1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitstream/BitCodes.h" 28 #include "llvm/Bitstream/BitstreamWriter.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Config/llvm-config.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 static cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_UNOP_ABBREV, 115 FUNCTION_INST_UNOP_FLAGS_ABBREV, 116 FUNCTION_INST_BINOP_ABBREV, 117 FUNCTION_INST_BINOP_FLAGS_ABBREV, 118 FUNCTION_INST_CAST_ABBREV, 119 FUNCTION_INST_RET_VOID_ABBREV, 120 FUNCTION_INST_RET_VAL_ABBREV, 121 FUNCTION_INST_UNREACHABLE_ABBREV, 122 FUNCTION_INST_GEP_ABBREV, 123 }; 124 125 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 126 /// file type. 127 class BitcodeWriterBase { 128 protected: 129 /// The stream created and owned by the client. 130 BitstreamWriter &Stream; 131 132 StringTableBuilder &StrtabBuilder; 133 134 public: 135 /// Constructs a BitcodeWriterBase object that writes to the provided 136 /// \p Stream. 137 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 138 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 139 140 protected: 141 void writeBitcodeHeader(); 142 void writeModuleVersion(); 143 }; 144 145 void BitcodeWriterBase::writeModuleVersion() { 146 // VERSION: [version#] 147 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 148 } 149 150 /// Base class to manage the module bitcode writing, currently subclassed for 151 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 152 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 153 protected: 154 /// The Module to write to bitcode. 155 const Module &M; 156 157 /// Enumerates ids for all values in the module. 158 ValueEnumerator VE; 159 160 /// Optional per-module index to write for ThinLTO. 161 const ModuleSummaryIndex *Index; 162 163 /// Map that holds the correspondence between GUIDs in the summary index, 164 /// that came from indirect call profiles, and a value id generated by this 165 /// class to use in the VST and summary block records. 166 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 167 168 /// Tracks the last value id recorded in the GUIDToValueMap. 169 unsigned GlobalValueId; 170 171 /// Saves the offset of the VSTOffset record that must eventually be 172 /// backpatched with the offset of the actual VST. 173 uint64_t VSTOffsetPlaceholder = 0; 174 175 public: 176 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 177 /// writing to the provided \p Buffer. 178 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 179 BitstreamWriter &Stream, 180 bool ShouldPreserveUseListOrder, 181 const ModuleSummaryIndex *Index) 182 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 183 VE(M, ShouldPreserveUseListOrder), Index(Index) { 184 // Assign ValueIds to any callee values in the index that came from 185 // indirect call profiles and were recorded as a GUID not a Value* 186 // (which would have been assigned an ID by the ValueEnumerator). 187 // The starting ValueId is just after the number of values in the 188 // ValueEnumerator, so that they can be emitted in the VST. 189 GlobalValueId = VE.getValues().size(); 190 if (!Index) 191 return; 192 for (const auto &GUIDSummaryLists : *Index) 193 // Examine all summaries for this GUID. 194 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 195 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 196 // For each call in the function summary, see if the call 197 // is to a GUID (which means it is for an indirect call, 198 // otherwise we would have a Value for it). If so, synthesize 199 // a value id. 200 for (auto &CallEdge : FS->calls()) 201 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 202 assignValueId(CallEdge.first.getGUID()); 203 } 204 205 protected: 206 void writePerModuleGlobalValueSummary(); 207 208 private: 209 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 210 GlobalValueSummary *Summary, 211 unsigned ValueID, 212 unsigned FSCallsAbbrev, 213 unsigned FSCallsProfileAbbrev, 214 const Function &F); 215 void writeModuleLevelReferences(const GlobalVariable &V, 216 SmallVector<uint64_t, 64> &NameVals, 217 unsigned FSModRefsAbbrev, 218 unsigned FSModVTableRefsAbbrev); 219 220 void assignValueId(GlobalValue::GUID ValGUID) { 221 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 222 } 223 224 unsigned getValueId(GlobalValue::GUID ValGUID) { 225 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 226 // Expect that any GUID value had a value Id assigned by an 227 // earlier call to assignValueId. 228 assert(VMI != GUIDToValueIdMap.end() && 229 "GUID does not have assigned value Id"); 230 return VMI->second; 231 } 232 233 // Helper to get the valueId for the type of value recorded in VI. 234 unsigned getValueId(ValueInfo VI) { 235 if (!VI.haveGVs() || !VI.getValue()) 236 return getValueId(VI.getGUID()); 237 return VE.getValueID(VI.getValue()); 238 } 239 240 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 241 }; 242 243 /// Class to manage the bitcode writing for a module. 244 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 245 /// Pointer to the buffer allocated by caller for bitcode writing. 246 const SmallVectorImpl<char> &Buffer; 247 248 /// True if a module hash record should be written. 249 bool GenerateHash; 250 251 /// If non-null, when GenerateHash is true, the resulting hash is written 252 /// into ModHash. 253 ModuleHash *ModHash; 254 255 SHA1 Hasher; 256 257 /// The start bit of the identification block. 258 uint64_t BitcodeStartBit; 259 260 public: 261 /// Constructs a ModuleBitcodeWriter object for the given Module, 262 /// writing to the provided \p Buffer. 263 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 264 StringTableBuilder &StrtabBuilder, 265 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 266 const ModuleSummaryIndex *Index, bool GenerateHash, 267 ModuleHash *ModHash = nullptr) 268 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 269 ShouldPreserveUseListOrder, Index), 270 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 271 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 272 273 /// Emit the current module to the bitstream. 274 void write(); 275 276 private: 277 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 278 279 size_t addToStrtab(StringRef Str); 280 281 void writeAttributeGroupTable(); 282 void writeAttributeTable(); 283 void writeTypeTable(); 284 void writeComdats(); 285 void writeValueSymbolTableForwardDecl(); 286 void writeModuleInfo(); 287 void writeValueAsMetadata(const ValueAsMetadata *MD, 288 SmallVectorImpl<uint64_t> &Record); 289 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned Abbrev); 291 unsigned createDILocationAbbrev(); 292 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 293 unsigned &Abbrev); 294 unsigned createGenericDINodeAbbrev(); 295 void writeGenericDINode(const GenericDINode *N, 296 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 297 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned Abbrev); 299 void writeDIEnumerator(const DIEnumerator *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 301 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIDerivedType(const DIDerivedType *N, 304 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 305 void writeDICompositeType(const DICompositeType *N, 306 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 307 void writeDISubroutineType(const DISubroutineType *N, 308 SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned Abbrev); 312 void writeDICompileUnit(const DICompileUnit *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDISubprogram(const DISubprogram *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDILexicalBlock(const DILexicalBlock *N, 317 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 318 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 319 SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICommonBlock(const DICommonBlock *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 324 unsigned Abbrev); 325 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 326 unsigned Abbrev); 327 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 332 SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 335 SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIGlobalVariable(const DIGlobalVariable *N, 338 SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDILocalVariable(const DILocalVariable *N, 341 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 342 void writeDILabel(const DILabel *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIExpression(const DIExpression *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 347 SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIObjCProperty(const DIObjCProperty *N, 350 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 351 void writeDIImportedEntity(const DIImportedEntity *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 unsigned createNamedMetadataAbbrev(); 355 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 356 unsigned createMetadataStringsAbbrev(); 357 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 358 SmallVectorImpl<uint64_t> &Record); 359 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 360 SmallVectorImpl<uint64_t> &Record, 361 std::vector<unsigned> *MDAbbrevs = nullptr, 362 std::vector<uint64_t> *IndexPos = nullptr); 363 void writeModuleMetadata(); 364 void writeFunctionMetadata(const Function &F); 365 void writeFunctionMetadataAttachment(const Function &F); 366 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 367 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 368 const GlobalObject &GO); 369 void writeModuleMetadataKinds(); 370 void writeOperandBundleTags(); 371 void writeSyncScopeNames(); 372 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 373 void writeModuleConstants(); 374 bool pushValueAndType(const Value *V, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 377 void pushValue(const Value *V, unsigned InstID, 378 SmallVectorImpl<unsigned> &Vals); 379 void pushValueSigned(const Value *V, unsigned InstID, 380 SmallVectorImpl<uint64_t> &Vals); 381 void writeInstruction(const Instruction &I, unsigned InstID, 382 SmallVectorImpl<unsigned> &Vals); 383 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 384 void writeGlobalValueSymbolTable( 385 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 386 void writeUseList(UseListOrder &&Order); 387 void writeUseListBlock(const Function *F); 388 void 389 writeFunction(const Function &F, 390 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 391 void writeBlockInfo(); 392 void writeModuleHash(size_t BlockStartPos); 393 394 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 395 return unsigned(SSID); 396 } 397 }; 398 399 /// Class to manage the bitcode writing for a combined index. 400 class IndexBitcodeWriter : public BitcodeWriterBase { 401 /// The combined index to write to bitcode. 402 const ModuleSummaryIndex &Index; 403 404 /// When writing a subset of the index for distributed backends, client 405 /// provides a map of modules to the corresponding GUIDs/summaries to write. 406 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 407 408 /// Map that holds the correspondence between the GUID used in the combined 409 /// index and a value id generated by this class to use in references. 410 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 411 412 /// Tracks the last value id recorded in the GUIDToValueMap. 413 unsigned GlobalValueId = 0; 414 415 public: 416 /// Constructs a IndexBitcodeWriter object for the given combined index, 417 /// writing to the provided \p Buffer. When writing a subset of the index 418 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 419 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 420 const ModuleSummaryIndex &Index, 421 const std::map<std::string, GVSummaryMapTy> 422 *ModuleToSummariesForIndex = nullptr) 423 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 424 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 425 // Assign unique value ids to all summaries to be written, for use 426 // in writing out the call graph edges. Save the mapping from GUID 427 // to the new global value id to use when writing those edges, which 428 // are currently saved in the index in terms of GUID. 429 forEachSummary([&](GVInfo I, bool) { 430 GUIDToValueIdMap[I.first] = ++GlobalValueId; 431 }); 432 } 433 434 /// The below iterator returns the GUID and associated summary. 435 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 436 437 /// Calls the callback for each value GUID and summary to be written to 438 /// bitcode. This hides the details of whether they are being pulled from the 439 /// entire index or just those in a provided ModuleToSummariesForIndex map. 440 template<typename Functor> 441 void forEachSummary(Functor Callback) { 442 if (ModuleToSummariesForIndex) { 443 for (auto &M : *ModuleToSummariesForIndex) 444 for (auto &Summary : M.second) { 445 Callback(Summary, false); 446 // Ensure aliasee is handled, e.g. for assigning a valueId, 447 // even if we are not importing the aliasee directly (the 448 // imported alias will contain a copy of aliasee). 449 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 450 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 451 } 452 } else { 453 for (auto &Summaries : Index) 454 for (auto &Summary : Summaries.second.SummaryList) 455 Callback({Summaries.first, Summary.get()}, false); 456 } 457 } 458 459 /// Calls the callback for each entry in the modulePaths StringMap that 460 /// should be written to the module path string table. This hides the details 461 /// of whether they are being pulled from the entire index or just those in a 462 /// provided ModuleToSummariesForIndex map. 463 template <typename Functor> void forEachModule(Functor Callback) { 464 if (ModuleToSummariesForIndex) { 465 for (const auto &M : *ModuleToSummariesForIndex) { 466 const auto &MPI = Index.modulePaths().find(M.first); 467 if (MPI == Index.modulePaths().end()) { 468 // This should only happen if the bitcode file was empty, in which 469 // case we shouldn't be importing (the ModuleToSummariesForIndex 470 // would only include the module we are writing and index for). 471 assert(ModuleToSummariesForIndex->size() == 1); 472 continue; 473 } 474 Callback(*MPI); 475 } 476 } else { 477 for (const auto &MPSE : Index.modulePaths()) 478 Callback(MPSE); 479 } 480 } 481 482 /// Main entry point for writing a combined index to bitcode. 483 void write(); 484 485 private: 486 void writeModStrings(); 487 void writeCombinedGlobalValueSummary(); 488 489 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 490 auto VMI = GUIDToValueIdMap.find(ValGUID); 491 if (VMI == GUIDToValueIdMap.end()) 492 return None; 493 return VMI->second; 494 } 495 496 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 497 }; 498 499 } // end anonymous namespace 500 501 static unsigned getEncodedCastOpcode(unsigned Opcode) { 502 switch (Opcode) { 503 default: llvm_unreachable("Unknown cast instruction!"); 504 case Instruction::Trunc : return bitc::CAST_TRUNC; 505 case Instruction::ZExt : return bitc::CAST_ZEXT; 506 case Instruction::SExt : return bitc::CAST_SEXT; 507 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 508 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 509 case Instruction::UIToFP : return bitc::CAST_UITOFP; 510 case Instruction::SIToFP : return bitc::CAST_SITOFP; 511 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 512 case Instruction::FPExt : return bitc::CAST_FPEXT; 513 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 514 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 515 case Instruction::BitCast : return bitc::CAST_BITCAST; 516 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 517 } 518 } 519 520 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 521 switch (Opcode) { 522 default: llvm_unreachable("Unknown binary instruction!"); 523 case Instruction::FNeg: return bitc::UNOP_FNEG; 524 } 525 } 526 527 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 528 switch (Opcode) { 529 default: llvm_unreachable("Unknown binary instruction!"); 530 case Instruction::Add: 531 case Instruction::FAdd: return bitc::BINOP_ADD; 532 case Instruction::Sub: 533 case Instruction::FSub: return bitc::BINOP_SUB; 534 case Instruction::Mul: 535 case Instruction::FMul: return bitc::BINOP_MUL; 536 case Instruction::UDiv: return bitc::BINOP_UDIV; 537 case Instruction::FDiv: 538 case Instruction::SDiv: return bitc::BINOP_SDIV; 539 case Instruction::URem: return bitc::BINOP_UREM; 540 case Instruction::FRem: 541 case Instruction::SRem: return bitc::BINOP_SREM; 542 case Instruction::Shl: return bitc::BINOP_SHL; 543 case Instruction::LShr: return bitc::BINOP_LSHR; 544 case Instruction::AShr: return bitc::BINOP_ASHR; 545 case Instruction::And: return bitc::BINOP_AND; 546 case Instruction::Or: return bitc::BINOP_OR; 547 case Instruction::Xor: return bitc::BINOP_XOR; 548 } 549 } 550 551 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 552 switch (Op) { 553 default: llvm_unreachable("Unknown RMW operation!"); 554 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 555 case AtomicRMWInst::Add: return bitc::RMW_ADD; 556 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 557 case AtomicRMWInst::And: return bitc::RMW_AND; 558 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 559 case AtomicRMWInst::Or: return bitc::RMW_OR; 560 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 561 case AtomicRMWInst::Max: return bitc::RMW_MAX; 562 case AtomicRMWInst::Min: return bitc::RMW_MIN; 563 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 564 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 565 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 566 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 567 } 568 } 569 570 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 571 switch (Ordering) { 572 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 573 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 574 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 575 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 576 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 577 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 578 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 579 } 580 llvm_unreachable("Invalid ordering"); 581 } 582 583 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 584 StringRef Str, unsigned AbbrevToUse) { 585 SmallVector<unsigned, 64> Vals; 586 587 // Code: [strchar x N] 588 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 589 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 590 AbbrevToUse = 0; 591 Vals.push_back(Str[i]); 592 } 593 594 // Emit the finished record. 