VFunc.GUID); 3426 }; 3427 3428 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3429 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3430 } 3431 3432 static void writeWholeProgramDevirtResolutionByArg( 3433 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3434 const WholeProgramDevirtResolution::ByArg &ByArg) { 3435 NameVals.push_back(args.size()); 3436 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3437 3438 NameVals.push_back(ByArg.TheKind); 3439 NameVals.push_back(ByArg.Info); 3440 NameVals.push_back(ByArg.Byte); 3441 NameVals.push_back(ByArg.Bit); 3442 } 3443 3444 static void writeWholeProgramDevirtResolution( 3445 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3446 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3447 NameVals.push_back(Id); 3448 3449 NameVals.push_back(Wpd.TheKind); 3450 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3451 NameVals.push_back(Wpd.SingleImplName.size()); 3452 3453 NameVals.push_back(Wpd.ResByArg.size()); 3454 for (auto &A : Wpd.ResByArg) 3455 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3456 } 3457 3458 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3459 StringTableBuilder &StrtabBuilder, 3460 const std::string &Id, 3461 const TypeIdSummary &Summary) { 3462 NameVals.push_back(StrtabBuilder.add(Id)); 3463 NameVals.push_back(Id.size()); 3464 3465 NameVals.push_back(Summary.TTRes.TheKind); 3466 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3467 NameVals.push_back(Summary.TTRes.AlignLog2); 3468 NameVals.push_back(Summary.TTRes.SizeM1); 3469 NameVals.push_back(Summary.TTRes.BitMask); 3470 NameVals.push_back(Summary.TTRes.InlineBits); 3471 3472 for (auto &W : Summary.WPDRes) 3473 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3474 W.second); 3475 } 3476 3477 // Helper to emit a single function summary record. 3478 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3479 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3480 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3481 const Function &F) { 3482 NameVals.push_back(ValueID); 3483 3484 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3485 writeFunctionTypeMetadataRecords(Stream, FS); 3486 3487 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3488 NameVals.push_back(FS->instCount()); 3489 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3490 NameVals.push_back(FS->refs().size()); 3491 3492 for (auto &RI : FS->refs()) 3493 NameVals.push_back(VE.getValueID(RI.getValue())); 3494 3495 bool HasProfileData = 3496 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3497 for (auto &ECI : FS->calls()) { 3498 NameVals.push_back(getValueId(ECI.first)); 3499 if (HasProfileData) 3500 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3501 else if (WriteRelBFToSummary) 3502 NameVals.push_back(ECI.second.RelBlockFreq); 3503 } 3504 3505 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3506 unsigned Code = 3507 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3508 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3509 : bitc::FS_PERMODULE)); 3510 3511 // Emit the finished record. 3512 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3513 NameVals.clear(); 3514 } 3515 3516 // Collect the global value references in the given variable's initializer, 3517 // and emit them in a summary record. 3518 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3519 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3520 unsigned FSModRefsAbbrev) { 3521 auto VI = Index->getValueInfo(V.getGUID()); 3522 if (!VI || VI.getSummaryList().empty()) { 3523 // Only declarations should not have a summary (a declaration might however 3524 // have a summary if the def was in module level asm). 3525 assert(V.isDeclaration()); 3526 return; 3527 } 3528 auto *Summary = VI.getSummaryList()[0].get(); 3529 NameVals.push_back(VE.getValueID(&V)); 3530 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3531 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3532 3533 unsigned SizeBeforeRefs = NameVals.size(); 3534 for (auto &RI : VS->refs()) 3535 NameVals.push_back(VE.getValueID(RI.getValue())); 3536 // Sort the refs for determinism output, the vector returned by FS->refs() has 3537 // been initialized from a DenseSet. 3538 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3539 3540 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3541 FSModRefsAbbrev); 3542 NameVals.clear(); 3543 } 3544 3545 // Current version for the summary. 3546 // This is bumped whenever we introduce changes in the way some record are 3547 // interpreted, like flags for instance. 3548 static const uint64_t INDEX_VERSION = 4; 3549 3550 /// Emit the per-module summary section alongside the rest of 3551 /// the module's bitcode. 