1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 215 GlobalValueSummary *Summary, 216 unsigned ValueID, 217 unsigned FSCallsAbbrev, 218 unsigned FSCallsProfileAbbrev, 219 const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 344 SmallVectorImpl<uint64_t> &Record, 345 unsigned Abbrev); 346 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIGlobalVariable(const DIGlobalVariable *N, 350 SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDILocalVariable(const DILocalVariable *N, 353 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 354 void writeDILabel(const DILabel *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDIExpression(const DIExpression *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 359 SmallVectorImpl<uint64_t> &Record, 360 unsigned Abbrev); 361 void writeDIObjCProperty(const DIObjCProperty *N, 362 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 363 void writeDIImportedEntity(const DIImportedEntity *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 unsigned createNamedMetadataAbbrev(); 367 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 368 unsigned createMetadataStringsAbbrev(); 369 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 370 SmallVectorImpl<uint64_t> &Record); 371 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 372 SmallVectorImpl<uint64_t> &Record, 373 std::vector<unsigned> *MDAbbrevs = nullptr, 374 std::vector<uint64_t> *IndexPos = nullptr); 375 void writeModuleMetadata(); 376 void writeFunctionMetadata(const Function &F); 377 void writeFunctionMetadataAttachment(const Function &F); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 581 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 582 } 583 } 584 585 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 586 switch (Ordering) { 587 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 588 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 589 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 590 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 591 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 592 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 593 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 594 } 595 llvm_unreachable("Invalid ordering"); 596 } 597 598 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 599 StringRef Str, unsigned AbbrevToUse) { 600 SmallVector<unsigned, 64> Vals; 601 602 // Code: [strchar x N] 603 for (char C : Str) { 604 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 605 AbbrevToUse = 0; 606 Vals.push_back(C); 607 } 608 609 // Emit the finished record. 610 Stream.EmitRecord(Code, Vals, AbbrevToUse); 611 } 612 613 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 614 switch (Kind) { 615 case Attribute::Alignment: 616 return bitc::ATTR_KIND_ALIGNMENT; 617 case Attribute::AllocAlign: 618 return bitc::ATTR_KIND_ALLOC_ALIGN; 619 case Attribute::AllocSize: 620 return bitc::ATTR_KIND_ALLOC_SIZE; 621 case Attribute::AlwaysInline: 622 return bitc::ATTR_KIND_ALWAYS_INLINE; 623 case Attribute::ArgMemOnly: 624 return bitc::ATTR_KIND_ARGMEMONLY; 625 case Attribute::Builtin: 626 return bitc::ATTR_KIND_BUILTIN; 627 case Attribute::ByVal: 628 return bitc::ATTR_KIND_BY_VAL; 629 case Attribute::Convergent: 630 return bitc::ATTR_KIND_CONVERGENT; 631 case Attribute::InAlloca: 632 return bitc::ATTR_KIND_IN_ALLOCA; 633 case Attribute::Cold: 634 return bitc::ATTR_KIND_COLD; 635 case Attribute::DisableSanitizerInstrumentation: 636 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 637 case Attribute::FnRetThunkExtern: 638 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 639 case Attribute::Hot: 640 return bitc::ATTR_KIND_HOT; 641 case Attribute::ElementType: 642 return bitc::ATTR_KIND_ELEMENTTYPE; 643 case Attribute::InaccessibleMemOnly: 644 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 645 case Attribute::InaccessibleMemOrArgMemOnly: 646 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 647 case Attribute::InlineHint: 648 return bitc::ATTR_KIND_INLINE_HINT; 649 case Attribute::InReg: 650 return bitc::ATTR_KIND_IN_REG; 651 case Attribute::JumpTable: 652 return bitc::ATTR_KIND_JUMP_TABLE; 653 case Attribute::MinSize: 654 return bitc::ATTR_KIND_MIN_SIZE; 655 case Attribute::AllocatedPointer: 656 return bitc::ATTR_KIND_ALLOCATED_POINTER; 657 case Attribute::AllocKind: 658 return bitc::ATTR_KIND_ALLOC_KIND; 659 case Attribute::Memory: 660 return bitc::ATTR_KIND_MEMORY; 661 case Attribute::Naked: 662 return bitc::ATTR_KIND_NAKED; 663 case Attribute::Nest: 664 return bitc::ATTR_KIND_NEST; 665 case Attribute::NoAlias: 666 return bitc::ATTR_KIND_NO_ALIAS; 667 case Attribute::NoBuiltin: 668 return bitc::ATTR_KIND_NO_BUILTIN; 669 case Attribute::NoCallback: 670 return bitc::ATTR_KIND_NO_CALLBACK; 671 case Attribute::NoCapture: 672 return bitc::ATTR_KIND_NO_CAPTURE; 673 case Attribute::NoDuplicate: 674 return bitc::ATTR_KIND_NO_DUPLICATE; 675 case Attribute::NoFree: 676 return bitc::ATTR_KIND_NOFREE; 677 case Attribute::NoImplicitFloat: 678 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 679 case Attribute::NoInline: 680 return bitc::ATTR_KIND_NO_INLINE; 681 case Attribute::NoRecurse: 682 return bitc::ATTR_KIND_NO_RECURSE; 683 case Attribute::NoMerge: 684 return bitc::ATTR_KIND_NO_MERGE; 685 case Attribute::NonLazyBind: 686 return bitc::ATTR_KIND_NON_LAZY_BIND; 687 case Attribute::NonNull: 688 return bitc::ATTR_KIND_NON_NULL; 689 case Attribute::Dereferenceable: 690 return bitc::ATTR_KIND_DEREFERENCEABLE; 691 case Attribute::DereferenceableOrNull: 692 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 693 case Attribute::NoRedZone: 694 return bitc::ATTR_KIND_NO_RED_ZONE; 695 case Attribute::NoReturn: 696 return bitc::ATTR_KIND_NO_RETURN; 697 case Attribute::NoSync: 698 return bitc::ATTR_KIND_NOSYNC; 699 case Attribute::NoCfCheck: 700 return bitc::ATTR_KIND_NOCF_CHECK; 701 case Attribute::NoProfile: 702 return bitc::ATTR_KIND_NO_PROFILE; 703 case Attribute::SkipProfile: 704 return bitc::ATTR_KIND_SKIP_PROFILE; 705 case Attribute::NoUnwind: 706 return bitc::ATTR_KIND_NO_UNWIND; 707 case Attribute::NoSanitizeBounds: 708 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 709 case Attribute::NoSanitizeCoverage: 710 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 711 case Attribute::NullPointerIsValid: 712 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 713 case Attribute::OptForFuzzing: 714 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 715 case Attribute::OptimizeForSize: 716 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 717 case Attribute::OptimizeNone: 718 return bitc::ATTR_KIND_OPTIMIZE_NONE; 719 case Attribute::ReadNone: 720 return bitc::ATTR_KIND_READ_NONE; 721 case Attribute::ReadOnly: 722 return bitc::ATTR_KIND_READ_ONLY; 723 case Attribute::Returned: 724 return bitc::ATTR_KIND_RETURNED; 725 case Attribute::ReturnsTwice: 726 return bitc::ATTR_KIND_RETURNS_TWICE; 727 case Attribute::SExt: 728 return bitc::ATTR_KIND_S_EXT; 729 case Attribute::Speculatable: 730 return bitc::ATTR_KIND_SPECULATABLE; 731 case Attribute::StackAlignment: 732 return bitc::ATTR_KIND_STACK_ALIGNMENT; 733 case Attribute::StackProtect: 734 return bitc::ATTR_KIND_STACK_PROTECT; 735 case Attribute::StackProtectReq: 736 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 737 case Attribute::StackProtectStrong: 738 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 739 case Attribute::SafeStack: 740 return bitc::ATTR_KIND_SAFESTACK; 741 case Attribute::ShadowCallStack: 742 return bitc::ATTR_KIND_SHADOWCALLSTACK; 743 case Attribute::StrictFP: 744 return bitc::ATTR_KIND_STRICT_FP; 745 case Attribute::StructRet: 746 return bitc::ATTR_KIND_STRUCT_RET; 747 case Attribute::SanitizeAddress: 748 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 749 case Attribute::SanitizeHWAddress: 750 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 751 case Attribute::SanitizeThread: 752 return bitc::ATTR_KIND_SANITIZE_THREAD; 753 case Attribute::SanitizeMemory: 754 return bitc::ATTR_KIND_SANITIZE_MEMORY; 755 case Attribute::SpeculativeLoadHardening: 756 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 757 case Attribute::SwiftError: 758 return bitc::ATTR_KIND_SWIFT_ERROR; 759 case Attribute::SwiftSelf: 760 return bitc::ATTR_KIND_SWIFT_SELF; 761 case Attribute::SwiftAsync: 762 return bitc::ATTR_KIND_SWIFT_ASYNC; 763 case Attribute::UWTable: 764 return bitc::ATTR_KIND_UW_TABLE; 765 case Attribute::VScaleRange: 766 return bitc::ATTR_KIND_VSCALE_RANGE; 767 case Attribute::WillReturn: 768 return bitc::ATTR_KIND_WILLRETURN; 769 case Attribute::WriteOnly: 770 return bitc::ATTR_KIND_WRITEONLY; 771 case Attribute::ZExt: 772 return bitc::ATTR_KIND_Z_EXT; 773 case Attribute::ImmArg: 774 return bitc::ATTR_KIND_IMMARG; 775 case Attribute::SanitizeMemTag: 776 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 777 case Attribute::Preallocated: 778 return bitc::ATTR_KIND_PREALLOCATED; 779 case Attribute::NoUndef: 780 return bitc::ATTR_KIND_NOUNDEF; 781 case Attribute::ByRef: 782 return bitc::ATTR_KIND_BYREF; 783 case Attribute::MustProgress: 784 return bitc::ATTR_KIND_MUSTPROGRESS; 785 case Attribute::PresplitCoroutine: 786 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 787 case Attribute::EndAttrKinds: 788 llvm_unreachable("Can not encode end-attribute kinds marker."); 789 case Attribute::None: 790 llvm_unreachable("Can not encode none-attribute."); 791 case Attribute::EmptyKey: 792 case Attribute::TombstoneKey: 793 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 794 } 795 796 llvm_unreachable("Trying to encode unknown attribute"); 797 } 798 799 void ModuleBitcodeWriter::writeAttributeGroupTable() { 800 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 801 VE.getAttributeGroups(); 802 if (AttrGrps.empty()) return; 803 804 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 805 806 SmallVector<uint64_t, 64> Record; 807 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 808 unsigned AttrListIndex = Pair.first; 809 AttributeSet AS = Pair.second; 810 Record.push_back(VE.getAttributeGroupID(Pair)); 811 Record.push_back(AttrListIndex); 812 813 for (Attribute Attr : AS) { 814 if (Attr.isEnumAttribute()) { 815 Record.push_back(0); 816 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 817 } else if (Attr.isIntAttribute()) { 818 Record.push_back(1); 819 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 820 Record.push_back(Attr.getValueAsInt()); 821 } else if (Attr.isStringAttribute()) { 822 StringRef Kind = Attr.getKindAsString(); 823 StringRef Val = Attr.getValueAsString(); 824 825 Record.push_back(Val.empty() ? 3 : 4); 826 Record.append(Kind.begin(), Kind.end()); 827 Record.push_back(0); 828 if (!Val.empty()) { 829 Record.append(Val.begin(), Val.end()); 830 Record.push_back(0); 831 } 832 } else { 833 assert(Attr.isTypeAttribute()); 834 Type *Ty = Attr.getValueAsType(); 835 Record.push_back(Ty ? 6 : 5); 836 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 837 if (Ty) 838 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 839 } 840 } 841 842 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 843 Record.clear(); 844 } 845 846 Stream.ExitBlock(); 847 } 848 849 void ModuleBitcodeWriter::writeAttributeTable() { 850 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 851 if (Attrs.empty()) return; 852 853 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 854 855 SmallVector<uint64_t, 64> Record; 856 for (const AttributeList &AL : Attrs) { 857 for (unsigned i : AL.indexes()) { 858 AttributeSet AS = AL.getAttributes(i); 859 if (AS.hasAttributes()) 860 Record.push_back(VE.getAttributeGroupID({i, AS})); 861 } 862 863 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 864 Record.clear(); 865 } 866 867 Stream.ExitBlock(); 868 } 869 870 /// WriteTypeTable - Write out the type table for a module. 871 void ModuleBitcodeWriter::writeTypeTable() { 872 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 873 874 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 875 SmallVector<uint64_t, 64> TypeVals; 876 877 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 878 879 // Abbrev for TYPE_CODE_POINTER. 880 auto Abbv = std::make_shared<BitCodeAbbrev>(); 881 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 883 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 884 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 885 886 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 887 Abbv = std::make_shared<BitCodeAbbrev>(); 888 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 889 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 890 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 891 892 // Abbrev for TYPE_CODE_FUNCTION. 893 Abbv = std::make_shared<BitCodeAbbrev>(); 894 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 898 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 899 900 // Abbrev for TYPE_CODE_STRUCT_ANON. 901 Abbv = std::make_shared<BitCodeAbbrev>(); 902 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 906 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 907 908 // Abbrev for TYPE_CODE_STRUCT_NAME. 909 Abbv = std::make_shared<BitCodeAbbrev>(); 910 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 913 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 914 915 // Abbrev for TYPE_CODE_STRUCT_NAMED. 916 Abbv = std::make_shared<BitCodeAbbrev>(); 917 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 921 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 922 923 // Abbrev for TYPE_CODE_ARRAY. 924 Abbv = std::make_shared<BitCodeAbbrev>(); 925 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 928 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 929 930 // Emit an entry count so the reader can reserve space. 931 TypeVals.push_back(TypeList.size()); 932 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 933 TypeVals.clear(); 934 935 // Loop over all of the types, emitting each in turn. 936 for (Type *T : TypeList) { 937 int AbbrevToUse = 0; 938 unsigned Code = 0; 939 940 switch (T->getTypeID()) { 941 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 942 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 943 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 944 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 945 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 946 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 947 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 948 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 949 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 950 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 951 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 952 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 953 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 954 case Type::IntegerTyID: 955 // INTEGER: [width] 956 Code = bitc::TYPE_CODE_INTEGER; 957 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 958 break; 959 case Type::PointerTyID: { 960 PointerType *PTy = cast<PointerType>(T); 961 unsigned AddressSpace = PTy->getAddressSpace(); 962 if (PTy->isOpaque()) { 963 // OPAQUE_POINTER: [address space] 964 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 965 TypeVals.push_back(AddressSpace); 966 if (AddressSpace == 0) 967 AbbrevToUse = OpaquePtrAbbrev; 968 } else { 969 // POINTER: [pointee type, address space] 970 Code = bitc::TYPE_CODE_POINTER; 971 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 972 TypeVals.push_back(AddressSpace); 973 if (AddressSpace == 0) 974 AbbrevToUse = PtrAbbrev; 975 } 976 break; 977 } 978 case Type::FunctionTyID: { 979 FunctionType *FT = cast<FunctionType>(T); 980 // FUNCTION: [isvararg, retty, paramty x N] 981 Code = bitc::TYPE_CODE_FUNCTION; 982 TypeVals.push_back(FT->isVarArg()); 983 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 984 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 985 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 986 AbbrevToUse = FunctionAbbrev; 987 break; 988 } 989 case Type::StructTyID: { 990 StructType *ST = cast<StructType>(T); 991 // STRUCT: [ispacked, eltty x N] 992 TypeVals.push_back(ST->isPacked()); 993 // Output all of the element types. 994 for (Type *ET : ST->elements()) 995 TypeVals.push_back(VE.getTypeID(ET)); 996 997 if (ST->isLiteral()) { 998 Code = bitc::TYPE_CODE_STRUCT_ANON; 999 AbbrevToUse = StructAnonAbbrev; 1000 } else { 1001 if (ST->isOpaque()) { 1002 Code = bitc::TYPE_CODE_OPAQUE; 1003 } else { 1004 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1005 AbbrevToUse = StructNamedAbbrev; 1006 } 1007 1008 // Emit the name if it is present. 1009 if (!ST->getName().empty()) 1010 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1011 StructNameAbbrev); 1012 } 1013 break; 1014 } 1015 case Type::ArrayTyID: { 1016 ArrayType *AT = cast<ArrayType>(T); 1017 // ARRAY: [numelts, eltty] 1018 Code = bitc::TYPE_CODE_ARRAY; 1019 TypeVals.push_back(AT->getNumElements()); 1020 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1021 AbbrevToUse = ArrayAbbrev; 1022 break; 1023 } 1024 case Type::FixedVectorTyID: 1025 case Type::ScalableVectorTyID: { 1026 VectorType *VT = cast<VectorType>(T); 1027 // VECTOR [numelts, eltty] or 1028 // [numelts, eltty, scalable] 1029 Code = bitc::TYPE_CODE_VECTOR; 1030 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1031 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1032 if (isa<ScalableVectorType>(VT)) 1033 TypeVals.push_back(true); 1034 break; 1035 } 1036 case Type::TypedPointerTyID: 1037 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1038 } 1039 1040 // Emit the finished record. 