1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeBitcodeHeader(); 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 } 581 } 582 583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 584 switch (Ordering) { 585 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 586 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 587 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 590 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 591 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 592 } 593 llvm_unreachable("Invalid ordering"); 594 } 595 596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 597 StringRef Str, unsigned AbbrevToUse) { 598 SmallVector<unsigned, 64> Vals; 599 600 // Code: [strchar x N] 601 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 602 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 603 AbbrevToUse = 0; 604 Vals.push_back(Str[i]); 605 } 606 607 // Emit the finished record. 608 Stream.EmitRecord(Code, Vals, AbbrevToUse); 609 } 610 611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 612 switch (Kind) { 613 case Attribute::Alignment: 614 return bitc::ATTR_KIND_ALIGNMENT; 615 case Attribute::AllocSize: 616 return bitc::ATTR_KIND_ALLOC_SIZE; 617 case Attribute::AlwaysInline: 618 return bitc::ATTR_KIND_ALWAYS_INLINE; 619 case Attribute::ArgMemOnly: 620 return bitc::ATTR_KIND_ARGMEMONLY; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::InaccessibleMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 635 case Attribute::InaccessibleMemOrArgMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 637 case Attribute::InlineHint: 638 return bitc::ATTR_KIND_INLINE_HINT; 639 case Attribute::InReg: 640 return bitc::ATTR_KIND_IN_REG; 641 case Attribute::JumpTable: 642 return bitc::ATTR_KIND_JUMP_TABLE; 643 case Attribute::MinSize: 644 return bitc::ATTR_KIND_MIN_SIZE; 645 case Attribute::Naked: 646 return bitc::ATTR_KIND_NAKED; 647 case Attribute::Nest: 648 return bitc::ATTR_KIND_NEST; 649 case Attribute::NoAlias: 650 return bitc::ATTR_KIND_NO_ALIAS; 651 case Attribute::NoBuiltin: 652 return bitc::ATTR_KIND_NO_BUILTIN; 653 case Attribute::NoCallback: 654 return bitc::ATTR_KIND_NO_CALLBACK; 655 case Attribute::NoCapture: 656 return bitc::ATTR_KIND_NO_CAPTURE; 657 case Attribute::NoDuplicate: 658 return bitc::ATTR_KIND_NO_DUPLICATE; 659 case Attribute::NoFree: 660 return bitc::ATTR_KIND_NOFREE; 661 case Attribute::NoImplicitFloat: 662 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 663 case Attribute::NoInline: 664 return bitc::ATTR_KIND_NO_INLINE; 665 case Attribute::NoRecurse: 666 return bitc::ATTR_KIND_NO_RECURSE; 667 case Attribute::NoMerge: 668 return bitc::ATTR_KIND_NO_MERGE; 669 case Attribute::NonLazyBind: 670 return bitc::ATTR_KIND_NON_LAZY_BIND; 671 case Attribute::NonNull: 672 return bitc::ATTR_KIND_NON_NULL; 673 case Attribute::Dereferenceable: 674 return bitc::ATTR_KIND_DEREFERENCEABLE; 675 case Attribute::DereferenceableOrNull: 676 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 677 case Attribute::NoRedZone: 678 return bitc::ATTR_KIND_NO_RED_ZONE; 679 case Attribute::NoReturn: 680 return bitc::ATTR_KIND_NO_RETURN; 681 case Attribute::NoSync: 682 return bitc::ATTR_KIND_NOSYNC; 683 case Attribute::NoCfCheck: 684 return bitc::ATTR_KIND_NOCF_CHECK; 685 case Attribute::NoProfile: 686 return bitc::ATTR_KIND_NO_PROFILE; 687 case Attribute::NoUnwind: 688 return bitc::ATTR_KIND_NO_UNWIND; 689 case Attribute::NullPointerIsValid: 690 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 691 case Attribute::OptForFuzzing: 692 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 693 case Attribute::OptimizeForSize: 694 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 695 case Attribute::OptimizeNone: 696 return bitc::ATTR_KIND_OPTIMIZE_NONE; 697 case Attribute::ReadNone: 698 return bitc::ATTR_KIND_READ_NONE; 699 case Attribute::ReadOnly: 700 return bitc::ATTR_KIND_READ_ONLY; 701 case Attribute::Returned: 702 return bitc::ATTR_KIND_RETURNED; 703 case Attribute::ReturnsTwice: 704 return bitc::ATTR_KIND_RETURNS_TWICE; 705 case Attribute::SExt: 706 return bitc::ATTR_KIND_S_EXT; 707 case Attribute::Speculatable: 708 return bitc::ATTR_KIND_SPECULATABLE; 709 case Attribute::StackAlignment: 