595 Stream.EmitRecord(Code, Vals, AbbrevToUse); 596 } 597 598 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 599 switch (Kind) { 600 case Attribute::Alignment: 601 return bitc::ATTR_KIND_ALIGNMENT; 602 case Attribute::AllocSize: 603 return bitc::ATTR_KIND_ALLOC_SIZE; 604 case Attribute::AlwaysInline: 605 return bitc::ATTR_KIND_ALWAYS_INLINE; 606 case Attribute::ArgMemOnly: 607 return bitc::ATTR_KIND_ARGMEMONLY; 608 case Attribute::Builtin: 609 return bitc::ATTR_KIND_BUILTIN; 610 case Attribute::ByVal: 611 return bitc::ATTR_KIND_BY_VAL; 612 case Attribute::Convergent: 613 return bitc::ATTR_KIND_CONVERGENT; 614 case Attribute::InAlloca: 615 return bitc::ATTR_KIND_IN_ALLOCA; 616 case Attribute::Cold: 617 return bitc::ATTR_KIND_COLD; 618 case Attribute::InaccessibleMemOnly: 619 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 620 case Attribute::InaccessibleMemOrArgMemOnly: 621 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 622 case Attribute::InlineHint: 623 return bitc::ATTR_KIND_INLINE_HINT; 624 case Attribute::InReg: 625 return bitc::ATTR_KIND_IN_REG; 626 case Attribute::JumpTable: 627 return bitc::ATTR_KIND_JUMP_TABLE; 628 case Attribute::MinSize: 629 return bitc::ATTR_KIND_MIN_SIZE; 630 case Attribute::Naked: 631 return bitc::ATTR_KIND_NAKED; 632 case Attribute::Nest: 633 return bitc::ATTR_KIND_NEST; 634 case Attribute::NoAlias: 635 return bitc::ATTR_KIND_NO_ALIAS; 636 case Attribute::NoBuiltin: 637 return bitc::ATTR_KIND_NO_BUILTIN; 638 case Attribute::NoCapture: 639 return bitc::ATTR_KIND_NO_CAPTURE; 640 case Attribute::NoDuplicate: 641 return bitc::ATTR_KIND_NO_DUPLICATE; 642 case Attribute::NoFree: 643 return bitc::ATTR_KIND_NOFREE; 644 case Attribute::NoImplicitFloat: 645 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 646 case Attribute::NoInline: 647 return bitc::ATTR_KIND_NO_INLINE; 648 case Attribute::NoRecurse: 649 return bitc::ATTR_KIND_NO_RECURSE; 650 case Attribute::NonLazyBind: 651 return bitc::ATTR_KIND_NON_LAZY_BIND; 652 case Attribute::NonNull: 653 return bitc::ATTR_KIND_NON_NULL; 654 case Attribute::Dereferenceable: 655 return bitc::ATTR_KIND_DEREFERENCEABLE; 656 case Attribute::DereferenceableOrNull: 657 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 658 case Attribute::NoRedZone: 659 return bitc::ATTR_KIND_NO_RED_ZONE; 660 case Attribute::NoReturn: 661 return bitc::ATTR_KIND_NO_RETURN; 662 case Attribute::NoSync: 663 return bitc::ATTR_KIND_NOSYNC; 664 case Attribute::NoCfCheck: 665 return bitc::ATTR_KIND_NOCF_CHECK; 666 case Attribute::NoUnwind: 667 return bitc::ATTR_KIND_NO_UNWIND; 668 case Attribute::OptForFuzzing: 669 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 670 case Attribute::OptimizeForSize: 671 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 672 case Attribute::OptimizeNone: 673 return bitc::ATTR_KIND_OPTIMIZE_NONE; 674 case Attribute::ReadNone: 675 return bitc::ATTR_KIND_READ_NONE; 676 case Attribute::ReadOnly: 677 return bitc::ATTR_KIND_READ_ONLY; 678 case Attribute::Returned: 679 return bitc::ATTR_KIND_RETURNED; 680 case Attribute::ReturnsTwice: 681 return bitc::ATTR_KIND_RETURNS_TWICE; 682 case Attribute::SExt: 683 return bitc::ATTR_KIND_S_EXT; 684 case Attribute::Speculatable: 685 return bitc::ATTR_KIND_SPECULATABLE; 686 case Attribute::StackAlignment: 687 return bitc::ATTR_KIND_STACK_ALIGNMENT; 688 case Attribute::StackProtect: 689 return bitc::ATTR_KIND_STACK_PROTECT; 690 case Attribute::StackProtectReq: 691 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 692 case Attribute::StackProtectStrong: 693 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 694 case Attribute::SafeStack: 695 return bitc::ATTR_KIND_SAFESTACK; 696 case Attribute::ShadowCallStack: 697 return bitc::ATTR_KIND_SHADOWCALLSTACK; 698 case Attribute::StrictFP: 699 return bitc::ATTR_KIND_STRICT_FP; 700 case Attribute::StructRet: 701 return bitc::ATTR_KIND_STRUCT_RET; 702 case Attribute::SanitizeAddress: 703 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 704 case Attribute::SanitizeHWAddress: 705 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 706 case Attribute::SanitizeThread: 707 return bitc::ATTR_KIND_SANITIZE_THREAD; 708 case Attribute::SanitizeMemory: 709 return bitc::ATTR_KIND_SANITIZE_MEMORY; 710 case Attribute::SpeculativeLoadHardening: 711 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 712 case Attribute::SwiftError: 713 return bitc::ATTR_KIND_SWIFT_ERROR; 714 case Attribute::SwiftSelf: 715 return bitc::ATTR_KIND_SWIFT_SELF; 716 case Attribute::UWTable: 717 return bitc::ATTR_KIND_UW_TABLE; 718 case Attribute::WillReturn: 719 return bitc::ATTR_KIND_WILLRETURN; 720 case Attribute::WriteOnly: 721 return bitc::ATTR_KIND_WRITEONLY; 722 case Attribute::ZExt: 723 return bitc::ATTR_KIND_Z_EXT; 724 case Attribute::ImmArg: 725 return bitc::ATTR_KIND_IMMARG; 726 case Attribute::SanitizeMemTag: 727 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 728 case Attribute::EndAttrKinds: 729 llvm_unreachable("Can not encode end-attribute kinds marker."); 730 case Attribute::None: 731 llvm_unreachable("Can not encode none-attribute."); 732 } 733 734 llvm_unreachable("Trying to encode unknown attribute"); 735 } 736 737 void ModuleBitcodeWriter::writeAttributeGroupTable() { 738 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 739 VE.getAttributeGroups(); 740 if (AttrGrps.empty()) return; 741 742 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 743 744 SmallVector<uint64_t, 64> Record; 745 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 746 unsigned AttrListIndex = Pair.first; 747 AttributeSet AS = Pair.second; 748 Record.push_back(VE.getAttributeGroupID(Pair)); 749 Record.push_back(AttrListIndex); 750 751 for (Attribute Attr : AS) { 752 if (Attr.isEnumAttribute()) { 753 Record.push_back(0); 754 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 755 } else if (Attr.isIntAttribute()) { 756 Record.push_back(1); 757 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 758 Record.push_back(Attr.getValueAsInt()); 759 } else if (Attr.isStringAttribute()) { 760 StringRef Kind = Attr.getKindAsString(); 761 StringRef Val = Attr.getValueAsString(); 762 763 Record.push_back(Val.empty() ? 3 : 4); 764 Record.append(Kind.begin(), Kind.end()); 765 Record.push_back(0); 766 if (!Val.empty()) { 767 Record.append(Val.begin(), Val.end()); 768 Record.push_back(0); 769 } 770 } else { 771 assert(Attr.isTypeAttribute()); 772 Type *Ty = Attr.getValueAsType(); 773 Record.push_back(Ty ? 6 : 5); 774 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 775 if (Ty) 776 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 777 } 778 } 779 780 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 781 Record.clear(); 782 } 783 784 Stream.ExitBlock(); 785 } 786 787 void ModuleBitcodeWriter::writeAttributeTable() { 788 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 789 if (Attrs.empty()) return; 790 791 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 792 793 SmallVector<uint64_t, 64> Record; 794 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 795 AttributeList AL = Attrs[i]; 796 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 797 AttributeSet AS = AL.getAttributes(i); 798 if (AS.hasAttributes()) 799 Record.push_back(VE.getAttributeGroupID({i, AS})); 800 } 801 802 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 803 Record.clear(); 804 } 805 806 Stream.ExitBlock(); 807 } 808 809 /// WriteTypeTable - Write out the type table for a module. 810 void ModuleBitcodeWriter::writeTypeTable() { 811 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 812 813 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 814 SmallVector<uint64_t, 64> TypeVals; 815 816 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 817 818 // Abbrev for TYPE_CODE_POINTER. 819 auto Abbv = std::make_shared<BitCodeAbbrev>(); 820 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 822 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 823 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 824 825 // Abbrev for TYPE_CODE_FUNCTION. 826 Abbv = std::make_shared<BitCodeAbbrev>(); 827 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 831 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 832 833 // Abbrev for TYPE_CODE_STRUCT_ANON. 834 Abbv = std::make_shared<BitCodeAbbrev>(); 835 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 839 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 840 841 // Abbrev for TYPE_CODE_STRUCT_NAME. 842 Abbv = std::make_shared<BitCodeAbbrev>(); 843 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 846 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 847 848 // Abbrev for TYPE_CODE_STRUCT_NAMED. 849 Abbv = std::make_shared<BitCodeAbbrev>(); 850 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 851 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 852 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 854 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 855 856 // Abbrev for TYPE_CODE_ARRAY. 857 Abbv = std::make_shared<BitCodeAbbrev>(); 858 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 860 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 861 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 862 863 // Emit an entry count so the reader can reserve space. 864 TypeVals.push_back(TypeList.size()); 865 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 866 TypeVals.clear(); 867 868 // Loop over all of the types, emitting each in turn. 869 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 870 Type *T = TypeList[i]; 871 int AbbrevToUse = 0; 872 unsigned Code = 0; 873 874 switch (T->getTypeID()) { 875 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 876 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 877 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 878 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 879 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 880 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 881 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 882 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 883 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 884 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 885 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 886 case Type::IntegerTyID: 887 // INTEGER: [width] 888 Code = bitc::TYPE_CODE_INTEGER; 889 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 890 break; 891 case Type::PointerTyID: { 892 PointerType *PTy = cast<PointerType>(T); 893 // POINTER: [pointee type, address space] 894 Code = bitc::TYPE_CODE_POINTER; 895 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 896 unsigned AddressSpace = PTy->getAddressSpace(); 897 TypeVals.push_back(AddressSpace); 898 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 899 break; 900 } 901 case Type::FunctionTyID: { 902 FunctionType *FT = cast<FunctionType>(T); 903 // FUNCTION: [isvararg, retty, paramty x N] 904 Code = bitc::TYPE_CODE_FUNCTION; 905 TypeVals.push_back(FT->isVarArg()); 906 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 907 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 908 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 909 AbbrevToUse = FunctionAbbrev; 910 break; 911 } 912 case Type::StructTyID: { 913 StructType *ST = cast<StructType>(T); 914 // STRUCT: [ispacked, eltty x N] 915 TypeVals.push_back(ST->isPacked()); 916 // Output all of the element types. 917 for (StructType::element_iterator I = ST->element_begin(), 918 E = ST->element_end(); I != E; ++I) 919 TypeVals.push_back(VE.getTypeID(*I)); 920 921 if (ST->isLiteral()) { 922 Code = bitc::TYPE_CODE_STRUCT_ANON; 923 AbbrevToUse = StructAnonAbbrev; 924 } else { 925 if (ST->isOpaque()) { 926 Code = bitc::TYPE_CODE_OPAQUE; 927 } else { 928 Code = bitc::TYPE_CODE_STRUCT_NAMED; 929 AbbrevToUse = StructNamedAbbrev; 930 } 931 932 // Emit the name if it is present. 933 if (!ST->getName().empty()) 934 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 935 StructNameAbbrev); 936 } 937 break; 938 } 939 case Type::ArrayTyID: { 940 ArrayType *AT = cast<ArrayType>(T); 941 // ARRAY: [numelts, eltty] 942 Code = bitc::TYPE_CODE_ARRAY; 943 TypeVals.push_back(AT->getNumElements()); 944 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 945 AbbrevToUse = ArrayAbbrev; 946 break; 947 } 948 case Type::VectorTyID: { 949 VectorType *VT = cast<VectorType>(T); 950 // VECTOR [numelts, eltty] or 951 // [numelts, eltty, scalable] 952 Code = bitc::TYPE_CODE_VECTOR; 953 TypeVals.push_back(VT->getNumElements()); 954 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 955 if (VT->isScalable()) 956 TypeVals.push_back(VT->isScalable()); 957 break; 958 } 959 } 960 961 // Emit the finished record. 962 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 963 TypeVals.clear(); 964 } 965 966 Stream.ExitBlock(); 967 } 968 969 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 970 switch (Linkage) { 971 case GlobalValue::ExternalLinkage: 972 return 0; 973 case GlobalValue::WeakAnyLinkage: 974 return 16; 975 case GlobalValue::AppendingLinkage: 976 return 2; 977 case GlobalValue::InternalLinkage: 978 return 3; 979 case GlobalValue::LinkOnceAnyLinkage: 980 return 18; 981 case GlobalValue::ExternalWeakLinkage: 982 return 7; 983 case GlobalValue::CommonLinkage: 984 return 8; 985 case GlobalValue::PrivateLinkage: 986 return 9; 987 case GlobalValue::WeakODRLinkage: 988 return 17; 989 case GlobalValue::LinkOnceODRLinkage: 990 return 19; 991 case GlobalValue::AvailableExternallyLinkage: 992 return 12; 993 } 994 llvm_unreachable("Invalid linkage"); 995 } 996 997 static unsigned getEncodedLinkage(const GlobalValue &GV) { 998 return getEncodedLinkage(GV.getLinkage()); 999 } 1000 1001 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1002 uint64_t RawFlags = 0; 1003 RawFlags |= Flags.ReadNone; 1004 RawFlags |= (Flags.ReadOnly << 1); 1005 RawFlags |= (Flags.NoRecurse << 2); 1006 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1007 RawFlags |= (Flags.NoInline << 4); 1008 RawFlags |= (Flags.AlwaysInline << 5); 1009 return RawFlags; 1010 } 1011 1012 // Decode the flags for GlobalValue in the summary 1013 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1014 uint64_t RawFlags = 0; 1015 1016 RawFlags |= Flags.NotEligibleToImport; // bool 1017 RawFlags |= (Flags.Live << 1); 1018 RawFlags |= (Flags.DSOLocal << 2); 1019 RawFlags |= (Flags.CanAutoHide << 3); 1020 1021 // Linkage don't need to be remapped at that time for the summary. Any future 1022 // change to the getEncodedLinkage() function will need to be taken into 1023 // account here as well. 1024 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1025 1026 return RawFlags; 1027 } 1028 1029 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1030 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1); 1031 return RawFlags; 1032 } 1033 1034 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1035 switch (GV.getVisibility()) { 1036 case GlobalValue::DefaultVisibility: return 0; 1037 case GlobalValue::HiddenVisibility: return 1; 1038 case GlobalValue::ProtectedVisibility: return 2; 1039 } 1040 llvm_unreachable("Invalid visibility"); 1041 } 1042 1043 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1044 switch (GV.getDLLStorageClass()) { 1045 case GlobalValue::DefaultStorageClass: return 0; 1046 case GlobalValue::DLLImportStorageClass: return 1; 1047 case GlobalValue::DLLExportStorageClass: return 2; 1048 } 1049 llvm_unreachable("Invalid DLL storage class"); 1050 } 1051 1052 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1053 switch (GV.getThreadLocalMode()) { 1054 case GlobalVariable::NotThreadLocal: return 0; 1055 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1056 case GlobalVariable::LocalDynamicTLSModel: return 2; 1057 case GlobalVariable::InitialExecTLSModel: return 3; 1058 case GlobalVariable::LocalExecTLSModel: return 4; 1059 } 1060 llvm_unreachable("Invalid TLS model"); 1061 } 1062 1063 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1064 switch (C.getSelectionKind()) { 1065 case Comdat::Any: 1066 return bitc::COMDAT_SELECTION_KIND_ANY; 1067 case Comdat::ExactMatch: 1068 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1069 case Comdat::Largest: 1070 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1071 case Comdat::NoDuplicates: 1072 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1073 case Comdat::SameSize: 1074 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1075 } 1076 llvm_unreachable("Invalid selection kind"); 1077 } 1078 1079 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1080 switch (GV.getUnnamedAddr()) { 1081 case GlobalValue::UnnamedAddr::None: return 0; 1082 case GlobalValue::UnnamedAddr::Local: return 2; 1083 case GlobalValue::UnnamedAddr::Global: return 1; 1084 } 1085 llvm_unreachable("Invalid unnamed_addr"); 1086 } 1087 1088 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1089 if (GenerateHash) 1090 Hasher.update(Str); 1091 return StrtabBuilder.add(Str); 1092 } 1093 1094 void ModuleBitcodeWriter::writeComdats() { 1095 SmallVector<unsigned, 64> Vals; 1096 for (const Comdat *C : VE.getComdats()) { 1097 // COMDAT: [strtab offset, strtab size, selection_kind] 1098 Vals.push_back(addToStrtab(C->getName())); 1099 Vals.push_back(C->getName().size()); 1100 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1101 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1102 Vals.clear(); 1103 } 1104 } 1105 1106 /// Write a record that will eventually hold the word offset of the 1107 /// module-level VST. For now the offset is 0, which will be backpatched 1108 /// after the real VST is written. Saves the bit offset to backpatch. 1109 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1110 // Write a placeholder value in for the offset of the real VST, 1111 // which is written after the function blocks so that it can include 1112 // the offset of each function. The placeholder offset will be 1113 // updated when the real VST is written. 1114 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1115 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1116 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1117 // hold the real VST offset. Must use fixed instead of VBR as we don't 1118 // know how many VBR chunks to reserve ahead of time. 1119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1120 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1121 1122 // Emit the placeholder 1123 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1124 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1125 1126 // Compute and save the bit offset to the placeholder, which will be 1127 // patched when the real VST is written. We can simply subtract the 32-bit 1128 // fixed size from the current bit number to get the location to backpatch. 1129 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1130 } 1131 1132 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1133 1134 /// Determine the encoding to use for the given string name and length. 1135 static StringEncoding getStringEncoding(StringRef Str) { 1136 bool isChar6 = true; 1137 for (char C : Str) { 1138 if (isChar6) 1139 isChar6 = BitCodeAbbrevOp::isChar6(C); 1140 if ((unsigned char)C & 128) 1141 // don't bother scanning the rest. 1142 return SE_Fixed8; 1143 } 1144 if (isChar6) 1145 return SE_Char6; 1146 return SE_Fixed7; 1147 } 1148 1149 /// Emit top-level description of module, including target triple, inline asm, 1150 /// descriptors for global variables, and function prototype info. 1151 /// Returns the bit offset to backpatch with the location of the real VST. 1152 void ModuleBitcodeWriter::writeModuleInfo() { 1153 // Emit various pieces of data attached to a module. 1154 if (!M.getTargetTriple().empty()) 1155 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1156 0 /*TODO*/); 1157 const std::string &DL = M.getDataLayoutStr(); 1158 if (!DL.empty()) 1159 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1160 if (!M.getModuleInlineAsm().empty()) 1161 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1162 0 /*TODO*/); 1163 1164 // Emit information about sections and GC, computing how many there are. Also 1165 // compute the maximum alignment value. 1166 std::map<std::string, unsigned> SectionMap; 1167 std::map<std::string, unsigned> GCMap; 1168 unsigned MaxAlignment = 0; 1169 unsigned MaxGlobalType = 0; 1170 for (const GlobalValue &GV : M.globals()) { 1171 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1172 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1173 if (GV.hasSection()) { 1174 // Give section names unique ID's. 1175 unsigned &Entry = SectionMap[GV.getSection()]; 1176 if (!Entry) { 1177 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1178 0 /*TODO*/); 1179 Entry = SectionMap.size(); 1180 } 1181 } 1182 } 1183 for (const Function &F : M) { 1184 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1185 if (F.hasSection()) { 1186 // Give section names unique ID's. 1187 unsigned &Entry = SectionMap[F.getSection()]; 1188 if (!Entry) { 1189 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1190 0 /*TODO*/); 1191 Entry = SectionMap.size(); 1192 } 1193 } 1194 if (F.hasGC()) { 1195 // Same for GC names. 1196 unsigned &Entry = GCMap[F.getGC()]; 1197 if (!Entry) { 1198 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1199 0 /*TODO*/); 1200 Entry = GCMap.size(); 1201 } 1202 } 1203 } 1204 1205 // Emit abbrev for globals, now that we know # sections and max alignment. 1206 unsigned SimpleGVarAbbrev = 0; 1207 if (!M.global_empty()) { 1208 // Add an abbrev for common globals with no visibility or thread localness. 