1041 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1042 TypeVals.clear(); 1043 } 1044 1045 Stream.ExitBlock(); 1046 } 1047 1048 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1049 switch (Linkage) { 1050 case GlobalValue::ExternalLinkage: 1051 return 0; 1052 case GlobalValue::WeakAnyLinkage: 1053 return 16; 1054 case GlobalValue::AppendingLinkage: 1055 return 2; 1056 case GlobalValue::InternalLinkage: 1057 return 3; 1058 case GlobalValue::LinkOnceAnyLinkage: 1059 return 18; 1060 case GlobalValue::ExternalWeakLinkage: 1061 return 7; 1062 case GlobalValue::CommonLinkage: 1063 return 8; 1064 case GlobalValue::PrivateLinkage: 1065 return 9; 1066 case GlobalValue::WeakODRLinkage: 1067 return 17; 1068 case GlobalValue::LinkOnceODRLinkage: 1069 return 19; 1070 case GlobalValue::AvailableExternallyLinkage: 1071 return 12; 1072 } 1073 llvm_unreachable("Invalid linkage"); 1074 } 1075 1076 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1077 return getEncodedLinkage(GV.getLinkage()); 1078 } 1079 1080 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1081 uint64_t RawFlags = 0; 1082 RawFlags |= Flags.ReadNone; 1083 RawFlags |= (Flags.ReadOnly << 1); 1084 RawFlags |= (Flags.NoRecurse << 2); 1085 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1086 RawFlags |= (Flags.NoInline << 4); 1087 RawFlags |= (Flags.AlwaysInline << 5); 1088 RawFlags |= (Flags.NoUnwind << 6); 1089 RawFlags |= (Flags.MayThrow << 7); 1090 RawFlags |= (Flags.HasUnknownCall << 8); 1091 RawFlags |= (Flags.MustBeUnreachable << 9); 1092 return RawFlags; 1093 } 1094 1095 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1096 // in BitcodeReader.cpp. 1097 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1098 uint64_t RawFlags = 0; 1099 1100 RawFlags |= Flags.NotEligibleToImport; // bool 1101 RawFlags |= (Flags.Live << 1); 1102 RawFlags |= (Flags.DSOLocal << 2); 1103 RawFlags |= (Flags.CanAutoHide << 3); 1104 1105 // Linkage don't need to be remapped at that time for the summary. Any future 1106 // change to the getEncodedLinkage() function will need to be taken into 1107 // account here as well. 1108 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1109 1110 RawFlags |= (Flags.Visibility << 8); // 2 bits 1111 1112 return RawFlags; 1113 } 1114 1115 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1116 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1117 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1118 return RawFlags; 1119 } 1120 1121 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1122 switch (GV.getVisibility()) { 1123 case GlobalValue::DefaultVisibility: return 0; 1124 case GlobalValue::HiddenVisibility: return 1; 1125 case GlobalValue::ProtectedVisibility: return 2; 1126 } 1127 llvm_unreachable("Invalid visibility"); 1128 } 1129 1130 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1131 switch (GV.getDLLStorageClass()) { 1132 case GlobalValue::DefaultStorageClass: return 0; 1133 case GlobalValue::DLLImportStorageClass: return 1; 1134 case GlobalValue::DLLExportStorageClass: return 2; 1135 } 1136 llvm_unreachable("Invalid DLL storage class"); 1137 } 1138 1139 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1140 switch (GV.getThreadLocalMode()) { 1141 case GlobalVariable::NotThreadLocal: return 0; 1142 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1143 case GlobalVariable::LocalDynamicTLSModel: return 2; 1144 case GlobalVariable::InitialExecTLSModel: return 3; 1145 case GlobalVariable::LocalExecTLSModel: return 4; 1146 } 1147 llvm_unreachable("Invalid TLS model"); 1148 } 1149 1150 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1151 switch (C.getSelectionKind()) { 1152 case Comdat::Any: 1153 return bitc::COMDAT_SELECTION_KIND_ANY; 1154 case Comdat::ExactMatch: 1155 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1156 case Comdat::Largest: 1157 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1158 case Comdat::NoDeduplicate: 1159 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1160 case Comdat::SameSize: 1161 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1162 } 1163 llvm_unreachable("Invalid selection kind"); 1164 } 1165 1166 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1167 switch (GV.getUnnamedAddr()) { 1168 case GlobalValue::UnnamedAddr::None: return 0; 1169 case GlobalValue::UnnamedAddr::Local: return 2; 1170 case GlobalValue::UnnamedAddr::Global: return 1; 1171 } 1172 llvm_unreachable("Invalid unnamed_addr"); 1173 } 1174 1175 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1176 if (GenerateHash) 1177 Hasher.update(Str); 1178 return StrtabBuilder.add(Str); 1179 } 1180 1181 void ModuleBitcodeWriter::writeComdats() { 1182 SmallVector<unsigned, 64> Vals; 1183 for (const Comdat *C : VE.getComdats()) { 1184 // COMDAT: [strtab offset, strtab size, selection_kind] 1185 Vals.push_back(addToStrtab(C->getName())); 1186 Vals.push_back(C->getName().size()); 1187 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1188 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1189 Vals.clear(); 1190 } 1191 } 1192 1193 /// Write a record that will eventually hold the word offset of the 1194 /// module-level VST. For now the offset is 0, which will be backpatched 1195 /// after the real VST is written. Saves the bit offset to backpatch. 1196 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1197 // Write a placeholder value in for the offset of the real VST, 1198 // which is written after the function blocks so that it can include 1199 // the offset of each function. The placeholder offset will be 1200 // updated when the real VST is written. 1201 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1202 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1203 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1204 // hold the real VST offset. Must use fixed instead of VBR as we don't 1205 // know how many VBR chunks to reserve ahead of time. 1206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1207 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1208 1209 // Emit the placeholder 1210 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1211 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1212 1213 // Compute and save the bit offset to the placeholder, which will be 1214 // patched when the real VST is written. We can simply subtract the 32-bit 1215 // fixed size from the current bit number to get the location to backpatch. 1216 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1217 } 1218 1219 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1220 1221 /// Determine the encoding to use for the given string name and length. 1222 static StringEncoding getStringEncoding(StringRef Str) { 1223 bool isChar6 = true; 1224 for (char C : Str) { 1225 if (isChar6) 1226 isChar6 = BitCodeAbbrevOp::isChar6(C); 1227 if ((unsigned char)C & 128) 1228 // don't bother scanning the rest. 1229 return SE_Fixed8; 1230 } 1231 if (isChar6) 1232 return SE_Char6; 1233 return SE_Fixed7; 1234 } 1235 1236 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1237 "Sanitizer Metadata is too large for naive serialization."); 1238 static unsigned 1239 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1240 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1241 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1242 } 1243 1244 /// Emit top-level description of module, including target triple, inline asm, 1245 /// descriptors for global variables, and function prototype info. 1246 /// Returns the bit offset to backpatch with the location of the real VST. 1247 void ModuleBitcodeWriter::writeModuleInfo() { 1248 // Emit various pieces of data attached to a module. 1249 if (!M.getTargetTriple().empty()) 1250 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1251 0 /*TODO*/); 1252 const std::string &DL = M.getDataLayoutStr(); 1253 if (!DL.empty()) 1254 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1255 if (!M.getModuleInlineAsm().empty()) 1256 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1257 0 /*TODO*/); 1258 1259 // Emit information about sections and GC, computing how many there are. Also 1260 // compute the maximum alignment value. 1261 std::map<std::string, unsigned> SectionMap; 1262 std::map<std::string, unsigned> GCMap; 1263 MaybeAlign MaxAlignment; 1264 unsigned MaxGlobalType = 0; 1265 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1266 if (A) 1267 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1268 }; 1269 for (const GlobalVariable &GV : M.globals()) { 1270 UpdateMaxAlignment(GV.getAlign()); 1271 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1272 if (GV.hasSection()) { 1273 // Give section names unique ID's. 1274 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1275 if (!Entry) { 1276 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1277 0 /*TODO*/); 1278 Entry = SectionMap.size(); 1279 } 1280 } 1281 } 1282 for (const Function &F : M) { 1283 UpdateMaxAlignment(F.getAlign()); 1284 if (F.hasSection()) { 1285 // Give section names unique ID's. 1286 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1287 if (!Entry) { 1288 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1289 0 /*TODO*/); 1290 Entry = SectionMap.size(); 1291 } 1292 } 1293 if (F.hasGC()) { 1294 // Same for GC names. 1295 unsigned &Entry = GCMap[F.getGC()]; 1296 if (!Entry) { 1297 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1298 0 /*TODO*/); 1299 Entry = GCMap.size(); 1300 } 1301 } 1302 } 1303 1304 // Emit abbrev for globals, now that we know # sections and max alignment. 1305 unsigned SimpleGVarAbbrev = 0; 1306 if (!M.global_empty()) { 1307 // Add an abbrev for common globals with no visibility or thread localness. 1308 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1309 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1310 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1313 Log2_32_Ceil(MaxGlobalType+1))); 1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1315 //| explicitType << 1 1316 //| constant 1317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1319 if (!MaxAlignment) // Alignment. 1320 Abbv->Add(BitCodeAbbrevOp(0)); 1321 else { 1322 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1324 Log2_32_Ceil(MaxEncAlignment+1))); 1325 } 1326 if (SectionMap.empty()) // Section. 1327 Abbv->Add(BitCodeAbbrevOp(0)); 1328 else 1329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1330 Log2_32_Ceil(SectionMap.size()+1))); 1331 // Don't bother emitting vis + thread local. 1332 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1333 } 1334 1335 SmallVector<unsigned, 64> Vals; 1336 // Emit the module's source file name. 1337 { 1338 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1339 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1340 if (Bits == SE_Char6) 1341 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1342 else if (Bits == SE_Fixed7) 1343 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1344 1345 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1346 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1347 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1349 Abbv->Add(AbbrevOpToUse); 1350 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1351 1352 for (const auto P : M.getSourceFileName()) 1353 Vals.push_back((unsigned char)P); 1354 1355 // Emit the finished record. 1356 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1357 Vals.clear(); 1358 } 1359 1360 // Emit the global variable information. 1361 for (const GlobalVariable &GV : M.globals()) { 1362 unsigned AbbrevToUse = 0; 1363 1364 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1365 // linkage, alignment, section, visibility, threadlocal, 1366 // unnamed_addr, externally_initialized, dllstorageclass, 1367 // comdat, attributes, DSO_Local, GlobalSanitizer] 1368 Vals.push_back(addToStrtab(GV.getName())); 1369 Vals.push_back(GV.getName().size()); 1370 Vals.push_back(VE.getTypeID(GV.getValueType())); 1371 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1372 Vals.push_back(GV.isDeclaration() ? 0 : 1373 (VE.getValueID(GV.getInitializer()) + 1)); 1374 Vals.push_back(getEncodedLinkage(GV)); 1375 Vals.push_back(getEncodedAlign(GV.getAlign())); 1376 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1377 : 0); 1378 if (GV.isThreadLocal() || 1379 GV.getVisibility() != GlobalValue::DefaultVisibility || 1380 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1381 GV.isExternallyInitialized() || 1382 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1383 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1384 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1385 Vals.push_back(getEncodedVisibility(GV)); 1386 Vals.push_back(getEncodedThreadLocalMode(GV)); 1387 Vals.push_back(getEncodedUnnamedAddr(GV)); 1388 Vals.push_back(GV.isExternallyInitialized()); 1389 Vals.push_back(getEncodedDLLStorageClass(GV)); 1390 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1391 1392 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1393 Vals.push_back(VE.getAttributeListID(AL)); 1394 1395 Vals.push_back(GV.isDSOLocal()); 1396 Vals.push_back(addToStrtab(GV.getPartition())); 1397 Vals.push_back(GV.getPartition().size()); 1398 1399 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1400 GV.getSanitizerMetadata()) 1401 : 0)); 1402 } else { 1403 AbbrevToUse = SimpleGVarAbbrev; 1404 } 1405 1406 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1407 Vals.clear(); 1408 } 1409 1410 // Emit the function proto information. 1411 for (const Function &F : M) { 1412 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1413 // linkage, paramattrs, alignment, section, visibility, gc, 1414 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1415 // prefixdata, personalityfn, DSO_Local, addrspace] 1416 Vals.push_back(addToStrtab(F.getName())); 1417 Vals.push_back(F.getName().size()); 1418 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1419 Vals.push_back(F.getCallingConv()); 1420 Vals.push_back(F.isDeclaration()); 1421 Vals.push_back(getEncodedLinkage(F)); 1422 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1423 Vals.push_back(getEncodedAlign(F.getAlign())); 1424 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1425 : 0); 1426 Vals.push_back(getEncodedVisibility(F)); 1427 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1428 Vals.push_back(getEncodedUnnamedAddr(F)); 1429 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1430 : 0); 1431 Vals.push_back(getEncodedDLLStorageClass(F)); 1432 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1433 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1434 : 0); 1435 Vals.push_back( 1436 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1437 1438 Vals.push_back(F.isDSOLocal()); 1439 Vals.push_back(F.getAddressSpace()); 1440 Vals.push_back(addToStrtab(F.getPartition())); 1441 Vals.push_back(F.getPartition().size()); 1442 1443 unsigned AbbrevToUse = 0; 1444 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1445 Vals.clear(); 1446 } 1447 1448 // Emit the alias information. 1449 for (const GlobalAlias &A : M.aliases()) { 1450 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1451 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1452 // DSO_Local] 1453 Vals.push_back(addToStrtab(A.getName())); 1454 Vals.push_back(A.getName().size()); 1455 Vals.push_back(VE.getTypeID(A.getValueType())); 1456 Vals.push_back(A.getType()->getAddressSpace()); 1457 Vals.push_back(VE.getValueID(A.getAliasee())); 1458 Vals.push_back(getEncodedLinkage(A)); 1459 Vals.push_back(getEncodedVisibility(A)); 1460 Vals.push_back(getEncodedDLLStorageClass(A)); 1461 Vals.push_back(getEncodedThreadLocalMode(A)); 1462 Vals.push_back(getEncodedUnnamedAddr(A)); 1463 Vals.push_back(A.isDSOLocal()); 1464 Vals.push_back(addToStrtab(A.getPartition())); 1465 Vals.push_back(A.getPartition().size()); 1466 1467 unsigned AbbrevToUse = 0; 1468 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1469 Vals.clear(); 1470 } 1471 1472 // Emit the ifunc information. 1473 for (const GlobalIFunc &I : M.ifuncs()) { 1474 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1475 // val#, linkage, visibility, DSO_Local] 1476 Vals.push_back(addToStrtab(I.getName())); 1477 Vals.push_back(I.getName().size()); 1478 Vals.push_back(VE.getTypeID(I.getValueType())); 1479 Vals.push_back(I.getType()->getAddressSpace()); 1480 Vals.push_back(VE.getValueID(I.getResolver())); 1481 Vals.push_back(getEncodedLinkage(I)); 1482 Vals.push_back(getEncodedVisibility(I)); 1483 Vals.push_back(I.isDSOLocal()); 1484 Vals.push_back(addToStrtab(I.getPartition())); 1485 Vals.push_back(I.getPartition().size()); 1486 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1487 Vals.clear(); 1488 } 1489 1490 writeValueSymbolTableForwardDecl(); 1491 } 1492 1493 static uint64_t getOptimizationFlags(const Value *V) { 1494 uint64_t Flags = 0; 1495 1496 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1497 if (OBO->hasNoSignedWrap()) 1498 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1499 if (OBO->hasNoUnsignedWrap()) 1500 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1501 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1502 if (PEO->isExact()) 1503 Flags |= 1 << bitc::PEO_EXACT; 1504 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1505 if (FPMO->hasAllowReassoc()) 1506 Flags |= bitc::AllowReassoc; 1507 if (FPMO->hasNoNaNs()) 1508 Flags |= bitc::NoNaNs; 1509 if (FPMO->hasNoInfs()) 1510 Flags |= bitc::NoInfs; 1511 if (FPMO->hasNoSignedZeros()) 1512 Flags |= bitc::NoSignedZeros; 1513 if (FPMO->hasAllowReciprocal()) 1514 Flags |= bitc::AllowReciprocal; 1515 if (FPMO->hasAllowContract()) 1516 Flags |= bitc::AllowContract; 1517 if (FPMO->hasApproxFunc()) 1518 Flags |= bitc::ApproxFunc; 1519 } 1520 1521 return Flags; 1522 } 1523 1524 void ModuleBitcodeWriter::writeValueAsMetadata( 1525 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1526 // Mimic an MDNode with a value as one operand. 1527 Value *V = MD->getValue(); 1528 Record.push_back(VE.getTypeID(V->getType())); 1529 Record.push_back(VE.getValueID(V)); 1530 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1531 Record.clear(); 1532 } 1533 1534 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1535 SmallVectorImpl<uint64_t> &Record, 1536 unsigned Abbrev) { 1537 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1538 Metadata *MD = N->getOperand(i); 1539 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1540 "Unexpected function-local metadata"); 1541 Record.push_back(VE.getMetadataOrNullID(MD)); 1542 } 1543 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1544 : bitc::METADATA_NODE, 1545 Record, Abbrev); 1546 Record.clear(); 1547 } 1548 1549 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1550 // Assume the column is usually under 128, and always output the inlined-at 1551 // location (it's never more expensive than building an array size 1). 1552 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1553 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1560 return Stream.EmitAbbrev(std::move(Abbv)); 1561 } 1562 1563 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1564 SmallVectorImpl<uint64_t> &Record, 1565 unsigned &Abbrev) { 1566 if (!Abbrev) 1567 Abbrev = createDILocationAbbrev(); 1568 1569 Record.push_back(N->isDistinct()); 1570 Record.push_back(N->getLine()); 1571 Record.push_back(N->getColumn()); 1572 Record.push_back(VE.getMetadataID(N->getScope())); 1573 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1574 Record.push_back(N->isImplicitCode()); 1575 1576 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1577 Record.clear(); 1578 } 1579 1580 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1581 // Assume the column is usually under 128, and always output the inlined-at 1582 // location (it's never more expensive than building an array size 1). 1583 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1584 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1591 return Stream.EmitAbbrev(std::move(Abbv)); 1592 } 1593 1594 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1595 SmallVectorImpl<uint64_t> &Record, 1596 unsigned &Abbrev) { 1597 if (!Abbrev) 1598 Abbrev = createGenericDINodeAbbrev(); 1599 1600 Record.push_back(N->isDistinct()); 1601 Record.push_back(N->getTag()); 1602 Record.push_back(0); // Per-tag version field; unused for now. 1603 1604 for (auto &I : N->operands()) 1605 Record.push_back(VE.getMetadataOrNullID(I)); 1606 1607 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1612 SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 const uint64_t Version = 2 << 1; 1615 Record.push_back((uint64_t)N->isDistinct() | Version); 1616 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1617 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1620 1621 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1622 Record.clear(); 1623 } 1624 1625 void ModuleBitcodeWriter::writeDIGenericSubrange( 1626 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1627 unsigned Abbrev) { 1628 Record.push_back((uint64_t)N->isDistinct()); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1630 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1633 1634 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1635 Record.clear(); 1636 } 1637 1638 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1639 if ((int64_t)V >= 0) 1640 Vals.push_back(V << 1); 1641 else 1642 Vals.push_back((-V << 1) | 1); 1643 } 1644 1645 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1646 // We have an arbitrary precision integer value to write whose 1647 // bit width is > 64. However, in canonical unsigned integer 1648 // format it is likely that the high bits are going to be zero. 1649 // So, we only write the number of active words. 