3552 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3553 // By default we compile with ThinLTO if the module has a summary, but the 3554 // client can request full LTO with a module flag. 3555 bool IsThinLTO = true; 3556 if (auto *MD = 3557 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3558 IsThinLTO = MD->getZExtValue(); 3559 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3560 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3561 4); 3562 3563 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3564 3565 if (Index->begin() == Index->end()) { 3566 Stream.ExitBlock(); 3567 return; 3568 } 3569 3570 for (const auto &GVI : valueIds()) { 3571 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3572 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3573 } 3574 3575 // Abbrev for FS_PERMODULE_PROFILE. 3576 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3577 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3582 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3583 // numrefs x valueid, n x (valueid, hotness) 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3586 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3587 3588 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3589 Abbv = std::make_shared<BitCodeAbbrev>(); 3590 if (WriteRelBFToSummary) 3591 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3592 else 3593 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3599 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3602 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3603 3604 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3605 Abbv = std::make_shared<BitCodeAbbrev>(); 3606 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3611 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3612 3613 // Abbrev for FS_ALIAS. 3614 Abbv = std::make_shared<BitCodeAbbrev>(); 3615 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3619 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3620 3621 SmallVector<uint64_t, 64> NameVals; 3622 // Iterate over the list of functions instead of the Index to 3623 // ensure the ordering is stable. 3624 for (const Function &F : M) { 3625 // Summary emission does not support anonymous functions, they have to 3626 // renamed using the anonymous function renaming pass. 3627 if (!F.hasName()) 3628 report_fatal_error("Unexpected anonymous function when writing summary"); 3629 3630 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3631 if (!VI || VI.getSummaryList().empty()) { 3632 // Only declarations should not have a summary (a declaration might 3633 // however have a summary if the def was in module level asm). 3634 assert(F.isDeclaration()); 3635 continue; 3636 } 3637 auto *Summary = VI.getSummaryList()[0].get(); 3638 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3639 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3640 } 3641 3642 // Capture references from GlobalVariable initializers, which are outside 3643 // of a function scope. 3644 for (const GlobalVariable &G : M.globals()) 3645 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3646 3647 for (const GlobalAlias &A : M.aliases()) { 3648 auto *Aliasee = A.getBaseObject(); 3649 if (!Aliasee->hasName()) 3650 // Nameless function don't have an entry in the summary, skip it. 3651 continue; 3652 auto AliasId = VE.getValueID(&A); 3653 auto AliaseeId = VE.getValueID(Aliasee); 3654 NameVals.push_back(AliasId); 3655 auto *Summary = Index->getGlobalValueSummary(A); 3656 AliasSummary *AS = cast<AliasSummary>(Summary); 3657 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3658 NameVals.push_back(AliaseeId); 3659 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3660 NameVals.clear(); 3661 } 3662 3663 Stream.ExitBlock(); 3664 } 3665 3666 /// Emit the combined summary section into the combined index file. 3667 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3668 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3669 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3670 3671 // Write the index flags. 3672 uint64_t Flags = 0; 3673 if (Index.withGlobalValueDeadStripping()) 3674 Flags |= 0x1; 3675 if (Index.skipModuleByDistributedBackend()) 3676 Flags |= 0x2; 3677 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3678 3679 for (const auto &GVI : valueIds()) { 3680 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3681 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3682 } 3683 3684 // Abbrev for FS_COMBINED. 3685 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3686 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3693 // numrefs x valueid, n x (valueid) 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3696 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3697 3698 // Abbrev for FS_COMBINED_PROFILE. 