1209 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1210 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1214 Log2_32_Ceil(MaxGlobalType+1))); 1215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1216 //| explicitType << 1 1217 //| constant 1218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1220 if (MaxAlignment == 0) // Alignment. 1221 Abbv->Add(BitCodeAbbrevOp(0)); 1222 else { 1223 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1225 Log2_32_Ceil(MaxEncAlignment+1))); 1226 } 1227 if (SectionMap.empty()) // Section. 1228 Abbv->Add(BitCodeAbbrevOp(0)); 1229 else 1230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1231 Log2_32_Ceil(SectionMap.size()+1))); 1232 // Don't bother emitting vis + thread local. 1233 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1234 } 1235 1236 SmallVector<unsigned, 64> Vals; 1237 // Emit the module's source file name. 1238 { 1239 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1240 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1241 if (Bits == SE_Char6) 1242 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1243 else if (Bits == SE_Fixed7) 1244 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1245 1246 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1247 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1248 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1250 Abbv->Add(AbbrevOpToUse); 1251 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1252 1253 for (const auto P : M.getSourceFileName()) 1254 Vals.push_back((unsigned char)P); 1255 1256 // Emit the finished record. 1257 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1258 Vals.clear(); 1259 } 1260 1261 // Emit the global variable information. 1262 for (const GlobalVariable &GV : M.globals()) { 1263 unsigned AbbrevToUse = 0; 1264 1265 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1266 // linkage, alignment, section, visibility, threadlocal, 1267 // unnamed_addr, externally_initialized, dllstorageclass, 1268 // comdat, attributes, DSO_Local] 1269 Vals.push_back(addToStrtab(GV.getName())); 1270 Vals.push_back(GV.getName().size()); 1271 Vals.push_back(VE.getTypeID(GV.getValueType())); 1272 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1273 Vals.push_back(GV.isDeclaration() ? 0 : 1274 (VE.getValueID(GV.getInitializer()) + 1)); 1275 Vals.push_back(getEncodedLinkage(GV)); 1276 Vals.push_back(Log2_32(GV.getAlignment())+1); 1277 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1278 if (GV.isThreadLocal() || 1279 GV.getVisibility() != GlobalValue::DefaultVisibility || 1280 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1281 GV.isExternallyInitialized() || 1282 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1283 GV.hasComdat() || 1284 GV.hasAttributes() || 1285 GV.isDSOLocal() || 1286 GV.hasPartition()) { 1287 Vals.push_back(getEncodedVisibility(GV)); 1288 Vals.push_back(getEncodedThreadLocalMode(GV)); 1289 Vals.push_back(getEncodedUnnamedAddr(GV)); 1290 Vals.push_back(GV.isExternallyInitialized()); 1291 Vals.push_back(getEncodedDLLStorageClass(GV)); 1292 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1293 1294 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1295 Vals.push_back(VE.getAttributeListID(AL)); 1296 1297 Vals.push_back(GV.isDSOLocal()); 1298 Vals.push_back(addToStrtab(GV.getPartition())); 1299 Vals.push_back(GV.getPartition().size()); 1300 } else { 1301 AbbrevToUse = SimpleGVarAbbrev; 1302 } 1303 1304 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1305 Vals.clear(); 1306 } 1307 1308 // Emit the function proto information. 1309 for (const Function &F : M) { 1310 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1311 // linkage, paramattrs, alignment, section, visibility, gc, 1312 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1313 // prefixdata, personalityfn, DSO_Local, addrspace] 1314 Vals.push_back(addToStrtab(F.getName())); 1315 Vals.push_back(F.getName().size()); 1316 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1317 Vals.push_back(F.getCallingConv()); 1318 Vals.push_back(F.isDeclaration()); 1319 Vals.push_back(getEncodedLinkage(F)); 1320 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1321 Vals.push_back(Log2_32(F.getAlignment())+1); 1322 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1323 Vals.push_back(getEncodedVisibility(F)); 1324 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1325 Vals.push_back(getEncodedUnnamedAddr(F)); 1326 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1327 : 0); 1328 Vals.push_back(getEncodedDLLStorageClass(F)); 1329 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1330 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1331 : 0); 1332 Vals.push_back( 1333 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1334 1335 Vals.push_back(F.isDSOLocal()); 1336 Vals.push_back(F.getAddressSpace()); 1337 Vals.push_back(addToStrtab(F.getPartition())); 1338 Vals.push_back(F.getPartition().size()); 1339 1340 unsigned AbbrevToUse = 0; 1341 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1342 Vals.clear(); 1343 } 1344 1345 // Emit the alias information. 1346 for (const GlobalAlias &A : M.aliases()) { 1347 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1348 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1349 // DSO_Local] 1350 Vals.push_back(addToStrtab(A.getName())); 1351 Vals.push_back(A.getName().size()); 1352 Vals.push_back(VE.getTypeID(A.getValueType())); 1353 Vals.push_back(A.getType()->getAddressSpace()); 1354 Vals.push_back(VE.getValueID(A.getAliasee())); 1355 Vals.push_back(getEncodedLinkage(A)); 1356 Vals.push_back(getEncodedVisibility(A)); 1357 Vals.push_back(getEncodedDLLStorageClass(A)); 1358 Vals.push_back(getEncodedThreadLocalMode(A)); 1359 Vals.push_back(getEncodedUnnamedAddr(A)); 1360 Vals.push_back(A.isDSOLocal()); 1361 Vals.push_back(addToStrtab(A.getPartition())); 1362 Vals.push_back(A.getPartition().size()); 1363 1364 unsigned AbbrevToUse = 0; 1365 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1366 Vals.clear(); 1367 } 1368 1369 // Emit the ifunc information. 1370 for (const GlobalIFunc &I : M.ifuncs()) { 1371 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1372 // val#, linkage, visibility, DSO_Local] 1373 Vals.push_back(addToStrtab(I.getName())); 1374 Vals.push_back(I.getName().size()); 1375 Vals.push_back(VE.getTypeID(I.getValueType())); 1376 Vals.push_back(I.getType()->getAddressSpace()); 1377 Vals.push_back(VE.getValueID(I.getResolver())); 1378 Vals.push_back(getEncodedLinkage(I)); 1379 Vals.push_back(getEncodedVisibility(I)); 1380 Vals.push_back(I.isDSOLocal()); 1381 Vals.push_back(addToStrtab(I.getPartition())); 1382 Vals.push_back(I.getPartition().size()); 1383 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1384 Vals.clear(); 1385 } 1386 1387 writeValueSymbolTableForwardDecl(); 1388 } 1389 1390 static uint64_t getOptimizationFlags(const Value *V) { 1391 uint64_t Flags = 0; 1392 1393 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1394 if (OBO->hasNoSignedWrap()) 1395 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1396 if (OBO->hasNoUnsignedWrap()) 1397 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1398 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1399 if (PEO->isExact()) 1400 Flags |= 1 << bitc::PEO_EXACT; 1401 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1402 if (FPMO->hasAllowReassoc()) 1403 Flags |= bitc::AllowReassoc; 1404 if (FPMO->hasNoNaNs()) 1405 Flags |= bitc::NoNaNs; 1406 if (FPMO->hasNoInfs()) 1407 Flags |= bitc::NoInfs; 1408 if (FPMO->hasNoSignedZeros()) 1409 Flags |= bitc::NoSignedZeros; 1410 if (FPMO->hasAllowReciprocal()) 1411 Flags |= bitc::AllowReciprocal; 1412 if (FPMO->hasAllowContract()) 1413 Flags |= bitc::AllowContract; 1414 if (FPMO->hasApproxFunc()) 1415 Flags |= bitc::ApproxFunc; 1416 } 1417 1418 return Flags; 1419 } 1420 1421 void ModuleBitcodeWriter::writeValueAsMetadata( 1422 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1423 // Mimic an MDNode with a value as one operand. 1424 Value *V = MD->getValue(); 1425 Record.push_back(VE.getTypeID(V->getType())); 1426 Record.push_back(VE.getValueID(V)); 1427 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1428 Record.clear(); 1429 } 1430 1431 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1432 SmallVectorImpl<uint64_t> &Record, 1433 unsigned Abbrev) { 1434 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1435 Metadata *MD = N->getOperand(i); 1436 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1437 "Unexpected function-local metadata"); 1438 Record.push_back(VE.getMetadataOrNullID(MD)); 1439 } 1440 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1441 : bitc::METADATA_NODE, 1442 Record, Abbrev); 1443 Record.clear(); 1444 } 1445 1446 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1447 // Assume the column is usually under 128, and always output the inlined-at 1448 // location (it's never more expensive than building an array size 1). 1449 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1450 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1457 return Stream.EmitAbbrev(std::move(Abbv)); 1458 } 1459 1460 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1461 SmallVectorImpl<uint64_t> &Record, 1462 unsigned &Abbrev) { 1463 if (!Abbrev) 1464 Abbrev = createDILocationAbbrev(); 1465 1466 Record.push_back(N->isDistinct()); 1467 Record.push_back(N->getLine()); 1468 Record.push_back(N->getColumn()); 1469 Record.push_back(VE.getMetadataID(N->getScope())); 1470 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1471 Record.push_back(N->isImplicitCode()); 1472 1473 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1474 Record.clear(); 1475 } 1476 1477 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1478 // Assume the column is usually under 128, and always output the inlined-at 1479 // location (it's never more expensive than building an array size 1). 1480 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1481 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1488 return Stream.EmitAbbrev(std::move(Abbv)); 1489 } 1490 1491 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1492 SmallVectorImpl<uint64_t> &Record, 1493 unsigned &Abbrev) { 1494 if (!Abbrev) 1495 Abbrev = createGenericDINodeAbbrev(); 1496 1497 Record.push_back(N->isDistinct()); 1498 Record.push_back(N->getTag()); 1499 Record.push_back(0); // Per-tag version field; unused for now. 1500 1501 for (auto &I : N->operands()) 1502 Record.push_back(VE.getMetadataOrNullID(I)); 1503 1504 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1505 Record.clear(); 1506 } 1507 1508 static uint64_t rotateSign(int64_t I) { 1509 uint64_t U = I; 1510 return I < 0 ? ~(U << 1) : U << 1; 1511 } 1512 1513 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1514 SmallVectorImpl<uint64_t> &Record, 1515 unsigned Abbrev) { 1516 const uint64_t Version = 1 << 1; 1517 Record.push_back((uint64_t)N->isDistinct() | Version); 1518 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1519 Record.push_back(rotateSign(N->getLowerBound())); 1520 1521 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1522 Record.clear(); 1523 } 1524 1525 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1526 SmallVectorImpl<uint64_t> &Record, 1527 unsigned Abbrev) { 1528 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1529 Record.push_back(rotateSign(N->getValue())); 1530 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1531 1532 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1533 Record.clear(); 1534 } 1535 1536 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1537 SmallVectorImpl<uint64_t> &Record, 1538 unsigned Abbrev) { 1539 Record.push_back(N->isDistinct()); 1540 Record.push_back(N->getTag()); 1541 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1542 Record.push_back(N->getSizeInBits()); 1543 Record.push_back(N->getAlignInBits()); 1544 Record.push_back(N->getEncoding()); 1545 Record.push_back(N->getFlags()); 1546 1547 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1548 Record.clear(); 1549 } 1550 1551 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1552 SmallVectorImpl<uint64_t> &Record, 1553 unsigned Abbrev) { 1554 Record.push_back(N->isDistinct()); 1555 Record.push_back(N->getTag()); 1556 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1557 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1558 Record.push_back(N->getLine()); 1559 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1560 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1561 Record.push_back(N->getSizeInBits()); 1562 Record.push_back(N->getAlignInBits()); 1563 Record.push_back(N->getOffsetInBits()); 1564 Record.push_back(N->getFlags()); 1565 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1566 1567 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1568 // that there is no DWARF address space associated with DIDerivedType. 1569 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1570 Record.push_back(*DWARFAddressSpace + 1); 1571 else 1572 Record.push_back(0); 1573 1574 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 void ModuleBitcodeWriter::writeDICompositeType( 1579 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1580 unsigned Abbrev) { 1581 const unsigned IsNotUsedInOldTypeRef = 0x2; 1582 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1583 Record.push_back(N->getTag()); 1584 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1586 Record.push_back(N->getLine()); 1587 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1588 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1589 Record.push_back(N->getSizeInBits()); 1590 Record.push_back(N->getAlignInBits()); 1591 Record.push_back(N->getOffsetInBits()); 1592 Record.push_back(N->getFlags()); 1593 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1594 Record.push_back(N->getRuntimeLang()); 1595 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1596 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1597 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1598 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1599 1600 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1601 Record.clear(); 1602 } 1603 1604 void ModuleBitcodeWriter::writeDISubroutineType( 1605 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1606 unsigned Abbrev) { 1607 const unsigned HasNoOldTypeRefs = 0x2; 1608 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1609 Record.push_back(N->getFlags()); 1610 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1611 Record.push_back(N->getCC()); 1612 1613 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1614 Record.clear(); 1615 } 1616 1617 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1618 SmallVectorImpl<uint64_t> &Record, 1619 unsigned Abbrev) { 1620 Record.push_back(N->isDistinct()); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1622 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1623 if (N->getRawChecksum()) { 1624 Record.push_back(N->getRawChecksum()->Kind); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1626 } else { 1627 // Maintain backwards compatibility with the old internal representation of 1628 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1629 Record.push_back(0); 1630 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1631 } 1632 auto Source = N->getRawSource(); 1633 if (Source) 1634 Record.push_back(VE.getMetadataOrNullID(*Source)); 1635 1636 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1637 Record.clear(); 1638 } 1639 1640 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1641 SmallVectorImpl<uint64_t> &Record, 1642 unsigned Abbrev) { 1643 assert(N->isDistinct() && "Expected distinct compile units"); 1644 Record.push_back(/* IsDistinct */ true); 1645 Record.push_back(N->getSourceLanguage()); 1646 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1648 Record.push_back(N->isOptimized()); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1650 Record.push_back(N->getRuntimeVersion()); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1652 Record.push_back(N->getEmissionKind()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1655 Record.push_back(/* subprograms */ 0); 1656 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1657 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1658 Record.push_back(N->getDWOId()); 1659 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1660 Record.push_back(N->getSplitDebugInlining()); 1661 Record.push_back(N->getDebugInfoForProfiling()); 1662 Record.push_back((unsigned)N->getNameTableKind()); 1663 1664 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1665 Record.clear(); 1666 } 1667 1668 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1669 SmallVectorImpl<uint64_t> &Record, 1670 unsigned Abbrev) { 1671 const uint64_t HasUnitFlag = 1 << 1; 1672 const uint64_t HasSPFlagsFlag = 1 << 2; 1673 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1674 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1675 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1677 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1678 Record.push_back(N->getLine()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1680 Record.push_back(N->getScopeLine()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1682 Record.push_back(N->getSPFlags()); 1683 Record.push_back(N->getVirtualIndex()); 1684 Record.push_back(N->getFlags()); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1688 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1689 Record.push_back(N->getThisAdjustment()); 1690 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1691 1692 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1693 Record.clear(); 1694 } 1695 1696 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1697 SmallVectorImpl<uint64_t> &Record, 1698 unsigned Abbrev) { 1699 Record.push_back(N->isDistinct()); 1700 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1701 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1702 Record.push_back(N->getLine()); 1703 Record.push_back(N->getColumn()); 1704 1705 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1710 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1711 unsigned Abbrev) { 1712 Record.push_back(N->isDistinct()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1715 Record.push_back(N->getDiscriminator()); 1716 1717 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1718 Record.clear(); 1719 } 1720 1721 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1722 SmallVectorImpl<uint64_t> &Record, 1723 unsigned Abbrev) { 1724 Record.push_back(N->isDistinct()); 1725 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1729 Record.push_back(N->getLineNo()); 1730 1731 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1732 Record.clear(); 1733 } 1734 1735 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1736 SmallVectorImpl<uint64_t> &Record, 1737 unsigned Abbrev) { 1738 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1739 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1741 1742 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1743 Record.clear(); 1744 } 1745 1746 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1747 SmallVectorImpl<uint64_t> &Record, 1748 unsigned Abbrev) { 1749 Record.push_back(N->isDistinct()); 1750 Record.push_back(N->getMacinfoType()); 1751 Record.push_back(N->getLine()); 1752 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1754 1755 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1756 Record.clear(); 1757 } 1758 1759 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1760 SmallVectorImpl<uint64_t> &Record, 1761 unsigned Abbrev) { 1762 Record.push_back(N->isDistinct()); 1763 Record.push_back(N->getMacinfoType()); 1764 Record.push_back(N->getLine()); 1765 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1766 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1767 1768 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1769 Record.clear(); 1770 } 1771 1772 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1773 SmallVectorImpl<uint64_t> &Record, 1774 unsigned Abbrev) { 1775 Record.push_back(N->isDistinct()); 1776 for (auto &I : N->operands()) 1777 Record.push_back(VE.getMetadataOrNullID(I)); 1778 1779 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1780 Record.clear(); 1781 } 1782 1783 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1784 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1785 unsigned Abbrev) { 1786 Record.push_back(N->isDistinct()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1789 1790 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1791 Record.clear(); 1792 } 1793 1794 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1795 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1796 unsigned Abbrev) { 1797 Record.push_back(N->isDistinct()); 1798 Record.push_back(N->getTag()); 1799 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1800 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1801 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1802 1803 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1804 Record.clear(); 1805 } 1806 1807 void ModuleBitcodeWriter::writeDIGlobalVariable( 1808 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1809 unsigned Abbrev) { 1810 const uint64_t Version = 2 << 1; 1811 Record.push_back((uint64_t)N->isDistinct() | Version); 1812 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1815 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1816 Record.push_back(N->getLine()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1818 Record.push_back(N->isLocalToUnit()); 1819 Record.push_back(N->isDefinition()); 1820 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1822 Record.push_back(N->getAlignInBits()); 1823 1824 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1825 Record.clear(); 1826 } 1827 1828 void ModuleBitcodeWriter::writeDILocalVariable( 1829 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1830 unsigned Abbrev) { 1831 // In order to support all possible bitcode formats in BitcodeReader we need 1832 // to distinguish the following cases: 1833 // 1) Record has no artificial tag (Record[1]), 1834 // has no obsolete inlinedAt field (Record[9]). 