1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/UseListOrder.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Program.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cctype> 33 #include <map> 34 using namespace llvm; 35 36 /// These are manifest constants used by the bitcode writer. They do not need to 37 /// be kept in sync with the reader, but need to be consistent within this file. 38 enum { 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 105 switch (Op) { 106 default: llvm_unreachable("Unknown RMW operation!"); 107 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 108 case AtomicRMWInst::Add: return bitc::RMW_ADD; 109 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 110 case AtomicRMWInst::And: return bitc::RMW_AND; 111 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 112 case AtomicRMWInst::Or: return bitc::RMW_OR; 113 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 114 case AtomicRMWInst::Max: return bitc::RMW_MAX; 115 case AtomicRMWInst::Min: return bitc::RMW_MIN; 116 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 117 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 118 } 119 } 120 121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 122 switch (Ordering) { 123 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 124 case Unordered: return bitc::ORDERING_UNORDERED; 125 case Monotonic: return bitc::ORDERING_MONOTONIC; 126 case Acquire: return bitc::ORDERING_ACQUIRE; 127 case Release: return bitc::ORDERING_RELEASE; 128 case AcquireRelease: return bitc::ORDERING_ACQREL; 129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 130 } 131 llvm_unreachable("Invalid ordering"); 132 } 133 134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 135 switch (SynchScope) { 136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 138 } 139 llvm_unreachable("Invalid synch scope"); 140 } 141 142 static void WriteStringRecord(unsigned Code, StringRef Str, 143 unsigned AbbrevToUse, BitstreamWriter &Stream) { 144 SmallVector<unsigned, 64> Vals; 145 146 // Code: [strchar x N] 147 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 148 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 149 AbbrevToUse = 0; 150 Vals.push_back(Str[i]); 151 } 152 153 // Emit the finished record. 154 Stream.EmitRecord(Code, Vals, AbbrevToUse); 155 } 156 157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 158 switch (Kind) { 159 case Attribute::Alignment: 160 return bitc::ATTR_KIND_ALIGNMENT; 161 case Attribute::AlwaysInline: 162 return bitc::ATTR_KIND_ALWAYS_INLINE; 163 case Attribute::Builtin: 164 return bitc::ATTR_KIND_BUILTIN; 165 case Attribute::ByVal: 166 return bitc::ATTR_KIND_BY_VAL; 167 case Attribute::InAlloca: 168 return bitc::ATTR_KIND_IN_ALLOCA; 169 case Attribute::Cold: 170 return bitc::ATTR_KIND_COLD; 171 case Attribute::InlineHint: 172 return bitc::ATTR_KIND_INLINE_HINT; 173 case Attribute::InReg: 174 return bitc::ATTR_KIND_IN_REG; 175 case Attribute::JumpTable: 176 return bitc::ATTR_KIND_JUMP_TABLE; 177 case Attribute::MinSize: 178 return bitc::ATTR_KIND_MIN_SIZE; 179 case Attribute::Naked: 180 return bitc::ATTR_KIND_NAKED; 181 case Attribute::Nest: 182 return bitc::ATTR_KIND_NEST; 183 case Attribute::NoAlias: 184 return bitc::ATTR_KIND_NO_ALIAS; 185 case Attribute::NoBuiltin: 186 return bitc::ATTR_KIND_NO_BUILTIN; 187 case Attribute::NoCapture: 188 return bitc::ATTR_KIND_NO_CAPTURE; 189 case Attribute::NoDuplicate: 190 return bitc::ATTR_KIND_NO_DUPLICATE; 191 case Attribute::NoImplicitFloat: 192 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 193 case Attribute::NoInline: 194 return bitc::ATTR_KIND_NO_INLINE; 195 case Attribute::NonLazyBind: 196 return bitc::ATTR_KIND_NON_LAZY_BIND; 197 case Attribute::NonNull: 198 return bitc::ATTR_KIND_NON_NULL; 199 case Attribute::Dereferenceable: 200 return bitc::ATTR_KIND_DEREFERENCEABLE; 201 case Attribute::NoRedZone: 202 return bitc::ATTR_KIND_NO_RED_ZONE; 203 case Attribute::NoReturn: 204 return bitc::ATTR_KIND_NO_RETURN; 205 case Attribute::NoUnwind: 206 return bitc::ATTR_KIND_NO_UNWIND; 207 case Attribute::OptimizeForSize: 208 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 209 case Attribute::OptimizeNone: 210 return bitc::ATTR_KIND_OPTIMIZE_NONE; 211 case Attribute::ReadNone: 212 return bitc::ATTR_KIND_READ_NONE; 213 case Attribute::ReadOnly: 214 return bitc::ATTR_KIND_READ_ONLY; 215 case Attribute::Returned: 216 return bitc::ATTR_KIND_RETURNED; 217 case Attribute::ReturnsTwice: 218 return bitc::ATTR_KIND_RETURNS_TWICE; 219 case Attribute::SExt: 220 return bitc::ATTR_KIND_S_EXT; 221 case Attribute::StackAlignment: 222 return bitc::ATTR_KIND_STACK_ALIGNMENT; 223 case Attribute::StackProtect: 224 return bitc::ATTR_KIND_STACK_PROTECT; 225 case Attribute::StackProtectReq: 226 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 227 case Attribute::StackProtectStrong: 228 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 229 case Attribute::StructRet: 230 return bitc::ATTR_KIND_STRUCT_RET; 231 case Attribute::SanitizeAddress: 232 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 233 case Attribute::SanitizeThread: 234 return bitc::ATTR_KIND_SANITIZE_THREAD; 235 case Attribute::SanitizeMemory: 236 return bitc::ATTR_KIND_SANITIZE_MEMORY; 237 case Attribute::UWTable: 238 return bitc::ATTR_KIND_UW_TABLE; 239 case Attribute::ZExt: 240 return bitc::ATTR_KIND_Z_EXT; 241 case Attribute::EndAttrKinds: 242 llvm_unreachable("Can not encode end-attribute kinds marker."); 243 case Attribute::None: 244 llvm_unreachable("Can not encode none-attribute."); 245 } 246 247 llvm_unreachable("Trying to encode unknown attribute"); 248 } 249 250 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 251 BitstreamWriter &Stream) { 252 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 253 if (AttrGrps.empty()) return; 254 255 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 256 257 SmallVector<uint64_t, 64> Record; 258 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 259 AttributeSet AS = AttrGrps[i]; 260 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 261 AttributeSet A = AS.getSlotAttributes(i); 262 263 Record.push_back(VE.getAttributeGroupID(A)); 264 Record.push_back(AS.getSlotIndex(i)); 265 266 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 267 I != E; ++I) { 268 Attribute Attr = *I; 269 if (Attr.isEnumAttribute()) { 270 Record.push_back(0); 271 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 272 } else if (Attr.isIntAttribute()) { 273 Record.push_back(1); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 Record.push_back(Attr.getValueAsInt()); 276 } else { 277 StringRef Kind = Attr.getKindAsString(); 278 StringRef Val = Attr.getValueAsString(); 279 280 Record.push_back(Val.empty() ? 3 : 4); 281 Record.append(Kind.begin(), Kind.end()); 282 Record.push_back(0); 283 if (!Val.empty()) { 284 Record.append(Val.begin(), Val.end()); 285 Record.push_back(0); 286 } 287 } 288 } 289 290 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 291 Record.clear(); 292 } 293 } 294 295 Stream.ExitBlock(); 296 } 297 298 static void WriteAttributeTable(const ValueEnumerator &VE, 299 BitstreamWriter &Stream) { 300 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 301 if (Attrs.empty()) return; 302 303 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 304 305 SmallVector<uint64_t, 64> Record; 306 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 307 const AttributeSet &A = Attrs[i]; 308 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 309 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 310 311 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 312 Record.clear(); 313 } 314 315 Stream.ExitBlock(); 316 } 317 318 /// WriteTypeTable - Write out the type table for a module. 319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 320 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 321 322 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 323 SmallVector<uint64_t, 64> TypeVals; 324 325 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 326 327 // Abbrev for TYPE_CODE_POINTER. 328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 329 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 331 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 332 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 333 334 // Abbrev for TYPE_CODE_FUNCTION. 335 Abbv = new BitCodeAbbrev(); 336 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 340 341 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 342 343 // Abbrev for TYPE_CODE_STRUCT_ANON. 344 Abbv = new BitCodeAbbrev(); 345 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 349 350 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 351 352 // Abbrev for TYPE_CODE_STRUCT_NAME. 353 Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 357 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_STRUCT_NAMED. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_ARRAY. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Emit an entry count so the reader can reserve space. 377 TypeVals.push_back(TypeList.size()); 378 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 379 TypeVals.clear(); 380 381 // Loop over all of the types, emitting each in turn. 382 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 383 Type *T = TypeList[i]; 384 int AbbrevToUse = 0; 385 unsigned Code = 0; 386 387 switch (T->getTypeID()) { 388 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 389 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 390 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 391 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 392 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 393 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 394 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 395 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 396 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 397 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 398 case Type::IntegerTyID: 399 // INTEGER: [width] 400 Code = bitc::TYPE_CODE_INTEGER; 401 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 402 break; 403 case Type::PointerTyID: { 404 PointerType *PTy = cast<PointerType>(T); 405 // POINTER: [pointee type, address space] 406 Code = bitc::TYPE_CODE_POINTER; 407 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 408 unsigned AddressSpace = PTy->getAddressSpace(); 409 TypeVals.push_back(AddressSpace); 410 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 411 break; 412 } 413 case Type::FunctionTyID: { 414 FunctionType *FT = cast<FunctionType>(T); 415 // FUNCTION: [isvararg, retty, paramty x N] 416 Code = bitc::TYPE_CODE_FUNCTION; 417 TypeVals.push_back(FT->isVarArg()); 418 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 419 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 420 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 421 AbbrevToUse = FunctionAbbrev; 422 break; 423 } 424 case Type::StructTyID: { 425 StructType *ST = cast<StructType>(T); 426 // STRUCT: [ispacked, eltty x N] 427 TypeVals.push_back(ST->isPacked()); 428 // Output all of the element types. 429 for (StructType::element_iterator I = ST->element_begin(), 430 E = ST->element_end(); I != E; ++I) 431 TypeVals.push_back(VE.getTypeID(*I)); 432 433 if (ST->isLiteral()) { 434 Code = bitc::TYPE_CODE_STRUCT_ANON; 435 AbbrevToUse = StructAnonAbbrev; 436 } else { 437 if (ST->isOpaque()) { 438 Code = bitc::TYPE_CODE_OPAQUE; 439 } else { 440 Code = bitc::TYPE_CODE_STRUCT_NAMED; 441 AbbrevToUse = StructNamedAbbrev; 442 } 443 444 // Emit the name if it is present. 445 if (!ST->getName().empty()) 446 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 447 StructNameAbbrev, Stream); 448 } 449 break; 450 } 451 case Type::ArrayTyID: { 452 ArrayType *AT = cast<ArrayType>(T); 453 // ARRAY: [numelts, eltty] 454 Code = bitc::TYPE_CODE_ARRAY; 455 TypeVals.push_back(AT->getNumElements()); 456 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 457 AbbrevToUse = ArrayAbbrev; 458 break; 459 } 460 case Type::VectorTyID: { 461 VectorType *VT = cast<VectorType>(T); 462 // VECTOR [numelts, eltty] 463 Code = bitc::TYPE_CODE_VECTOR; 464 TypeVals.push_back(VT->getNumElements()); 465 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 466 break; 467 } 468 } 469 470 // Emit the finished record. 471 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 472 TypeVals.clear(); 473 } 474 475 Stream.ExitBlock(); 476 } 477 478 static unsigned getEncodedLinkage(const GlobalValue &GV) { 479 switch (GV.getLinkage()) { 480 case GlobalValue::ExternalLinkage: 481 return 0; 482 case GlobalValue::WeakAnyLinkage: 483 return 16; 484 case GlobalValue::AppendingLinkage: 485 return 2; 486 case GlobalValue::InternalLinkage: 487 return 3; 488 case GlobalValue::LinkOnceAnyLinkage: 489 return 18; 490 case GlobalValue::ExternalWeakLinkage: 491 return 7; 492 case GlobalValue::CommonLinkage: 493 return 8; 494 case GlobalValue::PrivateLinkage: 495 return 9; 496 case GlobalValue::WeakODRLinkage: 497 return 17; 498 case GlobalValue::LinkOnceODRLinkage: 499 return 19; 500 case GlobalValue::AvailableExternallyLinkage: 501 return 12; 502 } 503 llvm_unreachable("Invalid linkage"); 504 } 505 506 static unsigned getEncodedVisibility(const GlobalValue &GV) { 507 switch (GV.getVisibility()) { 508 case GlobalValue::DefaultVisibility: return 0; 509 case GlobalValue::HiddenVisibility: return 1; 510 case GlobalValue::ProtectedVisibility: return 2; 511 } 512 llvm_unreachable("Invalid visibility"); 513 } 514 515 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 516 switch (GV.getDLLStorageClass()) { 517 case GlobalValue::DefaultStorageClass: return 0; 518 case GlobalValue::DLLImportStorageClass: return 1; 519 case GlobalValue::DLLExportStorageClass: return 2; 520 } 521 llvm_unreachable("Invalid DLL storage class"); 522 } 523 524 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 525 switch (GV.getThreadLocalMode()) { 526 case GlobalVariable::NotThreadLocal: return 0; 527 case GlobalVariable::GeneralDynamicTLSModel: return 1; 528 case GlobalVariable::LocalDynamicTLSModel: return 2; 529 case GlobalVariable::InitialExecTLSModel: return 3; 530 case GlobalVariable::LocalExecTLSModel: return 4; 531 } 532 llvm_unreachable("Invalid TLS model"); 533 } 534 535 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 536 switch (C.getSelectionKind()) { 537 case Comdat::Any: 538 return bitc::COMDAT_SELECTION_KIND_ANY; 539 case Comdat::ExactMatch: 540 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 541 case Comdat::Largest: 542 return bitc::COMDAT_SELECTION_KIND_LARGEST; 543 case Comdat::NoDuplicates: 544 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 545 case Comdat::SameSize: 546 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 547 } 548 llvm_unreachable("Invalid selection kind"); 549 } 550 551 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 552 SmallVector<uint16_t, 64> Vals; 553 for (const Comdat *C : VE.getComdats()) { 554 // COMDAT: [selection_kind, name] 555 Vals.push_back(getEncodedComdatSelectionKind(*C)); 556 size_t Size = C->getName().size(); 557 assert(isUInt<16>(Size)); 558 Vals.push_back(Size); 559 for (char Chr : C->getName()) 560 Vals.push_back((unsigned char)Chr); 561 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 562 Vals.clear(); 563 } 564 } 565 566 // Emit top-level description of module, including target triple, inline asm, 567 // descriptors for global variables, and function prototype info. 568 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 569 BitstreamWriter &Stream) { 570 // Emit various pieces of data attached to a module. 571 if (!M->getTargetTriple().empty()) 572 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 573 0/*TODO*/, Stream); 574 const std::string &DL = M->getDataLayoutStr(); 575 if (!DL.empty()) 576 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 577 if (!M->getModuleInlineAsm().empty()) 578 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 579 0/*TODO*/, Stream); 580 581 // Emit information about sections and GC, computing how many there are. Also 582 // compute the maximum alignment value. 583 std::map<std::string, unsigned> SectionMap; 584 std::map<std::string, unsigned> GCMap; 585 unsigned MaxAlignment = 0; 586 unsigned MaxGlobalType = 0; 587 for (const GlobalValue &GV : M->globals()) { 588 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 589 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 590 if (GV.hasSection()) { 591 // Give section names unique ID's. 592 unsigned &Entry = SectionMap[GV.getSection()]; 593 if (!Entry) { 594 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 595 0/*TODO*/, Stream); 596 Entry = SectionMap.size(); 597 } 598 } 599 } 600 for (const Function &F : *M) { 601 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 602 if (F.hasSection()) { 603 // Give section names unique ID's. 604 unsigned &Entry = SectionMap[F.getSection()]; 605 if (!Entry) { 606 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 607 0/*TODO*/, Stream); 608 Entry = SectionMap.size(); 609 } 610 } 611 if (F.hasGC()) { 612 // Same for GC names. 613 unsigned &Entry = GCMap[F.getGC()]; 614 if (!Entry) { 615 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 616 0/*TODO*/, Stream); 617 Entry = GCMap.size(); 618 } 619 } 620 } 621 622 // Emit abbrev for globals, now that we know # sections and max alignment. 623 unsigned SimpleGVarAbbrev = 0; 624 if (!M->global_empty()) { 625 // Add an abbrev for common globals with no visibility or thread localness. 