1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_CAST_FLAGS_ABBREV, 127 FUNCTION_INST_RET_VOID_ABBREV, 128 FUNCTION_INST_RET_VAL_ABBREV, 129 FUNCTION_INST_UNREACHABLE_ABBREV, 130 FUNCTION_INST_GEP_ABBREV, 131 }; 132 133 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 134 /// file type. 135 class BitcodeWriterBase { 136 protected: 137 /// The stream created and owned by the client. 138 BitstreamWriter &Stream; 139 140 StringTableBuilder &StrtabBuilder; 141 142 public: 143 /// Constructs a BitcodeWriterBase object that writes to the provided 144 /// \p Stream. 145 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 146 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 147 148 protected: 149 void writeModuleVersion(); 150 }; 151 152 void BitcodeWriterBase::writeModuleVersion() { 153 // VERSION: [version#] 154 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 155 } 156 157 /// Base class to manage the module bitcode writing, currently subclassed for 158 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 159 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 160 protected: 161 /// The Module to write to bitcode. 162 const Module &M; 163 164 /// Enumerates ids for all values in the module. 165 ValueEnumerator VE; 166 167 /// Optional per-module index to write for ThinLTO. 168 const ModuleSummaryIndex *Index; 169 170 /// Map that holds the correspondence between GUIDs in the summary index, 171 /// that came from indirect call profiles, and a value id generated by this 172 /// class to use in the VST and summary block records. 173 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 174 175 /// Tracks the last value id recorded in the GUIDToValueMap. 176 unsigned GlobalValueId; 177 178 /// Saves the offset of the VSTOffset record that must eventually be 179 /// backpatched with the offset of the actual VST. 180 uint64_t VSTOffsetPlaceholder = 0; 181 182 public: 183 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 184 /// writing to the provided \p Buffer. 185 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 186 BitstreamWriter &Stream, 187 bool ShouldPreserveUseListOrder, 188 const ModuleSummaryIndex *Index) 189 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 190 VE(M, ShouldPreserveUseListOrder), Index(Index) { 191 // Assign ValueIds to any callee values in the index that came from 192 // indirect call profiles and were recorded as a GUID not a Value* 193 // (which would have been assigned an ID by the ValueEnumerator). 194 // The starting ValueId is just after the number of values in the 195 // ValueEnumerator, so that they can be emitted in the VST. 196 GlobalValueId = VE.getValues().size(); 197 if (!Index) 198 return; 199 for (const auto &GUIDSummaryLists : *Index) 200 // Examine all summaries for this GUID. 201 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 202 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 203 // For each call in the function summary, see if the call 204 // is to a GUID (which means it is for an indirect call, 205 // otherwise we would have a Value for it). If so, synthesize 206 // a value id. 207 for (auto &CallEdge : FS->calls()) 208 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 209 assignValueId(CallEdge.first.getGUID()); 210 } 211 212 protected: 213 void writePerModuleGlobalValueSummary(); 214 215 private: 216 void writePerModuleFunctionSummaryRecord( 217 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 218 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 219 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 /// Tracks the assignment of module paths in the module path string table to 435 /// an id assigned for use in summary references to the module path. 436 DenseMap<StringRef, uint64_t> ModuleIdMap; 437 438 public: 439 /// Constructs a IndexBitcodeWriter object for the given combined index, 440 /// writing to the provided \p Buffer. When writing a subset of the index 441 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 442 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 443 const ModuleSummaryIndex &Index, 444 const std::map<std::string, GVSummaryMapTy> 445 *ModuleToSummariesForIndex = nullptr) 446 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 447 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 448 // Assign unique value ids to all summaries to be written, for use 449 // in writing out the call graph edges. Save the mapping from GUID 450 // to the new global value id to use when writing those edges, which 451 // are currently saved in the index in terms of GUID. 452 forEachSummary([&](GVInfo I, bool IsAliasee) { 453 GUIDToValueIdMap[I.first] = ++GlobalValueId; 454 if (IsAliasee) 455 return; 456 auto *FS = dyn_cast<FunctionSummary>(I.second); 457 if (!FS) 458 return; 459 // Record all stack id indices actually used in the summary entries being 460 // written, so that we can compact them in the case of distributed ThinLTO 461 // indexes. 462 for (auto &CI : FS->callsites()) 463 for (auto Idx : CI.StackIdIndices) 464 StackIdIndices.push_back(Idx); 465 for (auto &AI : FS->allocs()) 466 for (auto &MIB : AI.MIBs) 467 for (auto Idx : MIB.StackIdIndices) 468 StackIdIndices.push_back(Idx); 469 }); 470 llvm::sort(StackIdIndices); 471 StackIdIndices.erase( 472 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 473 StackIdIndices.end()); 474 } 475 476 /// The below iterator returns the GUID and associated summary. 477 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 478 479 /// Calls the callback for each value GUID and summary to be written to 480 /// bitcode. This hides the details of whether they are being pulled from the 481 /// entire index or just those in a provided ModuleToSummariesForIndex map. 482 template<typename Functor> 483 void forEachSummary(Functor Callback) { 484 if (ModuleToSummariesForIndex) { 485 for (auto &M : *ModuleToSummariesForIndex) 486 for (auto &Summary : M.second) { 487 Callback(Summary, false); 488 // Ensure aliasee is handled, e.g. for assigning a valueId, 489 // even if we are not importing the aliasee directly (the 490 // imported alias will contain a copy of aliasee). 491 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 492 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 493 } 494 } else { 495 for (auto &Summaries : Index) 496 for (auto &Summary : Summaries.second.SummaryList) 497 Callback({Summaries.first, Summary.get()}, false); 498 } 499 } 500 501 /// Calls the callback for each entry in the modulePaths StringMap that 502 /// should be written to the module path string table. This hides the details 503 /// of whether they are being pulled from the entire index or just those in a 504 /// provided ModuleToSummariesForIndex map. 505 template <typename Functor> void forEachModule(Functor Callback) { 506 if (ModuleToSummariesForIndex) { 507 for (const auto &M : *ModuleToSummariesForIndex) { 508 const auto &MPI = Index.modulePaths().find(M.first); 509 if (MPI == Index.modulePaths().end()) { 510 // This should only happen if the bitcode file was empty, in which 511 // case we shouldn't be importing (the ModuleToSummariesForIndex 512 // would only include the module we are writing and index for). 513 assert(ModuleToSummariesForIndex->size() == 1); 514 continue; 515 } 516 Callback(*MPI); 517 } 518 } else { 519 // Since StringMap iteration order isn't guaranteed, order by path string 520 // first. 521 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 522 // map lookup. 523 std::vector<StringRef> ModulePaths; 524 for (auto &[ModPath, _] : Index.modulePaths()) 525 ModulePaths.push_back(ModPath); 526 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 527 for (auto &ModPath : ModulePaths) 528 Callback(*Index.modulePaths().find(ModPath)); 529 } 530 } 531 532 /// Main entry point for writing a combined index to bitcode. 533 void write(); 534 535 private: 536 void writeModStrings(); 537 void writeCombinedGlobalValueSummary(); 538 539 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 540 auto VMI = GUIDToValueIdMap.find(ValGUID); 541 if (VMI == GUIDToValueIdMap.end()) 542 return std::nullopt; 543 return VMI->second; 544 } 545 546 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 547 }; 548 549 } // end anonymous namespace 550 551 static unsigned getEncodedCastOpcode(unsigned Opcode) { 552 switch (Opcode) { 553 default: llvm_unreachable("Unknown cast instruction!"); 554 case Instruction::Trunc : return bitc::CAST_TRUNC; 555 case Instruction::ZExt : return bitc::CAST_ZEXT; 556 case Instruction::SExt : return bitc::CAST_SEXT; 557 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 558 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 559 case Instruction::UIToFP : return bitc::CAST_UITOFP; 560 case Instruction::SIToFP : return bitc::CAST_SITOFP; 561 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 562 case Instruction::FPExt : return bitc::CAST_FPEXT; 563 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 564 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 565 case Instruction::BitCast : return bitc::CAST_BITCAST; 566 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 567 } 568 } 569 570 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 571 switch (Opcode) { 572 default: llvm_unreachable("Unknown binary instruction!"); 573 case Instruction::FNeg: return bitc::UNOP_FNEG; 574 } 575 } 576 577 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 578 switch (Opcode) { 579 default: llvm_unreachable("Unknown binary instruction!"); 580 case Instruction::Add: 581 case Instruction::FAdd: return bitc::BINOP_ADD; 582 case Instruction::Sub: 583 case Instruction::FSub: return bitc::BINOP_SUB; 584 case Instruction::Mul: 585 case Instruction::FMul: return bitc::BINOP_MUL; 586 case Instruction::UDiv: return bitc::BINOP_UDIV; 587 case Instruction::FDiv: 588 case Instruction::SDiv: return bitc::BINOP_SDIV; 589 case Instruction::URem: return bitc::BINOP_UREM; 590 case Instruction::FRem: 591 case Instruction::SRem: return bitc::BINOP_SREM; 592 case Instruction::Shl: return bitc::BINOP_SHL; 593 case Instruction::LShr: return bitc::BINOP_LSHR; 594 case Instruction::AShr: return bitc::BINOP_ASHR; 595 case Instruction::And: return bitc::BINOP_AND; 596 case Instruction::Or: return bitc::BINOP_OR; 597 case Instruction::Xor: return bitc::BINOP_XOR; 598 } 599 } 600 601 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 602 switch (Op) { 603 default: llvm_unreachable("Unknown RMW operation!"); 604 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 605 case AtomicRMWInst::Add: return bitc::RMW_ADD; 606 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 607 case AtomicRMWInst::And: return bitc::RMW_AND; 608 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 609 case AtomicRMWInst::Or: return bitc::RMW_OR; 610 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 611 case AtomicRMWInst::Max: return bitc::RMW_MAX; 612 case AtomicRMWInst::Min: return bitc::RMW_MIN; 613 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 614 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 615 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 616 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 617 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 618 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 619 case AtomicRMWInst::UIncWrap: 620 return bitc::RMW_UINC_WRAP; 621 case AtomicRMWInst::UDecWrap: 622 return bitc::RMW_UDEC_WRAP; 623 } 624 } 625 626 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 627 switch (Ordering) { 628 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 629 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 630 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 631 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 632 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 633 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 634 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 635 } 636 llvm_unreachable("Invalid ordering"); 637 } 638 639 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 640 StringRef Str, unsigned AbbrevToUse) { 641 SmallVector<unsigned, 64> Vals; 642 643 // Code: [strchar x N] 644 for (char C : Str) { 645 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 646 AbbrevToUse = 0; 647 Vals.push_back(C); 648 } 649 650 // Emit the finished record. 651 Stream.EmitRecord(Code, Vals, AbbrevToUse); 652 } 653 654 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 655 switch (Kind) { 656 case Attribute::Alignment: 657 return bitc::ATTR_KIND_ALIGNMENT; 658 case Attribute::AllocAlign: 659 return bitc::ATTR_KIND_ALLOC_ALIGN; 660 case Attribute::AllocSize: 661 return bitc::ATTR_KIND_ALLOC_SIZE; 662 case Attribute::AlwaysInline: 663 return bitc::ATTR_KIND_ALWAYS_INLINE; 664 case Attribute::Builtin: 665 return bitc::ATTR_KIND_BUILTIN; 666 case Attribute::ByVal: 667 return bitc::ATTR_KIND_BY_VAL; 668 case Attribute::Convergent: 669 return bitc::ATTR_KIND_CONVERGENT; 670 case Attribute::InAlloca: 671 return bitc::ATTR_KIND_IN_ALLOCA; 672 case Attribute::Cold: 673 return bitc::ATTR_KIND_COLD; 674 case Attribute::DisableSanitizerInstrumentation: 675 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 676 case Attribute::FnRetThunkExtern: 677 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 678 case Attribute::Hot: 679 return bitc::ATTR_KIND_HOT; 680 case Attribute::ElementType: 681 return bitc::ATTR_KIND_ELEMENTTYPE; 682 case Attribute::InlineHint: 683 return bitc::ATTR_KIND_INLINE_HINT; 684 case Attribute::InReg: 685 return bitc::ATTR_KIND_IN_REG; 686 case Attribute::JumpTable: 687 return bitc::ATTR_KIND_JUMP_TABLE; 688 case Attribute::MinSize: 689 return bitc::ATTR_KIND_MIN_SIZE; 690 case Attribute::AllocatedPointer: 691 return bitc::ATTR_KIND_ALLOCATED_POINTER; 692 case Attribute::AllocKind: 693 return bitc::ATTR_KIND_ALLOC_KIND; 694 case Attribute::Memory: 695 return bitc::ATTR_KIND_MEMORY; 696 case Attribute::NoFPClass: 697 return bitc::ATTR_KIND_NOFPCLASS; 698 case Attribute::Naked: 699 return bitc::ATTR_KIND_NAKED; 700 case Attribute::Nest: 701 return bitc::ATTR_KIND_NEST; 702 case Attribute::NoAlias: 703 return bitc::ATTR_KIND_NO_ALIAS; 704 case Attribute::NoBuiltin: 705 return bitc::ATTR_KIND_NO_BUILTIN; 706 case Attribute::NoCallback: 707 return bitc::ATTR_KIND_NO_CALLBACK; 708 case Attribute::NoCapture: 709 return bitc::ATTR_KIND_NO_CAPTURE; 710 case Attribute::NoDuplicate: 711 return bitc::ATTR_KIND_NO_DUPLICATE; 712 case Attribute::NoFree: 713 return bitc::ATTR_KIND_NOFREE; 714 case Attribute::NoImplicitFloat: 715 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 716 case Attribute::NoInline: 717 return bitc::ATTR_KIND_NO_INLINE; 718 case Attribute::NoRecurse: 719 return bitc::ATTR_KIND_NO_RECURSE; 720 case Attribute::NoMerge: 721 return bitc::ATTR_KIND_NO_MERGE; 722 case Attribute::NonLazyBind: 723 return bitc::ATTR_KIND_NON_LAZY_BIND; 724 case Attribute::NonNull: 725 return bitc::ATTR_KIND_NON_NULL; 726 case Attribute::Dereferenceable: 727 return bitc::ATTR_KIND_DEREFERENCEABLE; 728 case Attribute::DereferenceableOrNull: 729 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 730 case Attribute::NoRedZone: 731 return bitc::ATTR_KIND_NO_RED_ZONE; 732 case Attribute::NoReturn: 733 return bitc::ATTR_KIND_NO_RETURN; 734 case Attribute::NoSync: 735 return bitc::ATTR_KIND_NOSYNC; 736 case Attribute::NoCfCheck: 737 return bitc::ATTR_KIND_NOCF_CHECK; 738 case Attribute::NoProfile: 739 return bitc::ATTR_KIND_NO_PROFILE; 740 case Attribute::SkipProfile: 741 return bitc::ATTR_KIND_SKIP_PROFILE; 742 case Attribute::NoUnwind: 743 return bitc::ATTR_KIND_NO_UNWIND; 744 case Attribute::NoSanitizeBounds: 745 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 746 case Attribute::NoSanitizeCoverage: 747 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 748 case Attribute::NullPointerIsValid: 749 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 750 case Attribute::OptimizeForDebugging: 751 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 752 case Attribute::OptForFuzzing: 753 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 754 case Attribute::OptimizeForSize: 755 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 756 case Attribute::OptimizeNone: 757 return bitc::ATTR_KIND_OPTIMIZE_NONE; 758 case Attribute::ReadNone: 759 return bitc::ATTR_KIND_READ_NONE; 760 case Attribute::ReadOnly: 761 return bitc::ATTR_KIND_READ_ONLY; 762 case Attribute::Returned: 763 return bitc::ATTR_KIND_RETURNED; 764 case Attribute::ReturnsTwice: 765 return bitc::ATTR_KIND_RETURNS_TWICE; 766 case Attribute::SExt: 767 return bitc::ATTR_KIND_S_EXT; 768 case Attribute::Speculatable: 769 return bitc::ATTR_KIND_SPECULATABLE; 770 case Attribute::StackAlignment: 771 return bitc::ATTR_KIND_STACK_ALIGNMENT; 772 case Attribute::StackProtect: 773 return bitc::ATTR_KIND_STACK_PROTECT; 774 case Attribute::StackProtectReq: 775 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 776 case Attribute::StackProtectStrong: 777 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 778 case Attribute::SafeStack: 779 return bitc::ATTR_KIND_SAFESTACK; 780 case Attribute::ShadowCallStack: 781 return bitc::ATTR_KIND_SHADOWCALLSTACK; 782 case Attribute::StrictFP: 783 return bitc::ATTR_KIND_STRICT_FP; 784 case Attribute::StructRet: 785 return bitc::ATTR_KIND_STRUCT_RET; 786 case Attribute::SanitizeAddress: 787 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 788 case Attribute::SanitizeHWAddress: 789 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 790 case Attribute::SanitizeThread: 791 return bitc::ATTR_KIND_SANITIZE_THREAD; 792 case Attribute::SanitizeMemory: 793 return bitc::ATTR_KIND_SANITIZE_MEMORY; 794 case Attribute::SpeculativeLoadHardening: 795 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 796 case Attribute::SwiftError: 797 return bitc::ATTR_KIND_SWIFT_ERROR; 798 case Attribute::SwiftSelf: 799 return bitc::ATTR_KIND_SWIFT_SELF; 800 case Attribute::SwiftAsync: 801 return bitc::ATTR_KIND_SWIFT_ASYNC; 802 case Attribute::UWTable: 803 return bitc::ATTR_KIND_UW_TABLE; 804 case Attribute::VScaleRange: 805 return bitc::ATTR_KIND_VSCALE_RANGE; 806 case Attribute::WillReturn: 807 return bitc::ATTR_KIND_WILLRETURN; 808 case Attribute::WriteOnly: 809 return bitc::ATTR_KIND_WRITEONLY; 810 case Attribute::ZExt: 811 return bitc::ATTR_KIND_Z_EXT; 812 case Attribute::ImmArg: 813 return bitc::ATTR_KIND_IMMARG; 814 case Attribute::SanitizeMemTag: 815 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 816 case Attribute::Preallocated: 817 return bitc::ATTR_KIND_PREALLOCATED; 818 case Attribute::NoUndef: 819 return bitc::ATTR_KIND_NOUNDEF; 820 case Attribute::ByRef: 821 return bitc::ATTR_KIND_BYREF; 822 case Attribute::MustProgress: 823 return bitc::ATTR_KIND_MUSTPROGRESS; 824 case Attribute::PresplitCoroutine: 825 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 826 case Attribute::Writable: 827 return bitc::ATTR_KIND_WRITABLE; 828 case Attribute::CoroDestroyOnlyWhenComplete: 829 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 830 case Attribute::EndAttrKinds: 831 llvm_unreachable("Can not encode end-attribute kinds marker."); 832 case Attribute::None: 833 llvm_unreachable("Can not encode none-attribute."); 834 case Attribute::EmptyKey: 835 case Attribute::TombstoneKey: 836 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 837 } 838 839 llvm_unreachable("Trying to encode unknown attribute"); 840 } 841 842 void ModuleBitcodeWriter::writeAttributeGroupTable() { 843 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 844 VE.getAttributeGroups(); 845 if (AttrGrps.empty()) return; 846 847 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 848 849 SmallVector<uint64_t, 64> Record; 850 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 851 unsigned AttrListIndex = Pair.first; 852 AttributeSet AS = Pair.second; 853 Record.push_back(VE.getAttributeGroupID(Pair)); 854 Record.push_back(AttrListIndex); 855 856 for (Attribute Attr : AS) { 857 if (Attr.isEnumAttribute()) { 858 Record.push_back(0); 859 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 860 } else if (Attr.isIntAttribute()) { 861 Record.push_back(1); 862 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 863 Record.push_back(Attr.getValueAsInt()); 864 } else if (Attr.isStringAttribute()) { 865 StringRef Kind = Attr.getKindAsString(); 866 StringRef Val = Attr.getValueAsString(); 867 868 Record.push_back(Val.empty() ? 3 : 4); 869 Record.append(Kind.begin(), Kind.end()); 870 Record.push_back(0); 871 if (!Val.empty()) { 872 Record.append(Val.begin(), Val.end()); 873 Record.push_back(0); 874 } 875 } else { 876 assert(Attr.isTypeAttribute()); 877 Type *Ty = Attr.getValueAsType(); 878 Record.push_back(Ty ? 6 : 5); 879 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 880 if (Ty) 881 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 882 } 883 } 884 885 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 886 Record.clear(); 887 } 888 889 Stream.ExitBlock(); 890 } 891 892 void ModuleBitcodeWriter::writeAttributeTable() { 893 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 894 if (Attrs.empty()) return; 895 896 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 897 898 SmallVector<uint64_t, 64> Record; 899 for (const AttributeList &AL : Attrs) { 900 for (unsigned i : AL.indexes()) { 901 AttributeSet AS = AL.getAttributes(i); 902 if (AS.hasAttributes()) 903 Record.push_back(VE.getAttributeGroupID({i, AS})); 904 } 905 906 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 907 Record.clear(); 908 } 909 910 Stream.ExitBlock(); 911 } 912 913 /// WriteTypeTable - Write out the type table for a module. 