1835 // In this case Record size will be 8, HasAlignment flag is false. 1836 // 2) Record has artificial tag (Record[1]), 1837 // has no obsolete inlignedAt field (Record[9]). 1838 // In this case Record size will be 9, HasAlignment flag is false. 1839 // 3) Record has both artificial tag (Record[1]) and 1840 // obsolete inlignedAt field (Record[9]). 1841 // In this case Record size will be 10, HasAlignment flag is false. 1842 // 4) Record has neither artificial tag, nor inlignedAt field, but 1843 // HasAlignment flag is true and Record[8] contains alignment value. 1844 const uint64_t HasAlignmentFlag = 1 << 1; 1845 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1846 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1849 Record.push_back(N->getLine()); 1850 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1851 Record.push_back(N->getArg()); 1852 Record.push_back(N->getFlags()); 1853 Record.push_back(N->getAlignInBits()); 1854 1855 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1856 Record.clear(); 1857 } 1858 1859 void ModuleBitcodeWriter::writeDILabel( 1860 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1861 unsigned Abbrev) { 1862 Record.push_back((uint64_t)N->isDistinct()); 1863 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1866 Record.push_back(N->getLine()); 1867 1868 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1869 Record.clear(); 1870 } 1871 1872 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1873 SmallVectorImpl<uint64_t> &Record, 1874 unsigned Abbrev) { 1875 Record.reserve(N->getElements().size() + 1); 1876 const uint64_t Version = 3 << 1; 1877 Record.push_back((uint64_t)N->isDistinct() | Version); 1878 Record.append(N->elements_begin(), N->elements_end()); 1879 1880 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1881 Record.clear(); 1882 } 1883 1884 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1885 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1886 unsigned Abbrev) { 1887 Record.push_back(N->isDistinct()); 1888 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1890 1891 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1892 Record.clear(); 1893 } 1894 1895 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1896 SmallVectorImpl<uint64_t> &Record, 1897 unsigned Abbrev) { 1898 Record.push_back(N->isDistinct()); 1899 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1900 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1901 Record.push_back(N->getLine()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1903 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1904 Record.push_back(N->getAttributes()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1906 1907 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1908 Record.clear(); 1909 } 1910 1911 void ModuleBitcodeWriter::writeDIImportedEntity( 1912 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1913 unsigned Abbrev) { 1914 Record.push_back(N->isDistinct()); 1915 Record.push_back(N->getTag()); 1916 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1918 Record.push_back(N->getLine()); 1919 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1920 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1921 1922 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1923 Record.clear(); 1924 } 1925 1926 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1927 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1928 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1931 return Stream.EmitAbbrev(std::move(Abbv)); 1932 } 1933 1934 void ModuleBitcodeWriter::writeNamedMetadata( 1935 SmallVectorImpl<uint64_t> &Record) { 1936 if (M.named_metadata_empty()) 1937 return; 1938 1939 unsigned Abbrev = createNamedMetadataAbbrev(); 1940 for (const NamedMDNode &NMD : M.named_metadata()) { 1941 // Write name. 1942 StringRef Str = NMD.getName(); 1943 Record.append(Str.bytes_begin(), Str.bytes_end()); 1944 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1945 Record.clear(); 1946 1947 // Write named metadata operands. 1948 for (const MDNode *N : NMD.operands()) 1949 Record.push_back(VE.getMetadataID(N)); 1950 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1951 Record.clear(); 1952 } 1953 } 1954 1955 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1956 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1957 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1961 return Stream.EmitAbbrev(std::move(Abbv)); 1962 } 1963 1964 /// Write out a record for MDString. 1965 /// 1966 /// All the metadata strings in a metadata block are emitted in a single 1967 /// record. The sizes and strings themselves are shoved into a blob. 1968 void ModuleBitcodeWriter::writeMetadataStrings( 1969 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1970 if (Strings.empty()) 1971 return; 1972 1973 // Start the record with the number of strings. 1974 Record.push_back(bitc::METADATA_STRINGS); 1975 Record.push_back(Strings.size()); 1976 1977 // Emit the sizes of the strings in the blob. 1978 SmallString<256> Blob; 1979 { 1980 BitstreamWriter W(Blob); 1981 for (const Metadata *MD : Strings) 1982 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1983 W.FlushToWord(); 1984 } 1985 1986 // Add the offset to the strings to the record. 1987 Record.push_back(Blob.size()); 1988 1989 // Add the strings to the blob. 1990 for (const Metadata *MD : Strings) 1991 Blob.append(cast<MDString>(MD)->getString()); 1992 1993 // Emit the final record. 1994 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1995 Record.clear(); 1996 } 1997 1998 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1999 enum MetadataAbbrev : unsigned { 2000 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2001 #include "llvm/IR/Metadata.def" 2002 LastPlusOne 2003 }; 2004 2005 void ModuleBitcodeWriter::writeMetadataRecords( 2006 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2007 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2008 if (MDs.empty()) 2009 return; 2010 2011 // Initialize MDNode abbreviations. 2012 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2013 #include "llvm/IR/Metadata.def" 2014 2015 for (const Metadata *MD : MDs) { 2016 if (IndexPos) 2017 IndexPos->push_back(Stream.GetCurrentBitNo()); 2018 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2019 assert(N->isResolved() && "Expected forward references to be resolved"); 2020 2021 switch (N->getMetadataID()) { 2022 default: 2023 llvm_unreachable("Invalid MDNode subclass"); 2024 #define HANDLE_MDNODE_LEAF(CLASS) \ 2025 case Metadata::CLASS##Kind: \ 2026 if (MDAbbrevs) \ 2027 write##CLASS(cast<CLASS>(N), Record, \ 2028 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2029 else \ 2030 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2031 continue; 2032 #include "llvm/IR/Metadata.def" 2033 } 2034 } 2035 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2036 } 2037 } 2038 2039 void ModuleBitcodeWriter::writeModuleMetadata() { 2040 if (!VE.hasMDs() && M.named_metadata_empty()) 2041 return; 2042 2043 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2044 SmallVector<uint64_t, 64> Record; 2045 2046 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2047 // block and load any metadata. 2048 std::vector<unsigned> MDAbbrevs; 2049 2050 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2051 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2052 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2053 createGenericDINodeAbbrev(); 2054 2055 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2056 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2059 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2060 2061 Abbv = std::make_shared<BitCodeAbbrev>(); 2062 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2065 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2066 2067 // Emit MDStrings together upfront. 2068 writeMetadataStrings(VE.getMDStrings(), Record); 2069 2070 // We only emit an index for the metadata record if we have more than a given 2071 // (naive) threshold of metadatas, otherwise it is not worth it. 2072 if (VE.getNonMDStrings().size() > IndexThreshold) { 2073 // Write a placeholder value in for the offset of the metadata index, 2074 // which is written after the records, so that it can include 2075 // the offset of each entry. The placeholder offset will be 2076 // updated after all records are emitted. 2077 uint64_t Vals[] = {0, 0}; 2078 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2079 } 2080 2081 // Compute and save the bit offset to the current position, which will be 2082 // patched when we emit the index later. We can simply subtract the 64-bit 2083 // fixed size from the current bit number to get the location to backpatch. 2084 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2085 2086 // This index will contain the bitpos for each individual record. 2087 std::vector<uint64_t> IndexPos; 2088 IndexPos.reserve(VE.getNonMDStrings().size()); 2089 2090 // Write all the records 2091 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2092 2093 if (VE.getNonMDStrings().size() > IndexThreshold) { 2094 // Now that we have emitted all the records we will emit the index. But 2095 // first 2096 // backpatch the forward reference so that the reader can skip the records 2097 // efficiently. 2098 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2099 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2100 2101 // Delta encode the index. 2102 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2103 for (auto &Elt : IndexPos) { 2104 auto EltDelta = Elt - PreviousValue; 2105 PreviousValue = Elt; 2106 Elt = EltDelta; 2107 } 2108 // Emit the index record. 2109 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2110 IndexPos.clear(); 2111 } 2112 2113 // Write the named metadata now. 2114 writeNamedMetadata(Record); 2115 2116 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2117 SmallVector<uint64_t, 4> Record; 2118 Record.push_back(VE.getValueID(&GO)); 2119 pushGlobalMetadataAttachment(Record, GO); 2120 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2121 }; 2122 for (const Function &F : M) 2123 if (F.isDeclaration() && F.hasMetadata()) 2124 AddDeclAttachedMetadata(F); 2125 // FIXME: Only store metadata for declarations here, and move data for global 2126 // variable definitions to a separate block (PR28134). 2127 for (const GlobalVariable &GV : M.globals()) 2128 if (GV.hasMetadata()) 2129 AddDeclAttachedMetadata(GV); 2130 2131 Stream.ExitBlock(); 2132 } 2133 2134 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2135 if (!VE.hasMDs()) 2136 return; 2137 2138 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2139 SmallVector<uint64_t, 64> Record; 2140 writeMetadataStrings(VE.getMDStrings(), Record); 2141 writeMetadataRecords(VE.getNonMDStrings(), Record); 2142 Stream.ExitBlock(); 2143 } 2144 2145 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2146 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2147 // [n x [id, mdnode]] 2148 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2149 GO.getAllMetadata(MDs); 2150 for (const auto &I : MDs) { 2151 Record.push_back(I.first); 2152 Record.push_back(VE.getMetadataID(I.second)); 2153 } 2154 } 2155 2156 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2157 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2158 2159 SmallVector<uint64_t, 64> Record; 2160 2161 if (F.hasMetadata()) { 2162 pushGlobalMetadataAttachment(Record, F); 2163 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2164 Record.clear(); 2165 } 2166 2167 // Write metadata attachments 2168 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2169 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2170 for (const BasicBlock &BB : F) 2171 for (const Instruction &I : BB) { 2172 MDs.clear(); 2173 I.getAllMetadataOtherThanDebugLoc(MDs); 2174 2175 // If no metadata, ignore instruction. 2176 if (MDs.empty()) continue; 2177 2178 Record.push_back(VE.getInstructionID(&I)); 2179 2180 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2181 Record.push_back(MDs[i].first); 2182 Record.push_back(VE.getMetadataID(MDs[i].second)); 2183 } 2184 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2185 Record.clear(); 2186 } 2187 2188 Stream.ExitBlock(); 2189 } 2190 2191 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2192 SmallVector<uint64_t, 64> Record; 2193 2194 // Write metadata kinds 2195 // METADATA_KIND - [n x [id, name]] 2196 SmallVector<StringRef, 8> Names; 2197 M.getMDKindNames(Names); 2198 2199 if (Names.empty()) return; 2200 2201 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2202 2203 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2204 Record.push_back(MDKindID); 2205 StringRef KName = Names[MDKindID]; 2206 Record.append(KName.begin(), KName.end()); 2207 2208 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2209 Record.clear(); 2210 } 2211 2212 Stream.ExitBlock(); 2213 } 2214 2215 void ModuleBitcodeWriter::writeOperandBundleTags() { 2216 // Write metadata kinds 2217 // 2218 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2219 // 2220 // OPERAND_BUNDLE_TAG - [strchr x N] 2221 2222 SmallVector<StringRef, 8> Tags; 2223 M.getOperandBundleTags(Tags); 2224 2225 if (Tags.empty()) 2226 return; 2227 2228 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2229 2230 SmallVector<uint64_t, 64> Record; 2231 2232 for (auto Tag : Tags) { 2233 Record.append(Tag.begin(), Tag.end()); 2234 2235 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2236 Record.clear(); 2237 } 2238 2239 Stream.ExitBlock(); 2240 } 2241 2242 void ModuleBitcodeWriter::writeSyncScopeNames() { 2243 SmallVector<StringRef, 8> SSNs; 2244 M.getContext().getSyncScopeNames(SSNs); 2245 if (SSNs.empty()) 2246 return; 2247 2248 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2249 2250 SmallVector<uint64_t, 64> Record; 2251 for (auto SSN : SSNs) { 2252 Record.append(SSN.begin(), SSN.end()); 2253 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2254 Record.clear(); 2255 } 2256 2257 Stream.ExitBlock(); 2258 } 2259 2260 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2261 if ((int64_t)V >= 0) 2262 Vals.push_back(V << 1); 2263 else 2264 Vals.push_back((-V << 1) | 1); 2265 } 2266 2267 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2268 bool isGlobal) { 2269 if (FirstVal == LastVal) return; 2270 2271 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2272 2273 unsigned AggregateAbbrev = 0; 2274 unsigned String8Abbrev = 0; 2275 unsigned CString7Abbrev = 0; 2276 unsigned CString6Abbrev = 0; 2277 // If this is a constant pool for the module, emit module-specific abbrevs. 2278 if (isGlobal) { 2279 // Abbrev for CST_CODE_AGGREGATE. 2280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2281 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2284 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2285 2286 // Abbrev for CST_CODE_STRING. 2287 Abbv = std::make_shared<BitCodeAbbrev>(); 2288 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2291 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2292 // Abbrev for CST_CODE_CSTRING. 2293 Abbv = std::make_shared<BitCodeAbbrev>(); 2294 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2297 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2298 // Abbrev for CST_CODE_CSTRING. 2299 Abbv = std::make_shared<BitCodeAbbrev>(); 2300 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2303 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2304 } 2305 2306 SmallVector<uint64_t, 64> Record; 2307 2308 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2309 Type *LastTy = nullptr; 2310 for (unsigned i = FirstVal; i != LastVal; ++i) { 2311 const Value *V = Vals[i].first; 2312 // If we need to switch types, do so now. 2313 if (V->getType() != LastTy) { 2314 LastTy = V->getType(); 2315 Record.push_back(VE.getTypeID(LastTy)); 2316 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2317 CONSTANTS_SETTYPE_ABBREV); 2318 Record.clear(); 2319 } 2320 2321 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2322 Record.push_back(unsigned(IA->hasSideEffects()) | 2323 unsigned(IA->isAlignStack()) << 1 | 2324 unsigned(IA->getDialect()&1) << 2); 2325 2326 // Add the asm string. 2327 const std::string &AsmStr = IA->getAsmString(); 2328 Record.push_back(AsmStr.size()); 2329 Record.append(AsmStr.begin(), AsmStr.end()); 2330 2331 // Add the constraint string. 2332 const std::string &ConstraintStr = IA->getConstraintString(); 2333 Record.push_back(ConstraintStr.size()); 2334 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2335 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2336 Record.clear(); 2337 continue; 2338 } 2339 const Constant *C = cast<Constant>(V); 2340 unsigned Code = -1U; 2341 unsigned AbbrevToUse = 0; 2342 if (C->isNullValue()) { 2343 Code = bitc::CST_CODE_NULL; 2344 } else if (isa<UndefValue>(C)) { 2345 Code = bitc::CST_CODE_UNDEF; 2346 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2347 if (IV->getBitWidth() <= 64) { 2348 uint64_t V = IV->getSExtValue(); 2349 emitSignedInt64(Record, V); 2350 Code = bitc::CST_CODE_INTEGER; 2351 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2352 } else { // Wide integers, > 64 bits in size. 2353 // We have an arbitrary precision integer value to write whose 2354 // bit width is > 64. However, in canonical unsigned integer 2355 // format it is likely that the high bits are going to be zero. 2356 // So, we only write the number of active words. 2357 unsigned NWords = IV->getValue().getActiveWords(); 2358 const uint64_t *RawWords = IV->getValue().getRawData(); 2359 for (unsigned i = 0; i != NWords; ++i) { 2360 emitSignedInt64(Record, RawWords[i]); 2361 } 2362 Code = bitc::CST_CODE_WIDE_INTEGER; 2363 } 2364 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2365 Code = bitc::CST_CODE_FLOAT; 2366 Type *Ty = CFP->getType(); 2367 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2368 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2369 } else if (Ty->isX86_FP80Ty()) { 2370 // api needed to prevent premature destruction 2371 // bits are not in the same order as a normal i80 APInt, compensate. 