1650 unsigned NumWords = A.getActiveWords(); 1651 const uint64_t *RawData = A.getRawData(); 1652 for (unsigned i = 0; i < NumWords; i++) 1653 emitSignedInt64(Vals, RawData[i]); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1657 SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 const uint64_t IsBigInt = 1 << 2; 1660 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1661 Record.push_back(N->getValue().getBitWidth()); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1663 emitWideAPInt(Record, N->getValue()); 1664 1665 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1670 SmallVectorImpl<uint64_t> &Record, 1671 unsigned Abbrev) { 1672 Record.push_back(N->isDistinct()); 1673 Record.push_back(N->getTag()); 1674 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1675 Record.push_back(N->getSizeInBits()); 1676 Record.push_back(N->getAlignInBits()); 1677 Record.push_back(N->getEncoding()); 1678 Record.push_back(N->getFlags()); 1679 1680 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1681 Record.clear(); 1682 } 1683 1684 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1685 SmallVectorImpl<uint64_t> &Record, 1686 unsigned Abbrev) { 1687 Record.push_back(N->isDistinct()); 1688 Record.push_back(N->getTag()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1690 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1693 Record.push_back(N->getSizeInBits()); 1694 Record.push_back(N->getAlignInBits()); 1695 Record.push_back(N->getEncoding()); 1696 1697 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1698 Record.clear(); 1699 } 1700 1701 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1702 SmallVectorImpl<uint64_t> &Record, 1703 unsigned Abbrev) { 1704 Record.push_back(N->isDistinct()); 1705 Record.push_back(N->getTag()); 1706 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1708 Record.push_back(N->getLine()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1711 Record.push_back(N->getSizeInBits()); 1712 Record.push_back(N->getAlignInBits()); 1713 Record.push_back(N->getOffsetInBits()); 1714 Record.push_back(N->getFlags()); 1715 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1716 1717 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1718 // that there is no DWARF address space associated with DIDerivedType. 1719 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1720 Record.push_back(*DWARFAddressSpace + 1); 1721 else 1722 Record.push_back(0); 1723 1724 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1725 1726 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1727 Record.clear(); 1728 } 1729 1730 void ModuleBitcodeWriter::writeDICompositeType( 1731 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1732 unsigned Abbrev) { 1733 const unsigned IsNotUsedInOldTypeRef = 0x2; 1734 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1735 Record.push_back(N->getTag()); 1736 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1738 Record.push_back(N->getLine()); 1739 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1741 Record.push_back(N->getSizeInBits()); 1742 Record.push_back(N->getAlignInBits()); 1743 Record.push_back(N->getOffsetInBits()); 1744 Record.push_back(N->getFlags()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1746 Record.push_back(N->getRuntimeLang()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1748 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1756 1757 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1758 Record.clear(); 1759 } 1760 1761 void ModuleBitcodeWriter::writeDISubroutineType( 1762 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1763 unsigned Abbrev) { 1764 const unsigned HasNoOldTypeRefs = 0x2; 1765 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1766 Record.push_back(N->getFlags()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1768 Record.push_back(N->getCC()); 1769 1770 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1771 Record.clear(); 1772 } 1773 1774 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1775 SmallVectorImpl<uint64_t> &Record, 1776 unsigned Abbrev) { 1777 Record.push_back(N->isDistinct()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1780 if (N->getRawChecksum()) { 1781 Record.push_back(N->getRawChecksum()->Kind); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1783 } else { 1784 // Maintain backwards compatibility with the old internal representation of 1785 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1786 Record.push_back(0); 1787 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1788 } 1789 auto Source = N->getRawSource(); 1790 if (Source) 1791 Record.push_back(VE.getMetadataOrNullID(*Source)); 1792 1793 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1794 Record.clear(); 1795 } 1796 1797 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1798 SmallVectorImpl<uint64_t> &Record, 1799 unsigned Abbrev) { 1800 assert(N->isDistinct() && "Expected distinct compile units"); 1801 Record.push_back(/* IsDistinct */ true); 1802 Record.push_back(N->getSourceLanguage()); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1805 Record.push_back(N->isOptimized()); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1807 Record.push_back(N->getRuntimeVersion()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1809 Record.push_back(N->getEmissionKind()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1812 Record.push_back(/* subprograms */ 0); 1813 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1815 Record.push_back(N->getDWOId()); 1816 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1817 Record.push_back(N->getSplitDebugInlining()); 1818 Record.push_back(N->getDebugInfoForProfiling()); 1819 Record.push_back((unsigned)N->getNameTableKind()); 1820 Record.push_back(N->getRangesBaseAddress()); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1823 1824 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1825 Record.clear(); 1826 } 1827 1828 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1829 SmallVectorImpl<uint64_t> &Record, 1830 unsigned Abbrev) { 1831 const uint64_t HasUnitFlag = 1 << 1; 1832 const uint64_t HasSPFlagsFlag = 1 << 2; 1833 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1834 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1836 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1838 Record.push_back(N->getLine()); 1839 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1840 Record.push_back(N->getScopeLine()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1842 Record.push_back(N->getSPFlags()); 1843 Record.push_back(N->getVirtualIndex()); 1844 Record.push_back(N->getFlags()); 1845 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1846 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1849 Record.push_back(N->getThisAdjustment()); 1850 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1851 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1853 1854 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1855 Record.clear(); 1856 } 1857 1858 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1859 SmallVectorImpl<uint64_t> &Record, 1860 unsigned Abbrev) { 1861 Record.push_back(N->isDistinct()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1864 Record.push_back(N->getLine()); 1865 Record.push_back(N->getColumn()); 1866 1867 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1868 Record.clear(); 1869 } 1870 1871 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1872 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1873 unsigned Abbrev) { 1874 Record.push_back(N->isDistinct()); 1875 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1877 Record.push_back(N->getDiscriminator()); 1878 1879 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1880 Record.clear(); 1881 } 1882 1883 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1884 SmallVectorImpl<uint64_t> &Record, 1885 unsigned Abbrev) { 1886 Record.push_back(N->isDistinct()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1891 Record.push_back(N->getLineNo()); 1892 1893 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1894 Record.clear(); 1895 } 1896 1897 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1898 SmallVectorImpl<uint64_t> &Record, 1899 unsigned Abbrev) { 1900 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1901 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1903 1904 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1905 Record.clear(); 1906 } 1907 1908 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1909 SmallVectorImpl<uint64_t> &Record, 1910 unsigned Abbrev) { 1911 Record.push_back(N->isDistinct()); 1912 Record.push_back(N->getMacinfoType()); 1913 Record.push_back(N->getLine()); 1914 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1915 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1916 1917 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1918 Record.clear(); 1919 } 1920 1921 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1922 SmallVectorImpl<uint64_t> &Record, 1923 unsigned Abbrev) { 1924 Record.push_back(N->isDistinct()); 1925 Record.push_back(N->getMacinfoType()); 1926 Record.push_back(N->getLine()); 1927 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1928 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1929 1930 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1931 Record.clear(); 1932 } 1933 1934 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1935 SmallVectorImpl<uint64_t> &Record, 1936 unsigned Abbrev) { 1937 Record.reserve(N->getArgs().size()); 1938 for (ValueAsMetadata *MD : N->getArgs()) 1939 Record.push_back(VE.getMetadataID(MD)); 1940 1941 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1942 Record.clear(); 1943 } 1944 1945 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1946 SmallVectorImpl<uint64_t> &Record, 1947 unsigned Abbrev) { 1948 Record.push_back(N->isDistinct()); 1949 for (auto &I : N->operands()) 1950 Record.push_back(VE.getMetadataOrNullID(I)); 1951 Record.push_back(N->getLineNo()); 1952 Record.push_back(N->getIsDecl()); 1953 1954 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1955 Record.clear(); 1956 } 1957 1958 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1959 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1960 unsigned Abbrev) { 1961 Record.push_back(N->isDistinct()); 1962 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1964 Record.push_back(N->isDefault()); 1965 1966 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1967 Record.clear(); 1968 } 1969 1970 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1971 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1972 unsigned Abbrev) { 1973 Record.push_back(N->isDistinct()); 1974 Record.push_back(N->getTag()); 1975 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1976 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1977 Record.push_back(N->isDefault()); 1978 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1979 1980 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1981 Record.clear(); 1982 } 1983 1984 void ModuleBitcodeWriter::writeDIGlobalVariable( 1985 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1986 unsigned Abbrev) { 1987 const uint64_t Version = 2 << 1; 1988 Record.push_back((uint64_t)N->isDistinct() | Version); 1989 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1991 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1993 Record.push_back(N->getLine()); 1994 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1995 Record.push_back(N->isLocalToUnit()); 1996 Record.push_back(N->isDefinition()); 1997 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1998 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1999 Record.push_back(N->getAlignInBits()); 2000 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2001 2002 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2003 Record.clear(); 2004 } 2005 2006 void ModuleBitcodeWriter::writeDILocalVariable( 2007 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2008 unsigned Abbrev) { 2009 // In order to support all possible bitcode formats in BitcodeReader we need 2010 // to distinguish the following cases: 2011 // 1) Record has no artificial tag (Record[1]), 2012 // has no obsolete inlinedAt field (Record[9]). 2013 // In this case Record size will be 8, HasAlignment flag is false. 2014 // 2) Record has artificial tag (Record[1]), 2015 // has no obsolete inlignedAt field (Record[9]). 2016 // In this case Record size will be 9, HasAlignment flag is false. 2017 // 3) Record has both artificial tag (Record[1]) and 2018 // obsolete inlignedAt field (Record[9]). 2019 // In this case Record size will be 10, HasAlignment flag is false. 2020 // 4) Record has neither artificial tag, nor inlignedAt field, but 2021 // HasAlignment flag is true and Record[8] contains alignment value. 2022 const uint64_t HasAlignmentFlag = 1 << 1; 2023 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2024 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2025 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2026 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2027 Record.push_back(N->getLine()); 2028 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2029 Record.push_back(N->getArg()); 2030 Record.push_back(N->getFlags()); 2031 Record.push_back(N->getAlignInBits()); 2032 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2033 2034 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2035 Record.clear(); 2036 } 2037 2038 void ModuleBitcodeWriter::writeDILabel( 2039 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2040 unsigned Abbrev) { 2041 Record.push_back((uint64_t)N->isDistinct()); 2042 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2045 Record.push_back(N->getLine()); 2046 2047 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2048 Record.clear(); 2049 } 2050 2051 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2052 SmallVectorImpl<uint64_t> &Record, 2053 unsigned Abbrev) { 2054 Record.reserve(N->getElements().size() + 1); 2055 const uint64_t Version = 3 << 1; 2056 Record.push_back((uint64_t)N->isDistinct() | Version); 2057 Record.append(N->elements_begin(), N->elements_end()); 2058 2059 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2060 Record.clear(); 2061 } 2062 2063 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2064 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2065 unsigned Abbrev) { 2066 Record.push_back(N->isDistinct()); 2067 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2068 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2069 2070 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2071 Record.clear(); 2072 } 2073 2074 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2075 SmallVectorImpl<uint64_t> &Record, 2076 unsigned Abbrev) { 2077 Record.push_back(N->isDistinct()); 2078 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2079 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2080 Record.push_back(N->getLine()); 2081 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2082 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2083 Record.push_back(N->getAttributes()); 2084 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2085 2086 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2087 Record.clear(); 2088 } 2089 2090 void ModuleBitcodeWriter::writeDIImportedEntity( 2091 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2092 unsigned Abbrev) { 2093 Record.push_back(N->isDistinct()); 2094 Record.push_back(N->getTag()); 2095 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2096 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2097 Record.push_back(N->getLine()); 2098 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2099 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2100 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2101 2102 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2103 Record.clear(); 2104 } 2105 2106 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2107 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2108 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2111 return Stream.EmitAbbrev(std::move(Abbv)); 2112 } 2113 2114 void ModuleBitcodeWriter::writeNamedMetadata( 2115 SmallVectorImpl<uint64_t> &Record) { 2116 if (M.named_metadata_empty()) 2117 return; 2118 2119 unsigned Abbrev = createNamedMetadataAbbrev(); 2120 for (const NamedMDNode &NMD : M.named_metadata()) { 2121 // Write name. 2122 StringRef Str = NMD.getName(); 2123 Record.append(Str.bytes_begin(), Str.bytes_end()); 2124 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2125 Record.clear(); 2126 2127 // Write named metadata operands. 2128 for (const MDNode *N : NMD.operands()) 2129 Record.push_back(VE.getMetadataID(N)); 2130 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2131 Record.clear(); 2132 } 2133 } 2134 2135 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2136 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2137 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2138 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2141 return Stream.EmitAbbrev(std::move(Abbv)); 2142 } 2143 2144 /// Write out a record for MDString. 2145 /// 2146 /// All the metadata strings in a metadata block are emitted in a single 2147 /// record. The sizes and strings themselves are shoved into a blob. 2148 void ModuleBitcodeWriter::writeMetadataStrings( 2149 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2150 if (Strings.empty()) 2151 return; 2152 2153 // Start the record with the number of strings. 2154 Record.push_back(bitc::METADATA_STRINGS); 2155 Record.push_back(Strings.size()); 2156 2157 // Emit the sizes of the strings in the blob. 2158 SmallString<256> Blob; 2159 { 2160 BitstreamWriter W(Blob); 2161 for (const Metadata *MD : Strings) 2162 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2163 W.FlushToWord(); 2164 } 2165 2166 // Add the offset to the strings to the record. 2167 Record.push_back(Blob.size()); 2168 2169 // Add the strings to the blob. 2170 for (const Metadata *MD : Strings) 2171 Blob.append(cast<MDString>(MD)->getString()); 2172 2173 // Emit the final record. 2174 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2175 Record.clear(); 2176 } 2177 2178 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2179 enum MetadataAbbrev : unsigned { 2180 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2181 #include "llvm/IR/Metadata.def" 2182 LastPlusOne 2183 }; 2184 2185 void ModuleBitcodeWriter::writeMetadataRecords( 2186 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2187 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2188 if (MDs.empty()) 2189 return; 2190 2191 // Initialize MDNode abbreviations. 2192 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2193 #include "llvm/IR/Metadata.def" 2194 2195 for (const Metadata *MD : MDs) { 2196 if (IndexPos) 2197 IndexPos->push_back(Stream.GetCurrentBitNo()); 2198 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2199 assert(N->isResolved() && "Expected forward references to be resolved"); 2200 2201 switch (N->getMetadataID()) { 2202 default: 2203 llvm_unreachable("Invalid MDNode subclass"); 2204 #define HANDLE_MDNODE_LEAF(CLASS) \ 2205 case Metadata::CLASS##Kind: \ 2206 if (MDAbbrevs) \ 2207 write##CLASS(cast<CLASS>(N), Record, \ 2208 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2209 else \ 2210 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2211 continue; 2212 #include "llvm/IR/Metadata.def" 2213 } 2214 } 2215 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2216 } 2217 } 2218 2219 void ModuleBitcodeWriter::writeModuleMetadata() { 2220 if (!VE.hasMDs() && M.named_metadata_empty()) 2221 return; 2222 2223 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2224 SmallVector<uint64_t, 64> Record; 2225 2226 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2227 // block and load any metadata. 