3699 Abbv = std::make_shared<BitCodeAbbrev>(); 3700 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3707 // numrefs x valueid, n x (valueid, hotness) 3708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3710 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3711 3712 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3713 Abbv = std::make_shared<BitCodeAbbrev>(); 3714 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3716 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3717 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3720 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3721 3722 // Abbrev for FS_COMBINED_ALIAS. 3723 Abbv = std::make_shared<BitCodeAbbrev>(); 3724 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3729 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3730 3731 // The aliases are emitted as a post-pass, and will point to the value 3732 // id of the aliasee. Save them in a vector for post-processing. 3733 SmallVector<AliasSummary *, 64> Aliases; 3734 3735 // Save the value id for each summary for alias emission. 3736 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3737 3738 SmallVector<uint64_t, 64> NameVals; 3739 3740 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3741 // with the type ids referenced by this index file. 3742 std::set<GlobalValue::GUID> ReferencedTypeIds; 3743 3744 // For local linkage, we also emit the original name separately 3745 // immediately after the record. 3746 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3747 if (!GlobalValue::isLocalLinkage(S.linkage())) 3748 return; 3749 NameVals.push_back(S.getOriginalName()); 3750 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3751 NameVals.clear(); 3752 }; 3753 3754 forEachSummary([&](GVInfo I, bool IsAliasee) { 3755 GlobalValueSummary *S = I.second; 3756 assert(S); 3757 3758 auto ValueId = getValueId(I.first); 3759 assert(ValueId); 3760 SummaryToValueIdMap[S] = *ValueId; 3761 3762 // If this is invoked for an aliasee, we want to record the above 3763 // mapping, but then not emit a summary entry (if the aliasee is 3764 // to be imported, we will invoke this separately with IsAliasee=false). 3765 if (IsAliasee) 3766 return; 3767 3768 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3769 // Will process aliases as a post-pass because the reader wants all 3770 // global to be loaded first. 3771 Aliases.push_back(AS); 3772 return; 3773 } 3774 3775 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3776 NameVals.push_back(*ValueId); 3777 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3778 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3779 for (auto &RI : VS->refs()) { 3780 auto RefValueId = getValueId(RI.getGUID()); 3781 if (!RefValueId) 3782 continue; 3783 NameVals.push_back(*RefValueId); 3784 } 3785 3786 // Emit the finished record. 3787 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3788 FSModRefsAbbrev); 3789 NameVals.clear(); 3790 MaybeEmitOriginalName(*S); 3791 return; 3792 } 3793 3794 auto *FS = cast<FunctionSummary>(S); 3795 writeFunctionTypeMetadataRecords(Stream, FS); 3796 getReferencedTypeIds(FS, ReferencedTypeIds); 3797 3798 NameVals.push_back(*ValueId); 3799 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3800 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3801 NameVals.push_back(FS->instCount()); 3802 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3803 // Fill in below 3804 NameVals.push_back(0); 3805 3806 unsigned Count = 0; 3807 for (auto &RI : FS->refs()) { 3808 auto RefValueId = getValueId(RI.getGUID()); 3809 if (!RefValueId) 3810 continue; 3811 NameVals.push_back(*RefValueId); 3812 Count++; 3813 } 3814 NameVals[5] = Count; 3815 3816 bool HasProfileData = false; 3817 for (auto &EI : FS->calls()) { 3818 HasProfileData |= 3819 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3820 if (HasProfileData) 3821 break; 3822 } 3823 3824 for (auto &EI : FS->calls()) { 3825 // If this GUID doesn't have a value id, it doesn't have a function 3826 // summary and we don't need to record any calls to it. 3827 GlobalValue::GUID GUID = EI.first.getGUID(); 3828 auto CallValueId = getValueId(GUID); 3829 if (!CallValueId) { 3830 // For SamplePGO, the indirect call targets for local functions will 3831 // have its original name annotated in profile. We try to find the 3832 // corresponding PGOFuncName as the GUID. 3833 GUID = Index.getGUIDFromOriginalID(GUID); 3834 if (GUID == 0) 3835 continue; 3836 CallValueId = getValueId(GUID); 3837 if (!CallValueId) 3838 continue; 3839 // The mapping from OriginalId to GUID may return a GUID 3840 // that corresponds to a static variable. Filter it out here. 3841 // This can happen when 3842 // 1) There is a call to a library function which does not have 3843 // a CallValidId; 3844 // 2) There is a static variable with the OriginalGUID identical 3845 // to the GUID of the library function in 1); 3846 // When this happens, the logic for SamplePGO kicks in and 3847 // the static variable in 2) will be found, which needs to be 3848 // filtered out. 3849 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3850 if (GVSum && 3851 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3852 continue; 3853 } 3854 NameVals.push_back(*CallValueId); 3855 if (HasProfileData) 3856 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3857 } 3858 3859 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3860 unsigned Code = 3861 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3862 3863 // Emit the finished record. 