2372 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2373 const uint64_t *p = api.getRawData(); 2374 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2375 Record.push_back(p[0] & 0xffffLL); 2376 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2377 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2378 const uint64_t *p = api.getRawData(); 2379 Record.push_back(p[0]); 2380 Record.push_back(p[1]); 2381 } else { 2382 assert(0 && "Unknown FP type!"); 2383 } 2384 } else if (isa<ConstantDataSequential>(C) && 2385 cast<ConstantDataSequential>(C)->isString()) { 2386 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2387 // Emit constant strings specially. 2388 unsigned NumElts = Str->getNumElements(); 2389 // If this is a null-terminated string, use the denser CSTRING encoding. 2390 if (Str->isCString()) { 2391 Code = bitc::CST_CODE_CSTRING; 2392 --NumElts; // Don't encode the null, which isn't allowed by char6. 2393 } else { 2394 Code = bitc::CST_CODE_STRING; 2395 AbbrevToUse = String8Abbrev; 2396 } 2397 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2398 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2399 for (unsigned i = 0; i != NumElts; ++i) { 2400 unsigned char V = Str->getElementAsInteger(i); 2401 Record.push_back(V); 2402 isCStr7 &= (V & 128) == 0; 2403 if (isCStrChar6) 2404 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2405 } 2406 2407 if (isCStrChar6) 2408 AbbrevToUse = CString6Abbrev; 2409 else if (isCStr7) 2410 AbbrevToUse = CString7Abbrev; 2411 } else if (const ConstantDataSequential *CDS = 2412 dyn_cast<ConstantDataSequential>(C)) { 2413 Code = bitc::CST_CODE_DATA; 2414 Type *EltTy = CDS->getType()->getElementType(); 2415 if (isa<IntegerType>(EltTy)) { 2416 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2417 Record.push_back(CDS->getElementAsInteger(i)); 2418 } else { 2419 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2420 Record.push_back( 2421 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2422 } 2423 } else if (isa<ConstantAggregate>(C)) { 2424 Code = bitc::CST_CODE_AGGREGATE; 2425 for (const Value *Op : C->operands()) 2426 Record.push_back(VE.getValueID(Op)); 2427 AbbrevToUse = AggregateAbbrev; 2428 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2429 switch (CE->getOpcode()) { 2430 default: 2431 if (Instruction::isCast(CE->getOpcode())) { 2432 Code = bitc::CST_CODE_CE_CAST; 2433 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2434 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2435 Record.push_back(VE.getValueID(C->getOperand(0))); 2436 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2437 } else { 2438 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2439 Code = bitc::CST_CODE_CE_BINOP; 2440 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2441 Record.push_back(VE.getValueID(C->getOperand(0))); 2442 Record.push_back(VE.getValueID(C->getOperand(1))); 2443 uint64_t Flags = getOptimizationFlags(CE); 2444 if (Flags != 0) 2445 Record.push_back(Flags); 2446 } 2447 break; 2448 case Instruction::FNeg: { 2449 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2450 Code = bitc::CST_CODE_CE_UNOP; 2451 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2452 Record.push_back(VE.getValueID(C->getOperand(0))); 2453 uint64_t Flags = getOptimizationFlags(CE); 2454 if (Flags != 0) 2455 Record.push_back(Flags); 2456 break; 2457 } 2458 case Instruction::GetElementPtr: { 2459 Code = bitc::CST_CODE_CE_GEP; 2460 const auto *GO = cast<GEPOperator>(C); 2461 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2462 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2463 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2464 Record.push_back((*Idx << 1) | GO->isInBounds()); 2465 } else if (GO->isInBounds()) 2466 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2467 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2468 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2469 Record.push_back(VE.getValueID(C->getOperand(i))); 2470 } 2471 break; 2472 } 2473 case Instruction::Select: 2474 Code = bitc::CST_CODE_CE_SELECT; 2475 Record.push_back(VE.getValueID(C->getOperand(0))); 2476 Record.push_back(VE.getValueID(C->getOperand(1))); 2477 Record.push_back(VE.getValueID(C->getOperand(2))); 2478 break; 2479 case Instruction::ExtractElement: 2480 Code = bitc::CST_CODE_CE_EXTRACTELT; 2481 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2482 Record.push_back(VE.getValueID(C->getOperand(0))); 2483 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2484 Record.push_back(VE.getValueID(C->getOperand(1))); 2485 break; 2486 case Instruction::InsertElement: 2487 Code = bitc::CST_CODE_CE_INSERTELT; 2488 Record.push_back(VE.getValueID(C->getOperand(0))); 2489 Record.push_back(VE.getValueID(C->getOperand(1))); 2490 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2491 Record.push_back(VE.getValueID(C->getOperand(2))); 2492 break; 2493 case Instruction::ShuffleVector: 2494 // If the return type and argument types are the same, this is a 2495 // standard shufflevector instruction. If the types are different, 2496 // then the shuffle is widening or truncating the input vectors, and 2497 // the argument type must also be encoded. 2498 if (C->getType() == C->getOperand(0)->getType()) { 2499 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2500 } else { 2501 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2502 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2503 } 2504 Record.push_back(VE.getValueID(C->getOperand(0))); 2505 Record.push_back(VE.getValueID(C->getOperand(1))); 2506 Record.push_back(VE.getValueID(C->getOperand(2))); 2507 break; 2508 case Instruction::ICmp: 2509 case Instruction::FCmp: 2510 Code = bitc::CST_CODE_CE_CMP; 2511 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2512 Record.push_back(VE.getValueID(C->getOperand(0))); 2513 Record.push_back(VE.getValueID(C->getOperand(1))); 2514 Record.push_back(CE->getPredicate()); 2515 break; 2516 } 2517 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2518 Code = bitc::CST_CODE_BLOCKADDRESS; 2519 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2520 Record.push_back(VE.getValueID(BA->getFunction())); 2521 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2522 } else { 2523 #ifndef NDEBUG 2524 C->dump(); 2525 #endif 2526 llvm_unreachable("Unknown constant!"); 2527 } 2528 Stream.EmitRecord(Code, Record, AbbrevToUse); 2529 Record.clear(); 2530 } 2531 2532 Stream.ExitBlock(); 2533 } 2534 2535 void ModuleBitcodeWriter::writeModuleConstants() { 2536 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2537 2538 // Find the first constant to emit, which is the first non-globalvalue value. 2539 // We know globalvalues have been emitted by WriteModuleInfo. 2540 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2541 if (!isa<GlobalValue>(Vals[i].first)) { 2542 writeConstants(i, Vals.size(), true); 2543 return; 2544 } 2545 } 2546 } 2547 2548 /// pushValueAndType - The file has to encode both the value and type id for 2549 /// many values, because we need to know what type to create for forward 2550 /// references. However, most operands are not forward references, so this type 2551 /// field is not needed. 2552 /// 2553 /// This function adds V's value ID to Vals. If the value ID is higher than the 2554 /// instruction ID, then it is a forward reference, and it also includes the 2555 /// type ID. The value ID that is written is encoded relative to the InstID. 2556 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2557 SmallVectorImpl<unsigned> &Vals) { 2558 unsigned ValID = VE.getValueID(V); 2559 // Make encoding relative to the InstID. 2560 Vals.push_back(InstID - ValID); 2561 if (ValID >= InstID) { 2562 Vals.push_back(VE.getTypeID(V->getType())); 2563 return true; 2564 } 2565 return false; 2566 } 2567 2568 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2569 unsigned InstID) { 2570 SmallVector<unsigned, 64> Record; 2571 LLVMContext &C = CS.getInstruction()->getContext(); 2572 2573 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2574 const auto &Bundle = CS.getOperandBundleAt(i); 2575 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2576 2577 for (auto &Input : Bundle.Inputs) 2578 pushValueAndType(Input, InstID, Record); 2579 2580 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2581 Record.clear(); 2582 } 2583 } 2584 2585 /// pushValue - Like pushValueAndType, but where the type of the value is 2586 /// omitted (perhaps it was already encoded in an earlier operand). 2587 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2588 SmallVectorImpl<unsigned> &Vals) { 2589 unsigned ValID = VE.getValueID(V); 2590 Vals.push_back(InstID - ValID); 2591 } 2592 2593 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2594 SmallVectorImpl<uint64_t> &Vals) { 2595 unsigned ValID = VE.getValueID(V); 2596 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2597 emitSignedInt64(Vals, diff); 2598 } 2599 2600 /// WriteInstruction - Emit an instruction to the specified stream. 2601 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2602 unsigned InstID, 2603 SmallVectorImpl<unsigned> &Vals) { 2604 unsigned Code = 0; 2605 unsigned AbbrevToUse = 0; 2606 VE.setInstructionID(&I); 2607 switch (I.getOpcode()) { 2608 default: 2609 if (Instruction::isCast(I.getOpcode())) { 2610 Code = bitc::FUNC_CODE_INST_CAST; 2611 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2612 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2613 Vals.push_back(VE.getTypeID(I.getType())); 2614 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2615 } else { 2616 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2617 Code = bitc::FUNC_CODE_INST_BINOP; 2618 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2619 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2620 pushValue(I.getOperand(1), InstID, Vals); 2621 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2622 uint64_t Flags = getOptimizationFlags(&I); 2623 if (Flags != 0) { 2624 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2625 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2626 Vals.push_back(Flags); 2627 } 2628 } 2629 break; 2630 case Instruction::FNeg: { 2631 Code = bitc::FUNC_CODE_INST_UNOP; 2632 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2633 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2634 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2635 uint64_t Flags = getOptimizationFlags(&I); 2636 if (Flags != 0) { 2637 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2638 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2639 Vals.push_back(Flags); 2640 } 2641 break; 2642 } 2643 case Instruction::GetElementPtr: { 2644 Code = bitc::FUNC_CODE_INST_GEP; 2645 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2646 auto &GEPInst = cast<GetElementPtrInst>(I); 2647 Vals.push_back(GEPInst.isInBounds()); 2648 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2649 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2650 pushValueAndType(I.getOperand(i), InstID, Vals); 2651 break; 2652 } 2653 case Instruction::ExtractValue: { 2654 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2655 pushValueAndType(I.getOperand(0), InstID, Vals); 2656 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2657 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2658 break; 2659 } 2660 case Instruction::InsertValue: { 2661 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2662 pushValueAndType(I.getOperand(0), InstID, Vals); 2663 pushValueAndType(I.getOperand(1), InstID, Vals); 2664 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2665 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2666 break; 2667 } 2668 case Instruction::Select: { 2669 Code = bitc::FUNC_CODE_INST_VSELECT; 2670 pushValueAndType(I.getOperand(1), InstID, Vals); 2671 pushValue(I.getOperand(2), InstID, Vals); 2672 pushValueAndType(I.getOperand(0), InstID, Vals); 2673 uint64_t Flags = getOptimizationFlags(&I); 2674 if (Flags != 0) 2675 Vals.push_back(Flags); 2676 break; 2677 } 2678 case Instruction::ExtractElement: 2679 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2680 pushValueAndType(I.getOperand(0), InstID, Vals); 2681 pushValueAndType(I.getOperand(1), InstID, Vals); 2682 break; 2683 case Instruction::InsertElement: 2684 Code = bitc::FUNC_CODE_INST_INSERTELT; 2685 pushValueAndType(I.getOperand(0), InstID, Vals); 2686 pushValue(I.getOperand(1), InstID, Vals); 2687 pushValueAndType(I.getOperand(2), InstID, Vals); 2688 break; 2689 case Instruction::ShuffleVector: 2690 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2691 pushValueAndType(I.getOperand(0), InstID, Vals); 2692 pushValue(I.getOperand(1), InstID, Vals); 2693 pushValue(I.getOperand(2), InstID, Vals); 2694 break; 2695 case Instruction::ICmp: 2696 case Instruction::FCmp: { 2697 // compare returning Int1Ty or vector of Int1Ty 2698 Code = bitc::FUNC_CODE_INST_CMP2; 2699 pushValueAndType(I.getOperand(0), InstID, Vals); 2700 pushValue(I.getOperand(1), InstID, Vals); 2701 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2702 uint64_t Flags = getOptimizationFlags(&I); 2703 if (Flags != 0) 2704 Vals.push_back(Flags); 2705 break; 2706 } 2707 2708 case Instruction::Ret: 2709 { 2710 Code = bitc::FUNC_CODE_INST_RET; 2711 unsigned NumOperands = I.getNumOperands(); 2712 if (NumOperands == 0) 2713 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2714 else if (NumOperands == 1) { 2715 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2716 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2717 } else { 2718 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2719 pushValueAndType(I.getOperand(i), InstID, Vals); 2720 } 2721 } 2722 break; 2723 case Instruction::Br: 2724 { 2725 Code = bitc::FUNC_CODE_INST_BR; 2726 const BranchInst &II = cast<BranchInst>(I); 2727 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2728 if (II.isConditional()) { 2729 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2730 pushValue(II.getCondition(), InstID, Vals); 2731 } 2732 } 2733 break; 2734 case Instruction::Switch: 2735 { 2736 Code = bitc::FUNC_CODE_INST_SWITCH; 2737 const SwitchInst &SI = cast<SwitchInst>(I); 2738 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2739 pushValue(SI.getCondition(), InstID, Vals); 2740 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2741 for (auto Case : SI.cases()) { 2742 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2743 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2744 } 2745 } 2746 break; 2747 case Instruction::IndirectBr: 2748 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2749 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2750 // Encode the address operand as relative, but not the basic blocks. 2751 pushValue(I.getOperand(0), InstID, Vals); 2752 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2753 Vals.push_back(VE.getValueID(I.getOperand(i))); 2754 break; 2755 2756 case Instruction::Invoke: { 2757 const InvokeInst *II = cast<InvokeInst>(&I); 2758 const Value *Callee = II->getCalledValue(); 2759 FunctionType *FTy = II->getFunctionType(); 2760 2761 if (II->hasOperandBundles()) 2762 writeOperandBundles(II, InstID); 2763 2764 Code = bitc::FUNC_CODE_INST_INVOKE; 2765 2766 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2767 Vals.push_back(II->getCallingConv() | 1 << 13); 2768 Vals.push_back(VE.getValueID(II->getNormalDest())); 2769 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2770 Vals.push_back(VE.getTypeID(FTy)); 2771 pushValueAndType(Callee, InstID, Vals); 2772 2773 // Emit value #'s for the fixed parameters. 2774 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2775 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2776 2777 // Emit type/value pairs for varargs params. 2778 if (FTy->isVarArg()) { 2779 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2780 i != e; ++i) 2781 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2782 } 2783 break; 2784 } 2785 case Instruction::Resume: 2786 Code = bitc::FUNC_CODE_INST_RESUME; 2787 pushValueAndType(I.getOperand(0), InstID, Vals); 2788 break; 2789 case Instruction::CleanupRet: { 2790 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2791 const auto &CRI = cast<CleanupReturnInst>(I); 2792 pushValue(CRI.getCleanupPad(), InstID, Vals); 2793 if (CRI.hasUnwindDest()) 2794 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2795 break; 2796 } 2797 case Instruction::CatchRet: { 2798 Code = bitc::FUNC_CODE_INST_CATCHRET; 2799 const auto &CRI = cast<CatchReturnInst>(I); 2800 pushValue(CRI.getCatchPad(), InstID, Vals); 2801 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2802 break; 2803 } 2804 case Instruction::CleanupPad: 2805 case Instruction::CatchPad: { 2806 const auto &FuncletPad = cast<FuncletPadInst>(I); 2807 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2808 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2809 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2810 2811 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2812 Vals.push_back(NumArgOperands); 2813 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2814 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2815 break; 2816 } 2817 case Instruction::CatchSwitch: { 2818 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2819 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2820 2821 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2822 2823 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2824 Vals.push_back(NumHandlers); 2825 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2826 Vals.push_back(VE.getValueID(CatchPadBB)); 2827 2828 if (CatchSwitch.hasUnwindDest()) 2829 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2830 break; 2831 } 2832 case Instruction::CallBr: { 2833 const CallBrInst *CBI = cast<CallBrInst>(&I); 2834 const Value *Callee = CBI->getCalledValue(); 2835 FunctionType *FTy = CBI->getFunctionType(); 2836 2837 if (CBI->hasOperandBundles()) 2838 writeOperandBundles(CBI, InstID); 2839 2840 Code = bitc::FUNC_CODE_INST_CALLBR; 2841 2842 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2843 2844 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2845 1 << bitc::CALL_EXPLICIT_TYPE); 2846 2847 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2848 Vals.push_back(CBI->getNumIndirectDests()); 2849 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2850 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2851 2852 Vals.push_back(VE.getTypeID(FTy)); 2853 pushValueAndType(Callee, InstID, Vals); 2854 2855 // Emit value #'s for the fixed parameters. 2856 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2857 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2858 2859 // Emit type/value pairs for varargs params. 