2228 std::vector<unsigned> MDAbbrevs; 2229 2230 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2231 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2232 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2233 createGenericDINodeAbbrev(); 2234 2235 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2236 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2238 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2239 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2240 2241 Abbv = std::make_shared<BitCodeAbbrev>(); 2242 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2245 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2246 2247 // Emit MDStrings together upfront. 2248 writeMetadataStrings(VE.getMDStrings(), Record); 2249 2250 // We only emit an index for the metadata record if we have more than a given 2251 // (naive) threshold of metadatas, otherwise it is not worth it. 2252 if (VE.getNonMDStrings().size() > IndexThreshold) { 2253 // Write a placeholder value in for the offset of the metadata index, 2254 // which is written after the records, so that it can include 2255 // the offset of each entry. The placeholder offset will be 2256 // updated after all records are emitted. 2257 uint64_t Vals[] = {0, 0}; 2258 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2259 } 2260 2261 // Compute and save the bit offset to the current position, which will be 2262 // patched when we emit the index later. We can simply subtract the 64-bit 2263 // fixed size from the current bit number to get the location to backpatch. 2264 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2265 2266 // This index will contain the bitpos for each individual record. 2267 std::vector<uint64_t> IndexPos; 2268 IndexPos.reserve(VE.getNonMDStrings().size()); 2269 2270 // Write all the records 2271 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2272 2273 if (VE.getNonMDStrings().size() > IndexThreshold) { 2274 // Now that we have emitted all the records we will emit the index. But 2275 // first 2276 // backpatch the forward reference so that the reader can skip the records 2277 // efficiently. 2278 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2279 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2280 2281 // Delta encode the index. 2282 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2283 for (auto &Elt : IndexPos) { 2284 auto EltDelta = Elt - PreviousValue; 2285 PreviousValue = Elt; 2286 Elt = EltDelta; 2287 } 2288 // Emit the index record. 2289 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2290 IndexPos.clear(); 2291 } 2292 2293 // Write the named metadata now. 2294 writeNamedMetadata(Record); 2295 2296 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2297 SmallVector<uint64_t, 4> Record; 2298 Record.push_back(VE.getValueID(&GO)); 2299 pushGlobalMetadataAttachment(Record, GO); 2300 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2301 }; 2302 for (const Function &F : M) 2303 if (F.isDeclaration() && F.hasMetadata()) 2304 AddDeclAttachedMetadata(F); 2305 // FIXME: Only store metadata for declarations here, and move data for global 2306 // variable definitions to a separate block (PR28134). 2307 for (const GlobalVariable &GV : M.globals()) 2308 if (GV.hasMetadata()) 2309 AddDeclAttachedMetadata(GV); 2310 2311 Stream.ExitBlock(); 2312 } 2313 2314 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2315 if (!VE.hasMDs()) 2316 return; 2317 2318 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2319 SmallVector<uint64_t, 64> Record; 2320 writeMetadataStrings(VE.getMDStrings(), Record); 2321 writeMetadataRecords(VE.getNonMDStrings(), Record); 2322 Stream.ExitBlock(); 2323 } 2324 2325 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2326 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2327 // [n x [id, mdnode]] 2328 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2329 GO.getAllMetadata(MDs); 2330 for (const auto &I : MDs) { 2331 Record.push_back(I.first); 2332 Record.push_back(VE.getMetadataID(I.second)); 2333 } 2334 } 2335 2336 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2337 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2338 2339 SmallVector<uint64_t, 64> Record; 2340 2341 if (F.hasMetadata()) { 2342 pushGlobalMetadataAttachment(Record, F); 2343 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2344 Record.clear(); 2345 } 2346 2347 // Write metadata attachments 2348 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2349 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2350 for (const BasicBlock &BB : F) 2351 for (const Instruction &I : BB) { 2352 MDs.clear(); 2353 I.getAllMetadataOtherThanDebugLoc(MDs); 2354 2355 // If no metadata, ignore instruction. 2356 if (MDs.empty()) continue; 2357 2358 Record.push_back(VE.getInstructionID(&I)); 2359 2360 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2361 Record.push_back(MDs[i].first); 2362 Record.push_back(VE.getMetadataID(MDs[i].second)); 2363 } 2364 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2365 Record.clear(); 2366 } 2367 2368 Stream.ExitBlock(); 2369 } 2370 2371 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2372 SmallVector<uint64_t, 64> Record; 2373 2374 // Write metadata kinds 2375 // METADATA_KIND - [n x [id, name]] 2376 SmallVector<StringRef, 8> Names; 2377 M.getMDKindNames(Names); 2378 2379 if (Names.empty()) return; 2380 2381 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2382 2383 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2384 Record.push_back(MDKindID); 2385 StringRef KName = Names[MDKindID]; 2386 Record.append(KName.begin(), KName.end()); 2387 2388 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2389 Record.clear(); 2390 } 2391 2392 Stream.ExitBlock(); 2393 } 2394 2395 void ModuleBitcodeWriter::writeOperandBundleTags() { 2396 // Write metadata kinds 2397 // 2398 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2399 // 2400 // OPERAND_BUNDLE_TAG - [strchr x N] 2401 2402 SmallVector<StringRef, 8> Tags; 2403 M.getOperandBundleTags(Tags); 2404 2405 if (Tags.empty()) 2406 return; 2407 2408 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2409 2410 SmallVector<uint64_t, 64> Record; 2411 2412 for (auto Tag : Tags) { 2413 Record.append(Tag.begin(), Tag.end()); 2414 2415 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2416 Record.clear(); 2417 } 2418 2419 Stream.ExitBlock(); 2420 } 2421 2422 void ModuleBitcodeWriter::writeSyncScopeNames() { 2423 SmallVector<StringRef, 8> SSNs; 2424 M.getContext().getSyncScopeNames(SSNs); 2425 if (SSNs.empty()) 2426 return; 2427 2428 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2429 2430 SmallVector<uint64_t, 64> Record; 2431 for (auto SSN : SSNs) { 2432 Record.append(SSN.begin(), SSN.end()); 2433 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2434 Record.clear(); 2435 } 2436 2437 Stream.ExitBlock(); 2438 } 2439 2440 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2441 bool isGlobal) { 2442 if (FirstVal == LastVal) return; 2443 2444 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2445 2446 unsigned AggregateAbbrev = 0; 2447 unsigned String8Abbrev = 0; 2448 unsigned CString7Abbrev = 0; 2449 unsigned CString6Abbrev = 0; 2450 // If this is a constant pool for the module, emit module-specific abbrevs. 2451 if (isGlobal) { 2452 // Abbrev for CST_CODE_AGGREGATE. 2453 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2454 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2457 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2458 2459 // Abbrev for CST_CODE_STRING. 2460 Abbv = std::make_shared<BitCodeAbbrev>(); 2461 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2464 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2465 // Abbrev for CST_CODE_CSTRING. 2466 Abbv = std::make_shared<BitCodeAbbrev>(); 2467 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2470 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2471 // Abbrev for CST_CODE_CSTRING. 2472 Abbv = std::make_shared<BitCodeAbbrev>(); 2473 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2476 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2477 } 2478 2479 SmallVector<uint64_t, 64> Record; 2480 2481 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2482 Type *LastTy = nullptr; 2483 for (unsigned i = FirstVal; i != LastVal; ++i) { 2484 const Value *V = Vals[i].first; 2485 // If we need to switch types, do so now. 2486 if (V->getType() != LastTy) { 2487 LastTy = V->getType(); 2488 Record.push_back(VE.getTypeID(LastTy)); 2489 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2490 CONSTANTS_SETTYPE_ABBREV); 2491 Record.clear(); 2492 } 2493 2494 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2495 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2496 Record.push_back( 2497 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2498 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2499 2500 // Add the asm string. 2501 const std::string &AsmStr = IA->getAsmString(); 2502 Record.push_back(AsmStr.size()); 2503 Record.append(AsmStr.begin(), AsmStr.end()); 2504 2505 // Add the constraint string. 2506 const std::string &ConstraintStr = IA->getConstraintString(); 2507 Record.push_back(ConstraintStr.size()); 2508 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2509 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2510 Record.clear(); 2511 continue; 2512 } 2513 const Constant *C = cast<Constant>(V); 2514 unsigned Code = -1U; 2515 unsigned AbbrevToUse = 0; 2516 if (C->isNullValue()) { 2517 Code = bitc::CST_CODE_NULL; 2518 } else if (isa<PoisonValue>(C)) { 2519 Code = bitc::CST_CODE_POISON; 2520 } else if (isa<UndefValue>(C)) { 2521 Code = bitc::CST_CODE_UNDEF; 2522 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2523 if (IV->getBitWidth() <= 64) { 2524 uint64_t V = IV->getSExtValue(); 2525 emitSignedInt64(Record, V); 2526 Code = bitc::CST_CODE_INTEGER; 2527 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2528 } else { // Wide integers, > 64 bits in size. 2529 emitWideAPInt(Record, IV->getValue()); 2530 Code = bitc::CST_CODE_WIDE_INTEGER; 2531 } 2532 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2533 Code = bitc::CST_CODE_FLOAT; 2534 Type *Ty = CFP->getType(); 2535 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2536 Ty->isDoubleTy()) { 2537 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2538 } else if (Ty->isX86_FP80Ty()) { 2539 // api needed to prevent premature destruction 2540 // bits are not in the same order as a normal i80 APInt, compensate. 2541 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2542 const uint64_t *p = api.getRawData(); 2543 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2544 Record.push_back(p[0] & 0xffffLL); 2545 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2546 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2547 const uint64_t *p = api.getRawData(); 2548 Record.push_back(p[0]); 2549 Record.push_back(p[1]); 2550 } else { 2551 assert(0 && "Unknown FP type!"); 2552 } 2553 } else if (isa<ConstantDataSequential>(C) && 2554 cast<ConstantDataSequential>(C)->isString()) { 2555 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2556 // Emit constant strings specially. 2557 unsigned NumElts = Str->getNumElements(); 2558 // If this is a null-terminated string, use the denser CSTRING encoding. 2559 if (Str->isCString()) { 2560 Code = bitc::CST_CODE_CSTRING; 2561 --NumElts; // Don't encode the null, which isn't allowed by char6. 2562 } else { 2563 Code = bitc::CST_CODE_STRING; 2564 AbbrevToUse = String8Abbrev; 2565 } 2566 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2567 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2568 for (unsigned i = 0; i != NumElts; ++i) { 2569 unsigned char V = Str->getElementAsInteger(i); 2570 Record.push_back(V); 2571 isCStr7 &= (V & 128) == 0; 2572 if (isCStrChar6) 2573 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2574 } 2575 2576 if (isCStrChar6) 2577 AbbrevToUse = CString6Abbrev; 2578 else if (isCStr7) 2579 AbbrevToUse = CString7Abbrev; 2580 } else if (const ConstantDataSequential *CDS = 2581 dyn_cast<ConstantDataSequential>(C)) { 2582 Code = bitc::CST_CODE_DATA; 2583 Type *EltTy = CDS->getElementType(); 2584 if (isa<IntegerType>(EltTy)) { 2585 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2586 Record.push_back(CDS->getElementAsInteger(i)); 2587 } else { 2588 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2589 Record.push_back( 2590 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2591 } 2592 } else if (isa<ConstantAggregate>(C)) { 2593 Code = bitc::CST_CODE_AGGREGATE; 2594 for (const Value *Op : C->operands()) 2595 Record.push_back(VE.getValueID(Op)); 2596 AbbrevToUse = AggregateAbbrev; 2597 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2598 switch (CE->getOpcode()) { 2599 default: 2600 if (Instruction::isCast(CE->getOpcode())) { 2601 Code = bitc::CST_CODE_CE_CAST; 2602 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2603 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2604 Record.push_back(VE.getValueID(C->getOperand(0))); 2605 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2606 } else { 2607 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2608 Code = bitc::CST_CODE_CE_BINOP; 2609 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2610 Record.push_back(VE.getValueID(C->getOperand(0))); 2611 Record.push_back(VE.getValueID(C->getOperand(1))); 2612 uint64_t Flags = getOptimizationFlags(CE); 2613 if (Flags != 0) 2614 Record.push_back(Flags); 2615 } 2616 break; 2617 case Instruction::FNeg: { 2618 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2619 Code = bitc::CST_CODE_CE_UNOP; 2620 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2621 Record.push_back(VE.getValueID(C->getOperand(0))); 2622 uint64_t Flags = getOptimizationFlags(CE); 2623 if (Flags != 0) 2624 Record.push_back(Flags); 2625 break; 2626 } 2627 case Instruction::GetElementPtr: { 2628 Code = bitc::CST_CODE_CE_GEP; 2629 const auto *GO = cast<GEPOperator>(C); 2630 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2631 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2632 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2633 Record.push_back((*Idx << 1) | GO->isInBounds()); 2634 } else if (GO->isInBounds()) 2635 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2636 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2637 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2638 Record.push_back(VE.getValueID(C->getOperand(i))); 2639 } 2640 break; 2641 } 2642 case Instruction::Select: 2643 Code = bitc::CST_CODE_CE_SELECT; 2644 Record.push_back(VE.getValueID(C->getOperand(0))); 2645 Record.push_back(VE.getValueID(C->getOperand(1))); 2646 Record.push_back(VE.getValueID(C->getOperand(2))); 2647 break; 2648 case Instruction::ExtractElement: 2649 Code = bitc::CST_CODE_CE_EXTRACTELT; 2650 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2651 Record.push_back(VE.getValueID(C->getOperand(0))); 2652 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2653 Record.push_back(VE.getValueID(C->getOperand(1))); 2654 break; 2655 case Instruction::InsertElement: 2656 Code = bitc::CST_CODE_CE_INSERTELT; 2657 Record.push_back(VE.getValueID(C->getOperand(0))); 2658 Record.push_back(VE.getValueID(C->getOperand(1))); 2659 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2660 Record.push_back(VE.getValueID(C->getOperand(2))); 2661 break; 2662 case Instruction::ShuffleVector: 2663 // If the return type and argument types are the same, this is a 2664 // standard shufflevector instruction. If the types are different, 2665 // then the shuffle is widening or truncating the input vectors, and 2666 // the argument type must also be encoded. 2667 if (C->getType() == C->getOperand(0)->getType()) { 2668 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2669 } else { 2670 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2671 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2672 } 2673 Record.push_back(VE.getValueID(C->getOperand(0))); 2674 Record.push_back(VE.getValueID(C->getOperand(1))); 2675 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2676 break; 2677 case Instruction::ICmp: 2678 case Instruction::FCmp: 2679 Code = bitc::CST_CODE_CE_CMP; 2680 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2681 Record.push_back(VE.getValueID(C->getOperand(0))); 2682 Record.push_back(VE.getValueID(C->getOperand(1))); 2683 Record.push_back(CE->getPredicate()); 2684 break; 2685 } 2686 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2687 Code = bitc::CST_CODE_BLOCKADDRESS; 2688 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2689 Record.push_back(VE.getValueID(BA->getFunction())); 2690 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2691 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2692 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2693 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2694 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2695 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2696 Code = bitc::CST_CODE_NO_CFI_VALUE; 2697 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2698 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2699 } else { 2700 #ifndef NDEBUG 2701 C->dump(); 2702 #endif 2703 llvm_unreachable("Unknown constant!"); 2704 } 2705 Stream.EmitRecord(Code, Record, AbbrevToUse); 2706 Record.clear(); 2707 } 2708 2709 Stream.ExitBlock(); 2710 } 2711 2712 void ModuleBitcodeWriter::writeModuleConstants() { 2713 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2714 2715 // Find the first constant to emit, which is the first non-globalvalue value. 2716 // We know globalvalues have been emitted by WriteModuleInfo. 2717 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2718 if (!isa<GlobalValue>(Vals[i].first)) { 2719 writeConstants(i, Vals.size(), true); 2720 return; 2721 } 2722 } 2723 } 2724 2725 /// pushValueAndType - The file has to encode both the value and type id for 2726 /// many values, because we need to know what type to create for forward 2727 /// references. However, most operands are not forward references, so this type 2728 /// field is not needed. 2729 /// 2730 /// This function adds V's value ID to Vals. If the value ID is higher than the 2731 /// instruction ID, then it is a forward reference, and it also includes the 2732 /// type ID. The value ID that is written is encoded relative to the InstID. 2733 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2734 SmallVectorImpl<unsigned> &Vals) { 2735 unsigned ValID = VE.getValueID(V); 2736 // Make encoding relative to the InstID. 2737 Vals.push_back(InstID - ValID); 2738 if (ValID >= InstID) { 2739 Vals.push_back(VE.getTypeID(V->getType())); 2740 return true; 2741 } 2742 return false; 2743 } 2744 2745 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2746 unsigned InstID) { 2747 SmallVector<unsigned, 64> Record; 2748 LLVMContext &C = CS.getContext(); 2749 2750 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2751 const auto &Bundle = CS.getOperandBundleAt(i); 2752 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2753 2754 for (auto &Input : Bundle.Inputs) 2755 pushValueAndType(Input, InstID, Record); 2756 2757 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2758 Record.clear(); 2759 } 2760 } 2761 2762 /// pushValue - Like pushValueAndType, but where the type of the value is 2763 /// omitted (perhaps it was already encoded in an earlier operand). 2764 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2765 SmallVectorImpl<unsigned> &Vals) { 2766 unsigned ValID = VE.getValueID(V); 2767 Vals.push_back(InstID - ValID); 2768 } 2769 2770 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2771 SmallVectorImpl<uint64_t> &Vals) { 2772 unsigned ValID = VE.getValueID(V); 2773 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2774 emitSignedInt64(Vals, diff); 2775 } 2776 2777 /// WriteInstruction - Emit an instruction to the specified stream. 