1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 namespace { 103 104 /// These are manifest constants used by the bitcode writer. They do not need to 105 /// be kept in sync with the reader, but need to be consistent within this file. 106 enum { 107 // VALUE_SYMTAB_BLOCK abbrev id's. 108 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 VST_ENTRY_7_ABBREV, 110 VST_ENTRY_6_ABBREV, 111 VST_BBENTRY_6_ABBREV, 112 113 // CONSTANTS_BLOCK abbrev id's. 114 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 CONSTANTS_INTEGER_ABBREV, 116 CONSTANTS_CE_CAST_Abbrev, 117 CONSTANTS_NULL_Abbrev, 118 119 // FUNCTION_BLOCK abbrev id's. 120 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 121 FUNCTION_INST_UNOP_ABBREV, 122 FUNCTION_INST_UNOP_FLAGS_ABBREV, 123 FUNCTION_INST_BINOP_ABBREV, 124 FUNCTION_INST_BINOP_FLAGS_ABBREV, 125 FUNCTION_INST_CAST_ABBREV, 126 FUNCTION_INST_RET_VOID_ABBREV, 127 FUNCTION_INST_RET_VAL_ABBREV, 128 FUNCTION_INST_UNREACHABLE_ABBREV, 129 FUNCTION_INST_GEP_ABBREV, 130 }; 131 132 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 133 /// file type. 134 class BitcodeWriterBase { 135 protected: 136 /// The stream created and owned by the client. 137 BitstreamWriter &Stream; 138 139 StringTableBuilder &StrtabBuilder; 140 141 public: 142 /// Constructs a BitcodeWriterBase object that writes to the provided 143 /// \p Stream. 144 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 145 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 146 147 protected: 148 void writeModuleVersion(); 149 }; 150 151 void BitcodeWriterBase::writeModuleVersion() { 152 // VERSION: [version#] 153 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 154 } 155 156 /// Base class to manage the module bitcode writing, currently subclassed for 157 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 158 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 159 protected: 160 /// The Module to write to bitcode. 161 const Module &M; 162 163 /// Enumerates ids for all values in the module. 164 ValueEnumerator VE; 165 166 /// Optional per-module index to write for ThinLTO. 167 const ModuleSummaryIndex *Index; 168 169 /// Map that holds the correspondence between GUIDs in the summary index, 170 /// that came from indirect call profiles, and a value id generated by this 171 /// class to use in the VST and summary block records. 172 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 173 174 /// Tracks the last value id recorded in the GUIDToValueMap. 175 unsigned GlobalValueId; 176 177 /// Saves the offset of the VSTOffset record that must eventually be 178 /// backpatched with the offset of the actual VST. 179 uint64_t VSTOffsetPlaceholder = 0; 180 181 public: 182 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 183 /// writing to the provided \p Buffer. 184 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 185 BitstreamWriter &Stream, 186 bool ShouldPreserveUseListOrder, 187 const ModuleSummaryIndex *Index) 188 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 189 VE(M, ShouldPreserveUseListOrder), Index(Index) { 190 // Assign ValueIds to any callee values in the index that came from 191 // indirect call profiles and were recorded as a GUID not a Value* 192 // (which would have been assigned an ID by the ValueEnumerator). 193 // The starting ValueId is just after the number of values in the 194 // ValueEnumerator, so that they can be emitted in the VST. 195 GlobalValueId = VE.getValues().size(); 196 if (!Index) 197 return; 198 for (const auto &GUIDSummaryLists : *Index) 199 // Examine all summaries for this GUID. 200 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 201 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 202 // For each call in the function summary, see if the call 203 // is to a GUID (which means it is for an indirect call, 204 // otherwise we would have a Value for it). If so, synthesize 205 // a value id. 206 for (auto &CallEdge : FS->calls()) 207 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 208 assignValueId(CallEdge.first.getGUID()); 209 } 210 211 protected: 212 void writePerModuleGlobalValueSummary(); 213 214 private: 215 void writePerModuleFunctionSummaryRecord( 216 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 217 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 218 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIGlobalVariable(const DIGlobalVariable *N, 351 SmallVectorImpl<uint64_t> &Record, 352 unsigned Abbrev); 353 void writeDILocalVariable(const DILocalVariable *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDILabel(const DILabel *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIExpression(const DIExpression *N, 358 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 359 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 360 SmallVectorImpl<uint64_t> &Record, 361 unsigned Abbrev); 362 void writeDIObjCProperty(const DIObjCProperty *N, 363 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 364 void writeDIImportedEntity(const DIImportedEntity *N, 365 SmallVectorImpl<uint64_t> &Record, 366 unsigned Abbrev); 367 unsigned createNamedMetadataAbbrev(); 368 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 369 unsigned createMetadataStringsAbbrev(); 370 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 371 SmallVectorImpl<uint64_t> &Record); 372 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 373 SmallVectorImpl<uint64_t> &Record, 374 std::vector<unsigned> *MDAbbrevs = nullptr, 375 std::vector<uint64_t> *IndexPos = nullptr); 376 void writeModuleMetadata(); 377 void writeFunctionMetadata(const Function &F); 378 void writeFunctionMetadataAttachment(const Function &F); 379 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 380 const GlobalObject &GO); 381 void writeModuleMetadataKinds(); 382 void writeOperandBundleTags(); 383 void writeSyncScopeNames(); 384 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 385 void writeModuleConstants(); 386 bool pushValueAndType(const Value *V, unsigned InstID, 387 SmallVectorImpl<unsigned> &Vals); 388 void writeOperandBundles(const CallBase &CB, unsigned InstID); 389 void pushValue(const Value *V, unsigned InstID, 390 SmallVectorImpl<unsigned> &Vals); 391 void pushValueSigned(const Value *V, unsigned InstID, 392 SmallVectorImpl<uint64_t> &Vals); 393 void writeInstruction(const Instruction &I, unsigned InstID, 394 SmallVectorImpl<unsigned> &Vals); 395 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 396 void writeGlobalValueSymbolTable( 397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 398 void writeUseList(UseListOrder &&Order); 399 void writeUseListBlock(const Function *F); 400 void 401 writeFunction(const Function &F, 402 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 403 void writeBlockInfo(); 404 void writeModuleHash(size_t BlockStartPos); 405 406 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 407 return unsigned(SSID); 408 } 409 410 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 411 }; 412 413 /// Class to manage the bitcode writing for a combined index. 414 class IndexBitcodeWriter : public BitcodeWriterBase { 415 /// The combined index to write to bitcode. 416 const ModuleSummaryIndex &Index; 417 418 /// When writing a subset of the index for distributed backends, client 419 /// provides a map of modules to the corresponding GUIDs/summaries to write. 420 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 421 422 /// Map that holds the correspondence between the GUID used in the combined 423 /// index and a value id generated by this class to use in references. 424 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 425 426 // The sorted stack id indices actually used in the summary entries being 427 // written, which will be a subset of those in the full index in the case of 428 // distributed indexes. 429 std::vector<unsigned> StackIdIndices; 430 431 /// Tracks the last value id recorded in the GUIDToValueMap. 432 unsigned GlobalValueId = 0; 433 434 public: 435 /// Constructs a IndexBitcodeWriter object for the given combined index, 436 /// writing to the provided \p Buffer. When writing a subset of the index 437 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 438 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 439 const ModuleSummaryIndex &Index, 440 const std::map<std::string, GVSummaryMapTy> 441 *ModuleToSummariesForIndex = nullptr) 442 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 443 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 444 // Assign unique value ids to all summaries to be written, for use 445 // in writing out the call graph edges. Save the mapping from GUID 446 // to the new global value id to use when writing those edges, which 447 // are currently saved in the index in terms of GUID. 448 forEachSummary([&](GVInfo I, bool IsAliasee) { 449 GUIDToValueIdMap[I.first] = ++GlobalValueId; 450 if (IsAliasee) 451 return; 452 auto *FS = dyn_cast<FunctionSummary>(I.second); 453 if (!FS) 454 return; 455 // Record all stack id indices actually used in the summary entries being 456 // written, so that we can compact them in the case of distributed ThinLTO 457 // indexes. 458 for (auto &CI : FS->callsites()) 459 for (auto Idx : CI.StackIdIndices) 460 StackIdIndices.push_back(Idx); 461 for (auto &AI : FS->allocs()) 462 for (auto &MIB : AI.MIBs) 463 for (auto Idx : MIB.StackIdIndices) 464 StackIdIndices.push_back(Idx); 465 }); 466 llvm::sort(StackIdIndices); 467 StackIdIndices.erase( 468 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 469 StackIdIndices.end()); 470 } 471 472 /// The below iterator returns the GUID and associated summary. 473 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 474 475 /// Calls the callback for each value GUID and summary to be written to 476 /// bitcode. This hides the details of whether they are being pulled from the 477 /// entire index or just those in a provided ModuleToSummariesForIndex map. 478 template<typename Functor> 479 void forEachSummary(Functor Callback) { 480 if (ModuleToSummariesForIndex) { 481 for (auto &M : *ModuleToSummariesForIndex) 482 for (auto &Summary : M.second) { 483 Callback(Summary, false); 484 // Ensure aliasee is handled, e.g. for assigning a valueId, 485 // even if we are not importing the aliasee directly (the 486 // imported alias will contain a copy of aliasee). 487 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 488 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 489 } 490 } else { 491 for (auto &Summaries : Index) 492 for (auto &Summary : Summaries.second.SummaryList) 493 Callback({Summaries.first, Summary.get()}, false); 494 } 495 } 496 497 /// Calls the callback for each entry in the modulePaths StringMap that 498 /// should be written to the module path string table. This hides the details 499 /// of whether they are being pulled from the entire index or just those in a 500 /// provided ModuleToSummariesForIndex map. 501 template <typename Functor> void forEachModule(Functor Callback) { 502 if (ModuleToSummariesForIndex) { 503 for (const auto &M : *ModuleToSummariesForIndex) { 504 const auto &MPI = Index.modulePaths().find(M.first); 505 if (MPI == Index.modulePaths().end()) { 506 // This should only happen if the bitcode file was empty, in which 507 // case we shouldn't be importing (the ModuleToSummariesForIndex 508 // would only include the module we are writing and index for). 509 assert(ModuleToSummariesForIndex->size() == 1); 510 continue; 511 } 512 Callback(*MPI); 513 } 514 } else { 515 for (const auto &MPSE : Index.modulePaths()) 516 Callback(MPSE); 517 } 518 } 519 520 /// Main entry point for writing a combined index to bitcode. 521 void write(); 522 523 private: 524 void writeModStrings(); 525 void writeCombinedGlobalValueSummary(); 526 527 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 528 auto VMI = GUIDToValueIdMap.find(ValGUID); 529 if (VMI == GUIDToValueIdMap.end()) 530 return std::nullopt; 531 return VMI->second; 532 } 533 534 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 535 }; 536 537 } // end anonymous namespace 538 539 static unsigned getEncodedCastOpcode(unsigned Opcode) { 540 switch (Opcode) { 541 default: llvm_unreachable("Unknown cast instruction!"); 542 case Instruction::Trunc : return bitc::CAST_TRUNC; 543 case Instruction::ZExt : return bitc::CAST_ZEXT; 544 case Instruction::SExt : return bitc::CAST_SEXT; 545 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 546 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 547 case Instruction::UIToFP : return bitc::CAST_UITOFP; 548 case Instruction::SIToFP : return bitc::CAST_SITOFP; 549 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 550 case Instruction::FPExt : return bitc::CAST_FPEXT; 551 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 552 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 553 case Instruction::BitCast : return bitc::CAST_BITCAST; 554 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 555 } 556 } 557 558 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 559 switch (Opcode) { 560 default: llvm_unreachable("Unknown binary instruction!"); 561 case Instruction::FNeg: return bitc::UNOP_FNEG; 562 } 563 } 564 565 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 566 switch (Opcode) { 567 default: llvm_unreachable("Unknown binary instruction!"); 568 case Instruction::Add: 569 case Instruction::FAdd: return bitc::BINOP_ADD; 570 case Instruction::Sub: 571 case Instruction::FSub: return bitc::BINOP_SUB; 572 case Instruction::Mul: 573 case Instruction::FMul: return bitc::BINOP_MUL; 574 case Instruction::UDiv: return bitc::BINOP_UDIV; 575 case Instruction::FDiv: 576 case Instruction::SDiv: return bitc::BINOP_SDIV; 577 case Instruction::URem: return bitc::BINOP_UREM; 578 case Instruction::FRem: 579 case Instruction::SRem: return bitc::BINOP_SREM; 580 case Instruction::Shl: return bitc::BINOP_SHL; 581 case Instruction::LShr: return bitc::BINOP_LSHR; 582 case Instruction::AShr: return bitc::BINOP_ASHR; 583 case Instruction::And: return bitc::BINOP_AND; 584 case Instruction::Or: return bitc::BINOP_OR; 585 case Instruction::Xor: return bitc::BINOP_XOR; 586 } 587 } 588 589 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 590 switch (Op) { 591 default: llvm_unreachable("Unknown RMW operation!"); 592 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 593 case AtomicRMWInst::Add: return bitc::RMW_ADD; 594 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 595 case AtomicRMWInst::And: return bitc::RMW_AND; 596 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 597 case AtomicRMWInst::Or: return bitc::RMW_OR; 598 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 599 case AtomicRMWInst::Max: return bitc::RMW_MAX; 600 case AtomicRMWInst::Min: return bitc::RMW_MIN; 601 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 602 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 603 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 604 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 605 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 606 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 607 } 608 } 609 610 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 611 switch (Ordering) { 612 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 613 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 614 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 615 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 616 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 617 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 618 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 619 } 620 llvm_unreachable("Invalid ordering"); 621 } 622 623 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 624 StringRef Str, unsigned AbbrevToUse) { 625 SmallVector<unsigned, 64> Vals; 626 627 // Code: [strchar x N] 628 for (char C : Str) { 629 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 630 AbbrevToUse = 0; 631 Vals.push_back(C); 632 } 633 634 // Emit the finished record. 635 Stream.EmitRecord(Code, Vals, AbbrevToUse); 636 } 637 638 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 639 switch (Kind) { 640 case Attribute::Alignment: 641 return bitc::ATTR_KIND_ALIGNMENT; 642 case Attribute::AllocAlign: 643 return bitc::ATTR_KIND_ALLOC_ALIGN; 644 case Attribute::AllocSize: 645 return bitc::ATTR_KIND_ALLOC_SIZE; 646 case Attribute::AlwaysInline: 647 return bitc::ATTR_KIND_ALWAYS_INLINE; 648 case Attribute::Builtin: 649 return bitc::ATTR_KIND_BUILTIN; 650 case Attribute::ByVal: 651 return bitc::ATTR_KIND_BY_VAL; 652 case Attribute::Convergent: 653 return bitc::ATTR_KIND_CONVERGENT; 654 case Attribute::InAlloca: 655 return bitc::ATTR_KIND_IN_ALLOCA; 656 case Attribute::Cold: 657 return bitc::ATTR_KIND_COLD; 658 case Attribute::DisableSanitizerInstrumentation: 659 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 660 case Attribute::FnRetThunkExtern: 661 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 662 case Attribute::Hot: 663 return bitc::ATTR_KIND_HOT; 664 case Attribute::ElementType: 665 return bitc::ATTR_KIND_ELEMENTTYPE; 666 case Attribute::InlineHint: 667 return bitc::ATTR_KIND_INLINE_HINT; 668 case Attribute::InReg: 669 return bitc::ATTR_KIND_IN_REG; 670 case Attribute::JumpTable: 671 return bitc::ATTR_KIND_JUMP_TABLE; 672 case Attribute::MinSize: 673 return bitc::ATTR_KIND_MIN_SIZE; 674 case Attribute::AllocatedPointer: 675 return bitc::ATTR_KIND_ALLOCATED_POINTER; 676 case Attribute::AllocKind: 677 return bitc::ATTR_KIND_ALLOC_KIND; 678 case Attribute::Memory: 679 return bitc::ATTR_KIND_MEMORY; 680 case Attribute::Naked: 681 return bitc::ATTR_KIND_NAKED; 682 case Attribute::Nest: 683 return bitc::ATTR_KIND_NEST; 684 case Attribute::NoAlias: 685 return bitc::ATTR_KIND_NO_ALIAS; 686 case Attribute::NoBuiltin: 687 return bitc::ATTR_KIND_NO_BUILTIN; 688 case Attribute::NoCallback: 689 return bitc::ATTR_KIND_NO_CALLBACK; 690 case Attribute::NoCapture: 691 return bitc::ATTR_KIND_NO_CAPTURE; 692 case Attribute::NoDuplicate: 693 return bitc::ATTR_KIND_NO_DUPLICATE; 694 case Attribute::NoFree: 695 return bitc::ATTR_KIND_NOFREE; 696 case Attribute::NoImplicitFloat: 697 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 698 case Attribute::NoInline: 699 return bitc::ATTR_KIND_NO_INLINE; 700 case Attribute::NoRecurse: 701 return bitc::ATTR_KIND_NO_RECURSE; 702 case Attribute::NoMerge: 703 return bitc::ATTR_KIND_NO_MERGE; 704 case Attribute::NonLazyBind: 705 return bitc::ATTR_KIND_NON_LAZY_BIND; 706 case Attribute::NonNull: 707 return bitc::ATTR_KIND_NON_NULL; 708 case Attribute::Dereferenceable: 709 return bitc::ATTR_KIND_DEREFERENCEABLE; 710 case Attribute::DereferenceableOrNull: 711 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 712 case Attribute::NoRedZone: 713 return bitc::ATTR_KIND_NO_RED_ZONE; 714 case Attribute::NoReturn: 715 return bitc::ATTR_KIND_NO_RETURN; 716 case Attribute::NoSync: 717 return bitc::ATTR_KIND_NOSYNC; 718 case Attribute::NoCfCheck: 719 return bitc::ATTR_KIND_NOCF_CHECK; 720 case Attribute::NoProfile: 721 return bitc::ATTR_KIND_NO_PROFILE; 722 case Attribute::SkipProfile: 723 return bitc::ATTR_KIND_SKIP_PROFILE; 724 case Attribute::NoUnwind: 725 return bitc::ATTR_KIND_NO_UNWIND; 726 case Attribute::NoSanitizeBounds: 727 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 728 case Attribute::NoSanitizeCoverage: 729 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 730 case Attribute::NullPointerIsValid: 731 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 732 case Attribute::OptForFuzzing: 733 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 734 case Attribute::OptimizeForSize: 735 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 736 case Attribute::OptimizeNone: 737 return bitc::ATTR_KIND_OPTIMIZE_NONE; 738 case Attribute::ReadNone: 739 return bitc::ATTR_KIND_READ_NONE; 740 case Attribute::ReadOnly: 741 return bitc::ATTR_KIND_READ_ONLY; 742 case Attribute::Returned: 743 return bitc::ATTR_KIND_RETURNED; 744 case Attribute::ReturnsTwice: 745 return bitc::ATTR_KIND_RETURNS_TWICE; 746 case Attribute::SExt: 747 return bitc::ATTR_KIND_S_EXT; 748 case Attribute::Speculatable: 749 return bitc::ATTR_KIND_SPECULATABLE; 750 case Attribute::StackAlignment: 751 return bitc::ATTR_KIND_STACK_ALIGNMENT; 752 case Attribute::StackProtect: 753 return bitc::ATTR_KIND_STACK_PROTECT; 754 case Attribute::StackProtectReq: 755 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 756 case Attribute::StackProtectStrong: 757 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 758 case Attribute::SafeStack: 759 return bitc::ATTR_KIND_SAFESTACK; 760 case Attribute::ShadowCallStack: 761 return bitc::ATTR_KIND_SHADOWCALLSTACK; 762 case Attribute::StrictFP: 763 return bitc::ATTR_KIND_STRICT_FP; 764 case Attribute::StructRet: 765 return bitc::ATTR_KIND_STRUCT_RET; 766 case Attribute::SanitizeAddress: 767 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 768 case Attribute::SanitizeHWAddress: 769 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 770 case Attribute::SanitizeThread: 771 return bitc::ATTR_KIND_SANITIZE_THREAD; 772 case Attribute::SanitizeMemory: 773 return bitc::ATTR_KIND_SANITIZE_MEMORY; 774 case Attribute::SpeculativeLoadHardening: 775 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 776 case Attribute::SwiftError: 777 return bitc::ATTR_KIND_SWIFT_ERROR; 778 case Attribute::SwiftSelf: 779 return bitc::ATTR_KIND_SWIFT_SELF; 780 case Attribute::SwiftAsync: 781 return bitc::ATTR_KIND_SWIFT_ASYNC; 782 case Attribute::UWTable: 783 return bitc::ATTR_KIND_UW_TABLE; 784 case Attribute::VScaleRange: 785 return bitc::ATTR_KIND_VSCALE_RANGE; 786 case Attribute::WillReturn: 787 return bitc::ATTR_KIND_WILLRETURN; 788 case Attribute::WriteOnly: 789 return bitc::ATTR_KIND_WRITEONLY; 790 case Attribute::ZExt: 791 return bitc::ATTR_KIND_Z_EXT; 792 case Attribute::ImmArg: 793 return bitc::ATTR_KIND_IMMARG; 794 case Attribute::SanitizeMemTag: 795 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 796 case Attribute::Preallocated: 797 return bitc::ATTR_KIND_PREALLOCATED; 798 case Attribute::NoUndef: 799 return bitc::ATTR_KIND_NOUNDEF; 800 case Attribute::ByRef: 801 return bitc::ATTR_KIND_BYREF; 802 case Attribute::MustProgress: 803 return bitc::ATTR_KIND_MUSTPROGRESS; 804 case Attribute::PresplitCoroutine: 805 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 806 case Attribute::EndAttrKinds: 807 llvm_unreachable("Can not encode end-attribute kinds marker."); 808 case Attribute::None: 809 llvm_unreachable("Can not encode none-attribute."); 810 case Attribute::EmptyKey: 811 case Attribute::TombstoneKey: 812 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 813 } 814 815 llvm_unreachable("Trying to encode unknown attribute"); 816 } 817 818 void ModuleBitcodeWriter::writeAttributeGroupTable() { 819 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 820 VE.getAttributeGroups(); 821 if (AttrGrps.empty()) return; 822 823 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 824 825 SmallVector<uint64_t, 64> Record; 826 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 827 unsigned AttrListIndex = Pair.first; 828 AttributeSet AS = Pair.second; 829 Record.push_back(VE.getAttributeGroupID(Pair)); 830 Record.push_back(AttrListIndex); 831 832 for (Attribute Attr : AS) { 833 if (Attr.isEnumAttribute()) { 834 Record.push_back(0); 835 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 836 } else if (Attr.isIntAttribute()) { 837 Record.push_back(1); 838 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 839 Record.push_back(Attr.getValueAsInt()); 840 } else if (Attr.isStringAttribute()) { 841 StringRef Kind = Attr.getKindAsString(); 842 StringRef Val = Attr.getValueAsString(); 843 844 Record.push_back(Val.empty() ? 