914 void ModuleBitcodeWriter::writeTypeTable() { 915 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 916 917 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 918 SmallVector<uint64_t, 64> TypeVals; 919 920 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 921 922 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 923 auto Abbv = std::make_shared<BitCodeAbbrev>(); 924 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 925 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 926 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 927 928 // Abbrev for TYPE_CODE_FUNCTION. 929 Abbv = std::make_shared<BitCodeAbbrev>(); 930 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 934 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 935 936 // Abbrev for TYPE_CODE_STRUCT_ANON. 937 Abbv = std::make_shared<BitCodeAbbrev>(); 938 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 942 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 943 944 // Abbrev for TYPE_CODE_STRUCT_NAME. 945 Abbv = std::make_shared<BitCodeAbbrev>(); 946 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 949 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 950 951 // Abbrev for TYPE_CODE_STRUCT_NAMED. 952 Abbv = std::make_shared<BitCodeAbbrev>(); 953 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 957 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 958 959 // Abbrev for TYPE_CODE_ARRAY. 960 Abbv = std::make_shared<BitCodeAbbrev>(); 961 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 964 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 965 966 // Emit an entry count so the reader can reserve space. 967 TypeVals.push_back(TypeList.size()); 968 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 969 TypeVals.clear(); 970 971 // Loop over all of the types, emitting each in turn. 972 for (Type *T : TypeList) { 973 int AbbrevToUse = 0; 974 unsigned Code = 0; 975 976 switch (T->getTypeID()) { 977 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 978 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 979 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 980 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 981 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 982 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 983 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 984 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 985 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 986 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 987 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 988 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 989 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 990 case Type::IntegerTyID: 991 // INTEGER: [width] 992 Code = bitc::TYPE_CODE_INTEGER; 993 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 994 break; 995 case Type::PointerTyID: { 996 PointerType *PTy = cast<PointerType>(T); 997 unsigned AddressSpace = PTy->getAddressSpace(); 998 // OPAQUE_POINTER: [address space] 999 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1000 TypeVals.push_back(AddressSpace); 1001 if (AddressSpace == 0) 1002 AbbrevToUse = OpaquePtrAbbrev; 1003 break; 1004 } 1005 case Type::FunctionTyID: { 1006 FunctionType *FT = cast<FunctionType>(T); 1007 // FUNCTION: [isvararg, retty, paramty x N] 1008 Code = bitc::TYPE_CODE_FUNCTION; 1009 TypeVals.push_back(FT->isVarArg()); 1010 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1011 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1012 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1013 AbbrevToUse = FunctionAbbrev; 1014 break; 1015 } 1016 case Type::StructTyID: { 1017 StructType *ST = cast<StructType>(T); 1018 // STRUCT: [ispacked, eltty x N] 1019 TypeVals.push_back(ST->isPacked()); 1020 // Output all of the element types. 1021 for (Type *ET : ST->elements()) 1022 TypeVals.push_back(VE.getTypeID(ET)); 1023 1024 if (ST->isLiteral()) { 1025 Code = bitc::TYPE_CODE_STRUCT_ANON; 1026 AbbrevToUse = StructAnonAbbrev; 1027 } else { 1028 if (ST->isOpaque()) { 1029 Code = bitc::TYPE_CODE_OPAQUE; 1030 } else { 1031 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1032 AbbrevToUse = StructNamedAbbrev; 1033 } 1034 1035 // Emit the name if it is present. 1036 if (!ST->getName().empty()) 1037 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1038 StructNameAbbrev); 1039 } 1040 break; 1041 } 1042 case Type::ArrayTyID: { 1043 ArrayType *AT = cast<ArrayType>(T); 1044 // ARRAY: [numelts, eltty] 1045 Code = bitc::TYPE_CODE_ARRAY; 1046 TypeVals.push_back(AT->getNumElements()); 1047 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1048 AbbrevToUse = ArrayAbbrev; 1049 break; 1050 } 1051 case Type::FixedVectorTyID: 1052 case Type::ScalableVectorTyID: { 1053 VectorType *VT = cast<VectorType>(T); 1054 // VECTOR [numelts, eltty] or 1055 // [numelts, eltty, scalable] 1056 Code = bitc::TYPE_CODE_VECTOR; 1057 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1058 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1059 if (isa<ScalableVectorType>(VT)) 1060 TypeVals.push_back(true); 1061 break; 1062 } 1063 case Type::TargetExtTyID: { 1064 TargetExtType *TET = cast<TargetExtType>(T); 1065 Code = bitc::TYPE_CODE_TARGET_TYPE; 1066 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1067 StructNameAbbrev); 1068 TypeVals.push_back(TET->getNumTypeParameters()); 1069 for (Type *InnerTy : TET->type_params()) 1070 TypeVals.push_back(VE.getTypeID(InnerTy)); 1071 for (unsigned IntParam : TET->int_params()) 1072 TypeVals.push_back(IntParam); 1073 break; 1074 } 1075 case Type::TypedPointerTyID: 1076 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1077 } 1078 1079 // Emit the finished record. 1080 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1081 TypeVals.clear(); 1082 } 1083 1084 Stream.ExitBlock(); 1085 } 1086 1087 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1088 switch (Linkage) { 1089 case GlobalValue::ExternalLinkage: 1090 return 0; 1091 case GlobalValue::WeakAnyLinkage: 1092 return 16; 1093 case GlobalValue::AppendingLinkage: 1094 return 2; 1095 case GlobalValue::InternalLinkage: 1096 return 3; 1097 case GlobalValue::LinkOnceAnyLinkage: 1098 return 18; 1099 case GlobalValue::ExternalWeakLinkage: 1100 return 7; 1101 case GlobalValue::CommonLinkage: 1102 return 8; 1103 case GlobalValue::PrivateLinkage: 1104 return 9; 1105 case GlobalValue::WeakODRLinkage: 1106 return 17; 1107 case GlobalValue::LinkOnceODRLinkage: 1108 return 19; 1109 case GlobalValue::AvailableExternallyLinkage: 1110 return 12; 1111 } 1112 llvm_unreachable("Invalid linkage"); 1113 } 1114 1115 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1116 return getEncodedLinkage(GV.getLinkage()); 1117 } 1118 1119 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1120 uint64_t RawFlags = 0; 1121 RawFlags |= Flags.ReadNone; 1122 RawFlags |= (Flags.ReadOnly << 1); 1123 RawFlags |= (Flags.NoRecurse << 2); 1124 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1125 RawFlags |= (Flags.NoInline << 4); 1126 RawFlags |= (Flags.AlwaysInline << 5); 1127 RawFlags |= (Flags.NoUnwind << 6); 1128 RawFlags |= (Flags.MayThrow << 7); 1129 RawFlags |= (Flags.HasUnknownCall << 8); 1130 RawFlags |= (Flags.MustBeUnreachable << 9); 1131 return RawFlags; 1132 } 1133 1134 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1135 // in BitcodeReader.cpp. 1136 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1137 uint64_t RawFlags = 0; 1138 1139 RawFlags |= Flags.NotEligibleToImport; // bool 1140 RawFlags |= (Flags.Live << 1); 1141 RawFlags |= (Flags.DSOLocal << 2); 1142 RawFlags |= (Flags.CanAutoHide << 3); 1143 1144 // Linkage don't need to be remapped at that time for the summary. Any future 1145 // change to the getEncodedLinkage() function will need to be taken into 1146 // account here as well. 1147 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1148 1149 RawFlags |= (Flags.Visibility << 8); // 2 bits 1150 1151 return RawFlags; 1152 } 1153 1154 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1155 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1156 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1157 return RawFlags; 1158 } 1159 1160 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1161 switch (GV.getVisibility()) { 1162 case GlobalValue::DefaultVisibility: return 0; 1163 case GlobalValue::HiddenVisibility: return 1; 1164 case GlobalValue::ProtectedVisibility: return 2; 1165 } 1166 llvm_unreachable("Invalid visibility"); 1167 } 1168 1169 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1170 switch (GV.getDLLStorageClass()) { 1171 case GlobalValue::DefaultStorageClass: return 0; 1172 case GlobalValue::DLLImportStorageClass: return 1; 1173 case GlobalValue::DLLExportStorageClass: return 2; 1174 } 1175 llvm_unreachable("Invalid DLL storage class"); 1176 } 1177 1178 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1179 switch (GV.getThreadLocalMode()) { 1180 case GlobalVariable::NotThreadLocal: return 0; 1181 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1182 case GlobalVariable::LocalDynamicTLSModel: return 2; 1183 case GlobalVariable::InitialExecTLSModel: return 3; 1184 case GlobalVariable::LocalExecTLSModel: return 4; 1185 } 1186 llvm_unreachable("Invalid TLS model"); 1187 } 1188 1189 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1190 switch (C.getSelectionKind()) { 1191 case Comdat::Any: 1192 return bitc::COMDAT_SELECTION_KIND_ANY; 1193 case Comdat::ExactMatch: 1194 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1195 case Comdat::Largest: 1196 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1197 case Comdat::NoDeduplicate: 1198 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1199 case Comdat::SameSize: 1200 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1201 } 1202 llvm_unreachable("Invalid selection kind"); 1203 } 1204 1205 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1206 switch (GV.getUnnamedAddr()) { 1207 case GlobalValue::UnnamedAddr::None: return 0; 1208 case GlobalValue::UnnamedAddr::Local: return 2; 1209 case GlobalValue::UnnamedAddr::Global: return 1; 1210 } 1211 llvm_unreachable("Invalid unnamed_addr"); 1212 } 1213 1214 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1215 if (GenerateHash) 1216 Hasher.update(Str); 1217 return StrtabBuilder.add(Str); 1218 } 1219 1220 void ModuleBitcodeWriter::writeComdats() { 1221 SmallVector<unsigned, 64> Vals; 1222 for (const Comdat *C : VE.getComdats()) { 1223 // COMDAT: [strtab offset, strtab size, selection_kind] 1224 Vals.push_back(addToStrtab(C->getName())); 1225 Vals.push_back(C->getName().size()); 1226 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1227 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1228 Vals.clear(); 1229 } 1230 } 1231 1232 /// Write a record that will eventually hold the word offset of the 1233 /// module-level VST. For now the offset is 0, which will be backpatched 1234 /// after the real VST is written. Saves the bit offset to backpatch. 1235 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1236 // Write a placeholder value in for the offset of the real VST, 1237 // which is written after the function blocks so that it can include 1238 // the offset of each function. The placeholder offset will be 1239 // updated when the real VST is written. 1240 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1241 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1242 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1243 // hold the real VST offset. Must use fixed instead of VBR as we don't 1244 // know how many VBR chunks to reserve ahead of time. 1245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1246 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1247 1248 // Emit the placeholder 1249 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1250 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1251 1252 // Compute and save the bit offset to the placeholder, which will be 1253 // patched when the real VST is written. We can simply subtract the 32-bit 1254 // fixed size from the current bit number to get the location to backpatch. 1255 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1256 } 1257 1258 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1259 1260 /// Determine the encoding to use for the given string name and length. 1261 static StringEncoding getStringEncoding(StringRef Str) { 1262 bool isChar6 = true; 1263 for (char C : Str) { 1264 if (isChar6) 1265 isChar6 = BitCodeAbbrevOp::isChar6(C); 1266 if ((unsigned char)C & 128) 1267 // don't bother scanning the rest. 1268 return SE_Fixed8; 1269 } 1270 if (isChar6) 1271 return SE_Char6; 1272 return SE_Fixed7; 1273 } 1274 1275 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1276 "Sanitizer Metadata is too large for naive serialization."); 1277 static unsigned 1278 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1279 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1280 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1281 } 1282 1283 /// Emit top-level description of module, including target triple, inline asm, 1284 /// descriptors for global variables, and function prototype info. 1285 /// Returns the bit offset to backpatch with the location of the real VST. 1286 void ModuleBitcodeWriter::writeModuleInfo() { 1287 // Emit various pieces of data attached to a module. 1288 if (!M.getTargetTriple().empty()) 1289 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1290 0 /*TODO*/); 1291 const std::string &DL = M.getDataLayoutStr(); 1292 if (!DL.empty()) 1293 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1294 if (!M.getModuleInlineAsm().empty()) 1295 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1296 0 /*TODO*/); 1297 1298 // Emit information about sections and GC, computing how many there are. Also 1299 // compute the maximum alignment value. 1300 std::map<std::string, unsigned> SectionMap; 1301 std::map<std::string, unsigned> GCMap; 1302 MaybeAlign MaxAlignment; 1303 unsigned MaxGlobalType = 0; 1304 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1305 if (A) 1306 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1307 }; 1308 for (const GlobalVariable &GV : M.globals()) { 1309 UpdateMaxAlignment(GV.getAlign()); 1310 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1311 if (GV.hasSection()) { 1312 // Give section names unique ID's. 1313 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1314 if (!Entry) { 1315 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1316 0 /*TODO*/); 1317 Entry = SectionMap.size(); 1318 } 1319 } 1320 } 1321 for (const Function &F : M) { 1322 UpdateMaxAlignment(F.getAlign()); 1323 if (F.hasSection()) { 1324 // Give section names unique ID's. 1325 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1326 if (!Entry) { 1327 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1328 0 /*TODO*/); 1329 Entry = SectionMap.size(); 1330 } 1331 } 1332 if (F.hasGC()) { 1333 // Same for GC names. 1334 unsigned &Entry = GCMap[F.getGC()]; 1335 if (!Entry) { 1336 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1337 0 /*TODO*/); 1338 Entry = GCMap.size(); 1339 } 1340 } 1341 } 1342 1343 // Emit abbrev for globals, now that we know # sections and max alignment. 1344 unsigned SimpleGVarAbbrev = 0; 1345 if (!M.global_empty()) { 1346 // Add an abbrev for common globals with no visibility or thread localness. 1347 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1348 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1352 Log2_32_Ceil(MaxGlobalType+1))); 1353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1354 //| explicitType << 1 1355 //| constant 1356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1358 if (!MaxAlignment) // Alignment. 1359 Abbv->Add(BitCodeAbbrevOp(0)); 1360 else { 1361 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1363 Log2_32_Ceil(MaxEncAlignment+1))); 1364 } 1365 if (SectionMap.empty()) // Section. 1366 Abbv->Add(BitCodeAbbrevOp(0)); 1367 else 1368 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1369 Log2_32_Ceil(SectionMap.size()+1))); 1370 // Don't bother emitting vis + thread local. 1371 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1372 } 1373 1374 SmallVector<unsigned, 64> Vals; 1375 // Emit the module's source file name. 1376 { 1377 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1378 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1379 if (Bits == SE_Char6) 1380 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1381 else if (Bits == SE_Fixed7) 1382 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1383 1384 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1385 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1386 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1388 Abbv->Add(AbbrevOpToUse); 1389 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1390 1391 for (const auto P : M.getSourceFileName()) 1392 Vals.push_back((unsigned char)P); 1393 1394 // Emit the finished record. 1395 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1396 Vals.clear(); 1397 } 1398 1399 // Emit the global variable information. 1400 for (const GlobalVariable &GV : M.globals()) { 1401 unsigned AbbrevToUse = 0; 1402 1403 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1404 // linkage, alignment, section, visibility, threadlocal, 1405 // unnamed_addr, externally_initialized, dllstorageclass, 1406 // comdat, attributes, DSO_Local, GlobalSanitizer] 1407 Vals.push_back(addToStrtab(GV.getName())); 1408 Vals.push_back(GV.getName().size()); 1409 Vals.push_back(VE.getTypeID(GV.getValueType())); 1410 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1411 Vals.push_back(GV.isDeclaration() ? 0 : 1412 (VE.getValueID(GV.getInitializer()) + 1)); 1413 Vals.push_back(getEncodedLinkage(GV)); 1414 Vals.push_back(getEncodedAlign(GV.getAlign())); 1415 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1416 : 0); 1417 if (GV.isThreadLocal() || 1418 GV.getVisibility() != GlobalValue::DefaultVisibility || 1419 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1420 GV.isExternallyInitialized() || 1421 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1422 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1423 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1424 Vals.push_back(getEncodedVisibility(GV)); 1425 Vals.push_back(getEncodedThreadLocalMode(GV)); 1426 Vals.push_back(getEncodedUnnamedAddr(GV)); 1427 Vals.push_back(GV.isExternallyInitialized()); 1428 Vals.push_back(getEncodedDLLStorageClass(GV)); 1429 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1430 1431 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1432 Vals.push_back(VE.getAttributeListID(AL)); 1433 1434 Vals.push_back(GV.isDSOLocal()); 1435 Vals.push_back(addToStrtab(GV.getPartition())); 1436 Vals.push_back(GV.getPartition().size()); 1437 1438 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1439 GV.getSanitizerMetadata()) 1440 : 0)); 1441 } else { 1442 AbbrevToUse = SimpleGVarAbbrev; 1443 } 1444 1445 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1446 Vals.clear(); 1447 } 1448 1449 // Emit the function proto information. 1450 for (const Function &F : M) { 1451 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1452 // linkage, paramattrs, alignment, section, visibility, gc, 1453 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1454 // prefixdata, personalityfn, DSO_Local, addrspace] 1455 Vals.push_back(addToStrtab(F.getName())); 1456 Vals.push_back(F.getName().size()); 1457 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1458 Vals.push_back(F.getCallingConv()); 1459 Vals.push_back(F.isDeclaration()); 1460 Vals.push_back(getEncodedLinkage(F)); 1461 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1462 Vals.push_back(getEncodedAlign(F.getAlign())); 1463 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1464 : 0); 1465 Vals.push_back(getEncodedVisibility(F)); 1466 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1467 Vals.push_back(getEncodedUnnamedAddr(F)); 1468 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1469 : 0); 1470 Vals.push_back(getEncodedDLLStorageClass(F)); 1471 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1472 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1473 : 0); 1474 Vals.push_back( 1475 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1476 1477 Vals.push_back(F.isDSOLocal()); 1478 Vals.push_back(F.getAddressSpace()); 1479 Vals.push_back(addToStrtab(F.getPartition())); 1480 Vals.push_back(F.getPartition().size()); 1481 1482 unsigned AbbrevToUse = 0; 1483 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1484 Vals.clear(); 1485 } 1486 1487 // Emit the alias information. 1488 for (const GlobalAlias &A : M.aliases()) { 1489 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1490 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1491 // DSO_Local] 1492 Vals.push_back(addToStrtab(A.getName())); 1493 Vals.push_back(A.getName().size()); 1494 Vals.push_back(VE.getTypeID(A.getValueType())); 1495 Vals.push_back(A.getType()->getAddressSpace()); 1496 Vals.push_back(VE.getValueID(A.getAliasee())); 1497 Vals.push_back(getEncodedLinkage(A)); 1498 Vals.push_back(getEncodedVisibility(A)); 1499 Vals.push_back(getEncodedDLLStorageClass(A)); 1500 Vals.push_back(getEncodedThreadLocalMode(A)); 1501 Vals.push_back(getEncodedUnnamedAddr(A)); 1502 Vals.push_back(A.isDSOLocal()); 1503 Vals.push_back(addToStrtab(A.getPartition())); 1504 Vals.push_back(A.getPartition().size()); 1505 1506 unsigned AbbrevToUse = 0; 1507 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1508 Vals.clear(); 1509 } 1510 1511 // Emit the ifunc information. 