3864 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3865 NameVals.clear(); 3866 MaybeEmitOriginalName(*S); 3867 }); 3868 3869 for (auto *AS : Aliases) { 3870 auto AliasValueId = SummaryToValueIdMap[AS]; 3871 assert(AliasValueId); 3872 NameVals.push_back(AliasValueId); 3873 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3874 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3875 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3876 assert(AliaseeValueId); 3877 NameVals.push_back(AliaseeValueId); 3878 3879 // Emit the finished record. 3880 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3881 NameVals.clear(); 3882 MaybeEmitOriginalName(*AS); 3883 3884 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 3885 getReferencedTypeIds(FS, ReferencedTypeIds); 3886 } 3887 3888 if (!Index.cfiFunctionDefs().empty()) { 3889 for (auto &S : Index.cfiFunctionDefs()) { 3890 NameVals.push_back(StrtabBuilder.add(S)); 3891 NameVals.push_back(S.size()); 3892 } 3893 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3894 NameVals.clear(); 3895 } 3896 3897 if (!Index.cfiFunctionDecls().empty()) { 3898 for (auto &S : Index.cfiFunctionDecls()) { 3899 NameVals.push_back(StrtabBuilder.add(S)); 3900 NameVals.push_back(S.size()); 3901 } 3902 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3903 NameVals.clear(); 3904 } 3905 3906 if (!Index.typeIds().empty()) { 3907 for (auto &S : Index.typeIds()) { 3908 // Skip if not referenced in any GV summary within this index file. 3909 if (!ReferencedTypeIds.count(GlobalValue::getGUID(S.first))) 3910 continue; 3911 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second); 3912 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 3913 NameVals.clear(); 3914 } 3915 } 3916 3917 Stream.ExitBlock(); 3918 } 3919 3920 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3921 /// current llvm version, and a record for the epoch number. 3922 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3923 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3924 3925 // Write the "user readable" string identifying the bitcode producer 3926 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3927 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3930 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3931 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3932 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3933 3934 // Write the epoch version 3935 Abbv = std::make_shared<BitCodeAbbrev>(); 3936 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3938 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3939 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3940 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3941 Stream.ExitBlock(); 3942 } 3943 3944 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3945 // Emit the module's hash. 3946 // MODULE_CODE_HASH: [5*i32] 3947 if (GenerateHash) { 3948 uint32_t Vals[5]; 3949 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3950 Buffer.size() - BlockStartPos)); 3951 StringRef Hash = Hasher.result(); 3952 for (int Pos = 0; Pos < 20; Pos += 4) { 3953 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3954 } 3955 3956 // Emit the finished record. 3957 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3958 3959 if (ModHash) 3960 // Save the written hash value. 3961 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3962 } 3963 } 3964 3965 void ModuleBitcodeWriter::write() { 3966 writeIdentificationBlock(Stream); 3967 3968 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3969 size_t BlockStartPos = Buffer.size(); 3970 3971 writeModuleVersion(); 3972 3973 // Emit blockinfo, which defines the standard abbreviations etc. 3974 writeBlockInfo(); 3975 3976 // Emit information about attribute groups. 3977 writeAttributeGroupTable(); 3978 3979 // Emit information about parameter attributes. 3980 writeAttributeTable(); 3981 3982 // Emit information describing all of the types in the module. 3983 writeTypeTable(); 3984 3985 writeComdats(); 3986 3987 // Emit top-level description of module, including target triple, inline asm, 3988 // descriptors for global variables, and function prototype info. 3989 writeModuleInfo(); 3990 3991 // Emit constants. 3992 writeModuleConstants(); 3993 3994 // Emit metadata kind names. 