3 : 4); 845 Record.append(Kind.begin(), Kind.end()); 846 Record.push_back(0); 847 if (!Val.empty()) { 848 Record.append(Val.begin(), Val.end()); 849 Record.push_back(0); 850 } 851 } else { 852 assert(Attr.isTypeAttribute()); 853 Type *Ty = Attr.getValueAsType(); 854 Record.push_back(Ty ? 6 : 5); 855 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 856 if (Ty) 857 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 858 } 859 } 860 861 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 862 Record.clear(); 863 } 864 865 Stream.ExitBlock(); 866 } 867 868 void ModuleBitcodeWriter::writeAttributeTable() { 869 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 870 if (Attrs.empty()) return; 871 872 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 873 874 SmallVector<uint64_t, 64> Record; 875 for (const AttributeList &AL : Attrs) { 876 for (unsigned i : AL.indexes()) { 877 AttributeSet AS = AL.getAttributes(i); 878 if (AS.hasAttributes()) 879 Record.push_back(VE.getAttributeGroupID({i, AS})); 880 } 881 882 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 883 Record.clear(); 884 } 885 886 Stream.ExitBlock(); 887 } 888 889 /// WriteTypeTable - Write out the type table for a module. 890 void ModuleBitcodeWriter::writeTypeTable() { 891 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 892 893 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 894 SmallVector<uint64_t, 64> TypeVals; 895 896 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 897 898 // Abbrev for TYPE_CODE_POINTER. 899 auto Abbv = std::make_shared<BitCodeAbbrev>(); 900 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 902 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 903 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 904 905 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 906 Abbv = std::make_shared<BitCodeAbbrev>(); 907 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 908 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 909 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 910 911 // Abbrev for TYPE_CODE_FUNCTION. 912 Abbv = std::make_shared<BitCodeAbbrev>(); 913 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 917 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 918 919 // Abbrev for TYPE_CODE_STRUCT_ANON. 920 Abbv = std::make_shared<BitCodeAbbrev>(); 921 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 925 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 926 927 // Abbrev for TYPE_CODE_STRUCT_NAME. 928 Abbv = std::make_shared<BitCodeAbbrev>(); 929 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 932 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 933 934 // Abbrev for TYPE_CODE_STRUCT_NAMED. 935 Abbv = std::make_shared<BitCodeAbbrev>(); 936 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 940 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 941 942 // Abbrev for TYPE_CODE_ARRAY. 943 Abbv = std::make_shared<BitCodeAbbrev>(); 944 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 947 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 948 949 // Emit an entry count so the reader can reserve space. 950 TypeVals.push_back(TypeList.size()); 951 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 952 TypeVals.clear(); 953 954 // Loop over all of the types, emitting each in turn. 955 for (Type *T : TypeList) { 956 int AbbrevToUse = 0; 957 unsigned Code = 0; 958 959 switch (T->getTypeID()) { 960 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 961 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 962 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 963 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 964 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 965 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 966 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 967 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 968 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 969 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 970 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 971 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 972 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 973 case Type::IntegerTyID: 974 // INTEGER: [width] 975 Code = bitc::TYPE_CODE_INTEGER; 976 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 977 break; 978 case Type::PointerTyID: { 979 PointerType *PTy = cast<PointerType>(T); 980 unsigned AddressSpace = PTy->getAddressSpace(); 981 if (PTy->isOpaque()) { 982 // OPAQUE_POINTER: [address space] 983 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 984 TypeVals.push_back(AddressSpace); 985 if (AddressSpace == 0) 986 AbbrevToUse = OpaquePtrAbbrev; 987 } else { 988 // POINTER: [pointee type, address space] 989 Code = bitc::TYPE_CODE_POINTER; 990 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 991 TypeVals.push_back(AddressSpace); 992 if (AddressSpace == 0) 993 AbbrevToUse = PtrAbbrev; 994 } 995 break; 996 } 997 case Type::FunctionTyID: { 998 FunctionType *FT = cast<FunctionType>(T); 999 // FUNCTION: [isvararg, retty, paramty x N] 1000 Code = bitc::TYPE_CODE_FUNCTION; 1001 TypeVals.push_back(FT->isVarArg()); 1002 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1003 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1004 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1005 AbbrevToUse = FunctionAbbrev; 1006 break; 1007 } 1008 case Type::StructTyID: { 1009 StructType *ST = cast<StructType>(T); 1010 // STRUCT: [ispacked, eltty x N] 1011 TypeVals.push_back(ST->isPacked()); 1012 // Output all of the element types. 1013 for (Type *ET : ST->elements()) 1014 TypeVals.push_back(VE.getTypeID(ET)); 1015 1016 if (ST->isLiteral()) { 1017 Code = bitc::TYPE_CODE_STRUCT_ANON; 1018 AbbrevToUse = StructAnonAbbrev; 1019 } else { 1020 if (ST->isOpaque()) { 1021 Code = bitc::TYPE_CODE_OPAQUE; 1022 } else { 1023 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1024 AbbrevToUse = StructNamedAbbrev; 1025 } 1026 1027 // Emit the name if it is present. 1028 if (!ST->getName().empty()) 1029 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1030 StructNameAbbrev); 1031 } 1032 break; 1033 } 1034 case Type::ArrayTyID: { 1035 ArrayType *AT = cast<ArrayType>(T); 1036 // ARRAY: [numelts, eltty] 1037 Code = bitc::TYPE_CODE_ARRAY; 1038 TypeVals.push_back(AT->getNumElements()); 1039 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1040 AbbrevToUse = ArrayAbbrev; 1041 break; 1042 } 1043 case Type::FixedVectorTyID: 1044 case Type::ScalableVectorTyID: { 1045 VectorType *VT = cast<VectorType>(T); 1046 // VECTOR [numelts, eltty] or 1047 // [numelts, eltty, scalable] 1048 Code = bitc::TYPE_CODE_VECTOR; 1049 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1050 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1051 if (isa<ScalableVectorType>(VT)) 1052 TypeVals.push_back(true); 1053 break; 1054 } 1055 case Type::TargetExtTyID: { 1056 TargetExtType *TET = cast<TargetExtType>(T); 1057 Code = bitc::TYPE_CODE_TARGET_TYPE; 1058 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1059 StructNameAbbrev); 1060 TypeVals.push_back(TET->getNumTypeParameters()); 1061 for (Type *InnerTy : TET->type_params()) 1062 TypeVals.push_back(VE.getTypeID(InnerTy)); 1063 for (unsigned IntParam : TET->int_params()) 1064 TypeVals.push_back(IntParam); 1065 break; 1066 } 1067 case Type::TypedPointerTyID: 1068 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1069 } 1070 1071 // Emit the finished record. 1072 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1073 TypeVals.clear(); 1074 } 1075 1076 Stream.ExitBlock(); 1077 } 1078 1079 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1080 switch (Linkage) { 1081 case GlobalValue::ExternalLinkage: 1082 return 0; 1083 case GlobalValue::WeakAnyLinkage: 1084 return 16; 1085 case GlobalValue::AppendingLinkage: 1086 return 2; 1087 case GlobalValue::InternalLinkage: 1088 return 3; 1089 case GlobalValue::LinkOnceAnyLinkage: 1090 return 18; 1091 case GlobalValue::ExternalWeakLinkage: 1092 return 7; 1093 case GlobalValue::CommonLinkage: 1094 return 8; 1095 case GlobalValue::PrivateLinkage: 1096 return 9; 1097 case GlobalValue::WeakODRLinkage: 1098 return 17; 1099 case GlobalValue::LinkOnceODRLinkage: 1100 return 19; 1101 case GlobalValue::AvailableExternallyLinkage: 1102 return 12; 1103 } 1104 llvm_unreachable("Invalid linkage"); 1105 } 1106 1107 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1108 return getEncodedLinkage(GV.getLinkage()); 1109 } 1110 1111 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1112 uint64_t RawFlags = 0; 1113 RawFlags |= Flags.ReadNone; 1114 RawFlags |= (Flags.ReadOnly << 1); 1115 RawFlags |= (Flags.NoRecurse << 2); 1116 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1117 RawFlags |= (Flags.NoInline << 4); 1118 RawFlags |= (Flags.AlwaysInline << 5); 1119 RawFlags |= (Flags.NoUnwind << 6); 1120 RawFlags |= (Flags.MayThrow << 7); 1121 RawFlags |= (Flags.HasUnknownCall << 8); 1122 RawFlags |= (Flags.MustBeUnreachable << 9); 1123 return RawFlags; 1124 } 1125 1126 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1127 // in BitcodeReader.cpp. 1128 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1129 uint64_t RawFlags = 0; 1130 1131 RawFlags |= Flags.NotEligibleToImport; // bool 1132 RawFlags |= (Flags.Live << 1); 1133 RawFlags |= (Flags.DSOLocal << 2); 1134 RawFlags |= (Flags.CanAutoHide << 3); 1135 1136 // Linkage don't need to be remapped at that time for the summary. Any future 1137 // change to the getEncodedLinkage() function will need to be taken into 1138 // account here as well. 1139 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1140 1141 RawFlags |= (Flags.Visibility << 8); // 2 bits 1142 1143 return RawFlags; 1144 } 1145 1146 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1147 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1148 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1149 return RawFlags; 1150 } 1151 1152 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1153 switch (GV.getVisibility()) { 1154 case GlobalValue::DefaultVisibility: return 0; 1155 case GlobalValue::HiddenVisibility: return 1; 1156 case GlobalValue::ProtectedVisibility: return 2; 1157 } 1158 llvm_unreachable("Invalid visibility"); 1159 } 1160 1161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1162 switch (GV.getDLLStorageClass()) { 1163 case GlobalValue::DefaultStorageClass: return 0; 1164 case GlobalValue::DLLImportStorageClass: return 1; 1165 case GlobalValue::DLLExportStorageClass: return 2; 1166 } 1167 llvm_unreachable("Invalid DLL storage class"); 1168 } 1169 1170 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1171 switch (GV.getThreadLocalMode()) { 1172 case GlobalVariable::NotThreadLocal: return 0; 1173 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1174 case GlobalVariable::LocalDynamicTLSModel: return 2; 1175 case GlobalVariable::InitialExecTLSModel: return 3; 1176 case GlobalVariable::LocalExecTLSModel: return 4; 1177 } 1178 llvm_unreachable("Invalid TLS model"); 1179 } 1180 1181 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1182 switch (C.getSelectionKind()) { 1183 case Comdat::Any: 1184 return bitc::COMDAT_SELECTION_KIND_ANY; 1185 case Comdat::ExactMatch: 1186 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1187 case Comdat::Largest: 1188 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1189 case Comdat::NoDeduplicate: 1190 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1191 case Comdat::SameSize: 1192 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1193 } 1194 llvm_unreachable("Invalid selection kind"); 1195 } 1196 1197 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1198 switch (GV.getUnnamedAddr()) { 1199 case GlobalValue::UnnamedAddr::None: return 0; 1200 case GlobalValue::UnnamedAddr::Local: return 2; 1201 case GlobalValue::UnnamedAddr::Global: return 1; 1202 } 1203 llvm_unreachable("Invalid unnamed_addr"); 1204 } 1205 1206 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1207 if (GenerateHash) 1208 Hasher.update(Str); 1209 return StrtabBuilder.add(Str); 1210 } 1211 1212 void ModuleBitcodeWriter::writeComdats() { 1213 SmallVector<unsigned, 64> Vals; 1214 for (const Comdat *C : VE.getComdats()) { 1215 // COMDAT: [strtab offset, strtab size, selection_kind] 1216 Vals.push_back(addToStrtab(C->getName())); 1217 Vals.push_back(C->getName().size()); 1218 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1219 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1220 Vals.clear(); 1221 } 1222 } 1223 1224 /// Write a record that will eventually hold the word offset of the 1225 /// module-level VST. For now the offset is 0, which will be backpatched 1226 /// after the real VST is written. Saves the bit offset to backpatch. 1227 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1228 // Write a placeholder value in for the offset of the real VST, 1229 // which is written after the function blocks so that it can include 1230 // the offset of each function. The placeholder offset will be 1231 // updated when the real VST is written. 1232 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1233 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1234 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1235 // hold the real VST offset. Must use fixed instead of VBR as we don't 1236 // know how many VBR chunks to reserve ahead of time. 1237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1238 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1239 1240 // Emit the placeholder 1241 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1242 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1243 1244 // Compute and save the bit offset to the placeholder, which will be 1245 // patched when the real VST is written. We can simply subtract the 32-bit 1246 // fixed size from the current bit number to get the location to backpatch. 1247 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1248 } 1249 1250 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1251 1252 /// Determine the encoding to use for the given string name and length. 1253 static StringEncoding getStringEncoding(StringRef Str) { 1254 bool isChar6 = true; 1255 for (char C : Str) { 1256 if (isChar6) 1257 isChar6 = BitCodeAbbrevOp::isChar6(C); 1258 if ((unsigned char)C & 128) 1259 // don't bother scanning the rest. 1260 return SE_Fixed8; 1261 } 1262 if (isChar6) 1263 return SE_Char6; 1264 return SE_Fixed7; 1265 } 1266 1267 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1268 "Sanitizer Metadata is too large for naive serialization."); 1269 static unsigned 1270 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1271 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1272 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1273 } 1274 1275 /// Emit top-level description of module, including target triple, inline asm, 1276 /// descriptors for global variables, and function prototype info. 1277 /// Returns the bit offset to backpatch with the location of the real VST. 1278 void ModuleBitcodeWriter::writeModuleInfo() { 1279 // Emit various pieces of data attached to a module. 1280 if (!M.getTargetTriple().empty()) 1281 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1282 0 /*TODO*/); 1283 const std::string &DL = M.getDataLayoutStr(); 1284 if (!DL.empty()) 1285 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1286 if (!M.getModuleInlineAsm().empty()) 1287 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1288 0 /*TODO*/); 1289 1290 // Emit information about sections and GC, computing how many there are. Also 1291 // compute the maximum alignment value. 1292 std::map<std::string, unsigned> SectionMap; 1293 std::map<std::string, unsigned> GCMap; 1294 MaybeAlign MaxAlignment; 1295 unsigned MaxGlobalType = 0; 1296 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1297 if (A) 1298 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1299 }; 1300 for (const GlobalVariable &GV : M.globals()) { 1301 UpdateMaxAlignment(GV.getAlign()); 1302 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1303 if (GV.hasSection()) { 1304 // Give section names unique ID's. 1305 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1306 if (!Entry) { 1307 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1308 0 /*TODO*/); 1309 Entry = SectionMap.size(); 1310 } 1311 } 1312 } 1313 for (const Function &F : M) { 1314 UpdateMaxAlignment(F.getAlign()); 1315 if (F.hasSection()) { 1316 // Give section names unique ID's. 1317 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1318 if (!Entry) { 1319 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1320 0 /*TODO*/); 1321 Entry = SectionMap.size(); 1322 } 1323 } 1324 if (F.hasGC()) { 1325 // Same for GC names. 1326 unsigned &Entry = GCMap[F.getGC()]; 1327 if (!Entry) { 1328 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1329 0 /*TODO*/); 1330 Entry = GCMap.size(); 1331 } 1332 } 1333 } 1334 1335 // Emit abbrev for globals, now that we know # sections and max alignment. 1336 unsigned SimpleGVarAbbrev = 0; 1337 if (!M.global_empty()) { 1338 // Add an abbrev for common globals with no visibility or thread localness. 1339 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1340 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1344 Log2_32_Ceil(MaxGlobalType+1))); 1345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1346 //| explicitType << 1 1347 //| constant 1348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1350 if (!MaxAlignment) // Alignment. 1351 Abbv->Add(BitCodeAbbrevOp(0)); 1352 else { 1353 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1355 Log2_32_Ceil(MaxEncAlignment+1))); 1356 } 1357 if (SectionMap.empty()) // Section. 1358 Abbv->Add(BitCodeAbbrevOp(0)); 1359 else 1360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1361 Log2_32_Ceil(SectionMap.size()+1))); 1362 // Don't bother emitting vis + thread local. 1363 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1364 } 1365 1366 SmallVector<unsigned, 64> Vals; 1367 // Emit the module's source file name. 1368 { 1369 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1370 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1371 if (Bits == SE_Char6) 1372 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1373 else if (Bits == SE_Fixed7) 1374 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1375 1376 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1377 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1378 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1380 Abbv->Add(AbbrevOpToUse); 1381 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1382 1383 for (const auto P : M.getSourceFileName()) 1384 Vals.push_back((unsigned char)P); 1385 1386 // Emit the finished record. 1387 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1388 Vals.clear(); 1389 } 1390 1391 // Emit the global variable information. 1392 for (const GlobalVariable &GV : M.globals()) { 1393 unsigned AbbrevToUse = 0; 1394 1395 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1396 // linkage, alignment, section, visibility, threadlocal, 1397 // unnamed_addr, externally_initialized, dllstorageclass, 1398 // comdat, attributes, DSO_Local, GlobalSanitizer] 1399 Vals.push_back(addToStrtab(GV.getName())); 1400 Vals.push_back(GV.getName().size()); 1401 Vals.push_back(VE.getTypeID(GV.getValueType())); 1402 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1403 Vals.push_back(GV.isDeclaration() ? 0 : 1404 (VE.getValueID(GV.getInitializer()) + 1)); 1405 Vals.push_back(getEncodedLinkage(GV)); 1406 Vals.push_back(getEncodedAlign(GV.getAlign())); 1407 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1408 : 0); 1409 if (GV.isThreadLocal() || 1410 GV.getVisibility() != GlobalValue::DefaultVisibility || 1411 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1412 GV.isExternallyInitialized() || 1413 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1414 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1415 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1416 Vals.push_back(getEncodedVisibility(GV)); 1417 Vals.push_back(getEncodedThreadLocalMode(GV)); 1418 Vals.push_back(getEncodedUnnamedAddr(GV)); 1419 Vals.push_back(GV.isExternallyInitialized()); 1420 Vals.push_back(getEncodedDLLStorageClass(GV)); 1421 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1422 1423 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1424 Vals.push_back(VE.getAttributeListID(AL)); 1425 1426 Vals.push_back(GV.isDSOLocal()); 1427 Vals.push_back(addToStrtab(GV.getPartition())); 1428 Vals.push_back(GV.getPartition().size()); 1429 1430 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1431 GV.getSanitizerMetadata()) 1432 : 0)); 1433 } else { 1434 AbbrevToUse = SimpleGVarAbbrev; 1435 } 1436 1437 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1438 Vals.clear(); 1439 } 1440 1441 // Emit the function proto information. 