1512 for (const GlobalIFunc &I : M.ifuncs()) { 1513 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1514 // val#, linkage, visibility, DSO_Local] 1515 Vals.push_back(addToStrtab(I.getName())); 1516 Vals.push_back(I.getName().size()); 1517 Vals.push_back(VE.getTypeID(I.getValueType())); 1518 Vals.push_back(I.getType()->getAddressSpace()); 1519 Vals.push_back(VE.getValueID(I.getResolver())); 1520 Vals.push_back(getEncodedLinkage(I)); 1521 Vals.push_back(getEncodedVisibility(I)); 1522 Vals.push_back(I.isDSOLocal()); 1523 Vals.push_back(addToStrtab(I.getPartition())); 1524 Vals.push_back(I.getPartition().size()); 1525 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1526 Vals.clear(); 1527 } 1528 1529 writeValueSymbolTableForwardDecl(); 1530 } 1531 1532 static uint64_t getOptimizationFlags(const Value *V) { 1533 uint64_t Flags = 0; 1534 1535 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1536 if (OBO->hasNoSignedWrap()) 1537 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1538 if (OBO->hasNoUnsignedWrap()) 1539 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1540 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1541 if (PEO->isExact()) 1542 Flags |= 1 << bitc::PEO_EXACT; 1543 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1544 if (FPMO->hasAllowReassoc()) 1545 Flags |= bitc::AllowReassoc; 1546 if (FPMO->hasNoNaNs()) 1547 Flags |= bitc::NoNaNs; 1548 if (FPMO->hasNoInfs()) 1549 Flags |= bitc::NoInfs; 1550 if (FPMO->hasNoSignedZeros()) 1551 Flags |= bitc::NoSignedZeros; 1552 if (FPMO->hasAllowReciprocal()) 1553 Flags |= bitc::AllowReciprocal; 1554 if (FPMO->hasAllowContract()) 1555 Flags |= bitc::AllowContract; 1556 if (FPMO->hasApproxFunc()) 1557 Flags |= bitc::ApproxFunc; 1558 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1559 if (NNI->hasNonNeg()) 1560 Flags |= 1 << bitc::PNNI_NON_NEG; 1561 } 1562 1563 return Flags; 1564 } 1565 1566 void ModuleBitcodeWriter::writeValueAsMetadata( 1567 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1568 // Mimic an MDNode with a value as one operand. 1569 Value *V = MD->getValue(); 1570 Record.push_back(VE.getTypeID(V->getType())); 1571 Record.push_back(VE.getValueID(V)); 1572 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1573 Record.clear(); 1574 } 1575 1576 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1577 SmallVectorImpl<uint64_t> &Record, 1578 unsigned Abbrev) { 1579 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1580 Metadata *MD = N->getOperand(i); 1581 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1582 "Unexpected function-local metadata"); 1583 Record.push_back(VE.getMetadataOrNullID(MD)); 1584 } 1585 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1586 : bitc::METADATA_NODE, 1587 Record, Abbrev); 1588 Record.clear(); 1589 } 1590 1591 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1592 // Assume the column is usually under 128, and always output the inlined-at 1593 // location (it's never more expensive than building an array size 1). 1594 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1595 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1602 return Stream.EmitAbbrev(std::move(Abbv)); 1603 } 1604 1605 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1606 SmallVectorImpl<uint64_t> &Record, 1607 unsigned &Abbrev) { 1608 if (!Abbrev) 1609 Abbrev = createDILocationAbbrev(); 1610 1611 Record.push_back(N->isDistinct()); 1612 Record.push_back(N->getLine()); 1613 Record.push_back(N->getColumn()); 1614 Record.push_back(VE.getMetadataID(N->getScope())); 1615 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1616 Record.push_back(N->isImplicitCode()); 1617 1618 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1619 Record.clear(); 1620 } 1621 1622 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1623 // Assume the column is usually under 128, and always output the inlined-at 1624 // location (it's never more expensive than building an array size 1). 1625 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1626 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1627 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1633 return Stream.EmitAbbrev(std::move(Abbv)); 1634 } 1635 1636 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned &Abbrev) { 1639 if (!Abbrev) 1640 Abbrev = createGenericDINodeAbbrev(); 1641 1642 Record.push_back(N->isDistinct()); 1643 Record.push_back(N->getTag()); 1644 Record.push_back(0); // Per-tag version field; unused for now. 1645 1646 for (auto &I : N->operands()) 1647 Record.push_back(VE.getMetadataOrNullID(I)); 1648 1649 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1650 Record.clear(); 1651 } 1652 1653 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1654 SmallVectorImpl<uint64_t> &Record, 1655 unsigned Abbrev) { 1656 const uint64_t Version = 2 << 1; 1657 Record.push_back((uint64_t)N->isDistinct() | Version); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1659 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1662 1663 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1664 Record.clear(); 1665 } 1666 1667 void ModuleBitcodeWriter::writeDIGenericSubrange( 1668 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1669 unsigned Abbrev) { 1670 Record.push_back((uint64_t)N->isDistinct()); 1671 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1673 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1674 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1675 1676 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1677 Record.clear(); 1678 } 1679 1680 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1681 if ((int64_t)V >= 0) 1682 Vals.push_back(V << 1); 1683 else 1684 Vals.push_back((-V << 1) | 1); 1685 } 1686 1687 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1688 // We have an arbitrary precision integer value to write whose 1689 // bit width is > 64. However, in canonical unsigned integer 1690 // format it is likely that the high bits are going to be zero. 1691 // So, we only write the number of active words. 1692 unsigned NumWords = A.getActiveWords(); 1693 const uint64_t *RawData = A.getRawData(); 1694 for (unsigned i = 0; i < NumWords; i++) 1695 emitSignedInt64(Vals, RawData[i]); 1696 } 1697 1698 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1699 SmallVectorImpl<uint64_t> &Record, 1700 unsigned Abbrev) { 1701 const uint64_t IsBigInt = 1 << 2; 1702 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1703 Record.push_back(N->getValue().getBitWidth()); 1704 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1705 emitWideAPInt(Record, N->getValue()); 1706 1707 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1708 Record.clear(); 1709 } 1710 1711 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1712 SmallVectorImpl<uint64_t> &Record, 1713 unsigned Abbrev) { 1714 Record.push_back(N->isDistinct()); 1715 Record.push_back(N->getTag()); 1716 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1717 Record.push_back(N->getSizeInBits()); 1718 Record.push_back(N->getAlignInBits()); 1719 Record.push_back(N->getEncoding()); 1720 Record.push_back(N->getFlags()); 1721 1722 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1723 Record.clear(); 1724 } 1725 1726 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1727 SmallVectorImpl<uint64_t> &Record, 1728 unsigned Abbrev) { 1729 Record.push_back(N->isDistinct()); 1730 Record.push_back(N->getTag()); 1731 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1732 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1733 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1734 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1735 Record.push_back(N->getSizeInBits()); 1736 Record.push_back(N->getAlignInBits()); 1737 Record.push_back(N->getEncoding()); 1738 1739 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1744 SmallVectorImpl<uint64_t> &Record, 1745 unsigned Abbrev) { 1746 Record.push_back(N->isDistinct()); 1747 Record.push_back(N->getTag()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1749 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1750 Record.push_back(N->getLine()); 1751 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1753 Record.push_back(N->getSizeInBits()); 1754 Record.push_back(N->getAlignInBits()); 1755 Record.push_back(N->getOffsetInBits()); 1756 Record.push_back(N->getFlags()); 1757 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1758 1759 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1760 // that there is no DWARF address space associated with DIDerivedType. 1761 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1762 Record.push_back(*DWARFAddressSpace + 1); 1763 else 1764 Record.push_back(0); 1765 1766 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1767 1768 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1769 Record.clear(); 1770 } 1771 1772 void ModuleBitcodeWriter::writeDICompositeType( 1773 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1774 unsigned Abbrev) { 1775 const unsigned IsNotUsedInOldTypeRef = 0x2; 1776 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1777 Record.push_back(N->getTag()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1780 Record.push_back(N->getLine()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1783 Record.push_back(N->getSizeInBits()); 1784 Record.push_back(N->getAlignInBits()); 1785 Record.push_back(N->getOffsetInBits()); 1786 Record.push_back(N->getFlags()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1788 Record.push_back(N->getRuntimeLang()); 1789 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1790 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1791 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1795 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1798 1799 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1800 Record.clear(); 1801 } 1802 1803 void ModuleBitcodeWriter::writeDISubroutineType( 1804 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1805 unsigned Abbrev) { 1806 const unsigned HasNoOldTypeRefs = 0x2; 1807 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1808 Record.push_back(N->getFlags()); 1809 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1810 Record.push_back(N->getCC()); 1811 1812 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1813 Record.clear(); 1814 } 1815 1816 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1817 SmallVectorImpl<uint64_t> &Record, 1818 unsigned Abbrev) { 1819 Record.push_back(N->isDistinct()); 1820 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1822 if (N->getRawChecksum()) { 1823 Record.push_back(N->getRawChecksum()->Kind); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1825 } else { 1826 // Maintain backwards compatibility with the old internal representation of 1827 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1828 Record.push_back(0); 1829 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1830 } 1831 auto Source = N->getRawSource(); 1832 if (Source) 1833 Record.push_back(VE.getMetadataOrNullID(Source)); 1834 1835 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1836 Record.clear(); 1837 } 1838 1839 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1840 SmallVectorImpl<uint64_t> &Record, 1841 unsigned Abbrev) { 1842 assert(N->isDistinct() && "Expected distinct compile units"); 1843 Record.push_back(/* IsDistinct */ true); 1844 Record.push_back(N->getSourceLanguage()); 1845 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1846 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1847 Record.push_back(N->isOptimized()); 1848 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1849 Record.push_back(N->getRuntimeVersion()); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1851 Record.push_back(N->getEmissionKind()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1854 Record.push_back(/* subprograms */ 0); 1855 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1856 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1857 Record.push_back(N->getDWOId()); 1858 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1859 Record.push_back(N->getSplitDebugInlining()); 1860 Record.push_back(N->getDebugInfoForProfiling()); 1861 Record.push_back((unsigned)N->getNameTableKind()); 1862 Record.push_back(N->getRangesBaseAddress()); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1865 1866 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1867 Record.clear(); 1868 } 1869 1870 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1871 SmallVectorImpl<uint64_t> &Record, 1872 unsigned Abbrev) { 1873 const uint64_t HasUnitFlag = 1 << 1; 1874 const uint64_t HasSPFlagsFlag = 1 << 2; 1875 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1876 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1877 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1880 Record.push_back(N->getLine()); 1881 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1882 Record.push_back(N->getScopeLine()); 1883 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1884 Record.push_back(N->getSPFlags()); 1885 Record.push_back(N->getVirtualIndex()); 1886 Record.push_back(N->getFlags()); 1887 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1888 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1889 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1891 Record.push_back(N->getThisAdjustment()); 1892 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1893 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1895 1896 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1897 Record.clear(); 1898 } 1899 1900 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1901 SmallVectorImpl<uint64_t> &Record, 1902 unsigned Abbrev) { 1903 Record.push_back(N->isDistinct()); 1904 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1905 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1906 Record.push_back(N->getLine()); 1907 Record.push_back(N->getColumn()); 1908 1909 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1914 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 Record.push_back(N->isDistinct()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1919 Record.push_back(N->getDiscriminator()); 1920 1921 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1926 SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 Record.push_back(N->isDistinct()); 1929 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1933 Record.push_back(N->getLineNo()); 1934 1935 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1940 SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1943 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1944 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1945 1946 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1947 Record.clear(); 1948 } 1949 1950 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1951 SmallVectorImpl<uint64_t> &Record, 1952 unsigned Abbrev) { 1953 Record.push_back(N->isDistinct()); 1954 Record.push_back(N->getMacinfoType()); 1955 Record.push_back(N->getLine()); 1956 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1957 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1958 1959 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1960 Record.clear(); 1961 } 1962 1963 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1964 SmallVectorImpl<uint64_t> &Record, 1965 unsigned Abbrev) { 1966 Record.push_back(N->isDistinct()); 1967 Record.push_back(N->getMacinfoType()); 1968 Record.push_back(N->getLine()); 1969 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1970 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1971 1972 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1973 Record.clear(); 1974 } 1975 1976 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1977 SmallVectorImpl<uint64_t> &Record) { 1978 Record.reserve(N->getArgs().size()); 1979 for (ValueAsMetadata *MD : N->getArgs()) 1980 Record.push_back(VE.getMetadataID(MD)); 1981 1982 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 1983 Record.clear(); 1984 } 1985 1986 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1987 SmallVectorImpl<uint64_t> &Record, 1988 unsigned Abbrev) { 1989 Record.push_back(N->isDistinct()); 1990 for (auto &I : N->operands()) 1991 Record.push_back(VE.getMetadataOrNullID(I)); 1992 Record.push_back(N->getLineNo()); 1993 Record.push_back(N->getIsDecl()); 1994 1995 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1996 Record.clear(); 1997 } 1998 1999 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2000 SmallVectorImpl<uint64_t> &Record, 2001 unsigned Abbrev) { 2002 // There are no arguments for this metadata type. 2003 Record.push_back(N->isDistinct()); 2004 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2005 Record.clear(); 2006 } 2007 2008 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2009 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2010 unsigned Abbrev) { 2011 Record.push_back(N->isDistinct()); 2012 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2013 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2014 Record.push_back(N->isDefault()); 2015 2016 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2017 Record.clear(); 2018 } 2019 2020 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2021 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2022 unsigned Abbrev) { 2023 Record.push_back(N->isDistinct()); 2024 Record.push_back(N->getTag()); 2025 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2026 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2027 Record.push_back(N->isDefault()); 2028 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2029 2030 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2031 Record.clear(); 2032 } 2033 2034 void ModuleBitcodeWriter::writeDIGlobalVariable( 2035 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2036 unsigned Abbrev) { 2037 const uint64_t Version = 2 << 1; 2038 Record.push_back((uint64_t)N->isDistinct() | Version); 2039 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2040 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2043 Record.push_back(N->getLine()); 2044 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2045 Record.push_back(N->isLocalToUnit()); 2046 Record.push_back(N->isDefinition()); 2047 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2048 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2049 Record.push_back(N->getAlignInBits()); 2050 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2051 2052 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2053 Record.clear(); 2054 } 2055 2056 void ModuleBitcodeWriter::writeDILocalVariable( 2057 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2058 unsigned Abbrev) { 2059 // In order to support all possible bitcode formats in BitcodeReader we need 2060 // to distinguish the following cases: 2061 // 1) Record has no artificial tag (Record[1]), 2062 // has no obsolete inlinedAt field (Record[9]). 2063 // In this case Record size will be 8, HasAlignment flag is false. 2064 // 2) Record has artificial tag (Record[1]), 2065 // has no obsolete inlignedAt field (Record[9]). 2066 // In this case Record size will be 9, HasAlignment flag is false. 2067 // 3) Record has both artificial tag (Record[1]) and 2068 // obsolete inlignedAt field (Record[9]). 2069 // In this case Record size will be 10, HasAlignment flag is false. 2070 // 4) Record has neither artificial tag, nor inlignedAt field, but 2071 // HasAlignment flag is true and Record[8] contains alignment value. 2072 const uint64_t HasAlignmentFlag = 1 << 1; 2073 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2074 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2075 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2076 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2077 Record.push_back(N->getLine()); 2078 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2079 Record.push_back(N->getArg()); 2080 Record.push_back(N->getFlags()); 2081 Record.push_back(N->getAlignInBits()); 2082 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2083 2084 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2085 Record.clear(); 2086 } 2087 2088 void ModuleBitcodeWriter::writeDILabel( 2089 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2090 unsigned Abbrev) { 2091 Record.push_back((uint64_t)N->isDistinct()); 2092 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2093 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2094 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2095 Record.push_back(N->getLine()); 2096 2097 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2098 Record.clear(); 2099 } 2100 2101 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2102 SmallVectorImpl<uint64_t> &Record, 2103 unsigned Abbrev) { 2104 Record.reserve(N->getElements().size() + 1); 2105 const uint64_t Version = 3 << 1; 2106 Record.push_back((uint64_t)N->isDistinct() | Version); 2107 Record.append(N->elements_begin(), N->elements_end()); 2108 2109 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2110 Record.clear(); 2111 } 2112 2113 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2114 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2115 unsigned Abbrev) { 2116 Record.push_back(N->isDistinct()); 2117 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2118 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2119 2120 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2121 Record.clear(); 2122 } 2123 2124 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2125 SmallVectorImpl<uint64_t> &Record, 2126 unsigned Abbrev) { 2127 Record.push_back(N->isDistinct()); 2128 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2129 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2130 Record.push_back(N->getLine()); 2131 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2132 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2133 Record.push_back(N->getAttributes()); 2134 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2135 2136 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2137 Record.clear(); 2138 } 2139 2140 void ModuleBitcodeWriter::writeDIImportedEntity( 2141 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2142 unsigned Abbrev) { 2143 Record.push_back(N->isDistinct()); 2144 Record.push_back(N->getTag()); 2145 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2146 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2147 Record.push_back(N->getLine()); 2148 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2149 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2150 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2151 2152 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2153 Record.clear(); 2154 } 2155 2156 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2157 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2158 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2161 return Stream.EmitAbbrev(std::move(Abbv)); 2162 } 2163 2164 void ModuleBitcodeWriter::writeNamedMetadata( 2165 SmallVectorImpl<uint64_t> &Record) { 2166 if (M.named_metadata_empty()) 2167 return; 2168 2169 unsigned Abbrev = createNamedMetadataAbbrev(); 2170 for (const NamedMDNode &NMD : M.named_metadata()) { 2171 // Write name. 2172 StringRef Str = NMD.getName(); 2173 Record.append(Str.bytes_begin(), Str.bytes_end()); 2174 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2175 Record.clear(); 2176 2177 // Write named metadata operands. 