1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitcodeCommon.h" 29 #include "llvm/Bitcode/BitcodeReader.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/Bitstream/BitCodes.h" 32 #include "llvm/Bitstream/BitstreamWriter.h" 33 #include "llvm/Config/llvm-config.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/Comdat.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSummaryIndex.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/UseListOrder.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/MC/StringTableBuilder.h" 62 #include "llvm/MC/TargetRegistry.h" 63 #include "llvm/Object/IRSymtab.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Endian.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/SHA1.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 99 100 namespace { 101 102 /// These are manifest constants used by the bitcode writer. They do not need to 103 /// be kept in sync with the reader, but need to be consistent within this file. 104 enum { 105 // VALUE_SYMTAB_BLOCK abbrev id's. 106 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 107 VST_ENTRY_7_ABBREV, 108 VST_ENTRY_6_ABBREV, 109 VST_BBENTRY_6_ABBREV, 110 111 // CONSTANTS_BLOCK abbrev id's. 112 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 CONSTANTS_INTEGER_ABBREV, 114 CONSTANTS_CE_CAST_Abbrev, 115 CONSTANTS_NULL_Abbrev, 116 117 // FUNCTION_BLOCK abbrev id's. 118 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 FUNCTION_INST_UNOP_ABBREV, 120 FUNCTION_INST_UNOP_FLAGS_ABBREV, 121 FUNCTION_INST_BINOP_ABBREV, 122 FUNCTION_INST_BINOP_FLAGS_ABBREV, 123 FUNCTION_INST_CAST_ABBREV, 124 FUNCTION_INST_RET_VOID_ABBREV, 125 FUNCTION_INST_RET_VAL_ABBREV, 126 FUNCTION_INST_UNREACHABLE_ABBREV, 127 FUNCTION_INST_GEP_ABBREV, 128 }; 129 130 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 131 /// file type. 132 class BitcodeWriterBase { 133 protected: 134 /// The stream created and owned by the client. 135 BitstreamWriter &Stream; 136 137 StringTableBuilder &StrtabBuilder; 138 139 public: 140 /// Constructs a BitcodeWriterBase object that writes to the provided 141 /// \p Stream. 142 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 143 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 144 145 protected: 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 378 const GlobalObject &GO); 379 void writeModuleMetadataKinds(); 380 void writeOperandBundleTags(); 381 void writeSyncScopeNames(); 382 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 383 void writeModuleConstants(); 384 bool pushValueAndType(const Value *V, unsigned InstID, 385 SmallVectorImpl<unsigned> &Vals); 386 void writeOperandBundles(const CallBase &CB, unsigned InstID); 387 void pushValue(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void pushValueSigned(const Value *V, unsigned InstID, 390 SmallVectorImpl<uint64_t> &Vals); 391 void writeInstruction(const Instruction &I, unsigned InstID, 392 SmallVectorImpl<unsigned> &Vals); 393 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 394 void writeGlobalValueSymbolTable( 395 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 396 void writeUseList(UseListOrder &&Order); 397 void writeUseListBlock(const Function *F); 398 void 399 writeFunction(const Function &F, 400 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 401 void writeBlockInfo(); 402 void writeModuleHash(size_t BlockStartPos); 403 404 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 405 return unsigned(SSID); 406 } 407 408 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 409 }; 410 411 /// Class to manage the bitcode writing for a combined index. 412 class IndexBitcodeWriter : public BitcodeWriterBase { 413 /// The combined index to write to bitcode. 414 const ModuleSummaryIndex &Index; 415 416 /// When writing a subset of the index for distributed backends, client 417 /// provides a map of modules to the corresponding GUIDs/summaries to write. 418 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 419 420 /// Map that holds the correspondence between the GUID used in the combined 421 /// index and a value id generated by this class to use in references. 422 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 423 424 /// Tracks the last value id recorded in the GUIDToValueMap. 425 unsigned GlobalValueId = 0; 426 427 public: 428 /// Constructs a IndexBitcodeWriter object for the given combined index, 429 /// writing to the provided \p Buffer. When writing a subset of the index 430 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 431 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 432 const ModuleSummaryIndex &Index, 433 const std::map<std::string, GVSummaryMapTy> 434 *ModuleToSummariesForIndex = nullptr) 435 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 436 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 437 // Assign unique value ids to all summaries to be written, for use 438 // in writing out the call graph edges. Save the mapping from GUID 439 // to the new global value id to use when writing those edges, which 440 // are currently saved in the index in terms of GUID. 441 forEachSummary([&](GVInfo I, bool) { 442 GUIDToValueIdMap[I.first] = ++GlobalValueId; 443 }); 444 } 445 446 /// The below iterator returns the GUID and associated summary. 447 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 448 449 /// Calls the callback for each value GUID and summary to be written to 450 /// bitcode. This hides the details of whether they are being pulled from the 451 /// entire index or just those in a provided ModuleToSummariesForIndex map. 452 template<typename Functor> 453 void forEachSummary(Functor Callback) { 454 if (ModuleToSummariesForIndex) { 455 for (auto &M : *ModuleToSummariesForIndex) 456 for (auto &Summary : M.second) { 457 Callback(Summary, false); 458 // Ensure aliasee is handled, e.g. for assigning a valueId, 459 // even if we are not importing the aliasee directly (the 460 // imported alias will contain a copy of aliasee). 461 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 462 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 463 } 464 } else { 465 for (auto &Summaries : Index) 466 for (auto &Summary : Summaries.second.SummaryList) 467 Callback({Summaries.first, Summary.get()}, false); 468 } 469 } 470 471 /// Calls the callback for each entry in the modulePaths StringMap that 472 /// should be written to the module path string table. This hides the details 473 /// of whether they are being pulled from the entire index or just those in a 474 /// provided ModuleToSummariesForIndex map. 475 template <typename Functor> void forEachModule(Functor Callback) { 476 if (ModuleToSummariesForIndex) { 477 for (const auto &M : *ModuleToSummariesForIndex) { 478 const auto &MPI = Index.modulePaths().find(M.first); 479 if (MPI == Index.modulePaths().end()) { 480 // This should only happen if the bitcode file was empty, in which 481 // case we shouldn't be importing (the ModuleToSummariesForIndex 482 // would only include the module we are writing and index for). 483 assert(ModuleToSummariesForIndex->size() == 1); 484 continue; 485 } 486 Callback(*MPI); 487 } 488 } else { 489 for (const auto &MPSE : Index.modulePaths()) 490 Callback(MPSE); 491 } 492 } 493 494 /// Main entry point for writing a combined index to bitcode. 495 void write(); 496 497 private: 498 void writeModStrings(); 499 void writeCombinedGlobalValueSummary(); 500 501 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 502 auto VMI = GUIDToValueIdMap.find(ValGUID); 503 if (VMI == GUIDToValueIdMap.end()) 504 return None; 505 return VMI->second; 506 } 507 508 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 509 }; 510 511 } // end anonymous namespace 512 513 static unsigned getEncodedCastOpcode(unsigned Opcode) { 514 switch (Opcode) { 515 default: llvm_unreachable("Unknown cast instruction!"); 516 case Instruction::Trunc : return bitc::CAST_TRUNC; 517 case Instruction::ZExt : return bitc::CAST_ZEXT; 518 case Instruction::SExt : return bitc::CAST_SEXT; 519 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 520 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 521 case Instruction::UIToFP : return bitc::CAST_UITOFP; 522 case Instruction::SIToFP : return bitc::CAST_SITOFP; 523 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 524 case Instruction::FPExt : return bitc::CAST_FPEXT; 525 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 526 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 527 case Instruction::BitCast : return bitc::CAST_BITCAST; 528 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 529 } 530 } 531 532 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 533 switch (Opcode) { 534 default: llvm_unreachable("Unknown binary instruction!"); 535 case Instruction::FNeg: return bitc::UNOP_FNEG; 536 } 537 } 538 539 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown binary instruction!"); 542 case Instruction::Add: 543 case Instruction::FAdd: return bitc::BINOP_ADD; 544 case Instruction::Sub: 545 case Instruction::FSub: return bitc::BINOP_SUB; 546 case Instruction::Mul: 547 case Instruction::FMul: return bitc::BINOP_MUL; 548 case Instruction::UDiv: return bitc::BINOP_UDIV; 549 case Instruction::FDiv: 550 case Instruction::SDiv: return bitc::BINOP_SDIV; 551 case Instruction::URem: return bitc::BINOP_UREM; 552 case Instruction::FRem: 553 case Instruction::SRem: return bitc::BINOP_SREM; 554 case Instruction::Shl: return bitc::BINOP_SHL; 555 case Instruction::LShr: return bitc::BINOP_LSHR; 556 case Instruction::AShr: return bitc::BINOP_ASHR; 557 case Instruction::And: return bitc::BINOP_AND; 558 case Instruction::Or: return bitc::BINOP_OR; 559 case Instruction::Xor: return bitc::BINOP_XOR; 560 } 561 } 562 563 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 564 switch (Op) { 565 default: llvm_unreachable("Unknown RMW operation!"); 566 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 567 case AtomicRMWInst::Add: return bitc::RMW_ADD; 568 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 569 case AtomicRMWInst::And: return bitc::RMW_AND; 570 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 571 case AtomicRMWInst::Or: return bitc::RMW_OR; 572 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 573 case AtomicRMWInst::Max: return bitc::RMW_MAX; 574 case AtomicRMWInst::Min: return bitc::RMW_MIN; 575 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 576 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 577 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 578 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 579 } 580 } 581 582 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 583 switch (Ordering) { 584 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 585 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 586 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 587 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 588 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 589 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 590 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 591 } 592 llvm_unreachable("Invalid ordering"); 593 } 594 595 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 596 StringRef Str, unsigned AbbrevToUse) { 597 SmallVector<unsigned, 64> Vals; 598 599 // Code: [strchar x N] 600 for (char C : Str) { 601 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 602 AbbrevToUse = 0; 603 Vals.push_back(C); 604 } 605 606 // Emit the finished record. 607 Stream.EmitRecord(Code, Vals, AbbrevToUse); 608 } 609 610 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 611 switch (Kind) { 612 case Attribute::Alignment: 613 return bitc::ATTR_KIND_ALIGNMENT; 614 case Attribute::AllocAlign: 615 return bitc::ATTR_KIND_ALLOC_ALIGN; 616 case Attribute::AllocSize: 617 return bitc::ATTR_KIND_ALLOC_SIZE; 618 case Attribute::AlwaysInline: 619 return bitc::ATTR_KIND_ALWAYS_INLINE; 620 case Attribute::ArgMemOnly: 621 return bitc::ATTR_KIND_ARGMEMONLY; 622 case Attribute::Builtin: 623 return bitc::ATTR_KIND_BUILTIN; 624 case Attribute::ByVal: 625 return bitc::ATTR_KIND_BY_VAL; 626 case Attribute::Convergent: 627 return bitc::ATTR_KIND_CONVERGENT; 628 case Attribute::InAlloca: 629 return bitc::ATTR_KIND_IN_ALLOCA; 630 case Attribute::Cold: 631 return bitc::ATTR_KIND_COLD; 632 case Attribute::DisableSanitizerInstrumentation: 633 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 634 case Attribute::Hot: 635 return bitc::ATTR_KIND_HOT; 636 case Attribute::ElementType: 637 return bitc::ATTR_KIND_ELEMENTTYPE; 638 case Attribute::InaccessibleMemOnly: 639 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 640 case Attribute::InaccessibleMemOrArgMemOnly: 641 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 642 case Attribute::InlineHint: 643 return bitc::ATTR_KIND_INLINE_HINT; 644 case Attribute::InReg: 645 return bitc::ATTR_KIND_IN_REG; 646 case Attribute::JumpTable: 647 return bitc::ATTR_KIND_JUMP_TABLE; 648 case Attribute::MinSize: 649 return bitc::ATTR_KIND_MIN_SIZE; 650 case Attribute::Naked: 651 return bitc::ATTR_KIND_NAKED; 652 case Attribute::Nest: 653 return bitc::ATTR_KIND_NEST; 654 case Attribute::NoAlias: 655 return bitc::ATTR_KIND_NO_ALIAS; 656 case Attribute::NoBuiltin: 657 return bitc::ATTR_KIND_NO_BUILTIN; 658 case Attribute::NoCallback: 659 return bitc::ATTR_KIND_NO_CALLBACK; 660 case Attribute::NoCapture: 661 return bitc::ATTR_KIND_NO_CAPTURE; 662 case Attribute::NoDuplicate: 663 return bitc::ATTR_KIND_NO_DUPLICATE; 664 case Attribute::NoFree: 665 return bitc::ATTR_KIND_NOFREE; 666 case Attribute::NoImplicitFloat: 667 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 668 case Attribute::NoInline: 669 return bitc::ATTR_KIND_NO_INLINE; 670 case Attribute::NoRecurse: 671 return bitc::ATTR_KIND_NO_RECURSE; 672 case Attribute::NoMerge: 673 return bitc::ATTR_KIND_NO_MERGE; 674 case Attribute::NonLazyBind: 675 return bitc::ATTR_KIND_NON_LAZY_BIND; 676 case Attribute::NonNull: 677 return bitc::ATTR_KIND_NON_NULL; 678 case Attribute::Dereferenceable: 679 return bitc::ATTR_KIND_DEREFERENCEABLE; 680 case Attribute::DereferenceableOrNull: 681 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 682 case Attribute::NoRedZone: 683 return bitc::ATTR_KIND_NO_RED_ZONE; 684 case Attribute::NoReturn: 685 return bitc::ATTR_KIND_NO_RETURN; 686 case Attribute::NoSync: 687 return bitc::ATTR_KIND_NOSYNC; 688 case Attribute::NoCfCheck: 689 return bitc::ATTR_KIND_NOCF_CHECK; 690 case Attribute::NoProfile: 691 return bitc::ATTR_KIND_NO_PROFILE; 692 case Attribute::NoUnwind: 693 return bitc::ATTR_KIND_NO_UNWIND; 694 case Attribute::NoSanitizeBounds: 695 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 696 case Attribute::NoSanitizeCoverage: 697 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 698 case Attribute::NullPointerIsValid: 699 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 700 case Attribute::OptForFuzzing: 701 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 702 case Attribute::OptimizeForSize: 703 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 704 case Attribute::OptimizeNone: 705 return bitc::ATTR_KIND_OPTIMIZE_NONE; 706 case Attribute::ReadNone: 707 return bitc::ATTR_KIND_READ_NONE; 708 case Attribute::ReadOnly: 709 return bitc::ATTR_KIND_READ_ONLY; 710 case Attribute::Returned: 711 return bitc::ATTR_KIND_RETURNED; 712 case Attribute::ReturnsTwice: 713 return bitc::ATTR_KIND_RETURNS_TWICE; 714 case Attribute::SExt: 715 return bitc::ATTR_KIND_S_EXT; 716 case Attribute::Speculatable: 717 return bitc::ATTR_KIND_SPECULATABLE; 718 case Attribute::StackAlignment: 719 return bitc::ATTR_KIND_STACK_ALIGNMENT; 720 case Attribute::StackProtect: 721 return bitc::ATTR_KIND_STACK_PROTECT; 722 case Attribute::StackProtectReq: 723 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 724 case Attribute::StackProtectStrong: 725 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 726 case Attribute::SafeStack: 727 return bitc::ATTR_KIND_SAFESTACK; 728 case Attribute::ShadowCallStack: 729 return bitc::ATTR_KIND_SHADOWCALLSTACK; 730 case Attribute::StrictFP: 731 return bitc::ATTR_KIND_STRICT_FP; 732 case Attribute::StructRet: 733 return bitc::ATTR_KIND_STRUCT_RET; 734 case Attribute::SanitizeAddress: 735 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 736 case Attribute::SanitizeHWAddress: 737 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 738 case Attribute::SanitizeThread: 739 return bitc::ATTR_KIND_SANITIZE_THREAD; 740 case Attribute::SanitizeMemory: 741 return bitc::ATTR_KIND_SANITIZE_MEMORY; 742 case Attribute::SpeculativeLoadHardening: 743 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 744 case Attribute::SwiftError: 745 return bitc::ATTR_KIND_SWIFT_ERROR; 746 case Attribute::SwiftSelf: 747 return bitc::ATTR_KIND_SWIFT_SELF; 748 case Attribute::SwiftAsync: 749 return bitc::ATTR_KIND_SWIFT_ASYNC; 750 case Attribute::UWTable: 751 return bitc::ATTR_KIND_UW_TABLE; 752 case Attribute::VScaleRange: 753 return bitc::ATTR_KIND_VSCALE_RANGE; 754 case Attribute::WillReturn: 755 return bitc::ATTR_KIND_WILLRETURN; 756 case Attribute::WriteOnly: 757 return bitc::ATTR_KIND_WRITEONLY; 758 case Attribute::ZExt: 759 return bitc::ATTR_KIND_Z_EXT; 760 case Attribute::ImmArg: 761 return bitc::ATTR_KIND_IMMARG; 762 case Attribute::SanitizeMemTag: 763 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 764 case Attribute::Preallocated: 765 return bitc::ATTR_KIND_PREALLOCATED; 766 case Attribute::NoUndef: 767 return bitc::ATTR_KIND_NOUNDEF; 768 case Attribute::ByRef: 769 return bitc::ATTR_KIND_BYREF; 770 case Attribute::MustProgress: 771 return bitc::ATTR_KIND_MUSTPROGRESS; 772 case Attribute::EndAttrKinds: 773 llvm_unreachable("Can not encode end-attribute kinds marker."); 774 case Attribute::None: 775 llvm_unreachable("Can not encode none-attribute."); 776 case Attribute::EmptyKey: 777 case Attribute::TombstoneKey: 778 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 779 } 780 781 llvm_unreachable("Trying to encode unknown attribute"); 782 } 783 784 void ModuleBitcodeWriter::writeAttributeGroupTable() { 785 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 786 VE.getAttributeGroups(); 787 if (AttrGrps.empty()) return; 788 789 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 790 791 SmallVector<uint64_t, 64> Record; 792 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 793 unsigned AttrListIndex = Pair.first; 794 AttributeSet AS = Pair.second; 795 Record.push_back(VE.getAttributeGroupID(Pair)); 796 Record.push_back(AttrListIndex); 797 798 for (Attribute Attr : AS) { 799 if (Attr.isEnumAttribute()) { 800 Record.push_back(0); 801 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 802 } else if (Attr.isIntAttribute()) { 803 Record.push_back(1); 804 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 805 Record.push_back(Attr.getValueAsInt()); 806 } else if (Attr.isStringAttribute()) { 807 StringRef Kind = Attr.getKindAsString(); 808 StringRef Val = Attr.getValueAsString(); 809 810 Record.push_back(Val.empty() ? 3 : 4); 811 Record.append(Kind.begin(), Kind.end()); 812 Record.push_back(0); 813 if (!Val.empty()) { 814 Record.append(Val.begin(), Val.end()); 815 Record.push_back(0); 816 } 817 } else { 818 assert(Attr.isTypeAttribute()); 819 Type *Ty = Attr.getValueAsType(); 820 Record.push_back(Ty ? 6 : 5); 821 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 822 if (Ty) 823 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 824 } 825 } 826 827 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 828 Record.clear(); 829 } 830 831 Stream.ExitBlock(); 832 } 833 834 void ModuleBitcodeWriter::writeAttributeTable() { 835 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 836 if (Attrs.empty()) return; 837 838 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 839 840 SmallVector<uint64_t, 64> Record; 841 for (const AttributeList &AL : Attrs) { 842 for (unsigned i : AL.indexes()) { 843 AttributeSet AS = AL.getAttributes(i); 844 if (AS.hasAttributes()) 845 Record.push_back(VE.getAttributeGroupID({i, AS})); 846 } 847 848 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 849 Record.clear(); 850 } 851 852 Stream.ExitBlock(); 853 } 854 855 /// WriteTypeTable - Write out the type table for a module. 856 void ModuleBitcodeWriter::writeTypeTable() { 857 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 858 859 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 860 SmallVector<uint64_t, 64> TypeVals; 861 862 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 863 864 // Abbrev for TYPE_CODE_POINTER. 865 auto Abbv = std::make_shared<BitCodeAbbrev>(); 866 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 868 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 869 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 870 871 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 872 Abbv = std::make_shared<BitCodeAbbrev>(); 873 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 874 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 875 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 876 877 // Abbrev for TYPE_CODE_FUNCTION. 