1442 for (const Function &F : M) { 1443 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1444 // linkage, paramattrs, alignment, section, visibility, gc, 1445 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1446 // prefixdata, personalityfn, DSO_Local, addrspace] 1447 Vals.push_back(addToStrtab(F.getName())); 1448 Vals.push_back(F.getName().size()); 1449 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1450 Vals.push_back(F.getCallingConv()); 1451 Vals.push_back(F.isDeclaration()); 1452 Vals.push_back(getEncodedLinkage(F)); 1453 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1454 Vals.push_back(getEncodedAlign(F.getAlign())); 1455 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1456 : 0); 1457 Vals.push_back(getEncodedVisibility(F)); 1458 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1459 Vals.push_back(getEncodedUnnamedAddr(F)); 1460 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1461 : 0); 1462 Vals.push_back(getEncodedDLLStorageClass(F)); 1463 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1464 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1465 : 0); 1466 Vals.push_back( 1467 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1468 1469 Vals.push_back(F.isDSOLocal()); 1470 Vals.push_back(F.getAddressSpace()); 1471 Vals.push_back(addToStrtab(F.getPartition())); 1472 Vals.push_back(F.getPartition().size()); 1473 1474 unsigned AbbrevToUse = 0; 1475 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1476 Vals.clear(); 1477 } 1478 1479 // Emit the alias information. 1480 for (const GlobalAlias &A : M.aliases()) { 1481 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1482 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1483 // DSO_Local] 1484 Vals.push_back(addToStrtab(A.getName())); 1485 Vals.push_back(A.getName().size()); 1486 Vals.push_back(VE.getTypeID(A.getValueType())); 1487 Vals.push_back(A.getType()->getAddressSpace()); 1488 Vals.push_back(VE.getValueID(A.getAliasee())); 1489 Vals.push_back(getEncodedLinkage(A)); 1490 Vals.push_back(getEncodedVisibility(A)); 1491 Vals.push_back(getEncodedDLLStorageClass(A)); 1492 Vals.push_back(getEncodedThreadLocalMode(A)); 1493 Vals.push_back(getEncodedUnnamedAddr(A)); 1494 Vals.push_back(A.isDSOLocal()); 1495 Vals.push_back(addToStrtab(A.getPartition())); 1496 Vals.push_back(A.getPartition().size()); 1497 1498 unsigned AbbrevToUse = 0; 1499 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1500 Vals.clear(); 1501 } 1502 1503 // Emit the ifunc information. 1504 for (const GlobalIFunc &I : M.ifuncs()) { 1505 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1506 // val#, linkage, visibility, DSO_Local] 1507 Vals.push_back(addToStrtab(I.getName())); 1508 Vals.push_back(I.getName().size()); 1509 Vals.push_back(VE.getTypeID(I.getValueType())); 1510 Vals.push_back(I.getType()->getAddressSpace()); 1511 Vals.push_back(VE.getValueID(I.getResolver())); 1512 Vals.push_back(getEncodedLinkage(I)); 1513 Vals.push_back(getEncodedVisibility(I)); 1514 Vals.push_back(I.isDSOLocal()); 1515 Vals.push_back(addToStrtab(I.getPartition())); 1516 Vals.push_back(I.getPartition().size()); 1517 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1518 Vals.clear(); 1519 } 1520 1521 writeValueSymbolTableForwardDecl(); 1522 } 1523 1524 static uint64_t getOptimizationFlags(const Value *V) { 1525 uint64_t Flags = 0; 1526 1527 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1528 if (OBO->hasNoSignedWrap()) 1529 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1530 if (OBO->hasNoUnsignedWrap()) 1531 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1532 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1533 if (PEO->isExact()) 1534 Flags |= 1 << bitc::PEO_EXACT; 1535 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1536 if (FPMO->hasAllowReassoc()) 1537 Flags |= bitc::AllowReassoc; 1538 if (FPMO->hasNoNaNs()) 1539 Flags |= bitc::NoNaNs; 1540 if (FPMO->hasNoInfs()) 1541 Flags |= bitc::NoInfs; 1542 if (FPMO->hasNoSignedZeros()) 1543 Flags |= bitc::NoSignedZeros; 1544 if (FPMO->hasAllowReciprocal()) 1545 Flags |= bitc::AllowReciprocal; 1546 if (FPMO->hasAllowContract()) 1547 Flags |= bitc::AllowContract; 1548 if (FPMO->hasApproxFunc()) 1549 Flags |= bitc::ApproxFunc; 1550 } 1551 1552 return Flags; 1553 } 1554 1555 void ModuleBitcodeWriter::writeValueAsMetadata( 1556 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1557 // Mimic an MDNode with a value as one operand. 1558 Value *V = MD->getValue(); 1559 Record.push_back(VE.getTypeID(V->getType())); 1560 Record.push_back(VE.getValueID(V)); 1561 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1562 Record.clear(); 1563 } 1564 1565 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1566 SmallVectorImpl<uint64_t> &Record, 1567 unsigned Abbrev) { 1568 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1569 Metadata *MD = N->getOperand(i); 1570 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1571 "Unexpected function-local metadata"); 1572 Record.push_back(VE.getMetadataOrNullID(MD)); 1573 } 1574 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1575 : bitc::METADATA_NODE, 1576 Record, Abbrev); 1577 Record.clear(); 1578 } 1579 1580 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1581 // Assume the column is usually under 128, and always output the inlined-at 1582 // location (it's never more expensive than building an array size 1). 1583 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1584 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1591 return Stream.EmitAbbrev(std::move(Abbv)); 1592 } 1593 1594 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1595 SmallVectorImpl<uint64_t> &Record, 1596 unsigned &Abbrev) { 1597 if (!Abbrev) 1598 Abbrev = createDILocationAbbrev(); 1599 1600 Record.push_back(N->isDistinct()); 1601 Record.push_back(N->getLine()); 1602 Record.push_back(N->getColumn()); 1603 Record.push_back(VE.getMetadataID(N->getScope())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1605 Record.push_back(N->isImplicitCode()); 1606 1607 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1612 // Assume the column is usually under 128, and always output the inlined-at 1613 // location (it's never more expensive than building an array size 1). 1614 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1615 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1621 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1622 return Stream.EmitAbbrev(std::move(Abbv)); 1623 } 1624 1625 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1626 SmallVectorImpl<uint64_t> &Record, 1627 unsigned &Abbrev) { 1628 if (!Abbrev) 1629 Abbrev = createGenericDINodeAbbrev(); 1630 1631 Record.push_back(N->isDistinct()); 1632 Record.push_back(N->getTag()); 1633 Record.push_back(0); // Per-tag version field; unused for now. 1634 1635 for (auto &I : N->operands()) 1636 Record.push_back(VE.getMetadataOrNullID(I)); 1637 1638 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1639 Record.clear(); 1640 } 1641 1642 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1643 SmallVectorImpl<uint64_t> &Record, 1644 unsigned Abbrev) { 1645 const uint64_t Version = 2 << 1; 1646 Record.push_back((uint64_t)N->isDistinct() | Version); 1647 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1648 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1649 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1651 1652 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1653 Record.clear(); 1654 } 1655 1656 void ModuleBitcodeWriter::writeDIGenericSubrange( 1657 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1658 unsigned Abbrev) { 1659 Record.push_back((uint64_t)N->isDistinct()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1662 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1663 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1664 1665 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1666 Record.clear(); 1667 } 1668 1669 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1670 if ((int64_t)V >= 0) 1671 Vals.push_back(V << 1); 1672 else 1673 Vals.push_back((-V << 1) | 1); 1674 } 1675 1676 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1677 // We have an arbitrary precision integer value to write whose 1678 // bit width is > 64. However, in canonical unsigned integer 1679 // format it is likely that the high bits are going to be zero. 1680 // So, we only write the number of active words. 1681 unsigned NumWords = A.getActiveWords(); 1682 const uint64_t *RawData = A.getRawData(); 1683 for (unsigned i = 0; i < NumWords; i++) 1684 emitSignedInt64(Vals, RawData[i]); 1685 } 1686 1687 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1688 SmallVectorImpl<uint64_t> &Record, 1689 unsigned Abbrev) { 1690 const uint64_t IsBigInt = 1 << 2; 1691 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1692 Record.push_back(N->getValue().getBitWidth()); 1693 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1694 emitWideAPInt(Record, N->getValue()); 1695 1696 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1697 Record.clear(); 1698 } 1699 1700 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1701 SmallVectorImpl<uint64_t> &Record, 1702 unsigned Abbrev) { 1703 Record.push_back(N->isDistinct()); 1704 Record.push_back(N->getTag()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1706 Record.push_back(N->getSizeInBits()); 1707 Record.push_back(N->getAlignInBits()); 1708 Record.push_back(N->getEncoding()); 1709 Record.push_back(N->getFlags()); 1710 1711 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1712 Record.clear(); 1713 } 1714 1715 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1716 SmallVectorImpl<uint64_t> &Record, 1717 unsigned Abbrev) { 1718 Record.push_back(N->isDistinct()); 1719 Record.push_back(N->getTag()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1722 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1723 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1724 Record.push_back(N->getSizeInBits()); 1725 Record.push_back(N->getAlignInBits()); 1726 Record.push_back(N->getEncoding()); 1727 1728 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1729 Record.clear(); 1730 } 1731 1732 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1733 SmallVectorImpl<uint64_t> &Record, 1734 unsigned Abbrev) { 1735 Record.push_back(N->isDistinct()); 1736 Record.push_back(N->getTag()); 1737 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1739 Record.push_back(N->getLine()); 1740 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1742 Record.push_back(N->getSizeInBits()); 1743 Record.push_back(N->getAlignInBits()); 1744 Record.push_back(N->getOffsetInBits()); 1745 Record.push_back(N->getFlags()); 1746 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1747 1748 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1749 // that there is no DWARF address space associated with DIDerivedType. 1750 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1751 Record.push_back(*DWARFAddressSpace + 1); 1752 else 1753 Record.push_back(0); 1754 1755 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1756 1757 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1758 Record.clear(); 1759 } 1760 1761 void ModuleBitcodeWriter::writeDICompositeType( 1762 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1763 unsigned Abbrev) { 1764 const unsigned IsNotUsedInOldTypeRef = 0x2; 1765 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1766 Record.push_back(N->getTag()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1769 Record.push_back(N->getLine()); 1770 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1772 Record.push_back(N->getSizeInBits()); 1773 Record.push_back(N->getAlignInBits()); 1774 Record.push_back(N->getOffsetInBits()); 1775 Record.push_back(N->getFlags()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1777 Record.push_back(N->getRuntimeLang()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1782 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1783 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1785 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1786 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1787 1788 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1789 Record.clear(); 1790 } 1791 1792 void ModuleBitcodeWriter::writeDISubroutineType( 1793 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1794 unsigned Abbrev) { 1795 const unsigned HasNoOldTypeRefs = 0x2; 1796 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1797 Record.push_back(N->getFlags()); 1798 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1799 Record.push_back(N->getCC()); 1800 1801 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1802 Record.clear(); 1803 } 1804 1805 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1806 SmallVectorImpl<uint64_t> &Record, 1807 unsigned Abbrev) { 1808 Record.push_back(N->isDistinct()); 1809 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1811 if (N->getRawChecksum()) { 1812 Record.push_back(N->getRawChecksum()->Kind); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1814 } else { 1815 // Maintain backwards compatibility with the old internal representation of 1816 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1817 Record.push_back(0); 1818 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1819 } 1820 auto Source = N->getRawSource(); 1821 if (Source) 1822 Record.push_back(VE.getMetadataOrNullID(Source)); 1823 1824 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1825 Record.clear(); 1826 } 1827 1828 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1829 SmallVectorImpl<uint64_t> &Record, 1830 unsigned Abbrev) { 1831 assert(N->isDistinct() && "Expected distinct compile units"); 1832 Record.push_back(/* IsDistinct */ true); 1833 Record.push_back(N->getSourceLanguage()); 1834 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1835 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1836 Record.push_back(N->isOptimized()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1838 Record.push_back(N->getRuntimeVersion()); 1839 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1840 Record.push_back(N->getEmissionKind()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1843 Record.push_back(/* subprograms */ 0); 1844 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1846 Record.push_back(N->getDWOId()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1848 Record.push_back(N->getSplitDebugInlining()); 1849 Record.push_back(N->getDebugInfoForProfiling()); 1850 Record.push_back((unsigned)N->getNameTableKind()); 1851 Record.push_back(N->getRangesBaseAddress()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1854 1855 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1856 Record.clear(); 1857 } 1858 1859 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1860 SmallVectorImpl<uint64_t> &Record, 1861 unsigned Abbrev) { 1862 const uint64_t HasUnitFlag = 1 << 1; 1863 const uint64_t HasSPFlagsFlag = 1 << 2; 1864 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1865 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1869 Record.push_back(N->getLine()); 1870 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1871 Record.push_back(N->getScopeLine()); 1872 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1873 Record.push_back(N->getSPFlags()); 1874 Record.push_back(N->getVirtualIndex()); 1875 Record.push_back(N->getFlags()); 1876 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1877 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1880 Record.push_back(N->getThisAdjustment()); 1881 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1884 1885 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1886 Record.clear(); 1887 } 1888 1889 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1890 SmallVectorImpl<uint64_t> &Record, 1891 unsigned Abbrev) { 1892 Record.push_back(N->isDistinct()); 1893 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1894 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1895 Record.push_back(N->getLine()); 1896 Record.push_back(N->getColumn()); 1897 1898 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1899 Record.clear(); 1900 } 1901 1902 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1903 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1904 unsigned Abbrev) { 1905 Record.push_back(N->isDistinct()); 1906 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1907 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1908 Record.push_back(N->getDiscriminator()); 1909 1910 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1911 Record.clear(); 1912 } 1913 1914 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1915 SmallVectorImpl<uint64_t> &Record, 1916 unsigned Abbrev) { 1917 Record.push_back(N->isDistinct()); 1918 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1919 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1920 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1921 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1922 Record.push_back(N->getLineNo()); 1923 1924 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1925 Record.clear(); 1926 } 1927 1928 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1929 SmallVectorImpl<uint64_t> &Record, 1930 unsigned Abbrev) { 1931 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1932 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1934 1935 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1940 SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 Record.push_back(N->isDistinct()); 1943 Record.push_back(N->getMacinfoType()); 1944 Record.push_back(N->getLine()); 1945 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1946 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1947 1948 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1949 Record.clear(); 1950 } 1951 1952 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1953 SmallVectorImpl<uint64_t> &Record, 1954 unsigned Abbrev) { 1955 Record.push_back(N->isDistinct()); 1956 Record.push_back(N->getMacinfoType()); 1957 Record.push_back(N->getLine()); 1958 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1959 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1960 1961 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1962 Record.clear(); 1963 } 1964 1965 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1966 SmallVectorImpl<uint64_t> &Record, 1967 unsigned Abbrev) { 1968 Record.reserve(N->getArgs().size()); 1969 for (ValueAsMetadata *MD : N->getArgs()) 1970 Record.push_back(VE.getMetadataID(MD)); 1971 1972 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1973 Record.clear(); 1974 } 1975 1976 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1977 SmallVectorImpl<uint64_t> &Record, 1978 unsigned Abbrev) { 1979 Record.push_back(N->isDistinct()); 1980 for (auto &I : N->operands()) 1981 Record.push_back(VE.getMetadataOrNullID(I)); 1982 Record.push_back(N->getLineNo()); 1983 Record.push_back(N->getIsDecl()); 1984 1985 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1986 Record.clear(); 1987 } 1988 1989 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 1990 SmallVectorImpl<uint64_t> &Record, 1991 unsigned Abbrev) { 1992 // There are no arguments for this metadata type. 1993 Record.push_back(N->isDistinct()); 1994 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 1995 Record.clear(); 1996 } 1997 1998 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1999 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2000 unsigned Abbrev) { 2001 Record.push_back(N->isDistinct()); 2002 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2004 Record.push_back(N->isDefault()); 2005 2006 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2007 Record.clear(); 2008 } 2009 2010 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2011 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2012 unsigned Abbrev) { 2013 Record.push_back(N->isDistinct()); 2014 Record.push_back(N->getTag()); 2015 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2017 Record.push_back(N->isDefault()); 2018 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2019 2020 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2021 Record.clear(); 2022 } 2023 2024 void ModuleBitcodeWriter::writeDIGlobalVariable( 2025 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2026 unsigned Abbrev) { 2027 const uint64_t Version = 2 << 1; 2028 Record.push_back((uint64_t)N->isDistinct() | Version); 2029 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2030 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2031 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2032 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2033 Record.push_back(N->getLine()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2035 Record.push_back(N->isLocalToUnit()); 2036 Record.push_back(N->isDefinition()); 2037 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2038 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2039 Record.push_back(N->getAlignInBits()); 2040 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2041 2042 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2043 Record.clear(); 2044 } 2045 2046 void ModuleBitcodeWriter::writeDILocalVariable( 2047 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2048 unsigned Abbrev) { 2049 // In order to support all possible bitcode formats in BitcodeReader we need 2050 // to distinguish the following cases: 2051 // 1) Record has no artificial tag (Record[1]), 2052 // has no obsolete inlinedAt field (Record[9]). 2053 // In this case Record size will be 8, HasAlignment flag is false. 2054 // 2) Record has artificial tag (Record[1]), 2055 // has no obsolete inlignedAt field (Record[9]). 2056 // In this case Record size will be 9, HasAlignment flag is false. 2057 // 3) Record has both artificial tag (Record[1]) and 2058 // obsolete inlignedAt field (Record[9]). 2059 // In this case Record size will be 10, HasAlignment flag is false. 2060 // 4) Record has neither artificial tag, nor inlignedAt field, but 2061 // HasAlignment flag is true and Record[8] contains alignment value. 