2860 if (FTy->isVarArg()) { 2861 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2862 i != e; ++i) 2863 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2864 } 2865 break; 2866 } 2867 case Instruction::Unreachable: 2868 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2869 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2870 break; 2871 2872 case Instruction::PHI: { 2873 const PHINode &PN = cast<PHINode>(I); 2874 Code = bitc::FUNC_CODE_INST_PHI; 2875 // With the newer instruction encoding, forward references could give 2876 // negative valued IDs. This is most common for PHIs, so we use 2877 // signed VBRs. 2878 SmallVector<uint64_t, 128> Vals64; 2879 Vals64.push_back(VE.getTypeID(PN.getType())); 2880 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2881 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2882 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2883 } 2884 2885 uint64_t Flags = getOptimizationFlags(&I); 2886 if (Flags != 0) 2887 Vals64.push_back(Flags); 2888 2889 // Emit a Vals64 vector and exit. 2890 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2891 Vals64.clear(); 2892 return; 2893 } 2894 2895 case Instruction::LandingPad: { 2896 const LandingPadInst &LP = cast<LandingPadInst>(I); 2897 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2898 Vals.push_back(VE.getTypeID(LP.getType())); 2899 Vals.push_back(LP.isCleanup()); 2900 Vals.push_back(LP.getNumClauses()); 2901 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2902 if (LP.isCatch(I)) 2903 Vals.push_back(LandingPadInst::Catch); 2904 else 2905 Vals.push_back(LandingPadInst::Filter); 2906 pushValueAndType(LP.getClause(I), InstID, Vals); 2907 } 2908 break; 2909 } 2910 2911 case Instruction::Alloca: { 2912 Code = bitc::FUNC_CODE_INST_ALLOCA; 2913 const AllocaInst &AI = cast<AllocaInst>(I); 2914 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2915 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2916 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2917 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2918 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2919 "not enough bits for maximum alignment"); 2920 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2921 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2922 AlignRecord |= 1 << 6; 2923 AlignRecord |= AI.isSwiftError() << 7; 2924 Vals.push_back(AlignRecord); 2925 break; 2926 } 2927 2928 case Instruction::Load: 2929 if (cast<LoadInst>(I).isAtomic()) { 2930 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2931 pushValueAndType(I.getOperand(0), InstID, Vals); 2932 } else { 2933 Code = bitc::FUNC_CODE_INST_LOAD; 2934 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2935 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2936 } 2937 Vals.push_back(VE.getTypeID(I.getType())); 2938 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2939 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2940 if (cast<LoadInst>(I).isAtomic()) { 2941 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2942 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2943 } 2944 break; 2945 case Instruction::Store: 2946 if (cast<StoreInst>(I).isAtomic()) 2947 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2948 else 2949 Code = bitc::FUNC_CODE_INST_STORE; 2950 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2951 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2952 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2953 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2954 if (cast<StoreInst>(I).isAtomic()) { 2955 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2956 Vals.push_back( 2957 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2958 } 2959 break; 2960 case Instruction::AtomicCmpXchg: 2961 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2962 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2963 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2964 pushValue(I.getOperand(2), InstID, Vals); // newval. 2965 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2966 Vals.push_back( 2967 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2968 Vals.push_back( 2969 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2970 Vals.push_back( 2971 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2972 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2973 break; 2974 case Instruction::AtomicRMW: 2975 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2976 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2977 pushValue(I.getOperand(1), InstID, Vals); // val. 2978 Vals.push_back( 2979 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2980 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2981 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2982 Vals.push_back( 2983 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2984 break; 2985 case Instruction::Fence: 2986 Code = bitc::FUNC_CODE_INST_FENCE; 2987 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2988 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2989 break; 2990 case Instruction::Call: { 2991 const CallInst &CI = cast<CallInst>(I); 2992 FunctionType *FTy = CI.getFunctionType(); 2993 2994 if (CI.hasOperandBundles()) 2995 writeOperandBundles(&CI, InstID); 2996 2997 Code = bitc::FUNC_CODE_INST_CALL; 2998 2999 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3000 3001 unsigned Flags = getOptimizationFlags(&I); 3002 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3003 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3004 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3005 1 << bitc::CALL_EXPLICIT_TYPE | 3006 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3007 unsigned(Flags != 0) << bitc::CALL_FMF); 3008 if (Flags != 0) 3009 Vals.push_back(Flags); 3010 3011 Vals.push_back(VE.getTypeID(FTy)); 3012 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3013 3014 // Emit value #'s for the fixed parameters. 3015 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3016 // Check for labels (can happen with asm labels). 3017 if (FTy->getParamType(i)->isLabelTy()) 3018 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3019 else 3020 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3021 } 3022 3023 // Emit type/value pairs for varargs params. 3024 if (FTy->isVarArg()) { 3025 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3026 i != e; ++i) 3027 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3028 } 3029 break; 3030 } 3031 case Instruction::VAArg: 3032 Code = bitc::FUNC_CODE_INST_VAARG; 3033 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3034 pushValue(I.getOperand(0), InstID, Vals); // valist. 3035 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3036 break; 3037 case Instruction::Freeze: 3038 Code = bitc::FUNC_CODE_INST_FREEZE; 3039 pushValueAndType(I.getOperand(0), InstID, Vals); 3040 break; 3041 } 3042 3043 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3044 Vals.clear(); 3045 } 3046 3047 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3048 /// to allow clients to efficiently find the function body. 3049 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3050 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3051 // Get the offset of the VST we are writing, and backpatch it into 3052 // the VST forward declaration record. 3053 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3054 // The BitcodeStartBit was the stream offset of the identification block. 3055 VSTOffset -= bitcodeStartBit(); 3056 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3057 // Note that we add 1 here because the offset is relative to one word 3058 // before the start of the identification block, which was historically 3059 // always the start of the regular bitcode header. 3060 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3061 3062 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3063 3064 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3065 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3066 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3068 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3069 3070 for (const Function &F : M) { 3071 uint64_t Record[2]; 3072 3073 if (F.isDeclaration()) 3074 continue; 3075 3076 Record[0] = VE.getValueID(&F); 3077 3078 // Save the word offset of the function (from the start of the 3079 // actual bitcode written to the stream). 3080 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3081 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3082 // Note that we add 1 here because the offset is relative to one word 3083 // before the start of the identification block, which was historically 3084 // always the start of the regular bitcode header. 3085 Record[1] = BitcodeIndex / 32 + 1; 3086 3087 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3088 } 3089 3090 Stream.ExitBlock(); 3091 } 3092 3093 /// Emit names for arguments, instructions and basic blocks in a function. 3094 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3095 const ValueSymbolTable &VST) { 3096 if (VST.empty()) 3097 return; 3098 3099 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3100 3101 // FIXME: Set up the abbrev, we know how many values there are! 3102 // FIXME: We know if the type names can use 7-bit ascii. 3103 SmallVector<uint64_t, 64> NameVals; 3104 3105 for (const ValueName &Name : VST) { 3106 // Figure out the encoding to use for the name. 3107 StringEncoding Bits = getStringEncoding(Name.getKey()); 3108 3109 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3110 NameVals.push_back(VE.getValueID(Name.getValue())); 3111 3112 // VST_CODE_ENTRY: [valueid, namechar x N] 3113 // VST_CODE_BBENTRY: [bbid, namechar x N] 3114 unsigned Code; 3115 if (isa<BasicBlock>(Name.getValue())) { 3116 Code = bitc::VST_CODE_BBENTRY; 3117 if (Bits == SE_Char6) 3118 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3119 } else { 3120 Code = bitc::VST_CODE_ENTRY; 3121 if (Bits == SE_Char6) 3122 AbbrevToUse = VST_ENTRY_6_ABBREV; 3123 else if (Bits == SE_Fixed7) 3124 AbbrevToUse = VST_ENTRY_7_ABBREV; 3125 } 3126 3127 for (const auto P : Name.getKey()) 3128 NameVals.push_back((unsigned char)P); 3129 3130 // Emit the finished record. 3131 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3132 NameVals.clear(); 3133 } 3134 3135 Stream.ExitBlock(); 3136 } 3137 3138 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3139 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3140 unsigned Code; 3141 if (isa<BasicBlock>(Order.V)) 3142 Code = bitc::USELIST_CODE_BB; 3143 else 3144 Code = bitc::USELIST_CODE_DEFAULT; 3145 3146 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3147 Record.push_back(VE.getValueID(Order.V)); 3148 Stream.EmitRecord(Code, Record); 3149 } 3150 3151 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3152 assert(VE.shouldPreserveUseListOrder() && 3153 "Expected to be preserving use-list order"); 3154 3155 auto hasMore = [&]() { 3156 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3157 }; 3158 if (!hasMore()) 3159 // Nothing to do. 3160 return; 3161 3162 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3163 while (hasMore()) { 3164 writeUseList(std::move(VE.UseListOrders.back())); 3165 VE.UseListOrders.pop_back(); 3166 } 3167 Stream.ExitBlock(); 3168 } 3169 3170 /// Emit a function body to the module stream. 3171 void ModuleBitcodeWriter::writeFunction( 3172 const Function &F, 3173 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3174 // Save the bitcode index of the start of this function block for recording 3175 // in the VST. 3176 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3177 3178 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3179 VE.incorporateFunction(F); 3180 3181 SmallVector<unsigned, 64> Vals; 3182 3183 // Emit the number of basic blocks, so the reader can create them ahead of 3184 // time. 3185 Vals.push_back(VE.getBasicBlocks().size()); 3186 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3187 Vals.clear(); 3188 3189 // If there are function-local constants, emit them now. 3190 unsigned CstStart, CstEnd; 3191 VE.getFunctionConstantRange(CstStart, CstEnd); 3192 writeConstants(CstStart, CstEnd, false); 3193 3194 // If there is function-local metadata, emit it now. 3195 writeFunctionMetadata(F); 3196 3197 // Keep a running idea of what the instruction ID is. 3198 unsigned InstID = CstEnd; 3199 3200 bool NeedsMetadataAttachment = F.hasMetadata(); 3201 3202 DILocation *LastDL = nullptr; 3203 // Finally, emit all the instructions, in order. 3204 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3205 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3206 I != E; ++I) { 3207 writeInstruction(*I, InstID, Vals); 3208 3209 if (!I->getType()->isVoidTy()) 3210 ++InstID; 3211 3212 // If the instruction has metadata, write a metadata attachment later. 3213 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3214 3215 // If the instruction has a debug location, emit it. 3216 DILocation *DL = I->getDebugLoc(); 3217 if (!DL) 3218 continue; 3219 3220 if (DL == LastDL) { 3221 // Just repeat the same debug loc as last time. 3222 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3223 continue; 3224 } 3225 3226 Vals.push_back(DL->getLine()); 3227 Vals.push_back(DL->getColumn()); 3228 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3229 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3230 Vals.push_back(DL->isImplicitCode()); 3231 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3232 Vals.clear(); 3233 3234 LastDL = DL; 3235 } 3236 3237 // Emit names for all the instructions etc. 3238 if (auto *Symtab = F.getValueSymbolTable()) 3239 writeFunctionLevelValueSymbolTable(*Symtab); 3240 3241 if (NeedsMetadataAttachment) 3242 writeFunctionMetadataAttachment(F); 3243 if (VE.shouldPreserveUseListOrder()) 3244 writeUseListBlock(&F); 3245 VE.purgeFunction(); 3246 Stream.ExitBlock(); 3247 } 3248 3249 // Emit blockinfo, which defines the standard abbreviations etc. 3250 void ModuleBitcodeWriter::writeBlockInfo() { 3251 // We only want to emit block info records for blocks that have multiple 3252 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3253 // Other blocks can define their abbrevs inline. 3254 Stream.EnterBlockInfoBlock(); 3255 3256 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3257 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3262 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3263 VST_ENTRY_8_ABBREV) 3264 llvm_unreachable("Unexpected abbrev ordering!"); 3265 } 3266 3267 { // 7-bit fixed width VST_CODE_ENTRY strings. 3268 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3269 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3273 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3274 VST_ENTRY_7_ABBREV) 3275 llvm_unreachable("Unexpected abbrev ordering!"); 3276 } 3277 { // 6-bit char6 VST_CODE_ENTRY strings. 3278 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3279 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3283 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3284 VST_ENTRY_6_ABBREV) 3285 llvm_unreachable("Unexpected abbrev ordering!"); 3286 } 3287 { // 6-bit char6 VST_CODE_BBENTRY strings. 3288 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3289 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3293 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3294 VST_BBENTRY_6_ABBREV) 3295 llvm_unreachable("Unexpected abbrev ordering!"); 3296 } 3297 3298 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3299 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3300 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3302 VE.computeBitsRequiredForTypeIndicies())); 3303 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3304 CONSTANTS_SETTYPE_ABBREV) 3305 llvm_unreachable("Unexpected abbrev ordering!"); 3306 } 3307 3308 { // INTEGER abbrev for CONSTANTS_BLOCK. 3309 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3310 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3312 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3313 CONSTANTS_INTEGER_ABBREV) 3314 llvm_unreachable("Unexpected abbrev ordering!"); 3315 } 3316 3317 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3319 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3322 VE.computeBitsRequiredForTypeIndicies())); 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3324 3325 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3326 CONSTANTS_CE_CAST_Abbrev) 3327 llvm_unreachable("Unexpected abbrev ordering!"); 3328 } 3329 { // NULL abbrev for CONSTANTS_BLOCK. 3330 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3331 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3332 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3333 CONSTANTS_NULL_Abbrev) 3334 llvm_unreachable("Unexpected abbrev ordering!"); 3335 } 3336 3337 // FIXME: This should only use space for first class types! 3338 3339 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3340 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3341 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3344 VE.computeBitsRequiredForTypeIndicies())); 3345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3347 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3348 FUNCTION_INST_LOAD_ABBREV) 3349 llvm_unreachable("Unexpected abbrev ordering!"); 3350 } 3351 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3352 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3353 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3356 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3357 FUNCTION_INST_UNOP_ABBREV) 3358 llvm_unreachable("Unexpected abbrev ordering!"); 3359 } 3360 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3361 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3362 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3366 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3367 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3368 llvm_unreachable("Unexpected abbrev ordering!"); 3369 } 3370 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3371 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3372 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3376 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3377 FUNCTION_INST_BINOP_ABBREV) 3378 llvm_unreachable("Unexpected abbrev ordering!"); 3379 } 3380 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3381 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3382 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3387 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3388 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3389 llvm_unreachable("Unexpected abbrev ordering!"); 3390 } 3391 { // INST_CAST abbrev for FUNCTION_BLOCK. 3392 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3393 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3396 VE.computeBitsRequiredForTypeIndicies())); 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3398 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3399 FUNCTION_INST_CAST_ABBREV) 3400 llvm_unreachable("Unexpected abbrev ordering!"); 3401 } 3402 3403 { // INST_RET abbrev for FUNCTION_BLOCK. 3404 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3405 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3406 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3407 FUNCTION_INST_RET_VOID_ABBREV) 3408 llvm_unreachable("Unexpected abbrev ordering!"); 3409 } 3410 { // INST_RET abbrev for FUNCTION_BLOCK. 3411 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3412 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3413 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3414 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3415 FUNCTION_INST_RET_VAL_ABBREV) 3416 llvm_unreachable("Unexpected abbrev ordering!"); 3417 } 3418 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3419 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3420 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3421 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3422 FUNCTION_INST_UNREACHABLE_ABBREV) 3423 llvm_unreachable("Unexpected abbrev ordering!"); 3424 } 3425 { 3426 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3427 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3428 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3430 Log2_32_Ceil(VE.getTypes().size() + 1))); 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3433 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3434 FUNCTION_INST_GEP_ABBREV) 3435 llvm_unreachable("Unexpected abbrev ordering!"); 3436 } 3437 3438 Stream.ExitBlock(); 3439 } 3440 3441 /// Write the module path strings, currently only used when generating 3442 /// a combined index file. 3443 void IndexBitcodeWriter::writeModStrings() { 3444 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3445 3446 // TODO: See which abbrev sizes we actually need to emit 3447 3448 // 8-bit fixed-width MST_ENTRY strings. 3449 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3450 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3454 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3455 3456 // 7-bit fixed width MST_ENTRY strings. 3457 Abbv = std::make_shared<BitCodeAbbrev>(); 3458 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3462 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3463 3464 // 6-bit char6 MST_ENTRY strings. 