2178 for (const MDNode *N : NMD.operands()) 2179 Record.push_back(VE.getMetadataID(N)); 2180 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2181 Record.clear(); 2182 } 2183 } 2184 2185 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2187 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2191 return Stream.EmitAbbrev(std::move(Abbv)); 2192 } 2193 2194 /// Write out a record for MDString. 2195 /// 2196 /// All the metadata strings in a metadata block are emitted in a single 2197 /// record. The sizes and strings themselves are shoved into a blob. 2198 void ModuleBitcodeWriter::writeMetadataStrings( 2199 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2200 if (Strings.empty()) 2201 return; 2202 2203 // Start the record with the number of strings. 2204 Record.push_back(bitc::METADATA_STRINGS); 2205 Record.push_back(Strings.size()); 2206 2207 // Emit the sizes of the strings in the blob. 2208 SmallString<256> Blob; 2209 { 2210 BitstreamWriter W(Blob); 2211 for (const Metadata *MD : Strings) 2212 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2213 W.FlushToWord(); 2214 } 2215 2216 // Add the offset to the strings to the record. 2217 Record.push_back(Blob.size()); 2218 2219 // Add the strings to the blob. 2220 for (const Metadata *MD : Strings) 2221 Blob.append(cast<MDString>(MD)->getString()); 2222 2223 // Emit the final record. 2224 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2225 Record.clear(); 2226 } 2227 2228 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2229 enum MetadataAbbrev : unsigned { 2230 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2231 #include "llvm/IR/Metadata.def" 2232 LastPlusOne 2233 }; 2234 2235 void ModuleBitcodeWriter::writeMetadataRecords( 2236 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2237 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2238 if (MDs.empty()) 2239 return; 2240 2241 // Initialize MDNode abbreviations. 2242 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2243 #include "llvm/IR/Metadata.def" 2244 2245 for (const Metadata *MD : MDs) { 2246 if (IndexPos) 2247 IndexPos->push_back(Stream.GetCurrentBitNo()); 2248 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2249 assert(N->isResolved() && "Expected forward references to be resolved"); 2250 2251 switch (N->getMetadataID()) { 2252 default: 2253 llvm_unreachable("Invalid MDNode subclass"); 2254 #define HANDLE_MDNODE_LEAF(CLASS) \ 2255 case Metadata::CLASS##Kind: \ 2256 if (MDAbbrevs) \ 2257 write##CLASS(cast<CLASS>(N), Record, \ 2258 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2259 else \ 2260 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2261 continue; 2262 #include "llvm/IR/Metadata.def" 2263 } 2264 } 2265 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2266 writeDIArgList(AL, Record); 2267 continue; 2268 } 2269 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2270 } 2271 } 2272 2273 void ModuleBitcodeWriter::writeModuleMetadata() { 2274 if (!VE.hasMDs() && M.named_metadata_empty()) 2275 return; 2276 2277 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2278 SmallVector<uint64_t, 64> Record; 2279 2280 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2281 // block and load any metadata. 2282 std::vector<unsigned> MDAbbrevs; 2283 2284 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2285 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2286 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2287 createGenericDINodeAbbrev(); 2288 2289 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2290 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2293 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2294 2295 Abbv = std::make_shared<BitCodeAbbrev>(); 2296 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2297 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2299 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2300 2301 // Emit MDStrings together upfront. 2302 writeMetadataStrings(VE.getMDStrings(), Record); 2303 2304 // We only emit an index for the metadata record if we have more than a given 2305 // (naive) threshold of metadatas, otherwise it is not worth it. 2306 if (VE.getNonMDStrings().size() > IndexThreshold) { 2307 // Write a placeholder value in for the offset of the metadata index, 2308 // which is written after the records, so that it can include 2309 // the offset of each entry. The placeholder offset will be 2310 // updated after all records are emitted. 2311 uint64_t Vals[] = {0, 0}; 2312 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2313 } 2314 2315 // Compute and save the bit offset to the current position, which will be 2316 // patched when we emit the index later. We can simply subtract the 64-bit 2317 // fixed size from the current bit number to get the location to backpatch. 2318 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2319 2320 // This index will contain the bitpos for each individual record. 2321 std::vector<uint64_t> IndexPos; 2322 IndexPos.reserve(VE.getNonMDStrings().size()); 2323 2324 // Write all the records 2325 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2326 2327 if (VE.getNonMDStrings().size() > IndexThreshold) { 2328 // Now that we have emitted all the records we will emit the index. But 2329 // first 2330 // backpatch the forward reference so that the reader can skip the records 2331 // efficiently. 2332 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2333 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2334 2335 // Delta encode the index. 2336 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2337 for (auto &Elt : IndexPos) { 2338 auto EltDelta = Elt - PreviousValue; 2339 PreviousValue = Elt; 2340 Elt = EltDelta; 2341 } 2342 // Emit the index record. 2343 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2344 IndexPos.clear(); 2345 } 2346 2347 // Write the named metadata now. 2348 writeNamedMetadata(Record); 2349 2350 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2351 SmallVector<uint64_t, 4> Record; 2352 Record.push_back(VE.getValueID(&GO)); 2353 pushGlobalMetadataAttachment(Record, GO); 2354 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2355 }; 2356 for (const Function &F : M) 2357 if (F.isDeclaration() && F.hasMetadata()) 2358 AddDeclAttachedMetadata(F); 2359 // FIXME: Only store metadata for declarations here, and move data for global 2360 // variable definitions to a separate block (PR28134). 2361 for (const GlobalVariable &GV : M.globals()) 2362 if (GV.hasMetadata()) 2363 AddDeclAttachedMetadata(GV); 2364 2365 Stream.ExitBlock(); 2366 } 2367 2368 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2369 if (!VE.hasMDs()) 2370 return; 2371 2372 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2373 SmallVector<uint64_t, 64> Record; 2374 writeMetadataStrings(VE.getMDStrings(), Record); 2375 writeMetadataRecords(VE.getNonMDStrings(), Record); 2376 Stream.ExitBlock(); 2377 } 2378 2379 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2380 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2381 // [n x [id, mdnode]] 2382 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2383 GO.getAllMetadata(MDs); 2384 for (const auto &I : MDs) { 2385 Record.push_back(I.first); 2386 Record.push_back(VE.getMetadataID(I.second)); 2387 } 2388 } 2389 2390 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2391 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2392 2393 SmallVector<uint64_t, 64> Record; 2394 2395 if (F.hasMetadata()) { 2396 pushGlobalMetadataAttachment(Record, F); 2397 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2398 Record.clear(); 2399 } 2400 2401 // Write metadata attachments 2402 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2403 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2404 for (const BasicBlock &BB : F) 2405 for (const Instruction &I : BB) { 2406 MDs.clear(); 2407 I.getAllMetadataOtherThanDebugLoc(MDs); 2408 2409 // If no metadata, ignore instruction. 2410 if (MDs.empty()) continue; 2411 2412 Record.push_back(VE.getInstructionID(&I)); 2413 2414 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2415 Record.push_back(MDs[i].first); 2416 Record.push_back(VE.getMetadataID(MDs[i].second)); 2417 } 2418 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2419 Record.clear(); 2420 } 2421 2422 Stream.ExitBlock(); 2423 } 2424 2425 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2426 SmallVector<uint64_t, 64> Record; 2427 2428 // Write metadata kinds 2429 // METADATA_KIND - [n x [id, name]] 2430 SmallVector<StringRef, 8> Names; 2431 M.getMDKindNames(Names); 2432 2433 if (Names.empty()) return; 2434 2435 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2436 2437 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2438 Record.push_back(MDKindID); 2439 StringRef KName = Names[MDKindID]; 2440 Record.append(KName.begin(), KName.end()); 2441 2442 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2443 Record.clear(); 2444 } 2445 2446 Stream.ExitBlock(); 2447 } 2448 2449 void ModuleBitcodeWriter::writeOperandBundleTags() { 2450 // Write metadata kinds 2451 // 2452 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2453 // 2454 // OPERAND_BUNDLE_TAG - [strchr x N] 2455 2456 SmallVector<StringRef, 8> Tags; 2457 M.getOperandBundleTags(Tags); 2458 2459 if (Tags.empty()) 2460 return; 2461 2462 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2463 2464 SmallVector<uint64_t, 64> Record; 2465 2466 for (auto Tag : Tags) { 2467 Record.append(Tag.begin(), Tag.end()); 2468 2469 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2470 Record.clear(); 2471 } 2472 2473 Stream.ExitBlock(); 2474 } 2475 2476 void ModuleBitcodeWriter::writeSyncScopeNames() { 2477 SmallVector<StringRef, 8> SSNs; 2478 M.getContext().getSyncScopeNames(SSNs); 2479 if (SSNs.empty()) 2480 return; 2481 2482 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2483 2484 SmallVector<uint64_t, 64> Record; 2485 for (auto SSN : SSNs) { 2486 Record.append(SSN.begin(), SSN.end()); 2487 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2488 Record.clear(); 2489 } 2490 2491 Stream.ExitBlock(); 2492 } 2493 2494 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2495 bool isGlobal) { 2496 if (FirstVal == LastVal) return; 2497 2498 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2499 2500 unsigned AggregateAbbrev = 0; 2501 unsigned String8Abbrev = 0; 2502 unsigned CString7Abbrev = 0; 2503 unsigned CString6Abbrev = 0; 2504 // If this is a constant pool for the module, emit module-specific abbrevs. 2505 if (isGlobal) { 2506 // Abbrev for CST_CODE_AGGREGATE. 2507 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2508 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2511 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2512 2513 // Abbrev for CST_CODE_STRING. 2514 Abbv = std::make_shared<BitCodeAbbrev>(); 2515 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2518 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2519 // Abbrev for CST_CODE_CSTRING. 2520 Abbv = std::make_shared<BitCodeAbbrev>(); 2521 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2524 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2525 // Abbrev for CST_CODE_CSTRING. 2526 Abbv = std::make_shared<BitCodeAbbrev>(); 2527 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2530 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2531 } 2532 2533 SmallVector<uint64_t, 64> Record; 2534 2535 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2536 Type *LastTy = nullptr; 2537 for (unsigned i = FirstVal; i != LastVal; ++i) { 2538 const Value *V = Vals[i].first; 2539 // If we need to switch types, do so now. 2540 if (V->getType() != LastTy) { 2541 LastTy = V->getType(); 2542 Record.push_back(VE.getTypeID(LastTy)); 2543 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2544 CONSTANTS_SETTYPE_ABBREV); 2545 Record.clear(); 2546 } 2547 2548 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2549 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2550 Record.push_back( 2551 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2552 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2553 2554 // Add the asm string. 2555 const std::string &AsmStr = IA->getAsmString(); 2556 Record.push_back(AsmStr.size()); 2557 Record.append(AsmStr.begin(), AsmStr.end()); 2558 2559 // Add the constraint string. 2560 const std::string &ConstraintStr = IA->getConstraintString(); 2561 Record.push_back(ConstraintStr.size()); 2562 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2563 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2564 Record.clear(); 2565 continue; 2566 } 2567 const Constant *C = cast<Constant>(V); 2568 unsigned Code = -1U; 2569 unsigned AbbrevToUse = 0; 2570 if (C->isNullValue()) { 2571 Code = bitc::CST_CODE_NULL; 2572 } else if (isa<PoisonValue>(C)) { 2573 Code = bitc::CST_CODE_POISON; 2574 } else if (isa<UndefValue>(C)) { 2575 Code = bitc::CST_CODE_UNDEF; 2576 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2577 if (IV->getBitWidth() <= 64) { 2578 uint64_t V = IV->getSExtValue(); 2579 emitSignedInt64(Record, V); 2580 Code = bitc::CST_CODE_INTEGER; 2581 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2582 } else { // Wide integers, > 64 bits in size. 2583 emitWideAPInt(Record, IV->getValue()); 2584 Code = bitc::CST_CODE_WIDE_INTEGER; 2585 } 2586 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2587 Code = bitc::CST_CODE_FLOAT; 2588 Type *Ty = CFP->getType(); 2589 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2590 Ty->isDoubleTy()) { 2591 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2592 } else if (Ty->isX86_FP80Ty()) { 2593 // api needed to prevent premature destruction 2594 // bits are not in the same order as a normal i80 APInt, compensate. 2595 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2596 const uint64_t *p = api.getRawData(); 2597 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2598 Record.push_back(p[0] & 0xffffLL); 2599 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2600 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2601 const uint64_t *p = api.getRawData(); 2602 Record.push_back(p[0]); 2603 Record.push_back(p[1]); 2604 } else { 2605 assert(0 && "Unknown FP type!"); 2606 } 2607 } else if (isa<ConstantDataSequential>(C) && 2608 cast<ConstantDataSequential>(C)->isString()) { 2609 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2610 // Emit constant strings specially. 2611 unsigned NumElts = Str->getNumElements(); 2612 // If this is a null-terminated string, use the denser CSTRING encoding. 2613 if (Str->isCString()) { 2614 Code = bitc::CST_CODE_CSTRING; 2615 --NumElts; // Don't encode the null, which isn't allowed by char6. 2616 } else { 2617 Code = bitc::CST_CODE_STRING; 2618 AbbrevToUse = String8Abbrev; 2619 } 2620 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2621 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2622 for (unsigned i = 0; i != NumElts; ++i) { 2623 unsigned char V = Str->getElementAsInteger(i); 2624 Record.push_back(V); 2625 isCStr7 &= (V & 128) == 0; 2626 if (isCStrChar6) 2627 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2628 } 2629 2630 if (isCStrChar6) 2631 AbbrevToUse = CString6Abbrev; 2632 else if (isCStr7) 2633 AbbrevToUse = CString7Abbrev; 2634 } else if (const ConstantDataSequential *CDS = 2635 dyn_cast<ConstantDataSequential>(C)) { 2636 Code = bitc::CST_CODE_DATA; 2637 Type *EltTy = CDS->getElementType(); 2638 if (isa<IntegerType>(EltTy)) { 2639 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2640 Record.push_back(CDS->getElementAsInteger(i)); 2641 } else { 2642 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2643 Record.push_back( 2644 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2645 } 2646 } else if (isa<ConstantAggregate>(C)) { 2647 Code = bitc::CST_CODE_AGGREGATE; 2648 for (const Value *Op : C->operands()) 2649 Record.push_back(VE.getValueID(Op)); 2650 AbbrevToUse = AggregateAbbrev; 2651 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2652 switch (CE->getOpcode()) { 2653 default: 2654 if (Instruction::isCast(CE->getOpcode())) { 2655 Code = bitc::CST_CODE_CE_CAST; 2656 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2657 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2658 Record.push_back(VE.getValueID(C->getOperand(0))); 2659 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2660 } else { 2661 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2662 Code = bitc::CST_CODE_CE_BINOP; 2663 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2664 Record.push_back(VE.getValueID(C->getOperand(0))); 2665 Record.push_back(VE.getValueID(C->getOperand(1))); 2666 uint64_t Flags = getOptimizationFlags(CE); 2667 if (Flags != 0) 2668 Record.push_back(Flags); 2669 } 2670 break; 2671 case Instruction::FNeg: { 2672 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2673 Code = bitc::CST_CODE_CE_UNOP; 2674 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2675 Record.push_back(VE.getValueID(C->getOperand(0))); 2676 uint64_t Flags = getOptimizationFlags(CE); 2677 if (Flags != 0) 2678 Record.push_back(Flags); 2679 break; 2680 } 2681 case Instruction::GetElementPtr: { 2682 Code = bitc::CST_CODE_CE_GEP; 2683 const auto *GO = cast<GEPOperator>(C); 2684 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2685 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2686 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2687 Record.push_back((*Idx << 1) | GO->isInBounds()); 2688 } else if (GO->isInBounds()) 2689 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2690 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2691 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2692 Record.push_back(VE.getValueID(C->getOperand(i))); 2693 } 2694 break; 2695 } 2696 case Instruction::ExtractElement: 2697 Code = bitc::CST_CODE_CE_EXTRACTELT; 2698 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2699 Record.push_back(VE.getValueID(C->getOperand(0))); 2700 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2701 Record.push_back(VE.getValueID(C->getOperand(1))); 2702 break; 2703 case Instruction::InsertElement: 2704 Code = bitc::CST_CODE_CE_INSERTELT; 2705 Record.push_back(VE.getValueID(C->getOperand(0))); 2706 Record.push_back(VE.getValueID(C->getOperand(1))); 2707 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2708 Record.push_back(VE.getValueID(C->getOperand(2))); 2709 break; 2710 case Instruction::ShuffleVector: 2711 // If the return type and argument types are the same, this is a 2712 // standard shufflevector instruction. If the types are different, 2713 // then the shuffle is widening or truncating the input vectors, and 2714 // the argument type must also be encoded. 2715 if (C->getType() == C->getOperand(0)->getType()) { 2716 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2717 } else { 2718 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2719 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2720 } 2721 Record.push_back(VE.getValueID(C->getOperand(0))); 2722 Record.push_back(VE.getValueID(C->getOperand(1))); 2723 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2724 break; 2725 case Instruction::ICmp: 2726 case Instruction::FCmp: 2727 Code = bitc::CST_CODE_CE_CMP; 2728 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2729 Record.push_back(VE.getValueID(C->getOperand(0))); 2730 Record.push_back(VE.getValueID(C->getOperand(1))); 2731 Record.push_back(CE->getPredicate()); 2732 break; 2733 } 2734 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2735 Code = bitc::CST_CODE_BLOCKADDRESS; 2736 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2737 Record.push_back(VE.getValueID(BA->getFunction())); 2738 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2739 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2740 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2741 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2742 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2743 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2744 Code = bitc::CST_CODE_NO_CFI_VALUE; 2745 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2746 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2747 } else { 2748 #ifndef NDEBUG 2749 C->dump(); 2750 #endif 2751 llvm_unreachable("Unknown constant!"); 2752 } 2753 Stream.EmitRecord(Code, Record, AbbrevToUse); 2754 Record.clear(); 2755 } 2756 2757 Stream.ExitBlock(); 2758 } 2759 2760 void ModuleBitcodeWriter::writeModuleConstants() { 2761 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2762 2763 // Find the first constant to emit, which is the first non-globalvalue value. 2764 // We know globalvalues have been emitted by WriteModuleInfo. 