2062 const uint64_t HasAlignmentFlag = 1 << 1; 2063 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2064 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2065 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2066 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2067 Record.push_back(N->getLine()); 2068 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2069 Record.push_back(N->getArg()); 2070 Record.push_back(N->getFlags()); 2071 Record.push_back(N->getAlignInBits()); 2072 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2073 2074 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2075 Record.clear(); 2076 } 2077 2078 void ModuleBitcodeWriter::writeDILabel( 2079 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2080 unsigned Abbrev) { 2081 Record.push_back((uint64_t)N->isDistinct()); 2082 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2083 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2084 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2085 Record.push_back(N->getLine()); 2086 2087 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2088 Record.clear(); 2089 } 2090 2091 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2092 SmallVectorImpl<uint64_t> &Record, 2093 unsigned Abbrev) { 2094 Record.reserve(N->getElements().size() + 1); 2095 const uint64_t Version = 3 << 1; 2096 Record.push_back((uint64_t)N->isDistinct() | Version); 2097 Record.append(N->elements_begin(), N->elements_end()); 2098 2099 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2100 Record.clear(); 2101 } 2102 2103 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2104 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2105 unsigned Abbrev) { 2106 Record.push_back(N->isDistinct()); 2107 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2108 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2109 2110 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2111 Record.clear(); 2112 } 2113 2114 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2115 SmallVectorImpl<uint64_t> &Record, 2116 unsigned Abbrev) { 2117 Record.push_back(N->isDistinct()); 2118 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2119 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2120 Record.push_back(N->getLine()); 2121 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2122 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2123 Record.push_back(N->getAttributes()); 2124 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2125 2126 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2127 Record.clear(); 2128 } 2129 2130 void ModuleBitcodeWriter::writeDIImportedEntity( 2131 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2132 unsigned Abbrev) { 2133 Record.push_back(N->isDistinct()); 2134 Record.push_back(N->getTag()); 2135 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2136 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2137 Record.push_back(N->getLine()); 2138 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2139 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2140 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2141 2142 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2143 Record.clear(); 2144 } 2145 2146 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2147 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2148 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2151 return Stream.EmitAbbrev(std::move(Abbv)); 2152 } 2153 2154 void ModuleBitcodeWriter::writeNamedMetadata( 2155 SmallVectorImpl<uint64_t> &Record) { 2156 if (M.named_metadata_empty()) 2157 return; 2158 2159 unsigned Abbrev = createNamedMetadataAbbrev(); 2160 for (const NamedMDNode &NMD : M.named_metadata()) { 2161 // Write name. 2162 StringRef Str = NMD.getName(); 2163 Record.append(Str.bytes_begin(), Str.bytes_end()); 2164 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2165 Record.clear(); 2166 2167 // Write named metadata operands. 2168 for (const MDNode *N : NMD.operands()) 2169 Record.push_back(VE.getMetadataID(N)); 2170 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2171 Record.clear(); 2172 } 2173 } 2174 2175 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2176 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2177 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2181 return Stream.EmitAbbrev(std::move(Abbv)); 2182 } 2183 2184 /// Write out a record for MDString. 2185 /// 2186 /// All the metadata strings in a metadata block are emitted in a single 2187 /// record. The sizes and strings themselves are shoved into a blob. 2188 void ModuleBitcodeWriter::writeMetadataStrings( 2189 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2190 if (Strings.empty()) 2191 return; 2192 2193 // Start the record with the number of strings. 2194 Record.push_back(bitc::METADATA_STRINGS); 2195 Record.push_back(Strings.size()); 2196 2197 // Emit the sizes of the strings in the blob. 2198 SmallString<256> Blob; 2199 { 2200 BitstreamWriter W(Blob); 2201 for (const Metadata *MD : Strings) 2202 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2203 W.FlushToWord(); 2204 } 2205 2206 // Add the offset to the strings to the record. 2207 Record.push_back(Blob.size()); 2208 2209 // Add the strings to the blob. 2210 for (const Metadata *MD : Strings) 2211 Blob.append(cast<MDString>(MD)->getString()); 2212 2213 // Emit the final record. 2214 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2215 Record.clear(); 2216 } 2217 2218 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2219 enum MetadataAbbrev : unsigned { 2220 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2221 #include "llvm/IR/Metadata.def" 2222 LastPlusOne 2223 }; 2224 2225 void ModuleBitcodeWriter::writeMetadataRecords( 2226 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2227 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2228 if (MDs.empty()) 2229 return; 2230 2231 // Initialize MDNode abbreviations. 2232 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2233 #include "llvm/IR/Metadata.def" 2234 2235 for (const Metadata *MD : MDs) { 2236 if (IndexPos) 2237 IndexPos->push_back(Stream.GetCurrentBitNo()); 2238 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2239 assert(N->isResolved() && "Expected forward references to be resolved"); 2240 2241 switch (N->getMetadataID()) { 2242 default: 2243 llvm_unreachable("Invalid MDNode subclass"); 2244 #define HANDLE_MDNODE_LEAF(CLASS) \ 2245 case Metadata::CLASS##Kind: \ 2246 if (MDAbbrevs) \ 2247 write##CLASS(cast<CLASS>(N), Record, \ 2248 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2249 else \ 2250 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2251 continue; 2252 #include "llvm/IR/Metadata.def" 2253 } 2254 } 2255 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2256 } 2257 } 2258 2259 void ModuleBitcodeWriter::writeModuleMetadata() { 2260 if (!VE.hasMDs() && M.named_metadata_empty()) 2261 return; 2262 2263 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2264 SmallVector<uint64_t, 64> Record; 2265 2266 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2267 // block and load any metadata. 2268 std::vector<unsigned> MDAbbrevs; 2269 2270 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2271 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2272 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2273 createGenericDINodeAbbrev(); 2274 2275 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2276 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2278 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2279 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2280 2281 Abbv = std::make_shared<BitCodeAbbrev>(); 2282 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2285 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2286 2287 // Emit MDStrings together upfront. 2288 writeMetadataStrings(VE.getMDStrings(), Record); 2289 2290 // We only emit an index for the metadata record if we have more than a given 2291 // (naive) threshold of metadatas, otherwise it is not worth it. 2292 if (VE.getNonMDStrings().size() > IndexThreshold) { 2293 // Write a placeholder value in for the offset of the metadata index, 2294 // which is written after the records, so that it can include 2295 // the offset of each entry. The placeholder offset will be 2296 // updated after all records are emitted. 2297 uint64_t Vals[] = {0, 0}; 2298 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2299 } 2300 2301 // Compute and save the bit offset to the current position, which will be 2302 // patched when we emit the index later. We can simply subtract the 64-bit 2303 // fixed size from the current bit number to get the location to backpatch. 2304 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2305 2306 // This index will contain the bitpos for each individual record. 2307 std::vector<uint64_t> IndexPos; 2308 IndexPos.reserve(VE.getNonMDStrings().size()); 2309 2310 // Write all the records 2311 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2312 2313 if (VE.getNonMDStrings().size() > IndexThreshold) { 2314 // Now that we have emitted all the records we will emit the index. But 2315 // first 2316 // backpatch the forward reference so that the reader can skip the records 2317 // efficiently. 2318 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2319 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2320 2321 // Delta encode the index. 2322 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2323 for (auto &Elt : IndexPos) { 2324 auto EltDelta = Elt - PreviousValue; 2325 PreviousValue = Elt; 2326 Elt = EltDelta; 2327 } 2328 // Emit the index record. 2329 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2330 IndexPos.clear(); 2331 } 2332 2333 // Write the named metadata now. 2334 writeNamedMetadata(Record); 2335 2336 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2337 SmallVector<uint64_t, 4> Record; 2338 Record.push_back(VE.getValueID(&GO)); 2339 pushGlobalMetadataAttachment(Record, GO); 2340 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2341 }; 2342 for (const Function &F : M) 2343 if (F.isDeclaration() && F.hasMetadata()) 2344 AddDeclAttachedMetadata(F); 2345 // FIXME: Only store metadata for declarations here, and move data for global 2346 // variable definitions to a separate block (PR28134). 2347 for (const GlobalVariable &GV : M.globals()) 2348 if (GV.hasMetadata()) 2349 AddDeclAttachedMetadata(GV); 2350 2351 Stream.ExitBlock(); 2352 } 2353 2354 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2355 if (!VE.hasMDs()) 2356 return; 2357 2358 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2359 SmallVector<uint64_t, 64> Record; 2360 writeMetadataStrings(VE.getMDStrings(), Record); 2361 writeMetadataRecords(VE.getNonMDStrings(), Record); 2362 Stream.ExitBlock(); 2363 } 2364 2365 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2366 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2367 // [n x [id, mdnode]] 2368 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2369 GO.getAllMetadata(MDs); 2370 for (const auto &I : MDs) { 2371 Record.push_back(I.first); 2372 Record.push_back(VE.getMetadataID(I.second)); 2373 } 2374 } 2375 2376 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2377 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2378 2379 SmallVector<uint64_t, 64> Record; 2380 2381 if (F.hasMetadata()) { 2382 pushGlobalMetadataAttachment(Record, F); 2383 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2384 Record.clear(); 2385 } 2386 2387 // Write metadata attachments 2388 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2389 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2390 for (const BasicBlock &BB : F) 2391 for (const Instruction &I : BB) { 2392 MDs.clear(); 2393 I.getAllMetadataOtherThanDebugLoc(MDs); 2394 2395 // If no metadata, ignore instruction. 2396 if (MDs.empty()) continue; 2397 2398 Record.push_back(VE.getInstructionID(&I)); 2399 2400 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2401 Record.push_back(MDs[i].first); 2402 Record.push_back(VE.getMetadataID(MDs[i].second)); 2403 } 2404 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2405 Record.clear(); 2406 } 2407 2408 Stream.ExitBlock(); 2409 } 2410 2411 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2412 SmallVector<uint64_t, 64> Record; 2413 2414 // Write metadata kinds 2415 // METADATA_KIND - [n x [id, name]] 2416 SmallVector<StringRef, 8> Names; 2417 M.getMDKindNames(Names); 2418 2419 if (Names.empty()) return; 2420 2421 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2422 2423 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2424 Record.push_back(MDKindID); 2425 StringRef KName = Names[MDKindID]; 2426 Record.append(KName.begin(), KName.end()); 2427 2428 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2429 Record.clear(); 2430 } 2431 2432 Stream.ExitBlock(); 2433 } 2434 2435 void ModuleBitcodeWriter::writeOperandBundleTags() { 2436 // Write metadata kinds 2437 // 2438 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2439 // 2440 // OPERAND_BUNDLE_TAG - [strchr x N] 2441 2442 SmallVector<StringRef, 8> Tags; 2443 M.getOperandBundleTags(Tags); 2444 2445 if (Tags.empty()) 2446 return; 2447 2448 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2449 2450 SmallVector<uint64_t, 64> Record; 2451 2452 for (auto Tag : Tags) { 2453 Record.append(Tag.begin(), Tag.end()); 2454 2455 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2456 Record.clear(); 2457 } 2458 2459 Stream.ExitBlock(); 2460 } 2461 2462 void ModuleBitcodeWriter::writeSyncScopeNames() { 2463 SmallVector<StringRef, 8> SSNs; 2464 M.getContext().getSyncScopeNames(SSNs); 2465 if (SSNs.empty()) 2466 return; 2467 2468 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2469 2470 SmallVector<uint64_t, 64> Record; 2471 for (auto SSN : SSNs) { 2472 Record.append(SSN.begin(), SSN.end()); 2473 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2474 Record.clear(); 2475 } 2476 2477 Stream.ExitBlock(); 2478 } 2479 2480 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2481 bool isGlobal) { 2482 if (FirstVal == LastVal) return; 2483 2484 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2485 2486 unsigned AggregateAbbrev = 0; 2487 unsigned String8Abbrev = 0; 2488 unsigned CString7Abbrev = 0; 2489 unsigned CString6Abbrev = 0; 2490 // If this is a constant pool for the module, emit module-specific abbrevs. 2491 if (isGlobal) { 2492 // Abbrev for CST_CODE_AGGREGATE. 2493 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2494 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2497 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2498 2499 // Abbrev for CST_CODE_STRING. 2500 Abbv = std::make_shared<BitCodeAbbrev>(); 2501 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2504 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2505 // Abbrev for CST_CODE_CSTRING. 2506 Abbv = std::make_shared<BitCodeAbbrev>(); 2507 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2510 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2511 // Abbrev for CST_CODE_CSTRING. 2512 Abbv = std::make_shared<BitCodeAbbrev>(); 2513 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2516 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2517 } 2518 2519 SmallVector<uint64_t, 64> Record; 2520 2521 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2522 Type *LastTy = nullptr; 2523 for (unsigned i = FirstVal; i != LastVal; ++i) { 2524 const Value *V = Vals[i].first; 2525 // If we need to switch types, do so now. 2526 if (V->getType() != LastTy) { 2527 LastTy = V->getType(); 2528 Record.push_back(VE.getTypeID(LastTy)); 2529 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2530 CONSTANTS_SETTYPE_ABBREV); 2531 Record.clear(); 2532 } 2533 2534 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2535 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2536 Record.push_back( 2537 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2538 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2539 2540 // Add the asm string. 2541 const std::string &AsmStr = IA->getAsmString(); 2542 Record.push_back(AsmStr.size()); 2543 Record.append(AsmStr.begin(), AsmStr.end()); 2544 2545 // Add the constraint string. 2546 const std::string &ConstraintStr = IA->getConstraintString(); 2547 Record.push_back(ConstraintStr.size()); 2548 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2549 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2550 Record.clear(); 2551 continue; 2552 } 2553 const Constant *C = cast<Constant>(V); 2554 unsigned Code = -1U; 2555 unsigned AbbrevToUse = 0; 2556 if (C->isNullValue()) { 2557 Code = bitc::CST_CODE_NULL; 2558 } else if (isa<PoisonValue>(C)) { 2559 Code = bitc::CST_CODE_POISON; 2560 } else if (isa<UndefValue>(C)) { 2561 Code = bitc::CST_CODE_UNDEF; 2562 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2563 if (IV->getBitWidth() <= 64) { 2564 uint64_t V = IV->getSExtValue(); 2565 emitSignedInt64(Record, V); 2566 Code = bitc::CST_CODE_INTEGER; 2567 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2568 } else { // Wide integers, > 64 bits in size. 2569 emitWideAPInt(Record, IV->getValue()); 2570 Code = bitc::CST_CODE_WIDE_INTEGER; 2571 } 2572 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2573 Code = bitc::CST_CODE_FLOAT; 2574 Type *Ty = CFP->getType(); 2575 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2576 Ty->isDoubleTy()) { 2577 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2578 } else if (Ty->isX86_FP80Ty()) { 2579 // api needed to prevent premature destruction 2580 // bits are not in the same order as a normal i80 APInt, compensate. 2581 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2582 const uint64_t *p = api.getRawData(); 2583 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2584 Record.push_back(p[0] & 0xffffLL); 2585 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2586 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2587 const uint64_t *p = api.getRawData(); 2588 Record.push_back(p[0]); 2589 Record.push_back(p[1]); 2590 } else { 2591 assert(0 && "Unknown FP type!"); 2592 } 2593 } else if (isa<ConstantDataSequential>(C) && 2594 cast<ConstantDataSequential>(C)->isString()) { 2595 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2596 // Emit constant strings specially. 2597 unsigned NumElts = Str->getNumElements(); 2598 // If this is a null-terminated string, use the denser CSTRING encoding. 2599 if (Str->isCString()) { 2600 Code = bitc::CST_CODE_CSTRING; 2601 --NumElts; // Don't encode the null, which isn't allowed by char6. 2602 } else { 2603 Code = bitc::CST_CODE_STRING; 2604 AbbrevToUse = String8Abbrev; 2605 } 2606 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2607 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2608 for (unsigned i = 0; i != NumElts; ++i) { 2609 unsigned char V = Str->getElementAsInteger(i); 2610 Record.push_back(V); 2611 isCStr7 &= (V & 128) == 0; 2612 if (isCStrChar6) 2613 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2614 } 2615 2616 if (isCStrChar6) 2617 AbbrevToUse = CString6Abbrev; 2618 else if (isCStr7) 2619 AbbrevToUse = CString7Abbrev; 2620 } else if (const ConstantDataSequential *CDS = 2621 dyn_cast<ConstantDataSequential>(C)) { 2622 Code = bitc::CST_CODE_DATA; 2623 Type *EltTy = CDS->getElementType(); 2624 if (isa<IntegerType>(EltTy)) { 2625 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2626 Record.push_back(CDS->getElementAsInteger(i)); 2627 } else { 2628 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2629 Record.push_back( 2630 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2631 } 2632 } else if (isa<ConstantAggregate>(C)) { 2633 Code = bitc::CST_CODE_AGGREGATE; 2634 for (const Value *Op : C->operands()) 2635 Record.push_back(VE.getValueID(Op)); 2636 AbbrevToUse = AggregateAbbrev; 2637 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2638 switch (CE->getOpcode()) { 2639 default: 2640 if (Instruction::isCast(CE->getOpcode())) { 2641 Code = bitc::CST_CODE_CE_CAST; 2642 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2643 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2644 Record.push_back(VE.getValueID(C->getOperand(0))); 2645 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2646 } else { 2647 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2648 Code = bitc::CST_CODE_CE_BINOP; 2649 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2650 Record.push_back(VE.getValueID(C->getOperand(0))); 2651 Record.push_back(VE.getValueID(C->getOperand(1))); 2652 uint64_t Flags = getOptimizationFlags(CE); 2653 if (Flags != 0) 2654 Record.push_back(Flags); 2655 } 2656 break; 2657 case Instruction::FNeg: { 2658 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2659 Code = bitc::CST_CODE_CE_UNOP; 2660 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2661 Record.push_back(VE.getValueID(C->getOperand(0))); 2662 uint64_t Flags = getOptimizationFlags(CE); 2663 if (Flags != 0) 2664 Record.push_back(Flags); 2665 break; 2666 } 2667 case Instruction::GetElementPtr: { 2668 Code = bitc::CST_CODE_CE_GEP; 2669 const auto *GO = cast<GEPOperator>(C); 2670 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2671 if (std::optional<unsigned> Idx = GO->getInRangeIndex()) { 2672 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2673 Record.push_back((*Idx << 1) | GO->isInBounds()); 2674 } else if (GO->isInBounds()) 2675 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2676 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2677 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2678 Record.push_back(VE.getValueID(C->getOperand(i))); 2679 } 2680 break; 2681 } 2682 case Instruction::Select: 2683 Code = bitc::CST_CODE_CE_SELECT; 2684 Record.push_back(VE.getValueID(C->getOperand(0))); 2685 Record.push_back(VE.getValueID(C->getOperand(1))); 2686 Record.push_back(VE.getValueID(C->getOperand(2))); 2687 break; 2688 case Instruction::ExtractElement: 2689 Code = bitc::CST_CODE_CE_EXTRACTELT; 2690 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2691 Record.push_back(VE.getValueID(C->getOperand(0))); 2692 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2693 Record.push_back(VE.getValueID(C->getOperand(1))); 2694 break; 2695 case Instruction::InsertElement: 2696 Code = bitc::CST_CODE_CE_INSERTELT; 2697 Record.push_back(VE.getValueID(C->getOperand(0))); 2698 Record.push_back(VE.getValueID(C->getOperand(1))); 2699 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2700 Record.push_back(VE.getValueID(C->getOperand(2))); 2701 break; 2702 case Instruction::ShuffleVector: 2703 // If the return type and argument types are the same, this is a 2704 // standard shufflevector instruction. If the types are different, 2705 // then the shuffle is widening or truncating the input vectors, and 2706 // the argument type must also be encoded. 