3465 Abbv = std::make_shared<BitCodeAbbrev>(); 3466 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3470 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3471 3472 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3473 Abbv = std::make_shared<BitCodeAbbrev>(); 3474 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3477 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3478 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3480 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3481 3482 SmallVector<unsigned, 64> Vals; 3483 forEachModule( 3484 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3485 StringRef Key = MPSE.getKey(); 3486 const auto &Value = MPSE.getValue(); 3487 StringEncoding Bits = getStringEncoding(Key); 3488 unsigned AbbrevToUse = Abbrev8Bit; 3489 if (Bits == SE_Char6) 3490 AbbrevToUse = Abbrev6Bit; 3491 else if (Bits == SE_Fixed7) 3492 AbbrevToUse = Abbrev7Bit; 3493 3494 Vals.push_back(Value.first); 3495 Vals.append(Key.begin(), Key.end()); 3496 3497 // Emit the finished record. 3498 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3499 3500 // Emit an optional hash for the module now 3501 const auto &Hash = Value.second; 3502 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3503 Vals.assign(Hash.begin(), Hash.end()); 3504 // Emit the hash record. 3505 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3506 } 3507 3508 Vals.clear(); 3509 }); 3510 Stream.ExitBlock(); 3511 } 3512 3513 /// Write the function type metadata related records that need to appear before 3514 /// a function summary entry (whether per-module or combined). 3515 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3516 FunctionSummary *FS) { 3517 if (!FS->type_tests().empty()) 3518 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3519 3520 SmallVector<uint64_t, 64> Record; 3521 3522 auto WriteVFuncIdVec = [&](uint64_t Ty, 3523 ArrayRef<FunctionSummary::VFuncId> VFs) { 3524 if (VFs.empty()) 3525 return; 3526 Record.clear(); 3527 for (auto &VF : VFs) { 3528 Record.push_back(VF.GUID); 3529 Record.push_back(VF.Offset); 3530 } 3531 Stream.EmitRecord(Ty, Record); 3532 }; 3533 3534 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3535 FS->type_test_assume_vcalls()); 3536 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3537 FS->type_checked_load_vcalls()); 3538 3539 auto WriteConstVCallVec = [&](uint64_t Ty, 3540 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3541 for (auto &VC : VCs) { 3542 Record.clear(); 3543 Record.push_back(VC.VFunc.GUID); 3544 Record.push_back(VC.VFunc.Offset); 3545 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3546 Stream.EmitRecord(Ty, Record); 3547 } 3548 }; 3549 3550 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3551 FS->type_test_assume_const_vcalls()); 3552 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3553 FS->type_checked_load_const_vcalls()); 3554 } 3555 3556 /// Collect type IDs from type tests used by function. 3557 static void 3558 getReferencedTypeIds(FunctionSummary *FS, 3559 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3560 if (!FS->type_tests().empty()) 3561 for (auto &TT : FS->type_tests()) 3562 ReferencedTypeIds.insert(TT); 3563 3564 auto GetReferencedTypesFromVFuncIdVec = 3565 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3566 for (auto &VF : VFs) 3567 ReferencedTypeIds.insert(VF.GUID); 3568 }; 3569 3570 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3571 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3572 3573 auto GetReferencedTypesFromConstVCallVec = 3574 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3575 for (auto &VC : VCs) 3576 ReferencedTypeIds.insert(VC.VFunc.GUID); 3577 }; 3578 3579 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3580 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3581 } 3582 3583 static void writeWholeProgramDevirtResolutionByArg( 3584 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3585 const WholeProgramDevirtResolution::ByArg &ByArg) { 3586 NameVals.push_back(args.size()); 3587 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3588 3589 NameVals.push_back(ByArg.TheKind); 3590 NameVals.push_back(ByArg.Info); 3591 NameVals.push_back(ByArg.Byte); 3592 NameVals.push_back(ByArg.Bit); 3593 } 3594 3595 static void writeWholeProgramDevirtResolution( 3596 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3597 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3598 NameVals.push_back(Id); 3599 3600 NameVals.push_back(Wpd.TheKind); 3601 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3602 NameVals.push_back(Wpd.SingleImplName.size()); 3603 3604 NameVals.push_back(Wpd.ResByArg.size()); 3605 for (auto &A : Wpd.ResByArg) 3606 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3607 } 3608 3609 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3610 StringTableBuilder &StrtabBuilder, 3611 const std::string &Id, 3612 const TypeIdSummary &Summary) { 3613 NameVals.push_back(StrtabBuilder.add(Id)); 3614 NameVals.push_back(Id.size()); 3615 3616 NameVals.push_back(Summary.TTRes.TheKind); 3617 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3618 NameVals.push_back(Summary.TTRes.AlignLog2); 3619 NameVals.push_back(Summary.TTRes.SizeM1); 3620 NameVals.push_back(Summary.TTRes.BitMask); 3621 NameVals.push_back(Summary.TTRes.InlineBits); 3622 3623 for (auto &W : Summary.WPDRes) 3624 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3625 W.second); 3626 } 3627 3628 static void writeTypeIdCompatibleVtableSummaryRecord( 3629 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3630 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3631 ValueEnumerator &VE) { 3632 NameVals.push_back(StrtabBuilder.add(Id)); 3633 NameVals.push_back(Id.size()); 3634 3635 for (auto &P : Summary) { 3636 NameVals.push_back(P.AddressPointOffset); 3637 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3638 } 3639 } 3640 3641 // Helper to emit a single function summary record. 3642 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3643 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3644 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3645 const Function &F) { 3646 NameVals.push_back(ValueID); 3647 3648 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3649 writeFunctionTypeMetadataRecords(Stream, FS); 3650 3651 auto SpecialRefCnts = FS->specialRefCounts(); 3652 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3653 NameVals.push_back(FS->instCount()); 3654 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3655 NameVals.push_back(FS->refs().size()); 3656 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3657 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3658 3659 for (auto &RI : FS->refs()) 3660 NameVals.push_back(VE.getValueID(RI.getValue())); 3661 3662 bool HasProfileData = 3663 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3664 for (auto &ECI : FS->calls()) { 3665 NameVals.push_back(getValueId(ECI.first)); 3666 if (HasProfileData) 3667 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3668 else if (WriteRelBFToSummary) 3669 NameVals.push_back(ECI.second.RelBlockFreq); 3670 } 3671 3672 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3673 unsigned Code = 3674 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3675 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3676 : bitc::FS_PERMODULE)); 3677 3678 // Emit the finished record. 3679 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3680 NameVals.clear(); 3681 } 3682 3683 // Collect the global value references in the given variable's initializer, 3684 // and emit them in a summary record. 3685 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3686 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3687 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3688 auto VI = Index->getValueInfo(V.getGUID()); 3689 if (!VI || VI.getSummaryList().empty()) { 3690 // Only declarations should not have a summary (a declaration might however 3691 // have a summary if the def was in module level asm). 3692 assert(V.isDeclaration()); 3693 return; 3694 } 3695 auto *Summary = VI.getSummaryList()[0].get(); 3696 NameVals.push_back(VE.getValueID(&V)); 3697 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3698 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3699 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3700 3701 auto VTableFuncs = VS->vTableFuncs(); 3702 if (!VTableFuncs.empty()) 3703 NameVals.push_back(VS->refs().size()); 3704 3705 unsigned SizeBeforeRefs = NameVals.size(); 3706 for (auto &RI : VS->refs()) 3707 NameVals.push_back(VE.getValueID(RI.getValue())); 3708 // Sort the refs for determinism output, the vector returned by FS->refs() has 3709 // been initialized from a DenseSet. 3710 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3711 3712 if (VTableFuncs.empty()) 3713 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3714 FSModRefsAbbrev); 3715 else { 3716 // VTableFuncs pairs should already be sorted by offset. 3717 for (auto &P : VTableFuncs) { 3718 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3719 NameVals.push_back(P.VTableOffset); 3720 } 3721 3722 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3723 FSModVTableRefsAbbrev); 3724 } 3725 NameVals.clear(); 3726 } 3727 3728 // Current version for the summary. 3729 // This is bumped whenever we introduce changes in the way some record are 3730 // interpreted, like flags for instance. 3731 static const uint64_t INDEX_VERSION = 8; 3732 3733 /// Emit the per-module summary section alongside the rest of 3734 /// the module's bitcode. 3735 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3736 // By default we compile with ThinLTO if the module has a summary, but the 3737 // client can request full LTO with a module flag. 3738 bool IsThinLTO = true; 3739 if (auto *MD = 3740 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3741 IsThinLTO = MD->getZExtValue(); 3742 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3743 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3744 4); 3745 3746 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3747 3748 // Write the index flags. 3749 uint64_t Flags = 0; 3750 // Bits 1-3 are set only in the combined index, skip them. 3751 if (Index->enableSplitLTOUnit()) 3752 Flags |= 0x8; 3753 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3754 3755 if (Index->begin() == Index->end()) { 3756 Stream.ExitBlock(); 3757 return; 3758 } 3759 3760 for (const auto &GVI : valueIds()) { 3761 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3762 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3763 } 3764 3765 // Abbrev for FS_PERMODULE_PROFILE. 3766 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3767 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3775 // numrefs x valueid, n x (valueid, hotness) 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3778 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3779 3780 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3781 Abbv = std::make_shared<BitCodeAbbrev>(); 3782 if (WriteRelBFToSummary) 3783 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3784 else 3785 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3793 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3796 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3797 3798 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3799 Abbv = std::make_shared<BitCodeAbbrev>(); 3800 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3805 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3806 3807 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3808 Abbv = std::make_shared<BitCodeAbbrev>(); 3809 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3813 // numrefs x valueid, n x (valueid , offset) 3814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3816 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3817 3818 // Abbrev for FS_ALIAS. 3819 Abbv = std::make_shared<BitCodeAbbrev>(); 3820 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3824 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3825 3826 // Abbrev for FS_TYPE_ID_METADATA 3827 Abbv = std::make_shared<BitCodeAbbrev>(); 3828 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3831 // n x (valueid , offset) 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3834 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3835 3836 SmallVector<uint64_t, 64> NameVals; 3837 // Iterate over the list of functions instead of the Index to 3838 // ensure the ordering is stable. 3839 for (const Function &F : M) { 3840 // Summary emission does not support anonymous functions, they have to 3841 // renamed using the anonymous function renaming pass. 3842 if (!F.hasName()) 3843 report_fatal_error("Unexpected anonymous function when writing summary"); 3844 3845 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3846 if (!VI || VI.getSummaryList().empty()) { 3847 // Only declarations should not have a summary (a declaration might 3848 // however have a summary if the def was in module level asm). 3849 assert(F.isDeclaration()); 3850 continue; 3851 } 3852 auto *Summary = VI.getSummaryList()[0].get(); 3853 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3854 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3855 } 3856 3857 // Capture references from GlobalVariable initializers, which are outside 3858 // of a function scope. 3859 for (const GlobalVariable &G : M.globals()) 3860 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3861 FSModVTableRefsAbbrev); 3862 3863 for (const GlobalAlias &A : M.aliases()) { 3864 auto *Aliasee = A.getBaseObject(); 3865 if (!Aliasee->hasName()) 3866 // Nameless function don't have an entry in the summary, skip it. 3867 continue; 3868 auto AliasId = VE.getValueID(&A); 3869 auto AliaseeId = VE.getValueID(Aliasee); 3870 NameVals.push_back(AliasId); 3871 auto *Summary = Index->getGlobalValueSummary(A); 3872 AliasSummary *AS = cast<AliasSummary>(Summary); 3873 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3874 NameVals.push_back(AliaseeId); 3875 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3876 NameVals.clear(); 3877 } 3878 3879 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3880 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3881 S.second, VE); 3882 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3883 TypeIdCompatibleVtableAbbrev); 3884 NameVals.clear(); 3885 } 3886 3887 Stream.ExitBlock(); 3888 } 3889 3890 /// Emit the combined summary section into the combined index file. 3891 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3892 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3893 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3894 3895 // Write the index flags. 3896 uint64_t Flags = 0; 3897 if (Index.withGlobalValueDeadStripping()) 3898 Flags |= 0x1; 3899 if (Index.skipModuleByDistributedBackend()) 3900 Flags |= 0x2; 3901 if (Index.hasSyntheticEntryCounts()) 3902 Flags |= 0x4; 3903 if (Index.enableSplitLTOUnit()) 3904 Flags |= 0x8; 3905 if (Index.partiallySplitLTOUnits()) 3906 Flags |= 0x10; 3907 if (Index.withAttributePropagation()) 3908 Flags |= 0x20; 3909 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3910 3911 for (const auto &GVI : valueIds()) { 3912 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3913 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3914 } 3915 3916 // Abbrev for FS_COMBINED. 3917 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3918 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3928 // numrefs x valueid, n x (valueid) 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3931 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3932 3933 // Abbrev for FS_COMBINED_PROFILE. 3934 Abbv = std::make_shared<BitCodeAbbrev>(); 3935 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3945 // numrefs x valueid, n x (valueid, hotness) 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3948 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3949 3950 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3951 Abbv = std::make_shared<BitCodeAbbrev>(); 3952 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3958 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3959 3960 // Abbrev for FS_COMBINED_ALIAS. 3961 Abbv = std::make_shared<BitCodeAbbrev>(); 3962 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3967 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3968 3969 // The aliases are emitted as a post-pass, and will point to the value 3970 // id of the aliasee. Save them in a vector for post-processing. 3971 SmallVector<AliasSummary *, 64> Aliases; 3972 3973 // Save the value id for each summary for alias emission. 3974 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3975 3976 SmallVector<uint64_t, 64> NameVals; 3977 3978 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3979 // with the type ids referenced by this index file. 3980 std::set<GlobalValue::GUID> ReferencedTypeIds; 3981 3982 // For local linkage, we also emit the original name separately 3983 // immediately after the record. 3984 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3985 if (!GlobalValue::isLocalLinkage(S.linkage())) 3986 return; 3987 NameVals.push_back(S.getOriginalName()); 3988 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3989 NameVals.clear(); 3990 }; 3991 3992 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3993 forEachSummary([&](GVInfo I, bool IsAliasee) { 3994 GlobalValueSummary *S = I.second; 3995 assert(S); 3996 DefOrUseGUIDs.insert(I.first); 3997 for (const ValueInfo &VI : S->refs()) 3998 DefOrUseGUIDs.insert(VI.getGUID()); 3999 4000 auto ValueId = getValueId(I.first); 4001 assert(ValueId); 4002 SummaryToValueIdMap[S] = *ValueId; 4003 4004 // If this is invoked for an aliasee, we want to record the above 4005 // mapping, but then not emit a summary entry (if the aliasee is 4006 // to be imported, we will invoke this separately with IsAliasee=false). 4007 if (IsAliasee) 4008 return; 4009 4010 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4011 // Will process aliases as a post-pass because the reader wants all 4012 // global to be loaded first. 4013 Aliases.push_back(AS); 4014 return; 4015 } 4016 4017 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4018 NameVals.push_back(*ValueId); 4019 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4020 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4021 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4022 for (auto &RI : VS->refs()) { 4023 auto RefValueId = getValueId(RI.getGUID()); 4024 if (!RefValueId) 4025 continue; 4026 NameVals.push_back(*RefValueId); 4027 } 4028 4029 // Emit the finished record. 4030 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4031 FSModRefsAbbrev); 4032 NameVals.clear(); 4033 MaybeEmitOriginalName(*S); 4034 return; 4035 } 4036 4037 auto *FS = cast<FunctionSummary>(S); 4038 writeFunctionTypeMetadataRecords(Stream, FS); 4039 getReferencedTypeIds(FS, ReferencedTypeIds); 4040 4041 NameVals.push_back(*ValueId); 4042 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4043 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4044 NameVals.push_back(FS->instCount()); 4045 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4046 NameVals.push_back(FS->entryCount()); 4047 4048 // Fill in below 4049 NameVals.push_back(0); // numrefs 4050 NameVals.push_back(0); // rorefcnt 4051 NameVals.push_back(0); // worefcnt 4052 4053 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4054 for (auto &RI : FS->refs()) { 4055 auto RefValueId = getValueId(RI.getGUID()); 4056 if (!RefValueId) 4057 continue; 4058 NameVals.push_back(*RefValueId); 4059 if (RI.isReadOnly()) 4060 RORefCnt++; 4061 else if (RI.isWriteOnly()) 4062 WORefCnt++; 4063 Count++; 4064 } 4065 NameVals[6] = Count; 4066 NameVals[7] = RORefCnt; 4067 NameVals[8] = WORefCnt; 4068 4069 bool HasProfileData = false; 4070 for (auto &EI : FS->calls()) { 4071 HasProfileData |= 4072 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4073 if (HasProfileData) 4074 break; 4075 } 4076 4077 for (auto &EI : FS->calls()) { 4078 // If this GUID doesn't have a value id, it doesn't have a function 4079 // summary and we don't need to record any calls to it. 4080 GlobalValue::GUID GUID = EI.first.getGUID(); 4081 auto CallValueId = getValueId(GUID); 4082 if (!CallValueId) { 4083 // For SamplePGO, the indirect call targets for local functions will 4084 // have its original name annotated in profile. We try to find the 4085 // corresponding PGOFuncName as the GUID. 4086 GUID = Index.getGUIDFromOriginalID(GUID); 4087 if (GUID == 0) 4088 continue; 4089 CallValueId = getValueId(GUID); 4090 if (!CallValueId) 4091 continue; 4092 // The mapping from OriginalId to GUID may return a GUID 4093 // that corresponds to a static variable. Filter it out here. 4094 // This can happen when 4095 // 1) There is a call to a library function which does not have 4096 // a CallValidId; 4097 // 2) There is a static variable with the OriginalGUID identical 4098 // to the GUID of the library function in 1); 4099 // When this happens, the logic for SamplePGO kicks in and 4100 // the static variable in 2) will be found, which needs to be 4101 // filtered out. 4102 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4103 if (GVSum && 4104 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4105 continue; 4106 } 4107 NameVals.push_back(*CallValueId); 4108 if (HasProfileData) 4109 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4110 } 4111 4112 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4113 unsigned Code = 4114 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4115 4116 // Emit the finished record. 