2778 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2779 unsigned InstID, 2780 SmallVectorImpl<unsigned> &Vals) { 2781 unsigned Code = 0; 2782 unsigned AbbrevToUse = 0; 2783 VE.setInstructionID(&I); 2784 switch (I.getOpcode()) { 2785 default: 2786 if (Instruction::isCast(I.getOpcode())) { 2787 Code = bitc::FUNC_CODE_INST_CAST; 2788 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2789 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2790 Vals.push_back(VE.getTypeID(I.getType())); 2791 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2792 } else { 2793 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2794 Code = bitc::FUNC_CODE_INST_BINOP; 2795 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2796 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2797 pushValue(I.getOperand(1), InstID, Vals); 2798 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2799 uint64_t Flags = getOptimizationFlags(&I); 2800 if (Flags != 0) { 2801 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2802 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2803 Vals.push_back(Flags); 2804 } 2805 } 2806 break; 2807 case Instruction::FNeg: { 2808 Code = bitc::FUNC_CODE_INST_UNOP; 2809 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2810 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2811 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2812 uint64_t Flags = getOptimizationFlags(&I); 2813 if (Flags != 0) { 2814 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2815 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2816 Vals.push_back(Flags); 2817 } 2818 break; 2819 } 2820 case Instruction::GetElementPtr: { 2821 Code = bitc::FUNC_CODE_INST_GEP; 2822 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2823 auto &GEPInst = cast<GetElementPtrInst>(I); 2824 Vals.push_back(GEPInst.isInBounds()); 2825 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2826 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2827 pushValueAndType(I.getOperand(i), InstID, Vals); 2828 break; 2829 } 2830 case Instruction::ExtractValue: { 2831 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2832 pushValueAndType(I.getOperand(0), InstID, Vals); 2833 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2834 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2835 break; 2836 } 2837 case Instruction::InsertValue: { 2838 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2839 pushValueAndType(I.getOperand(0), InstID, Vals); 2840 pushValueAndType(I.getOperand(1), InstID, Vals); 2841 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2842 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2843 break; 2844 } 2845 case Instruction::Select: { 2846 Code = bitc::FUNC_CODE_INST_VSELECT; 2847 pushValueAndType(I.getOperand(1), InstID, Vals); 2848 pushValue(I.getOperand(2), InstID, Vals); 2849 pushValueAndType(I.getOperand(0), InstID, Vals); 2850 uint64_t Flags = getOptimizationFlags(&I); 2851 if (Flags != 0) 2852 Vals.push_back(Flags); 2853 break; 2854 } 2855 case Instruction::ExtractElement: 2856 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2857 pushValueAndType(I.getOperand(0), InstID, Vals); 2858 pushValueAndType(I.getOperand(1), InstID, Vals); 2859 break; 2860 case Instruction::InsertElement: 2861 Code = bitc::FUNC_CODE_INST_INSERTELT; 2862 pushValueAndType(I.getOperand(0), InstID, Vals); 2863 pushValue(I.getOperand(1), InstID, Vals); 2864 pushValueAndType(I.getOperand(2), InstID, Vals); 2865 break; 2866 case Instruction::ShuffleVector: 2867 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2868 pushValueAndType(I.getOperand(0), InstID, Vals); 2869 pushValue(I.getOperand(1), InstID, Vals); 2870 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2871 Vals); 2872 break; 2873 case Instruction::ICmp: 2874 case Instruction::FCmp: { 2875 // compare returning Int1Ty or vector of Int1Ty 2876 Code = bitc::FUNC_CODE_INST_CMP2; 2877 pushValueAndType(I.getOperand(0), InstID, Vals); 2878 pushValue(I.getOperand(1), InstID, Vals); 2879 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2880 uint64_t Flags = getOptimizationFlags(&I); 2881 if (Flags != 0) 2882 Vals.push_back(Flags); 2883 break; 2884 } 2885 2886 case Instruction::Ret: 2887 { 2888 Code = bitc::FUNC_CODE_INST_RET; 2889 unsigned NumOperands = I.getNumOperands(); 2890 if (NumOperands == 0) 2891 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2892 else if (NumOperands == 1) { 2893 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2894 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2895 } else { 2896 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2897 pushValueAndType(I.getOperand(i), InstID, Vals); 2898 } 2899 } 2900 break; 2901 case Instruction::Br: 2902 { 2903 Code = bitc::FUNC_CODE_INST_BR; 2904 const BranchInst &II = cast<BranchInst>(I); 2905 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2906 if (II.isConditional()) { 2907 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2908 pushValue(II.getCondition(), InstID, Vals); 2909 } 2910 } 2911 break; 2912 case Instruction::Switch: 2913 { 2914 Code = bitc::FUNC_CODE_INST_SWITCH; 2915 const SwitchInst &SI = cast<SwitchInst>(I); 2916 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2917 pushValue(SI.getCondition(), InstID, Vals); 2918 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2919 for (auto Case : SI.cases()) { 2920 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2921 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2922 } 2923 } 2924 break; 2925 case Instruction::IndirectBr: 2926 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2927 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2928 // Encode the address operand as relative, but not the basic blocks. 2929 pushValue(I.getOperand(0), InstID, Vals); 2930 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2931 Vals.push_back(VE.getValueID(I.getOperand(i))); 2932 break; 2933 2934 case Instruction::Invoke: { 2935 const InvokeInst *II = cast<InvokeInst>(&I); 2936 const Value *Callee = II->getCalledOperand(); 2937 FunctionType *FTy = II->getFunctionType(); 2938 2939 if (II->hasOperandBundles()) 2940 writeOperandBundles(*II, InstID); 2941 2942 Code = bitc::FUNC_CODE_INST_INVOKE; 2943 2944 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2945 Vals.push_back(II->getCallingConv() | 1 << 13); 2946 Vals.push_back(VE.getValueID(II->getNormalDest())); 2947 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2948 Vals.push_back(VE.getTypeID(FTy)); 2949 pushValueAndType(Callee, InstID, Vals); 2950 2951 // Emit value #'s for the fixed parameters. 2952 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2953 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2954 2955 // Emit type/value pairs for varargs params. 2956 if (FTy->isVarArg()) { 2957 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2958 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2959 } 2960 break; 2961 } 2962 case Instruction::Resume: 2963 Code = bitc::FUNC_CODE_INST_RESUME; 2964 pushValueAndType(I.getOperand(0), InstID, Vals); 2965 break; 2966 case Instruction::CleanupRet: { 2967 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2968 const auto &CRI = cast<CleanupReturnInst>(I); 2969 pushValue(CRI.getCleanupPad(), InstID, Vals); 2970 if (CRI.hasUnwindDest()) 2971 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2972 break; 2973 } 2974 case Instruction::CatchRet: { 2975 Code = bitc::FUNC_CODE_INST_CATCHRET; 2976 const auto &CRI = cast<CatchReturnInst>(I); 2977 pushValue(CRI.getCatchPad(), InstID, Vals); 2978 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2979 break; 2980 } 2981 case Instruction::CleanupPad: 2982 case Instruction::CatchPad: { 2983 const auto &FuncletPad = cast<FuncletPadInst>(I); 2984 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2985 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2986 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2987 2988 unsigned NumArgOperands = FuncletPad.arg_size(); 2989 Vals.push_back(NumArgOperands); 2990 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2991 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2992 break; 2993 } 2994 case Instruction::CatchSwitch: { 2995 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2996 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2997 2998 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2999 3000 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3001 Vals.push_back(NumHandlers); 3002 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3003 Vals.push_back(VE.getValueID(CatchPadBB)); 3004 3005 if (CatchSwitch.hasUnwindDest()) 3006 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3007 break; 3008 } 3009 case Instruction::CallBr: { 3010 const CallBrInst *CBI = cast<CallBrInst>(&I); 3011 const Value *Callee = CBI->getCalledOperand(); 3012 FunctionType *FTy = CBI->getFunctionType(); 3013 3014 if (CBI->hasOperandBundles()) 3015 writeOperandBundles(*CBI, InstID); 3016 3017 Code = bitc::FUNC_CODE_INST_CALLBR; 3018 3019 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3020 3021 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3022 1 << bitc::CALL_EXPLICIT_TYPE); 3023 3024 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3025 Vals.push_back(CBI->getNumIndirectDests()); 3026 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3027 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3028 3029 Vals.push_back(VE.getTypeID(FTy)); 3030 pushValueAndType(Callee, InstID, Vals); 3031 3032 // Emit value #'s for the fixed parameters. 3033 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3034 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3035 3036 // Emit type/value pairs for varargs params. 3037 if (FTy->isVarArg()) { 3038 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3039 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3040 } 3041 break; 3042 } 3043 case Instruction::Unreachable: 3044 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3045 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3046 break; 3047 3048 case Instruction::PHI: { 3049 const PHINode &PN = cast<PHINode>(I); 3050 Code = bitc::FUNC_CODE_INST_PHI; 3051 // With the newer instruction encoding, forward references could give 3052 // negative valued IDs. This is most common for PHIs, so we use 3053 // signed VBRs. 3054 SmallVector<uint64_t, 128> Vals64; 3055 Vals64.push_back(VE.getTypeID(PN.getType())); 3056 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3057 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3058 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3059 } 3060 3061 uint64_t Flags = getOptimizationFlags(&I); 3062 if (Flags != 0) 3063 Vals64.push_back(Flags); 3064 3065 // Emit a Vals64 vector and exit. 3066 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3067 Vals64.clear(); 3068 return; 3069 } 3070 3071 case Instruction::LandingPad: { 3072 const LandingPadInst &LP = cast<LandingPadInst>(I); 3073 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3074 Vals.push_back(VE.getTypeID(LP.getType())); 3075 Vals.push_back(LP.isCleanup()); 3076 Vals.push_back(LP.getNumClauses()); 3077 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3078 if (LP.isCatch(I)) 3079 Vals.push_back(LandingPadInst::Catch); 3080 else 3081 Vals.push_back(LandingPadInst::Filter); 3082 pushValueAndType(LP.getClause(I), InstID, Vals); 3083 } 3084 break; 3085 } 3086 3087 case Instruction::Alloca: { 3088 Code = bitc::FUNC_CODE_INST_ALLOCA; 3089 const AllocaInst &AI = cast<AllocaInst>(I); 3090 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3091 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3092 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3093 using APV = AllocaPackedValues; 3094 unsigned Record = 0; 3095 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3096 Bitfield::set<APV::AlignLower>( 3097 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3098 Bitfield::set<APV::AlignUpper>(Record, 3099 EncodedAlign >> APV::AlignLower::Bits); 3100 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3101 Bitfield::set<APV::ExplicitType>(Record, true); 3102 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3103 Vals.push_back(Record); 3104 3105 unsigned AS = AI.getAddressSpace(); 3106 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3107 Vals.push_back(AS); 3108 break; 3109 } 3110 3111 case Instruction::Load: 3112 if (cast<LoadInst>(I).isAtomic()) { 3113 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3114 pushValueAndType(I.getOperand(0), InstID, Vals); 3115 } else { 3116 Code = bitc::FUNC_CODE_INST_LOAD; 3117 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3118 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3119 } 3120 Vals.push_back(VE.getTypeID(I.getType())); 3121 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3122 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3123 if (cast<LoadInst>(I).isAtomic()) { 3124 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3125 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3126 } 3127 break; 3128 case Instruction::Store: 3129 if (cast<StoreInst>(I).isAtomic()) 3130 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3131 else 3132 Code = bitc::FUNC_CODE_INST_STORE; 3133 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3134 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3135 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3136 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3137 if (cast<StoreInst>(I).isAtomic()) { 3138 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3139 Vals.push_back( 3140 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3141 } 3142 break; 3143 case Instruction::AtomicCmpXchg: 3144 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3145 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3146 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3147 pushValue(I.getOperand(2), InstID, Vals); // newval. 3148 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3149 Vals.push_back( 3150 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3151 Vals.push_back( 3152 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3153 Vals.push_back( 3154 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3155 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3156 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3157 break; 3158 case Instruction::AtomicRMW: 3159 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3160 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3161 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3162 Vals.push_back( 3163 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3164 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3165 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3166 Vals.push_back( 3167 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3168 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3169 break; 3170 case Instruction::Fence: 3171 Code = bitc::FUNC_CODE_INST_FENCE; 3172 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3173 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3174 break; 3175 case Instruction::Call: { 3176 const CallInst &CI = cast<CallInst>(I); 3177 FunctionType *FTy = CI.getFunctionType(); 3178 3179 if (CI.hasOperandBundles()) 3180 writeOperandBundles(CI, InstID); 3181 3182 Code = bitc::FUNC_CODE_INST_CALL; 3183 3184 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3185 3186 unsigned Flags = getOptimizationFlags(&I); 3187 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3188 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3189 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3190 1 << bitc::CALL_EXPLICIT_TYPE | 3191 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3192 unsigned(Flags != 0) << bitc::CALL_FMF); 3193 if (Flags != 0) 3194 Vals.push_back(Flags); 3195 3196 Vals.push_back(VE.getTypeID(FTy)); 3197 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3198 3199 // Emit value #'s for the fixed parameters. 3200 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3201 // Check for labels (can happen with asm labels). 3202 if (FTy->getParamType(i)->isLabelTy()) 3203 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3204 else 3205 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3206 } 3207 3208 // Emit type/value pairs for varargs params. 3209 if (FTy->isVarArg()) { 3210 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3211 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3212 } 3213 break; 3214 } 3215 case Instruction::VAArg: 3216 Code = bitc::FUNC_CODE_INST_VAARG; 3217 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3218 pushValue(I.getOperand(0), InstID, Vals); // valist. 3219 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3220 break; 3221 case Instruction::Freeze: 3222 Code = bitc::FUNC_CODE_INST_FREEZE; 3223 pushValueAndType(I.getOperand(0), InstID, Vals); 3224 break; 3225 } 3226 3227 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3228 Vals.clear(); 3229 } 3230 3231 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3232 /// to allow clients to efficiently find the function body. 3233 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3234 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3235 // Get the offset of the VST we are writing, and backpatch it into 3236 // the VST forward declaration record. 3237 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3238 // The BitcodeStartBit was the stream offset of the identification block. 3239 VSTOffset -= bitcodeStartBit(); 3240 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3241 // Note that we add 1 here because the offset is relative to one word 3242 // before the start of the identification block, which was historically 3243 // always the start of the regular bitcode header. 3244 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3245 3246 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3247 3248 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3249 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3250 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3252 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3253 3254 for (const Function &F : M) { 3255 uint64_t Record[2]; 3256 3257 if (F.isDeclaration()) 3258 continue; 3259 3260 Record[0] = VE.getValueID(&F); 3261 3262 // Save the word offset of the function (from the start of the 3263 // actual bitcode written to the stream). 3264 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3265 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3266 // Note that we add 1 here because the offset is relative to one word 3267 // before the start of the identification block, which was historically 3268 // always the start of the regular bitcode header. 3269 Record[1] = BitcodeIndex / 32 + 1; 3270 3271 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3272 } 3273 3274 Stream.ExitBlock(); 3275 } 3276 3277 /// Emit names for arguments, instructions and basic blocks in a function. 3278 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3279 const ValueSymbolTable &VST) { 3280 if (VST.empty()) 3281 return; 3282 3283 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3284 3285 // FIXME: Set up the abbrev, we know how many values there are! 3286 // FIXME: We know if the type names can use 7-bit ascii. 