2707 if (C->getType() == C->getOperand(0)->getType()) { 2708 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2709 } else { 2710 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2711 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2712 } 2713 Record.push_back(VE.getValueID(C->getOperand(0))); 2714 Record.push_back(VE.getValueID(C->getOperand(1))); 2715 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2716 break; 2717 case Instruction::ICmp: 2718 case Instruction::FCmp: 2719 Code = bitc::CST_CODE_CE_CMP; 2720 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2721 Record.push_back(VE.getValueID(C->getOperand(0))); 2722 Record.push_back(VE.getValueID(C->getOperand(1))); 2723 Record.push_back(CE->getPredicate()); 2724 break; 2725 } 2726 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2727 Code = bitc::CST_CODE_BLOCKADDRESS; 2728 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2729 Record.push_back(VE.getValueID(BA->getFunction())); 2730 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2731 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2732 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2733 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2734 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2735 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2736 Code = bitc::CST_CODE_NO_CFI_VALUE; 2737 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2738 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2739 } else { 2740 #ifndef NDEBUG 2741 C->dump(); 2742 #endif 2743 llvm_unreachable("Unknown constant!"); 2744 } 2745 Stream.EmitRecord(Code, Record, AbbrevToUse); 2746 Record.clear(); 2747 } 2748 2749 Stream.ExitBlock(); 2750 } 2751 2752 void ModuleBitcodeWriter::writeModuleConstants() { 2753 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2754 2755 // Find the first constant to emit, which is the first non-globalvalue value. 2756 // We know globalvalues have been emitted by WriteModuleInfo. 2757 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2758 if (!isa<GlobalValue>(Vals[i].first)) { 2759 writeConstants(i, Vals.size(), true); 2760 return; 2761 } 2762 } 2763 } 2764 2765 /// pushValueAndType - The file has to encode both the value and type id for 2766 /// many values, because we need to know what type to create for forward 2767 /// references. However, most operands are not forward references, so this type 2768 /// field is not needed. 2769 /// 2770 /// This function adds V's value ID to Vals. If the value ID is higher than the 2771 /// instruction ID, then it is a forward reference, and it also includes the 2772 /// type ID. The value ID that is written is encoded relative to the InstID. 2773 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2774 SmallVectorImpl<unsigned> &Vals) { 2775 unsigned ValID = VE.getValueID(V); 2776 // Make encoding relative to the InstID. 2777 Vals.push_back(InstID - ValID); 2778 if (ValID >= InstID) { 2779 Vals.push_back(VE.getTypeID(V->getType())); 2780 return true; 2781 } 2782 return false; 2783 } 2784 2785 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2786 unsigned InstID) { 2787 SmallVector<unsigned, 64> Record; 2788 LLVMContext &C = CS.getContext(); 2789 2790 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2791 const auto &Bundle = CS.getOperandBundleAt(i); 2792 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2793 2794 for (auto &Input : Bundle.Inputs) 2795 pushValueAndType(Input, InstID, Record); 2796 2797 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2798 Record.clear(); 2799 } 2800 } 2801 2802 /// pushValue - Like pushValueAndType, but where the type of the value is 2803 /// omitted (perhaps it was already encoded in an earlier operand). 2804 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2805 SmallVectorImpl<unsigned> &Vals) { 2806 unsigned ValID = VE.getValueID(V); 2807 Vals.push_back(InstID - ValID); 2808 } 2809 2810 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2811 SmallVectorImpl<uint64_t> &Vals) { 2812 unsigned ValID = VE.getValueID(V); 2813 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2814 emitSignedInt64(Vals, diff); 2815 } 2816 2817 /// WriteInstruction - Emit an instruction to the specified stream. 2818 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2819 unsigned InstID, 2820 SmallVectorImpl<unsigned> &Vals) { 2821 unsigned Code = 0; 2822 unsigned AbbrevToUse = 0; 2823 VE.setInstructionID(&I); 2824 switch (I.getOpcode()) { 2825 default: 2826 if (Instruction::isCast(I.getOpcode())) { 2827 Code = bitc::FUNC_CODE_INST_CAST; 2828 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2829 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2830 Vals.push_back(VE.getTypeID(I.getType())); 2831 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2832 } else { 2833 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2834 Code = bitc::FUNC_CODE_INST_BINOP; 2835 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2836 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2837 pushValue(I.getOperand(1), InstID, Vals); 2838 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2839 uint64_t Flags = getOptimizationFlags(&I); 2840 if (Flags != 0) { 2841 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2842 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2843 Vals.push_back(Flags); 2844 } 2845 } 2846 break; 2847 case Instruction::FNeg: { 2848 Code = bitc::FUNC_CODE_INST_UNOP; 2849 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2850 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2851 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2852 uint64_t Flags = getOptimizationFlags(&I); 2853 if (Flags != 0) { 2854 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2855 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2856 Vals.push_back(Flags); 2857 } 2858 break; 2859 } 2860 case Instruction::GetElementPtr: { 2861 Code = bitc::FUNC_CODE_INST_GEP; 2862 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2863 auto &GEPInst = cast<GetElementPtrInst>(I); 2864 Vals.push_back(GEPInst.isInBounds()); 2865 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2866 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2867 pushValueAndType(I.getOperand(i), InstID, Vals); 2868 break; 2869 } 2870 case Instruction::ExtractValue: { 2871 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2872 pushValueAndType(I.getOperand(0), InstID, Vals); 2873 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2874 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2875 break; 2876 } 2877 case Instruction::InsertValue: { 2878 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2879 pushValueAndType(I.getOperand(0), InstID, Vals); 2880 pushValueAndType(I.getOperand(1), InstID, Vals); 2881 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2882 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2883 break; 2884 } 2885 case Instruction::Select: { 2886 Code = bitc::FUNC_CODE_INST_VSELECT; 2887 pushValueAndType(I.getOperand(1), InstID, Vals); 2888 pushValue(I.getOperand(2), InstID, Vals); 2889 pushValueAndType(I.getOperand(0), InstID, Vals); 2890 uint64_t Flags = getOptimizationFlags(&I); 2891 if (Flags != 0) 2892 Vals.push_back(Flags); 2893 break; 2894 } 2895 case Instruction::ExtractElement: 2896 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2897 pushValueAndType(I.getOperand(0), InstID, Vals); 2898 pushValueAndType(I.getOperand(1), InstID, Vals); 2899 break; 2900 case Instruction::InsertElement: 2901 Code = bitc::FUNC_CODE_INST_INSERTELT; 2902 pushValueAndType(I.getOperand(0), InstID, Vals); 2903 pushValue(I.getOperand(1), InstID, Vals); 2904 pushValueAndType(I.getOperand(2), InstID, Vals); 2905 break; 2906 case Instruction::ShuffleVector: 2907 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2908 pushValueAndType(I.getOperand(0), InstID, Vals); 2909 pushValue(I.getOperand(1), InstID, Vals); 2910 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2911 Vals); 2912 break; 2913 case Instruction::ICmp: 2914 case Instruction::FCmp: { 2915 // compare returning Int1Ty or vector of Int1Ty 2916 Code = bitc::FUNC_CODE_INST_CMP2; 2917 pushValueAndType(I.getOperand(0), InstID, Vals); 2918 pushValue(I.getOperand(1), InstID, Vals); 2919 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2920 uint64_t Flags = getOptimizationFlags(&I); 2921 if (Flags != 0) 2922 Vals.push_back(Flags); 2923 break; 2924 } 2925 2926 case Instruction::Ret: 2927 { 2928 Code = bitc::FUNC_CODE_INST_RET; 2929 unsigned NumOperands = I.getNumOperands(); 2930 if (NumOperands == 0) 2931 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2932 else if (NumOperands == 1) { 2933 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2934 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2935 } else { 2936 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2937 pushValueAndType(I.getOperand(i), InstID, Vals); 2938 } 2939 } 2940 break; 2941 case Instruction::Br: 2942 { 2943 Code = bitc::FUNC_CODE_INST_BR; 2944 const BranchInst &II = cast<BranchInst>(I); 2945 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2946 if (II.isConditional()) { 2947 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2948 pushValue(II.getCondition(), InstID, Vals); 2949 } 2950 } 2951 break; 2952 case Instruction::Switch: 2953 { 2954 Code = bitc::FUNC_CODE_INST_SWITCH; 2955 const SwitchInst &SI = cast<SwitchInst>(I); 2956 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2957 pushValue(SI.getCondition(), InstID, Vals); 2958 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2959 for (auto Case : SI.cases()) { 2960 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2961 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2962 } 2963 } 2964 break; 2965 case Instruction::IndirectBr: 2966 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2967 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2968 // Encode the address operand as relative, but not the basic blocks. 2969 pushValue(I.getOperand(0), InstID, Vals); 2970 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2971 Vals.push_back(VE.getValueID(I.getOperand(i))); 2972 break; 2973 2974 case Instruction::Invoke: { 2975 const InvokeInst *II = cast<InvokeInst>(&I); 2976 const Value *Callee = II->getCalledOperand(); 2977 FunctionType *FTy = II->getFunctionType(); 2978 2979 if (II->hasOperandBundles()) 2980 writeOperandBundles(*II, InstID); 2981 2982 Code = bitc::FUNC_CODE_INST_INVOKE; 2983 2984 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2985 Vals.push_back(II->getCallingConv() | 1 << 13); 2986 Vals.push_back(VE.getValueID(II->getNormalDest())); 2987 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2988 Vals.push_back(VE.getTypeID(FTy)); 2989 pushValueAndType(Callee, InstID, Vals); 2990 2991 // Emit value #'s for the fixed parameters. 2992 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2993 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2994 2995 // Emit type/value pairs for varargs params. 2996 if (FTy->isVarArg()) { 2997 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2998 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2999 } 3000 break; 3001 } 3002 case Instruction::Resume: 3003 Code = bitc::FUNC_CODE_INST_RESUME; 3004 pushValueAndType(I.getOperand(0), InstID, Vals); 3005 break; 3006 case Instruction::CleanupRet: { 3007 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3008 const auto &CRI = cast<CleanupReturnInst>(I); 3009 pushValue(CRI.getCleanupPad(), InstID, Vals); 3010 if (CRI.hasUnwindDest()) 3011 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3012 break; 3013 } 3014 case Instruction::CatchRet: { 3015 Code = bitc::FUNC_CODE_INST_CATCHRET; 3016 const auto &CRI = cast<CatchReturnInst>(I); 3017 pushValue(CRI.getCatchPad(), InstID, Vals); 3018 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3019 break; 3020 } 3021 case Instruction::CleanupPad: 3022 case Instruction::CatchPad: { 3023 const auto &FuncletPad = cast<FuncletPadInst>(I); 3024 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3025 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3026 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3027 3028 unsigned NumArgOperands = FuncletPad.arg_size(); 3029 Vals.push_back(NumArgOperands); 3030 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3031 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3032 break; 3033 } 3034 case Instruction::CatchSwitch: { 3035 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3036 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3037 3038 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3039 3040 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3041 Vals.push_back(NumHandlers); 3042 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3043 Vals.push_back(VE.getValueID(CatchPadBB)); 3044 3045 if (CatchSwitch.hasUnwindDest()) 3046 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3047 break; 3048 } 3049 case Instruction::CallBr: { 3050 const CallBrInst *CBI = cast<CallBrInst>(&I); 3051 const Value *Callee = CBI->getCalledOperand(); 3052 FunctionType *FTy = CBI->getFunctionType(); 3053 3054 if (CBI->hasOperandBundles()) 3055 writeOperandBundles(*CBI, InstID); 3056 3057 Code = bitc::FUNC_CODE_INST_CALLBR; 3058 3059 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3060 3061 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3062 1 << bitc::CALL_EXPLICIT_TYPE); 3063 3064 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3065 Vals.push_back(CBI->getNumIndirectDests()); 3066 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3067 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3068 3069 Vals.push_back(VE.getTypeID(FTy)); 3070 pushValueAndType(Callee, InstID, Vals); 3071 3072 // Emit value #'s for the fixed parameters. 3073 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3074 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3075 3076 // Emit type/value pairs for varargs params. 3077 if (FTy->isVarArg()) { 3078 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3079 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3080 } 3081 break; 3082 } 3083 case Instruction::Unreachable: 3084 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3085 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3086 break; 3087 3088 case Instruction::PHI: { 3089 const PHINode &PN = cast<PHINode>(I); 3090 Code = bitc::FUNC_CODE_INST_PHI; 3091 // With the newer instruction encoding, forward references could give 3092 // negative valued IDs. This is most common for PHIs, so we use 3093 // signed VBRs. 3094 SmallVector<uint64_t, 128> Vals64; 3095 Vals64.push_back(VE.getTypeID(PN.getType())); 3096 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3097 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3098 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3099 } 3100 3101 uint64_t Flags = getOptimizationFlags(&I); 3102 if (Flags != 0) 3103 Vals64.push_back(Flags); 3104 3105 // Emit a Vals64 vector and exit. 3106 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3107 Vals64.clear(); 3108 return; 3109 } 3110 3111 case Instruction::LandingPad: { 3112 const LandingPadInst &LP = cast<LandingPadInst>(I); 3113 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3114 Vals.push_back(VE.getTypeID(LP.getType())); 3115 Vals.push_back(LP.isCleanup()); 3116 Vals.push_back(LP.getNumClauses()); 3117 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3118 if (LP.isCatch(I)) 3119 Vals.push_back(LandingPadInst::Catch); 3120 else 3121 Vals.push_back(LandingPadInst::Filter); 3122 pushValueAndType(LP.getClause(I), InstID, Vals); 3123 } 3124 break; 3125 } 3126 3127 case Instruction::Alloca: { 3128 Code = bitc::FUNC_CODE_INST_ALLOCA; 3129 const AllocaInst &AI = cast<AllocaInst>(I); 3130 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3131 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3132 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3133 using APV = AllocaPackedValues; 3134 unsigned Record = 0; 3135 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3136 Bitfield::set<APV::AlignLower>( 3137 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3138 Bitfield::set<APV::AlignUpper>(Record, 3139 EncodedAlign >> APV::AlignLower::Bits); 3140 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3141 Bitfield::set<APV::ExplicitType>(Record, true); 3142 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3143 Vals.push_back(Record); 3144 3145 unsigned AS = AI.getAddressSpace(); 3146 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3147 Vals.push_back(AS); 3148 break; 3149 } 3150 3151 case Instruction::Load: 3152 if (cast<LoadInst>(I).isAtomic()) { 3153 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3154 pushValueAndType(I.getOperand(0), InstID, Vals); 3155 } else { 3156 Code = bitc::FUNC_CODE_INST_LOAD; 3157 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3158 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3159 } 3160 Vals.push_back(VE.getTypeID(I.getType())); 3161 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3162 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3163 if (cast<LoadInst>(I).isAtomic()) { 3164 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3165 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3166 } 3167 break; 3168 case Instruction::Store: 3169 if (cast<StoreInst>(I).isAtomic()) 3170 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3171 else 3172 Code = bitc::FUNC_CODE_INST_STORE; 3173 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3174 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3175 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3176 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3177 if (cast<StoreInst>(I).isAtomic()) { 3178 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3179 Vals.push_back( 3180 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3181 } 3182 break; 3183 case Instruction::AtomicCmpXchg: 3184 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3185 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3186 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3187 pushValue(I.getOperand(2), InstID, Vals); // newval. 3188 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3189 Vals.push_back( 3190 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3191 Vals.push_back( 3192 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3193 Vals.push_back( 3194 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3195 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3196 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3197 break; 3198 case Instruction::AtomicRMW: 3199 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3200 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3201 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3202 Vals.push_back( 3203 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3204 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3205 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3206 Vals.push_back( 3207 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3208 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3209 break; 3210 case Instruction::Fence: 3211 Code = bitc::FUNC_CODE_INST_FENCE; 3212 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3213 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3214 break; 3215 case Instruction::Call: { 3216 const CallInst &CI = cast<CallInst>(I); 3217 FunctionType *FTy = CI.getFunctionType(); 3218 3219 if (CI.hasOperandBundles()) 3220 writeOperandBundles(CI, InstID); 3221 3222 Code = bitc::FUNC_CODE_INST_CALL; 3223 3224 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3225 3226 unsigned Flags = getOptimizationFlags(&I); 3227 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3228 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3229 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3230 1 << bitc::CALL_EXPLICIT_TYPE | 3231 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3232 unsigned(Flags != 0) << bitc::CALL_FMF); 3233 if (Flags != 0) 3234 Vals.push_back(Flags); 3235 3236 Vals.push_back(VE.getTypeID(FTy)); 3237 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3238 3239 // Emit value #'s for the fixed parameters. 3240 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3241 // Check for labels (can happen with asm labels). 3242 if (FTy->getParamType(i)->isLabelTy()) 3243 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3244 else 3245 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3246 } 3247 3248 // Emit type/value pairs for varargs params. 3249 if (FTy->isVarArg()) { 3250 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3251 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3252 } 3253 break; 3254 } 3255 case Instruction::VAArg: 3256 Code = bitc::FUNC_CODE_INST_VAARG; 3257 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3258 pushValue(I.getOperand(0), InstID, Vals); // valist. 3259 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3260 break; 3261 case Instruction::Freeze: 3262 Code = bitc::FUNC_CODE_INST_FREEZE; 3263 pushValueAndType(I.getOperand(0), InstID, Vals); 3264 break; 3265 } 3266 3267 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3268 Vals.clear(); 3269 } 3270 3271 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3272 /// to allow clients to efficiently find the function body. 3273 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3274 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3275 // Get the offset of the VST we are writing, and backpatch it into 3276 // the VST forward declaration record. 3277 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3278 // The BitcodeStartBit was the stream offset of the identification block. 3279 VSTOffset -= bitcodeStartBit(); 3280 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3281 // Note that we add 1 here because the offset is relative to one word 3282 // before the start of the identification block, which was historically 3283 // always the start of the regular bitcode header. 