2765 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2766 if (!isa<GlobalValue>(Vals[i].first)) { 2767 writeConstants(i, Vals.size(), true); 2768 return; 2769 } 2770 } 2771 } 2772 2773 /// pushValueAndType - The file has to encode both the value and type id for 2774 /// many values, because we need to know what type to create for forward 2775 /// references. However, most operands are not forward references, so this type 2776 /// field is not needed. 2777 /// 2778 /// This function adds V's value ID to Vals. If the value ID is higher than the 2779 /// instruction ID, then it is a forward reference, and it also includes the 2780 /// type ID. The value ID that is written is encoded relative to the InstID. 2781 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2782 SmallVectorImpl<unsigned> &Vals) { 2783 unsigned ValID = VE.getValueID(V); 2784 // Make encoding relative to the InstID. 2785 Vals.push_back(InstID - ValID); 2786 if (ValID >= InstID) { 2787 Vals.push_back(VE.getTypeID(V->getType())); 2788 return true; 2789 } 2790 return false; 2791 } 2792 2793 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2794 unsigned InstID) { 2795 SmallVector<unsigned, 64> Record; 2796 LLVMContext &C = CS.getContext(); 2797 2798 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2799 const auto &Bundle = CS.getOperandBundleAt(i); 2800 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2801 2802 for (auto &Input : Bundle.Inputs) 2803 pushValueAndType(Input, InstID, Record); 2804 2805 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2806 Record.clear(); 2807 } 2808 } 2809 2810 /// pushValue - Like pushValueAndType, but where the type of the value is 2811 /// omitted (perhaps it was already encoded in an earlier operand). 2812 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2813 SmallVectorImpl<unsigned> &Vals) { 2814 unsigned ValID = VE.getValueID(V); 2815 Vals.push_back(InstID - ValID); 2816 } 2817 2818 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2819 SmallVectorImpl<uint64_t> &Vals) { 2820 unsigned ValID = VE.getValueID(V); 2821 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2822 emitSignedInt64(Vals, diff); 2823 } 2824 2825 /// WriteInstruction - Emit an instruction to the specified stream. 2826 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2827 unsigned InstID, 2828 SmallVectorImpl<unsigned> &Vals) { 2829 unsigned Code = 0; 2830 unsigned AbbrevToUse = 0; 2831 VE.setInstructionID(&I); 2832 switch (I.getOpcode()) { 2833 default: 2834 if (Instruction::isCast(I.getOpcode())) { 2835 Code = bitc::FUNC_CODE_INST_CAST; 2836 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2837 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2838 Vals.push_back(VE.getTypeID(I.getType())); 2839 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2840 uint64_t Flags = getOptimizationFlags(&I); 2841 if (Flags != 0) { 2842 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2843 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2844 Vals.push_back(Flags); 2845 } 2846 } else { 2847 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2848 Code = bitc::FUNC_CODE_INST_BINOP; 2849 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2850 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2851 pushValue(I.getOperand(1), InstID, Vals); 2852 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2853 uint64_t Flags = getOptimizationFlags(&I); 2854 if (Flags != 0) { 2855 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2856 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2857 Vals.push_back(Flags); 2858 } 2859 } 2860 break; 2861 case Instruction::FNeg: { 2862 Code = bitc::FUNC_CODE_INST_UNOP; 2863 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2864 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2865 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2866 uint64_t Flags = getOptimizationFlags(&I); 2867 if (Flags != 0) { 2868 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2869 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2870 Vals.push_back(Flags); 2871 } 2872 break; 2873 } 2874 case Instruction::GetElementPtr: { 2875 Code = bitc::FUNC_CODE_INST_GEP; 2876 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2877 auto &GEPInst = cast<GetElementPtrInst>(I); 2878 Vals.push_back(GEPInst.isInBounds()); 2879 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2880 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2881 pushValueAndType(I.getOperand(i), InstID, Vals); 2882 break; 2883 } 2884 case Instruction::ExtractValue: { 2885 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2886 pushValueAndType(I.getOperand(0), InstID, Vals); 2887 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2888 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2889 break; 2890 } 2891 case Instruction::InsertValue: { 2892 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2893 pushValueAndType(I.getOperand(0), InstID, Vals); 2894 pushValueAndType(I.getOperand(1), InstID, Vals); 2895 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2896 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2897 break; 2898 } 2899 case Instruction::Select: { 2900 Code = bitc::FUNC_CODE_INST_VSELECT; 2901 pushValueAndType(I.getOperand(1), InstID, Vals); 2902 pushValue(I.getOperand(2), InstID, Vals); 2903 pushValueAndType(I.getOperand(0), InstID, Vals); 2904 uint64_t Flags = getOptimizationFlags(&I); 2905 if (Flags != 0) 2906 Vals.push_back(Flags); 2907 break; 2908 } 2909 case Instruction::ExtractElement: 2910 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2911 pushValueAndType(I.getOperand(0), InstID, Vals); 2912 pushValueAndType(I.getOperand(1), InstID, Vals); 2913 break; 2914 case Instruction::InsertElement: 2915 Code = bitc::FUNC_CODE_INST_INSERTELT; 2916 pushValueAndType(I.getOperand(0), InstID, Vals); 2917 pushValue(I.getOperand(1), InstID, Vals); 2918 pushValueAndType(I.getOperand(2), InstID, Vals); 2919 break; 2920 case Instruction::ShuffleVector: 2921 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2922 pushValueAndType(I.getOperand(0), InstID, Vals); 2923 pushValue(I.getOperand(1), InstID, Vals); 2924 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2925 Vals); 2926 break; 2927 case Instruction::ICmp: 2928 case Instruction::FCmp: { 2929 // compare returning Int1Ty or vector of Int1Ty 2930 Code = bitc::FUNC_CODE_INST_CMP2; 2931 pushValueAndType(I.getOperand(0), InstID, Vals); 2932 pushValue(I.getOperand(1), InstID, Vals); 2933 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2934 uint64_t Flags = getOptimizationFlags(&I); 2935 if (Flags != 0) 2936 Vals.push_back(Flags); 2937 break; 2938 } 2939 2940 case Instruction::Ret: 2941 { 2942 Code = bitc::FUNC_CODE_INST_RET; 2943 unsigned NumOperands = I.getNumOperands(); 2944 if (NumOperands == 0) 2945 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2946 else if (NumOperands == 1) { 2947 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2948 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2949 } else { 2950 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2951 pushValueAndType(I.getOperand(i), InstID, Vals); 2952 } 2953 } 2954 break; 2955 case Instruction::Br: 2956 { 2957 Code = bitc::FUNC_CODE_INST_BR; 2958 const BranchInst &II = cast<BranchInst>(I); 2959 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2960 if (II.isConditional()) { 2961 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2962 pushValue(II.getCondition(), InstID, Vals); 2963 } 2964 } 2965 break; 2966 case Instruction::Switch: 2967 { 2968 Code = bitc::FUNC_CODE_INST_SWITCH; 2969 const SwitchInst &SI = cast<SwitchInst>(I); 2970 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2971 pushValue(SI.getCondition(), InstID, Vals); 2972 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2973 for (auto Case : SI.cases()) { 2974 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2975 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2976 } 2977 } 2978 break; 2979 case Instruction::IndirectBr: 2980 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2981 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2982 // Encode the address operand as relative, but not the basic blocks. 2983 pushValue(I.getOperand(0), InstID, Vals); 2984 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2985 Vals.push_back(VE.getValueID(I.getOperand(i))); 2986 break; 2987 2988 case Instruction::Invoke: { 2989 const InvokeInst *II = cast<InvokeInst>(&I); 2990 const Value *Callee = II->getCalledOperand(); 2991 FunctionType *FTy = II->getFunctionType(); 2992 2993 if (II->hasOperandBundles()) 2994 writeOperandBundles(*II, InstID); 2995 2996 Code = bitc::FUNC_CODE_INST_INVOKE; 2997 2998 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2999 Vals.push_back(II->getCallingConv() | 1 << 13); 3000 Vals.push_back(VE.getValueID(II->getNormalDest())); 3001 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3002 Vals.push_back(VE.getTypeID(FTy)); 3003 pushValueAndType(Callee, InstID, Vals); 3004 3005 // Emit value #'s for the fixed parameters. 3006 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3007 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3008 3009 // Emit type/value pairs for varargs params. 3010 if (FTy->isVarArg()) { 3011 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3012 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3013 } 3014 break; 3015 } 3016 case Instruction::Resume: 3017 Code = bitc::FUNC_CODE_INST_RESUME; 3018 pushValueAndType(I.getOperand(0), InstID, Vals); 3019 break; 3020 case Instruction::CleanupRet: { 3021 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3022 const auto &CRI = cast<CleanupReturnInst>(I); 3023 pushValue(CRI.getCleanupPad(), InstID, Vals); 3024 if (CRI.hasUnwindDest()) 3025 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3026 break; 3027 } 3028 case Instruction::CatchRet: { 3029 Code = bitc::FUNC_CODE_INST_CATCHRET; 3030 const auto &CRI = cast<CatchReturnInst>(I); 3031 pushValue(CRI.getCatchPad(), InstID, Vals); 3032 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3033 break; 3034 } 3035 case Instruction::CleanupPad: 3036 case Instruction::CatchPad: { 3037 const auto &FuncletPad = cast<FuncletPadInst>(I); 3038 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3039 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3040 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3041 3042 unsigned NumArgOperands = FuncletPad.arg_size(); 3043 Vals.push_back(NumArgOperands); 3044 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3045 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3046 break; 3047 } 3048 case Instruction::CatchSwitch: { 3049 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3050 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3051 3052 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3053 3054 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3055 Vals.push_back(NumHandlers); 3056 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3057 Vals.push_back(VE.getValueID(CatchPadBB)); 3058 3059 if (CatchSwitch.hasUnwindDest()) 3060 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3061 break; 3062 } 3063 case Instruction::CallBr: { 3064 const CallBrInst *CBI = cast<CallBrInst>(&I); 3065 const Value *Callee = CBI->getCalledOperand(); 3066 FunctionType *FTy = CBI->getFunctionType(); 3067 3068 if (CBI->hasOperandBundles()) 3069 writeOperandBundles(*CBI, InstID); 3070 3071 Code = bitc::FUNC_CODE_INST_CALLBR; 3072 3073 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3074 3075 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3076 1 << bitc::CALL_EXPLICIT_TYPE); 3077 3078 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3079 Vals.push_back(CBI->getNumIndirectDests()); 3080 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3081 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3082 3083 Vals.push_back(VE.getTypeID(FTy)); 3084 pushValueAndType(Callee, InstID, Vals); 3085 3086 // Emit value #'s for the fixed parameters. 3087 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3088 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3089 3090 // Emit type/value pairs for varargs params. 3091 if (FTy->isVarArg()) { 3092 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3093 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3094 } 3095 break; 3096 } 3097 case Instruction::Unreachable: 3098 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3099 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3100 break; 3101 3102 case Instruction::PHI: { 3103 const PHINode &PN = cast<PHINode>(I); 3104 Code = bitc::FUNC_CODE_INST_PHI; 3105 // With the newer instruction encoding, forward references could give 3106 // negative valued IDs. This is most common for PHIs, so we use 3107 // signed VBRs. 3108 SmallVector<uint64_t, 128> Vals64; 3109 Vals64.push_back(VE.getTypeID(PN.getType())); 3110 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3111 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3112 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3113 } 3114 3115 uint64_t Flags = getOptimizationFlags(&I); 3116 if (Flags != 0) 3117 Vals64.push_back(Flags); 3118 3119 // Emit a Vals64 vector and exit. 3120 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3121 Vals64.clear(); 3122 return; 3123 } 3124 3125 case Instruction::LandingPad: { 3126 const LandingPadInst &LP = cast<LandingPadInst>(I); 3127 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3128 Vals.push_back(VE.getTypeID(LP.getType())); 3129 Vals.push_back(LP.isCleanup()); 3130 Vals.push_back(LP.getNumClauses()); 3131 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3132 if (LP.isCatch(I)) 3133 Vals.push_back(LandingPadInst::Catch); 3134 else 3135 Vals.push_back(LandingPadInst::Filter); 3136 pushValueAndType(LP.getClause(I), InstID, Vals); 3137 } 3138 break; 3139 } 3140 3141 case Instruction::Alloca: { 3142 Code = bitc::FUNC_CODE_INST_ALLOCA; 3143 const AllocaInst &AI = cast<AllocaInst>(I); 3144 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3145 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3146 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3147 using APV = AllocaPackedValues; 3148 unsigned Record = 0; 3149 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3150 Bitfield::set<APV::AlignLower>( 3151 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3152 Bitfield::set<APV::AlignUpper>(Record, 3153 EncodedAlign >> APV::AlignLower::Bits); 3154 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3155 Bitfield::set<APV::ExplicitType>(Record, true); 3156 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3157 Vals.push_back(Record); 3158 3159 unsigned AS = AI.getAddressSpace(); 3160 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3161 Vals.push_back(AS); 3162 break; 3163 } 3164 3165 case Instruction::Load: 3166 if (cast<LoadInst>(I).isAtomic()) { 3167 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3168 pushValueAndType(I.getOperand(0), InstID, Vals); 3169 } else { 3170 Code = bitc::FUNC_CODE_INST_LOAD; 3171 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3172 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3173 } 3174 Vals.push_back(VE.getTypeID(I.getType())); 3175 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3176 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3177 if (cast<LoadInst>(I).isAtomic()) { 3178 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3179 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3180 } 3181 break; 3182 case Instruction::Store: 3183 if (cast<StoreInst>(I).isAtomic()) 3184 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3185 else 3186 Code = bitc::FUNC_CODE_INST_STORE; 3187 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3188 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3189 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3190 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3191 if (cast<StoreInst>(I).isAtomic()) { 3192 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3193 Vals.push_back( 3194 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3195 } 3196 break; 3197 case Instruction::AtomicCmpXchg: 3198 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3199 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3200 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3201 pushValue(I.getOperand(2), InstID, Vals); // newval. 3202 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3203 Vals.push_back( 3204 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3205 Vals.push_back( 3206 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3207 Vals.push_back( 3208 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3209 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3210 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3211 break; 3212 case Instruction::AtomicRMW: 3213 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3214 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3215 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3216 Vals.push_back( 3217 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3218 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3219 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3220 Vals.push_back( 3221 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3222 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3223 break; 3224 case Instruction::Fence: 3225 Code = bitc::FUNC_CODE_INST_FENCE; 3226 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3227 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3228 break; 3229 case Instruction::Call: { 3230 const CallInst &CI = cast<CallInst>(I); 3231 FunctionType *FTy = CI.getFunctionType(); 3232 3233 if (CI.hasOperandBundles()) 3234 writeOperandBundles(CI, InstID); 3235 3236 Code = bitc::FUNC_CODE_INST_CALL; 3237 3238 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3239 3240 unsigned Flags = getOptimizationFlags(&I); 3241 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3242 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3243 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3244 1 << bitc::CALL_EXPLICIT_TYPE | 3245 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3246 unsigned(Flags != 0) << bitc::CALL_FMF); 3247 if (Flags != 0) 3248 Vals.push_back(Flags); 3249 3250 Vals.push_back(VE.getTypeID(FTy)); 3251 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3252 3253 // Emit value #'s for the fixed parameters. 3254 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3255 // Check for labels (can happen with asm labels). 3256 if (FTy->getParamType(i)->isLabelTy()) 3257 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3258 else 3259 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3260 } 3261 3262 // Emit type/value pairs for varargs params. 3263 if (FTy->isVarArg()) { 3264 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3265 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3266 } 3267 break; 3268 } 3269 case Instruction::VAArg: 3270 Code = bitc::FUNC_CODE_INST_VAARG; 3271 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3272 pushValue(I.getOperand(0), InstID, Vals); // valist. 3273 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3274 break; 3275 case Instruction::Freeze: 3276 Code = bitc::FUNC_CODE_INST_FREEZE; 3277 pushValueAndType(I.getOperand(0), InstID, Vals); 3278 break; 3279 } 3280 3281 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3282 Vals.clear(); 3283 } 3284 3285 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3286 /// to allow clients to efficiently find the function body. 3287 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3288 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3289 // Get the offset of the VST we are writing, and backpatch it into 3290 // the VST forward declaration record. 3291 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3292 // The BitcodeStartBit was the stream offset of the identification block. 3293 VSTOffset -= bitcodeStartBit(); 3294 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3295 // Note that we add 1 here because the offset is relative to one word 3296 // before the start of the identification block, which was historically 3297 // always the start of the regular bitcode header. 3298 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3299 3300 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3301 3302 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3303 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3306 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3307 3308 for (const Function &F : M) { 3309 uint64_t Record[2]; 3310 3311 if (F.isDeclaration()) 3312 continue; 3313 3314 Record[0] = VE.getValueID(&F); 3315 3316 // Save the word offset of the function (from the start of the 3317 // actual bitcode written to the stream). 3318 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3319 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3320 // Note that we add 1 here because the offset is relative to one word 3321 // before the start of the identification block, which was historically 3322 // always the start of the regular bitcode header. 3323 Record[1] = BitcodeIndex / 32 + 1; 3324 3325 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3326 } 3327 3328 Stream.ExitBlock(); 3329 } 3330 3331 /// Emit names for arguments, instructions and basic blocks in a function. 3332 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3333 const ValueSymbolTable &VST) { 3334 if (VST.empty()) 3335 return; 3336 3337 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3338 3339 // FIXME: Set up the abbrev, we know how many values there are! 3340 // FIXME: We know if the type names can use 7-bit ascii. 