4117 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4118 NameVals.clear(); 4119 MaybeEmitOriginalName(*S); 4120 }); 4121 4122 for (auto *AS : Aliases) { 4123 auto AliasValueId = SummaryToValueIdMap[AS]; 4124 assert(AliasValueId); 4125 NameVals.push_back(AliasValueId); 4126 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4127 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4128 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4129 assert(AliaseeValueId); 4130 NameVals.push_back(AliaseeValueId); 4131 4132 // Emit the finished record. 4133 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4134 NameVals.clear(); 4135 MaybeEmitOriginalName(*AS); 4136 4137 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4138 getReferencedTypeIds(FS, ReferencedTypeIds); 4139 } 4140 4141 if (!Index.cfiFunctionDefs().empty()) { 4142 for (auto &S : Index.cfiFunctionDefs()) { 4143 if (DefOrUseGUIDs.count( 4144 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4145 NameVals.push_back(StrtabBuilder.add(S)); 4146 NameVals.push_back(S.size()); 4147 } 4148 } 4149 if (!NameVals.empty()) { 4150 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4151 NameVals.clear(); 4152 } 4153 } 4154 4155 if (!Index.cfiFunctionDecls().empty()) { 4156 for (auto &S : Index.cfiFunctionDecls()) { 4157 if (DefOrUseGUIDs.count( 4158 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4159 NameVals.push_back(StrtabBuilder.add(S)); 4160 NameVals.push_back(S.size()); 4161 } 4162 } 4163 if (!NameVals.empty()) { 4164 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4165 NameVals.clear(); 4166 } 4167 } 4168 4169 // Walk the GUIDs that were referenced, and write the 4170 // corresponding type id records. 4171 for (auto &T : ReferencedTypeIds) { 4172 auto TidIter = Index.typeIds().equal_range(T); 4173 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4174 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4175 It->second.second); 4176 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4177 NameVals.clear(); 4178 } 4179 } 4180 4181 Stream.ExitBlock(); 4182 } 4183 4184 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4185 /// current llvm version, and a record for the epoch number. 4186 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4187 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4188 4189 // Write the "user readable" string identifying the bitcode producer 4190 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4191 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4194 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4195 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4196 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4197 4198 // Write the epoch version 4199 Abbv = std::make_shared<BitCodeAbbrev>(); 4200 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4202 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4203 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 4204 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4205 Stream.ExitBlock(); 4206 } 4207 4208 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4209 // Emit the module's hash. 4210 // MODULE_CODE_HASH: [5*i32] 4211 if (GenerateHash) { 4212 uint32_t Vals[5]; 4213 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4214 Buffer.size() - BlockStartPos)); 4215 StringRef Hash = Hasher.result(); 4216 for (int Pos = 0; Pos < 20; Pos += 4) { 4217 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4218 } 4219 4220 // Emit the finished record. 4221 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4222 4223 if (ModHash) 4224 // Save the written hash value. 4225 llvm::copy(Vals, std::begin(*ModHash)); 4226 } 4227 } 4228 4229 void ModuleBitcodeWriter::write() { 4230 writeIdentificationBlock(Stream); 4231 4232 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4233 size_t BlockStartPos = Buffer.size(); 4234 4235 writeModuleVersion(); 4236 4237 // Emit blockinfo, which defines the standard abbreviations etc. 4238 writeBlockInfo(); 4239 4240 // Emit information describing all of the types in the module. 4241 writeTypeTable(); 4242 4243 // Emit information about attribute groups. 4244 writeAttributeGroupTable(); 4245 4246 // Emit information about parameter attributes. 4247 writeAttributeTable(); 4248 4249 writeComdats(); 4250 4251 // Emit top-level description of module, including target triple, inline asm, 4252 // descriptors for global variables, and function prototype info. 4253 writeModuleInfo(); 4254 4255 // Emit constants. 4256 writeModuleConstants(); 4257 4258 // Emit metadata kind names. 4259 writeModuleMetadataKinds(); 4260 4261 // Emit metadata. 4262 writeModuleMetadata(); 4263 4264 // Emit module-level use-lists. 4265 if (VE.shouldPreserveUseListOrder()) 4266 writeUseListBlock(nullptr); 4267 4268 writeOperandBundleTags(); 4269 writeSyncScopeNames(); 4270 4271 // Emit function bodies. 4272 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4273 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4274 if (!F->isDeclaration()) 4275 writeFunction(*F, FunctionToBitcodeIndex); 4276 4277 // Need to write after the above call to WriteFunction which populates 4278 // the summary information in the index. 4279 if (Index) 4280 writePerModuleGlobalValueSummary(); 4281 4282 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4283 4284 writeModuleHash(BlockStartPos); 4285 4286 Stream.ExitBlock(); 4287 } 4288 4289 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4290 uint32_t &Position) { 4291 support::endian::write32le(&Buffer[Position], Value); 4292 Position += 4; 4293 } 4294 4295 /// If generating a bc file on darwin, we have to emit a 4296 /// header and trailer to make it compatible with the system archiver. To do 4297 /// this we emit the following header, and then emit a trailer that pads the 4298 /// file out to be a multiple of 16 bytes. 4299 /// 4300 /// struct bc_header { 4301 /// uint32_t Magic; // 0x0B17C0DE 4302 /// uint32_t Version; // Version, currently always 0. 4303 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4304 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4305 /// uint32_t CPUType; // CPU specifier. 4306 /// ... potentially more later ... 4307 /// }; 4308 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4309 const Triple &TT) { 4310 unsigned CPUType = ~0U; 4311 4312 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4313 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4314 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4315 // specific constants here because they are implicitly part of the Darwin ABI. 4316 enum { 4317 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4318 DARWIN_CPU_TYPE_X86 = 7, 4319 DARWIN_CPU_TYPE_ARM = 12, 4320 DARWIN_CPU_TYPE_POWERPC = 18 4321 }; 4322 4323 Triple::ArchType Arch = TT.getArch(); 4324 if (Arch == Triple::x86_64) 4325 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4326 else if (Arch == Triple::x86) 4327 CPUType = DARWIN_CPU_TYPE_X86; 4328 else if (Arch == Triple::ppc) 4329 CPUType = DARWIN_CPU_TYPE_POWERPC; 4330 else if (Arch == Triple::ppc64) 4331 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4332 else if (Arch == Triple::arm || Arch == Triple::thumb) 4333 CPUType = DARWIN_CPU_TYPE_ARM; 4334 4335 // Traditional Bitcode starts after header. 4336 assert(Buffer.size() >= BWH_HeaderSize && 4337 "Expected header size to be reserved"); 4338 unsigned BCOffset = BWH_HeaderSize; 4339 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4340 4341 // Write the magic and version. 4342 unsigned Position = 0; 4343 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4344 writeInt32ToBuffer(0, Buffer, Position); // Version. 4345 writeInt32ToBuffer(BCOffset, Buffer, Position); 4346 writeInt32ToBuffer(BCSize, Buffer, Position); 4347 writeInt32ToBuffer(CPUType, Buffer, Position); 4348 4349 // If the file is not a multiple of 16 bytes, insert dummy padding. 4350 while (Buffer.size() & 15) 4351 Buffer.push_back(0); 4352 } 4353 4354 /// Helper to write the header common to all bitcode files. 4355 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4356 // Emit the file header. 4357 Stream.Emit((unsigned)'B', 8); 4358 Stream.Emit((unsigned)'C', 8); 4359 Stream.Emit(0x0, 4); 4360 Stream.Emit(0xC, 4); 4361 Stream.Emit(0xE, 4); 4362 Stream.Emit(0xD, 4); 4363 } 4364 4365 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4366 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4367 writeBitcodeHeader(*Stream); 4368 } 4369 4370 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4371 4372 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4373 Stream->EnterSubblock(Block, 3); 4374 4375 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4376 Abbv->Add(BitCodeAbbrevOp(Record)); 4377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4378 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4379 4380 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4381 4382 Stream->ExitBlock(); 4383 } 4384 4385 void BitcodeWriter::writeSymtab() { 4386 assert(!WroteStrtab && !WroteSymtab); 4387 4388 // If any module has module-level inline asm, we will require a registered asm 4389 // parser for the target so that we can create an accurate symbol table for 4390 // the module. 4391 for (Module *M : Mods) { 4392 if (M->getModuleInlineAsm().empty()) 4393 continue; 4394 4395 std::string Err; 4396 const Triple TT(M->getTargetTriple()); 4397 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4398 if (!T || !T->hasMCAsmParser()) 4399 return; 4400 } 4401 4402 WroteSymtab = true; 4403 SmallVector<char, 0> Symtab; 4404 // The irsymtab::build function may be unable to create a symbol table if the 4405 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4406 // table is not required for correctness, but we still want to be able to 4407 // write malformed modules to bitcode files, so swallow the error. 4408 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4409 consumeError(std::move(E)); 4410 return; 4411 } 4412 4413 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4414 {Symtab.data(), Symtab.size()}); 4415 } 4416 4417 void BitcodeWriter::writeStrtab() { 4418 assert(!WroteStrtab); 4419 4420 std::vector<char> Strtab; 4421 StrtabBuilder.finalizeInOrder(); 4422 Strtab.resize(StrtabBuilder.getSize()); 4423 StrtabBuilder.write((uint8_t *)Strtab.data()); 4424 4425 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4426 {Strtab.data(), Strtab.size()}); 4427 4428 WroteStrtab = true; 4429 } 4430 4431 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4432 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4433 WroteStrtab = true; 4434 } 4435 4436 void BitcodeWriter::writeModule(const Module &M, 4437 bool ShouldPreserveUseListOrder, 4438 const ModuleSummaryIndex *Index, 4439 bool GenerateHash, ModuleHash *ModHash) { 4440 assert(!WroteStrtab); 4441 4442 // The Mods vector is used by irsymtab::build, which requires non-const 4443 // Modules in case it needs to materialize metadata. But the bitcode writer 4444 // requires that the module is materialized, so we can cast to non-const here, 4445 // after checking that it is in fact materialized. 4446 assert(M.isMaterialized()); 4447 Mods.push_back(const_cast<Module *>(&M)); 4448 4449 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4450 ShouldPreserveUseListOrder, Index, 4451 GenerateHash, ModHash); 4452 ModuleWriter.write(); 4453 } 4454 4455 void BitcodeWriter::writeIndex( 4456 const ModuleSummaryIndex *Index, 4457 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4458 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4459 ModuleToSummariesForIndex); 4460 IndexWriter.write(); 4461 } 4462 4463 /// Write the specified module to the specified output stream. 4464 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4465 bool ShouldPreserveUseListOrder, 4466 const ModuleSummaryIndex *Index, 4467 bool GenerateHash, ModuleHash *ModHash) { 4468 SmallVector<char, 0> Buffer; 4469 Buffer.reserve(256*1024); 4470 4471 // If this is darwin or another generic macho target, reserve space for the 4472 // header. 4473 Triple TT(M.getTargetTriple()); 4474 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4475 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4476 4477 BitcodeWriter Writer(Buffer); 4478 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4479 ModHash); 4480 Writer.writeSymtab(); 4481 Writer.writeStrtab(); 4482 4483 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4484 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4485 4486 // Write the generated bitstream to "Out". 4487 Out.write((char*)&Buffer.front(), Buffer.size()); 4488 } 4489 4490 void IndexBitcodeWriter::write() { 4491 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4492 4493 writeModuleVersion(); 4494 4495 // Write the module paths in the combined index. 4496 writeModStrings(); 4497 4498 // Write the summary combined index records. 4499 writeCombinedGlobalValueSummary(); 4500 4501 Stream.ExitBlock(); 4502 } 4503 4504 // Write the specified module summary index to the given raw output stream, 4505 // where it will be written in a new bitcode block. This is used when 4506 // writing the combined index file for ThinLTO. When writing a subset of the 4507 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4508 void llvm::WriteIndexToFile( 4509 const ModuleSummaryIndex &Index, raw_ostream &Out, 4510 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4511 SmallVector<char, 0> Buffer; 4512 Buffer.reserve(256 * 1024); 4513 4514 BitcodeWriter Writer(Buffer); 4515 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4516 Writer.writeStrtab(); 4517 4518 Out.write((char *)&Buffer.front(), Buffer.size()); 4519 } 4520 4521 namespace { 4522 4523 /// Class to manage the bitcode writing for a thin link bitcode file. 4524 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4525 /// ModHash is for use in ThinLTO incremental build, generated while writing 4526 /// the module bitcode file. 4527 const ModuleHash *ModHash; 4528 4529 public: 4530 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4531 BitstreamWriter &Stream, 4532 const ModuleSummaryIndex &Index, 4533 const ModuleHash &ModHash) 4534 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4535 /*ShouldPreserveUseListOrder=*/false, &Index), 4536 ModHash(&ModHash) {} 4537 4538 void write(); 4539 4540 private: 4541 void writeSimplifiedModuleInfo(); 4542 }; 4543 4544 } // end anonymous namespace 4545 4546 // This function writes a simpilified module info for thin link bitcode file. 4547 // It only contains the source file name along with the name(the offset and 4548 // size in strtab) and linkage for global values. For the global value info 4549 // entry, in order to keep linkage at offset 5, there are three zeros used 4550 // as padding. 4551 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4552 SmallVector<unsigned, 64> Vals; 4553 // Emit the module's source file name. 4554 { 4555 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4556 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4557 if (Bits == SE_Char6) 4558 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4559 else if (Bits == SE_Fixed7) 4560 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4561 4562 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4563 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4564 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4566 Abbv->Add(AbbrevOpToUse); 4567 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4568 4569 for (const auto P : M.getSourceFileName()) 4570 Vals.push_back((unsigned char)P); 4571 4572 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4573 Vals.clear(); 4574 } 4575 4576 // Emit the global variable information. 4577 for (const GlobalVariable &GV : M.globals()) { 4578 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4579 Vals.push_back(StrtabBuilder.add(GV.getName())); 4580 Vals.push_back(GV.getName().size()); 4581 Vals.push_back(0); 4582 Vals.push_back(0); 4583 Vals.push_back(0); 4584 Vals.push_back(getEncodedLinkage(GV)); 4585 4586 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4587 Vals.clear(); 4588 } 4589 4590 // Emit the function proto information. 4591 for (const Function &F : M) { 4592 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4593 Vals.push_back(StrtabBuilder.add(F.getName())); 4594 Vals.push_back(F.getName().size()); 4595 Vals.push_back(0); 4596 Vals.push_back(0); 4597 Vals.push_back(0); 4598 Vals.push_back(getEncodedLinkage(F)); 4599 4600 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4601 Vals.clear(); 4602 } 4603 4604 // Emit the alias information. 4605 for (const GlobalAlias &A : M.aliases()) { 4606 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4607 Vals.push_back(StrtabBuilder.add(A.getName())); 4608 Vals.push_back(A.getName().size()); 4609 Vals.push_back(0); 4610 Vals.push_back(0); 4611 Vals.push_back(0); 4612 Vals.push_back(getEncodedLinkage(A)); 4613 4614 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4615 Vals.clear(); 4616 } 4617 4618 // Emit the ifunc information. 4619 for (const GlobalIFunc &I : M.ifuncs()) { 4620 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4621 Vals.push_back(StrtabBuilder.add(I.getName())); 4622 Vals.push_back(I.getName().size()); 4623 Vals.push_back(0); 4624 Vals.push_back(0); 4625 Vals.push_back(0); 4626 Vals.push_back(getEncodedLinkage(I)); 4627 4628 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4629 Vals.clear(); 4630 } 4631 } 4632 4633 void ThinLinkBitcodeWriter::write() { 4634 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4635 4636 writeModuleVersion(); 4637 4638 writeSimplifiedModuleInfo(); 4639 4640 writePerModuleGlobalValueSummary(); 4641 4642 // Write module hash. 4643 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4644 4645 Stream.ExitBlock(); 4646 } 4647 4648 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4649 const ModuleSummaryIndex &Index, 4650 const ModuleHash &ModHash) { 4651 assert(!WroteStrtab); 4652 4653 // The Mods vector is used by irsymtab::build, which requires non-const 4654 // Modules in case it needs to materialize metadata. But the bitcode writer 4655 // requires that the module is materialized, so we can cast to non-const here, 4656 // after checking that it is in fact materialized. 4657 assert(M.isMaterialized()); 4658 Mods.push_back(const_cast<Module *>(&M)); 4659 4660 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4661 ModHash); 4662 ThinLinkWriter.write(); 4663 } 4664 4665 // Write the specified thin link bitcode file to the given raw output stream, 4666 // where it will be written in a new bitcode block. This is used when 4667 // writing the per-module index file for ThinLTO. 4668 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4669 const ModuleSummaryIndex &Index, 4670 const ModuleHash &ModHash) { 4671 SmallVector<char, 0> Buffer; 4672 Buffer.reserve(256 * 1024); 4673 4674 BitcodeWriter Writer(Buffer); 4675 Writer.writeThinLinkBitcode(M, Index, ModHash); 4676 Writer.writeSymtab(); 4677 Writer.writeStrtab(); 4678 4679 Out.write((char *)&Buffer.front(), Buffer.size()); 4680 } 4681