3284 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3285 3286 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3287 3288 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3289 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3292 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3293 3294 for (const Function &F : M) { 3295 uint64_t Record[2]; 3296 3297 if (F.isDeclaration()) 3298 continue; 3299 3300 Record[0] = VE.getValueID(&F); 3301 3302 // Save the word offset of the function (from the start of the 3303 // actual bitcode written to the stream). 3304 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3305 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3306 // Note that we add 1 here because the offset is relative to one word 3307 // before the start of the identification block, which was historically 3308 // always the start of the regular bitcode header. 3309 Record[1] = BitcodeIndex / 32 + 1; 3310 3311 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3312 } 3313 3314 Stream.ExitBlock(); 3315 } 3316 3317 /// Emit names for arguments, instructions and basic blocks in a function. 3318 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3319 const ValueSymbolTable &VST) { 3320 if (VST.empty()) 3321 return; 3322 3323 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3324 3325 // FIXME: Set up the abbrev, we know how many values there are! 3326 // FIXME: We know if the type names can use 7-bit ascii. 3327 SmallVector<uint64_t, 64> NameVals; 3328 3329 for (const ValueName &Name : VST) { 3330 // Figure out the encoding to use for the name. 3331 StringEncoding Bits = getStringEncoding(Name.getKey()); 3332 3333 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3334 NameVals.push_back(VE.getValueID(Name.getValue())); 3335 3336 // VST_CODE_ENTRY: [valueid, namechar x N] 3337 // VST_CODE_BBENTRY: [bbid, namechar x N] 3338 unsigned Code; 3339 if (isa<BasicBlock>(Name.getValue())) { 3340 Code = bitc::VST_CODE_BBENTRY; 3341 if (Bits == SE_Char6) 3342 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3343 } else { 3344 Code = bitc::VST_CODE_ENTRY; 3345 if (Bits == SE_Char6) 3346 AbbrevToUse = VST_ENTRY_6_ABBREV; 3347 else if (Bits == SE_Fixed7) 3348 AbbrevToUse = VST_ENTRY_7_ABBREV; 3349 } 3350 3351 for (const auto P : Name.getKey()) 3352 NameVals.push_back((unsigned char)P); 3353 3354 // Emit the finished record. 3355 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3356 NameVals.clear(); 3357 } 3358 3359 Stream.ExitBlock(); 3360 } 3361 3362 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3363 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3364 unsigned Code; 3365 if (isa<BasicBlock>(Order.V)) 3366 Code = bitc::USELIST_CODE_BB; 3367 else 3368 Code = bitc::USELIST_CODE_DEFAULT; 3369 3370 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3371 Record.push_back(VE.getValueID(Order.V)); 3372 Stream.EmitRecord(Code, Record); 3373 } 3374 3375 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3376 assert(VE.shouldPreserveUseListOrder() && 3377 "Expected to be preserving use-list order"); 3378 3379 auto hasMore = [&]() { 3380 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3381 }; 3382 if (!hasMore()) 3383 // Nothing to do. 3384 return; 3385 3386 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3387 while (hasMore()) { 3388 writeUseList(std::move(VE.UseListOrders.back())); 3389 VE.UseListOrders.pop_back(); 3390 } 3391 Stream.ExitBlock(); 3392 } 3393 3394 /// Emit a function body to the module stream. 3395 void ModuleBitcodeWriter::writeFunction( 3396 const Function &F, 3397 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3398 // Save the bitcode index of the start of this function block for recording 3399 // in the VST. 3400 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3401 3402 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3403 VE.incorporateFunction(F); 3404 3405 SmallVector<unsigned, 64> Vals; 3406 3407 // Emit the number of basic blocks, so the reader can create them ahead of 3408 // time. 3409 Vals.push_back(VE.getBasicBlocks().size()); 3410 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3411 Vals.clear(); 3412 3413 // If there are function-local constants, emit them now. 3414 unsigned CstStart, CstEnd; 3415 VE.getFunctionConstantRange(CstStart, CstEnd); 3416 writeConstants(CstStart, CstEnd, false); 3417 3418 // If there is function-local metadata, emit it now. 3419 writeFunctionMetadata(F); 3420 3421 // Keep a running idea of what the instruction ID is. 3422 unsigned InstID = CstEnd; 3423 3424 bool NeedsMetadataAttachment = F.hasMetadata(); 3425 3426 DILocation *LastDL = nullptr; 3427 SmallSetVector<Function *, 4> BlockAddressUsers; 3428 3429 // Finally, emit all the instructions, in order. 3430 for (const BasicBlock &BB : F) { 3431 for (const Instruction &I : BB) { 3432 writeInstruction(I, InstID, Vals); 3433 3434 if (!I.getType()->isVoidTy()) 3435 ++InstID; 3436 3437 // If the instruction has metadata, write a metadata attachment later. 3438 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3439 3440 // If the instruction has a debug location, emit it. 3441 DILocation *DL = I.getDebugLoc(); 3442 if (!DL) 3443 continue; 3444 3445 if (DL == LastDL) { 3446 // Just repeat the same debug loc as last time. 3447 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3448 continue; 3449 } 3450 3451 Vals.push_back(DL->getLine()); 3452 Vals.push_back(DL->getColumn()); 3453 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3454 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3455 Vals.push_back(DL->isImplicitCode()); 3456 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3457 Vals.clear(); 3458 3459 LastDL = DL; 3460 } 3461 3462 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3463 SmallVector<Value *> Worklist{BA}; 3464 SmallPtrSet<Value *, 8> Visited{BA}; 3465 while (!Worklist.empty()) { 3466 Value *V = Worklist.pop_back_val(); 3467 for (User *U : V->users()) { 3468 if (auto *I = dyn_cast<Instruction>(U)) { 3469 Function *P = I->getFunction(); 3470 if (P != &F) 3471 BlockAddressUsers.insert(P); 3472 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3473 Visited.insert(U).second) 3474 Worklist.push_back(U); 3475 } 3476 } 3477 } 3478 } 3479 3480 if (!BlockAddressUsers.empty()) { 3481 Vals.resize(BlockAddressUsers.size()); 3482 for (auto I : llvm::enumerate(BlockAddressUsers)) 3483 Vals[I.index()] = VE.getValueID(I.value()); 3484 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3485 Vals.clear(); 3486 } 3487 3488 // Emit names for all the instructions etc. 3489 if (auto *Symtab = F.getValueSymbolTable()) 3490 writeFunctionLevelValueSymbolTable(*Symtab); 3491 3492 if (NeedsMetadataAttachment) 3493 writeFunctionMetadataAttachment(F); 3494 if (VE.shouldPreserveUseListOrder()) 3495 writeUseListBlock(&F); 3496 VE.purgeFunction(); 3497 Stream.ExitBlock(); 3498 } 3499 3500 // Emit blockinfo, which defines the standard abbreviations etc. 3501 void ModuleBitcodeWriter::writeBlockInfo() { 3502 // We only want to emit block info records for blocks that have multiple 3503 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3504 // Other blocks can define their abbrevs inline. 3505 Stream.EnterBlockInfoBlock(); 3506 3507 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3508 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3513 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3514 VST_ENTRY_8_ABBREV) 3515 llvm_unreachable("Unexpected abbrev ordering!"); 3516 } 3517 3518 { // 7-bit fixed width VST_CODE_ENTRY strings. 3519 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3520 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3524 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3525 VST_ENTRY_7_ABBREV) 3526 llvm_unreachable("Unexpected abbrev ordering!"); 3527 } 3528 { // 6-bit char6 VST_CODE_ENTRY strings. 3529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3530 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3534 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3535 VST_ENTRY_6_ABBREV) 3536 llvm_unreachable("Unexpected abbrev ordering!"); 3537 } 3538 { // 6-bit char6 VST_CODE_BBENTRY strings. 3539 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3540 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3544 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3545 VST_BBENTRY_6_ABBREV) 3546 llvm_unreachable("Unexpected abbrev ordering!"); 3547 } 3548 3549 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3550 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3551 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3552 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3553 VE.computeBitsRequiredForTypeIndicies())); 3554 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3555 CONSTANTS_SETTYPE_ABBREV) 3556 llvm_unreachable("Unexpected abbrev ordering!"); 3557 } 3558 3559 { // INTEGER abbrev for CONSTANTS_BLOCK. 3560 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3561 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3563 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3564 CONSTANTS_INTEGER_ABBREV) 3565 llvm_unreachable("Unexpected abbrev ordering!"); 3566 } 3567 3568 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3569 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3570 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3573 VE.computeBitsRequiredForTypeIndicies())); 3574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3575 3576 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3577 CONSTANTS_CE_CAST_Abbrev) 3578 llvm_unreachable("Unexpected abbrev ordering!"); 3579 } 3580 { // NULL abbrev for CONSTANTS_BLOCK. 3581 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3582 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3583 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3584 CONSTANTS_NULL_Abbrev) 3585 llvm_unreachable("Unexpected abbrev ordering!"); 3586 } 3587 3588 // FIXME: This should only use space for first class types! 3589 3590 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3591 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3592 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3595 VE.computeBitsRequiredForTypeIndicies())); 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3598 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3599 FUNCTION_INST_LOAD_ABBREV) 3600 llvm_unreachable("Unexpected abbrev ordering!"); 3601 } 3602 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3603 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3607 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3608 FUNCTION_INST_UNOP_ABBREV) 3609 llvm_unreachable("Unexpected abbrev ordering!"); 3610 } 3611 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3612 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3613 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3617 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3618 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3619 llvm_unreachable("Unexpected abbrev ordering!"); 3620 } 3621 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3622 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3623 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3625 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3627 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3628 FUNCTION_INST_BINOP_ABBREV) 3629 llvm_unreachable("Unexpected abbrev ordering!"); 3630 } 3631 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3632 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3633 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3638 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3639 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3640 llvm_unreachable("Unexpected abbrev ordering!"); 3641 } 3642 { // INST_CAST abbrev for FUNCTION_BLOCK. 3643 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3644 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3645 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3646 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3647 VE.computeBitsRequiredForTypeIndicies())); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3649 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3650 FUNCTION_INST_CAST_ABBREV) 3651 llvm_unreachable("Unexpected abbrev ordering!"); 3652 } 3653 3654 { // INST_RET abbrev for FUNCTION_BLOCK. 3655 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3656 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3657 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3658 FUNCTION_INST_RET_VOID_ABBREV) 3659 llvm_unreachable("Unexpected abbrev ordering!"); 3660 } 3661 { // INST_RET abbrev for FUNCTION_BLOCK. 3662 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3663 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3665 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3666 FUNCTION_INST_RET_VAL_ABBREV) 3667 llvm_unreachable("Unexpected abbrev ordering!"); 3668 } 3669 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3670 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3671 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3672 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3673 FUNCTION_INST_UNREACHABLE_ABBREV) 3674 llvm_unreachable("Unexpected abbrev ordering!"); 3675 } 3676 { 3677 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3678 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3679 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3681 Log2_32_Ceil(VE.getTypes().size() + 1))); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3684 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3685 FUNCTION_INST_GEP_ABBREV) 3686 llvm_unreachable("Unexpected abbrev ordering!"); 3687 } 3688 3689 Stream.ExitBlock(); 3690 } 3691 3692 /// Write the module path strings, currently only used when generating 3693 /// a combined index file. 3694 void IndexBitcodeWriter::writeModStrings() { 3695 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3696 3697 // TODO: See which abbrev sizes we actually need to emit 3698 3699 // 8-bit fixed-width MST_ENTRY strings. 3700 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3701 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3705 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3706 3707 // 7-bit fixed width MST_ENTRY strings. 3708 Abbv = std::make_shared<BitCodeAbbrev>(); 3709 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3713 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3714 3715 // 6-bit char6 MST_ENTRY strings. 3716 Abbv = std::make_shared<BitCodeAbbrev>(); 3717 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3718 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3719 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3721 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3722 3723 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3724 Abbv = std::make_shared<BitCodeAbbrev>(); 3725 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3731 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3732 3733 SmallVector<unsigned, 64> Vals; 3734 forEachModule( 3735 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3736 StringRef Key = MPSE.getKey(); 3737 const auto &Value = MPSE.getValue(); 3738 StringEncoding Bits = getStringEncoding(Key); 3739 unsigned AbbrevToUse = Abbrev8Bit; 3740 if (Bits == SE_Char6) 3741 AbbrevToUse = Abbrev6Bit; 3742 else if (Bits == SE_Fixed7) 3743 AbbrevToUse = Abbrev7Bit; 3744 3745 Vals.push_back(Value.first); 3746 Vals.append(Key.begin(), Key.end()); 3747 3748 // Emit the finished record. 3749 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3750 3751 // Emit an optional hash for the module now 3752 const auto &Hash = Value.second; 3753 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3754 Vals.assign(Hash.begin(), Hash.end()); 3755 // Emit the hash record. 3756 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3757 } 3758 3759 Vals.clear(); 3760 }); 3761 Stream.ExitBlock(); 3762 } 3763 3764 /// Write the function type metadata related records that need to appear before 3765 /// a function summary entry (whether per-module or combined). 3766 template <typename Fn> 3767 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3768 FunctionSummary *FS, 3769 Fn GetValueID) { 3770 if (!FS->type_tests().empty()) 3771 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3772 3773 SmallVector<uint64_t, 64> Record; 3774 3775 auto WriteVFuncIdVec = [&](uint64_t Ty, 3776 ArrayRef<FunctionSummary::VFuncId> VFs) { 3777 if (VFs.empty()) 3778 return; 3779 Record.clear(); 3780 for (auto &VF : VFs) { 3781 Record.push_back(VF.GUID); 3782 Record.push_back(VF.Offset); 3783 } 3784 Stream.EmitRecord(Ty, Record); 3785 }; 3786 3787 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3788 FS->type_test_assume_vcalls()); 3789 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3790 FS->type_checked_load_vcalls()); 3791 3792 auto WriteConstVCallVec = [&](uint64_t Ty, 3793 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3794 for (auto &VC : VCs) { 3795 Record.clear(); 3796 Record.push_back(VC.VFunc.GUID); 3797 Record.push_back(VC.VFunc.Offset); 3798 llvm::append_range(Record, VC.Args); 3799 Stream.EmitRecord(Ty, Record); 3800 } 3801 }; 3802 3803 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3804 FS->type_test_assume_const_vcalls()); 3805 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3806 FS->type_checked_load_const_vcalls()); 3807 3808 auto WriteRange = [&](ConstantRange Range) { 3809 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3810 assert(Range.getLower().getNumWords() == 1); 3811 assert(Range.getUpper().getNumWords() == 1); 3812 emitSignedInt64(Record, *Range.getLower().getRawData()); 3813 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3814 }; 3815 3816 if (!FS->paramAccesses().empty()) { 3817 Record.clear(); 3818 for (auto &Arg : FS->paramAccesses()) { 3819 size_t UndoSize = Record.size(); 3820 Record.push_back(Arg.ParamNo); 3821 WriteRange(Arg.Use); 3822 Record.push_back(Arg.Calls.size()); 3823 for (auto &Call : Arg.Calls) { 3824 Record.push_back(Call.ParamNo); 3825 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 3826 if (!ValueID) { 3827 // If ValueID is unknown we can't drop just this call, we must drop 3828 // entire parameter. 3829 Record.resize(UndoSize); 3830 break; 3831 } 3832 Record.push_back(*ValueID); 3833 WriteRange(Call.Offsets); 3834 } 3835 } 3836 if (!Record.empty()) 3837 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3838 } 3839 } 3840 3841 /// Collect type IDs from type tests used by function. 3842 static void 3843 getReferencedTypeIds(FunctionSummary *FS, 3844 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3845 if (!FS->type_tests().empty()) 3846 for (auto &TT : FS->type_tests()) 3847 ReferencedTypeIds.insert(TT); 3848 3849 auto GetReferencedTypesFromVFuncIdVec = 3850 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3851 for (auto &VF : VFs) 3852 ReferencedTypeIds.insert(VF.GUID); 3853 }; 3854 3855 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3856 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3857 3858 auto GetReferencedTypesFromConstVCallVec = 3859 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3860 for (auto &VC : VCs) 3861 ReferencedTypeIds.insert(VC.VFunc.GUID); 3862 }; 3863 3864 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3865 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3866 } 3867 3868 static void writeWholeProgramDevirtResolutionByArg( 3869 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3870 const WholeProgramDevirtResolution::ByArg &ByArg) { 3871 NameVals.push_back(args.size()); 3872 llvm::append_range(NameVals, args); 3873 3874 NameVals.push_back(ByArg.TheKind); 3875 NameVals.push_back(ByArg.Info); 3876 NameVals.push_back(ByArg.Byte); 3877 NameVals.push_back(ByArg.Bit); 3878 } 3879 3880 static void writeWholeProgramDevirtResolution( 3881 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3882 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3883 NameVals.push_back(Id); 3884 3885 NameVals.push_back(Wpd.TheKind); 3886 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3887 NameVals.push_back(Wpd.SingleImplName.size()); 3888 3889 NameVals.push_back(Wpd.ResByArg.size()); 3890 for (auto &A : Wpd.ResByArg) 3891 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3892 } 3893 3894 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3895 StringTableBuilder &StrtabBuilder, 3896 const std::string &Id, 3897 const TypeIdSummary &Summary) { 3898 NameVals.push_back(StrtabBuilder.add(Id)); 3899 NameVals.push_back(Id.size()); 3900 3901 NameVals.push_back(Summary.TTRes.TheKind); 3902 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3903 NameVals.push_back(Summary.TTRes.AlignLog2); 3904 NameVals.push_back(Summary.TTRes.SizeM1); 3905 NameVals.push_back(Summary.TTRes.BitMask); 3906 NameVals.push_back(Summary.TTRes.InlineBits); 3907 3908 for (auto &W : Summary.WPDRes) 3909 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3910 W.second); 3911 } 3912 3913 static void writeTypeIdCompatibleVtableSummaryRecord( 3914 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3915 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3916 ValueEnumerator &VE) { 3917 NameVals.push_back(StrtabBuilder.add(Id)); 3918 NameVals.push_back(Id.size()); 3919 3920 for (auto &P : Summary) { 3921 NameVals.push_back(P.AddressPointOffset); 3922 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3923 } 3924 } 3925 3926 static void writeFunctionHeapProfileRecords( 3927 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 3928 unsigned AllocAbbrev, bool PerModule, 3929 std::function<unsigned(const ValueInfo &VI)> GetValueID, 3930 std::function<unsigned(unsigned)> GetStackIndex) { 3931 SmallVector<uint64_t> Record; 3932 3933 for (auto &CI : FS->callsites()) { 3934 Record.clear(); 3935 // Per module callsite clones should always have a single entry of 3936 // value 0. 3937 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 3938 Record.push_back(GetValueID(CI.Callee)); 3939 if (!PerModule) { 3940 Record.push_back(CI.StackIdIndices.size()); 3941 Record.push_back(CI.Clones.size()); 3942 } 3943 for (auto Id : CI.StackIdIndices) 3944 Record.push_back(GetStackIndex(Id)); 3945 if (!PerModule) { 3946 for (auto V : CI.Clones) 3947 Record.push_back(V); 3948 } 3949 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 3950 : bitc::FS_COMBINED_CALLSITE_INFO, 3951 Record, CallsiteAbbrev); 3952 } 3953 3954 for (auto &AI : FS->allocs()) { 3955 Record.clear(); 3956 // Per module alloc versions should always have a single entry of 3957 // value 0. 