626 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 627 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 629 Log2_32_Ceil(MaxGlobalType+1))); 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 633 if (MaxAlignment == 0) // Alignment. 634 Abbv->Add(BitCodeAbbrevOp(0)); 635 else { 636 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 638 Log2_32_Ceil(MaxEncAlignment+1))); 639 } 640 if (SectionMap.empty()) // Section. 641 Abbv->Add(BitCodeAbbrevOp(0)); 642 else 643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 644 Log2_32_Ceil(SectionMap.size()+1))); 645 // Don't bother emitting vis + thread local. 646 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 647 } 648 649 // Emit the global variable information. 650 SmallVector<unsigned, 64> Vals; 651 for (const GlobalVariable &GV : M->globals()) { 652 unsigned AbbrevToUse = 0; 653 654 // GLOBALVAR: [type, isconst, initid, 655 // linkage, alignment, section, visibility, threadlocal, 656 // unnamed_addr, externally_initialized, dllstorageclass] 657 Vals.push_back(VE.getTypeID(GV.getType())); 658 Vals.push_back(GV.isConstant()); 659 Vals.push_back(GV.isDeclaration() ? 0 : 660 (VE.getValueID(GV.getInitializer()) + 1)); 661 Vals.push_back(getEncodedLinkage(GV)); 662 Vals.push_back(Log2_32(GV.getAlignment())+1); 663 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 664 if (GV.isThreadLocal() || 665 GV.getVisibility() != GlobalValue::DefaultVisibility || 666 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 667 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 668 GV.hasComdat()) { 669 Vals.push_back(getEncodedVisibility(GV)); 670 Vals.push_back(getEncodedThreadLocalMode(GV)); 671 Vals.push_back(GV.hasUnnamedAddr()); 672 Vals.push_back(GV.isExternallyInitialized()); 673 Vals.push_back(getEncodedDLLStorageClass(GV)); 674 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 675 } else { 676 AbbrevToUse = SimpleGVarAbbrev; 677 } 678 679 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 680 Vals.clear(); 681 } 682 683 // Emit the function proto information. 684 for (const Function &F : *M) { 685 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 686 // section, visibility, gc, unnamed_addr, prologuedata, 687 // dllstorageclass, comdat, prefixdata] 688 Vals.push_back(VE.getTypeID(F.getType())); 689 Vals.push_back(F.getCallingConv()); 690 Vals.push_back(F.isDeclaration()); 691 Vals.push_back(getEncodedLinkage(F)); 692 Vals.push_back(VE.getAttributeID(F.getAttributes())); 693 Vals.push_back(Log2_32(F.getAlignment())+1); 694 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 695 Vals.push_back(getEncodedVisibility(F)); 696 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 697 Vals.push_back(F.hasUnnamedAddr()); 698 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 699 : 0); 700 Vals.push_back(getEncodedDLLStorageClass(F)); 701 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 702 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 703 : 0); 704 705 unsigned AbbrevToUse = 0; 706 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 707 Vals.clear(); 708 } 709 710 // Emit the alias information. 711 for (const GlobalAlias &A : M->aliases()) { 712 // ALIAS: [alias type, aliasee val#, linkage, visibility] 713 Vals.push_back(VE.getTypeID(A.getType())); 714 Vals.push_back(VE.getValueID(A.getAliasee())); 715 Vals.push_back(getEncodedLinkage(A)); 716 Vals.push_back(getEncodedVisibility(A)); 717 Vals.push_back(getEncodedDLLStorageClass(A)); 718 Vals.push_back(getEncodedThreadLocalMode(A)); 719 Vals.push_back(A.hasUnnamedAddr()); 720 unsigned AbbrevToUse = 0; 721 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 722 Vals.clear(); 723 } 724 } 725 726 static uint64_t GetOptimizationFlags(const Value *V) { 727 uint64_t Flags = 0; 728 729 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 730 if (OBO->hasNoSignedWrap()) 731 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 732 if (OBO->hasNoUnsignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 734 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 735 if (PEO->isExact()) 736 Flags |= 1 << bitc::PEO_EXACT; 737 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 738 if (FPMO->hasUnsafeAlgebra()) 739 Flags |= FastMathFlags::UnsafeAlgebra; 740 if (FPMO->hasNoNaNs()) 741 Flags |= FastMathFlags::NoNaNs; 742 if (FPMO->hasNoInfs()) 743 Flags |= FastMathFlags::NoInfs; 744 if (FPMO->hasNoSignedZeros()) 745 Flags |= FastMathFlags::NoSignedZeros; 746 if (FPMO->hasAllowReciprocal()) 747 Flags |= FastMathFlags::AllowReciprocal; 748 } 749 750 return Flags; 751 } 752 753 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 754 const ValueEnumerator &VE, 755 BitstreamWriter &Stream, 756 SmallVectorImpl<uint64_t> &Record) { 757 // Mimic an MDNode with a value as one operand. 758 Value *V = MD->getValue(); 759 Record.push_back(VE.getTypeID(V->getType())); 760 Record.push_back(VE.getValueID(V)); 761 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 762 Record.clear(); 763 } 764 765 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 766 BitstreamWriter &Stream, 767 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 768 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 769 Metadata *MD = N->getOperand(i); 770 assert(!(MD && isa<LocalAsMetadata>(MD)) && 771 "Unexpected function-local metadata"); 772 Record.push_back(VE.getMetadataOrNullID(MD)); 773 } 774 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 775 : bitc::METADATA_NODE, 776 Record, Abbrev); 777 Record.clear(); 778 } 779 780 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 781 BitstreamWriter &Stream, 782 SmallVectorImpl<uint64_t> &Record, 783 unsigned Abbrev) { 784 Record.push_back(N->isDistinct()); 785 Record.push_back(N->getLine()); 786 Record.push_back(N->getColumn()); 787 Record.push_back(VE.getMetadataID(N->getScope())); 788 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 789 790 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 791 Record.clear(); 792 } 793 794 static void WriteGenericDebugNode(const GenericDebugNode *, 795 const ValueEnumerator &, BitstreamWriter &, 796 SmallVectorImpl<uint64_t> &, unsigned) { 797 llvm_unreachable("unimplemented"); 798 } 799 800 static void WriteModuleMetadata(const Module *M, 801 const ValueEnumerator &VE, 802 BitstreamWriter &Stream) { 803 const auto &MDs = VE.getMDs(); 804 if (MDs.empty() && M->named_metadata_empty()) 805 return; 806 807 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 808 809 unsigned MDSAbbrev = 0; 810 if (VE.hasMDString()) { 811 // Abbrev for METADATA_STRING. 812 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 816 MDSAbbrev = Stream.EmitAbbrev(Abbv); 817 } 818 819 unsigned MDLocationAbbrev = 0; 820 if (VE.hasMDLocation()) { 821 // Abbrev for METADATA_LOCATION. 822 // 823 // Assume the column is usually under 128, and always output the inlined-at 824 // location (it's never more expensive than building an array size 1). 825 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 826 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 832 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 833 } 834 835 unsigned NameAbbrev = 0; 836 if (!M->named_metadata_empty()) { 837 // Abbrev for METADATA_NAME. 838 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 839 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 842 NameAbbrev = Stream.EmitAbbrev(Abbv); 843 } 844 845 unsigned MDTupleAbbrev = 0; 846 unsigned GenericDebugNodeAbbrev = 0; 847 SmallVector<uint64_t, 64> Record; 848 for (const Metadata *MD : MDs) { 849 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 850 switch (N->getMetadataID()) { 851 default: 852 llvm_unreachable("Invalid MDNode subclass"); 853 #define HANDLE_MDNODE_LEAF(CLASS) \ 854 case Metadata::CLASS##Kind: \ 855 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 856 continue; 857 #include "llvm/IR/Metadata.def" 858 } 859 } 860 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 861 WriteValueAsMetadata(MDC, VE, Stream, Record); 862 continue; 863 } 864 const MDString *MDS = cast<MDString>(MD); 865 // Code: [strchar x N] 866 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 867 868 // Emit the finished record. 869 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 870 Record.clear(); 871 } 872 873 // Write named metadata. 874 for (const NamedMDNode &NMD : M->named_metadata()) { 875 // Write name. 876 StringRef Str = NMD.getName(); 877 Record.append(Str.bytes_begin(), Str.bytes_end()); 878 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 879 Record.clear(); 880 881 // Write named metadata operands. 