3995 writeModuleMetadataKinds(); 3996 3997 // Emit metadata. 3998 writeModuleMetadata(); 3999 4000 // Emit module-level use-lists. 4001 if (VE.shouldPreserveUseListOrder()) 4002 writeUseListBlock(nullptr); 4003 4004 writeOperandBundleTags(); 4005 writeSyncScopeNames(); 4006 4007 // Emit function bodies. 4008 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4009 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4010 if (!F->isDeclaration()) 4011 writeFunction(*F, FunctionToBitcodeIndex); 4012 4013 // Need to write after the above call to WriteFunction which populates 4014 // the summary information in the index. 4015 if (Index) 4016 writePerModuleGlobalValueSummary(); 4017 4018 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4019 4020 writeModuleHash(BlockStartPos); 4021 4022 Stream.ExitBlock(); 4023 } 4024 4025 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4026 uint32_t &Position) { 4027 support::endian::write32le(&Buffer[Position], Value); 4028 Position += 4; 4029 } 4030 4031 /// If generating a bc file on darwin, we have to emit a 4032 /// header and trailer to make it compatible with the system archiver. To do 4033 /// this we emit the following header, and then emit a trailer that pads the 4034 /// file out to be a multiple of 16 bytes. 4035 /// 4036 /// struct bc_header { 4037 /// uint32_t Magic; // 0x0B17C0DE 4038 /// uint32_t Version; // Version, currently always 0. 4039 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4040 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4041 /// uint32_t CPUType; // CPU specifier. 4042 /// ... potentially more later ... 4043 /// }; 4044 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4045 const Triple &TT) { 4046 unsigned CPUType = ~0U; 4047 4048 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4049 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4050 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4051 // specific constants here because they are implicitly part of the Darwin ABI. 4052 enum { 4053 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4054 DARWIN_CPU_TYPE_X86 = 7, 4055 DARWIN_CPU_TYPE_ARM = 12, 4056 DARWIN_CPU_TYPE_POWERPC = 18 4057 }; 4058 4059 Triple::ArchType Arch = TT.getArch(); 4060 if (Arch == Triple::x86_64) 4061 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4062 else if (Arch == Triple::x86) 4063 CPUType = DARWIN_CPU_TYPE_X86; 4064 else if (Arch == Triple::ppc) 4065 CPUType = DARWIN_CPU_TYPE_POWERPC; 4066 else if (Arch == Triple::ppc64) 4067 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4068 else if (Arch == Triple::arm || Arch == Triple::thumb) 4069 CPUType = DARWIN_CPU_TYPE_ARM; 4070 4071 // Traditional Bitcode starts after header. 4072 assert(Buffer.size() >= BWH_HeaderSize && 4073 "Expected header size to be reserved"); 4074 unsigned BCOffset = BWH_HeaderSize; 4075 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4076 4077 // Write the magic and version. 4078 unsigned Position = 0; 4079 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4080 writeInt32ToBuffer(0, Buffer, Position); // Version. 4081 writeInt32ToBuffer(BCOffset, Buffer, Position); 4082 writeInt32ToBuffer(BCSize, Buffer, Position); 4083 writeInt32ToBuffer(CPUType, Buffer, Position); 4084 4085 // If the file is not a multiple of 16 bytes, insert dummy padding. 4086 while (Buffer.size() & 15) 4087 Buffer.push_back(0); 4088 } 4089 4090 /// Helper to write the header common to all bitcode files. 4091 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4092 // Emit the file header. 4093 Stream.Emit((unsigned)'B', 8); 4094 Stream.Emit((unsigned)'C', 8); 4095 Stream.Emit(0x0, 4); 4096 Stream.Emit(0xC, 4); 4097 Stream.Emit(0xE, 4); 4098 Stream.Emit(0xD, 4); 4099 } 4100 4101 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4102 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4103 writeBitcodeHeader(*Stream); 4104 } 4105 4106 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4107 4108 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4109 Stream->EnterSubblock(Block, 3); 4110 4111 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4112 Abbv->Add(BitCodeAbbrevOp(Record)); 4113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4114 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4115 4116 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4117 4118 Stream->ExitBlock(); 4119 } 4120 4121 void BitcodeWriter::writeSymtab() { 4122 assert(!WroteStrtab && !WroteSymtab); 4123 4124 // If any module has module-level inline asm, we will require a registered asm 4125 // parser for the target so that we can create an accurate symbol table for 4126 // the module. 