3341 SmallVector<uint64_t, 64> NameVals; 3342 3343 for (const ValueName &Name : VST) { 3344 // Figure out the encoding to use for the name. 3345 StringEncoding Bits = getStringEncoding(Name.getKey()); 3346 3347 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3348 NameVals.push_back(VE.getValueID(Name.getValue())); 3349 3350 // VST_CODE_ENTRY: [valueid, namechar x N] 3351 // VST_CODE_BBENTRY: [bbid, namechar x N] 3352 unsigned Code; 3353 if (isa<BasicBlock>(Name.getValue())) { 3354 Code = bitc::VST_CODE_BBENTRY; 3355 if (Bits == SE_Char6) 3356 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3357 } else { 3358 Code = bitc::VST_CODE_ENTRY; 3359 if (Bits == SE_Char6) 3360 AbbrevToUse = VST_ENTRY_6_ABBREV; 3361 else if (Bits == SE_Fixed7) 3362 AbbrevToUse = VST_ENTRY_7_ABBREV; 3363 } 3364 3365 for (const auto P : Name.getKey()) 3366 NameVals.push_back((unsigned char)P); 3367 3368 // Emit the finished record. 3369 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3370 NameVals.clear(); 3371 } 3372 3373 Stream.ExitBlock(); 3374 } 3375 3376 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3377 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3378 unsigned Code; 3379 if (isa<BasicBlock>(Order.V)) 3380 Code = bitc::USELIST_CODE_BB; 3381 else 3382 Code = bitc::USELIST_CODE_DEFAULT; 3383 3384 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3385 Record.push_back(VE.getValueID(Order.V)); 3386 Stream.EmitRecord(Code, Record); 3387 } 3388 3389 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3390 assert(VE.shouldPreserveUseListOrder() && 3391 "Expected to be preserving use-list order"); 3392 3393 auto hasMore = [&]() { 3394 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3395 }; 3396 if (!hasMore()) 3397 // Nothing to do. 3398 return; 3399 3400 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3401 while (hasMore()) { 3402 writeUseList(std::move(VE.UseListOrders.back())); 3403 VE.UseListOrders.pop_back(); 3404 } 3405 Stream.ExitBlock(); 3406 } 3407 3408 /// Emit a function body to the module stream. 3409 void ModuleBitcodeWriter::writeFunction( 3410 const Function &F, 3411 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3412 // Save the bitcode index of the start of this function block for recording 3413 // in the VST. 3414 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3415 3416 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3417 VE.incorporateFunction(F); 3418 3419 SmallVector<unsigned, 64> Vals; 3420 3421 // Emit the number of basic blocks, so the reader can create them ahead of 3422 // time. 3423 Vals.push_back(VE.getBasicBlocks().size()); 3424 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3425 Vals.clear(); 3426 3427 // If there are function-local constants, emit them now. 3428 unsigned CstStart, CstEnd; 3429 VE.getFunctionConstantRange(CstStart, CstEnd); 3430 writeConstants(CstStart, CstEnd, false); 3431 3432 // If there is function-local metadata, emit it now. 3433 writeFunctionMetadata(F); 3434 3435 // Keep a running idea of what the instruction ID is. 3436 unsigned InstID = CstEnd; 3437 3438 bool NeedsMetadataAttachment = F.hasMetadata(); 3439 3440 DILocation *LastDL = nullptr; 3441 SmallSetVector<Function *, 4> BlockAddressUsers; 3442 3443 // Finally, emit all the instructions, in order. 3444 for (const BasicBlock &BB : F) { 3445 for (const Instruction &I : BB) { 3446 writeInstruction(I, InstID, Vals); 3447 3448 if (!I.getType()->isVoidTy()) 3449 ++InstID; 3450 3451 // If the instruction has metadata, write a metadata attachment later. 3452 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3453 3454 // If the instruction has a debug location, emit it. 3455 DILocation *DL = I.getDebugLoc(); 3456 if (!DL) 3457 continue; 3458 3459 if (DL == LastDL) { 3460 // Just repeat the same debug loc as last time. 3461 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3462 continue; 3463 } 3464 3465 Vals.push_back(DL->getLine()); 3466 Vals.push_back(DL->getColumn()); 3467 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3468 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3469 Vals.push_back(DL->isImplicitCode()); 3470 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3471 Vals.clear(); 3472 3473 LastDL = DL; 3474 } 3475 3476 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3477 SmallVector<Value *> Worklist{BA}; 3478 SmallPtrSet<Value *, 8> Visited{BA}; 3479 while (!Worklist.empty()) { 3480 Value *V = Worklist.pop_back_val(); 3481 for (User *U : V->users()) { 3482 if (auto *I = dyn_cast<Instruction>(U)) { 3483 Function *P = I->getFunction(); 3484 if (P != &F) 3485 BlockAddressUsers.insert(P); 3486 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3487 Visited.insert(U).second) 3488 Worklist.push_back(U); 3489 } 3490 } 3491 } 3492 } 3493 3494 if (!BlockAddressUsers.empty()) { 3495 Vals.resize(BlockAddressUsers.size()); 3496 for (auto I : llvm::enumerate(BlockAddressUsers)) 3497 Vals[I.index()] = VE.getValueID(I.value()); 3498 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3499 Vals.clear(); 3500 } 3501 3502 // Emit names for all the instructions etc. 3503 if (auto *Symtab = F.getValueSymbolTable()) 3504 writeFunctionLevelValueSymbolTable(*Symtab); 3505 3506 if (NeedsMetadataAttachment) 3507 writeFunctionMetadataAttachment(F); 3508 if (VE.shouldPreserveUseListOrder()) 3509 writeUseListBlock(&F); 3510 VE.purgeFunction(); 3511 Stream.ExitBlock(); 3512 } 3513 3514 // Emit blockinfo, which defines the standard abbreviations etc. 3515 void ModuleBitcodeWriter::writeBlockInfo() { 3516 // We only want to emit block info records for blocks that have multiple 3517 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3518 // Other blocks can define their abbrevs inline. 3519 Stream.EnterBlockInfoBlock(); 3520 3521 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3522 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3527 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3528 VST_ENTRY_8_ABBREV) 3529 llvm_unreachable("Unexpected abbrev ordering!"); 3530 } 3531 3532 { // 7-bit fixed width VST_CODE_ENTRY strings. 3533 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3534 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3538 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3539 VST_ENTRY_7_ABBREV) 3540 llvm_unreachable("Unexpected abbrev ordering!"); 3541 } 3542 { // 6-bit char6 VST_CODE_ENTRY strings. 3543 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3544 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3548 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3549 VST_ENTRY_6_ABBREV) 3550 llvm_unreachable("Unexpected abbrev ordering!"); 3551 } 3552 { // 6-bit char6 VST_CODE_BBENTRY strings. 3553 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3554 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3558 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3559 VST_BBENTRY_6_ABBREV) 3560 llvm_unreachable("Unexpected abbrev ordering!"); 3561 } 3562 3563 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3564 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3565 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3567 VE.computeBitsRequiredForTypeIndicies())); 3568 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3569 CONSTANTS_SETTYPE_ABBREV) 3570 llvm_unreachable("Unexpected abbrev ordering!"); 3571 } 3572 3573 { // INTEGER abbrev for CONSTANTS_BLOCK. 3574 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3575 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3577 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3578 CONSTANTS_INTEGER_ABBREV) 3579 llvm_unreachable("Unexpected abbrev ordering!"); 3580 } 3581 3582 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3583 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3584 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3587 VE.computeBitsRequiredForTypeIndicies())); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3589 3590 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3591 CONSTANTS_CE_CAST_Abbrev) 3592 llvm_unreachable("Unexpected abbrev ordering!"); 3593 } 3594 { // NULL abbrev for CONSTANTS_BLOCK. 3595 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3596 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3597 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3598 CONSTANTS_NULL_Abbrev) 3599 llvm_unreachable("Unexpected abbrev ordering!"); 3600 } 3601 3602 // FIXME: This should only use space for first class types! 3603 3604 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3605 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3606 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3609 VE.computeBitsRequiredForTypeIndicies())); 3610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3612 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3613 FUNCTION_INST_LOAD_ABBREV) 3614 llvm_unreachable("Unexpected abbrev ordering!"); 3615 } 3616 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3617 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3618 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3621 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3622 FUNCTION_INST_UNOP_ABBREV) 3623 llvm_unreachable("Unexpected abbrev ordering!"); 3624 } 3625 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3626 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3627 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3631 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3632 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3633 llvm_unreachable("Unexpected abbrev ordering!"); 3634 } 3635 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3636 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3637 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3640 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3641 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3642 FUNCTION_INST_BINOP_ABBREV) 3643 llvm_unreachable("Unexpected abbrev ordering!"); 3644 } 3645 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3646 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3647 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3652 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3653 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3654 llvm_unreachable("Unexpected abbrev ordering!"); 3655 } 3656 { // INST_CAST abbrev for FUNCTION_BLOCK. 3657 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3658 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3661 VE.computeBitsRequiredForTypeIndicies())); 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3663 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3664 FUNCTION_INST_CAST_ABBREV) 3665 llvm_unreachable("Unexpected abbrev ordering!"); 3666 } 3667 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3668 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3669 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3670 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3671 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3672 VE.computeBitsRequiredForTypeIndicies())); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3675 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3676 FUNCTION_INST_CAST_FLAGS_ABBREV) 3677 llvm_unreachable("Unexpected abbrev ordering!"); 3678 } 3679 3680 { // INST_RET abbrev for FUNCTION_BLOCK. 3681 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3682 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3683 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3684 FUNCTION_INST_RET_VOID_ABBREV) 3685 llvm_unreachable("Unexpected abbrev ordering!"); 3686 } 3687 { // INST_RET abbrev for FUNCTION_BLOCK. 3688 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3689 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3691 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3692 FUNCTION_INST_RET_VAL_ABBREV) 3693 llvm_unreachable("Unexpected abbrev ordering!"); 3694 } 3695 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3696 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3697 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3698 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3699 FUNCTION_INST_UNREACHABLE_ABBREV) 3700 llvm_unreachable("Unexpected abbrev ordering!"); 3701 } 3702 { 3703 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3704 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3705 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3706 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3707 Log2_32_Ceil(VE.getTypes().size() + 1))); 3708 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3709 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3710 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3711 FUNCTION_INST_GEP_ABBREV) 3712 llvm_unreachable("Unexpected abbrev ordering!"); 3713 } 3714 3715 Stream.ExitBlock(); 3716 } 3717 3718 /// Write the module path strings, currently only used when generating 3719 /// a combined index file. 3720 void IndexBitcodeWriter::writeModStrings() { 3721 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3722 3723 // TODO: See which abbrev sizes we actually need to emit 3724 3725 // 8-bit fixed-width MST_ENTRY strings. 3726 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3727 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3731 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3732 3733 // 7-bit fixed width MST_ENTRY strings. 3734 Abbv = std::make_shared<BitCodeAbbrev>(); 3735 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3736 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3737 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3738 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3739 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3740 3741 // 6-bit char6 MST_ENTRY strings. 3742 Abbv = std::make_shared<BitCodeAbbrev>(); 3743 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3746 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3747 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3748 3749 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3750 Abbv = std::make_shared<BitCodeAbbrev>(); 3751 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3756 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3757 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3758 3759 SmallVector<unsigned, 64> Vals; 3760 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3761 StringRef Key = MPSE.getKey(); 3762 const auto &Hash = MPSE.getValue(); 3763 StringEncoding Bits = getStringEncoding(Key); 3764 unsigned AbbrevToUse = Abbrev8Bit; 3765 if (Bits == SE_Char6) 3766 AbbrevToUse = Abbrev6Bit; 3767 else if (Bits == SE_Fixed7) 3768 AbbrevToUse = Abbrev7Bit; 3769 3770 auto ModuleId = ModuleIdMap.size(); 3771 ModuleIdMap[Key] = ModuleId; 3772 Vals.push_back(ModuleId); 3773 Vals.append(Key.begin(), Key.end()); 3774 3775 // Emit the finished record. 3776 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3777 3778 // Emit an optional hash for the module now 3779 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3780 Vals.assign(Hash.begin(), Hash.end()); 3781 // Emit the hash record. 3782 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3783 } 3784 3785 Vals.clear(); 3786 }); 3787 Stream.ExitBlock(); 3788 } 3789 3790 /// Write the function type metadata related records that need to appear before 3791 /// a function summary entry (whether per-module or combined). 3792 template <typename Fn> 3793 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3794 FunctionSummary *FS, 3795 Fn GetValueID) { 3796 if (!FS->type_tests().empty()) 3797 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3798 3799 SmallVector<uint64_t, 64> Record; 3800 3801 auto WriteVFuncIdVec = [&](uint64_t Ty, 3802 ArrayRef<FunctionSummary::VFuncId> VFs) { 3803 if (VFs.empty()) 3804 return; 3805 Record.clear(); 3806 for (auto &VF : VFs) { 3807 Record.push_back(VF.GUID); 3808 Record.push_back(VF.Offset); 3809 } 3810 Stream.EmitRecord(Ty, Record); 3811 }; 3812 3813 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3814 FS->type_test_assume_vcalls()); 3815 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3816 FS->type_checked_load_vcalls()); 3817 3818 auto WriteConstVCallVec = [&](uint64_t Ty, 3819 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3820 for (auto &VC : VCs) { 3821 Record.clear(); 3822 Record.push_back(VC.VFunc.GUID); 3823 Record.push_back(VC.VFunc.Offset); 3824 llvm::append_range(Record, VC.Args); 3825 Stream.EmitRecord(Ty, Record); 3826 } 3827 }; 3828 3829 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3830 FS->type_test_assume_const_vcalls()); 3831 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3832 FS->type_checked_load_const_vcalls()); 3833 3834 auto WriteRange = [&](ConstantRange Range) { 3835 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3836 assert(Range.getLower().getNumWords() == 1); 3837 assert(Range.getUpper().getNumWords() == 1); 3838 emitSignedInt64(Record, *Range.getLower().getRawData()); 3839 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3840 }; 3841 3842 if (!FS->paramAccesses().empty()) { 3843 Record.clear(); 3844 for (auto &Arg : FS->paramAccesses()) { 3845 size_t UndoSize = Record.size(); 3846 Record.push_back(Arg.ParamNo); 3847 WriteRange(Arg.Use); 3848 Record.push_back(Arg.Calls.size()); 3849 for (auto &Call : Arg.Calls) { 3850 Record.push_back(Call.ParamNo); 3851 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3852 if (!ValueID) { 3853 // If ValueID is unknown we can't drop just this call, we must drop 3854 // entire parameter. 3855 Record.resize(UndoSize); 3856 break; 3857 } 3858 Record.push_back(*ValueID); 3859 WriteRange(Call.Offsets); 3860 } 3861 } 3862 if (!Record.empty()) 3863 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3864 } 3865 } 3866 3867 /// Collect type IDs from type tests used by function. 3868 static void 3869 getReferencedTypeIds(FunctionSummary *FS, 3870 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3871 if (!FS->type_tests().empty()) 3872 for (auto &TT : FS->type_tests()) 3873 ReferencedTypeIds.insert(TT); 3874 3875 auto GetReferencedTypesFromVFuncIdVec = 3876 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3877 for (auto &VF : VFs) 3878 ReferencedTypeIds.insert(VF.GUID); 3879 }; 3880 3881 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3882 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3883 3884 auto GetReferencedTypesFromConstVCallVec = 3885 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3886 for (auto &VC : VCs) 3887 ReferencedTypeIds.insert(VC.VFunc.GUID); 3888 }; 3889 3890 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3891 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3892 } 3893 3894 static void writeWholeProgramDevirtResolutionByArg( 3895 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3896 const WholeProgramDevirtResolution::ByArg &ByArg) { 3897 NameVals.push_back(args.size()); 3898 llvm::append_range(NameVals, args); 3899 3900 NameVals.push_back(ByArg.TheKind); 3901 NameVals.push_back(ByArg.Info); 3902 NameVals.push_back(ByArg.Byte); 3903 NameVals.push_back(ByArg.Bit); 3904 } 3905 3906 static void writeWholeProgramDevirtResolution( 3907 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3908 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3909 NameVals.push_back(Id); 3910 3911 NameVals.push_back(Wpd.TheKind); 3912 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3913 NameVals.push_back(Wpd.SingleImplName.size()); 3914 3915 NameVals.push_back(Wpd.ResByArg.size()); 3916 for (auto &A : Wpd.ResByArg) 3917 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3918 } 3919 3920 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3921 StringTableBuilder &StrtabBuilder, 3922 const std::string &Id, 3923 const TypeIdSummary &Summary) { 3924 NameVals.push_back(StrtabBuilder.add(Id)); 3925 NameVals.push_back(Id.size()); 3926 3927 NameVals.push_back(Summary.TTRes.TheKind); 3928 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3929 NameVals.push_back(Summary.TTRes.AlignLog2); 3930 NameVals.push_back(Summary.TTRes.SizeM1); 3931 NameVals.push_back(Summary.TTRes.BitMask); 3932 NameVals.push_back(Summary.TTRes.InlineBits); 3933 3934 for (auto &W : Summary.WPDRes) 3935 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3936 W.second); 3937 } 3938 3939 static void writeTypeIdCompatibleVtableSummaryRecord( 3940 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3941 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3942 ValueEnumerator &VE) { 3943 NameVals.push_back(StrtabBuilder.add(Id)); 3944 NameVals.push_back(Id.size()); 3945 3946 for (auto &P : Summary) { 3947 NameVals.push_back(P.AddressPointOffset); 3948 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3949 } 3950 } 3951 3952 static void writeFunctionHeapProfileRecords( 3953 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3954 unsigned AllocAbbrev, bool PerModule, 3955 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3956 std::function<unsigned(unsigned)> GetStackIndex) { 3957 SmallVector<uint64_t> Record; 3958 3959 for (auto &CI : FS->callsites()) { 3960 Record.clear(); 3961 // Per module callsite clones should always have a single entry of 3962 // value 0. 3963 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3964 Record.push_back(GetValueID(CI.Callee)); 3965 if (!PerModule) { 3966 Record.push_back(CI.StackIdIndices.size()); 3967 Record.push_back(CI.Clones.size()); 3968 } 3969 for (auto Id : CI.StackIdIndices) 3970 Record.push_back(GetStackIndex(Id)); 3971 if (!PerModule) { 3972 for (auto V : CI.Clones) 3973 Record.push_back(V); 3974 } 3975 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3976 : bitc::FS_COMBINED_CALLSITE_INFO, 3977 Record, CallsiteAbbrev); 3978 } 3979 3980 for (auto &AI : FS->allocs()) { 3981 Record.clear(); 3982 // Per module alloc versions should always have a single entry of 3983 // value 0. 3984 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3985 if (!PerModule) { 3986 Record.push_back(AI.MIBs.size()); 3987 Record.push_back(AI.Versions.size()); 3988 } 3989 for (auto &MIB : AI.MIBs) { 3990 Record.push_back((uint8_t)MIB.AllocType); 3991 Record.push_back(MIB.StackIdIndices.size()); 3992 for (auto Id : MIB.StackIdIndices) 3993 Record.push_back(GetStackIndex(Id)); 3994 } 3995 if (!PerModule) { 3996 for (auto V : AI.Versions) 3997 Record.push_back(V); 3998 } 3999 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4000 : bitc::FS_COMBINED_ALLOC_INFO, 4001 Record, AllocAbbrev); 4002 } 4003 } 4004 4005 // Helper to emit a single function summary record. 