878 Abbv = std::make_shared<BitCodeAbbrev>(); 879 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 883 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 884 885 // Abbrev for TYPE_CODE_STRUCT_ANON. 886 Abbv = std::make_shared<BitCodeAbbrev>(); 887 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 890 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 891 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 892 893 // Abbrev for TYPE_CODE_STRUCT_NAME. 894 Abbv = std::make_shared<BitCodeAbbrev>(); 895 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 898 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 899 900 // Abbrev for TYPE_CODE_STRUCT_NAMED. 901 Abbv = std::make_shared<BitCodeAbbrev>(); 902 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 906 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 907 908 // Abbrev for TYPE_CODE_ARRAY. 909 Abbv = std::make_shared<BitCodeAbbrev>(); 910 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 913 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 914 915 // Emit an entry count so the reader can reserve space. 916 TypeVals.push_back(TypeList.size()); 917 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 918 TypeVals.clear(); 919 920 // Loop over all of the types, emitting each in turn. 921 for (Type *T : TypeList) { 922 int AbbrevToUse = 0; 923 unsigned Code = 0; 924 925 switch (T->getTypeID()) { 926 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 927 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 928 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 929 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 930 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 931 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 932 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 933 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 934 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 935 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 936 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 937 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 938 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 939 case Type::IntegerTyID: 940 // INTEGER: [width] 941 Code = bitc::TYPE_CODE_INTEGER; 942 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 943 break; 944 case Type::PointerTyID: { 945 PointerType *PTy = cast<PointerType>(T); 946 unsigned AddressSpace = PTy->getAddressSpace(); 947 if (PTy->isOpaque()) { 948 // OPAQUE_POINTER: [address space] 949 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 950 TypeVals.push_back(AddressSpace); 951 if (AddressSpace == 0) 952 AbbrevToUse = OpaquePtrAbbrev; 953 } else { 954 // POINTER: [pointee type, address space] 955 Code = bitc::TYPE_CODE_POINTER; 956 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 957 TypeVals.push_back(AddressSpace); 958 if (AddressSpace == 0) 959 AbbrevToUse = PtrAbbrev; 960 } 961 break; 962 } 963 case Type::FunctionTyID: { 964 FunctionType *FT = cast<FunctionType>(T); 965 // FUNCTION: [isvararg, retty, paramty x N] 966 Code = bitc::TYPE_CODE_FUNCTION; 967 TypeVals.push_back(FT->isVarArg()); 968 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 969 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 970 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 971 AbbrevToUse = FunctionAbbrev; 972 break; 973 } 974 case Type::StructTyID: { 975 StructType *ST = cast<StructType>(T); 976 // STRUCT: [ispacked, eltty x N] 977 TypeVals.push_back(ST->isPacked()); 978 // Output all of the element types. 979 for (Type *ET : ST->elements()) 980 TypeVals.push_back(VE.getTypeID(ET)); 981 982 if (ST->isLiteral()) { 983 Code = bitc::TYPE_CODE_STRUCT_ANON; 984 AbbrevToUse = StructAnonAbbrev; 985 } else { 986 if (ST->isOpaque()) { 987 Code = bitc::TYPE_CODE_OPAQUE; 988 } else { 989 Code = bitc::TYPE_CODE_STRUCT_NAMED; 990 AbbrevToUse = StructNamedAbbrev; 991 } 992 993 // Emit the name if it is present. 994 if (!ST->getName().empty()) 995 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 996 StructNameAbbrev); 997 } 998 break; 999 } 1000 case Type::ArrayTyID: { 1001 ArrayType *AT = cast<ArrayType>(T); 1002 // ARRAY: [numelts, eltty] 1003 Code = bitc::TYPE_CODE_ARRAY; 1004 TypeVals.push_back(AT->getNumElements()); 1005 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1006 AbbrevToUse = ArrayAbbrev; 1007 break; 1008 } 1009 case Type::FixedVectorTyID: 1010 case Type::ScalableVectorTyID: { 1011 VectorType *VT = cast<VectorType>(T); 1012 // VECTOR [numelts, eltty] or 1013 // [numelts, eltty, scalable] 1014 Code = bitc::TYPE_CODE_VECTOR; 1015 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1016 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1017 if (isa<ScalableVectorType>(VT)) 1018 TypeVals.push_back(true); 1019 break; 1020 } 1021 case Type::DXILPointerTyID: 1022 llvm_unreachable("DXIL pointers cannot be added to IR modules"); 1023 } 1024 1025 // Emit the finished record. 1026 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1027 TypeVals.clear(); 1028 } 1029 1030 Stream.ExitBlock(); 1031 } 1032 1033 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1034 switch (Linkage) { 1035 case GlobalValue::ExternalLinkage: 1036 return 0; 1037 case GlobalValue::WeakAnyLinkage: 1038 return 16; 1039 case GlobalValue::AppendingLinkage: 1040 return 2; 1041 case GlobalValue::InternalLinkage: 1042 return 3; 1043 case GlobalValue::LinkOnceAnyLinkage: 1044 return 18; 1045 case GlobalValue::ExternalWeakLinkage: 1046 return 7; 1047 case GlobalValue::CommonLinkage: 1048 return 8; 1049 case GlobalValue::PrivateLinkage: 1050 return 9; 1051 case GlobalValue::WeakODRLinkage: 1052 return 17; 1053 case GlobalValue::LinkOnceODRLinkage: 1054 return 19; 1055 case GlobalValue::AvailableExternallyLinkage: 1056 return 12; 1057 } 1058 llvm_unreachable("Invalid linkage"); 1059 } 1060 1061 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1062 return getEncodedLinkage(GV.getLinkage()); 1063 } 1064 1065 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1066 uint64_t RawFlags = 0; 1067 RawFlags |= Flags.ReadNone; 1068 RawFlags |= (Flags.ReadOnly << 1); 1069 RawFlags |= (Flags.NoRecurse << 2); 1070 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1071 RawFlags |= (Flags.NoInline << 4); 1072 RawFlags |= (Flags.AlwaysInline << 5); 1073 RawFlags |= (Flags.NoUnwind << 6); 1074 RawFlags |= (Flags.MayThrow << 7); 1075 RawFlags |= (Flags.HasUnknownCall << 8); 1076 RawFlags |= (Flags.MustBeUnreachable << 9); 1077 return RawFlags; 1078 } 1079 1080 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1081 // in BitcodeReader.cpp. 1082 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1083 uint64_t RawFlags = 0; 1084 1085 RawFlags |= Flags.NotEligibleToImport; // bool 1086 RawFlags |= (Flags.Live << 1); 1087 RawFlags |= (Flags.DSOLocal << 2); 1088 RawFlags |= (Flags.CanAutoHide << 3); 1089 1090 // Linkage don't need to be remapped at that time for the summary. Any future 1091 // change to the getEncodedLinkage() function will need to be taken into 1092 // account here as well. 1093 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1094 1095 RawFlags |= (Flags.Visibility << 8); // 2 bits 1096 1097 return RawFlags; 1098 } 1099 1100 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1101 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1102 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1103 return RawFlags; 1104 } 1105 1106 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1107 switch (GV.getVisibility()) { 1108 case GlobalValue::DefaultVisibility: return 0; 1109 case GlobalValue::HiddenVisibility: return 1; 1110 case GlobalValue::ProtectedVisibility: return 2; 1111 } 1112 llvm_unreachable("Invalid visibility"); 1113 } 1114 1115 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1116 switch (GV.getDLLStorageClass()) { 1117 case GlobalValue::DefaultStorageClass: return 0; 1118 case GlobalValue::DLLImportStorageClass: return 1; 1119 case GlobalValue::DLLExportStorageClass: return 2; 1120 } 1121 llvm_unreachable("Invalid DLL storage class"); 1122 } 1123 1124 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1125 switch (GV.getThreadLocalMode()) { 1126 case GlobalVariable::NotThreadLocal: return 0; 1127 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1128 case GlobalVariable::LocalDynamicTLSModel: return 2; 1129 case GlobalVariable::InitialExecTLSModel: return 3; 1130 case GlobalVariable::LocalExecTLSModel: return 4; 1131 } 1132 llvm_unreachable("Invalid TLS model"); 1133 } 1134 1135 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1136 switch (C.getSelectionKind()) { 1137 case Comdat::Any: 1138 return bitc::COMDAT_SELECTION_KIND_ANY; 1139 case Comdat::ExactMatch: 1140 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1141 case Comdat::Largest: 1142 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1143 case Comdat::NoDeduplicate: 1144 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1145 case Comdat::SameSize: 1146 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1147 } 1148 llvm_unreachable("Invalid selection kind"); 1149 } 1150 1151 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1152 switch (GV.getUnnamedAddr()) { 1153 case GlobalValue::UnnamedAddr::None: return 0; 1154 case GlobalValue::UnnamedAddr::Local: return 2; 1155 case GlobalValue::UnnamedAddr::Global: return 1; 1156 } 1157 llvm_unreachable("Invalid unnamed_addr"); 1158 } 1159 1160 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1161 if (GenerateHash) 1162 Hasher.update(Str); 1163 return StrtabBuilder.add(Str); 1164 } 1165 1166 void ModuleBitcodeWriter::writeComdats() { 1167 SmallVector<unsigned, 64> Vals; 1168 for (const Comdat *C : VE.getComdats()) { 1169 // COMDAT: [strtab offset, strtab size, selection_kind] 1170 Vals.push_back(addToStrtab(C->getName())); 1171 Vals.push_back(C->getName().size()); 1172 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1173 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1174 Vals.clear(); 1175 } 1176 } 1177 1178 /// Write a record that will eventually hold the word offset of the 1179 /// module-level VST. For now the offset is 0, which will be backpatched 1180 /// after the real VST is written. Saves the bit offset to backpatch. 1181 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1182 // Write a placeholder value in for the offset of the real VST, 1183 // which is written after the function blocks so that it can include 1184 // the offset of each function. The placeholder offset will be 1185 // updated when the real VST is written. 1186 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1187 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1188 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1189 // hold the real VST offset. Must use fixed instead of VBR as we don't 1190 // know how many VBR chunks to reserve ahead of time. 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1192 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1193 1194 // Emit the placeholder 1195 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1196 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1197 1198 // Compute and save the bit offset to the placeholder, which will be 1199 // patched when the real VST is written. We can simply subtract the 32-bit 1200 // fixed size from the current bit number to get the location to backpatch. 1201 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1202 } 1203 1204 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1205 1206 /// Determine the encoding to use for the given string name and length. 1207 static StringEncoding getStringEncoding(StringRef Str) { 1208 bool isChar6 = true; 1209 for (char C : Str) { 1210 if (isChar6) 1211 isChar6 = BitCodeAbbrevOp::isChar6(C); 1212 if ((unsigned char)C & 128) 1213 // don't bother scanning the rest. 1214 return SE_Fixed8; 1215 } 1216 if (isChar6) 1217 return SE_Char6; 1218 return SE_Fixed7; 1219 } 1220 1221 /// Emit top-level description of module, including target triple, inline asm, 1222 /// descriptors for global variables, and function prototype info. 1223 /// Returns the bit offset to backpatch with the location of the real VST. 1224 void ModuleBitcodeWriter::writeModuleInfo() { 1225 // Emit various pieces of data attached to a module. 1226 if (!M.getTargetTriple().empty()) 1227 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1228 0 /*TODO*/); 1229 const std::string &DL = M.getDataLayoutStr(); 1230 if (!DL.empty()) 1231 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1232 if (!M.getModuleInlineAsm().empty()) 1233 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1234 0 /*TODO*/); 1235 1236 // Emit information about sections and GC, computing how many there are. Also 1237 // compute the maximum alignment value. 1238 std::map<std::string, unsigned> SectionMap; 1239 std::map<std::string, unsigned> GCMap; 1240 MaybeAlign MaxAlignment; 1241 unsigned MaxGlobalType = 0; 1242 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1243 if (A) 1244 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1245 }; 1246 for (const GlobalVariable &GV : M.globals()) { 1247 UpdateMaxAlignment(GV.getAlign()); 1248 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1249 if (GV.hasSection()) { 1250 // Give section names unique ID's. 1251 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1252 if (!Entry) { 1253 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1254 0 /*TODO*/); 1255 Entry = SectionMap.size(); 1256 } 1257 } 1258 } 1259 for (const Function &F : M) { 1260 UpdateMaxAlignment(F.getAlign()); 1261 if (F.hasSection()) { 1262 // Give section names unique ID's. 1263 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1264 if (!Entry) { 1265 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1266 0 /*TODO*/); 1267 Entry = SectionMap.size(); 1268 } 1269 } 1270 if (F.hasGC()) { 1271 // Same for GC names. 1272 unsigned &Entry = GCMap[F.getGC()]; 1273 if (!Entry) { 1274 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1275 0 /*TODO*/); 1276 Entry = GCMap.size(); 1277 } 1278 } 1279 } 1280 1281 // Emit abbrev for globals, now that we know # sections and max alignment. 1282 unsigned SimpleGVarAbbrev = 0; 1283 if (!M.global_empty()) { 1284 // Add an abbrev for common globals with no visibility or thread localness. 1285 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1286 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1287 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1288 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1289 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1290 Log2_32_Ceil(MaxGlobalType+1))); 1291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1292 //| explicitType << 1 1293 //| constant 1294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1296 if (!MaxAlignment) // Alignment. 1297 Abbv->Add(BitCodeAbbrevOp(0)); 1298 else { 1299 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1301 Log2_32_Ceil(MaxEncAlignment+1))); 1302 } 1303 if (SectionMap.empty()) // Section. 1304 Abbv->Add(BitCodeAbbrevOp(0)); 1305 else 1306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1307 Log2_32_Ceil(SectionMap.size()+1))); 1308 // Don't bother emitting vis + thread local. 1309 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1310 } 1311 1312 SmallVector<unsigned, 64> Vals; 1313 // Emit the module's source file name. 1314 { 1315 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1316 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1317 if (Bits == SE_Char6) 1318 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1319 else if (Bits == SE_Fixed7) 1320 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1321 1322 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1323 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1324 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1326 Abbv->Add(AbbrevOpToUse); 1327 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1328 1329 for (const auto P : M.getSourceFileName()) 1330 Vals.push_back((unsigned char)P); 1331 1332 // Emit the finished record. 1333 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1334 Vals.clear(); 1335 } 1336 1337 // Emit the global variable information. 1338 for (const GlobalVariable &GV : M.globals()) { 1339 unsigned AbbrevToUse = 0; 1340 1341 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1342 // linkage, alignment, section, visibility, threadlocal, 1343 // unnamed_addr, externally_initialized, dllstorageclass, 1344 // comdat, attributes, DSO_Local] 1345 Vals.push_back(addToStrtab(GV.getName())); 1346 Vals.push_back(GV.getName().size()); 1347 Vals.push_back(VE.getTypeID(GV.getValueType())); 1348 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1349 Vals.push_back(GV.isDeclaration() ? 0 : 1350 (VE.getValueID(GV.getInitializer()) + 1)); 1351 Vals.push_back(getEncodedLinkage(GV)); 1352 Vals.push_back(getEncodedAlign(GV.getAlign())); 1353 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1354 : 0); 1355 if (GV.isThreadLocal() || 1356 GV.getVisibility() != GlobalValue::DefaultVisibility || 1357 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1358 GV.isExternallyInitialized() || 1359 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1360 GV.hasComdat() || 1361 GV.hasAttributes() || 1362 GV.isDSOLocal() || 1363 GV.hasPartition()) { 1364 Vals.push_back(getEncodedVisibility(GV)); 1365 Vals.push_back(getEncodedThreadLocalMode(GV)); 1366 Vals.push_back(getEncodedUnnamedAddr(GV)); 1367 Vals.push_back(GV.isExternallyInitialized()); 1368 Vals.push_back(getEncodedDLLStorageClass(GV)); 1369 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1370 1371 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1372 Vals.push_back(VE.getAttributeListID(AL)); 1373 1374 Vals.push_back(GV.isDSOLocal()); 1375 Vals.push_back(addToStrtab(GV.getPartition())); 1376 Vals.push_back(GV.getPartition().size()); 1377 } else { 1378 AbbrevToUse = SimpleGVarAbbrev; 1379 } 1380 1381 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1382 Vals.clear(); 1383 } 1384 1385 // Emit the function proto information. 1386 for (const Function &F : M) { 1387 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1388 // linkage, paramattrs, alignment, section, visibility, gc, 1389 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1390 // prefixdata, personalityfn, DSO_Local, addrspace] 1391 Vals.push_back(addToStrtab(F.getName())); 1392 Vals.push_back(F.getName().size()); 1393 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1394 Vals.push_back(F.getCallingConv()); 1395 Vals.push_back(F.isDeclaration()); 1396 Vals.push_back(getEncodedLinkage(F)); 1397 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1398 Vals.push_back(getEncodedAlign(F.getAlign())); 1399 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1400 : 0); 1401 Vals.push_back(getEncodedVisibility(F)); 1402 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1403 Vals.push_back(getEncodedUnnamedAddr(F)); 1404 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1405 : 0); 1406 Vals.push_back(getEncodedDLLStorageClass(F)); 1407 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1408 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1409 : 0); 1410 Vals.push_back( 1411 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1412 1413 Vals.push_back(F.isDSOLocal()); 1414 Vals.push_back(F.getAddressSpace()); 1415 Vals.push_back(addToStrtab(F.getPartition())); 1416 Vals.push_back(F.getPartition().size()); 1417 1418 unsigned AbbrevToUse = 0; 1419 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1420 Vals.clear(); 1421 } 1422 1423 // Emit the alias information. 1424 for (const GlobalAlias &A : M.aliases()) { 1425 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1426 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1427 // DSO_Local] 1428 Vals.push_back(addToStrtab(A.getName())); 1429 Vals.push_back(A.getName().size()); 1430 Vals.push_back(VE.getTypeID(A.getValueType())); 1431 Vals.push_back(A.getType()->getAddressSpace()); 1432 Vals.push_back(VE.getValueID(A.getAliasee())); 1433 Vals.push_back(getEncodedLinkage(A)); 1434 Vals.push_back(getEncodedVisibility(A)); 1435 Vals.push_back(getEncodedDLLStorageClass(A)); 1436 Vals.push_back(getEncodedThreadLocalMode(A)); 1437 Vals.push_back(getEncodedUnnamedAddr(A)); 1438 Vals.push_back(A.isDSOLocal()); 1439 Vals.push_back(addToStrtab(A.getPartition())); 1440 Vals.push_back(A.getPartition().size()); 1441 1442 unsigned AbbrevToUse = 0; 1443 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1444 Vals.clear(); 1445 } 1446 1447 // Emit the ifunc information. 