710 return bitc::ATTR_KIND_STACK_ALIGNMENT; 711 case Attribute::StackProtect: 712 return bitc::ATTR_KIND_STACK_PROTECT; 713 case Attribute::StackProtectReq: 714 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 715 case Attribute::StackProtectStrong: 716 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 717 case Attribute::SafeStack: 718 return bitc::ATTR_KIND_SAFESTACK; 719 case Attribute::ShadowCallStack: 720 return bitc::ATTR_KIND_SHADOWCALLSTACK; 721 case Attribute::StrictFP: 722 return bitc::ATTR_KIND_STRICT_FP; 723 case Attribute::StructRet: 724 return bitc::ATTR_KIND_STRUCT_RET; 725 case Attribute::SanitizeAddress: 726 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 727 case Attribute::SanitizeHWAddress: 728 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 729 case Attribute::SanitizeThread: 730 return bitc::ATTR_KIND_SANITIZE_THREAD; 731 case Attribute::SanitizeMemory: 732 return bitc::ATTR_KIND_SANITIZE_MEMORY; 733 case Attribute::SpeculativeLoadHardening: 734 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 735 case Attribute::SwiftError: 736 return bitc::ATTR_KIND_SWIFT_ERROR; 737 case Attribute::SwiftSelf: 738 return bitc::ATTR_KIND_SWIFT_SELF; 739 case Attribute::UWTable: 740 return bitc::ATTR_KIND_UW_TABLE; 741 case Attribute::VScaleRange: 742 return bitc::ATTR_KIND_VSCALE_RANGE; 743 case Attribute::WillReturn: 744 return bitc::ATTR_KIND_WILLRETURN; 745 case Attribute::WriteOnly: 746 return bitc::ATTR_KIND_WRITEONLY; 747 case Attribute::ZExt: 748 return bitc::ATTR_KIND_Z_EXT; 749 case Attribute::ImmArg: 750 return bitc::ATTR_KIND_IMMARG; 751 case Attribute::SanitizeMemTag: 752 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 753 case Attribute::Preallocated: 754 return bitc::ATTR_KIND_PREALLOCATED; 755 case Attribute::NoUndef: 756 return bitc::ATTR_KIND_NOUNDEF; 757 case Attribute::ByRef: 758 return bitc::ATTR_KIND_BYREF; 759 case Attribute::MustProgress: 760 return bitc::ATTR_KIND_MUSTPROGRESS; 761 case Attribute::EndAttrKinds: 762 llvm_unreachable("Can not encode end-attribute kinds marker."); 763 case Attribute::None: 764 llvm_unreachable("Can not encode none-attribute."); 765 case Attribute::EmptyKey: 766 case Attribute::TombstoneKey: 767 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 768 } 769 770 llvm_unreachable("Trying to encode unknown attribute"); 771 } 772 773 void ModuleBitcodeWriter::writeAttributeGroupTable() { 774 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 775 VE.getAttributeGroups(); 776 if (AttrGrps.empty()) return; 777 778 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 779 780 SmallVector<uint64_t, 64> Record; 781 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 782 unsigned AttrListIndex = Pair.first; 783 AttributeSet AS = Pair.second; 784 Record.push_back(VE.getAttributeGroupID(Pair)); 785 Record.push_back(AttrListIndex); 786 787 for (Attribute Attr : AS) { 788 if (Attr.isEnumAttribute()) { 789 Record.push_back(0); 790 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 791 } else if (Attr.isIntAttribute()) { 792 Record.push_back(1); 793 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 794 Record.push_back(Attr.getValueAsInt()); 795 } else if (Attr.isStringAttribute()) { 796 StringRef Kind = Attr.getKindAsString(); 797 StringRef Val = Attr.getValueAsString(); 798 799 Record.push_back(Val.empty() ? 3 : 4); 800 Record.append(Kind.begin(), Kind.end()); 801 Record.push_back(0); 802 if (!Val.empty()) { 803 Record.append(Val.begin(), Val.end()); 804 Record.push_back(0); 805 } 806 } else { 807 assert(Attr.isTypeAttribute()); 808 Type *Ty = Attr.getValueAsType(); 809 Record.push_back(Ty ? 6 : 5); 810 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 811 if (Ty) 812 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 813 } 814 } 815 816 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 817 Record.clear(); 818 } 819 820 Stream.ExitBlock(); 821 } 822 823 void ModuleBitcodeWriter::writeAttributeTable() { 824 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 825 if (Attrs.empty()) return; 826 827 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 828 829 SmallVector<uint64_t, 64> Record; 830 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 831 AttributeList AL = Attrs[i]; 832 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 833 AttributeSet AS = AL.getAttributes(i); 834 if (AS.hasAttributes()) 835 Record.push_back(VE.getAttributeGroupID({i, AS})); 836 } 837 838 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 839 Record.clear(); 840 } 841 842 Stream.ExitBlock(); 843 } 844 845 /// WriteTypeTable - Write out the type table for a module. 