4006 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4007 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4008 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 4009 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 4010 NameVals.push_back(ValueID); 4011 4012 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4013 4014 writeFunctionTypeMetadataRecords( 4015 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4016 return {VE.getValueID(VI.getValue())}; 4017 }); 4018 4019 writeFunctionHeapProfileRecords( 4020 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4021 /*PerModule*/ true, 4022 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4023 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4024 4025 auto SpecialRefCnts = FS->specialRefCounts(); 4026 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4027 NameVals.push_back(FS->instCount()); 4028 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4029 NameVals.push_back(FS->refs().size()); 4030 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4031 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4032 4033 for (auto &RI : FS->refs()) 4034 NameVals.push_back(VE.getValueID(RI.getValue())); 4035 4036 bool HasProfileData = 4037 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4038 for (auto &ECI : FS->calls()) { 4039 NameVals.push_back(getValueId(ECI.first)); 4040 if (HasProfileData) 4041 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4042 else if (WriteRelBFToSummary) 4043 NameVals.push_back(ECI.second.RelBlockFreq); 4044 } 4045 4046 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4047 unsigned Code = 4048 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4049 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4050 : bitc::FS_PERMODULE)); 4051 4052 // Emit the finished record. 4053 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4054 NameVals.clear(); 4055 } 4056 4057 // Collect the global value references in the given variable's initializer, 4058 // and emit them in a summary record. 4059 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4060 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4061 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4062 auto VI = Index->getValueInfo(V.getGUID()); 4063 if (!VI || VI.getSummaryList().empty()) { 4064 // Only declarations should not have a summary (a declaration might however 4065 // have a summary if the def was in module level asm). 4066 assert(V.isDeclaration()); 4067 return; 4068 } 4069 auto *Summary = VI.getSummaryList()[0].get(); 4070 NameVals.push_back(VE.getValueID(&V)); 4071 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4072 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4073 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4074 4075 auto VTableFuncs = VS->vTableFuncs(); 4076 if (!VTableFuncs.empty()) 4077 NameVals.push_back(VS->refs().size()); 4078 4079 unsigned SizeBeforeRefs = NameVals.size(); 4080 for (auto &RI : VS->refs()) 4081 NameVals.push_back(VE.getValueID(RI.getValue())); 4082 // Sort the refs for determinism output, the vector returned by FS->refs() has 4083 // been initialized from a DenseSet. 4084 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4085 4086 if (VTableFuncs.empty()) 4087 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4088 FSModRefsAbbrev); 4089 else { 4090 // VTableFuncs pairs should already be sorted by offset. 4091 for (auto &P : VTableFuncs) { 4092 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4093 NameVals.push_back(P.VTableOffset); 4094 } 4095 4096 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4097 FSModVTableRefsAbbrev); 4098 } 4099 NameVals.clear(); 4100 } 4101 4102 /// Emit the per-module summary section alongside the rest of 4103 /// the module's bitcode. 4104 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4105 // By default we compile with ThinLTO if the module has a summary, but the 4106 // client can request full LTO with a module flag. 4107 bool IsThinLTO = true; 4108 if (auto *MD = 4109 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4110 IsThinLTO = MD->getZExtValue(); 4111 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4112 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4113 4); 4114 4115 Stream.EmitRecord( 4116 bitc::FS_VERSION, 4117 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4118 4119 // Write the index flags. 4120 uint64_t Flags = 0; 4121 // Bits 1-3 are set only in the combined index, skip them. 4122 if (Index->enableSplitLTOUnit()) 4123 Flags |= 0x8; 4124 if (Index->hasUnifiedLTO()) 4125 Flags |= 0x200; 4126 4127 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4128 4129 if (Index->begin() == Index->end()) { 4130 Stream.ExitBlock(); 4131 return; 4132 } 4133 4134 for (const auto &GVI : valueIds()) { 4135 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4136 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4137 } 4138 4139 if (!Index->stackIds().empty()) { 4140 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4141 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4142 // numids x stackid 4143 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4144 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4145 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4146 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4147 } 4148 4149 // Abbrev for FS_PERMODULE_PROFILE. 4150 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4151 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4155 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4159 // numrefs x valueid, n x (valueid, hotness) 4160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4162 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4163 4164 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4165 Abbv = std::make_shared<BitCodeAbbrev>(); 4166 if (WriteRelBFToSummary) 4167 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4168 else 4169 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4177 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4180 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4181 4182 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4183 Abbv = std::make_shared<BitCodeAbbrev>(); 4184 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4189 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4190 4191 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4192 Abbv = std::make_shared<BitCodeAbbrev>(); 4193 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4197 // numrefs x valueid, n x (valueid , offset) 4198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4200 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4201 4202 // Abbrev for FS_ALIAS. 4203 Abbv = std::make_shared<BitCodeAbbrev>(); 4204 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4208 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4209 4210 // Abbrev for FS_TYPE_ID_METADATA 4211 Abbv = std::make_shared<BitCodeAbbrev>(); 4212 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4215 // n x (valueid , offset) 4216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4218 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4219 4220 Abbv = std::make_shared<BitCodeAbbrev>(); 4221 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4222 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4223 // n x stackidindex 4224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4225 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4226 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4227 4228 Abbv = std::make_shared<BitCodeAbbrev>(); 4229 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4230 // n x (alloc type, numstackids, numstackids x stackidindex) 4231 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4232 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4233 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4234 4235 SmallVector<uint64_t, 64> NameVals; 4236 // Iterate over the list of functions instead of the Index to 4237 // ensure the ordering is stable. 4238 for (const Function &F : M) { 4239 // Summary emission does not support anonymous functions, they have to 4240 // renamed using the anonymous function renaming pass. 4241 if (!F.hasName()) 4242 report_fatal_error("Unexpected anonymous function when writing summary"); 4243 4244 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4245 if (!VI || VI.getSummaryList().empty()) { 4246 // Only declarations should not have a summary (a declaration might 4247 // however have a summary if the def was in module level asm). 4248 assert(F.isDeclaration()); 4249 continue; 4250 } 4251 auto *Summary = VI.getSummaryList()[0].get(); 4252 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4253 FSCallsAbbrev, FSCallsProfileAbbrev, 4254 CallsiteAbbrev, AllocAbbrev, F); 4255 } 4256 4257 // Capture references from GlobalVariable initializers, which are outside 4258 // of a function scope. 4259 for (const GlobalVariable &G : M.globals()) 4260 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4261 FSModVTableRefsAbbrev); 4262 4263 for (const GlobalAlias &A : M.aliases()) { 4264 auto *Aliasee = A.getAliaseeObject(); 4265 // Skip ifunc and nameless functions which don't have an entry in the 4266 // summary. 4267 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4268 continue; 4269 auto AliasId = VE.getValueID(&A); 4270 auto AliaseeId = VE.getValueID(Aliasee); 4271 NameVals.push_back(AliasId); 4272 auto *Summary = Index->getGlobalValueSummary(A); 4273 AliasSummary *AS = cast<AliasSummary>(Summary); 4274 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4275 NameVals.push_back(AliaseeId); 4276 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4277 NameVals.clear(); 4278 } 4279 4280 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4281 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4282 S.second, VE); 4283 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4284 TypeIdCompatibleVtableAbbrev); 4285 NameVals.clear(); 4286 } 4287 4288 if (Index->getBlockCount()) 4289 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4290 ArrayRef<uint64_t>{Index->getBlockCount()}); 4291 4292 Stream.ExitBlock(); 4293 } 4294 4295 /// Emit the combined summary section into the combined index file. 4296 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4297 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4298 Stream.EmitRecord( 4299 bitc::FS_VERSION, 4300 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4301 4302 // Write the index flags. 4303 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4304 4305 for (const auto &GVI : valueIds()) { 4306 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4307 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4308 } 4309 4310 if (!StackIdIndices.empty()) { 4311 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4312 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4313 // numids x stackid 4314 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4315 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4316 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4317 // Write the stack ids used by this index, which will be a subset of those in 4318 // the full index in the case of distributed indexes. 4319 std::vector<uint64_t> StackIds; 4320 for (auto &I : StackIdIndices) 4321 StackIds.push_back(Index.getStackIdAtIndex(I)); 4322 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4323 } 4324 4325 // Abbrev for FS_COMBINED. 4326 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4327 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4337 // numrefs x valueid, n x (valueid) 4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4340 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4341 4342 // Abbrev for FS_COMBINED_PROFILE. 4343 Abbv = std::make_shared<BitCodeAbbrev>(); 4344 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4354 // numrefs x valueid, n x (valueid, hotness) 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4357 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4358 4359 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4360 Abbv = std::make_shared<BitCodeAbbrev>(); 4361 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4367 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4368 4369 // Abbrev for FS_COMBINED_ALIAS. 4370 Abbv = std::make_shared<BitCodeAbbrev>(); 4371 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4374 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4376 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4377 4378 Abbv = std::make_shared<BitCodeAbbrev>(); 4379 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4380 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4383 // numstackindices x stackidindex, numver x version 4384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4386 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4387 4388 Abbv = std::make_shared<BitCodeAbbrev>(); 4389 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4392 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4393 // numver x version 4394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4396 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4397 4398 // The aliases are emitted as a post-pass, and will point to the value 4399 // id of the aliasee. Save them in a vector for post-processing. 4400 SmallVector<AliasSummary *, 64> Aliases; 4401 4402 // Save the value id for each summary for alias emission. 4403 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4404 4405 SmallVector<uint64_t, 64> NameVals; 4406 4407 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4408 // with the type ids referenced by this index file. 4409 std::set<GlobalValue::GUID> ReferencedTypeIds; 4410 4411 // For local linkage, we also emit the original name separately 4412 // immediately after the record. 4413 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4414 // We don't need to emit the original name if we are writing the index for 4415 // distributed backends (in which case ModuleToSummariesForIndex is 4416 // non-null). The original name is only needed during the thin link, since 4417 // for SamplePGO the indirect call targets for local functions have 4418 // have the original name annotated in profile. 4419 // Continue to emit it when writing out the entire combined index, which is 4420 // used in testing the thin link via llvm-lto. 4421 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4422 return; 4423 NameVals.push_back(S.getOriginalName()); 4424 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4425 NameVals.clear(); 4426 }; 4427 4428 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4429 forEachSummary([&](GVInfo I, bool IsAliasee) { 4430 GlobalValueSummary *S = I.second; 4431 assert(S); 4432 DefOrUseGUIDs.insert(I.first); 4433 for (const ValueInfo &VI : S->refs()) 4434 DefOrUseGUIDs.insert(VI.getGUID()); 4435 4436 auto ValueId = getValueId(I.first); 4437 assert(ValueId); 4438 SummaryToValueIdMap[S] = *ValueId; 4439 4440 // If this is invoked for an aliasee, we want to record the above 4441 // mapping, but then not emit a summary entry (if the aliasee is 4442 // to be imported, we will invoke this separately with IsAliasee=false). 4443 if (IsAliasee) 4444 return; 4445 4446 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4447 // Will process aliases as a post-pass because the reader wants all 4448 // global to be loaded first. 4449 Aliases.push_back(AS); 4450 return; 4451 } 4452 4453 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4454 NameVals.push_back(*ValueId); 4455 assert(ModuleIdMap.count(VS->modulePath())); 4456 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4457 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4458 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4459 for (auto &RI : VS->refs()) { 4460 auto RefValueId = getValueId(RI.getGUID()); 4461 if (!RefValueId) 4462 continue; 4463 NameVals.push_back(*RefValueId); 4464 } 4465 4466 // Emit the finished record. 4467 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4468 FSModRefsAbbrev); 4469 NameVals.clear(); 4470 MaybeEmitOriginalName(*S); 4471 return; 4472 } 4473 4474 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4475 if (!VI) 4476 return std::nullopt; 4477 return getValueId(VI.getGUID()); 4478 }; 4479 4480 auto *FS = cast<FunctionSummary>(S); 4481 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4482 getReferencedTypeIds(FS, ReferencedTypeIds); 4483 4484 writeFunctionHeapProfileRecords( 4485 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4486 /*PerModule*/ false, 4487 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4488 std::optional<unsigned> ValueID = GetValueId(VI); 4489 // This can happen in shared index files for distributed ThinLTO if 4490 // the callee function summary is not included. Record 0 which we 4491 // will have to deal with conservatively when doing any kind of 4492 // validation in the ThinLTO backends. 4493 if (!ValueID) 4494 return 0; 4495 return *ValueID; 4496 }, 4497 /*GetStackIndex*/ [&](unsigned I) { 4498 // Get the corresponding index into the list of StackIdIndices 4499 // actually being written for this combined index (which may be a 4500 // subset in the case of distributed indexes). 4501 auto Lower = llvm::lower_bound(StackIdIndices, I); 4502 return std::distance(StackIdIndices.begin(), Lower); 4503 }); 4504 4505 NameVals.push_back(*ValueId); 4506 assert(ModuleIdMap.count(FS->modulePath())); 4507 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4508 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4509 NameVals.push_back(FS->instCount()); 4510 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4511 NameVals.push_back(FS->entryCount()); 4512 4513 // Fill in below 4514 NameVals.push_back(0); // numrefs 4515 NameVals.push_back(0); // rorefcnt 4516 NameVals.push_back(0); // worefcnt 4517 4518 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4519 for (auto &RI : FS->refs()) { 4520 auto RefValueId = getValueId(RI.getGUID()); 4521 if (!RefValueId) 4522 continue; 4523 NameVals.push_back(*RefValueId); 4524 if (RI.isReadOnly()) 4525 RORefCnt++; 4526 else if (RI.isWriteOnly()) 4527 WORefCnt++; 4528 Count++; 4529 } 4530 NameVals[6] = Count; 4531 NameVals[7] = RORefCnt; 4532 NameVals[8] = WORefCnt; 4533 4534 bool HasProfileData = false; 4535 for (auto &EI : FS->calls()) { 4536 HasProfileData |= 4537 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4538 if (HasProfileData) 4539 break; 4540 } 4541 4542 for (auto &EI : FS->calls()) { 4543 // If this GUID doesn't have a value id, it doesn't have a function 4544 // summary and we don't need to record any calls to it. 4545 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4546 if (!CallValueId) 4547 continue; 4548 NameVals.push_back(*CallValueId); 4549 if (HasProfileData) 4550 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4551 } 4552 4553 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4554 unsigned Code = 4555 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4556 4557 // Emit the finished record. 4558 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4559 NameVals.clear(); 4560 MaybeEmitOriginalName(*S); 4561 }); 4562 4563 for (auto *AS : Aliases) { 4564 auto AliasValueId = SummaryToValueIdMap[AS]; 4565 assert(AliasValueId); 4566 NameVals.push_back(AliasValueId); 4567 assert(ModuleIdMap.count(AS->modulePath())); 4568 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4569 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4570 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4571 assert(AliaseeValueId); 4572 NameVals.push_back(AliaseeValueId); 4573 4574 // Emit the finished record. 4575 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4576 NameVals.clear(); 4577 MaybeEmitOriginalName(*AS); 4578 4579 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4580 getReferencedTypeIds(FS, ReferencedTypeIds); 4581 } 4582 4583 if (!Index.cfiFunctionDefs().empty()) { 4584 for (auto &S : Index.cfiFunctionDefs()) { 4585 if (DefOrUseGUIDs.count( 4586 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4587 NameVals.push_back(StrtabBuilder.add(S)); 4588 NameVals.push_back(S.size()); 4589 } 4590 } 4591 if (!NameVals.empty()) { 4592 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4593 NameVals.clear(); 4594 } 4595 } 4596 4597 if (!Index.cfiFunctionDecls().empty()) { 4598 for (auto &S : Index.cfiFunctionDecls()) { 4599 if (DefOrUseGUIDs.count( 4600 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4601 NameVals.push_back(StrtabBuilder.add(S)); 4602 NameVals.push_back(S.size()); 4603 } 4604 } 4605 if (!NameVals.empty()) { 4606 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4607 NameVals.clear(); 4608 } 4609 } 4610 4611 // Walk the GUIDs that were referenced, and write the 4612 // corresponding type id records. 4613 for (auto &T : ReferencedTypeIds) { 4614 auto TidIter = Index.typeIds().equal_range(T); 4615 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4616 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4617 It->second.second); 4618 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4619 NameVals.clear(); 4620 } 4621 } 4622 4623 if (Index.getBlockCount()) 4624 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4625 ArrayRef<uint64_t>{Index.getBlockCount()}); 4626 4627 Stream.ExitBlock(); 4628 } 4629 4630 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4631 /// current llvm version, and a record for the epoch number. 