1448 for (const GlobalIFunc &I : M.ifuncs()) { 1449 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1450 // val#, linkage, visibility, DSO_Local] 1451 Vals.push_back(addToStrtab(I.getName())); 1452 Vals.push_back(I.getName().size()); 1453 Vals.push_back(VE.getTypeID(I.getValueType())); 1454 Vals.push_back(I.getType()->getAddressSpace()); 1455 Vals.push_back(VE.getValueID(I.getResolver())); 1456 Vals.push_back(getEncodedLinkage(I)); 1457 Vals.push_back(getEncodedVisibility(I)); 1458 Vals.push_back(I.isDSOLocal()); 1459 Vals.push_back(addToStrtab(I.getPartition())); 1460 Vals.push_back(I.getPartition().size()); 1461 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1462 Vals.clear(); 1463 } 1464 1465 writeValueSymbolTableForwardDecl(); 1466 } 1467 1468 static uint64_t getOptimizationFlags(const Value *V) { 1469 uint64_t Flags = 0; 1470 1471 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1472 if (OBO->hasNoSignedWrap()) 1473 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1474 if (OBO->hasNoUnsignedWrap()) 1475 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1476 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1477 if (PEO->isExact()) 1478 Flags |= 1 << bitc::PEO_EXACT; 1479 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1480 if (FPMO->hasAllowReassoc()) 1481 Flags |= bitc::AllowReassoc; 1482 if (FPMO->hasNoNaNs()) 1483 Flags |= bitc::NoNaNs; 1484 if (FPMO->hasNoInfs()) 1485 Flags |= bitc::NoInfs; 1486 if (FPMO->hasNoSignedZeros()) 1487 Flags |= bitc::NoSignedZeros; 1488 if (FPMO->hasAllowReciprocal()) 1489 Flags |= bitc::AllowReciprocal; 1490 if (FPMO->hasAllowContract()) 1491 Flags |= bitc::AllowContract; 1492 if (FPMO->hasApproxFunc()) 1493 Flags |= bitc::ApproxFunc; 1494 } 1495 1496 return Flags; 1497 } 1498 1499 void ModuleBitcodeWriter::writeValueAsMetadata( 1500 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1501 // Mimic an MDNode with a value as one operand. 1502 Value *V = MD->getValue(); 1503 Record.push_back(VE.getTypeID(V->getType())); 1504 Record.push_back(VE.getValueID(V)); 1505 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1506 Record.clear(); 1507 } 1508 1509 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1510 SmallVectorImpl<uint64_t> &Record, 1511 unsigned Abbrev) { 1512 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1513 Metadata *MD = N->getOperand(i); 1514 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1515 "Unexpected function-local metadata"); 1516 Record.push_back(VE.getMetadataOrNullID(MD)); 1517 } 1518 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1519 : bitc::METADATA_NODE, 1520 Record, Abbrev); 1521 Record.clear(); 1522 } 1523 1524 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1525 // Assume the column is usually under 128, and always output the inlined-at 1526 // location (it's never more expensive than building an array size 1). 1527 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1528 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1535 return Stream.EmitAbbrev(std::move(Abbv)); 1536 } 1537 1538 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1539 SmallVectorImpl<uint64_t> &Record, 1540 unsigned &Abbrev) { 1541 if (!Abbrev) 1542 Abbrev = createDILocationAbbrev(); 1543 1544 Record.push_back(N->isDistinct()); 1545 Record.push_back(N->getLine()); 1546 Record.push_back(N->getColumn()); 1547 Record.push_back(VE.getMetadataID(N->getScope())); 1548 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1549 Record.push_back(N->isImplicitCode()); 1550 1551 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1552 Record.clear(); 1553 } 1554 1555 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1556 // Assume the column is usually under 128, and always output the inlined-at 1557 // location (it's never more expensive than building an array size 1). 1558 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1559 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1566 return Stream.EmitAbbrev(std::move(Abbv)); 1567 } 1568 1569 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1570 SmallVectorImpl<uint64_t> &Record, 1571 unsigned &Abbrev) { 1572 if (!Abbrev) 1573 Abbrev = createGenericDINodeAbbrev(); 1574 1575 Record.push_back(N->isDistinct()); 1576 Record.push_back(N->getTag()); 1577 Record.push_back(0); // Per-tag version field; unused for now. 1578 1579 for (auto &I : N->operands()) 1580 Record.push_back(VE.getMetadataOrNullID(I)); 1581 1582 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1583 Record.clear(); 1584 } 1585 1586 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1587 SmallVectorImpl<uint64_t> &Record, 1588 unsigned Abbrev) { 1589 const uint64_t Version = 2 << 1; 1590 Record.push_back((uint64_t)N->isDistinct() | Version); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1594 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1595 1596 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1597 Record.clear(); 1598 } 1599 1600 void ModuleBitcodeWriter::writeDIGenericSubrange( 1601 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1602 unsigned Abbrev) { 1603 Record.push_back((uint64_t)N->isDistinct()); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1606 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1607 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1608 1609 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1610 Record.clear(); 1611 } 1612 1613 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1614 if ((int64_t)V >= 0) 1615 Vals.push_back(V << 1); 1616 else 1617 Vals.push_back((-V << 1) | 1); 1618 } 1619 1620 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1621 // We have an arbitrary precision integer value to write whose 1622 // bit width is > 64. However, in canonical unsigned integer 1623 // format it is likely that the high bits are going to be zero. 1624 // So, we only write the number of active words. 1625 unsigned NumWords = A.getActiveWords(); 1626 const uint64_t *RawData = A.getRawData(); 1627 for (unsigned i = 0; i < NumWords; i++) 1628 emitSignedInt64(Vals, RawData[i]); 1629 } 1630 1631 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1632 SmallVectorImpl<uint64_t> &Record, 1633 unsigned Abbrev) { 1634 const uint64_t IsBigInt = 1 << 2; 1635 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1636 Record.push_back(N->getValue().getBitWidth()); 1637 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1638 emitWideAPInt(Record, N->getValue()); 1639 1640 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1641 Record.clear(); 1642 } 1643 1644 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1645 SmallVectorImpl<uint64_t> &Record, 1646 unsigned Abbrev) { 1647 Record.push_back(N->isDistinct()); 1648 Record.push_back(N->getTag()); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1650 Record.push_back(N->getSizeInBits()); 1651 Record.push_back(N->getAlignInBits()); 1652 Record.push_back(N->getEncoding()); 1653 Record.push_back(N->getFlags()); 1654 1655 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1656 Record.clear(); 1657 } 1658 1659 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1660 SmallVectorImpl<uint64_t> &Record, 1661 unsigned Abbrev) { 1662 Record.push_back(N->isDistinct()); 1663 Record.push_back(N->getTag()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1665 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1666 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1668 Record.push_back(N->getSizeInBits()); 1669 Record.push_back(N->getAlignInBits()); 1670 Record.push_back(N->getEncoding()); 1671 1672 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1673 Record.clear(); 1674 } 1675 1676 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1677 SmallVectorImpl<uint64_t> &Record, 1678 unsigned Abbrev) { 1679 Record.push_back(N->isDistinct()); 1680 Record.push_back(N->getTag()); 1681 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1682 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1683 Record.push_back(N->getLine()); 1684 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1686 Record.push_back(N->getSizeInBits()); 1687 Record.push_back(N->getAlignInBits()); 1688 Record.push_back(N->getOffsetInBits()); 1689 Record.push_back(N->getFlags()); 1690 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1691 1692 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1693 // that there is no DWARF address space associated with DIDerivedType. 1694 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1695 Record.push_back(*DWARFAddressSpace + 1); 1696 else 1697 Record.push_back(0); 1698 1699 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1700 1701 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1702 Record.clear(); 1703 } 1704 1705 void ModuleBitcodeWriter::writeDICompositeType( 1706 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1707 unsigned Abbrev) { 1708 const unsigned IsNotUsedInOldTypeRef = 0x2; 1709 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1710 Record.push_back(N->getTag()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1713 Record.push_back(N->getLine()); 1714 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1715 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1716 Record.push_back(N->getSizeInBits()); 1717 Record.push_back(N->getAlignInBits()); 1718 Record.push_back(N->getOffsetInBits()); 1719 Record.push_back(N->getFlags()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1721 Record.push_back(N->getRuntimeLang()); 1722 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1725 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1728 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1729 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1730 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1731 1732 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1733 Record.clear(); 1734 } 1735 1736 void ModuleBitcodeWriter::writeDISubroutineType( 1737 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1738 unsigned Abbrev) { 1739 const unsigned HasNoOldTypeRefs = 0x2; 1740 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1741 Record.push_back(N->getFlags()); 1742 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1743 Record.push_back(N->getCC()); 1744 1745 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1746 Record.clear(); 1747 } 1748 1749 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1750 SmallVectorImpl<uint64_t> &Record, 1751 unsigned Abbrev) { 1752 Record.push_back(N->isDistinct()); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1755 if (N->getRawChecksum()) { 1756 Record.push_back(N->getRawChecksum()->Kind); 1757 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1758 } else { 1759 // Maintain backwards compatibility with the old internal representation of 1760 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1761 Record.push_back(0); 1762 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1763 } 1764 auto Source = N->getRawSource(); 1765 if (Source) 1766 Record.push_back(VE.getMetadataOrNullID(*Source)); 1767 1768 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1769 Record.clear(); 1770 } 1771 1772 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1773 SmallVectorImpl<uint64_t> &Record, 1774 unsigned Abbrev) { 1775 assert(N->isDistinct() && "Expected distinct compile units"); 1776 Record.push_back(/* IsDistinct */ true); 1777 Record.push_back(N->getSourceLanguage()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1780 Record.push_back(N->isOptimized()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1782 Record.push_back(N->getRuntimeVersion()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1784 Record.push_back(N->getEmissionKind()); 1785 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1787 Record.push_back(/* subprograms */ 0); 1788 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1790 Record.push_back(N->getDWOId()); 1791 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1792 Record.push_back(N->getSplitDebugInlining()); 1793 Record.push_back(N->getDebugInfoForProfiling()); 1794 Record.push_back((unsigned)N->getNameTableKind()); 1795 Record.push_back(N->getRangesBaseAddress()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1798 1799 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1800 Record.clear(); 1801 } 1802 1803 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1804 SmallVectorImpl<uint64_t> &Record, 1805 unsigned Abbrev) { 1806 const uint64_t HasUnitFlag = 1 << 1; 1807 const uint64_t HasSPFlagsFlag = 1 << 2; 1808 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1809 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1813 Record.push_back(N->getLine()); 1814 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1815 Record.push_back(N->getScopeLine()); 1816 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1817 Record.push_back(N->getSPFlags()); 1818 Record.push_back(N->getVirtualIndex()); 1819 Record.push_back(N->getFlags()); 1820 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1821 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1822 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1824 Record.push_back(N->getThisAdjustment()); 1825 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1828 1829 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1830 Record.clear(); 1831 } 1832 1833 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1834 SmallVectorImpl<uint64_t> &Record, 1835 unsigned Abbrev) { 1836 Record.push_back(N->isDistinct()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1838 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1839 Record.push_back(N->getLine()); 1840 Record.push_back(N->getColumn()); 1841 1842 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1843 Record.clear(); 1844 } 1845 1846 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1847 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1848 unsigned Abbrev) { 1849 Record.push_back(N->isDistinct()); 1850 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1851 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1852 Record.push_back(N->getDiscriminator()); 1853 1854 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1855 Record.clear(); 1856 } 1857 1858 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1859 SmallVectorImpl<uint64_t> &Record, 1860 unsigned Abbrev) { 1861 Record.push_back(N->isDistinct()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1863 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1866 Record.push_back(N->getLineNo()); 1867 1868 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1869 Record.clear(); 1870 } 1871 1872 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1873 SmallVectorImpl<uint64_t> &Record, 1874 unsigned Abbrev) { 1875 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1876 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1877 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1878 1879 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1880 Record.clear(); 1881 } 1882 1883 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1884 SmallVectorImpl<uint64_t> &Record, 1885 unsigned Abbrev) { 1886 Record.push_back(N->isDistinct()); 1887 Record.push_back(N->getMacinfoType()); 1888 Record.push_back(N->getLine()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1891 1892 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1893 Record.clear(); 1894 } 1895 1896 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1897 SmallVectorImpl<uint64_t> &Record, 1898 unsigned Abbrev) { 1899 Record.push_back(N->isDistinct()); 1900 Record.push_back(N->getMacinfoType()); 1901 Record.push_back(N->getLine()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1903 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1904 1905 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1906 Record.clear(); 1907 } 1908 1909 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1910 SmallVectorImpl<uint64_t> &Record, 1911 unsigned Abbrev) { 1912 Record.reserve(N->getArgs().size()); 1913 for (ValueAsMetadata *MD : N->getArgs()) 1914 Record.push_back(VE.getMetadataID(MD)); 1915 1916 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1917 Record.clear(); 1918 } 1919 1920 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1921 SmallVectorImpl<uint64_t> &Record, 1922 unsigned Abbrev) { 1923 Record.push_back(N->isDistinct()); 1924 for (auto &I : N->operands()) 1925 Record.push_back(VE.getMetadataOrNullID(I)); 1926 Record.push_back(N->getLineNo()); 1927 Record.push_back(N->getIsDecl()); 1928 1929 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1930 Record.clear(); 1931 } 1932 1933 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1934 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1935 unsigned Abbrev) { 1936 Record.push_back(N->isDistinct()); 1937 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1939 Record.push_back(N->isDefault()); 1940 1941 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1942 Record.clear(); 1943 } 1944 1945 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1946 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1947 unsigned Abbrev) { 1948 Record.push_back(N->isDistinct()); 1949 Record.push_back(N->getTag()); 1950 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1951 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1952 Record.push_back(N->isDefault()); 1953 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1954 1955 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1956 Record.clear(); 1957 } 1958 1959 void ModuleBitcodeWriter::writeDIGlobalVariable( 1960 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1961 unsigned Abbrev) { 1962 const uint64_t Version = 2 << 1; 1963 Record.push_back((uint64_t)N->isDistinct() | Version); 1964 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1965 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1966 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1967 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1968 Record.push_back(N->getLine()); 1969 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1970 Record.push_back(N->isLocalToUnit()); 1971 Record.push_back(N->isDefinition()); 1972 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1973 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1974 Record.push_back(N->getAlignInBits()); 1975 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1976 1977 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1978 Record.clear(); 1979 } 1980 1981 void ModuleBitcodeWriter::writeDILocalVariable( 1982 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1983 unsigned Abbrev) { 1984 // In order to support all possible bitcode formats in BitcodeReader we need 1985 // to distinguish the following cases: 1986 // 1) Record has no artificial tag (Record[1]), 1987 // has no obsolete inlinedAt field (Record[9]). 1988 // In this case Record size will be 8, HasAlignment flag is false. 1989 // 2) Record has artificial tag (Record[1]), 1990 // has no obsolete inlignedAt field (Record[9]). 1991 // In this case Record size will be 9, HasAlignment flag is false. 1992 // 3) Record has both artificial tag (Record[1]) and 1993 // obsolete inlignedAt field (Record[9]). 1994 // In this case Record size will be 10, HasAlignment flag is false. 1995 // 4) Record has neither artificial tag, nor inlignedAt field, but 1996 // HasAlignment flag is true and Record[8] contains alignment value. 