846 void ModuleBitcodeWriter::writeTypeTable() { 847 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 848 849 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 850 SmallVector<uint64_t, 64> TypeVals; 851 852 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 853 854 // Abbrev for TYPE_CODE_POINTER. 855 auto Abbv = std::make_shared<BitCodeAbbrev>(); 856 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 858 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 859 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 860 861 // Abbrev for TYPE_CODE_FUNCTION. 862 Abbv = std::make_shared<BitCodeAbbrev>(); 863 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 867 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 868 869 // Abbrev for TYPE_CODE_STRUCT_ANON. 870 Abbv = std::make_shared<BitCodeAbbrev>(); 871 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 875 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 876 877 // Abbrev for TYPE_CODE_STRUCT_NAME. 878 Abbv = std::make_shared<BitCodeAbbrev>(); 879 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 882 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 883 884 // Abbrev for TYPE_CODE_STRUCT_NAMED. 885 Abbv = std::make_shared<BitCodeAbbrev>(); 886 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 888 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 889 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 890 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 891 892 // Abbrev for TYPE_CODE_ARRAY. 893 Abbv = std::make_shared<BitCodeAbbrev>(); 894 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 897 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 898 899 // Emit an entry count so the reader can reserve space. 900 TypeVals.push_back(TypeList.size()); 901 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 902 TypeVals.clear(); 903 904 // Loop over all of the types, emitting each in turn. 905 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 906 Type *T = TypeList[i]; 907 int AbbrevToUse = 0; 908 unsigned Code = 0; 909 910 switch (T->getTypeID()) { 911 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 912 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 913 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 914 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 915 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 916 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 917 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 918 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 919 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 920 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 921 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 922 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 923 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 924 case Type::IntegerTyID: 925 // INTEGER: [width] 926 Code = bitc::TYPE_CODE_INTEGER; 927 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 928 break; 929 case Type::PointerTyID: { 930 PointerType *PTy = cast<PointerType>(T); 931 // POINTER: [pointee type, address space] 932 Code = bitc::TYPE_CODE_POINTER; 933 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 934 unsigned AddressSpace = PTy->getAddressSpace(); 935 TypeVals.push_back(AddressSpace); 936 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 937 break; 938 } 939 case Type::FunctionTyID: { 940 FunctionType *FT = cast<FunctionType>(T); 941 // FUNCTION: [isvararg, retty, paramty x N] 942 Code = bitc::TYPE_CODE_FUNCTION; 943 TypeVals.push_back(FT->isVarArg()); 944 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 945 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 946 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 947 AbbrevToUse = FunctionAbbrev; 948 break; 949 } 950 case Type::StructTyID: { 951 StructType *ST = cast<StructType>(T); 952 // STRUCT: [ispacked, eltty x N] 953 TypeVals.push_back(ST->isPacked()); 954 // Output all of the element types. 