4632 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4633 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4634 4635 // Write the "user readable" string identifying the bitcode producer 4636 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4637 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4640 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4641 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4642 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4643 4644 // Write the epoch version 4645 Abbv = std::make_shared<BitCodeAbbrev>(); 4646 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4647 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4648 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4649 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4650 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4651 Stream.ExitBlock(); 4652 } 4653 4654 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4655 // Emit the module's hash. 4656 // MODULE_CODE_HASH: [5*i32] 4657 if (GenerateHash) { 4658 uint32_t Vals[5]; 4659 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4660 Buffer.size() - BlockStartPos)); 4661 std::array<uint8_t, 20> Hash = Hasher.result(); 4662 for (int Pos = 0; Pos < 20; Pos += 4) { 4663 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4664 } 4665 4666 // Emit the finished record. 4667 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4668 4669 if (ModHash) 4670 // Save the written hash value. 4671 llvm::copy(Vals, std::begin(*ModHash)); 4672 } 4673 } 4674 4675 void ModuleBitcodeWriter::write() { 4676 writeIdentificationBlock(Stream); 4677 4678 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4679 size_t BlockStartPos = Buffer.size(); 4680 4681 writeModuleVersion(); 4682 4683 // Emit blockinfo, which defines the standard abbreviations etc. 4684 writeBlockInfo(); 4685 4686 // Emit information describing all of the types in the module. 4687 writeTypeTable(); 4688 4689 // Emit information about attribute groups. 4690 writeAttributeGroupTable(); 4691 4692 // Emit information about parameter attributes. 4693 writeAttributeTable(); 4694 4695 writeComdats(); 4696 4697 // Emit top-level description of module, including target triple, inline asm, 4698 // descriptors for global variables, and function prototype info. 4699 writeModuleInfo(); 4700 4701 // Emit constants. 4702 writeModuleConstants(); 4703 4704 // Emit metadata kind names. 4705 writeModuleMetadataKinds(); 4706 4707 // Emit metadata. 4708 writeModuleMetadata(); 4709 4710 // Emit module-level use-lists. 4711 if (VE.shouldPreserveUseListOrder()) 4712 writeUseListBlock(nullptr); 4713 4714 writeOperandBundleTags(); 4715 writeSyncScopeNames(); 4716 4717 // Emit function bodies. 4718 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4719 for (const Function &F : M) 4720 if (!F.isDeclaration()) 4721 writeFunction(F, FunctionToBitcodeIndex); 4722 4723 // Need to write after the above call to WriteFunction which populates 4724 // the summary information in the index. 4725 if (Index) 4726 writePerModuleGlobalValueSummary(); 4727 4728 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4729 4730 writeModuleHash(BlockStartPos); 4731 4732 Stream.ExitBlock(); 4733 } 4734 4735 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4736 uint32_t &Position) { 4737 support::endian::write32le(&Buffer[Position], Value); 4738 Position += 4; 4739 } 4740 4741 /// If generating a bc file on darwin, we have to emit a 4742 /// header and trailer to make it compatible with the system archiver. To do 4743 /// this we emit the following header, and then emit a trailer that pads the 4744 /// file out to be a multiple of 16 bytes. 4745 /// 4746 /// struct bc_header { 4747 /// uint32_t Magic; // 0x0B17C0DE 4748 /// uint32_t Version; // Version, currently always 0. 4749 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4750 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4751 /// uint32_t CPUType; // CPU specifier. 4752 /// ... potentially more later ... 4753 /// }; 4754 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4755 const Triple &TT) { 4756 unsigned CPUType = ~0U; 4757 4758 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4759 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4760 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4761 // specific constants here because they are implicitly part of the Darwin ABI. 4762 enum { 4763 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4764 DARWIN_CPU_TYPE_X86 = 7, 4765 DARWIN_CPU_TYPE_ARM = 12, 4766 DARWIN_CPU_TYPE_POWERPC = 18 4767 }; 4768 4769 Triple::ArchType Arch = TT.getArch(); 4770 if (Arch == Triple::x86_64) 4771 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4772 else if (Arch == Triple::x86) 4773 CPUType = DARWIN_CPU_TYPE_X86; 4774 else if (Arch == Triple::ppc) 4775 CPUType = DARWIN_CPU_TYPE_POWERPC; 4776 else if (Arch == Triple::ppc64) 4777 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4778 else if (Arch == Triple::arm || Arch == Triple::thumb) 4779 CPUType = DARWIN_CPU_TYPE_ARM; 4780 4781 // Traditional Bitcode starts after header. 4782 assert(Buffer.size() >= BWH_HeaderSize && 4783 "Expected header size to be reserved"); 4784 unsigned BCOffset = BWH_HeaderSize; 4785 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4786 4787 // Write the magic and version. 4788 unsigned Position = 0; 4789 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4790 writeInt32ToBuffer(0, Buffer, Position); // Version. 4791 writeInt32ToBuffer(BCOffset, Buffer, Position); 4792 writeInt32ToBuffer(BCSize, Buffer, Position); 4793 writeInt32ToBuffer(CPUType, Buffer, Position); 4794 4795 // If the file is not a multiple of 16 bytes, insert dummy padding. 4796 while (Buffer.size() & 15) 4797 Buffer.push_back(0); 4798 } 4799 4800 /// Helper to write the header common to all bitcode files. 4801 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4802 // Emit the file header. 4803 Stream.Emit((unsigned)'B', 8); 4804 Stream.Emit((unsigned)'C', 8); 4805 Stream.Emit(0x0, 4); 4806 Stream.Emit(0xC, 4); 4807 Stream.Emit(0xE, 4); 4808 Stream.Emit(0xD, 4); 4809 } 4810 4811 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4812 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4813 writeBitcodeHeader(*Stream); 4814 } 4815 4816 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4817 4818 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4819 Stream->EnterSubblock(Block, 3); 4820 4821 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4822 Abbv->Add(BitCodeAbbrevOp(Record)); 4823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4824 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4825 4826 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4827 4828 Stream->ExitBlock(); 4829 } 4830 4831 void BitcodeWriter::writeSymtab() { 4832 assert(!WroteStrtab && !WroteSymtab); 4833 4834 // If any module has module-level inline asm, we will require a registered asm 4835 // parser for the target so that we can create an accurate symbol table for 4836 // the module. 4837 for (Module *M : Mods) { 4838 if (M->getModuleInlineAsm().empty()) 4839 continue; 4840 4841 std::string Err; 4842 const Triple TT(M->getTargetTriple()); 4843 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4844 if (!T || !T->hasMCAsmParser()) 4845 return; 4846 } 4847 4848 WroteSymtab = true; 4849 SmallVector<char, 0> Symtab; 4850 // The irsymtab::build function may be unable to create a symbol table if the 4851 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4852 // table is not required for correctness, but we still want to be able to 4853 // write malformed modules to bitcode files, so swallow the error. 4854 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4855 consumeError(std::move(E)); 4856 return; 4857 } 4858 4859 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4860 {Symtab.data(), Symtab.size()}); 4861 } 4862 4863 void BitcodeWriter::writeStrtab() { 4864 assert(!WroteStrtab); 4865 4866 std::vector<char> Strtab; 4867 StrtabBuilder.finalizeInOrder(); 4868 Strtab.resize(StrtabBuilder.getSize()); 4869 StrtabBuilder.write((uint8_t *)Strtab.data()); 4870 4871 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4872 {Strtab.data(), Strtab.size()}); 4873 4874 WroteStrtab = true; 4875 } 4876 4877 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4878 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4879 WroteStrtab = true; 4880 } 4881 4882 void BitcodeWriter::writeModule(const Module &M, 4883 bool ShouldPreserveUseListOrder, 4884 const ModuleSummaryIndex *Index, 4885 bool GenerateHash, ModuleHash *ModHash) { 4886 assert(!WroteStrtab); 4887 4888 // The Mods vector is used by irsymtab::build, which requires non-const 4889 // Modules in case it needs to materialize metadata. But the bitcode writer 4890 // requires that the module is materialized, so we can cast to non-const here, 4891 // after checking that it is in fact materialized. 4892 assert(M.isMaterialized()); 4893 Mods.push_back(const_cast<Module *>(&M)); 4894 4895 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4896 ShouldPreserveUseListOrder, Index, 4897 GenerateHash, ModHash); 4898 ModuleWriter.write(); 4899 } 4900 4901 void BitcodeWriter::writeIndex( 4902 const ModuleSummaryIndex *Index, 4903 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4904 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4905 ModuleToSummariesForIndex); 4906 IndexWriter.write(); 4907 } 4908 4909 /// Write the specified module to the specified output stream. 4910 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4911 bool ShouldPreserveUseListOrder, 4912 const ModuleSummaryIndex *Index, 4913 bool GenerateHash, ModuleHash *ModHash) { 4914 SmallVector<char, 0> Buffer; 4915 Buffer.reserve(256*1024); 4916 4917 // If this is darwin or another generic macho target, reserve space for the 4918 // header. 4919 Triple TT(M.getTargetTriple()); 4920 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4921 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4922 4923 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4924 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4925 ModHash); 4926 Writer.writeSymtab(); 4927 Writer.writeStrtab(); 4928 4929 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4930 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4931 4932 // Write the generated bitstream to "Out". 4933 if (!Buffer.empty()) 4934 Out.write((char *)&Buffer.front(), Buffer.size()); 4935 } 4936 4937 void IndexBitcodeWriter::write() { 4938 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4939 4940 writeModuleVersion(); 4941 4942 // Write the module paths in the combined index. 4943 writeModStrings(); 4944 4945 // Write the summary combined index records. 4946 writeCombinedGlobalValueSummary(); 4947 4948 Stream.ExitBlock(); 4949 } 4950 4951 // Write the specified module summary index to the given raw output stream, 4952 // where it will be written in a new bitcode block. This is used when 4953 // writing the combined index file for ThinLTO. When writing a subset of the 4954 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4955 void llvm::writeIndexToFile( 4956 const ModuleSummaryIndex &Index, raw_ostream &Out, 4957 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4958 SmallVector<char, 0> Buffer; 4959 Buffer.reserve(256 * 1024); 4960 4961 BitcodeWriter Writer(Buffer); 4962 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4963 Writer.writeStrtab(); 4964 4965 Out.write((char *)&Buffer.front(), Buffer.size()); 4966 } 4967 4968 namespace { 4969 4970 /// Class to manage the bitcode writing for a thin link bitcode file. 4971 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4972 /// ModHash is for use in ThinLTO incremental build, generated while writing 4973 /// the module bitcode file. 4974 const ModuleHash *ModHash; 4975 4976 public: 4977 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4978 BitstreamWriter &Stream, 4979 const ModuleSummaryIndex &Index, 4980 const ModuleHash &ModHash) 4981 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4982 /*ShouldPreserveUseListOrder=*/false, &Index), 4983 ModHash(&ModHash) {} 4984 4985 void write(); 4986 4987 private: 4988 void writeSimplifiedModuleInfo(); 4989 }; 4990 4991 } // end anonymous namespace 4992 4993 // This function writes a simpilified module info for thin link bitcode file. 4994 // It only contains the source file name along with the name(the offset and 4995 // size in strtab) and linkage for global values. For the global value info 4996 // entry, in order to keep linkage at offset 5, there are three zeros used 4997 // as padding. 4998 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4999 SmallVector<unsigned, 64> Vals; 5000 // Emit the module's source file name. 5001 { 5002 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5003 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5004 if (Bits == SE_Char6) 5005 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5006 else if (Bits == SE_Fixed7) 5007 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5008 5009 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5010 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5011 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5013 Abbv->Add(AbbrevOpToUse); 5014 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5015 5016 for (const auto P : M.getSourceFileName()) 5017 Vals.push_back((unsigned char)P); 5018 5019 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5020 Vals.clear(); 5021 } 5022 5023 // Emit the global variable information. 5024 for (const GlobalVariable &GV : M.globals()) { 5025 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5026 Vals.push_back(StrtabBuilder.add(GV.getName())); 5027 Vals.push_back(GV.getName().size()); 5028 Vals.push_back(0); 5029 Vals.push_back(0); 5030 Vals.push_back(0); 5031 Vals.push_back(getEncodedLinkage(GV)); 5032 5033 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5034 Vals.clear(); 5035 } 5036 5037 // Emit the function proto information. 5038 for (const Function &F : M) { 5039 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5040 Vals.push_back(StrtabBuilder.add(F.getName())); 5041 Vals.push_back(F.getName().size()); 5042 Vals.push_back(0); 5043 Vals.push_back(0); 5044 Vals.push_back(0); 5045 Vals.push_back(getEncodedLinkage(F)); 5046 5047 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5048 Vals.clear(); 5049 } 5050 5051 // Emit the alias information. 5052 for (const GlobalAlias &A : M.aliases()) { 5053 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5054 Vals.push_back(StrtabBuilder.add(A.getName())); 5055 Vals.push_back(A.getName().size()); 5056 Vals.push_back(0); 5057 Vals.push_back(0); 5058 Vals.push_back(0); 5059 Vals.push_back(getEncodedLinkage(A)); 5060 5061 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5062 Vals.clear(); 5063 } 5064 5065 // Emit the ifunc information. 5066 for (const GlobalIFunc &I : M.ifuncs()) { 5067 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5068 Vals.push_back(StrtabBuilder.add(I.getName())); 5069 Vals.push_back(I.getName().size()); 5070 Vals.push_back(0); 5071 Vals.push_back(0); 5072 Vals.push_back(0); 5073 Vals.push_back(getEncodedLinkage(I)); 5074 5075 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5076 Vals.clear(); 5077 } 5078 } 5079 5080 void ThinLinkBitcodeWriter::write() { 5081 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5082 5083 writeModuleVersion(); 5084 5085 writeSimplifiedModuleInfo(); 5086 5087 writePerModuleGlobalValueSummary(); 5088 5089 // Write module hash. 5090 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5091 5092 Stream.ExitBlock(); 5093 } 5094 5095 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5096 const ModuleSummaryIndex &Index, 5097 const ModuleHash &ModHash) { 5098 assert(!WroteStrtab); 5099 5100 // The Mods vector is used by irsymtab::build, which requires non-const 5101 // Modules in case it needs to materialize metadata. But the bitcode writer 5102 // requires that the module is materialized, so we can cast to non-const here, 5103 // after checking that it is in fact materialized. 5104 assert(M.isMaterialized()); 5105 Mods.push_back(const_cast<Module *>(&M)); 5106 5107 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5108 ModHash); 5109 ThinLinkWriter.write(); 5110 } 5111 5112 // Write the specified thin link bitcode file to the given raw output stream, 5113 // where it will be written in a new bitcode block. This is used when 5114 // writing the per-module index file for ThinLTO. 5115 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5116 const ModuleSummaryIndex &Index, 5117 const ModuleHash &ModHash) { 5118 SmallVector<char, 0> Buffer; 5119 Buffer.reserve(256 * 1024); 5120 5121 BitcodeWriter Writer(Buffer); 5122 Writer.writeThinLinkBitcode(M, Index, ModHash); 5123 Writer.writeSymtab(); 5124 Writer.writeStrtab(); 5125 5126 Out.write((char *)&Buffer.front(), Buffer.size()); 5127 } 5128 5129 static const char *getSectionNameForBitcode(const Triple &T) { 5130 switch (T.getObjectFormat()) { 5131 case Triple::MachO: 5132 return "__LLVM,__bitcode"; 5133 case Triple::COFF: 5134 case Triple::ELF: 5135 case Triple::Wasm: 5136 case Triple::UnknownObjectFormat: 5137 return ".llvmbc"; 5138 case Triple::GOFF: 5139 llvm_unreachable("GOFF is not yet implemented"); 5140 break; 5141 case Triple::SPIRV: 5142 llvm_unreachable("SPIRV is not yet implemented"); 5143 break; 5144 case Triple::XCOFF: 5145 llvm_unreachable("XCOFF is not yet implemented"); 5146 break; 5147 case Triple::DXContainer: 5148 llvm_unreachable("DXContainer is not yet implemented"); 5149 break; 5150 } 5151 llvm_unreachable("Unimplemented ObjectFormatType"); 5152 } 5153 5154 static const char *getSectionNameForCommandline(const Triple &T) { 5155 switch (T.getObjectFormat()) { 5156 case Triple::MachO: 5157 return "__LLVM,__cmdline"; 5158 case Triple::COFF: 5159 case Triple::ELF: 5160 case Triple::Wasm: 5161 case Triple::UnknownObjectFormat: 5162 return ".llvmcmd"; 5163 case Triple::GOFF: 5164 llvm_unreachable("GOFF is not yet implemented"); 5165 break; 5166 case Triple::SPIRV: 5167 llvm_unreachable("SPIRV is not yet implemented"); 5168 break; 5169 case Triple::XCOFF: 5170 llvm_unreachable("XCOFF is not yet implemented"); 5171 break; 5172 case Triple::DXContainer: 5173 llvm_unreachable("DXC is not yet implemented"); 5174 break; 5175 } 5176 llvm_unreachable("Unimplemented ObjectFormatType"); 5177 } 5178 5179 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5180 bool EmbedBitcode, bool EmbedCmdline, 5181 const std::vector<uint8_t> &CmdArgs) { 5182 // Save llvm.compiler.used and remove it. 5183 SmallVector<Constant *, 2> UsedArray; 5184 SmallVector<GlobalValue *, 4> UsedGlobals; 5185 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5186 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5187 for (auto *GV : UsedGlobals) { 5188 if (GV->getName() != "llvm.embedded.module" && 5189 GV->getName() != "llvm.cmdline") 5190 UsedArray.push_back( 5191 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5192 } 5193 if (Used) 5194 Used->eraseFromParent(); 5195 5196 // Embed the bitcode for the llvm module. 5197 std::string Data; 5198 ArrayRef<uint8_t> ModuleData; 5199 Triple T(M.getTargetTriple()); 5200 5201 if (EmbedBitcode) { 5202 if (Buf.getBufferSize() == 0 || 5203 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5204 (const unsigned char *)Buf.getBufferEnd())) { 5205 // If the input is LLVM Assembly, bitcode is produced by serializing 5206 // the module. Use-lists order need to be preserved in this case. 5207 llvm::raw_string_ostream OS(Data); 5208 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5209 ModuleData = 5210 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5211 } else 5212 // If the input is LLVM bitcode, write the input byte stream directly. 5213 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5214 Buf.getBufferSize()); 5215 } 5216 llvm::Constant *ModuleConstant = 5217 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5218 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5219 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5220 ModuleConstant); 5221 GV->setSection(getSectionNameForBitcode(T)); 5222 // Set alignment to 1 to prevent padding between two contributions from input 5223 // sections after linking. 5224 GV->setAlignment(Align(1)); 5225 UsedArray.push_back( 5226 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5227 if (llvm::GlobalVariable *Old = 5228 M.getGlobalVariable("llvm.embedded.module", true)) { 5229 assert(Old->hasZeroLiveUses() && 5230 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5231 GV->takeName(Old); 5232 Old->eraseFromParent(); 5233 } else { 5234 GV->setName("llvm.embedded.module"); 5235 } 5236 5237 // Skip if only bitcode needs to be embedded. 5238 if (EmbedCmdline) { 5239 // Embed command-line options. 5240 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5241 CmdArgs.size()); 5242 llvm::Constant *CmdConstant = 5243 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5244 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5245 llvm::GlobalValue::PrivateLinkage, 5246 CmdConstant); 5247 GV->setSection(getSectionNameForCommandline(T)); 5248 GV->setAlignment(Align(1)); 5249 UsedArray.push_back( 5250 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5251 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5252 assert(Old->hasZeroLiveUses() && 5253 "llvm.cmdline can only be used once in llvm.compiler.used"); 5254 GV->takeName(Old); 5255 Old->eraseFromParent(); 5256 } else { 5257 GV->setName("llvm.cmdline"); 5258 } 5259 } 5260 5261 if (UsedArray.empty()) 5262 return; 5263 5264 // Recreate llvm.compiler.used. 5265 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5266 auto *NewUsed = new GlobalVariable( 5267 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5268 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5269 NewUsed->setSection("llvm.metadata"); 5270 } 5271