3287 SmallVector<uint64_t, 64> NameVals; 3288 3289 for (const ValueName &Name : VST) { 3290 // Figure out the encoding to use for the name. 3291 StringEncoding Bits = getStringEncoding(Name.getKey()); 3292 3293 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3294 NameVals.push_back(VE.getValueID(Name.getValue())); 3295 3296 // VST_CODE_ENTRY: [valueid, namechar x N] 3297 // VST_CODE_BBENTRY: [bbid, namechar x N] 3298 unsigned Code; 3299 if (isa<BasicBlock>(Name.getValue())) { 3300 Code = bitc::VST_CODE_BBENTRY; 3301 if (Bits == SE_Char6) 3302 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3303 } else { 3304 Code = bitc::VST_CODE_ENTRY; 3305 if (Bits == SE_Char6) 3306 AbbrevToUse = VST_ENTRY_6_ABBREV; 3307 else if (Bits == SE_Fixed7) 3308 AbbrevToUse = VST_ENTRY_7_ABBREV; 3309 } 3310 3311 for (const auto P : Name.getKey()) 3312 NameVals.push_back((unsigned char)P); 3313 3314 // Emit the finished record. 3315 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3316 NameVals.clear(); 3317 } 3318 3319 Stream.ExitBlock(); 3320 } 3321 3322 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3323 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3324 unsigned Code; 3325 if (isa<BasicBlock>(Order.V)) 3326 Code = bitc::USELIST_CODE_BB; 3327 else 3328 Code = bitc::USELIST_CODE_DEFAULT; 3329 3330 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3331 Record.push_back(VE.getValueID(Order.V)); 3332 Stream.EmitRecord(Code, Record); 3333 } 3334 3335 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3336 assert(VE.shouldPreserveUseListOrder() && 3337 "Expected to be preserving use-list order"); 3338 3339 auto hasMore = [&]() { 3340 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3341 }; 3342 if (!hasMore()) 3343 // Nothing to do. 3344 return; 3345 3346 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3347 while (hasMore()) { 3348 writeUseList(std::move(VE.UseListOrders.back())); 3349 VE.UseListOrders.pop_back(); 3350 } 3351 Stream.ExitBlock(); 3352 } 3353 3354 /// Emit a function body to the module stream. 3355 void ModuleBitcodeWriter::writeFunction( 3356 const Function &F, 3357 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3358 // Save the bitcode index of the start of this function block for recording 3359 // in the VST. 3360 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3361 3362 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3363 VE.incorporateFunction(F); 3364 3365 SmallVector<unsigned, 64> Vals; 3366 3367 // Emit the number of basic blocks, so the reader can create them ahead of 3368 // time. 3369 Vals.push_back(VE.getBasicBlocks().size()); 3370 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3371 Vals.clear(); 3372 3373 // If there are function-local constants, emit them now. 3374 unsigned CstStart, CstEnd; 3375 VE.getFunctionConstantRange(CstStart, CstEnd); 3376 writeConstants(CstStart, CstEnd, false); 3377 3378 // If there is function-local metadata, emit it now. 3379 writeFunctionMetadata(F); 3380 3381 // Keep a running idea of what the instruction ID is. 3382 unsigned InstID = CstEnd; 3383 3384 bool NeedsMetadataAttachment = F.hasMetadata(); 3385 3386 DILocation *LastDL = nullptr; 3387 SmallSetVector<Function *, 4> BlockAddressUsers; 3388 3389 // Finally, emit all the instructions, in order. 3390 for (const BasicBlock &BB : F) { 3391 for (const Instruction &I : BB) { 3392 writeInstruction(I, InstID, Vals); 3393 3394 if (!I.getType()->isVoidTy()) 3395 ++InstID; 3396 3397 // If the instruction has metadata, write a metadata attachment later. 3398 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3399 3400 // If the instruction has a debug location, emit it. 3401 DILocation *DL = I.getDebugLoc(); 3402 if (!DL) 3403 continue; 3404 3405 if (DL == LastDL) { 3406 // Just repeat the same debug loc as last time. 3407 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3408 continue; 3409 } 3410 3411 Vals.push_back(DL->getLine()); 3412 Vals.push_back(DL->getColumn()); 3413 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3414 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3415 Vals.push_back(DL->isImplicitCode()); 3416 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3417 Vals.clear(); 3418 3419 LastDL = DL; 3420 } 3421 3422 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3423 SmallVector<Value *> Worklist{BA}; 3424 SmallPtrSet<Value *, 8> Visited{BA}; 3425 while (!Worklist.empty()) { 3426 Value *V = Worklist.pop_back_val(); 3427 for (User *U : V->users()) { 3428 if (auto *I = dyn_cast<Instruction>(U)) { 3429 Function *P = I->getFunction(); 3430 if (P != &F) 3431 BlockAddressUsers.insert(P); 3432 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3433 Visited.insert(U).second) 3434 Worklist.push_back(U); 3435 } 3436 } 3437 } 3438 } 3439 3440 if (!BlockAddressUsers.empty()) { 3441 Vals.resize(BlockAddressUsers.size()); 3442 for (auto I : llvm::enumerate(BlockAddressUsers)) 3443 Vals[I.index()] = VE.getValueID(I.value()); 3444 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3445 Vals.clear(); 3446 } 3447 3448 // Emit names for all the instructions etc. 3449 if (auto *Symtab = F.getValueSymbolTable()) 3450 writeFunctionLevelValueSymbolTable(*Symtab); 3451 3452 if (NeedsMetadataAttachment) 3453 writeFunctionMetadataAttachment(F); 3454 if (VE.shouldPreserveUseListOrder()) 3455 writeUseListBlock(&F); 3456 VE.purgeFunction(); 3457 Stream.ExitBlock(); 3458 } 3459 3460 // Emit blockinfo, which defines the standard abbreviations etc. 3461 void ModuleBitcodeWriter::writeBlockInfo() { 3462 // We only want to emit block info records for blocks that have multiple 3463 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3464 // Other blocks can define their abbrevs inline. 3465 Stream.EnterBlockInfoBlock(); 3466 3467 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3468 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3470 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3473 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3474 VST_ENTRY_8_ABBREV) 3475 llvm_unreachable("Unexpected abbrev ordering!"); 3476 } 3477 3478 { // 7-bit fixed width VST_CODE_ENTRY strings. 3479 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3480 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3484 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3485 VST_ENTRY_7_ABBREV) 3486 llvm_unreachable("Unexpected abbrev ordering!"); 3487 } 3488 { // 6-bit char6 VST_CODE_ENTRY strings. 3489 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3490 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3494 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3495 VST_ENTRY_6_ABBREV) 3496 llvm_unreachable("Unexpected abbrev ordering!"); 3497 } 3498 { // 6-bit char6 VST_CODE_BBENTRY strings. 3499 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3500 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3504 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3505 VST_BBENTRY_6_ABBREV) 3506 llvm_unreachable("Unexpected abbrev ordering!"); 3507 } 3508 3509 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3510 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3511 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3513 VE.computeBitsRequiredForTypeIndicies())); 3514 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3515 CONSTANTS_SETTYPE_ABBREV) 3516 llvm_unreachable("Unexpected abbrev ordering!"); 3517 } 3518 3519 { // INTEGER abbrev for CONSTANTS_BLOCK. 3520 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3521 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3523 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3524 CONSTANTS_INTEGER_ABBREV) 3525 llvm_unreachable("Unexpected abbrev ordering!"); 3526 } 3527 3528 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3530 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3533 VE.computeBitsRequiredForTypeIndicies())); 3534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3535 3536 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3537 CONSTANTS_CE_CAST_Abbrev) 3538 llvm_unreachable("Unexpected abbrev ordering!"); 3539 } 3540 { // NULL abbrev for CONSTANTS_BLOCK. 3541 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3542 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3543 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3544 CONSTANTS_NULL_Abbrev) 3545 llvm_unreachable("Unexpected abbrev ordering!"); 3546 } 3547 3548 // FIXME: This should only use space for first class types! 3549 3550 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3551 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3552 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3553 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3555 VE.computeBitsRequiredForTypeIndicies())); 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3558 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3559 FUNCTION_INST_LOAD_ABBREV) 3560 llvm_unreachable("Unexpected abbrev ordering!"); 3561 } 3562 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3563 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3564 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3567 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3568 FUNCTION_INST_UNOP_ABBREV) 3569 llvm_unreachable("Unexpected abbrev ordering!"); 3570 } 3571 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3572 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3573 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3577 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3578 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3579 llvm_unreachable("Unexpected abbrev ordering!"); 3580 } 3581 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3582 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3583 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3584 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3587 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3588 FUNCTION_INST_BINOP_ABBREV) 3589 llvm_unreachable("Unexpected abbrev ordering!"); 3590 } 3591 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3592 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3593 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3598 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3599 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3600 llvm_unreachable("Unexpected abbrev ordering!"); 3601 } 3602 { // INST_CAST abbrev for FUNCTION_BLOCK. 3603 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3607 VE.computeBitsRequiredForTypeIndicies())); 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3609 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3610 FUNCTION_INST_CAST_ABBREV) 3611 llvm_unreachable("Unexpected abbrev ordering!"); 3612 } 3613 3614 { // INST_RET abbrev for FUNCTION_BLOCK. 3615 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3616 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3617 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3618 FUNCTION_INST_RET_VOID_ABBREV) 3619 llvm_unreachable("Unexpected abbrev ordering!"); 3620 } 3621 { // INST_RET abbrev for FUNCTION_BLOCK. 3622 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3623 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3625 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3626 FUNCTION_INST_RET_VAL_ABBREV) 3627 llvm_unreachable("Unexpected abbrev ordering!"); 3628 } 3629 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3630 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3631 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3632 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3633 FUNCTION_INST_UNREACHABLE_ABBREV) 3634 llvm_unreachable("Unexpected abbrev ordering!"); 3635 } 3636 { 3637 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3638 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3641 Log2_32_Ceil(VE.getTypes().size() + 1))); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3644 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3645 FUNCTION_INST_GEP_ABBREV) 3646 llvm_unreachable("Unexpected abbrev ordering!"); 3647 } 3648 3649 Stream.ExitBlock(); 3650 } 3651 3652 /// Write the module path strings, currently only used when generating 3653 /// a combined index file. 3654 void IndexBitcodeWriter::writeModStrings() { 3655 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3656 3657 // TODO: See which abbrev sizes we actually need to emit 3658 3659 // 8-bit fixed-width MST_ENTRY strings. 3660 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3661 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3665 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3666 3667 // 7-bit fixed width MST_ENTRY strings. 3668 Abbv = std::make_shared<BitCodeAbbrev>(); 3669 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3673 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3674 3675 // 6-bit char6 MST_ENTRY strings. 3676 Abbv = std::make_shared<BitCodeAbbrev>(); 3677 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3678 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3681 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3682 3683 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3684 Abbv = std::make_shared<BitCodeAbbrev>(); 3685 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3686 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3687 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3691 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3692 3693 SmallVector<unsigned, 64> Vals; 3694 forEachModule( 3695 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3696 StringRef Key = MPSE.getKey(); 3697 const auto &Value = MPSE.getValue(); 3698 StringEncoding Bits = getStringEncoding(Key); 3699 unsigned AbbrevToUse = Abbrev8Bit; 3700 if (Bits == SE_Char6) 3701 AbbrevToUse = Abbrev6Bit; 3702 else if (Bits == SE_Fixed7) 3703 AbbrevToUse = Abbrev7Bit; 3704 3705 Vals.push_back(Value.first); 3706 Vals.append(Key.begin(), Key.end()); 3707 3708 // Emit the finished record. 3709 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3710 3711 // Emit an optional hash for the module now 3712 const auto &Hash = Value.second; 3713 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3714 Vals.assign(Hash.begin(), Hash.end()); 3715 // Emit the hash record. 3716 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3717 } 3718 3719 Vals.clear(); 3720 }); 3721 Stream.ExitBlock(); 3722 } 3723 3724 /// Write the function type metadata related records that need to appear before 3725 /// a function summary entry (whether per-module or combined). 3726 template <typename Fn> 3727 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3728 FunctionSummary *FS, 3729 Fn GetValueID) { 3730 if (!FS->type_tests().empty()) 3731 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3732 3733 SmallVector<uint64_t, 64> Record; 3734 3735 auto WriteVFuncIdVec = [&](uint64_t Ty, 3736 ArrayRef<FunctionSummary::VFuncId> VFs) { 3737 if (VFs.empty()) 3738 return; 3739 Record.clear(); 3740 for (auto &VF : VFs) { 3741 Record.push_back(VF.GUID); 3742 Record.push_back(VF.Offset); 3743 } 3744 Stream.EmitRecord(Ty, Record); 3745 }; 3746 3747 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3748 FS->type_test_assume_vcalls()); 3749 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3750 FS->type_checked_load_vcalls()); 3751 3752 auto WriteConstVCallVec = [&](uint64_t Ty, 3753 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3754 for (auto &VC : VCs) { 3755 Record.clear(); 3756 Record.push_back(VC.VFunc.GUID); 3757 Record.push_back(VC.VFunc.Offset); 3758 llvm::append_range(Record, VC.Args); 3759 Stream.EmitRecord(Ty, Record); 3760 } 3761 }; 3762 3763 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3764 FS->type_test_assume_const_vcalls()); 3765 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3766 FS->type_checked_load_const_vcalls()); 3767 3768 auto WriteRange = [&](ConstantRange Range) { 3769 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3770 assert(Range.getLower().getNumWords() == 1); 3771 assert(Range.getUpper().getNumWords() == 1); 3772 emitSignedInt64(Record, *Range.getLower().getRawData()); 3773 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3774 }; 3775 3776 if (!FS->paramAccesses().empty()) { 3777 Record.clear(); 3778 for (auto &Arg : FS->paramAccesses()) { 3779 size_t UndoSize = Record.size(); 3780 Record.push_back(Arg.ParamNo); 3781 WriteRange(Arg.Use); 3782 Record.push_back(Arg.Calls.size()); 3783 for (auto &Call : Arg.Calls) { 3784 Record.push_back(Call.ParamNo); 3785 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3786 if (!ValueID) { 3787 // If ValueID is unknown we can't drop just this call, we must drop 3788 // entire parameter. 3789 Record.resize(UndoSize); 3790 break; 3791 } 3792 Record.push_back(*ValueID); 3793 WriteRange(Call.Offsets); 3794 } 3795 } 3796 if (!Record.empty()) 3797 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3798 } 3799 } 3800 3801 /// Collect type IDs from type tests used by function. 3802 static void 3803 getReferencedTypeIds(FunctionSummary *FS, 3804 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3805 if (!FS->type_tests().empty()) 3806 for (auto &TT : FS->type_tests()) 3807 ReferencedTypeIds.insert(TT); 3808 3809 auto GetReferencedTypesFromVFuncIdVec = 3810 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3811 for (auto &VF : VFs) 3812 ReferencedTypeIds.insert(VF.GUID); 3813 }; 3814 3815 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3816 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3817 3818 auto GetReferencedTypesFromConstVCallVec = 3819 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3820 for (auto &VC : VCs) 3821 ReferencedTypeIds.insert(VC.VFunc.GUID); 3822 }; 3823 3824 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3825 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3826 } 3827 3828 static void writeWholeProgramDevirtResolutionByArg( 3829 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3830 const WholeProgramDevirtResolution::ByArg &ByArg) { 3831 NameVals.push_back(args.size()); 3832 llvm::append_range(NameVals, args); 3833 3834 NameVals.push_back(ByArg.TheKind); 3835 NameVals.push_back(ByArg.Info); 3836 NameVals.push_back(ByArg.Byte); 3837 NameVals.push_back(ByArg.Bit); 3838 } 3839 3840 static void writeWholeProgramDevirtResolution( 3841 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3842 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3843 NameVals.push_back(Id); 3844 3845 NameVals.push_back(Wpd.TheKind); 3846 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3847 NameVals.push_back(Wpd.SingleImplName.size()); 3848 3849 NameVals.push_back(Wpd.ResByArg.size()); 3850 for (auto &A : Wpd.ResByArg) 3851 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3852 } 3853 3854 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3855 StringTableBuilder &StrtabBuilder, 3856 const std::string &Id, 3857 const TypeIdSummary &Summary) { 3858 NameVals.push_back(StrtabBuilder.add(Id)); 3859 NameVals.push_back(Id.size()); 3860 3861 NameVals.push_back(Summary.TTRes.TheKind); 3862 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3863 NameVals.push_back(Summary.TTRes.AlignLog2); 3864 NameVals.push_back(Summary.TTRes.SizeM1); 3865 NameVals.push_back(Summary.TTRes.BitMask); 3866 NameVals.push_back(Summary.TTRes.InlineBits); 3867 3868 for (auto &W : Summary.WPDRes) 3869 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3870 W.second); 3871 } 3872 3873 static void writeTypeIdCompatibleVtableSummaryRecord( 3874 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3875 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3876 ValueEnumerator &VE) { 3877 NameVals.push_back(StrtabBuilder.add(Id)); 3878 NameVals.push_back(Id.size()); 3879 3880 for (auto &P : Summary) { 3881 NameVals.push_back(P.AddressPointOffset); 3882 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3883 } 3884 } 3885 3886 // Helper to emit a single function summary record. 