3958 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 3959 if (!PerModule) { 3960 Record.push_back(AI.MIBs.size()); 3961 Record.push_back(AI.Versions.size()); 3962 } 3963 for (auto &MIB : AI.MIBs) { 3964 Record.push_back((uint8_t)MIB.AllocType); 3965 Record.push_back(MIB.StackIdIndices.size()); 3966 for (auto Id : MIB.StackIdIndices) 3967 Record.push_back(GetStackIndex(Id)); 3968 } 3969 if (!PerModule) { 3970 for (auto V : AI.Versions) 3971 Record.push_back(V); 3972 } 3973 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 3974 : bitc::FS_COMBINED_ALLOC_INFO, 3975 Record, AllocAbbrev); 3976 } 3977 } 3978 3979 // Helper to emit a single function summary record. 3980 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3981 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3982 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3983 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F) { 3984 NameVals.push_back(ValueID); 3985 3986 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3987 3988 writeFunctionTypeMetadataRecords( 3989 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 3990 return {VE.getValueID(VI.getValue())}; 3991 }); 3992 3993 writeFunctionHeapProfileRecords( 3994 Stream, FS, CallsiteAbbrev, AllocAbbrev, 3995 /*PerModule*/ true, 3996 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 3997 /*GetStackIndex*/ [&](unsigned I) { return I; }); 3998 3999 auto SpecialRefCnts = FS->specialRefCounts(); 4000 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4001 NameVals.push_back(FS->instCount()); 4002 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4003 NameVals.push_back(FS->refs().size()); 4004 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4005 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4006 4007 for (auto &RI : FS->refs()) 4008 NameVals.push_back(VE.getValueID(RI.getValue())); 4009 4010 bool HasProfileData = 4011 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 4012 for (auto &ECI : FS->calls()) { 4013 NameVals.push_back(getValueId(ECI.first)); 4014 if (HasProfileData) 4015 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 4016 else if (WriteRelBFToSummary) 4017 NameVals.push_back(ECI.second.RelBlockFreq); 4018 } 4019 4020 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4021 unsigned Code = 4022 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 4023 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 4024 : bitc::FS_PERMODULE)); 4025 4026 // Emit the finished record. 4027 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4028 NameVals.clear(); 4029 } 4030 4031 // Collect the global value references in the given variable's initializer, 4032 // and emit them in a summary record. 4033 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4034 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4035 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4036 auto VI = Index->getValueInfo(V.getGUID()); 4037 if (!VI || VI.getSummaryList().empty()) { 4038 // Only declarations should not have a summary (a declaration might however 4039 // have a summary if the def was in module level asm). 4040 assert(V.isDeclaration()); 4041 return; 4042 } 4043 auto *Summary = VI.getSummaryList()[0].get(); 4044 NameVals.push_back(VE.getValueID(&V)); 4045 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4046 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4047 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4048 4049 auto VTableFuncs = VS->vTableFuncs(); 4050 if (!VTableFuncs.empty()) 4051 NameVals.push_back(VS->refs().size()); 4052 4053 unsigned SizeBeforeRefs = NameVals.size(); 4054 for (auto &RI : VS->refs()) 4055 NameVals.push_back(VE.getValueID(RI.getValue())); 4056 // Sort the refs for determinism output, the vector returned by FS->refs() has 4057 // been initialized from a DenseSet. 4058 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4059 4060 if (VTableFuncs.empty()) 4061 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4062 FSModRefsAbbrev); 4063 else { 4064 // VTableFuncs pairs should already be sorted by offset. 4065 for (auto &P : VTableFuncs) { 4066 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4067 NameVals.push_back(P.VTableOffset); 4068 } 4069 4070 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4071 FSModVTableRefsAbbrev); 4072 } 4073 NameVals.clear(); 4074 } 4075 4076 /// Emit the per-module summary section alongside the rest of 4077 /// the module's bitcode. 4078 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4079 // By default we compile with ThinLTO if the module has a summary, but the 4080 // client can request full LTO with a module flag. 4081 bool IsThinLTO = true; 4082 if (auto *MD = 4083 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4084 IsThinLTO = MD->getZExtValue(); 4085 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4086 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4087 4); 4088 4089 Stream.EmitRecord( 4090 bitc::FS_VERSION, 4091 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4092 4093 // Write the index flags. 4094 uint64_t Flags = 0; 4095 // Bits 1-3 are set only in the combined index, skip them. 4096 if (Index->enableSplitLTOUnit()) 4097 Flags |= 0x8; 4098 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4099 4100 if (Index->begin() == Index->end()) { 4101 Stream.ExitBlock(); 4102 return; 4103 } 4104 4105 for (const auto &GVI : valueIds()) { 4106 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4107 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4108 } 4109 4110 if (!Index->stackIds().empty()) { 4111 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4112 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4113 // numids x stackid 4114 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4115 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4116 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4117 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4118 } 4119 4120 // Abbrev for FS_PERMODULE_PROFILE. 4121 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4122 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4125 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4126 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4127 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4128 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4129 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4130 // numrefs x valueid, n x (valueid, hotness) 4131 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4133 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4134 4135 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4136 Abbv = std::make_shared<BitCodeAbbrev>(); 4137 if (WriteRelBFToSummary) 4138 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4139 else 4140 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4142 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4145 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4146 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4147 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4148 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4151 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4152 4153 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4154 Abbv = std::make_shared<BitCodeAbbrev>(); 4155 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4156 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4159 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4160 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4161 4162 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4163 Abbv = std::make_shared<BitCodeAbbrev>(); 4164 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4166 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4168 // numrefs x valueid, n x (valueid , offset) 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4171 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4172 4173 // Abbrev for FS_ALIAS. 4174 Abbv = std::make_shared<BitCodeAbbrev>(); 4175 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4179 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4180 4181 // Abbrev for FS_TYPE_ID_METADATA 4182 Abbv = std::make_shared<BitCodeAbbrev>(); 4183 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4186 // n x (valueid , offset) 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4189 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4190 4191 Abbv = std::make_shared<BitCodeAbbrev>(); 4192 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4194 // n x stackidindex 4195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4197 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4198 4199 Abbv = std::make_shared<BitCodeAbbrev>(); 4200 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4201 // n x (alloc type, numstackids, numstackids x stackidindex) 4202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4204 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4205 4206 SmallVector<uint64_t, 64> NameVals; 4207 // Iterate over the list of functions instead of the Index to 4208 // ensure the ordering is stable. 4209 for (const Function &F : M) { 4210 // Summary emission does not support anonymous functions, they have to 4211 // renamed using the anonymous function renaming pass. 4212 if (!F.hasName()) 4213 report_fatal_error("Unexpected anonymous function when writing summary"); 4214 4215 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4216 if (!VI || VI.getSummaryList().empty()) { 4217 // Only declarations should not have a summary (a declaration might 4218 // however have a summary if the def was in module level asm). 4219 assert(F.isDeclaration()); 4220 continue; 4221 } 4222 auto *Summary = VI.getSummaryList()[0].get(); 4223 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4224 FSCallsAbbrev, FSCallsProfileAbbrev, 4225 CallsiteAbbrev, AllocAbbrev, F); 4226 } 4227 4228 // Capture references from GlobalVariable initializers, which are outside 4229 // of a function scope. 4230 for (const GlobalVariable &G : M.globals()) 4231 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4232 FSModVTableRefsAbbrev); 4233 4234 for (const GlobalAlias &A : M.aliases()) { 4235 auto *Aliasee = A.getAliaseeObject(); 4236 // Skip ifunc and nameless functions which don't have an entry in the 4237 // summary. 4238 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4239 continue; 4240 auto AliasId = VE.getValueID(&A); 4241 auto AliaseeId = VE.getValueID(Aliasee); 4242 NameVals.push_back(AliasId); 4243 auto *Summary = Index->getGlobalValueSummary(A); 4244 AliasSummary *AS = cast<AliasSummary>(Summary); 4245 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4246 NameVals.push_back(AliaseeId); 4247 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4248 NameVals.clear(); 4249 } 4250 4251 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4252 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4253 S.second, VE); 4254 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4255 TypeIdCompatibleVtableAbbrev); 4256 NameVals.clear(); 4257 } 4258 4259 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4260 ArrayRef<uint64_t>{Index->getBlockCount()}); 4261 4262 Stream.ExitBlock(); 4263 } 4264 4265 /// Emit the combined summary section into the combined index file. 4266 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4267 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4268 Stream.EmitRecord( 4269 bitc::FS_VERSION, 4270 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4271 4272 // Write the index flags. 4273 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4274 4275 for (const auto &GVI : valueIds()) { 4276 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4277 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4278 } 4279 4280 if (!StackIdIndices.empty()) { 4281 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4282 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4283 // numids x stackid 4284 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4285 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4286 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4287 // Write the stack ids used by this index, which will be a subset of those in 4288 // the full index in the case of distributed indexes. 4289 std::vector<uint64_t> StackIds; 4290 for (auto &I : StackIdIndices) 4291 StackIds.push_back(Index.getStackIdAtIndex(I)); 4292 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4293 } 4294 4295 // Abbrev for FS_COMBINED. 4296 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4297 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4305 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4306 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4307 // numrefs x valueid, n x (valueid) 4308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4309 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4310 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4311 4312 // Abbrev for FS_COMBINED_PROFILE. 4313 Abbv = std::make_shared<BitCodeAbbrev>(); 4314 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4315 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4317 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4318 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4324 // numrefs x valueid, n x (valueid, hotness) 4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4327 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4328 4329 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4330 Abbv = std::make_shared<BitCodeAbbrev>(); 4331 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4337 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4338 4339 // Abbrev for FS_COMBINED_ALIAS. 4340 Abbv = std::make_shared<BitCodeAbbrev>(); 4341 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4342 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4345 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4346 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4347 4348 Abbv = std::make_shared<BitCodeAbbrev>(); 4349 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4353 // numstackindices x stackidindex, numver x version 4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4356 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4357 4358 Abbv = std::make_shared<BitCodeAbbrev>(); 4359 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4362 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4363 // numver x version 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4366 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4367 4368 // The aliases are emitted as a post-pass, and will point to the value 4369 // id of the aliasee. Save them in a vector for post-processing. 4370 SmallVector<AliasSummary *, 64> Aliases; 4371 4372 // Save the value id for each summary for alias emission. 4373 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4374 4375 SmallVector<uint64_t, 64> NameVals; 4376 4377 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4378 // with the type ids referenced by this index file. 4379 std::set<GlobalValue::GUID> ReferencedTypeIds; 4380 4381 // For local linkage, we also emit the original name separately 4382 // immediately after the record. 4383 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4384 // We don't need to emit the original name if we are writing the index for 4385 // distributed backends (in which case ModuleToSummariesForIndex is 4386 // non-null). The original name is only needed during the thin link, since 4387 // for SamplePGO the indirect call targets for local functions have 4388 // have the original name annotated in profile. 4389 // Continue to emit it when writing out the entire combined index, which is 4390 // used in testing the thin link via llvm-lto. 4391 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4392 return; 4393 NameVals.push_back(S.getOriginalName()); 4394 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4395 NameVals.clear(); 4396 }; 4397 4398 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4399 forEachSummary([&](GVInfo I, bool IsAliasee) { 4400 GlobalValueSummary *S = I.second; 4401 assert(S); 4402 DefOrUseGUIDs.insert(I.first); 4403 for (const ValueInfo &VI : S->refs()) 4404 DefOrUseGUIDs.insert(VI.getGUID()); 4405 4406 auto ValueId = getValueId(I.first); 4407 assert(ValueId); 4408 SummaryToValueIdMap[S] = *ValueId; 4409 4410 // If this is invoked for an aliasee, we want to record the above 4411 // mapping, but then not emit a summary entry (if the aliasee is 4412 // to be imported, we will invoke this separately with IsAliasee=false). 4413 if (IsAliasee) 4414 return; 4415 4416 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4417 // Will process aliases as a post-pass because the reader wants all 4418 // global to be loaded first. 4419 Aliases.push_back(AS); 4420 return; 4421 } 4422 4423 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4424 NameVals.push_back(*ValueId); 4425 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4426 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4427 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4428 for (auto &RI : VS->refs()) { 4429 auto RefValueId = getValueId(RI.getGUID()); 4430 if (!RefValueId) 4431 continue; 4432 NameVals.push_back(*RefValueId); 4433 } 4434 4435 // Emit the finished record. 4436 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4437 FSModRefsAbbrev); 4438 NameVals.clear(); 4439 MaybeEmitOriginalName(*S); 4440 return; 4441 } 4442 4443 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4444 if (!VI) 4445 return std::nullopt; 4446 return getValueId(VI.getGUID()); 4447 }; 4448 4449 auto *FS = cast<FunctionSummary>(S); 4450 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4451 getReferencedTypeIds(FS, ReferencedTypeIds); 4452 4453 writeFunctionHeapProfileRecords( 4454 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4455 /*PerModule*/ false, 4456 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4457 std::optional<unsigned> ValueID = GetValueId(VI); 4458 // This can happen in shared index files for distributed ThinLTO if 4459 // the callee function summary is not included. Record 0 which we 4460 // will have to deal with conservatively when doing any kind of 4461 // validation in the ThinLTO backends. 4462 if (!ValueID) 4463 return 0; 4464 return *ValueID; 4465 }, 4466 /*GetStackIndex*/ [&](unsigned I) { 4467 // Get the corresponding index into the list of StackIdIndices 4468 // actually being written for this combined index (which may be a 4469 // subset in the case of distributed indexes). 4470 auto Lower = llvm::lower_bound(StackIdIndices, I); 4471 return std::distance(StackIdIndices.begin(), Lower); 4472 }); 4473 4474 NameVals.push_back(*ValueId); 4475 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4476 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4477 NameVals.push_back(FS->instCount()); 4478 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4479 NameVals.push_back(FS->entryCount()); 4480 4481 // Fill in below 4482 NameVals.push_back(0); // numrefs 4483 NameVals.push_back(0); // rorefcnt 4484 NameVals.push_back(0); // worefcnt 4485 4486 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4487 for (auto &RI : FS->refs()) { 4488 auto RefValueId = getValueId(RI.getGUID()); 4489 if (!RefValueId) 4490 continue; 4491 NameVals.push_back(*RefValueId); 4492 if (RI.isReadOnly()) 4493 RORefCnt++; 4494 else if (RI.isWriteOnly()) 4495 WORefCnt++; 4496 Count++; 4497 } 4498 NameVals[6] = Count; 4499 NameVals[7] = RORefCnt; 4500 NameVals[8] = WORefCnt; 4501 4502 bool HasProfileData = false; 4503 for (auto &EI : FS->calls()) { 4504 HasProfileData |= 4505 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4506 if (HasProfileData) 4507 break; 4508 } 4509 4510 for (auto &EI : FS->calls()) { 4511 // If this GUID doesn't have a value id, it doesn't have a function 4512 // summary and we don't need to record any calls to it. 4513 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4514 if (!CallValueId) 4515 continue; 4516 NameVals.push_back(*CallValueId); 4517 if (HasProfileData) 4518 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4519 } 4520 4521 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4522 unsigned Code = 4523 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4524 4525 // Emit the finished record. 4526 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4527 NameVals.clear(); 4528 MaybeEmitOriginalName(*S); 4529 }); 4530 4531 for (auto *AS : Aliases) { 4532 auto AliasValueId = SummaryToValueIdMap[AS]; 4533 assert(AliasValueId); 4534 NameVals.push_back(AliasValueId); 4535 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4536 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4537 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4538 assert(AliaseeValueId); 4539 NameVals.push_back(AliaseeValueId); 4540 4541 // Emit the finished record. 4542 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4543 NameVals.clear(); 4544 MaybeEmitOriginalName(*AS); 4545 4546 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4547 getReferencedTypeIds(FS, ReferencedTypeIds); 4548 } 4549 4550 if (!Index.cfiFunctionDefs().empty()) { 4551 for (auto &S : Index.cfiFunctionDefs()) { 4552 if (DefOrUseGUIDs.count( 4553 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4554 NameVals.push_back(StrtabBuilder.add(S)); 4555 NameVals.push_back(S.size()); 4556 } 4557 } 4558 if (!NameVals.empty()) { 4559 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4560 NameVals.clear(); 4561 } 4562 } 4563 4564 if (!Index.cfiFunctionDecls().empty()) { 4565 for (auto &S : Index.cfiFunctionDecls()) { 4566 if (DefOrUseGUIDs.count( 4567 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4568 NameVals.push_back(StrtabBuilder.add(S)); 4569 NameVals.push_back(S.size()); 4570 } 4571 } 4572 if (!NameVals.empty()) { 4573 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4574 NameVals.clear(); 4575 } 4576 } 4577 4578 // Walk the GUIDs that were referenced, and write the 4579 // corresponding type id records. 