955 for (StructType::element_iterator I = ST->element_begin(), 956 E = ST->element_end(); I != E; ++I) 957 TypeVals.push_back(VE.getTypeID(*I)); 958 959 if (ST->isLiteral()) { 960 Code = bitc::TYPE_CODE_STRUCT_ANON; 961 AbbrevToUse = StructAnonAbbrev; 962 } else { 963 if (ST->isOpaque()) { 964 Code = bitc::TYPE_CODE_OPAQUE; 965 } else { 966 Code = bitc::TYPE_CODE_STRUCT_NAMED; 967 AbbrevToUse = StructNamedAbbrev; 968 } 969 970 // Emit the name if it is present. 971 if (!ST->getName().empty()) 972 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 973 StructNameAbbrev); 974 } 975 break; 976 } 977 case Type::ArrayTyID: { 978 ArrayType *AT = cast<ArrayType>(T); 979 // ARRAY: [numelts, eltty] 980 Code = bitc::TYPE_CODE_ARRAY; 981 TypeVals.push_back(AT->getNumElements()); 982 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 983 AbbrevToUse = ArrayAbbrev; 984 break; 985 } 986 case Type::FixedVectorTyID: 987 case Type::ScalableVectorTyID: { 988 VectorType *VT = cast<VectorType>(T); 989 // VECTOR [numelts, eltty] or 990 // [numelts, eltty, scalable] 991 Code = bitc::TYPE_CODE_VECTOR; 992 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 993 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 994 if (isa<ScalableVectorType>(VT)) 995 TypeVals.push_back(true); 996 break; 997 } 998 } 999 1000 // Emit the finished record. 1001 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1002 TypeVals.clear(); 1003 } 1004 1005 Stream.ExitBlock(); 1006 } 1007 1008 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1009 switch (Linkage) { 1010 case GlobalValue::ExternalLinkage: 1011 return 0; 1012 case GlobalValue::WeakAnyLinkage: 1013 return 16; 1014 case GlobalValue::AppendingLinkage: 1015 return 2; 1016 case GlobalValue::InternalLinkage: 1017 return 3; 1018 case GlobalValue::LinkOnceAnyLinkage: 1019 return 18; 1020 case GlobalValue::ExternalWeakLinkage: 1021 return 7; 1022 case GlobalValue::CommonLinkage: 1023 return 8; 1024 case GlobalValue::PrivateLinkage: 1025 return 9; 1026 case GlobalValue::WeakODRLinkage: 1027 return 17; 1028 case GlobalValue::LinkOnceODRLinkage: 1029 return 19; 1030 case GlobalValue::AvailableExternallyLinkage: 1031 return 12; 1032 } 1033 llvm_unreachable("Invalid linkage"); 1034 } 1035 1036 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1037 return getEncodedLinkage(GV.getLinkage()); 1038 } 1039 1040 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1041 uint64_t RawFlags = 0; 1042 RawFlags |= Flags.ReadNone; 1043 RawFlags |= (Flags.ReadOnly << 1); 1044 RawFlags |= (Flags.NoRecurse << 2); 1045 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1046 RawFlags |= (Flags.NoInline << 4); 1047 RawFlags |= (Flags.AlwaysInline << 5); 1048 return RawFlags; 1049 } 1050 1051 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1052 // in BitcodeReader.cpp. 1053 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1054 uint64_t RawFlags = 0; 1055 1056 RawFlags |= Flags.NotEligibleToImport; // bool 1057 RawFlags |= (Flags.Live << 1); 1058 RawFlags |= (Flags.DSOLocal << 2); 1059 RawFlags |= (Flags.CanAutoHide << 3); 1060 1061 // Linkage don't need to be remapped at that time for the summary. Any future 1062 // change to the getEncodedLinkage() function will need to be taken into 1063 // account here as well. 1064 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1065 1066 RawFlags |= (Flags.Visibility << 8); // 2 bits 1067 1068 return RawFlags; 1069 } 1070 1071 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1072 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1073 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1074 return RawFlags; 1075 } 1076 1077 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1078 switch (GV.getVisibility()) { 1079 case GlobalValue::DefaultVisibility: return 0; 1080 case GlobalValue::HiddenVisibility: return 1; 1081 case GlobalValue::ProtectedVisibility: return 2; 1082 } 1083 llvm_unreachable("Invalid visibility"); 1084 } 1085 1086 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1087 