3887 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3888 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3889 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3890 const Function &F) { 3891 NameVals.push_back(ValueID); 3892 3893 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3894 3895 writeFunctionTypeMetadataRecords( 3896 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3897 return {VE.getValueID(VI.getValue())}; 3898 }); 3899 3900 auto SpecialRefCnts = FS->specialRefCounts(); 3901 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3902 NameVals.push_back(FS->instCount()); 3903 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3904 NameVals.push_back(FS->refs().size()); 3905 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3906 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3907 3908 for (auto &RI : FS->refs()) 3909 NameVals.push_back(VE.getValueID(RI.getValue())); 3910 3911 bool HasProfileData = 3912 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3913 for (auto &ECI : FS->calls()) { 3914 NameVals.push_back(getValueId(ECI.first)); 3915 if (HasProfileData) 3916 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3917 else if (WriteRelBFToSummary) 3918 NameVals.push_back(ECI.second.RelBlockFreq); 3919 } 3920 3921 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3922 unsigned Code = 3923 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3924 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3925 : bitc::FS_PERMODULE)); 3926 3927 // Emit the finished record. 3928 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3929 NameVals.clear(); 3930 } 3931 3932 // Collect the global value references in the given variable's initializer, 3933 // and emit them in a summary record. 3934 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3935 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3936 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3937 auto VI = Index->getValueInfo(V.getGUID()); 3938 if (!VI || VI.getSummaryList().empty()) { 3939 // Only declarations should not have a summary (a declaration might however 3940 // have a summary if the def was in module level asm). 3941 assert(V.isDeclaration()); 3942 return; 3943 } 3944 auto *Summary = VI.getSummaryList()[0].get(); 3945 NameVals.push_back(VE.getValueID(&V)); 3946 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3947 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3948 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3949 3950 auto VTableFuncs = VS->vTableFuncs(); 3951 if (!VTableFuncs.empty()) 3952 NameVals.push_back(VS->refs().size()); 3953 3954 unsigned SizeBeforeRefs = NameVals.size(); 3955 for (auto &RI : VS->refs()) 3956 NameVals.push_back(VE.getValueID(RI.getValue())); 3957 // Sort the refs for determinism output, the vector returned by FS->refs() has 3958 // been initialized from a DenseSet. 3959 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3960 3961 if (VTableFuncs.empty()) 3962 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3963 FSModRefsAbbrev); 3964 else { 3965 // VTableFuncs pairs should already be sorted by offset. 3966 for (auto &P : VTableFuncs) { 3967 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3968 NameVals.push_back(P.VTableOffset); 3969 } 3970 3971 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3972 FSModVTableRefsAbbrev); 3973 } 3974 NameVals.clear(); 3975 } 3976 3977 /// Emit the per-module summary section alongside the rest of 3978 /// the module's bitcode. 3979 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3980 // By default we compile with ThinLTO if the module has a summary, but the 3981 // client can request full LTO with a module flag. 3982 bool IsThinLTO = true; 3983 if (auto *MD = 3984 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3985 IsThinLTO = MD->getZExtValue(); 3986 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3987 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3988 4); 3989 3990 Stream.EmitRecord( 3991 bitc::FS_VERSION, 3992 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3993 3994 // Write the index flags. 3995 uint64_t Flags = 0; 3996 // Bits 1-3 are set only in the combined index, skip them. 3997 if (Index->enableSplitLTOUnit()) 3998 Flags |= 0x8; 3999 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4000 4001 if (Index->begin() == Index->end()) { 4002 Stream.ExitBlock(); 4003 return; 4004 } 4005 4006 for (const auto &GVI : valueIds()) { 4007 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4008 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4009 } 4010 4011 // Abbrev for FS_PERMODULE_PROFILE. 4012 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4013 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4014 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4015 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4018 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4021 // numrefs x valueid, n x (valueid, hotness) 4022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4024 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4025 4026 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4027 Abbv = std::make_shared<BitCodeAbbrev>(); 4028 if (WriteRelBFToSummary) 4029 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4030 else 4031 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4035 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4036 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4037 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4038 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4039 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4042 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4043 4044 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4045 Abbv = std::make_shared<BitCodeAbbrev>(); 4046 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4051 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4052 4053 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4054 Abbv = std::make_shared<BitCodeAbbrev>(); 4055 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4056 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4059 // numrefs x valueid, n x (valueid , offset) 4060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4062 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4063 4064 // Abbrev for FS_ALIAS. 4065 Abbv = std::make_shared<BitCodeAbbrev>(); 4066 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4070 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4071 4072 // Abbrev for FS_TYPE_ID_METADATA 4073 Abbv = std::make_shared<BitCodeAbbrev>(); 4074 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4077 // n x (valueid , offset) 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4080 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4081 4082 SmallVector<uint64_t, 64> NameVals; 4083 // Iterate over the list of functions instead of the Index to 4084 // ensure the ordering is stable. 4085 for (const Function &F : M) { 4086 // Summary emission does not support anonymous functions, they have to 4087 // renamed using the anonymous function renaming pass. 4088 if (!F.hasName()) 4089 report_fatal_error("Unexpected anonymous function when writing summary"); 4090 4091 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4092 if (!VI || VI.getSummaryList().empty()) { 4093 // Only declarations should not have a summary (a declaration might 4094 // however have a summary if the def was in module level asm). 4095 assert(F.isDeclaration()); 4096 continue; 4097 } 4098 auto *Summary = VI.getSummaryList()[0].get(); 4099 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4100 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4101 } 4102 4103 // Capture references from GlobalVariable initializers, which are outside 4104 // of a function scope. 4105 for (const GlobalVariable &G : M.globals()) 4106 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4107 FSModVTableRefsAbbrev); 4108 4109 for (const GlobalAlias &A : M.aliases()) { 4110 auto *Aliasee = A.getAliaseeObject(); 4111 // Skip ifunc and nameless functions which don't have an entry in the 4112 // summary. 4113 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4114 continue; 4115 auto AliasId = VE.getValueID(&A); 4116 auto AliaseeId = VE.getValueID(Aliasee); 4117 NameVals.push_back(AliasId); 4118 auto *Summary = Index->getGlobalValueSummary(A); 4119 AliasSummary *AS = cast<AliasSummary>(Summary); 4120 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4121 NameVals.push_back(AliaseeId); 4122 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4123 NameVals.clear(); 4124 } 4125 4126 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4127 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4128 S.second, VE); 4129 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4130 TypeIdCompatibleVtableAbbrev); 4131 NameVals.clear(); 4132 } 4133 4134 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4135 ArrayRef<uint64_t>{Index->getBlockCount()}); 4136 4137 Stream.ExitBlock(); 4138 } 4139 4140 /// Emit the combined summary section into the combined index file. 4141 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4142 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4143 Stream.EmitRecord( 4144 bitc::FS_VERSION, 4145 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4146 4147 // Write the index flags. 4148 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4149 4150 for (const auto &GVI : valueIds()) { 4151 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4152 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4153 } 4154 4155 // Abbrev for FS_COMBINED. 4156 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4157 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4167 // numrefs x valueid, n x (valueid) 4168 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4170 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4171 4172 // Abbrev for FS_COMBINED_PROFILE. 4173 Abbv = std::make_shared<BitCodeAbbrev>(); 4174 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4183 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4184 // numrefs x valueid, n x (valueid, hotness) 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4187 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4188 4189 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4190 Abbv = std::make_shared<BitCodeAbbrev>(); 4191 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4197 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4198 4199 // Abbrev for FS_COMBINED_ALIAS. 4200 Abbv = std::make_shared<BitCodeAbbrev>(); 4201 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4206 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4207 4208 // The aliases are emitted as a post-pass, and will point to the value 4209 // id of the aliasee. Save them in a vector for post-processing. 4210 SmallVector<AliasSummary *, 64> Aliases; 4211 4212 // Save the value id for each summary for alias emission. 4213 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4214 4215 SmallVector<uint64_t, 64> NameVals; 4216 4217 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4218 // with the type ids referenced by this index file. 4219 std::set<GlobalValue::GUID> ReferencedTypeIds; 4220 4221 // For local linkage, we also emit the original name separately 4222 // immediately after the record. 4223 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4224 // We don't need to emit the original name if we are writing the index for 4225 // distributed backends (in which case ModuleToSummariesForIndex is 4226 // non-null). The original name is only needed during the thin link, since 4227 // for SamplePGO the indirect call targets for local functions have 4228 // have the original name annotated in profile. 4229 // Continue to emit it when writing out the entire combined index, which is 4230 // used in testing the thin link via llvm-lto. 4231 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4232 return; 4233 NameVals.push_back(S.getOriginalName()); 4234 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4235 NameVals.clear(); 4236 }; 4237 4238 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4239 forEachSummary([&](GVInfo I, bool IsAliasee) { 4240 GlobalValueSummary *S = I.second; 4241 assert(S); 4242 DefOrUseGUIDs.insert(I.first); 4243 for (const ValueInfo &VI : S->refs()) 4244 DefOrUseGUIDs.insert(VI.getGUID()); 4245 4246 auto ValueId = getValueId(I.first); 4247 assert(ValueId); 4248 SummaryToValueIdMap[S] = *ValueId; 4249 4250 // If this is invoked for an aliasee, we want to record the above 4251 // mapping, but then not emit a summary entry (if the aliasee is 4252 // to be imported, we will invoke this separately with IsAliasee=false). 4253 if (IsAliasee) 4254 return; 4255 4256 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4257 // Will process aliases as a post-pass because the reader wants all 4258 // global to be loaded first. 4259 Aliases.push_back(AS); 4260 return; 4261 } 4262 4263 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4264 NameVals.push_back(*ValueId); 4265 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4266 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4267 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4268 for (auto &RI : VS->refs()) { 4269 auto RefValueId = getValueId(RI.getGUID()); 4270 if (!RefValueId) 4271 continue; 4272 NameVals.push_back(*RefValueId); 4273 } 4274 4275 // Emit the finished record. 4276 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4277 FSModRefsAbbrev); 4278 NameVals.clear(); 4279 MaybeEmitOriginalName(*S); 4280 return; 4281 } 4282 4283 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4284 return getValueId(VI.getGUID()); 4285 }; 4286 4287 auto *FS = cast<FunctionSummary>(S); 4288 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4289 getReferencedTypeIds(FS, ReferencedTypeIds); 4290 4291 NameVals.push_back(*ValueId); 4292 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4293 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4294 NameVals.push_back(FS->instCount()); 4295 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4296 NameVals.push_back(FS->entryCount()); 4297 4298 // Fill in below 4299 NameVals.push_back(0); // numrefs 4300 NameVals.push_back(0); // rorefcnt 4301 NameVals.push_back(0); // worefcnt 4302 4303 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4304 for (auto &RI : FS->refs()) { 4305 auto RefValueId = getValueId(RI.getGUID()); 4306 if (!RefValueId) 4307 continue; 4308 NameVals.push_back(*RefValueId); 4309 if (RI.isReadOnly()) 4310 RORefCnt++; 4311 else if (RI.isWriteOnly()) 4312 WORefCnt++; 4313 Count++; 4314 } 4315 NameVals[6] = Count; 4316 NameVals[7] = RORefCnt; 4317 NameVals[8] = WORefCnt; 4318 4319 bool HasProfileData = false; 4320 for (auto &EI : FS->calls()) { 4321 HasProfileData |= 4322 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4323 if (HasProfileData) 4324 break; 4325 } 4326 4327 for (auto &EI : FS->calls()) { 4328 // If this GUID doesn't have a value id, it doesn't have a function 4329 // summary and we don't need to record any calls to it. 4330 Optional<unsigned> CallValueId = GetValueId(EI.first); 4331 if (!CallValueId) 4332 continue; 4333 NameVals.push_back(*CallValueId); 4334 if (HasProfileData) 4335 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4336 } 4337 4338 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4339 unsigned Code = 4340 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4341 4342 // Emit the finished record. 4343 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4344 NameVals.clear(); 4345 MaybeEmitOriginalName(*S); 4346 }); 4347 4348 for (auto *AS : Aliases) { 4349 auto AliasValueId = SummaryToValueIdMap[AS]; 4350 assert(AliasValueId); 4351 NameVals.push_back(AliasValueId); 4352 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4353 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4354 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4355 assert(AliaseeValueId); 4356 NameVals.push_back(AliaseeValueId); 4357 4358 // Emit the finished record. 4359 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4360 NameVals.clear(); 4361 MaybeEmitOriginalName(*AS); 4362 4363 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4364 getReferencedTypeIds(FS, ReferencedTypeIds); 4365 } 4366 4367 if (!Index.cfiFunctionDefs().empty()) { 4368 for (auto &S : Index.cfiFunctionDefs()) { 4369 if (DefOrUseGUIDs.count( 4370 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4371 NameVals.push_back(StrtabBuilder.add(S)); 4372 NameVals.push_back(S.size()); 4373 } 4374 } 4375 if (!NameVals.empty()) { 4376 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4377 NameVals.clear(); 4378 } 4379 } 4380 4381 if (!Index.cfiFunctionDecls().empty()) { 4382 for (auto &S : Index.cfiFunctionDecls()) { 4383 if (DefOrUseGUIDs.count( 4384 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4385 NameVals.push_back(StrtabBuilder.add(S)); 4386 NameVals.push_back(S.size()); 4387 } 4388 } 4389 if (!NameVals.empty()) { 4390 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4391 NameVals.clear(); 4392 } 4393 } 4394 4395 // Walk the GUIDs that were referenced, and write the 4396 // corresponding type id records. 4397 for (auto &T : ReferencedTypeIds) { 4398 auto TidIter = Index.typeIds().equal_range(T); 4399 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4400 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4401 It->second.second); 4402 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4403 NameVals.clear(); 4404 } 4405 } 4406 4407 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4408 ArrayRef<uint64_t>{Index.getBlockCount()}); 4409 4410 Stream.ExitBlock(); 4411 } 4412 4413 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4414 /// current llvm version, and a record for the epoch number. 4415 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4416 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4417 4418 // Write the "user readable" string identifying the bitcode producer 4419 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4420 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4423 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4424 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4425 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4426 4427 // Write the epoch version 4428 Abbv = std::make_shared<BitCodeAbbrev>(); 4429 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4431 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4432 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4433 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4434 Stream.ExitBlock(); 4435 } 4436 4437 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4438 // Emit the module's hash. 4439 // MODULE_CODE_HASH: [5*i32] 4440 if (GenerateHash) { 4441 uint32_t Vals[5]; 4442 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4443 Buffer.size() - BlockStartPos)); 4444 std::array<uint8_t, 20> Hash = Hasher.result(); 4445 for (int Pos = 0; Pos < 20; Pos += 4) { 4446 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4447 } 4448 4449 // Emit the finished record. 4450 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4451 4452 if (ModHash) 4453 // Save the written hash value. 4454 llvm::copy(Vals, std::begin(*ModHash)); 4455 } 4456 } 4457 4458 void ModuleBitcodeWriter::write() { 4459 writeIdentificationBlock(Stream); 4460 4461 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4462 size_t BlockStartPos = Buffer.size(); 4463 4464 writeModuleVersion(); 4465 4466 // Emit blockinfo, which defines the standard abbreviations etc. 4467 writeBlockInfo(); 4468 4469 // Emit information describing all of the types in the module. 4470 writeTypeTable(); 4471 4472 // Emit information about attribute groups. 4473 writeAttributeGroupTable(); 4474 4475 // Emit information about parameter attributes. 