1997 const uint64_t HasAlignmentFlag = 1 << 1; 1998 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1999 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2000 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2001 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2002 Record.push_back(N->getLine()); 2003 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2004 Record.push_back(N->getArg()); 2005 Record.push_back(N->getFlags()); 2006 Record.push_back(N->getAlignInBits()); 2007 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2008 2009 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2010 Record.clear(); 2011 } 2012 2013 void ModuleBitcodeWriter::writeDILabel( 2014 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2015 unsigned Abbrev) { 2016 Record.push_back((uint64_t)N->isDistinct()); 2017 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2019 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2020 Record.push_back(N->getLine()); 2021 2022 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2023 Record.clear(); 2024 } 2025 2026 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2027 SmallVectorImpl<uint64_t> &Record, 2028 unsigned Abbrev) { 2029 Record.reserve(N->getElements().size() + 1); 2030 const uint64_t Version = 3 << 1; 2031 Record.push_back((uint64_t)N->isDistinct() | Version); 2032 Record.append(N->elements_begin(), N->elements_end()); 2033 2034 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2035 Record.clear(); 2036 } 2037 2038 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2039 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2040 unsigned Abbrev) { 2041 Record.push_back(N->isDistinct()); 2042 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2043 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2044 2045 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2046 Record.clear(); 2047 } 2048 2049 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2050 SmallVectorImpl<uint64_t> &Record, 2051 unsigned Abbrev) { 2052 Record.push_back(N->isDistinct()); 2053 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2054 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2055 Record.push_back(N->getLine()); 2056 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2057 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2058 Record.push_back(N->getAttributes()); 2059 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2060 2061 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2062 Record.clear(); 2063 } 2064 2065 void ModuleBitcodeWriter::writeDIImportedEntity( 2066 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2067 unsigned Abbrev) { 2068 Record.push_back(N->isDistinct()); 2069 Record.push_back(N->getTag()); 2070 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2071 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2072 Record.push_back(N->getLine()); 2073 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2074 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2075 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2076 2077 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2078 Record.clear(); 2079 } 2080 2081 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2082 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2083 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2086 return Stream.EmitAbbrev(std::move(Abbv)); 2087 } 2088 2089 void ModuleBitcodeWriter::writeNamedMetadata( 2090 SmallVectorImpl<uint64_t> &Record) { 2091 if (M.named_metadata_empty()) 2092 return; 2093 2094 unsigned Abbrev = createNamedMetadataAbbrev(); 2095 for (const NamedMDNode &NMD : M.named_metadata()) { 2096 // Write name. 2097 StringRef Str = NMD.getName(); 2098 Record.append(Str.bytes_begin(), Str.bytes_end()); 2099 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2100 Record.clear(); 2101 2102 // Write named metadata operands. 2103 for (const MDNode *N : NMD.operands()) 2104 Record.push_back(VE.getMetadataID(N)); 2105 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2106 Record.clear(); 2107 } 2108 } 2109 2110 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2111 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2112 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2115 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2116 return Stream.EmitAbbrev(std::move(Abbv)); 2117 } 2118 2119 /// Write out a record for MDString. 2120 /// 2121 /// All the metadata strings in a metadata block are emitted in a single 2122 /// record. The sizes and strings themselves are shoved into a blob. 2123 void ModuleBitcodeWriter::writeMetadataStrings( 2124 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2125 if (Strings.empty()) 2126 return; 2127 2128 // Start the record with the number of strings. 2129 Record.push_back(bitc::METADATA_STRINGS); 2130 Record.push_back(Strings.size()); 2131 2132 // Emit the sizes of the strings in the blob. 2133 SmallString<256> Blob; 2134 { 2135 BitstreamWriter W(Blob); 2136 for (const Metadata *MD : Strings) 2137 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2138 W.FlushToWord(); 2139 } 2140 2141 // Add the offset to the strings to the record. 2142 Record.push_back(Blob.size()); 2143 2144 // Add the strings to the blob. 2145 for (const Metadata *MD : Strings) 2146 Blob.append(cast<MDString>(MD)->getString()); 2147 2148 // Emit the final record. 2149 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2150 Record.clear(); 2151 } 2152 2153 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2154 enum MetadataAbbrev : unsigned { 2155 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2156 #include "llvm/IR/Metadata.def" 2157 LastPlusOne 2158 }; 2159 2160 void ModuleBitcodeWriter::writeMetadataRecords( 2161 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2162 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2163 if (MDs.empty()) 2164 return; 2165 2166 // Initialize MDNode abbreviations. 2167 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2168 #include "llvm/IR/Metadata.def" 2169 2170 for (const Metadata *MD : MDs) { 2171 if (IndexPos) 2172 IndexPos->push_back(Stream.GetCurrentBitNo()); 2173 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2174 assert(N->isResolved() && "Expected forward references to be resolved"); 2175 2176 switch (N->getMetadataID()) { 2177 default: 2178 llvm_unreachable("Invalid MDNode subclass"); 2179 #define HANDLE_MDNODE_LEAF(CLASS) \ 2180 case Metadata::CLASS##Kind: \ 2181 if (MDAbbrevs) \ 2182 write##CLASS(cast<CLASS>(N), Record, \ 2183 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2184 else \ 2185 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2186 continue; 2187 #include "llvm/IR/Metadata.def" 2188 } 2189 } 2190 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2191 } 2192 } 2193 2194 void ModuleBitcodeWriter::writeModuleMetadata() { 2195 if (!VE.hasMDs() && M.named_metadata_empty()) 2196 return; 2197 2198 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2199 SmallVector<uint64_t, 64> Record; 2200 2201 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2202 // block and load any metadata. 2203 std::vector<unsigned> MDAbbrevs; 2204 2205 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2206 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2207 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2208 createGenericDINodeAbbrev(); 2209 2210 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2211 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2214 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2215 2216 Abbv = std::make_shared<BitCodeAbbrev>(); 2217 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2220 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2221 2222 // Emit MDStrings together upfront. 2223 writeMetadataStrings(VE.getMDStrings(), Record); 2224 2225 // We only emit an index for the metadata record if we have more than a given 2226 // (naive) threshold of metadatas, otherwise it is not worth it. 2227 if (VE.getNonMDStrings().size() > IndexThreshold) { 2228 // Write a placeholder value in for the offset of the metadata index, 2229 // which is written after the records, so that it can include 2230 // the offset of each entry. The placeholder offset will be 2231 // updated after all records are emitted. 2232 uint64_t Vals[] = {0, 0}; 2233 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2234 } 2235 2236 // Compute and save the bit offset to the current position, which will be 2237 // patched when we emit the index later. We can simply subtract the 64-bit 2238 // fixed size from the current bit number to get the location to backpatch. 2239 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2240 2241 // This index will contain the bitpos for each individual record. 2242 std::vector<uint64_t> IndexPos; 2243 IndexPos.reserve(VE.getNonMDStrings().size()); 2244 2245 // Write all the records 2246 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2247 2248 if (VE.getNonMDStrings().size() > IndexThreshold) { 2249 // Now that we have emitted all the records we will emit the index. But 2250 // first 2251 // backpatch the forward reference so that the reader can skip the records 2252 // efficiently. 2253 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2254 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2255 2256 // Delta encode the index. 2257 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2258 for (auto &Elt : IndexPos) { 2259 auto EltDelta = Elt - PreviousValue; 2260 PreviousValue = Elt; 2261 Elt = EltDelta; 2262 } 2263 // Emit the index record. 2264 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2265 IndexPos.clear(); 2266 } 2267 2268 // Write the named metadata now. 2269 writeNamedMetadata(Record); 2270 2271 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2272 SmallVector<uint64_t, 4> Record; 2273 Record.push_back(VE.getValueID(&GO)); 2274 pushGlobalMetadataAttachment(Record, GO); 2275 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2276 }; 2277 for (const Function &F : M) 2278 if (F.isDeclaration() && F.hasMetadata()) 2279 AddDeclAttachedMetadata(F); 2280 // FIXME: Only store metadata for declarations here, and move data for global 2281 // variable definitions to a separate block (PR28134). 2282 for (const GlobalVariable &GV : M.globals()) 2283 if (GV.hasMetadata()) 2284 AddDeclAttachedMetadata(GV); 2285 2286 Stream.ExitBlock(); 2287 } 2288 2289 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2290 if (!VE.hasMDs()) 2291 return; 2292 2293 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2294 SmallVector<uint64_t, 64> Record; 2295 writeMetadataStrings(VE.getMDStrings(), Record); 2296 writeMetadataRecords(VE.getNonMDStrings(), Record); 2297 Stream.ExitBlock(); 2298 } 2299 2300 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2301 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2302 // [n x [id, mdnode]] 2303 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2304 GO.getAllMetadata(MDs); 2305 for (const auto &I : MDs) { 2306 Record.push_back(I.first); 2307 Record.push_back(VE.getMetadataID(I.second)); 2308 } 2309 } 2310 2311 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2312 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2313 2314 SmallVector<uint64_t, 64> Record; 2315 2316 if (F.hasMetadata()) { 2317 pushGlobalMetadataAttachment(Record, F); 2318 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2319 Record.clear(); 2320 } 2321 2322 // Write metadata attachments 2323 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2324 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2325 for (const BasicBlock &BB : F) 2326 for (const Instruction &I : BB) { 2327 MDs.clear(); 2328 I.getAllMetadataOtherThanDebugLoc(MDs); 2329 2330 // If no metadata, ignore instruction. 2331 if (MDs.empty()) continue; 2332 2333 Record.push_back(VE.getInstructionID(&I)); 2334 2335 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2336 Record.push_back(MDs[i].first); 2337 Record.push_back(VE.getMetadataID(MDs[i].second)); 2338 } 2339 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2340 Record.clear(); 2341 } 2342 2343 Stream.ExitBlock(); 2344 } 2345 2346 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2347 SmallVector<uint64_t, 64> Record; 2348 2349 // Write metadata kinds 2350 // METADATA_KIND - [n x [id, name]] 2351 SmallVector<StringRef, 8> Names; 2352 M.getMDKindNames(Names); 2353 2354 if (Names.empty()) return; 2355 2356 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2357 2358 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2359 Record.push_back(MDKindID); 2360 StringRef KName = Names[MDKindID]; 2361 Record.append(KName.begin(), KName.end()); 2362 2363 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2364 Record.clear(); 2365 } 2366 2367 Stream.ExitBlock(); 2368 } 2369 2370 void ModuleBitcodeWriter::writeOperandBundleTags() { 2371 // Write metadata kinds 2372 // 2373 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2374 // 2375 // OPERAND_BUNDLE_TAG - [strchr x N] 2376 2377 SmallVector<StringRef, 8> Tags; 2378 M.getOperandBundleTags(Tags); 2379 2380 if (Tags.empty()) 2381 return; 2382 2383 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2384 2385 SmallVector<uint64_t, 64> Record; 2386 2387 for (auto Tag : Tags) { 2388 Record.append(Tag.begin(), Tag.end()); 2389 2390 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2391 Record.clear(); 2392 } 2393 2394 Stream.ExitBlock(); 2395 } 2396 2397 void ModuleBitcodeWriter::writeSyncScopeNames() { 2398 SmallVector<StringRef, 8> SSNs; 2399 M.getContext().getSyncScopeNames(SSNs); 2400 if (SSNs.empty()) 2401 return; 2402 2403 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2404 2405 SmallVector<uint64_t, 64> Record; 2406 for (auto SSN : SSNs) { 2407 Record.append(SSN.begin(), SSN.end()); 2408 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2409 Record.clear(); 2410 } 2411 2412 Stream.ExitBlock(); 2413 } 2414 2415 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2416 bool isGlobal) { 2417 if (FirstVal == LastVal) return; 2418 2419 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2420 2421 unsigned AggregateAbbrev = 0; 2422 unsigned String8Abbrev = 0; 2423 unsigned CString7Abbrev = 0; 2424 unsigned CString6Abbrev = 0; 2425 // If this is a constant pool for the module, emit module-specific abbrevs. 2426 if (isGlobal) { 2427 // Abbrev for CST_CODE_AGGREGATE. 2428 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2429 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2432 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2433 2434 // Abbrev for CST_CODE_STRING. 2435 Abbv = std::make_shared<BitCodeAbbrev>(); 2436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2439 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2440 // Abbrev for CST_CODE_CSTRING. 2441 Abbv = std::make_shared<BitCodeAbbrev>(); 2442 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2445 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2446 // Abbrev for CST_CODE_CSTRING. 2447 Abbv = std::make_shared<BitCodeAbbrev>(); 2448 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2450 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2451 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2452 } 2453 2454 SmallVector<uint64_t, 64> Record; 2455 2456 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2457 Type *LastTy = nullptr; 2458 for (unsigned i = FirstVal; i != LastVal; ++i) { 2459 const Value *V = Vals[i].first; 2460 // If we need to switch types, do so now. 2461 if (V->getType() != LastTy) { 2462 LastTy = V->getType(); 2463 Record.push_back(VE.getTypeID(LastTy)); 2464 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2465 CONSTANTS_SETTYPE_ABBREV); 2466 Record.clear(); 2467 } 2468 2469 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2470 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2471 Record.push_back( 2472 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2473 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2474 2475 // Add the asm string. 2476 const std::string &AsmStr = IA->getAsmString(); 2477 Record.push_back(AsmStr.size()); 2478 Record.append(AsmStr.begin(), AsmStr.end()); 2479 2480 // Add the constraint string. 2481 const std::string &ConstraintStr = IA->getConstraintString(); 2482 Record.push_back(ConstraintStr.size()); 2483 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2484 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2485 Record.clear(); 2486 continue; 2487 } 2488 const Constant *C = cast<Constant>(V); 2489 unsigned Code = -1U; 2490 unsigned AbbrevToUse = 0; 2491 if (C->isNullValue()) { 2492 Code = bitc::CST_CODE_NULL; 2493 } else if (isa<PoisonValue>(C)) { 2494 Code = bitc::CST_CODE_POISON; 2495 } else if (isa<UndefValue>(C)) { 2496 Code = bitc::CST_CODE_UNDEF; 2497 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2498 if (IV->getBitWidth() <= 64) { 2499 uint64_t V = IV->getSExtValue(); 2500 emitSignedInt64(Record, V); 2501 Code = bitc::CST_CODE_INTEGER; 2502 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2503 } else { // Wide integers, > 64 bits in size. 2504 emitWideAPInt(Record, IV->getValue()); 2505 Code = bitc::CST_CODE_WIDE_INTEGER; 2506 } 2507 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2508 Code = bitc::CST_CODE_FLOAT; 2509 Type *Ty = CFP->getType(); 2510 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2511 Ty->isDoubleTy()) { 2512 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2513 } else if (Ty->isX86_FP80Ty()) { 2514 // api needed to prevent premature destruction 2515 // bits are not in the same order as a normal i80 APInt, compensate. 2516 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2517 const uint64_t *p = api.getRawData(); 2518 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2519 Record.push_back(p[0] & 0xffffLL); 2520 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2521 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2522 const uint64_t *p = api.getRawData(); 2523 Record.push_back(p[0]); 2524 Record.push_back(p[1]); 2525 } else { 2526 assert(0 && "Unknown FP type!"); 2527 } 2528 } else if (isa<ConstantDataSequential>(C) && 2529 cast<ConstantDataSequential>(C)->isString()) { 2530 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2531 // Emit constant strings specially. 2532 unsigned NumElts = Str->getNumElements(); 2533 // If this is a null-terminated string, use the denser CSTRING encoding. 2534 if (Str->isCString()) { 2535 Code = bitc::CST_CODE_CSTRING; 2536 --NumElts; // Don't encode the null, which isn't allowed by char6. 2537 } else { 2538 Code = bitc::CST_CODE_STRING; 2539 AbbrevToUse = String8Abbrev; 2540 } 2541 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2542 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2543 for (unsigned i = 0; i != NumElts; ++i) { 2544 unsigned char V = Str->getElementAsInteger(i); 2545 Record.push_back(V); 2546 isCStr7 &= (V & 128) == 0; 2547 if (isCStrChar6) 2548 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2549 } 2550 2551 if (isCStrChar6) 2552 AbbrevToUse = CString6Abbrev; 2553 else if (isCStr7) 2554 AbbrevToUse = CString7Abbrev; 2555 } else if (const ConstantDataSequential *CDS = 2556 dyn_cast<ConstantDataSequential>(C)) { 2557 Code = bitc::CST_CODE_DATA; 2558 Type *EltTy = CDS->getElementType(); 2559 if (isa<IntegerType>(EltTy)) { 2560 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2561 Record.push_back(CDS->getElementAsInteger(i)); 2562 } else { 2563 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2564 Record.push_back( 2565 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2566 } 2567 } else if (isa<ConstantAggregate>(C)) { 2568 Code = bitc::CST_CODE_AGGREGATE; 2569 for (const Value *Op : C->operands()) 2570 Record.push_back(VE.getValueID(Op)); 2571 AbbrevToUse = AggregateAbbrev; 2572 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2573 switch (CE->getOpcode()) { 2574 default: 2575 if (Instruction::isCast(CE->getOpcode())) { 2576 Code = bitc::CST_CODE_CE_CAST; 2577 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2578 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2579 Record.push_back(VE.getValueID(C->getOperand(0))); 2580 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2581 } else { 2582 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2583 Code = bitc::CST_CODE_CE_BINOP; 2584 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2585 Record.push_back(VE.getValueID(C->getOperand(0))); 2586 Record.push_back(VE.getValueID(C->getOperand(1))); 2587 uint64_t Flags = getOptimizationFlags(CE); 2588 if (Flags != 0) 2589 Record.push_back(Flags); 2590 } 2591 break; 2592 case Instruction::FNeg: { 2593 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2594 Code = bitc::CST_CODE_CE_UNOP; 2595 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2596 Record.push_back(VE.getValueID(C->getOperand(0))); 2597 uint64_t Flags = getOptimizationFlags(CE); 2598 if (Flags != 0) 2599 Record.push_back(Flags); 2600 break; 2601 } 2602 case Instruction::GetElementPtr: { 2603 Code = bitc::CST_CODE_CE_GEP; 2604 const auto *GO = cast<GEPOperator>(C); 2605 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2606 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2607 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2608 Record.push_back((*Idx << 1) | GO->isInBounds()); 2609 } else if (GO->isInBounds()) 2610 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2611 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2612 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2613 Record.push_back(VE.getValueID(C->getOperand(i))); 2614 } 2615 break; 2616 } 2617 case Instruction::Select: 2618 Code = bitc::CST_CODE_CE_SELECT; 2619 Record.push_back(VE.getValueID(C->getOperand(0))); 2620 Record.push_back(VE.getValueID(C->getOperand(1))); 2621 Record.push_back(VE.getValueID(C->getOperand(2))); 2622 break; 2623 case Instruction::ExtractElement: 2624 Code = bitc::CST_CODE_CE_EXTRACTELT; 2625 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2626 Record.push_back(VE.getValueID(C->getOperand(0))); 2627 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2628 Record.push_back(VE.getValueID(C->getOperand(1))); 2629 break; 2630 case Instruction::InsertElement: 2631 Code = bitc::CST_CODE_CE_INSERTELT; 2632 Record.push_back(VE.getValueID(C->getOperand(0))); 2633 Record.push_back(VE.getValueID(C->getOperand(1))); 2634 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2635 Record.push_back(VE.getValueID(C->getOperand(2))); 2636 break; 2637 case Instruction::ShuffleVector: 2638 // If the return type and argument types are the same, this is a 2639 // standard shufflevector instruction. If the types are different, 2640 // then the shuffle is widening or truncating the input vectors, and 2641 // the argument type must also be encoded. 