882 for (const MDNode *N : NMD.operands()) 883 Record.push_back(VE.getMetadataID(N)); 884 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 885 Record.clear(); 886 } 887 888 Stream.ExitBlock(); 889 } 890 891 static void WriteFunctionLocalMetadata(const Function &F, 892 const ValueEnumerator &VE, 893 BitstreamWriter &Stream) { 894 bool StartedMetadataBlock = false; 895 SmallVector<uint64_t, 64> Record; 896 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 897 VE.getFunctionLocalMDs(); 898 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 899 assert(MDs[i] && "Expected valid function-local metadata"); 900 if (!StartedMetadataBlock) { 901 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 902 StartedMetadataBlock = true; 903 } 904 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 905 } 906 907 if (StartedMetadataBlock) 908 Stream.ExitBlock(); 909 } 910 911 static void WriteMetadataAttachment(const Function &F, 912 const ValueEnumerator &VE, 913 BitstreamWriter &Stream) { 914 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 915 916 SmallVector<uint64_t, 64> Record; 917 918 // Write metadata attachments 919 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 920 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 921 922 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 923 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 924 I != E; ++I) { 925 MDs.clear(); 926 I->getAllMetadataOtherThanDebugLoc(MDs); 927 928 // If no metadata, ignore instruction. 929 if (MDs.empty()) continue; 930 931 Record.push_back(VE.getInstructionID(I)); 932 933 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 934 Record.push_back(MDs[i].first); 935 Record.push_back(VE.getMetadataID(MDs[i].second)); 936 } 937 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 938 Record.clear(); 939 } 940 941 Stream.ExitBlock(); 942 } 943 944 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 945 SmallVector<uint64_t, 64> Record; 946 947 // Write metadata kinds 948 // METADATA_KIND - [n x [id, name]] 949 SmallVector<StringRef, 8> Names; 950 M->getMDKindNames(Names); 951 952 if (Names.empty()) return; 953 954 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 955 956 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 957 Record.push_back(MDKindID); 958 StringRef KName = Names[MDKindID]; 959 Record.append(KName.begin(), KName.end()); 960 961 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 962 Record.clear(); 963 } 964 965 Stream.ExitBlock(); 966 } 967 968 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 969 if ((int64_t)V >= 0) 970 Vals.push_back(V << 1); 971 else 972 Vals.push_back((-V << 1) | 1); 973 } 974 975 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 976 const ValueEnumerator &VE, 977 BitstreamWriter &Stream, bool isGlobal) { 978 if (FirstVal == LastVal) return; 979 980 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 981 982 unsigned AggregateAbbrev = 0; 983 unsigned String8Abbrev = 0; 984 unsigned CString7Abbrev = 0; 985 unsigned CString6Abbrev = 0; 986 // If this is a constant pool for the module, emit module-specific abbrevs. 987 if (isGlobal) { 988 // Abbrev for CST_CODE_AGGREGATE. 989 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 990 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 993 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 994 995 // Abbrev for CST_CODE_STRING. 996 Abbv = new BitCodeAbbrev(); 997 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 999 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1000 String8Abbrev = Stream.EmitAbbrev(Abbv); 1001 // Abbrev for CST_CODE_CSTRING. 1002 Abbv = new BitCodeAbbrev(); 1003 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1006 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1007 // Abbrev for CST_CODE_CSTRING. 1008 Abbv = new BitCodeAbbrev(); 1009 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1011 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1012 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1013 } 1014 1015 SmallVector<uint64_t, 64> Record; 1016 1017 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1018 Type *LastTy = nullptr; 1019 for (unsigned i = FirstVal; i != LastVal; ++i) { 1020 const Value *V = Vals[i].first; 1021 // If we need to switch types, do so now. 1022 if (V->getType() != LastTy) { 1023 LastTy = V->getType(); 1024 Record.push_back(VE.getTypeID(LastTy)); 1025 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1026 CONSTANTS_SETTYPE_ABBREV); 1027 Record.clear(); 1028 } 1029 1030 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1031 Record.push_back(unsigned(IA->hasSideEffects()) | 1032 unsigned(IA->isAlignStack()) << 1 | 1033 unsigned(IA->getDialect()&1) << 2); 1034 1035 // Add the asm string. 1036 const std::string &AsmStr = IA->getAsmString(); 1037 Record.push_back(AsmStr.size()); 1038 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1039 Record.push_back(AsmStr[i]); 1040 1041 // Add the constraint string. 1042 const std::string &ConstraintStr = IA->getConstraintString(); 1043 Record.push_back(ConstraintStr.size()); 1044 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1045 Record.push_back(ConstraintStr[i]); 1046 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1047 Record.clear(); 1048 continue; 1049 } 1050 const Constant *C = cast<Constant>(V); 1051 unsigned Code = -1U; 1052 unsigned AbbrevToUse = 0; 1053 if (C->isNullValue()) { 1054 Code = bitc::CST_CODE_NULL; 1055 } else if (isa<UndefValue>(C)) { 1056 Code = bitc::CST_CODE_UNDEF; 1057 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1058 if (IV->getBitWidth() <= 64) { 1059 uint64_t V = IV->getSExtValue(); 1060 emitSignedInt64(Record, V); 1061 Code = bitc::CST_CODE_INTEGER; 1062 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1063 } else { // Wide integers, > 64 bits in size. 1064 // We have an arbitrary precision integer value to write whose 1065 // bit width is > 64. However, in canonical unsigned integer 1066 // format it is likely that the high bits are going to be zero. 1067 // So, we only write the number of active words. 1068 unsigned NWords = IV->getValue().getActiveWords(); 1069 const uint64_t *RawWords = IV->getValue().getRawData(); 1070 for (unsigned i = 0; i != NWords; ++i) { 1071 emitSignedInt64(Record, RawWords[i]); 1072 } 1073 Code = bitc::CST_CODE_WIDE_INTEGER; 1074 } 1075 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1076 Code = bitc::CST_CODE_FLOAT; 1077 Type *Ty = CFP->getType(); 1078 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1079 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1080 } else if (Ty->isX86_FP80Ty()) { 1081 // api needed to prevent premature destruction 1082 // bits are not in the same order as a normal i80 APInt, compensate. 1083 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1084 const uint64_t *p = api.getRawData(); 1085 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1086 Record.push_back(p[0] & 0xffffLL); 1087 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1088 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1089 const uint64_t *p = api.getRawData(); 1090 Record.push_back(p[0]); 1091 Record.push_back(p[1]); 1092 } else { 1093 assert (0 && "Unknown FP type!"); 1094 } 1095 } else if (isa<ConstantDataSequential>(C) && 1096 cast<ConstantDataSequential>(C)->isString()) { 1097 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1098 // Emit constant strings specially. 1099 unsigned NumElts = Str->getNumElements(); 1100 // If this is a null-terminated string, use the denser CSTRING encoding. 1101 if (Str->isCString()) { 1102 Code = bitc::CST_CODE_CSTRING; 1103 --NumElts; // Don't encode the null, which isn't allowed by char6. 1104 } else { 1105 Code = bitc::CST_CODE_STRING; 1106 AbbrevToUse = String8Abbrev; 1107 } 1108 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1109 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1110 for (unsigned i = 0; i != NumElts; ++i) { 1111 unsigned char V = Str->getElementAsInteger(i); 1112 Record.push_back(V); 1113 isCStr7 &= (V & 128) == 0; 1114 if (isCStrChar6) 1115 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1116 } 1117 1118 if (isCStrChar6) 1119 AbbrevToUse = CString6Abbrev; 1120 else if (isCStr7) 1121 AbbrevToUse = CString7Abbrev; 1122 } else if (const ConstantDataSequential *CDS = 1123 dyn_cast<ConstantDataSequential>(C)) { 1124 Code = bitc::CST_CODE_DATA; 1125 Type *EltTy = CDS->getType()->getElementType(); 1126 if (isa<IntegerType>(EltTy)) { 1127 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1128 Record.push_back(CDS->getElementAsInteger(i)); 1129 } else if (EltTy->isFloatTy()) { 1130 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1131 union { float F; uint32_t I; }; 1132 F = CDS->getElementAsFloat(i); 1133 Record.push_back(I); 1134 } 1135 } else { 1136 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1137 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1138 union { double F; uint64_t I; }; 1139 F = CDS->getElementAsDouble(i); 1140 Record.push_back(I); 1141 } 1142 } 1143 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1144 