4127 for (Module *M : Mods) { 4128 if (M->getModuleInlineAsm().empty()) 4129 continue; 4130 4131 std::string Err; 4132 const Triple TT(M->getTargetTriple()); 4133 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4134 if (!T || !T->hasMCAsmParser()) 4135 return; 4136 } 4137 4138 WroteSymtab = true; 4139 SmallVector<char, 0> Symtab; 4140 // The irsymtab::build function may be unable to create a symbol table if the 4141 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4142 // table is not required for correctness, but we still want to be able to 4143 // write malformed modules to bitcode files, so swallow the error. 4144 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4145 consumeError(std::move(E)); 4146 return; 4147 } 4148 4149 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4150 {Symtab.data(), Symtab.size()}); 4151 } 4152 4153 void BitcodeWriter::writeStrtab() { 4154 assert(!WroteStrtab); 4155 4156 std::vector<char> Strtab; 4157 StrtabBuilder.finalizeInOrder(); 4158 Strtab.resize(StrtabBuilder.getSize()); 4159 StrtabBuilder.write((uint8_t *)Strtab.data()); 4160 4161 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4162 {Strtab.data(), Strtab.size()}); 4163 4164 WroteStrtab = true; 4165 } 4166 4167 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4168 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4169 WroteStrtab = true; 4170 } 4171 4172 void BitcodeWriter::writeModule(const Module &M, 4173 bool ShouldPreserveUseListOrder, 4174 const ModuleSummaryIndex *Index, 4175 bool GenerateHash, ModuleHash *ModHash) { 4176 assert(!WroteStrtab); 4177 4178 // The Mods vector is used by irsymtab::build, which requires non-const 4179 // Modules in case it needs to materialize metadata. But the bitcode writer 4180 // requires that the module is materialized, so we can cast to non-const here, 4181 // after checking that it is in fact materialized. 4182 assert(M.isMaterialized()); 4183 Mods.push_back(const_cast<Module *>(&M)); 4184 4185 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4186 ShouldPreserveUseListOrder, Index, 4187 GenerateHash, ModHash); 4188 ModuleWriter.write(); 4189 } 4190 4191 void BitcodeWriter::writeIndex( 4192 const ModuleSummaryIndex *Index, 4193 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4194 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4195 ModuleToSummariesForIndex); 4196 IndexWriter.write(); 4197 } 4198 4199 /// Write the specified module to the specified output stream. 4200 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4201 bool ShouldPreserveUseListOrder, 4202 const ModuleSummaryIndex *Index, 4203 bool GenerateHash, ModuleHash *ModHash) { 4204 SmallVector<char, 0> Buffer; 4205 Buffer.reserve(256*1024); 4206 4207 // If this is darwin or another generic macho target, reserve space for the 4208 // header. 4209 Triple TT(M.getTargetTriple()); 4210 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4211 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4212 4213 BitcodeWriter Writer(Buffer); 4214 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4215 ModHash); 4216 Writer.writeSymtab(); 4217 Writer.writeStrtab(); 4218 4219 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4220 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4221 4222 // Write the generated bitstream to "Out". 4223 Out.write((char*)&Buffer.front(), Buffer.size()); 4224 } 4225 4226 void IndexBitcodeWriter::write() { 4227 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4228 4229 writeModuleVersion(); 4230 4231 // Write the module paths in the combined index. 4232 writeModStrings(); 4233 4234 // Write the summary combined index records. 4235 writeCombinedGlobalValueSummary(); 4236 4237 Stream.ExitBlock(); 4238 } 4239 4240 // Write the specified module summary index to the given raw output stream, 4241 // where it will be written in a new bitcode block. This is used when 4242 // writing the combined index file for ThinLTO. When writing a subset of the 4243 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4244 void llvm::WriteIndexToFile( 4245 const ModuleSummaryIndex &Index, raw_ostream &Out, 4246 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4247 SmallVector<char, 0> Buffer; 4248 Buffer.reserve(256 * 1024); 4249 4250 BitcodeWriter Writer(Buffer); 4251 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4252 Writer.writeStrtab(); 4253 4254 Out.write((char *)&Buffer.front(), Buffer.size()); 4255 } 4256 4257 namespace { 4258 4259 /// Class to manage the bitcode writing for a thin link bitcode file. 4260 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4261 /// ModHash is for use in ThinLTO incremental build, generated while writing 4262 /// the module bitcode file. 4263 const ModuleHash *ModHash; 4264 4265 public: 4266 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4267 BitstreamWriter &Stream, 4268 const ModuleSummaryIndex &Index, 4269 const ModuleHash &ModHash) 4270 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4271 /*ShouldPreserveUseListOrder=*/false, &Index), 4272 ModHash(&ModHash) {} 4273 4274 void write(); 4275 4276 private: 4277 void writeSimplifiedModuleInfo(); 4278 }; 4279 4280 } // end anonymous namespace 4281 4282 // This function writes a simpilified module info for thin link bitcode file. 4283 // It only contains the source file name along with the name(the offset and 4284 // size in strtab) and linkage for global values. For the global value info 4285 // entry, in order to keep linkage at offset 5, there are three zeros used 4286 // as padding. 