2642 if (C->getType() == C->getOperand(0)->getType()) { 2643 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2644 } else { 2645 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2646 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2647 } 2648 Record.push_back(VE.getValueID(C->getOperand(0))); 2649 Record.push_back(VE.getValueID(C->getOperand(1))); 2650 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2651 break; 2652 case Instruction::ICmp: 2653 case Instruction::FCmp: 2654 Code = bitc::CST_CODE_CE_CMP; 2655 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2656 Record.push_back(VE.getValueID(C->getOperand(0))); 2657 Record.push_back(VE.getValueID(C->getOperand(1))); 2658 Record.push_back(CE->getPredicate()); 2659 break; 2660 case Instruction::ExtractValue: 2661 case Instruction::InsertValue: 2662 report_fatal_error("extractvalue/insertvalue constexprs not supported"); 2663 break; 2664 } 2665 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2666 Code = bitc::CST_CODE_BLOCKADDRESS; 2667 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2668 Record.push_back(VE.getValueID(BA->getFunction())); 2669 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2670 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2671 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2672 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2673 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2674 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2675 Code = bitc::CST_CODE_NO_CFI_VALUE; 2676 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2677 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2678 } else { 2679 #ifndef NDEBUG 2680 C->dump(); 2681 #endif 2682 llvm_unreachable("Unknown constant!"); 2683 } 2684 Stream.EmitRecord(Code, Record, AbbrevToUse); 2685 Record.clear(); 2686 } 2687 2688 Stream.ExitBlock(); 2689 } 2690 2691 void ModuleBitcodeWriter::writeModuleConstants() { 2692 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2693 2694 // Find the first constant to emit, which is the first non-globalvalue value. 2695 // We know globalvalues have been emitted by WriteModuleInfo. 2696 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2697 if (!isa<GlobalValue>(Vals[i].first)) { 2698 writeConstants(i, Vals.size(), true); 2699 return; 2700 } 2701 } 2702 } 2703 2704 /// pushValueAndType - The file has to encode both the value and type id for 2705 /// many values, because we need to know what type to create for forward 2706 /// references. However, most operands are not forward references, so this type 2707 /// field is not needed. 2708 /// 2709 /// This function adds V's value ID to Vals. If the value ID is higher than the 2710 /// instruction ID, then it is a forward reference, and it also includes the 2711 /// type ID. The value ID that is written is encoded relative to the InstID. 2712 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2713 SmallVectorImpl<unsigned> &Vals) { 2714 unsigned ValID = VE.getValueID(V); 2715 // Make encoding relative to the InstID. 2716 Vals.push_back(InstID - ValID); 2717 if (ValID >= InstID) { 2718 Vals.push_back(VE.getTypeID(V->getType())); 2719 return true; 2720 } 2721 return false; 2722 } 2723 2724 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2725 unsigned InstID) { 2726 SmallVector<unsigned, 64> Record; 2727 LLVMContext &C = CS.getContext(); 2728 2729 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2730 const auto &Bundle = CS.getOperandBundleAt(i); 2731 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2732 2733 for (auto &Input : Bundle.Inputs) 2734 pushValueAndType(Input, InstID, Record); 2735 2736 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2737 Record.clear(); 2738 } 2739 } 2740 2741 /// pushValue - Like pushValueAndType, but where the type of the value is 2742 /// omitted (perhaps it was already encoded in an earlier operand). 2743 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2744 SmallVectorImpl<unsigned> &Vals) { 2745 unsigned ValID = VE.getValueID(V); 2746 Vals.push_back(InstID - ValID); 2747 } 2748 2749 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2750 SmallVectorImpl<uint64_t> &Vals) { 2751 unsigned ValID = VE.getValueID(V); 2752 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2753 emitSignedInt64(Vals, diff); 2754 } 2755 2756 /// WriteInstruction - Emit an instruction to the specified stream. 2757 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2758 unsigned InstID, 2759 SmallVectorImpl<unsigned> &Vals) { 2760 unsigned Code = 0; 2761 unsigned AbbrevToUse = 0; 2762 VE.setInstructionID(&I); 2763 switch (I.getOpcode()) { 2764 default: 2765 if (Instruction::isCast(I.getOpcode())) { 2766 Code = bitc::FUNC_CODE_INST_CAST; 2767 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2768 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2769 Vals.push_back(VE.getTypeID(I.getType())); 2770 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2771 } else { 2772 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2773 Code = bitc::FUNC_CODE_INST_BINOP; 2774 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2775 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2776 pushValue(I.getOperand(1), InstID, Vals); 2777 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2778 uint64_t Flags = getOptimizationFlags(&I); 2779 if (Flags != 0) { 2780 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2781 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2782 Vals.push_back(Flags); 2783 } 2784 } 2785 break; 2786 case Instruction::FNeg: { 2787 Code = bitc::FUNC_CODE_INST_UNOP; 2788 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2789 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2790 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2791 uint64_t Flags = getOptimizationFlags(&I); 2792 if (Flags != 0) { 2793 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2794 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2795 Vals.push_back(Flags); 2796 } 2797 break; 2798 } 2799 case Instruction::GetElementPtr: { 2800 Code = bitc::FUNC_CODE_INST_GEP; 2801 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2802 auto &GEPInst = cast<GetElementPtrInst>(I); 2803 Vals.push_back(GEPInst.isInBounds()); 2804 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2805 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2806 pushValueAndType(I.getOperand(i), InstID, Vals); 2807 break; 2808 } 2809 case Instruction::ExtractValue: { 2810 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2811 pushValueAndType(I.getOperand(0), InstID, Vals); 2812 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2813 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2814 break; 2815 } 2816 case Instruction::InsertValue: { 2817 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2818 pushValueAndType(I.getOperand(0), InstID, Vals); 2819 pushValueAndType(I.getOperand(1), InstID, Vals); 2820 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2821 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2822 break; 2823 } 2824 case Instruction::Select: { 2825 Code = bitc::FUNC_CODE_INST_VSELECT; 2826 pushValueAndType(I.getOperand(1), InstID, Vals); 2827 pushValue(I.getOperand(2), InstID, Vals); 2828 pushValueAndType(I.getOperand(0), InstID, Vals); 2829 uint64_t Flags = getOptimizationFlags(&I); 2830 if (Flags != 0) 2831 Vals.push_back(Flags); 2832 break; 2833 } 2834 case Instruction::ExtractElement: 2835 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2836 pushValueAndType(I.getOperand(0), InstID, Vals); 2837 pushValueAndType(I.getOperand(1), InstID, Vals); 2838 break; 2839 case Instruction::InsertElement: 2840 Code = bitc::FUNC_CODE_INST_INSERTELT; 2841 pushValueAndType(I.getOperand(0), InstID, Vals); 2842 pushValue(I.getOperand(1), InstID, Vals); 2843 pushValueAndType(I.getOperand(2), InstID, Vals); 2844 break; 2845 case Instruction::ShuffleVector: 2846 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2847 pushValueAndType(I.getOperand(0), InstID, Vals); 2848 pushValue(I.getOperand(1), InstID, Vals); 2849 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2850 Vals); 2851 break; 2852 case Instruction::ICmp: 2853 case Instruction::FCmp: { 2854 // compare returning Int1Ty or vector of Int1Ty 2855 Code = bitc::FUNC_CODE_INST_CMP2; 2856 pushValueAndType(I.getOperand(0), InstID, Vals); 2857 pushValue(I.getOperand(1), InstID, Vals); 2858 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2859 uint64_t Flags = getOptimizationFlags(&I); 2860 if (Flags != 0) 2861 Vals.push_back(Flags); 2862 break; 2863 } 2864 2865 case Instruction::Ret: 2866 { 2867 Code = bitc::FUNC_CODE_INST_RET; 2868 unsigned NumOperands = I.getNumOperands(); 2869 if (NumOperands == 0) 2870 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2871 else if (NumOperands == 1) { 2872 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2873 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2874 } else { 2875 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2876 pushValueAndType(I.getOperand(i), InstID, Vals); 2877 } 2878 } 2879 break; 2880 case Instruction::Br: 2881 { 2882 Code = bitc::FUNC_CODE_INST_BR; 2883 const BranchInst &II = cast<BranchInst>(I); 2884 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2885 if (II.isConditional()) { 2886 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2887 pushValue(II.getCondition(), InstID, Vals); 2888 } 2889 } 2890 break; 2891 case Instruction::Switch: 2892 { 2893 Code = bitc::FUNC_CODE_INST_SWITCH; 2894 const SwitchInst &SI = cast<SwitchInst>(I); 2895 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2896 pushValue(SI.getCondition(), InstID, Vals); 2897 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2898 for (auto Case : SI.cases()) { 2899 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2900 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2901 } 2902 } 2903 break; 2904 case Instruction::IndirectBr: 2905 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2906 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2907 // Encode the address operand as relative, but not the basic blocks. 2908 pushValue(I.getOperand(0), InstID, Vals); 2909 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2910 Vals.push_back(VE.getValueID(I.getOperand(i))); 2911 break; 2912 2913 case Instruction::Invoke: { 2914 const InvokeInst *II = cast<InvokeInst>(&I); 2915 const Value *Callee = II->getCalledOperand(); 2916 FunctionType *FTy = II->getFunctionType(); 2917 2918 if (II->hasOperandBundles()) 2919 writeOperandBundles(*II, InstID); 2920 2921 Code = bitc::FUNC_CODE_INST_INVOKE; 2922 2923 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2924 Vals.push_back(II->getCallingConv() | 1 << 13); 2925 Vals.push_back(VE.getValueID(II->getNormalDest())); 2926 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2927 Vals.push_back(VE.getTypeID(FTy)); 2928 pushValueAndType(Callee, InstID, Vals); 2929 2930 // Emit value #'s for the fixed parameters. 2931 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2932 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2933 2934 // Emit type/value pairs for varargs params. 2935 if (FTy->isVarArg()) { 2936 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2937 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2938 } 2939 break; 2940 } 2941 case Instruction::Resume: 2942 Code = bitc::FUNC_CODE_INST_RESUME; 2943 pushValueAndType(I.getOperand(0), InstID, Vals); 2944 break; 2945 case Instruction::CleanupRet: { 2946 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2947 const auto &CRI = cast<CleanupReturnInst>(I); 2948 pushValue(CRI.getCleanupPad(), InstID, Vals); 2949 if (CRI.hasUnwindDest()) 2950 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2951 break; 2952 } 2953 case Instruction::CatchRet: { 2954 Code = bitc::FUNC_CODE_INST_CATCHRET; 2955 const auto &CRI = cast<CatchReturnInst>(I); 2956 pushValue(CRI.getCatchPad(), InstID, Vals); 2957 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2958 break; 2959 } 2960 case Instruction::CleanupPad: 2961 case Instruction::CatchPad: { 2962 const auto &FuncletPad = cast<FuncletPadInst>(I); 2963 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2964 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2965 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2966 2967 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2968 Vals.push_back(NumArgOperands); 2969 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2970 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2971 break; 2972 } 2973 case Instruction::CatchSwitch: { 2974 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2975 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2976 2977 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2978 2979 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2980 Vals.push_back(NumHandlers); 2981 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2982 Vals.push_back(VE.getValueID(CatchPadBB)); 2983 2984 if (CatchSwitch.hasUnwindDest()) 2985 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2986 break; 2987 } 2988 case Instruction::CallBr: { 2989 const CallBrInst *CBI = cast<CallBrInst>(&I); 2990 const Value *Callee = CBI->getCalledOperand(); 2991 FunctionType *FTy = CBI->getFunctionType(); 2992 2993 if (CBI->hasOperandBundles()) 2994 writeOperandBundles(*CBI, InstID); 2995 2996 Code = bitc::FUNC_CODE_INST_CALLBR; 2997 2998 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2999 3000 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3001 1 << bitc::CALL_EXPLICIT_TYPE); 3002 3003 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3004 Vals.push_back(CBI->getNumIndirectDests()); 3005 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3006 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3007 3008 Vals.push_back(VE.getTypeID(FTy)); 3009 pushValueAndType(Callee, InstID, Vals); 3010 3011 // Emit value #'s for the fixed parameters. 3012 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3013 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3014 3015 // Emit type/value pairs for varargs params. 3016 if (FTy->isVarArg()) { 3017 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3018 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3019 } 3020 break; 3021 } 3022 case Instruction::Unreachable: 3023 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3024 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3025 break; 3026 3027 case Instruction::PHI: { 3028 const PHINode &PN = cast<PHINode>(I); 3029 Code = bitc::FUNC_CODE_INST_PHI; 3030 // With the newer instruction encoding, forward references could give 3031 // negative valued IDs. This is most common for PHIs, so we use 3032 // signed VBRs. 3033 SmallVector<uint64_t, 128> Vals64; 3034 Vals64.push_back(VE.getTypeID(PN.getType())); 3035 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3036 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3037 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3038 } 3039 3040 uint64_t Flags = getOptimizationFlags(&I); 3041 if (Flags != 0) 3042 Vals64.push_back(Flags); 3043 3044 // Emit a Vals64 vector and exit. 3045 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3046 Vals64.clear(); 3047 return; 3048 } 3049 3050 case Instruction::LandingPad: { 3051 const LandingPadInst &LP = cast<LandingPadInst>(I); 3052 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3053 Vals.push_back(VE.getTypeID(LP.getType())); 3054 Vals.push_back(LP.isCleanup()); 3055 Vals.push_back(LP.getNumClauses()); 3056 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3057 if (LP.isCatch(I)) 3058 Vals.push_back(LandingPadInst::Catch); 3059 else 3060 Vals.push_back(LandingPadInst::Filter); 3061 pushValueAndType(LP.getClause(I), InstID, Vals); 3062 } 3063 break; 3064 } 3065 3066 case Instruction::Alloca: { 3067 Code = bitc::FUNC_CODE_INST_ALLOCA; 3068 const AllocaInst &AI = cast<AllocaInst>(I); 3069 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3070 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3071 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3072 using APV = AllocaPackedValues; 3073 unsigned Record = 0; 3074 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3075 Bitfield::set<APV::AlignLower>( 3076 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3077 Bitfield::set<APV::AlignUpper>(Record, 3078 EncodedAlign >> APV::AlignLower::Bits); 3079 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3080 Bitfield::set<APV::ExplicitType>(Record, true); 3081 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3082 Vals.push_back(Record); 3083 3084 unsigned AS = AI.getAddressSpace(); 3085 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3086 Vals.push_back(AS); 3087 break; 3088 } 3089 3090 case Instruction::Load: 3091 if (cast<LoadInst>(I).isAtomic()) { 3092 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3093 pushValueAndType(I.getOperand(0), InstID, Vals); 3094 } else { 3095 Code = bitc::FUNC_CODE_INST_LOAD; 3096 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3097 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3098 } 3099 Vals.push_back(VE.getTypeID(I.getType())); 3100 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3101 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3102 if (cast<LoadInst>(I).isAtomic()) { 3103 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3104 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3105 } 3106 break; 3107 case Instruction::Store: 3108 if (cast<StoreInst>(I).isAtomic()) 3109 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3110 else 3111 Code = bitc::FUNC_CODE_INST_STORE; 3112 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3113 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3114 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3115 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3116 if (cast<StoreInst>(I).isAtomic()) { 3117 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3118 Vals.push_back( 3119 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3120 } 3121 break; 3122 case Instruction::AtomicCmpXchg: 3123 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3124 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3125 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3126 pushValue(I.getOperand(2), InstID, Vals); // newval. 3127 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3128 Vals.push_back( 3129 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3130 Vals.push_back( 3131 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3132 Vals.push_back( 3133 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3134 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3135 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3136 break; 3137 case Instruction::AtomicRMW: 3138 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3139 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3140 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3141 Vals.push_back( 3142 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3143 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3144 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3145 Vals.push_back( 3146 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3147 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3148 break; 3149 case Instruction::Fence: 3150 Code = bitc::FUNC_CODE_INST_FENCE; 3151 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3152 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3153 break; 3154 case Instruction::Call: { 3155 const CallInst &CI = cast<CallInst>(I); 3156 FunctionType *FTy = CI.getFunctionType(); 3157 3158 if (CI.hasOperandBundles()) 3159 writeOperandBundles(CI, InstID); 3160 3161 Code = bitc::FUNC_CODE_INST_CALL; 3162 3163 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3164 3165 unsigned Flags = getOptimizationFlags(&I); 3166 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3167 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3168 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3169 1 << bitc::CALL_EXPLICIT_TYPE | 3170 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3171 unsigned(Flags != 0) << bitc::CALL_FMF); 3172 if (Flags != 0) 3173 Vals.push_back(Flags); 3174 3175 Vals.push_back(VE.getTypeID(FTy)); 3176 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3177 3178 // Emit value #'s for the fixed parameters. 3179 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3180 // Check for labels (can happen with asm labels). 3181 if (FTy->getParamType(i)->isLabelTy()) 3182 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3183 else 3184 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3185 } 3186 3187 // Emit type/value pairs for varargs params. 3188 if (FTy->isVarArg()) { 3189 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3190 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3191 } 3192 break; 3193 } 3194 case Instruction::VAArg: 3195 Code = bitc::FUNC_CODE_INST_VAARG; 3196 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3197 pushValue(I.getOperand(0), InstID, Vals); // valist. 