isa<ConstantVector>(C)) { 1145 Code = bitc::CST_CODE_AGGREGATE; 1146 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1147 Record.push_back(VE.getValueID(C->getOperand(i))); 1148 AbbrevToUse = AggregateAbbrev; 1149 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1150 switch (CE->getOpcode()) { 1151 default: 1152 if (Instruction::isCast(CE->getOpcode())) { 1153 Code = bitc::CST_CODE_CE_CAST; 1154 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1155 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1156 Record.push_back(VE.getValueID(C->getOperand(0))); 1157 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1158 } else { 1159 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1160 Code = bitc::CST_CODE_CE_BINOP; 1161 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1162 Record.push_back(VE.getValueID(C->getOperand(0))); 1163 Record.push_back(VE.getValueID(C->getOperand(1))); 1164 uint64_t Flags = GetOptimizationFlags(CE); 1165 if (Flags != 0) 1166 Record.push_back(Flags); 1167 } 1168 break; 1169 case Instruction::GetElementPtr: 1170 Code = bitc::CST_CODE_CE_GEP; 1171 if (cast<GEPOperator>(C)->isInBounds()) 1172 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1173 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1174 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1175 Record.push_back(VE.getValueID(C->getOperand(i))); 1176 } 1177 break; 1178 case Instruction::Select: 1179 Code = bitc::CST_CODE_CE_SELECT; 1180 Record.push_back(VE.getValueID(C->getOperand(0))); 1181 Record.push_back(VE.getValueID(C->getOperand(1))); 1182 Record.push_back(VE.getValueID(C->getOperand(2))); 1183 break; 1184 case Instruction::ExtractElement: 1185 Code = bitc::CST_CODE_CE_EXTRACTELT; 1186 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1187 Record.push_back(VE.getValueID(C->getOperand(0))); 1188 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1189 Record.push_back(VE.getValueID(C->getOperand(1))); 1190 break; 1191 case Instruction::InsertElement: 1192 Code = bitc::CST_CODE_CE_INSERTELT; 1193 Record.push_back(VE.getValueID(C->getOperand(0))); 1194 Record.push_back(VE.getValueID(C->getOperand(1))); 1195 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1196 Record.push_back(VE.getValueID(C->getOperand(2))); 1197 break; 1198 case Instruction::ShuffleVector: 1199 // If the return type and argument types are the same, this is a 1200 // standard shufflevector instruction. If the types are different, 1201 // then the shuffle is widening or truncating the input vectors, and 1202 // the argument type must also be encoded. 1203 if (C->getType() == C->getOperand(0)->getType()) { 1204 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1205 } else { 1206 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1207 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1208 } 1209 Record.push_back(VE.getValueID(C->getOperand(0))); 1210 Record.push_back(VE.getValueID(C->getOperand(1))); 1211 Record.push_back(VE.getValueID(C->getOperand(2))); 1212 break; 1213 case Instruction::ICmp: 1214 case Instruction::FCmp: 1215 Code = bitc::CST_CODE_CE_CMP; 1216 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1217 Record.push_back(VE.getValueID(C->getOperand(0))); 1218 Record.push_back(VE.getValueID(C->getOperand(1))); 1219 Record.push_back(CE->getPredicate()); 1220 break; 1221 } 1222 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1223 Code = bitc::CST_CODE_BLOCKADDRESS; 1224 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1225 Record.push_back(VE.getValueID(BA->getFunction())); 1226 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1227 } else { 1228 #ifndef NDEBUG 1229 C->dump(); 1230 #endif 1231 llvm_unreachable("Unknown constant!"); 1232 } 1233 Stream.EmitRecord(Code, Record, AbbrevToUse); 1234 Record.clear(); 1235 } 1236 1237 Stream.ExitBlock(); 1238 } 1239 1240 static void WriteModuleConstants(const ValueEnumerator &VE, 1241 BitstreamWriter &Stream) { 1242 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1243 1244 // Find the first constant to emit, which is the first non-globalvalue value. 1245 // We know globalvalues have been emitted by WriteModuleInfo. 1246 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1247 if (!isa<GlobalValue>(Vals[i].first)) { 1248 WriteConstants(i, Vals.size(), VE, Stream, true); 1249 return; 1250 } 1251 } 1252 } 1253 1254 /// PushValueAndType - The file has to encode both the value and type id for 1255 /// many values, because we need to know what type to create for forward 1256 /// references. However, most operands are not forward references, so this type 1257 /// field is not needed. 1258 /// 1259 /// This function adds V's value ID to Vals. If the value ID is higher than the 1260 /// instruction ID, then it is a forward reference, and it also includes the 1261 /// type ID. The value ID that is written is encoded relative to the InstID. 1262 static bool PushValueAndType(const Value *V, unsigned InstID, 1263 SmallVectorImpl<unsigned> &Vals, 1264 ValueEnumerator &VE) { 1265 unsigned ValID = VE.getValueID(V); 1266 // Make encoding relative to the InstID. 1267 Vals.push_back(InstID - ValID); 1268 if (ValID >= InstID) { 1269 Vals.push_back(VE.getTypeID(V->getType())); 1270 return true; 1271 } 1272 return false; 1273 } 1274 1275 /// pushValue - Like PushValueAndType, but where the type of the value is 1276 /// omitted (perhaps it was already encoded in an earlier operand). 1277 static void pushValue(const Value *V, unsigned InstID, 1278 SmallVectorImpl<unsigned> &Vals, 1279 ValueEnumerator &VE) { 1280 unsigned ValID = VE.getValueID(V); 1281 Vals.push_back(InstID - ValID); 1282 } 1283 1284 static void pushValueSigned(const Value *V, unsigned InstID, 1285 SmallVectorImpl<uint64_t> &Vals, 1286 ValueEnumerator &VE) { 1287 unsigned ValID = VE.getValueID(V); 1288 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1289 emitSignedInt64(Vals, diff); 1290 } 1291 1292 /// WriteInstruction - Emit an instruction to the specified stream. 1293 static void WriteInstruction(const Instruction &I, unsigned InstID, 1294 ValueEnumerator &VE, BitstreamWriter &Stream, 1295 SmallVectorImpl<unsigned> &Vals) { 1296 unsigned Code = 0; 1297 unsigned AbbrevToUse = 0; 1298 VE.setInstructionID(&I); 1299 switch (I.getOpcode()) { 1300 default: 1301 if (Instruction::isCast(I.getOpcode())) { 1302 Code = bitc::FUNC_CODE_INST_CAST; 1303 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1304 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1305 Vals.push_back(VE.getTypeID(I.getType())); 1306 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1307 } else { 1308 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1309 Code = bitc::FUNC_CODE_INST_BINOP; 1310 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1311 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1312 pushValue(I.getOperand(1), InstID, Vals, VE); 1313 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1314 uint64_t Flags = GetOptimizationFlags(&I); 1315 if (Flags != 0) { 1316 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1317 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1318 Vals.push_back(Flags); 1319 } 1320 } 1321 break; 1322 1323 case Instruction::GetElementPtr: 1324 Code = bitc::FUNC_CODE_INST_GEP; 1325 if (cast<GEPOperator>(&I)->isInBounds()) 1326 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1327 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1328 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1329 break; 1330 case Instruction::ExtractValue: { 1331 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1332 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1333 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1334 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1335 Vals.push_back(*i); 1336 break; 1337 } 1338 case Instruction::InsertValue: { 1339 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1340 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1341 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1342 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1343 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1344 Vals.push_back(*i); 1345 break; 1346 } 1347 case Instruction::Select: 1348 Code = bitc::FUNC_CODE_INST_VSELECT; 1349 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1350 pushValue(I.getOperand(2), InstID, Vals, VE); 1351 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1352 break; 1353 case Instruction::ExtractElement: 1354 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1355 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1356 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1357 break; 1358 case Instruction::InsertElement: 1359 Code = bitc::FUNC_CODE_INST_INSERTELT; 1360 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1361 