4580 for (auto &T : ReferencedTypeIds) { 4581 auto TidIter = Index.typeIds().equal_range(T); 4582 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4583 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4584 It->second.second); 4585 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4586 NameVals.clear(); 4587 } 4588 } 4589 4590 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4591 ArrayRef<uint64_t>{Index.getBlockCount()}); 4592 4593 Stream.ExitBlock(); 4594 } 4595 4596 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4597 /// current llvm version, and a record for the epoch number. 4598 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4599 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4600 4601 // Write the "user readable" string identifying the bitcode producer 4602 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4603 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4606 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4607 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4608 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4609 4610 // Write the epoch version 4611 Abbv = std::make_shared<BitCodeAbbrev>(); 4612 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4614 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4615 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4616 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4617 Stream.ExitBlock(); 4618 } 4619 4620 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4621 // Emit the module's hash. 4622 // MODULE_CODE_HASH: [5*i32] 4623 if (GenerateHash) { 4624 uint32_t Vals[5]; 4625 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4626 Buffer.size() - BlockStartPos)); 4627 std::array<uint8_t, 20> Hash = Hasher.result(); 4628 for (int Pos = 0; Pos < 20; Pos += 4) { 4629 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4630 } 4631 4632 // Emit the finished record. 4633 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4634 4635 if (ModHash) 4636 // Save the written hash value. 4637 llvm::copy(Vals, std::begin(*ModHash)); 4638 } 4639 } 4640 4641 void ModuleBitcodeWriter::write() { 4642 writeIdentificationBlock(Stream); 4643 4644 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4645 size_t BlockStartPos = Buffer.size(); 4646 4647 writeModuleVersion(); 4648 4649 // Emit blockinfo, which defines the standard abbreviations etc. 4650 writeBlockInfo(); 4651 4652 // Emit information describing all of the types in the module. 4653 writeTypeTable(); 4654 4655 // Emit information about attribute groups. 4656 writeAttributeGroupTable(); 4657 4658 // Emit information about parameter attributes. 4659 writeAttributeTable(); 4660 4661 writeComdats(); 4662 4663 // Emit top-level description of module, including target triple, inline asm, 4664 // descriptors for global variables, and function prototype info. 4665 writeModuleInfo(); 4666 4667 // Emit constants. 4668 writeModuleConstants(); 4669 4670 // Emit metadata kind names. 4671 writeModuleMetadataKinds(); 4672 4673 // Emit metadata. 4674 writeModuleMetadata(); 4675 4676 // Emit module-level use-lists. 4677 if (VE.shouldPreserveUseListOrder()) 4678 writeUseListBlock(nullptr); 4679 4680 writeOperandBundleTags(); 4681 writeSyncScopeNames(); 4682 4683 // Emit function bodies. 4684 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4685 for (const Function &F : M) 4686 if (!F.isDeclaration()) 4687 writeFunction(F, FunctionToBitcodeIndex); 4688 4689 // Need to write after the above call to WriteFunction which populates 4690 // the summary information in the index. 4691 if (Index) 4692 writePerModuleGlobalValueSummary(); 4693 4694 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4695 4696 writeModuleHash(BlockStartPos); 4697 4698 Stream.ExitBlock(); 4699 } 4700 4701 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4702 uint32_t &Position) { 4703 support::endian::write32le(&Buffer[Position], Value); 4704 Position += 4; 4705 } 4706 4707 /// If generating a bc file on darwin, we have to emit a 4708 /// header and trailer to make it compatible with the system archiver. To do 4709 /// this we emit the following header, and then emit a trailer that pads the 4710 /// file out to be a multiple of 16 bytes. 4711 /// 4712 /// struct bc_header { 4713 /// uint32_t Magic; // 0x0B17C0DE 4714 /// uint32_t Version; // Version, currently always 0. 4715 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4716 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4717 /// uint32_t CPUType; // CPU specifier. 4718 /// ... potentially more later ... 4719 /// }; 4720 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4721 const Triple &TT) { 4722 unsigned CPUType = ~0U; 4723 4724 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4725 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4726 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4727 // specific constants here because they are implicitly part of the Darwin ABI. 4728 enum { 4729 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4730 DARWIN_CPU_TYPE_X86 = 7, 4731 DARWIN_CPU_TYPE_ARM = 12, 4732 DARWIN_CPU_TYPE_POWERPC = 18 4733 }; 4734 4735 Triple::ArchType Arch = TT.getArch(); 4736 if (Arch == Triple::x86_64) 4737 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4738 else if (Arch == Triple::x86) 4739 CPUType = DARWIN_CPU_TYPE_X86; 4740 else if (Arch == Triple::ppc) 4741 CPUType = DARWIN_CPU_TYPE_POWERPC; 4742 else if (Arch == Triple::ppc64) 4743 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4744 else if (Arch == Triple::arm || Arch == Triple::thumb) 4745 CPUType = DARWIN_CPU_TYPE_ARM; 4746 4747 // Traditional Bitcode starts after header. 4748 assert(Buffer.size() >= BWH_HeaderSize && 4749 "Expected header size to be reserved"); 4750 unsigned BCOffset = BWH_HeaderSize; 4751 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4752 4753 // Write the magic and version. 4754 unsigned Position = 0; 4755 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4756 writeInt32ToBuffer(0, Buffer, Position); // Version. 4757 writeInt32ToBuffer(BCOffset, Buffer, Position); 4758 writeInt32ToBuffer(BCSize, Buffer, Position); 4759 writeInt32ToBuffer(CPUType, Buffer, Position); 4760 4761 // If the file is not a multiple of 16 bytes, insert dummy padding. 4762 while (Buffer.size() & 15) 4763 Buffer.push_back(0); 4764 } 4765 4766 /// Helper to write the header common to all bitcode files. 4767 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4768 // Emit the file header. 4769 Stream.Emit((unsigned)'B', 8); 4770 Stream.Emit((unsigned)'C', 8); 4771 Stream.Emit(0x0, 4); 4772 Stream.Emit(0xC, 4); 4773 Stream.Emit(0xE, 4); 4774 Stream.Emit(0xD, 4); 4775 } 4776 4777 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4778 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4779 writeBitcodeHeader(*Stream); 4780 } 4781 4782 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4783 4784 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4785 Stream->EnterSubblock(Block, 3); 4786 4787 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4788 Abbv->Add(BitCodeAbbrevOp(Record)); 4789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4790 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4791 4792 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4793 4794 Stream->ExitBlock(); 4795 } 4796 4797 void BitcodeWriter::writeSymtab() { 4798 assert(!WroteStrtab && !WroteSymtab); 4799 4800 // If any module has module-level inline asm, we will require a registered asm 4801 // parser for the target so that we can create an accurate symbol table for 4802 // the module. 4803 for (Module *M : Mods) { 4804 if (M->getModuleInlineAsm().empty()) 4805 continue; 4806 4807 std::string Err; 4808 const Triple TT(M->getTargetTriple()); 4809 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4810 if (!T || !T->hasMCAsmParser()) 4811 return; 4812 } 4813 4814 WroteSymtab = true; 4815 SmallVector<char, 0> Symtab; 4816 // The irsymtab::build function may be unable to create a symbol table if the 4817 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4818 // table is not required for correctness, but we still want to be able to 4819 // write malformed modules to bitcode files, so swallow the error. 4820 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4821 consumeError(std::move(E)); 4822 return; 4823 } 4824 4825 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4826 {Symtab.data(), Symtab.size()}); 4827 } 4828 4829 void BitcodeWriter::writeStrtab() { 4830 assert(!WroteStrtab); 4831 4832 std::vector<char> Strtab; 4833 StrtabBuilder.finalizeInOrder(); 4834 Strtab.resize(StrtabBuilder.getSize()); 4835 StrtabBuilder.write((uint8_t *)Strtab.data()); 4836 4837 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4838 {Strtab.data(), Strtab.size()}); 4839 4840 WroteStrtab = true; 4841 } 4842 4843 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4844 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4845 WroteStrtab = true; 4846 } 4847 4848 void BitcodeWriter::writeModule(const Module &M, 4849 bool ShouldPreserveUseListOrder, 4850 const ModuleSummaryIndex *Index, 4851 bool GenerateHash, ModuleHash *ModHash) { 4852 assert(!WroteStrtab); 4853 4854 // The Mods vector is used by irsymtab::build, which requires non-const 4855 // Modules in case it needs to materialize metadata. But the bitcode writer 4856 // requires that the module is materialized, so we can cast to non-const here, 4857 // after checking that it is in fact materialized. 4858 assert(M.isMaterialized()); 4859 Mods.push_back(const_cast<Module *>(&M)); 4860 4861 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4862 ShouldPreserveUseListOrder, Index, 4863 GenerateHash, ModHash); 4864 ModuleWriter.write(); 4865 } 4866 4867 void BitcodeWriter::writeIndex( 4868 const ModuleSummaryIndex *Index, 4869 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4870 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4871 ModuleToSummariesForIndex); 4872 IndexWriter.write(); 4873 } 4874 4875 /// Write the specified module to the specified output stream. 4876 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4877 bool ShouldPreserveUseListOrder, 4878 const ModuleSummaryIndex *Index, 4879 bool GenerateHash, ModuleHash *ModHash) { 4880 SmallVector<char, 0> Buffer; 4881 Buffer.reserve(256*1024); 4882 4883 // If this is darwin or another generic macho target, reserve space for the 4884 // header. 4885 Triple TT(M.getTargetTriple()); 4886 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4887 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4888 4889 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4890 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4891 ModHash); 4892 Writer.writeSymtab(); 4893 Writer.writeStrtab(); 4894 4895 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4896 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4897 4898 // Write the generated bitstream to "Out". 4899 if (!Buffer.empty()) 4900 Out.write((char *)&Buffer.front(), Buffer.size()); 4901 } 4902 4903 void IndexBitcodeWriter::write() { 4904 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4905 4906 writeModuleVersion(); 4907 4908 // Write the module paths in the combined index. 4909 writeModStrings(); 4910 4911 // Write the summary combined index records. 4912 writeCombinedGlobalValueSummary(); 4913 4914 Stream.ExitBlock(); 4915 } 4916 4917 // Write the specified module summary index to the given raw output stream, 4918 // where it will be written in a new bitcode block. This is used when 4919 // writing the combined index file for ThinLTO. When writing a subset of the 4920 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4921 void llvm::writeIndexToFile( 4922 const ModuleSummaryIndex &Index, raw_ostream &Out, 4923 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4924 SmallVector<char, 0> Buffer; 4925 Buffer.reserve(256 * 1024); 4926 4927 BitcodeWriter Writer(Buffer); 4928 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4929 Writer.writeStrtab(); 4930 4931 Out.write((char *)&Buffer.front(), Buffer.size()); 4932 } 4933 4934 namespace { 4935 4936 /// Class to manage the bitcode writing for a thin link bitcode file. 4937 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4938 /// ModHash is for use in ThinLTO incremental build, generated while writing 4939 /// the module bitcode file. 4940 const ModuleHash *ModHash; 4941 4942 public: 4943 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4944 BitstreamWriter &Stream, 4945 const ModuleSummaryIndex &Index, 4946 const ModuleHash &ModHash) 4947 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4948 /*ShouldPreserveUseListOrder=*/false, &Index), 4949 ModHash(&ModHash) {} 4950 4951 void write(); 4952 4953 private: 4954 void writeSimplifiedModuleInfo(); 4955 }; 4956 4957 } // end anonymous namespace 4958 4959 // This function writes a simpilified module info for thin link bitcode file. 4960 // It only contains the source file name along with the name(the offset and 4961 // size in strtab) and linkage for global values. For the global value info 4962 // entry, in order to keep linkage at offset 5, there are three zeros used 4963 // as padding. 4964 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4965 SmallVector<unsigned, 64> Vals; 4966 // Emit the module's source file name. 4967 { 4968 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4969 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4970 if (Bits == SE_Char6) 4971 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4972 else if (Bits == SE_Fixed7) 4973 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4974 4975 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4976 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4977 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4979 Abbv->Add(AbbrevOpToUse); 4980 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4981 4982 for (const auto P : M.getSourceFileName()) 4983 Vals.push_back((unsigned char)P); 4984 4985 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4986 Vals.clear(); 4987 } 4988 4989 // Emit the global variable information. 4990 for (const GlobalVariable &GV : M.globals()) { 4991 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4992 Vals.push_back(StrtabBuilder.add(GV.getName())); 4993 Vals.push_back(GV.getName().size()); 4994 Vals.push_back(0); 4995 Vals.push_back(0); 4996 Vals.push_back(0); 4997 Vals.push_back(getEncodedLinkage(GV)); 4998 4999 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5000 Vals.clear(); 5001 } 5002 5003 // Emit the function proto information. 5004 for (const Function &F : M) { 5005 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5006 Vals.push_back(StrtabBuilder.add(F.getName())); 5007 Vals.push_back(F.getName().size()); 5008 Vals.push_back(0); 5009 Vals.push_back(0); 5010 Vals.push_back(0); 5011 Vals.push_back(getEncodedLinkage(F)); 5012 5013 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5014 Vals.clear(); 5015 } 5016 5017 // Emit the alias information. 5018 for (const GlobalAlias &A : M.aliases()) { 5019 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5020 Vals.push_back(StrtabBuilder.add(A.getName())); 5021 Vals.push_back(A.getName().size()); 5022 Vals.push_back(0); 5023 Vals.push_back(0); 5024 Vals.push_back(0); 5025 Vals.push_back(getEncodedLinkage(A)); 5026 5027 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5028 Vals.clear(); 5029 } 5030 5031 // Emit the ifunc information. 5032 for (const GlobalIFunc &I : M.ifuncs()) { 5033 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5034 Vals.push_back(StrtabBuilder.add(I.getName())); 5035 Vals.push_back(I.getName().size()); 5036 Vals.push_back(0); 5037 Vals.push_back(0); 5038 Vals.push_back(0); 5039 Vals.push_back(getEncodedLinkage(I)); 5040 5041 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5042 Vals.clear(); 5043 } 5044 } 5045 5046 void ThinLinkBitcodeWriter::write() { 5047 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5048 5049 writeModuleVersion(); 5050 5051 writeSimplifiedModuleInfo(); 5052 5053 writePerModuleGlobalValueSummary(); 5054 5055 // Write module hash. 5056 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5057 5058 Stream.ExitBlock(); 5059 } 5060 5061 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5062 const ModuleSummaryIndex &Index, 5063 const ModuleHash &ModHash) { 5064 assert(!WroteStrtab); 5065 5066 // The Mods vector is used by irsymtab::build, which requires non-const 5067 // Modules in case it needs to materialize metadata. But the bitcode writer 5068 // requires that the module is materialized, so we can cast to non-const here, 5069 // after checking that it is in fact materialized. 5070 assert(M.isMaterialized()); 5071 Mods.push_back(const_cast<Module *>(&M)); 5072 5073 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5074 ModHash); 5075 ThinLinkWriter.write(); 5076 } 5077 5078 // Write the specified thin link bitcode file to the given raw output stream, 5079 // where it will be written in a new bitcode block. This is used when 5080 // writing the per-module index file for ThinLTO. 5081 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5082 const ModuleSummaryIndex &Index, 5083 const ModuleHash &ModHash) { 5084 SmallVector<char, 0> Buffer; 5085 Buffer.reserve(256 * 1024); 5086 5087 BitcodeWriter Writer(Buffer); 5088 Writer.writeThinLinkBitcode(M, Index, ModHash); 5089 Writer.writeSymtab(); 5090 Writer.writeStrtab(); 5091 5092 Out.write((char *)&Buffer.front(), Buffer.size()); 5093 } 5094 5095 static const char *getSectionNameForBitcode(const Triple &T) { 5096 switch (T.getObjectFormat()) { 5097 case Triple::MachO: 5098 return "__LLVM,__bitcode"; 5099 case Triple::COFF: 5100 case Triple::ELF: 5101 case Triple::Wasm: 5102 case Triple::UnknownObjectFormat: 5103 return ".llvmbc"; 5104 case Triple::GOFF: 5105 llvm_unreachable("GOFF is not yet implemented"); 5106 break; 5107 case Triple::SPIRV: 5108 llvm_unreachable("SPIRV is not yet implemented"); 5109 break; 5110 case Triple::XCOFF: 5111 llvm_unreachable("XCOFF is not yet implemented"); 5112 break; 5113 case Triple::DXContainer: 5114 llvm_unreachable("DXContainer is not yet implemented"); 5115 break; 5116 } 5117 llvm_unreachable("Unimplemented ObjectFormatType"); 5118 } 5119 5120 static const char *getSectionNameForCommandline(const Triple &T) { 5121 switch (T.getObjectFormat()) { 5122 case Triple::MachO: 5123 return "__LLVM,__cmdline"; 5124 case Triple::COFF: 5125 case Triple::ELF: 5126 case Triple::Wasm: 5127 case Triple::UnknownObjectFormat: 5128 return ".llvmcmd"; 5129 case Triple::GOFF: 5130 llvm_unreachable("GOFF is not yet implemented"); 5131 break; 5132 case Triple::SPIRV: 5133 llvm_unreachable("SPIRV is not yet implemented"); 5134 break; 5135 case Triple::XCOFF: 5136 llvm_unreachable("XCOFF is not yet implemented"); 5137 break; 5138 case Triple::DXContainer: 5139 llvm_unreachable("DXC is not yet implemented"); 5140 break; 5141 } 5142 llvm_unreachable("Unimplemented ObjectFormatType"); 5143 } 5144 5145 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5146 bool EmbedBitcode, bool EmbedCmdline, 5147 const std::vector<uint8_t> &CmdArgs) { 5148 // Save llvm.compiler.used and remove it. 5149 SmallVector<Constant *, 2> UsedArray; 5150 SmallVector<GlobalValue *, 4> UsedGlobals; 5151 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 5152 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5153 for (auto *GV : UsedGlobals) { 5154 if (GV->getName() != "llvm.embedded.module" && 5155 GV->getName() != "llvm.cmdline") 5156 UsedArray.push_back( 5157 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5158 } 5159 if (Used) 5160 Used->eraseFromParent(); 5161 5162 // Embed the bitcode for the llvm module. 5163 std::string Data; 5164 ArrayRef<uint8_t> ModuleData; 5165 Triple T(M.getTargetTriple()); 5166 5167 if (EmbedBitcode) { 5168 if (Buf.getBufferSize() == 0 || 5169 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5170 (const unsigned char *)Buf.getBufferEnd())) { 5171 // If the input is LLVM Assembly, bitcode is produced by serializing 5172 // the module. Use-lists order need to be preserved in this case. 5173 llvm::raw_string_ostream OS(Data); 5174 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5175 ModuleData = 5176 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5177 } else 5178 // If the input is LLVM bitcode, write the input byte stream directly. 5179 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5180 Buf.getBufferSize()); 5181 } 5182 llvm::Constant *ModuleConstant = 5183 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5184 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5185 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5186 ModuleConstant); 5187 GV->setSection(getSectionNameForBitcode(T)); 5188 // Set alignment to 1 to prevent padding between two contributions from input 5189 // sections after linking. 5190 GV->setAlignment(Align(1)); 5191 UsedArray.push_back( 5192 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5193 if (llvm::GlobalVariable *Old = 5194 M.getGlobalVariable("llvm.embedded.module", true)) { 5195 assert(Old->hasZeroLiveUses() && 5196 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5197 GV->takeName(Old); 5198 Old->eraseFromParent(); 5199 } else { 5200 GV->setName("llvm.embedded.module"); 5201 } 5202 5203 // Skip if only bitcode needs to be embedded. 5204 if (EmbedCmdline) { 5205 // Embed command-line options. 5206 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5207 CmdArgs.size()); 5208 llvm::Constant *CmdConstant = 5209 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5210 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5211 llvm::GlobalValue::PrivateLinkage, 5212 CmdConstant); 5213 GV->setSection(getSectionNameForCommandline(T)); 5214 GV->setAlignment(Align(1)); 5215 UsedArray.push_back( 5216 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5217 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5218 assert(Old->hasZeroLiveUses() && 5219 "llvm.cmdline can only be used once in llvm.compiler.used"); 5220 GV->takeName(Old); 5221 Old->eraseFromParent(); 5222 } else { 5223 GV->setName("llvm.cmdline"); 5224 } 5225 } 5226 5227 if (UsedArray.empty()) 5228 return; 5229 5230 // Recreate llvm.compiler.used. 5231 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5232 auto *NewUsed = new GlobalVariable( 5233 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5234 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5235 NewUsed->setSection("llvm.metadata"); 5236 } 5237