3198 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3199 break; 3200 case Instruction::Freeze: 3201 Code = bitc::FUNC_CODE_INST_FREEZE; 3202 pushValueAndType(I.getOperand(0), InstID, Vals); 3203 break; 3204 } 3205 3206 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3207 Vals.clear(); 3208 } 3209 3210 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3211 /// to allow clients to efficiently find the function body. 3212 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3213 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3214 // Get the offset of the VST we are writing, and backpatch it into 3215 // the VST forward declaration record. 3216 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3217 // The BitcodeStartBit was the stream offset of the identification block. 3218 VSTOffset -= bitcodeStartBit(); 3219 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3220 // Note that we add 1 here because the offset is relative to one word 3221 // before the start of the identification block, which was historically 3222 // always the start of the regular bitcode header. 3223 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3224 3225 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3226 3227 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3228 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3231 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3232 3233 for (const Function &F : M) { 3234 uint64_t Record[2]; 3235 3236 if (F.isDeclaration()) 3237 continue; 3238 3239 Record[0] = VE.getValueID(&F); 3240 3241 // Save the word offset of the function (from the start of the 3242 // actual bitcode written to the stream). 3243 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3244 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3245 // Note that we add 1 here because the offset is relative to one word 3246 // before the start of the identification block, which was historically 3247 // always the start of the regular bitcode header. 3248 Record[1] = BitcodeIndex / 32 + 1; 3249 3250 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3251 } 3252 3253 Stream.ExitBlock(); 3254 } 3255 3256 /// Emit names for arguments, instructions and basic blocks in a function. 3257 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3258 const ValueSymbolTable &VST) { 3259 if (VST.empty()) 3260 return; 3261 3262 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3263 3264 // FIXME: Set up the abbrev, we know how many values there are! 3265 // FIXME: We know if the type names can use 7-bit ascii. 3266 SmallVector<uint64_t, 64> NameVals; 3267 3268 for (const ValueName &Name : VST) { 3269 // Figure out the encoding to use for the name. 3270 StringEncoding Bits = getStringEncoding(Name.getKey()); 3271 3272 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3273 NameVals.push_back(VE.getValueID(Name.getValue())); 3274 3275 // VST_CODE_ENTRY: [valueid, namechar x N] 3276 // VST_CODE_BBENTRY: [bbid, namechar x N] 3277 unsigned Code; 3278 if (isa<BasicBlock>(Name.getValue())) { 3279 Code = bitc::VST_CODE_BBENTRY; 3280 if (Bits == SE_Char6) 3281 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3282 } else { 3283 Code = bitc::VST_CODE_ENTRY; 3284 if (Bits == SE_Char6) 3285 AbbrevToUse = VST_ENTRY_6_ABBREV; 3286 else if (Bits == SE_Fixed7) 3287 AbbrevToUse = VST_ENTRY_7_ABBREV; 3288 } 3289 3290 for (const auto P : Name.getKey()) 3291 NameVals.push_back((unsigned char)P); 3292 3293 // Emit the finished record. 3294 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3295 NameVals.clear(); 3296 } 3297 3298 Stream.ExitBlock(); 3299 } 3300 3301 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3302 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3303 unsigned Code; 3304 if (isa<BasicBlock>(Order.V)) 3305 Code = bitc::USELIST_CODE_BB; 3306 else 3307 Code = bitc::USELIST_CODE_DEFAULT; 3308 3309 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3310 Record.push_back(VE.getValueID(Order.V)); 3311 Stream.EmitRecord(Code, Record); 3312 } 3313 3314 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3315 assert(VE.shouldPreserveUseListOrder() && 3316 "Expected to be preserving use-list order"); 3317 3318 auto hasMore = [&]() { 3319 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3320 }; 3321 if (!hasMore()) 3322 // Nothing to do. 3323 return; 3324 3325 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3326 while (hasMore()) { 3327 writeUseList(std::move(VE.UseListOrders.back())); 3328 VE.UseListOrders.pop_back(); 3329 } 3330 Stream.ExitBlock(); 3331 } 3332 3333 /// Emit a function body to the module stream. 3334 void ModuleBitcodeWriter::writeFunction( 3335 const Function &F, 3336 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3337 // Save the bitcode index of the start of this function block for recording 3338 // in the VST. 3339 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3340 3341 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3342 VE.incorporateFunction(F); 3343 3344 SmallVector<unsigned, 64> Vals; 3345 3346 // Emit the number of basic blocks, so the reader can create them ahead of 3347 // time. 3348 Vals.push_back(VE.getBasicBlocks().size()); 3349 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3350 Vals.clear(); 3351 3352 // If there are function-local constants, emit them now. 3353 unsigned CstStart, CstEnd; 3354 VE.getFunctionConstantRange(CstStart, CstEnd); 3355 writeConstants(CstStart, CstEnd, false); 3356 3357 // If there is function-local metadata, emit it now. 3358 writeFunctionMetadata(F); 3359 3360 // Keep a running idea of what the instruction ID is. 3361 unsigned InstID = CstEnd; 3362 3363 bool NeedsMetadataAttachment = F.hasMetadata(); 3364 3365 DILocation *LastDL = nullptr; 3366 SmallPtrSet<Function *, 4> BlockAddressUsers; 3367 3368 // Finally, emit all the instructions, in order. 3369 for (const BasicBlock &BB : F) { 3370 for (const Instruction &I : BB) { 3371 writeInstruction(I, InstID, Vals); 3372 3373 if (!I.getType()->isVoidTy()) 3374 ++InstID; 3375 3376 // If the instruction has metadata, write a metadata attachment later. 3377 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3378 3379 // If the instruction has a debug location, emit it. 3380 DILocation *DL = I.getDebugLoc(); 3381 if (!DL) 3382 continue; 3383 3384 if (DL == LastDL) { 3385 // Just repeat the same debug loc as last time. 3386 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3387 continue; 3388 } 3389 3390 Vals.push_back(DL->getLine()); 3391 Vals.push_back(DL->getColumn()); 3392 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3393 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3394 Vals.push_back(DL->isImplicitCode()); 3395 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3396 Vals.clear(); 3397 3398 LastDL = DL; 3399 } 3400 3401 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3402 for (User *U : BA->users()) { 3403 if (auto *I = dyn_cast<Instruction>(U)) { 3404 Function *P = I->getParent()->getParent(); 3405 if (P != &F) 3406 BlockAddressUsers.insert(P); 3407 } 3408 } 3409 } 3410 } 3411 3412 if (!BlockAddressUsers.empty()) { 3413 SmallVector<uint64_t, 4> Record; 3414 Record.reserve(BlockAddressUsers.size()); 3415 for (Function *F : BlockAddressUsers) 3416 Record.push_back(VE.getValueID(F)); 3417 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Record); 3418 } 3419 3420 // Emit names for all the instructions etc. 3421 if (auto *Symtab = F.getValueSymbolTable()) 3422 writeFunctionLevelValueSymbolTable(*Symtab); 3423 3424 if (NeedsMetadataAttachment) 3425 writeFunctionMetadataAttachment(F); 3426 if (VE.shouldPreserveUseListOrder()) 3427 writeUseListBlock(&F); 3428 VE.purgeFunction(); 3429 Stream.ExitBlock(); 3430 } 3431 3432 // Emit blockinfo, which defines the standard abbreviations etc. 3433 void ModuleBitcodeWriter::writeBlockInfo() { 3434 // We only want to emit block info records for blocks that have multiple 3435 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3436 // Other blocks can define their abbrevs inline. 3437 Stream.EnterBlockInfoBlock(); 3438 3439 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3440 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3445 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3446 VST_ENTRY_8_ABBREV) 3447 llvm_unreachable("Unexpected abbrev ordering!"); 3448 } 3449 3450 { // 7-bit fixed width VST_CODE_ENTRY strings. 3451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3456 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3457 VST_ENTRY_7_ABBREV) 3458 llvm_unreachable("Unexpected abbrev ordering!"); 3459 } 3460 { // 6-bit char6 VST_CODE_ENTRY strings. 3461 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3462 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3466 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3467 VST_ENTRY_6_ABBREV) 3468 llvm_unreachable("Unexpected abbrev ordering!"); 3469 } 3470 { // 6-bit char6 VST_CODE_BBENTRY strings. 3471 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3472 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3476 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3477 VST_BBENTRY_6_ABBREV) 3478 llvm_unreachable("Unexpected abbrev ordering!"); 3479 } 3480 3481 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3482 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3483 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3485 VE.computeBitsRequiredForTypeIndicies())); 3486 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3487 CONSTANTS_SETTYPE_ABBREV) 3488 llvm_unreachable("Unexpected abbrev ordering!"); 3489 } 3490 3491 { // INTEGER abbrev for CONSTANTS_BLOCK. 3492 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3493 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3495 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3496 CONSTANTS_INTEGER_ABBREV) 3497 llvm_unreachable("Unexpected abbrev ordering!"); 3498 } 3499 3500 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3501 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3502 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3505 VE.computeBitsRequiredForTypeIndicies())); 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3507 3508 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3509 CONSTANTS_CE_CAST_Abbrev) 3510 llvm_unreachable("Unexpected abbrev ordering!"); 3511 } 3512 { // NULL abbrev for CONSTANTS_BLOCK. 3513 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3514 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3515 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3516 CONSTANTS_NULL_Abbrev) 3517 llvm_unreachable("Unexpected abbrev ordering!"); 3518 } 3519 3520 // FIXME: This should only use space for first class types! 3521 3522 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3523 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3524 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3527 VE.computeBitsRequiredForTypeIndicies())); 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3530 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3531 FUNCTION_INST_LOAD_ABBREV) 3532 llvm_unreachable("Unexpected abbrev ordering!"); 3533 } 3534 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3535 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3536 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3537 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3539 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3540 FUNCTION_INST_UNOP_ABBREV) 3541 llvm_unreachable("Unexpected abbrev ordering!"); 3542 } 3543 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3544 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3545 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3549 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3550 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3551 llvm_unreachable("Unexpected abbrev ordering!"); 3552 } 3553 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3554 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3555 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3559 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3560 FUNCTION_INST_BINOP_ABBREV) 3561 llvm_unreachable("Unexpected abbrev ordering!"); 3562 } 3563 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3564 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3565 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3566 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3570 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3571 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3572 llvm_unreachable("Unexpected abbrev ordering!"); 3573 } 3574 { // INST_CAST abbrev for FUNCTION_BLOCK. 3575 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3576 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3579 VE.computeBitsRequiredForTypeIndicies())); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3581 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3582 FUNCTION_INST_CAST_ABBREV) 3583 llvm_unreachable("Unexpected abbrev ordering!"); 3584 } 3585 3586 { // INST_RET abbrev for FUNCTION_BLOCK. 3587 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3588 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3589 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3590 FUNCTION_INST_RET_VOID_ABBREV) 3591 llvm_unreachable("Unexpected abbrev ordering!"); 3592 } 3593 { // INST_RET abbrev for FUNCTION_BLOCK. 3594 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3595 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3597 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3598 FUNCTION_INST_RET_VAL_ABBREV) 3599 llvm_unreachable("Unexpected abbrev ordering!"); 3600 } 3601 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3602 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3603 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3604 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3605 FUNCTION_INST_UNREACHABLE_ABBREV) 3606 llvm_unreachable("Unexpected abbrev ordering!"); 3607 } 3608 { 3609 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3610 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3612 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3613 Log2_32_Ceil(VE.getTypes().size() + 1))); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3616 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3617 FUNCTION_INST_GEP_ABBREV) 3618 llvm_unreachable("Unexpected abbrev ordering!"); 3619 } 3620 3621 Stream.ExitBlock(); 3622 } 3623 3624 /// Write the module path strings, currently only used when generating 3625 /// a combined index file. 3626 void IndexBitcodeWriter::writeModStrings() { 3627 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3628 3629 // TODO: See which abbrev sizes we actually need to emit 3630 3631 // 8-bit fixed-width MST_ENTRY strings. 3632 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3633 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3637 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3638 3639 // 7-bit fixed width MST_ENTRY strings. 3640 Abbv = std::make_shared<BitCodeAbbrev>(); 3641 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3643 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3645 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3646 3647 // 6-bit char6 MST_ENTRY strings. 3648 Abbv = std::make_shared<BitCodeAbbrev>(); 3649 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3653 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3654 3655 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3656 Abbv = std::make_shared<BitCodeAbbrev>(); 3657 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3658 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3659 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3660 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3663 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3664 3665 SmallVector<unsigned, 64> Vals; 3666 forEachModule( 3667 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3668 StringRef Key = MPSE.getKey(); 3669 const auto &Value = MPSE.getValue(); 3670 StringEncoding Bits = getStringEncoding(Key); 3671 unsigned AbbrevToUse = Abbrev8Bit; 3672 if (Bits == SE_Char6) 3673 AbbrevToUse = Abbrev6Bit; 3674 else if (Bits == SE_Fixed7) 3675 AbbrevToUse = Abbrev7Bit; 3676 3677 Vals.push_back(Value.first); 3678 Vals.append(Key.begin(), Key.end()); 3679 3680 // Emit the finished record. 3681 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3682 3683 // Emit an optional hash for the module now 3684 const auto &Hash = Value.second; 3685 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3686 Vals.assign(Hash.begin(), Hash.end()); 3687 // Emit the hash record. 3688 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3689 } 3690 3691 Vals.clear(); 3692 }); 3693 Stream.ExitBlock(); 3694 } 3695 3696 /// Write the function type metadata related records that need to appear before 3697 /// a function summary entry (whether per-module or combined). 3698 template <typename Fn> 3699 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3700 FunctionSummary *FS, 3701 Fn GetValueID) { 3702 if (!FS->type_tests().empty()) 3703 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3704 3705 SmallVector<uint64_t, 64> Record; 3706 3707 auto WriteVFuncIdVec = [&](uint64_t Ty, 3708 ArrayRef<FunctionSummary::VFuncId> VFs) { 3709 if (VFs.empty()) 3710 return; 3711 Record.clear(); 3712 for (auto &VF : VFs) { 3713 Record.push_back(VF.GUID); 3714 Record.push_back(VF.Offset); 3715 } 3716 Stream.EmitRecord(Ty, Record); 3717 }; 3718 3719 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3720 FS->type_test_assume_vcalls()); 3721 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3722 FS->type_checked_load_vcalls()); 3723 3724 auto WriteConstVCallVec = [&](uint64_t Ty, 3725 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3726 for (auto &VC : VCs) { 3727 Record.clear(); 3728 Record.push_back(VC.VFunc.GUID); 3729 Record.push_back(VC.VFunc.Offset); 3730 llvm::append_range(Record, VC.Args); 3731 Stream.EmitRecord(Ty, Record); 3732 } 3733 }; 3734 3735 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3736 FS->type_test_assume_const_vcalls()); 3737 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3738 FS->type_checked_load_const_vcalls()); 3739 3740 auto WriteRange = [&](ConstantRange Range) { 3741 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3742 assert(Range.getLower().getNumWords() == 1); 3743 assert(Range.getUpper().getNumWords() == 1); 3744 emitSignedInt64(Record, *Range.getLower().getRawData()); 3745 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3746 }; 3747 3748 if (!FS->paramAccesses().empty()) { 3749 Record.clear(); 3750 for (auto &Arg : FS->paramAccesses()) { 3751 size_t UndoSize = Record.size(); 3752 Record.push_back(Arg.ParamNo); 3753 WriteRange(Arg.Use); 3754 Record.push_back(Arg.Calls.size()); 3755 for (auto &Call : Arg.Calls) { 3756 Record.push_back(Call.ParamNo); 3757 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3758 if (!ValueID) { 3759 // If ValueID is unknown we can't drop just this call, we must drop 3760 // entire parameter. 3761 Record.resize(UndoSize); 3762 break; 3763 } 3764 Record.push_back(*ValueID); 3765 WriteRange(Call.Offsets); 3766 } 3767 } 3768 if (!Record.empty()) 3769 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3770 } 3771 } 3772 3773 /// Collect type IDs from type tests used by function. 3774 static void 3775 getReferencedTypeIds(FunctionSummary *FS, 3776 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3777 if (!FS->type_tests().empty()) 3778 for (auto &TT : FS->type_tests()) 3779 ReferencedTypeIds.insert(TT); 3780 3781 auto GetReferencedTypesFromVFuncIdVec = 3782 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3783 for (auto &VF : VFs) 3784 ReferencedTypeIds.insert(VF.GUID); 3785 }; 3786 3787 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3788 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3789 3790 auto GetReferencedTypesFromConstVCallVec = 3791 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3792 for (auto &VC : VCs) 3793 ReferencedTypeIds.insert(VC.VFunc.GUID); 3794 }; 3795 3796 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3797 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3798 } 3799 3800 static void writeWholeProgramDevirtResolutionByArg( 3801 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3802 const WholeProgramDevirtResolution::ByArg &ByArg) { 3803 NameVals.push_back(args.size()); 3804 llvm::append_range(NameVals, args); 3805 3806 NameVals.push_back(ByArg.TheKind); 3807 NameVals.push_back(ByArg.Info); 3808 NameVals.push_back(ByArg.Byte); 3809 NameVals.push_back(ByArg.Bit); 3810 } 3811 3812 static void writeWholeProgramDevirtResolution( 3813 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3814 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3815 NameVals.push_back(Id); 3816 3817 NameVals.push_back(Wpd.TheKind); 3818 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3819 NameVals.push_back(Wpd.SingleImplName.size()); 3820 3821 NameVals.push_back(Wpd.ResByArg.size()); 3822 for (auto &A : Wpd.ResByArg) 3823 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3824 } 3825 3826 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3827 StringTableBuilder &StrtabBuilder, 3828 const std::string &Id, 3829 const TypeIdSummary &Summary) { 3830 NameVals.push_back(StrtabBuilder.add(Id)); 3831 NameVals.push_back(Id.size()); 3832 3833 NameVals.push_back(Summary.TTRes.TheKind); 3834 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3835 NameVals.push_back(Summary.TTRes.AlignLog2); 3836 NameVals.push_back(Summary.TTRes.SizeM1); 3837 NameVals.push_back(Summary.TTRes.BitMask); 3838 NameVals.push_back(Summary.TTRes.InlineBits); 3839 3840 for (auto &W : Summary.WPDRes) 3841 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3842 W.second); 3843 } 3844 3845 static void writeTypeIdCompatibleVtableSummaryRecord( 3846 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3847 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3848 ValueEnumerator &VE) { 3849 NameVals.push_back(StrtabBuilder.add(Id)); 3850 NameVals.push_back(Id.size()); 3851 3852 for (auto &P : Summary) { 3853 NameVals.push_back(P.AddressPointOffset); 3854 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3855 } 3856 } 3857 3858 // Helper to emit a single function summary record. 