pushValue(I.getOperand(1), InstID, Vals, VE); 1362 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1363 break; 1364 case Instruction::ShuffleVector: 1365 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1366 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1367 pushValue(I.getOperand(1), InstID, Vals, VE); 1368 pushValue(I.getOperand(2), InstID, Vals, VE); 1369 break; 1370 case Instruction::ICmp: 1371 case Instruction::FCmp: 1372 // compare returning Int1Ty or vector of Int1Ty 1373 Code = bitc::FUNC_CODE_INST_CMP2; 1374 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1375 pushValue(I.getOperand(1), InstID, Vals, VE); 1376 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1377 break; 1378 1379 case Instruction::Ret: 1380 { 1381 Code = bitc::FUNC_CODE_INST_RET; 1382 unsigned NumOperands = I.getNumOperands(); 1383 if (NumOperands == 0) 1384 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1385 else if (NumOperands == 1) { 1386 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1387 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1388 } else { 1389 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1390 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1391 } 1392 } 1393 break; 1394 case Instruction::Br: 1395 { 1396 Code = bitc::FUNC_CODE_INST_BR; 1397 const BranchInst &II = cast<BranchInst>(I); 1398 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1399 if (II.isConditional()) { 1400 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1401 pushValue(II.getCondition(), InstID, Vals, VE); 1402 } 1403 } 1404 break; 1405 case Instruction::Switch: 1406 { 1407 Code = bitc::FUNC_CODE_INST_SWITCH; 1408 const SwitchInst &SI = cast<SwitchInst>(I); 1409 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1410 pushValue(SI.getCondition(), InstID, Vals, VE); 1411 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1412 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1413 i != e; ++i) { 1414 Vals.push_back(VE.getValueID(i.getCaseValue())); 1415 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1416 } 1417 } 1418 break; 1419 case Instruction::IndirectBr: 1420 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1421 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1422 // Encode the address operand as relative, but not the basic blocks. 1423 pushValue(I.getOperand(0), InstID, Vals, VE); 1424 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1425 Vals.push_back(VE.getValueID(I.getOperand(i))); 1426 break; 1427 1428 case Instruction::Invoke: { 1429 const InvokeInst *II = cast<InvokeInst>(&I); 1430 const Value *Callee(II->getCalledValue()); 1431 PointerType *PTy = cast<PointerType>(Callee->getType()); 1432 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1433 Code = bitc::FUNC_CODE_INST_INVOKE; 1434 1435 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1436 Vals.push_back(II->getCallingConv()); 1437 Vals.push_back(VE.getValueID(II->getNormalDest())); 1438 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1439 PushValueAndType(Callee, InstID, Vals, VE); 1440 1441 // Emit value #'s for the fixed parameters. 1442 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1443 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1444 1445 // Emit type/value pairs for varargs params. 1446 if (FTy->isVarArg()) { 1447 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1448 i != e; ++i) 1449 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1450 } 1451 break; 1452 } 1453 case Instruction::Resume: 1454 Code = bitc::FUNC_CODE_INST_RESUME; 1455 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1456 break; 1457 case Instruction::Unreachable: 1458 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1459 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1460 break; 1461 1462 case Instruction::PHI: { 1463 const PHINode &PN = cast<PHINode>(I); 1464 Code = bitc::FUNC_CODE_INST_PHI; 1465 // With the newer instruction encoding, forward references could give 1466 // negative valued IDs. This is most common for PHIs, so we use 1467 // signed VBRs. 1468 SmallVector<uint64_t, 128> Vals64; 1469 Vals64.push_back(VE.getTypeID(PN.getType())); 1470 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1471 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1472 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1473 } 1474 // Emit a Vals64 vector and exit. 1475 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1476 Vals64.clear(); 1477 return; 1478 } 1479 1480 case Instruction::LandingPad: { 1481 const LandingPadInst &LP = cast<LandingPadInst>(I); 1482 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1483 Vals.push_back(VE.getTypeID(LP.getType())); 1484 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1485 Vals.push_back(LP.isCleanup()); 1486 Vals.push_back(LP.getNumClauses()); 1487 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1488 if (LP.isCatch(I)) 1489 Vals.push_back(LandingPadInst::Catch); 1490 else 1491 Vals.push_back(LandingPadInst::Filter); 1492 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1493 } 1494 break; 1495 } 1496 1497 case Instruction::Alloca: { 1498 Code = bitc::FUNC_CODE_INST_ALLOCA; 1499 Vals.push_back(VE.getTypeID(I.getType())); 1500 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1501 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1502 const AllocaInst &AI = cast<AllocaInst>(I); 1503 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1504 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1505 "not enough bits for maximum alignment"); 1506 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1507 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1508 Vals.push_back(AlignRecord); 1509 break; 1510 } 1511 1512 case Instruction::Load: 1513 if (cast<LoadInst>(I).isAtomic()) { 1514 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1515 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1516 } else { 1517 Code = bitc::FUNC_CODE_INST_LOAD; 1518 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1519 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1520 } 1521 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1522 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1523 if (cast<LoadInst>(I).isAtomic()) { 1524 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1525 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1526 } 1527 break; 1528 case Instruction::Store: 1529 if (cast<StoreInst>(I).isAtomic()) 1530 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1531 else 1532 Code = bitc::FUNC_CODE_INST_STORE; 1533 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1534 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1535 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1536 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1537 if (cast<StoreInst>(I).isAtomic()) { 1538 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1539 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1540 } 1541 break; 1542 case Instruction::AtomicCmpXchg: 1543 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1544 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1545 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1546 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1547 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1548 Vals.push_back(GetEncodedOrdering( 1549 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1550 Vals.push_back(GetEncodedSynchScope( 1551 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1552 Vals.push_back(GetEncodedOrdering( 1553 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1554 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1555 break; 1556 case Instruction::AtomicRMW: 1557 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1558 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1559 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1560 Vals.push_back(GetEncodedRMWOperation( 1561 cast<AtomicRMWInst>(I).getOperation())); 1562 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1563 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1564 Vals.push_back(GetEncodedSynchScope( 1565 cast<AtomicRMWInst>(I).getSynchScope())); 1566 break; 1567 case Instruction::Fence: 1568 Code = bitc::FUNC_CODE_INST_FENCE; 1569 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1570 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1571 break; 1572 case Instruction::Call: { 1573 const CallInst &CI = cast<CallInst>(I); 1574 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1575 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1576 1577 Code = bitc::FUNC_CODE_INST_CALL; 1578 1579 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1580 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1581 unsigned(CI.isMustTailCall()) << 14); 1582 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1583 1584 // Emit value #'s for the fixed parameters. 