4287 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4288 SmallVector<unsigned, 64> Vals; 4289 // Emit the module's source file name. 4290 { 4291 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4292 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4293 if (Bits == SE_Char6) 4294 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4295 else if (Bits == SE_Fixed7) 4296 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4297 4298 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4299 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4300 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4302 Abbv->Add(AbbrevOpToUse); 4303 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4304 4305 for (const auto P : M.getSourceFileName()) 4306 Vals.push_back((unsigned char)P); 4307 4308 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4309 Vals.clear(); 4310 } 4311 4312 // Emit the global variable information. 4313 for (const GlobalVariable &GV : M.globals()) { 4314 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4315 Vals.push_back(StrtabBuilder.add(GV.getName())); 4316 Vals.push_back(GV.getName().size()); 4317 Vals.push_back(0); 4318 Vals.push_back(0); 4319 Vals.push_back(0); 4320 Vals.push_back(getEncodedLinkage(GV)); 4321 4322 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4323 Vals.clear(); 4324 } 4325 4326 // Emit the function proto information. 4327 for (const Function &F : M) { 4328 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4329 Vals.push_back(StrtabBuilder.add(F.getName())); 4330 Vals.push_back(F.getName().size()); 4331 Vals.push_back(0); 4332 Vals.push_back(0); 4333 Vals.push_back(0); 4334 Vals.push_back(getEncodedLinkage(F)); 4335 4336 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4337 Vals.clear(); 4338 } 4339 4340 // Emit the alias information. 4341 for (const GlobalAlias &A : M.aliases()) { 4342 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4343 Vals.push_back(StrtabBuilder.add(A.getName())); 4344 Vals.push_back(A.getName().size()); 4345 Vals.push_back(0); 4346 Vals.push_back(0); 4347 Vals.push_back(0); 4348 Vals.push_back(getEncodedLinkage(A)); 4349 4350 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4351 Vals.clear(); 4352 } 4353 4354 // Emit the ifunc information. 4355 for (const GlobalIFunc &I : M.ifuncs()) { 4356 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4357 Vals.push_back(StrtabBuilder.add(I.getName())); 4358 Vals.push_back(I.getName().size()); 4359 Vals.push_back(0); 4360 Vals.push_back(0); 4361 Vals.push_back(0); 4362 Vals.push_back(getEncodedLinkage(I)); 4363 4364 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4365 Vals.clear(); 4366 } 4367 } 4368 4369 void ThinLinkBitcodeWriter::write() { 4370 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4371 4372 writeModuleVersion(); 4373 4374 writeSimplifiedModuleInfo(); 4375 4376 writePerModuleGlobalValueSummary(); 4377 4378 // Write module hash. 4379 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4380 4381 Stream.ExitBlock(); 4382 } 4383 4384 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4385 const ModuleSummaryIndex &Index, 4386 const ModuleHash &ModHash) { 4387 assert(!WroteStrtab); 4388 4389 // The Mods vector is used by irsymtab::build, which requires non-const 4390 // Modules in case it needs to materialize metadata. But the bitcode writer 4391 // requires that the module is materialized, so we can cast to non-const here, 4392 // after checking that it is in fact materialized. 4393 assert(M.isMaterialized()); 4394 Mods.push_back(const_cast<Module *>(&M)); 4395 4396 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4397 ModHash); 4398 ThinLinkWriter.write(); 4399 } 4400 4401 // Write the specified thin link bitcode file to the given raw output stream, 4402 // where it will be written in a new bitcode block. This is used when 4403 // writing the per-module index file for ThinLTO. 4404 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4405 const ModuleSummaryIndex &Index, 4406 const ModuleHash &ModHash) { 4407 SmallVector<char, 0> Buffer; 4408 Buffer.reserve(256 * 1024); 4409 4410 BitcodeWriter Writer(Buffer); 4411 Writer.writeThinLinkBitcode(M, Index, ModHash); 4412 Writer.writeSymtab(); 4413 Writer.writeStrtab(); 4414 4415 Out.write((char *)&Buffer.front(), Buffer.size()); 4416 } 4417