3859 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3860 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3861 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3862 const Function &F) { 3863 NameVals.push_back(ValueID); 3864 3865 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3866 3867 writeFunctionTypeMetadataRecords( 3868 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3869 return {VE.getValueID(VI.getValue())}; 3870 }); 3871 3872 auto SpecialRefCnts = FS->specialRefCounts(); 3873 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3874 NameVals.push_back(FS->instCount()); 3875 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3876 NameVals.push_back(FS->refs().size()); 3877 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3878 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3879 3880 for (auto &RI : FS->refs()) 3881 NameVals.push_back(VE.getValueID(RI.getValue())); 3882 3883 bool HasProfileData = 3884 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3885 for (auto &ECI : FS->calls()) { 3886 NameVals.push_back(getValueId(ECI.first)); 3887 if (HasProfileData) 3888 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3889 else if (WriteRelBFToSummary) 3890 NameVals.push_back(ECI.second.RelBlockFreq); 3891 } 3892 3893 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3894 unsigned Code = 3895 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3896 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3897 : bitc::FS_PERMODULE)); 3898 3899 // Emit the finished record. 3900 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3901 NameVals.clear(); 3902 } 3903 3904 // Collect the global value references in the given variable's initializer, 3905 // and emit them in a summary record. 3906 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3907 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3908 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3909 auto VI = Index->getValueInfo(V.getGUID()); 3910 if (!VI || VI.getSummaryList().empty()) { 3911 // Only declarations should not have a summary (a declaration might however 3912 // have a summary if the def was in module level asm). 3913 assert(V.isDeclaration()); 3914 return; 3915 } 3916 auto *Summary = VI.getSummaryList()[0].get(); 3917 NameVals.push_back(VE.getValueID(&V)); 3918 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3919 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3920 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3921 3922 auto VTableFuncs = VS->vTableFuncs(); 3923 if (!VTableFuncs.empty()) 3924 NameVals.push_back(VS->refs().size()); 3925 3926 unsigned SizeBeforeRefs = NameVals.size(); 3927 for (auto &RI : VS->refs()) 3928 NameVals.push_back(VE.getValueID(RI.getValue())); 3929 // Sort the refs for determinism output, the vector returned by FS->refs() has 3930 // been initialized from a DenseSet. 3931 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3932 3933 if (VTableFuncs.empty()) 3934 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3935 FSModRefsAbbrev); 3936 else { 3937 // VTableFuncs pairs should already be sorted by offset. 3938 for (auto &P : VTableFuncs) { 3939 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3940 NameVals.push_back(P.VTableOffset); 3941 } 3942 3943 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3944 FSModVTableRefsAbbrev); 3945 } 3946 NameVals.clear(); 3947 } 3948 3949 /// Emit the per-module summary section alongside the rest of 3950 /// the module's bitcode. 3951 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3952 // By default we compile with ThinLTO if the module has a summary, but the 3953 // client can request full LTO with a module flag. 3954 bool IsThinLTO = true; 3955 if (auto *MD = 3956 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3957 IsThinLTO = MD->getZExtValue(); 3958 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3959 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3960 4); 3961 3962 Stream.EmitRecord( 3963 bitc::FS_VERSION, 3964 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3965 3966 // Write the index flags. 3967 uint64_t Flags = 0; 3968 // Bits 1-3 are set only in the combined index, skip them. 3969 if (Index->enableSplitLTOUnit()) 3970 Flags |= 0x8; 3971 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3972 3973 if (Index->begin() == Index->end()) { 3974 Stream.ExitBlock(); 3975 return; 3976 } 3977 3978 for (const auto &GVI : valueIds()) { 3979 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3980 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3981 } 3982 3983 // Abbrev for FS_PERMODULE_PROFILE. 3984 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3985 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3986 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3987 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3988 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3992 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3993 // numrefs x valueid, n x (valueid, hotness) 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3995 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3996 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3997 3998 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3999 Abbv = std::make_shared<BitCodeAbbrev>(); 4000 if (WriteRelBFToSummary) 4001 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4002 else 4003 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4004 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4005 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4006 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4007 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4011 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4012 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4013 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4014 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4015 4016 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4017 Abbv = std::make_shared<BitCodeAbbrev>(); 4018 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4019 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4020 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4021 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4022 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4023 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4024 4025 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4026 Abbv = std::make_shared<BitCodeAbbrev>(); 4027 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4031 // numrefs x valueid, n x (valueid , offset) 4032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4034 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4035 4036 // Abbrev for FS_ALIAS. 4037 Abbv = std::make_shared<BitCodeAbbrev>(); 4038 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4039 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4040 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4041 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4042 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4043 4044 // Abbrev for FS_TYPE_ID_METADATA 4045 Abbv = std::make_shared<BitCodeAbbrev>(); 4046 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4049 // n x (valueid , offset) 4050 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4052 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4053 4054 SmallVector<uint64_t, 64> NameVals; 4055 // Iterate over the list of functions instead of the Index to 4056 // ensure the ordering is stable. 4057 for (const Function &F : M) { 4058 // Summary emission does not support anonymous functions, they have to 4059 // renamed using the anonymous function renaming pass. 4060 if (!F.hasName()) 4061 report_fatal_error("Unexpected anonymous function when writing summary"); 4062 4063 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4064 if (!VI || VI.getSummaryList().empty()) { 4065 // Only declarations should not have a summary (a declaration might 4066 // however have a summary if the def was in module level asm). 4067 assert(F.isDeclaration()); 4068 continue; 4069 } 4070 auto *Summary = VI.getSummaryList()[0].get(); 4071 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4072 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4073 } 4074 4075 // Capture references from GlobalVariable initializers, which are outside 4076 // of a function scope. 4077 for (const GlobalVariable &G : M.globals()) 4078 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4079 FSModVTableRefsAbbrev); 4080 4081 for (const GlobalAlias &A : M.aliases()) { 4082 auto *Aliasee = A.getAliaseeObject(); 4083 if (!Aliasee->hasName()) 4084 // Nameless function don't have an entry in the summary, skip it. 4085 continue; 4086 auto AliasId = VE.getValueID(&A); 4087 auto AliaseeId = VE.getValueID(Aliasee); 4088 NameVals.push_back(AliasId); 4089 auto *Summary = Index->getGlobalValueSummary(A); 4090 AliasSummary *AS = cast<AliasSummary>(Summary); 4091 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4092 NameVals.push_back(AliaseeId); 4093 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4094 NameVals.clear(); 4095 } 4096 4097 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4098 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4099 S.second, VE); 4100 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4101 TypeIdCompatibleVtableAbbrev); 4102 NameVals.clear(); 4103 } 4104 4105 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4106 ArrayRef<uint64_t>{Index->getBlockCount()}); 4107 4108 Stream.ExitBlock(); 4109 } 4110 4111 /// Emit the combined summary section into the combined index file. 4112 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4113 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4114 Stream.EmitRecord( 4115 bitc::FS_VERSION, 4116 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4117 4118 // Write the index flags. 4119 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4120 4121 for (const auto &GVI : valueIds()) { 4122 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4123 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4124 } 4125 4126 // Abbrev for FS_COMBINED. 4127 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4128 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4130 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4135 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4136 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4137 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4138 // numrefs x valueid, n x (valueid) 4139 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4141 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4142 4143 // Abbrev for FS_COMBINED_PROFILE. 4144 Abbv = std::make_shared<BitCodeAbbrev>(); 4145 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4154 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4155 // numrefs x valueid, n x (valueid, hotness) 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4158 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4159 4160 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4161 Abbv = std::make_shared<BitCodeAbbrev>(); 4162 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4168 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4169 4170 // Abbrev for FS_COMBINED_ALIAS. 4171 Abbv = std::make_shared<BitCodeAbbrev>(); 4172 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4177 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4178 4179 // The aliases are emitted as a post-pass, and will point to the value 4180 // id of the aliasee. Save them in a vector for post-processing. 4181 SmallVector<AliasSummary *, 64> Aliases; 4182 4183 // Save the value id for each summary for alias emission. 4184 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4185 4186 SmallVector<uint64_t, 64> NameVals; 4187 4188 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4189 // with the type ids referenced by this index file. 4190 std::set<GlobalValue::GUID> ReferencedTypeIds; 4191 4192 // For local linkage, we also emit the original name separately 4193 // immediately after the record. 4194 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4195 // We don't need to emit the original name if we are writing the index for 4196 // distributed backends (in which case ModuleToSummariesForIndex is 4197 // non-null). The original name is only needed during the thin link, since 4198 // for SamplePGO the indirect call targets for local functions have 4199 // have the original name annotated in profile. 4200 // Continue to emit it when writing out the entire combined index, which is 4201 // used in testing the thin link via llvm-lto. 4202 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4203 return; 4204 NameVals.push_back(S.getOriginalName()); 4205 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4206 NameVals.clear(); 4207 }; 4208 4209 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4210 forEachSummary([&](GVInfo I, bool IsAliasee) { 4211 GlobalValueSummary *S = I.second; 4212 assert(S); 4213 DefOrUseGUIDs.insert(I.first); 4214 for (const ValueInfo &VI : S->refs()) 4215 DefOrUseGUIDs.insert(VI.getGUID()); 4216 4217 auto ValueId = getValueId(I.first); 4218 assert(ValueId); 4219 SummaryToValueIdMap[S] = *ValueId; 4220 4221 // If this is invoked for an aliasee, we want to record the above 4222 // mapping, but then not emit a summary entry (if the aliasee is 4223 // to be imported, we will invoke this separately with IsAliasee=false). 4224 if (IsAliasee) 4225 return; 4226 4227 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4228 // Will process aliases as a post-pass because the reader wants all 4229 // global to be loaded first. 4230 Aliases.push_back(AS); 4231 return; 4232 } 4233 4234 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4235 NameVals.push_back(*ValueId); 4236 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4237 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4238 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4239 for (auto &RI : VS->refs()) { 4240 auto RefValueId = getValueId(RI.getGUID()); 4241 if (!RefValueId) 4242 continue; 4243 NameVals.push_back(*RefValueId); 4244 } 4245 4246 // Emit the finished record. 4247 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4248 FSModRefsAbbrev); 4249 NameVals.clear(); 4250 MaybeEmitOriginalName(*S); 4251 return; 4252 } 4253 4254 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4255 return getValueId(VI.getGUID()); 4256 }; 4257 4258 auto *FS = cast<FunctionSummary>(S); 4259 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4260 getReferencedTypeIds(FS, ReferencedTypeIds); 4261 4262 NameVals.push_back(*ValueId); 4263 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4264 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4265 NameVals.push_back(FS->instCount()); 4266 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4267 NameVals.push_back(FS->entryCount()); 4268 4269 // Fill in below 4270 NameVals.push_back(0); // numrefs 4271 NameVals.push_back(0); // rorefcnt 4272 NameVals.push_back(0); // worefcnt 4273 4274 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4275 for (auto &RI : FS->refs()) { 4276 auto RefValueId = getValueId(RI.getGUID()); 4277 if (!RefValueId) 4278 continue; 4279 NameVals.push_back(*RefValueId); 4280 if (RI.isReadOnly()) 4281 RORefCnt++; 4282 else if (RI.isWriteOnly()) 4283 WORefCnt++; 4284 Count++; 4285 } 4286 NameVals[6] = Count; 4287 NameVals[7] = RORefCnt; 4288 NameVals[8] = WORefCnt; 4289 4290 bool HasProfileData = false; 4291 for (auto &EI : FS->calls()) { 4292 HasProfileData |= 4293 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4294 if (HasProfileData) 4295 break; 4296 } 4297 4298 for (auto &EI : FS->calls()) { 4299 // If this GUID doesn't have a value id, it doesn't have a function 4300 // summary and we don't need to record any calls to it. 4301 Optional<unsigned> CallValueId = GetValueId(EI.first); 4302 if (!CallValueId) 4303 continue; 4304 NameVals.push_back(*CallValueId); 4305 if (HasProfileData) 4306 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4307 } 4308 4309 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4310 unsigned Code = 4311 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4312 4313 // Emit the finished record. 4314 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4315 NameVals.clear(); 4316 MaybeEmitOriginalName(*S); 4317 }); 4318 4319 for (auto *AS : Aliases) { 4320 auto AliasValueId = SummaryToValueIdMap[AS]; 4321 assert(AliasValueId); 4322 NameVals.push_back(AliasValueId); 4323 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4324 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4325 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4326 assert(AliaseeValueId); 4327 NameVals.push_back(AliaseeValueId); 4328 4329 // Emit the finished record. 4330 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4331 NameVals.clear(); 4332 MaybeEmitOriginalName(*AS); 4333 4334 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4335 getReferencedTypeIds(FS, ReferencedTypeIds); 4336 } 4337 4338 if (!Index.cfiFunctionDefs().empty()) { 4339 for (auto &S : Index.cfiFunctionDefs()) { 4340 if (DefOrUseGUIDs.count( 4341 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4342 NameVals.push_back(StrtabBuilder.add(S)); 4343 NameVals.push_back(S.size()); 4344 } 4345 } 4346 if (!NameVals.empty()) { 4347 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4348 NameVals.clear(); 4349 } 4350 } 4351 4352 if (!Index.cfiFunctionDecls().empty()) { 4353 for (auto &S : Index.cfiFunctionDecls()) { 4354 if (DefOrUseGUIDs.count( 4355 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4356 NameVals.push_back(StrtabBuilder.add(S)); 4357 NameVals.push_back(S.size()); 4358 } 4359 } 4360 if (!NameVals.empty()) { 4361 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4362 NameVals.clear(); 4363 } 4364 } 4365 4366 // Walk the GUIDs that were referenced, and write the 4367 // corresponding type id records. 4368 for (auto &T : ReferencedTypeIds) { 4369 auto TidIter = Index.typeIds().equal_range(T); 4370 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4371 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4372 It->second.second); 4373 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4374 NameVals.clear(); 4375 } 4376 } 4377 4378 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4379 ArrayRef<uint64_t>{Index.getBlockCount()}); 4380 4381 Stream.ExitBlock(); 4382 } 4383 4384 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4385 /// current llvm version, and a record for the epoch number. 4386 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4387 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4388 4389 // Write the "user readable" string identifying the bitcode producer 4390 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4391 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4394 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4395 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4396 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4397 4398 // Write the epoch version 4399 Abbv = std::make_shared<BitCodeAbbrev>(); 4400 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4402 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4403 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4404 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4405 Stream.ExitBlock(); 4406 } 4407 4408 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4409 // Emit the module's hash. 4410 // MODULE_CODE_HASH: [5*i32] 4411 if (GenerateHash) { 4412 uint32_t Vals[5]; 4413 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4414 Buffer.size() - BlockStartPos)); 4415 std::array<uint8_t, 20> Hash = Hasher.result(); 4416 for (int Pos = 0; Pos < 20; Pos += 4) { 4417 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4418 } 4419 4420 // Emit the finished record. 