1585 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1586 // Check for labels (can happen with asm labels). 1587 if (FTy->getParamType(i)->isLabelTy()) 1588 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1589 else 1590 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1591 } 1592 1593 // Emit type/value pairs for varargs params. 1594 if (FTy->isVarArg()) { 1595 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1596 i != e; ++i) 1597 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1598 } 1599 break; 1600 } 1601 case Instruction::VAArg: 1602 Code = bitc::FUNC_CODE_INST_VAARG; 1603 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1604 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1605 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1606 break; 1607 } 1608 1609 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1610 Vals.clear(); 1611 } 1612 1613 // Emit names for globals/functions etc. 1614 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1615 const ValueEnumerator &VE, 1616 BitstreamWriter &Stream) { 1617 if (VST.empty()) return; 1618 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1619 1620 // FIXME: Set up the abbrev, we know how many values there are! 1621 // FIXME: We know if the type names can use 7-bit ascii. 1622 SmallVector<unsigned, 64> NameVals; 1623 1624 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1625 SI != SE; ++SI) { 1626 1627 const ValueName &Name = *SI; 1628 1629 // Figure out the encoding to use for the name. 1630 bool is7Bit = true; 1631 bool isChar6 = true; 1632 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1633 C != E; ++C) { 1634 if (isChar6) 1635 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1636 if ((unsigned char)*C & 128) { 1637 is7Bit = false; 1638 break; // don't bother scanning the rest. 1639 } 1640 } 1641 1642 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1643 1644 // VST_ENTRY: [valueid, namechar x N] 1645 // VST_BBENTRY: [bbid, namechar x N] 1646 unsigned Code; 1647 if (isa<BasicBlock>(SI->getValue())) { 1648 Code = bitc::VST_CODE_BBENTRY; 1649 if (isChar6) 1650 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1651 } else { 1652 Code = bitc::VST_CODE_ENTRY; 1653 if (isChar6) 1654 AbbrevToUse = VST_ENTRY_6_ABBREV; 1655 else if (is7Bit) 1656 AbbrevToUse = VST_ENTRY_7_ABBREV; 1657 } 1658 1659 NameVals.push_back(VE.getValueID(SI->getValue())); 1660 for (const char *P = Name.getKeyData(), 1661 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1662 NameVals.push_back((unsigned char)*P); 1663 1664 // Emit the finished record. 1665 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1666 NameVals.clear(); 1667 } 1668 Stream.ExitBlock(); 1669 } 1670 1671 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1672 BitstreamWriter &Stream) { 1673 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1674 unsigned Code; 1675 if (isa<BasicBlock>(Order.V)) 1676 Code = bitc::USELIST_CODE_BB; 1677 else 1678 Code = bitc::USELIST_CODE_DEFAULT; 1679 1680 SmallVector<uint64_t, 64> Record; 1681 for (unsigned I : Order.Shuffle) 1682 Record.push_back(I); 1683 Record.push_back(VE.getValueID(Order.V)); 1684 Stream.EmitRecord(Code, Record); 1685 } 1686 1687 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1688 BitstreamWriter &Stream) { 1689 auto hasMore = [&]() { 1690 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1691 }; 1692 if (!hasMore()) 1693 // Nothing to do. 1694 return; 1695 1696 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1697 while (hasMore()) { 1698 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1699 VE.UseListOrders.pop_back(); 1700 } 1701 Stream.ExitBlock(); 1702 } 1703 1704 /// WriteFunction - Emit a function body to the module stream. 1705 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1706 BitstreamWriter &Stream) { 1707 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1708 VE.incorporateFunction(F); 1709 1710 SmallVector<unsigned, 64> Vals; 1711 1712 // Emit the number of basic blocks, so the reader can create them ahead of 1713 // time. 1714 Vals.push_back(VE.getBasicBlocks().size()); 1715 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1716 Vals.clear(); 1717 1718 // If there are function-local constants, emit them now. 1719 unsigned CstStart, CstEnd; 1720 VE.getFunctionConstantRange(CstStart, CstEnd); 1721 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1722 1723 // If there is function-local metadata, emit it now. 1724 WriteFunctionLocalMetadata(F, VE, Stream); 1725 1726 // Keep a running idea of what the instruction ID is. 1727 unsigned InstID = CstEnd; 1728 1729 bool NeedsMetadataAttachment = false; 1730 1731 DebugLoc LastDL; 1732 1733 // Finally, emit all the instructions, in order. 1734 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1735 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1736 I != E; ++I) { 1737 WriteInstruction(*I, InstID, VE, Stream, Vals); 1738 1739 if (!I->getType()->isVoidTy()) 1740 ++InstID; 1741 1742 // If the instruction has metadata, write a metadata attachment later. 1743 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1744 1745 // If the instruction has a debug location, emit it. 1746 DebugLoc DL = I->getDebugLoc(); 1747 if (DL.isUnknown()) { 1748 // nothing todo. 1749 } else if (DL == LastDL) { 1750 // Just repeat the same debug loc as last time. 1751 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1752 } else { 1753 MDNode *Scope, *IA; 1754 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1755 assert(Scope && "Expected valid scope"); 1756 1757 Vals.push_back(DL.getLine()); 1758 Vals.push_back(DL.getCol()); 1759 Vals.push_back(VE.getMetadataOrNullID(Scope)); 1760 Vals.push_back(VE.getMetadataOrNullID(IA)); 1761 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1762 Vals.clear(); 1763 1764 LastDL = DL; 1765 } 1766 } 1767 1768 // Emit names for all the instructions etc. 1769 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1770 1771 if (NeedsMetadataAttachment) 1772 WriteMetadataAttachment(F, VE, Stream); 1773 if (shouldPreserveBitcodeUseListOrder()) 1774 WriteUseListBlock(&F, VE, Stream); 1775 VE.purgeFunction(); 1776 Stream.ExitBlock(); 1777 } 1778 1779 // Emit blockinfo, which defines the standard abbreviations etc. 1780 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1781 // We only want to emit block info records for blocks that have multiple 1782 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1783 // Other blocks can define their abbrevs inline. 1784 Stream.EnterBlockInfoBlock(2); 1785 1786 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1787 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1792 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1793 Abbv) != VST_ENTRY_8_ABBREV) 1794 llvm_unreachable("Unexpected abbrev ordering!"); 1795 } 1796 1797 { // 7-bit fixed width VST_ENTRY strings. 1798 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1799 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1803 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1804 Abbv) != VST_ENTRY_7_ABBREV) 1805 llvm_unreachable("Unexpected abbrev ordering!"); 1806 } 1807 { // 6-bit char6 VST_ENTRY strings. 1808 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1809 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1813 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1814 Abbv) != VST_ENTRY_6_ABBREV) 1815 llvm_unreachable("Unexpected abbrev ordering!"); 1816 } 1817 { // 6-bit char6 VST_BBENTRY strings. 1818 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1819 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1823 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1824 Abbv) != VST_BBENTRY_6_ABBREV) 1825 llvm_unreachable("Unexpected abbrev ordering!"); 1826 } 1827 1828 1829 1830 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1831 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1832 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1834 Log2_32_Ceil(VE.getTypes().size()+1))); 1835 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1836 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1837 llvm_unreachable("Unexpected abbrev ordering!"); 1838 } 1839 1840 { // INTEGER abbrev for CONSTANTS_BLOCK. 1841 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1842 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1844 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1845 Abbv) != CONSTANTS_INTEGER_ABBREV) 1846 llvm_unreachable("Unexpected abbrev ordering!"); 1847 } 1848 1849 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1850 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1851 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1854 Log2_32_Ceil(VE.getTypes().size()+1))); 1855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1856 1857 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1858 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1859 llvm_unreachable("Unexpected abbrev ordering!"); 1860 } 1861 { // NULL abbrev for CONSTANTS_BLOCK. 