4476 writeAttributeTable(); 4477 4478 writeComdats(); 4479 4480 // Emit top-level description of module, including target triple, inline asm, 4481 // descriptors for global variables, and function prototype info. 4482 writeModuleInfo(); 4483 4484 // Emit constants. 4485 writeModuleConstants(); 4486 4487 // Emit metadata kind names. 4488 writeModuleMetadataKinds(); 4489 4490 // Emit metadata. 4491 writeModuleMetadata(); 4492 4493 // Emit module-level use-lists. 4494 if (VE.shouldPreserveUseListOrder()) 4495 writeUseListBlock(nullptr); 4496 4497 writeOperandBundleTags(); 4498 writeSyncScopeNames(); 4499 4500 // Emit function bodies. 4501 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4502 for (const Function &F : M) 4503 if (!F.isDeclaration()) 4504 writeFunction(F, FunctionToBitcodeIndex); 4505 4506 // Need to write after the above call to WriteFunction which populates 4507 // the summary information in the index. 4508 if (Index) 4509 writePerModuleGlobalValueSummary(); 4510 4511 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4512 4513 writeModuleHash(BlockStartPos); 4514 4515 Stream.ExitBlock(); 4516 } 4517 4518 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4519 uint32_t &Position) { 4520 support::endian::write32le(&Buffer[Position], Value); 4521 Position += 4; 4522 } 4523 4524 /// If generating a bc file on darwin, we have to emit a 4525 /// header and trailer to make it compatible with the system archiver. To do 4526 /// this we emit the following header, and then emit a trailer that pads the 4527 /// file out to be a multiple of 16 bytes. 4528 /// 4529 /// struct bc_header { 4530 /// uint32_t Magic; // 0x0B17C0DE 4531 /// uint32_t Version; // Version, currently always 0. 4532 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4533 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4534 /// uint32_t CPUType; // CPU specifier. 4535 /// ... potentially more later ... 4536 /// }; 4537 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4538 const Triple &TT) { 4539 unsigned CPUType = ~0U; 4540 4541 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4542 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4543 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4544 // specific constants here because they are implicitly part of the Darwin ABI. 4545 enum { 4546 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4547 DARWIN_CPU_TYPE_X86 = 7, 4548 DARWIN_CPU_TYPE_ARM = 12, 4549 DARWIN_CPU_TYPE_POWERPC = 18 4550 }; 4551 4552 Triple::ArchType Arch = TT.getArch(); 4553 if (Arch == Triple::x86_64) 4554 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4555 else if (Arch == Triple::x86) 4556 CPUType = DARWIN_CPU_TYPE_X86; 4557 else if (Arch == Triple::ppc) 4558 CPUType = DARWIN_CPU_TYPE_POWERPC; 4559 else if (Arch == Triple::ppc64) 4560 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4561 else if (Arch == Triple::arm || Arch == Triple::thumb) 4562 CPUType = DARWIN_CPU_TYPE_ARM; 4563 4564 // Traditional Bitcode starts after header. 4565 assert(Buffer.size() >= BWH_HeaderSize && 4566 "Expected header size to be reserved"); 4567 unsigned BCOffset = BWH_HeaderSize; 4568 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4569 4570 // Write the magic and version. 4571 unsigned Position = 0; 4572 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4573 writeInt32ToBuffer(0, Buffer, Position); // Version. 4574 writeInt32ToBuffer(BCOffset, Buffer, Position); 4575 writeInt32ToBuffer(BCSize, Buffer, Position); 4576 writeInt32ToBuffer(CPUType, Buffer, Position); 4577 4578 // If the file is not a multiple of 16 bytes, insert dummy padding. 4579 while (Buffer.size() & 15) 4580 Buffer.push_back(0); 4581 } 4582 4583 /// Helper to write the header common to all bitcode files. 4584 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4585 // Emit the file header. 4586 Stream.Emit((unsigned)'B', 8); 4587 Stream.Emit((unsigned)'C', 8); 4588 Stream.Emit(0x0, 4); 4589 Stream.Emit(0xC, 4); 4590 Stream.Emit(0xE, 4); 4591 Stream.Emit(0xD, 4); 4592 } 4593 4594 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4595 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4596 writeBitcodeHeader(*Stream); 4597 } 4598 4599 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4600 4601 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4602 Stream->EnterSubblock(Block, 3); 4603 4604 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4605 Abbv->Add(BitCodeAbbrevOp(Record)); 4606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4607 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4608 4609 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4610 4611 Stream->ExitBlock(); 4612 } 4613 4614 void BitcodeWriter::writeSymtab() { 4615 assert(!WroteStrtab && !WroteSymtab); 4616 4617 // If any module has module-level inline asm, we will require a registered asm 4618 // parser for the target so that we can create an accurate symbol table for 4619 // the module. 4620 for (Module *M : Mods) { 4621 if (M->getModuleInlineAsm().empty()) 4622 continue; 4623 4624 std::string Err; 4625 const Triple TT(M->getTargetTriple()); 4626 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4627 if (!T || !T->hasMCAsmParser()) 4628 return; 4629 } 4630 4631 WroteSymtab = true; 4632 SmallVector<char, 0> Symtab; 4633 // The irsymtab::build function may be unable to create a symbol table if the 4634 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4635 // table is not required for correctness, but we still want to be able to 4636 // write malformed modules to bitcode files, so swallow the error. 4637 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4638 consumeError(std::move(E)); 4639 return; 4640 } 4641 4642 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4643 {Symtab.data(), Symtab.size()}); 4644 } 4645 4646 void BitcodeWriter::writeStrtab() { 4647 assert(!WroteStrtab); 4648 4649 std::vector<char> Strtab; 4650 StrtabBuilder.finalizeInOrder(); 4651 Strtab.resize(StrtabBuilder.getSize()); 4652 StrtabBuilder.write((uint8_t *)Strtab.data()); 4653 4654 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4655 {Strtab.data(), Strtab.size()}); 4656 4657 WroteStrtab = true; 4658 } 4659 4660 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4661 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4662 WroteStrtab = true; 4663 } 4664 4665 void BitcodeWriter::writeModule(const Module &M, 4666 bool ShouldPreserveUseListOrder, 4667 const ModuleSummaryIndex *Index, 4668 bool GenerateHash, ModuleHash *ModHash) { 4669 assert(!WroteStrtab); 4670 4671 // The Mods vector is used by irsymtab::build, which requires non-const 4672 // Modules in case it needs to materialize metadata. But the bitcode writer 4673 // requires that the module is materialized, so we can cast to non-const here, 4674 // after checking that it is in fact materialized. 4675 assert(M.isMaterialized()); 4676 Mods.push_back(const_cast<Module *>(&M)); 4677 4678 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4679 ShouldPreserveUseListOrder, Index, 4680 GenerateHash, ModHash); 4681 ModuleWriter.write(); 4682 } 4683 4684 void BitcodeWriter::writeIndex( 4685 const ModuleSummaryIndex *Index, 4686 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4687 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4688 ModuleToSummariesForIndex); 4689 IndexWriter.write(); 4690 } 4691 4692 /// Write the specified module to the specified output stream. 4693 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4694 bool ShouldPreserveUseListOrder, 4695 const ModuleSummaryIndex *Index, 4696 bool GenerateHash, ModuleHash *ModHash) { 4697 SmallVector<char, 0> Buffer; 4698 Buffer.reserve(256*1024); 4699 4700 // If this is darwin or another generic macho target, reserve space for the 4701 // header. 4702 Triple TT(M.getTargetTriple()); 4703 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4704 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4705 4706 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4707 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4708 ModHash); 4709 Writer.writeSymtab(); 4710 Writer.writeStrtab(); 4711 4712 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4713 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4714 4715 // Write the generated bitstream to "Out". 4716 if (!Buffer.empty()) 4717 Out.write((char *)&Buffer.front(), Buffer.size()); 4718 } 4719 4720 void IndexBitcodeWriter::write() { 4721 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4722 4723 writeModuleVersion(); 4724 4725 // Write the module paths in the combined index. 4726 writeModStrings(); 4727 4728 // Write the summary combined index records. 4729 writeCombinedGlobalValueSummary(); 4730 4731 Stream.ExitBlock(); 4732 } 4733 4734 // Write the specified module summary index to the given raw output stream, 4735 // where it will be written in a new bitcode block. This is used when 4736 // writing the combined index file for ThinLTO. When writing a subset of the 4737 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4738 void llvm::writeIndexToFile( 4739 const ModuleSummaryIndex &Index, raw_ostream &Out, 4740 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4741 SmallVector<char, 0> Buffer; 4742 Buffer.reserve(256 * 1024); 4743 4744 BitcodeWriter Writer(Buffer); 4745 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4746 Writer.writeStrtab(); 4747 4748 Out.write((char *)&Buffer.front(), Buffer.size()); 4749 } 4750 4751 namespace { 4752 4753 /// Class to manage the bitcode writing for a thin link bitcode file. 4754 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4755 /// ModHash is for use in ThinLTO incremental build, generated while writing 4756 /// the module bitcode file. 4757 const ModuleHash *ModHash; 4758 4759 public: 4760 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4761 BitstreamWriter &Stream, 4762 const ModuleSummaryIndex &Index, 4763 const ModuleHash &ModHash) 4764 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4765 /*ShouldPreserveUseListOrder=*/false, &Index), 4766 ModHash(&ModHash) {} 4767 4768 void write(); 4769 4770 private: 4771 void writeSimplifiedModuleInfo(); 4772 }; 4773 4774 } // end anonymous namespace 4775 4776 // This function writes a simpilified module info for thin link bitcode file. 4777 // It only contains the source file name along with the name(the offset and 4778 // size in strtab) and linkage for global values. For the global value info 4779 // entry, in order to keep linkage at offset 5, there are three zeros used 4780 // as padding. 4781 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4782 SmallVector<unsigned, 64> Vals; 4783 // Emit the module's source file name. 4784 { 4785 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4786 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4787 if (Bits == SE_Char6) 4788 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4789 else if (Bits == SE_Fixed7) 4790 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4791 4792 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4793 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4794 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4796 Abbv->Add(AbbrevOpToUse); 4797 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4798 4799 for (const auto P : M.getSourceFileName()) 4800 Vals.push_back((unsigned char)P); 4801 4802 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4803 Vals.clear(); 4804 } 4805 4806 // Emit the global variable information. 4807 for (const GlobalVariable &GV : M.globals()) { 4808 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4809 Vals.push_back(StrtabBuilder.add(GV.getName())); 4810 Vals.push_back(GV.getName().size()); 4811 Vals.push_back(0); 4812 Vals.push_back(0); 4813 Vals.push_back(0); 4814 Vals.push_back(getEncodedLinkage(GV)); 4815 4816 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4817 Vals.clear(); 4818 } 4819 4820 // Emit the function proto information. 4821 for (const Function &F : M) { 4822 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4823 Vals.push_back(StrtabBuilder.add(F.getName())); 4824 Vals.push_back(F.getName().size()); 4825 Vals.push_back(0); 4826 Vals.push_back(0); 4827 Vals.push_back(0); 4828 Vals.push_back(getEncodedLinkage(F)); 4829 4830 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4831 Vals.clear(); 4832 } 4833 4834 // Emit the alias information. 4835 for (const GlobalAlias &A : M.aliases()) { 4836 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4837 Vals.push_back(StrtabBuilder.add(A.getName())); 4838 Vals.push_back(A.getName().size()); 4839 Vals.push_back(0); 4840 Vals.push_back(0); 4841 Vals.push_back(0); 4842 Vals.push_back(getEncodedLinkage(A)); 4843 4844 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4845 Vals.clear(); 4846 } 4847 4848 // Emit the ifunc information. 4849 for (const GlobalIFunc &I : M.ifuncs()) { 4850 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4851 Vals.push_back(StrtabBuilder.add(I.getName())); 4852 Vals.push_back(I.getName().size()); 4853 Vals.push_back(0); 4854 Vals.push_back(0); 4855 Vals.push_back(0); 4856 Vals.push_back(getEncodedLinkage(I)); 4857 4858 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4859 Vals.clear(); 4860 } 4861 } 4862 4863 void ThinLinkBitcodeWriter::write() { 4864 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4865 4866 writeModuleVersion(); 4867 4868 writeSimplifiedModuleInfo(); 4869 4870 writePerModuleGlobalValueSummary(); 4871 4872 // Write module hash. 4873 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4874 4875 Stream.ExitBlock(); 4876 } 4877 4878 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4879 const ModuleSummaryIndex &Index, 4880 const ModuleHash &ModHash) { 4881 assert(!WroteStrtab); 4882 4883 // The Mods vector is used by irsymtab::build, which requires non-const 4884 // Modules in case it needs to materialize metadata. But the bitcode writer 4885 // requires that the module is materialized, so we can cast to non-const here, 4886 // after checking that it is in fact materialized. 4887 assert(M.isMaterialized()); 4888 Mods.push_back(const_cast<Module *>(&M)); 4889 4890 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4891 ModHash); 4892 ThinLinkWriter.write(); 4893 } 4894 4895 // Write the specified thin link bitcode file to the given raw output stream, 4896 // where it will be written in a new bitcode block. This is used when 4897 // writing the per-module index file for ThinLTO. 4898 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4899 const ModuleSummaryIndex &Index, 4900 const ModuleHash &ModHash) { 4901 SmallVector<char, 0> Buffer; 4902 Buffer.reserve(256 * 1024); 4903 4904 BitcodeWriter Writer(Buffer); 4905 Writer.writeThinLinkBitcode(M, Index, ModHash); 4906 Writer.writeSymtab(); 4907 Writer.writeStrtab(); 4908 4909 Out.write((char *)&Buffer.front(), Buffer.size()); 4910 } 4911 4912 static const char *getSectionNameForBitcode(const Triple &T) { 4913 switch (T.getObjectFormat()) { 4914 case Triple::MachO: 4915 return "__LLVM,__bitcode"; 4916 case Triple::COFF: 4917 case Triple::ELF: 4918 case Triple::Wasm: 4919 case Triple::UnknownObjectFormat: 4920 return ".llvmbc"; 4921 case Triple::GOFF: 4922 llvm_unreachable("GOFF is not yet implemented"); 4923 break; 4924 case Triple::SPIRV: 4925 llvm_unreachable("SPIRV is not yet implemented"); 4926 break; 4927 case Triple::XCOFF: 4928 llvm_unreachable("XCOFF is not yet implemented"); 4929 break; 4930 case Triple::DXContainer: 4931 llvm_unreachable("DXContainer is not yet implemented"); 4932 break; 4933 } 4934 llvm_unreachable("Unimplemented ObjectFormatType"); 4935 } 4936 4937 static const char *getSectionNameForCommandline(const Triple &T) { 4938 switch (T.getObjectFormat()) { 4939 case Triple::MachO: 4940 return "__LLVM,__cmdline"; 4941 case Triple::COFF: 4942 case Triple::ELF: 4943 case Triple::Wasm: 4944 case Triple::UnknownObjectFormat: 4945 return ".llvmcmd"; 4946 case Triple::GOFF: 4947 llvm_unreachable("GOFF is not yet implemented"); 4948 break; 4949 case Triple::SPIRV: 4950 llvm_unreachable("SPIRV is not yet implemented"); 4951 break; 4952 case Triple::XCOFF: 4953 llvm_unreachable("XCOFF is not yet implemented"); 4954 break; 4955 case Triple::DXContainer: 4956 llvm_unreachable("DXC is not yet implemented"); 4957 break; 4958 } 4959 llvm_unreachable("Unimplemented ObjectFormatType"); 4960 } 4961 4962 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4963 bool EmbedBitcode, bool EmbedCmdline, 4964 const std::vector<uint8_t> &CmdArgs) { 4965 // Save llvm.compiler.used and remove it. 4966 SmallVector<Constant *, 2> UsedArray; 4967 SmallVector<GlobalValue *, 4> UsedGlobals; 4968 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4969 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4970 for (auto *GV : UsedGlobals) { 4971 if (GV->getName() != "llvm.embedded.module" && 4972 GV->getName() != "llvm.cmdline") 4973 UsedArray.push_back( 4974 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4975 } 4976 if (Used) 4977 Used->eraseFromParent(); 4978 4979 // Embed the bitcode for the llvm module. 4980 std::string Data; 4981 ArrayRef<uint8_t> ModuleData; 4982 Triple T(M.getTargetTriple()); 4983 4984 if (EmbedBitcode) { 4985 if (Buf.getBufferSize() == 0 || 4986 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4987 (const unsigned char *)Buf.getBufferEnd())) { 4988 // If the input is LLVM Assembly, bitcode is produced by serializing 4989 // the module. Use-lists order need to be preserved in this case. 4990 llvm::raw_string_ostream OS(Data); 4991 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4992 ModuleData = 4993 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4994 } else 4995 // If the input is LLVM bitcode, write the input byte stream directly. 4996 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4997 Buf.getBufferSize()); 4998 } 4999 llvm::Constant *ModuleConstant = 5000 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5001 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5002 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5003 ModuleConstant); 5004 GV->setSection(getSectionNameForBitcode(T)); 5005 // Set alignment to 1 to prevent padding between two contributions from input 5006 // sections after linking. 5007 GV->setAlignment(Align(1)); 5008 UsedArray.push_back( 5009 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5010 if (llvm::GlobalVariable *Old = 5011 M.getGlobalVariable("llvm.embedded.module", true)) { 5012 assert(Old->hasZeroLiveUses() && 5013 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5014 GV->takeName(Old); 5015 Old->eraseFromParent(); 5016 } else { 5017 GV->setName("llvm.embedded.module"); 5018 } 5019 5020 // Skip if only bitcode needs to be embedded. 5021 if (EmbedCmdline) { 5022 // Embed command-line options. 5023 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5024 CmdArgs.size()); 5025 llvm::Constant *CmdConstant = 5026 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5027 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5028 llvm::GlobalValue::PrivateLinkage, 5029 CmdConstant); 5030 GV->setSection(getSectionNameForCommandline(T)); 5031 GV->setAlignment(Align(1)); 5032 UsedArray.push_back( 5033 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5034 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5035 assert(Old->hasZeroLiveUses() && 5036 "llvm.cmdline can only be used once in llvm.compiler.used"); 5037 GV->takeName(Old); 5038 Old->eraseFromParent(); 5039 } else { 5040 GV->setName("llvm.cmdline"); 5041 } 5042 } 5043 5044 if (UsedArray.empty()) 5045 return; 5046 5047 // Recreate llvm.compiler.used. 5048 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5049 auto *NewUsed = new GlobalVariable( 5050 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5051 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5052 NewUsed->setSection("llvm.metadata"); 5053 } 5054