4421 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4422 4423 if (ModHash) 4424 // Save the written hash value. 4425 llvm::copy(Vals, std::begin(*ModHash)); 4426 } 4427 } 4428 4429 void ModuleBitcodeWriter::write() { 4430 writeIdentificationBlock(Stream); 4431 4432 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4433 size_t BlockStartPos = Buffer.size(); 4434 4435 writeModuleVersion(); 4436 4437 // Emit blockinfo, which defines the standard abbreviations etc. 4438 writeBlockInfo(); 4439 4440 // Emit information describing all of the types in the module. 4441 writeTypeTable(); 4442 4443 // Emit information about attribute groups. 4444 writeAttributeGroupTable(); 4445 4446 // Emit information about parameter attributes. 4447 writeAttributeTable(); 4448 4449 writeComdats(); 4450 4451 // Emit top-level description of module, including target triple, inline asm, 4452 // descriptors for global variables, and function prototype info. 4453 writeModuleInfo(); 4454 4455 // Emit constants. 4456 writeModuleConstants(); 4457 4458 // Emit metadata kind names. 4459 writeModuleMetadataKinds(); 4460 4461 // Emit metadata. 4462 writeModuleMetadata(); 4463 4464 // Emit module-level use-lists. 4465 if (VE.shouldPreserveUseListOrder()) 4466 writeUseListBlock(nullptr); 4467 4468 writeOperandBundleTags(); 4469 writeSyncScopeNames(); 4470 4471 // Emit function bodies. 4472 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4473 for (const Function &F : M) 4474 if (!F.isDeclaration()) 4475 writeFunction(F, FunctionToBitcodeIndex); 4476 4477 // Need to write after the above call to WriteFunction which populates 4478 // the summary information in the index. 4479 if (Index) 4480 writePerModuleGlobalValueSummary(); 4481 4482 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4483 4484 writeModuleHash(BlockStartPos); 4485 4486 Stream.ExitBlock(); 4487 } 4488 4489 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4490 uint32_t &Position) { 4491 support::endian::write32le(&Buffer[Position], Value); 4492 Position += 4; 4493 } 4494 4495 /// If generating a bc file on darwin, we have to emit a 4496 /// header and trailer to make it compatible with the system archiver. To do 4497 /// this we emit the following header, and then emit a trailer that pads the 4498 /// file out to be a multiple of 16 bytes. 4499 /// 4500 /// struct bc_header { 4501 /// uint32_t Magic; // 0x0B17C0DE 4502 /// uint32_t Version; // Version, currently always 0. 4503 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4504 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4505 /// uint32_t CPUType; // CPU specifier. 4506 /// ... potentially more later ... 4507 /// }; 4508 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4509 const Triple &TT) { 4510 unsigned CPUType = ~0U; 4511 4512 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4513 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4514 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4515 // specific constants here because they are implicitly part of the Darwin ABI. 4516 enum { 4517 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4518 DARWIN_CPU_TYPE_X86 = 7, 4519 DARWIN_CPU_TYPE_ARM = 12, 4520 DARWIN_CPU_TYPE_POWERPC = 18 4521 }; 4522 4523 Triple::ArchType Arch = TT.getArch(); 4524 if (Arch == Triple::x86_64) 4525 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4526 else if (Arch == Triple::x86) 4527 CPUType = DARWIN_CPU_TYPE_X86; 4528 else if (Arch == Triple::ppc) 4529 CPUType = DARWIN_CPU_TYPE_POWERPC; 4530 else if (Arch == Triple::ppc64) 4531 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4532 else if (Arch == Triple::arm || Arch == Triple::thumb) 4533 CPUType = DARWIN_CPU_TYPE_ARM; 4534 4535 // Traditional Bitcode starts after header. 4536 assert(Buffer.size() >= BWH_HeaderSize && 4537 "Expected header size to be reserved"); 4538 unsigned BCOffset = BWH_HeaderSize; 4539 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4540 4541 // Write the magic and version. 4542 unsigned Position = 0; 4543 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4544 writeInt32ToBuffer(0, Buffer, Position); // Version. 4545 writeInt32ToBuffer(BCOffset, Buffer, Position); 4546 writeInt32ToBuffer(BCSize, Buffer, Position); 4547 writeInt32ToBuffer(CPUType, Buffer, Position); 4548 4549 // If the file is not a multiple of 16 bytes, insert dummy padding. 4550 while (Buffer.size() & 15) 4551 Buffer.push_back(0); 4552 } 4553 4554 /// Helper to write the header common to all bitcode files. 4555 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4556 // Emit the file header. 4557 Stream.Emit((unsigned)'B', 8); 4558 Stream.Emit((unsigned)'C', 8); 4559 Stream.Emit(0x0, 4); 4560 Stream.Emit(0xC, 4); 4561 Stream.Emit(0xE, 4); 4562 Stream.Emit(0xD, 4); 4563 } 4564 4565 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4566 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4567 writeBitcodeHeader(*Stream); 4568 } 4569 4570 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4571 4572 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4573 Stream->EnterSubblock(Block, 3); 4574 4575 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4576 Abbv->Add(BitCodeAbbrevOp(Record)); 4577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4578 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4579 4580 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4581 4582 Stream->ExitBlock(); 4583 } 4584 4585 void BitcodeWriter::writeSymtab() { 4586 assert(!WroteStrtab && !WroteSymtab); 4587 4588 // If any module has module-level inline asm, we will require a registered asm 4589 // parser for the target so that we can create an accurate symbol table for 4590 // the module. 4591 for (Module *M : Mods) { 4592 if (M->getModuleInlineAsm().empty()) 4593 continue; 4594 4595 std::string Err; 4596 const Triple TT(M->getTargetTriple()); 4597 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4598 if (!T || !T->hasMCAsmParser()) 4599 return; 4600 } 4601 4602 WroteSymtab = true; 4603 SmallVector<char, 0> Symtab; 4604 // The irsymtab::build function may be unable to create a symbol table if the 4605 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4606 // table is not required for correctness, but we still want to be able to 4607 // write malformed modules to bitcode files, so swallow the error. 4608 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4609 consumeError(std::move(E)); 4610 return; 4611 } 4612 4613 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4614 {Symtab.data(), Symtab.size()}); 4615 } 4616 4617 void BitcodeWriter::writeStrtab() { 4618 assert(!WroteStrtab); 4619 4620 std::vector<char> Strtab; 4621 StrtabBuilder.finalizeInOrder(); 4622 Strtab.resize(StrtabBuilder.getSize()); 4623 StrtabBuilder.write((uint8_t *)Strtab.data()); 4624 4625 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4626 {Strtab.data(), Strtab.size()}); 4627 4628 WroteStrtab = true; 4629 } 4630 4631 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4632 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4633 WroteStrtab = true; 4634 } 4635 4636 void BitcodeWriter::writeModule(const Module &M, 4637 bool ShouldPreserveUseListOrder, 4638 const ModuleSummaryIndex *Index, 4639 bool GenerateHash, ModuleHash *ModHash) { 4640 assert(!WroteStrtab); 4641 4642 // The Mods vector is used by irsymtab::build, which requires non-const 4643 // Modules in case it needs to materialize metadata. But the bitcode writer 4644 // requires that the module is materialized, so we can cast to non-const here, 4645 // after checking that it is in fact materialized. 4646 assert(M.isMaterialized()); 4647 Mods.push_back(const_cast<Module *>(&M)); 4648 4649 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4650 ShouldPreserveUseListOrder, Index, 4651 GenerateHash, ModHash); 4652 ModuleWriter.write(); 4653 } 4654 4655 void BitcodeWriter::writeIndex( 4656 const ModuleSummaryIndex *Index, 4657 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4658 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4659 ModuleToSummariesForIndex); 4660 IndexWriter.write(); 4661 } 4662 4663 /// Write the specified module to the specified output stream. 4664 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4665 bool ShouldPreserveUseListOrder, 4666 const ModuleSummaryIndex *Index, 4667 bool GenerateHash, ModuleHash *ModHash) { 4668 SmallVector<char, 0> Buffer; 4669 Buffer.reserve(256*1024); 4670 4671 // If this is darwin or another generic macho target, reserve space for the 4672 // header. 4673 Triple TT(M.getTargetTriple()); 4674 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4675 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4676 4677 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4678 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4679 ModHash); 4680 Writer.writeSymtab(); 4681 Writer.writeStrtab(); 4682 4683 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4684 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4685 4686 // Write the generated bitstream to "Out". 4687 if (!Buffer.empty()) 4688 Out.write((char *)&Buffer.front(), Buffer.size()); 4689 } 4690 4691 void IndexBitcodeWriter::write() { 4692 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4693 4694 writeModuleVersion(); 4695 4696 // Write the module paths in the combined index. 4697 writeModStrings(); 4698 4699 // Write the summary combined index records. 4700 writeCombinedGlobalValueSummary(); 4701 4702 Stream.ExitBlock(); 4703 } 4704 4705 // Write the specified module summary index to the given raw output stream, 4706 // where it will be written in a new bitcode block. This is used when 4707 // writing the combined index file for ThinLTO. When writing a subset of the 4708 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4709 void llvm::writeIndexToFile( 4710 const ModuleSummaryIndex &Index, raw_ostream &Out, 4711 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4712 SmallVector<char, 0> Buffer; 4713 Buffer.reserve(256 * 1024); 4714 4715 BitcodeWriter Writer(Buffer); 4716 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4717 Writer.writeStrtab(); 4718 4719 Out.write((char *)&Buffer.front(), Buffer.size()); 4720 } 4721 4722 namespace { 4723 4724 /// Class to manage the bitcode writing for a thin link bitcode file. 4725 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4726 /// ModHash is for use in ThinLTO incremental build, generated while writing 4727 /// the module bitcode file. 4728 const ModuleHash *ModHash; 4729 4730 public: 4731 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4732 BitstreamWriter &Stream, 4733 const ModuleSummaryIndex &Index, 4734 const ModuleHash &ModHash) 4735 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4736 /*ShouldPreserveUseListOrder=*/false, &Index), 4737 ModHash(&ModHash) {} 4738 4739 void write(); 4740 4741 private: 4742 void writeSimplifiedModuleInfo(); 4743 }; 4744 4745 } // end anonymous namespace 4746 4747 // This function writes a simpilified module info for thin link bitcode file. 4748 // It only contains the source file name along with the name(the offset and 4749 // size in strtab) and linkage for global values. For the global value info 4750 // entry, in order to keep linkage at offset 5, there are three zeros used 4751 // as padding. 4752 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4753 SmallVector<unsigned, 64> Vals; 4754 // Emit the module's source file name. 4755 { 4756 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4757 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4758 if (Bits == SE_Char6) 4759 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4760 else if (Bits == SE_Fixed7) 4761 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4762 4763 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4764 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4765 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4767 Abbv->Add(AbbrevOpToUse); 4768 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4769 4770 for (const auto P : M.getSourceFileName()) 4771 Vals.push_back((unsigned char)P); 4772 4773 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4774 Vals.clear(); 4775 } 4776 4777 // Emit the global variable information. 4778 for (const GlobalVariable &GV : M.globals()) { 4779 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4780 Vals.push_back(StrtabBuilder.add(GV.getName())); 4781 Vals.push_back(GV.getName().size()); 4782 Vals.push_back(0); 4783 Vals.push_back(0); 4784 Vals.push_back(0); 4785 Vals.push_back(getEncodedLinkage(GV)); 4786 4787 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4788 Vals.clear(); 4789 } 4790 4791 // Emit the function proto information. 4792 for (const Function &F : M) { 4793 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4794 Vals.push_back(StrtabBuilder.add(F.getName())); 4795 Vals.push_back(F.getName().size()); 4796 Vals.push_back(0); 4797 Vals.push_back(0); 4798 Vals.push_back(0); 4799 Vals.push_back(getEncodedLinkage(F)); 4800 4801 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4802 Vals.clear(); 4803 } 4804 4805 // Emit the alias information. 4806 for (const GlobalAlias &A : M.aliases()) { 4807 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4808 Vals.push_back(StrtabBuilder.add(A.getName())); 4809 Vals.push_back(A.getName().size()); 4810 Vals.push_back(0); 4811 Vals.push_back(0); 4812 Vals.push_back(0); 4813 Vals.push_back(getEncodedLinkage(A)); 4814 4815 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4816 Vals.clear(); 4817 } 4818 4819 // Emit the ifunc information. 4820 for (const GlobalIFunc &I : M.ifuncs()) { 4821 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4822 Vals.push_back(StrtabBuilder.add(I.getName())); 4823 Vals.push_back(I.getName().size()); 4824 Vals.push_back(0); 4825 Vals.push_back(0); 4826 Vals.push_back(0); 4827 Vals.push_back(getEncodedLinkage(I)); 4828 4829 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4830 Vals.clear(); 4831 } 4832 } 4833 4834 void ThinLinkBitcodeWriter::write() { 4835 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4836 4837 writeModuleVersion(); 4838 4839 writeSimplifiedModuleInfo(); 4840 4841 writePerModuleGlobalValueSummary(); 4842 4843 // Write module hash. 4844 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4845 4846 Stream.ExitBlock(); 4847 } 4848 4849 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4850 const ModuleSummaryIndex &Index, 4851 const ModuleHash &ModHash) { 4852 assert(!WroteStrtab); 4853 4854 // The Mods vector is used by irsymtab::build, which requires non-const 4855 // Modules in case it needs to materialize metadata. But the bitcode writer 4856 // requires that the module is materialized, so we can cast to non-const here, 4857 // after checking that it is in fact materialized. 4858 assert(M.isMaterialized()); 4859 Mods.push_back(const_cast<Module *>(&M)); 4860 4861 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4862 ModHash); 4863 ThinLinkWriter.write(); 4864 } 4865 4866 // Write the specified thin link bitcode file to the given raw output stream, 4867 // where it will be written in a new bitcode block. This is used when 4868 // writing the per-module index file for ThinLTO. 4869 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4870 const ModuleSummaryIndex &Index, 4871 const ModuleHash &ModHash) { 4872 SmallVector<char, 0> Buffer; 4873 Buffer.reserve(256 * 1024); 4874 4875 BitcodeWriter Writer(Buffer); 4876 Writer.writeThinLinkBitcode(M, Index, ModHash); 4877 Writer.writeSymtab(); 4878 Writer.writeStrtab(); 4879 4880 Out.write((char *)&Buffer.front(), Buffer.size()); 4881 } 4882 4883 static const char *getSectionNameForBitcode(const Triple &T) { 4884 switch (T.getObjectFormat()) { 4885 case Triple::MachO: 4886 return "__LLVM,__bitcode"; 4887 case Triple::COFF: 4888 case Triple::ELF: 4889 case Triple::Wasm: 4890 case Triple::UnknownObjectFormat: 4891 return ".llvmbc"; 4892 case Triple::GOFF: 4893 llvm_unreachable("GOFF is not yet implemented"); 4894 break; 4895 case Triple::SPIRV: 4896 llvm_unreachable("SPIRV is not yet implemented"); 4897 break; 4898 case Triple::XCOFF: 4899 llvm_unreachable("XCOFF is not yet implemented"); 4900 break; 4901 case Triple::DXContainer: 4902 llvm_unreachable("DXContainer is not yet implemented"); 4903 break; 4904 } 4905 llvm_unreachable("Unimplemented ObjectFormatType"); 4906 } 4907 4908 static const char *getSectionNameForCommandline(const Triple &T) { 4909 switch (T.getObjectFormat()) { 4910 case Triple::MachO: 4911 return "__LLVM,__cmdline"; 4912 case Triple::COFF: 4913 case Triple::ELF: 4914 case Triple::Wasm: 4915 case Triple::UnknownObjectFormat: 4916 return ".llvmcmd"; 4917 case Triple::GOFF: 4918 llvm_unreachable("GOFF is not yet implemented"); 4919 break; 4920 case Triple::SPIRV: 4921 llvm_unreachable("SPIRV is not yet implemented"); 4922 break; 4923 case Triple::XCOFF: 4924 llvm_unreachable("XCOFF is not yet implemented"); 4925 break; 4926 case Triple::DXContainer: 4927 llvm_unreachable("DXC is not yet implemented"); 4928 break; 4929 } 4930 llvm_unreachable("Unimplemented ObjectFormatType"); 4931 } 4932 4933 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4934 bool EmbedBitcode, bool EmbedCmdline, 4935 const std::vector<uint8_t> &CmdArgs) { 4936 // Save llvm.compiler.used and remove it. 4937 SmallVector<Constant *, 2> UsedArray; 4938 SmallVector<GlobalValue *, 4> UsedGlobals; 4939 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4940 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4941 for (auto *GV : UsedGlobals) { 4942 if (GV->getName() != "llvm.embedded.module" && 4943 GV->getName() != "llvm.cmdline") 4944 UsedArray.push_back( 4945 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4946 } 4947 if (Used) 4948 Used->eraseFromParent(); 4949 4950 // Embed the bitcode for the llvm module. 4951 std::string Data; 4952 ArrayRef<uint8_t> ModuleData; 4953 Triple T(M.getTargetTriple()); 4954 4955 if (EmbedBitcode) { 4956 if (Buf.getBufferSize() == 0 || 4957 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4958 (const unsigned char *)Buf.getBufferEnd())) { 4959 // If the input is LLVM Assembly, bitcode is produced by serializing 4960 // the module. Use-lists order need to be preserved in this case. 4961 llvm::raw_string_ostream OS(Data); 4962 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4963 ModuleData = 4964 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4965 } else 4966 // If the input is LLVM bitcode, write the input byte stream directly. 4967 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4968 Buf.getBufferSize()); 4969 } 4970 llvm::Constant *ModuleConstant = 4971 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4972 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4973 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4974 ModuleConstant); 4975 GV->setSection(getSectionNameForBitcode(T)); 4976 // Set alignment to 1 to prevent padding between two contributions from input 4977 // sections after linking. 4978 GV->setAlignment(Align(1)); 4979 UsedArray.push_back( 4980 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4981 if (llvm::GlobalVariable *Old = 4982 M.getGlobalVariable("llvm.embedded.module", true)) { 4983 assert(Old->hasZeroLiveUses() && 4984 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4985 GV->takeName(Old); 4986 Old->eraseFromParent(); 4987 } else { 4988 GV->setName("llvm.embedded.module"); 4989 } 4990 4991 // Skip if only bitcode needs to be embedded. 4992 if (EmbedCmdline) { 4993 // Embed command-line options. 4994 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4995 CmdArgs.size()); 4996 llvm::Constant *CmdConstant = 4997 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4998 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4999 llvm::GlobalValue::PrivateLinkage, 5000 CmdConstant); 5001 GV->setSection(getSectionNameForCommandline(T)); 5002 GV->setAlignment(Align(1)); 5003 UsedArray.push_back( 5004 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5005 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5006 assert(Old->hasZeroLiveUses() && 5007 "llvm.cmdline can only be used once in llvm.compiler.used"); 5008 GV->takeName(Old); 5009 Old->eraseFromParent(); 5010 } else { 5011 GV->setName("llvm.cmdline"); 5012 } 5013 } 5014 5015 if (UsedArray.empty()) 5016 return; 5017 5018 // Recreate llvm.compiler.used. 5019 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5020 auto *NewUsed = new GlobalVariable( 5021 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5022 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5023 NewUsed->setSection("llvm.metadata"); 5024 } 5025