1862 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1863 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1864 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1865 Abbv) != CONSTANTS_NULL_Abbrev) 1866 llvm_unreachable("Unexpected abbrev ordering!"); 1867 } 1868 1869 // FIXME: This should only use space for first class types! 1870 1871 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1872 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1877 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1878 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1879 llvm_unreachable("Unexpected abbrev ordering!"); 1880 } 1881 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1882 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1883 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1885 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1887 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1888 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1889 llvm_unreachable("Unexpected abbrev ordering!"); 1890 } 1891 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1892 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1893 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1898 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1899 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1900 llvm_unreachable("Unexpected abbrev ordering!"); 1901 } 1902 { // INST_CAST abbrev for FUNCTION_BLOCK. 1903 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1904 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1907 Log2_32_Ceil(VE.getTypes().size()+1))); 1908 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1909 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1910 Abbv) != FUNCTION_INST_CAST_ABBREV) 1911 llvm_unreachable("Unexpected abbrev ordering!"); 1912 } 1913 1914 { // INST_RET abbrev for FUNCTION_BLOCK. 1915 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1916 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1917 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1918 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1919 llvm_unreachable("Unexpected abbrev ordering!"); 1920 } 1921 { // INST_RET abbrev for FUNCTION_BLOCK. 1922 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1923 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1925 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1926 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1927 llvm_unreachable("Unexpected abbrev ordering!"); 1928 } 1929 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1930 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1931 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1932 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1933 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1934 llvm_unreachable("Unexpected abbrev ordering!"); 1935 } 1936 1937 Stream.ExitBlock(); 1938 } 1939 1940 /// WriteModule - Emit the specified module to the bitstream. 1941 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1942 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1943 1944 SmallVector<unsigned, 1> Vals; 1945 unsigned CurVersion = 1; 1946 Vals.push_back(CurVersion); 1947 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1948 1949 // Analyze the module, enumerating globals, functions, etc. 1950 ValueEnumerator VE(*M); 1951 1952 // Emit blockinfo, which defines the standard abbreviations etc. 1953 WriteBlockInfo(VE, Stream); 1954 1955 // Emit information about attribute groups. 1956 WriteAttributeGroupTable(VE, Stream); 1957 1958 // Emit information about parameter attributes. 1959 WriteAttributeTable(VE, Stream); 1960 1961 // Emit information describing all of the types in the module. 1962 WriteTypeTable(VE, Stream); 1963 1964 writeComdats(VE, Stream); 1965 1966 // Emit top-level description of module, including target triple, inline asm, 1967 // descriptors for global variables, and function prototype info. 1968 WriteModuleInfo(M, VE, Stream); 1969 1970 // Emit constants. 1971 WriteModuleConstants(VE, Stream); 1972 1973 // Emit metadata. 1974 WriteModuleMetadata(M, VE, Stream); 1975 1976 // Emit metadata. 1977 WriteModuleMetadataStore(M, Stream); 1978 1979 // Emit names for globals/functions etc. 1980 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1981 1982 // Emit module-level use-lists. 1983 if (shouldPreserveBitcodeUseListOrder()) 1984 WriteUseListBlock(nullptr, VE, Stream); 1985 1986 // Emit function bodies. 1987 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1988 if (!F->isDeclaration()) 1989 WriteFunction(*F, VE, Stream); 1990 1991 Stream.ExitBlock(); 1992 } 1993 1994 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1995 /// header and trailer to make it compatible with the system archiver. To do 1996 /// this we emit the following header, and then emit a trailer that pads the 1997 /// file out to be a multiple of 16 bytes. 1998 /// 1999 /// struct bc_header { 2000 /// uint32_t Magic; // 0x0B17C0DE 2001 /// uint32_t Version; // Version, currently always 0. 2002 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2003 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2004 /// uint32_t CPUType; // CPU specifier. 2005 /// ... potentially more later ... 2006 /// }; 2007 enum { 2008 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2009 DarwinBCHeaderSize = 5*4 2010 }; 2011 2012 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2013 uint32_t &Position) { 2014 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2015 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2016 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2017 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2018 Position += 4; 2019 } 2020 2021 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2022 const Triple &TT) { 2023 unsigned CPUType = ~0U; 2024 2025 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2026 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2027 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2028 // specific constants here because they are implicitly part of the Darwin ABI. 2029 enum { 2030 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2031 DARWIN_CPU_TYPE_X86 = 7, 2032 DARWIN_CPU_TYPE_ARM = 12, 2033 DARWIN_CPU_TYPE_POWERPC = 18 2034 }; 2035 2036 Triple::ArchType Arch = TT.getArch(); 2037 if (Arch == Triple::x86_64) 2038 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2039 else if (Arch == Triple::x86) 2040 CPUType = DARWIN_CPU_TYPE_X86; 2041 else if (Arch == Triple::ppc) 2042 CPUType = DARWIN_CPU_TYPE_POWERPC; 2043 else if (Arch == Triple::ppc64) 2044 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2045 else if (Arch == Triple::arm || Arch == Triple::thumb) 2046 CPUType = DARWIN_CPU_TYPE_ARM; 2047 2048 // Traditional Bitcode starts after header. 2049 assert(Buffer.size() >= DarwinBCHeaderSize && 2050 "Expected header size to be reserved"); 2051 unsigned BCOffset = DarwinBCHeaderSize; 2052 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2053 2054 // Write the magic and version. 2055 unsigned Position = 0; 2056 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2057 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2058 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2059 WriteInt32ToBuffer(BCSize , Buffer, Position); 2060 WriteInt32ToBuffer(CPUType , Buffer, Position); 2061 2062 // If the file is not a multiple of 16 bytes, insert dummy padding. 2063 while (Buffer.size() & 15) 2064 Buffer.push_back(0); 2065 } 2066 2067 /// WriteBitcodeToFile - Write the specified module to the specified output 2068 /// stream. 2069 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2070 SmallVector<char, 0> Buffer; 2071 Buffer.reserve(256*1024); 2072 2073 // If this is darwin or another generic macho target, reserve space for the 2074 // header. 2075 Triple TT(M->getTargetTriple()); 2076 if (TT.isOSDarwin()) 2077 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2078 2079 // Emit the module into the buffer. 2080 { 2081 BitstreamWriter Stream(Buffer); 2082 2083 // Emit the file header. 2084 Stream.Emit((unsigned)'B', 8); 2085 Stream.Emit((unsigned)'C', 8); 2086 Stream.Emit(0x0, 4); 2087 Stream.Emit(0xC, 4); 2088 Stream.Emit(0xE, 4); 2089 Stream.Emit(0xD, 4); 2090 2091 // Emit the module. 2092 WriteModule(M, Stream); 2093 } 2094 2095 if (TT.isOSDarwin()) 2096 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2097 2098 // Write the generated bitstream to "Out". 2099 Out.write((char*)&Buffer.front(), Buffer.size()); 2100 } 2101