switch (GV.getDLLStorageClass()) { 1088 case GlobalValue::DefaultStorageClass: return 0; 1089 case GlobalValue::DLLImportStorageClass: return 1; 1090 case GlobalValue::DLLExportStorageClass: return 2; 1091 } 1092 llvm_unreachable("Invalid DLL storage class"); 1093 } 1094 1095 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1096 switch (GV.getThreadLocalMode()) { 1097 case GlobalVariable::NotThreadLocal: return 0; 1098 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1099 case GlobalVariable::LocalDynamicTLSModel: return 2; 1100 case GlobalVariable::InitialExecTLSModel: return 3; 1101 case GlobalVariable::LocalExecTLSModel: return 4; 1102 } 1103 llvm_unreachable("Invalid TLS model"); 1104 } 1105 1106 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1107 switch (C.getSelectionKind()) { 1108 case Comdat::Any: 1109 return bitc::COMDAT_SELECTION_KIND_ANY; 1110 case Comdat::ExactMatch: 1111 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1112 case Comdat::Largest: 1113 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1114 case Comdat::NoDuplicates: 1115 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1116 case Comdat::SameSize: 1117 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1118 } 1119 llvm_unreachable("Invalid selection kind"); 1120 } 1121 1122 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1123 switch (GV.getUnnamedAddr()) { 1124 case GlobalValue::UnnamedAddr::None: return 0; 1125 case GlobalValue::UnnamedAddr::Local: return 2; 1126 case GlobalValue::UnnamedAddr::Global: return 1; 1127 } 1128 llvm_unreachable("Invalid unnamed_addr"); 1129 } 1130 1131 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1132 if (GenerateHash) 1133 Hasher.update(Str); 1134 return StrtabBuilder.add(Str); 1135 } 1136 1137 void ModuleBitcodeWriter::writeComdats() { 1138 SmallVector<unsigned, 64> Vals; 1139 for (const Comdat *C : VE.getComdats()) { 1140 // COMDAT: [strtab offset, strtab size, selection_kind] 1141 Vals.push_back(addToStrtab(C->getName())); 1142 Vals.push_back(C->getName().size()); 1143 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1144 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1145 Vals.clear(); 1146 } 1147 } 1148 1149 /// Write a record that will eventually hold the word offset of the 1150 /// module-level VST. For now the offset is 0, which will be backpatched 1151 /// after the real VST is written. Saves the bit offset to backpatch. 1152 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1153 // Write a placeholder value in for the offset of the real VST, 1154 // which is written after the function blocks so that it can include 1155 // the offset of each function. The placeholder offset will be 1156 // updated when the real VST is written. 1157 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1158 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1159 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1160 // hold the real VST offset. Must use fixed instead of VBR as we don't 1161 // know how many VBR chunks to reserve ahead of time. 1162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1163 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1164 1165 // Emit the placeholder 1166 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1167 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1168 1169 // Compute and save the bit offset to the placeholder, which will be 1170 // patched when the real VST is written. We can simply subtract the 32-bit 1171 // fixed size from the current bit number to get the location to backpatch. 1172 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1173 } 1174 1175 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1176 1177 /// Determine the encoding to use for the given string name and length. 1178 static StringEncoding getStringEncoding(StringRef Str) { 1179 bool isChar6 = true; 1180 for (char C : Str) { 1181 if (isChar6) 1182 isChar6 = BitCodeAbbrevOp::isChar6(C); 1183 if ((unsigned char)C & 128) 1184 // don't bother scanning the rest. 1185 return SE_Fixed8; 1186 } 1187 if (isChar6) 1188 return SE_Char6; 1189 return SE_Fixed7; 1190 } 1191 1192 /// Emit top-level description of module, including target triple, inline asm, 1193 /// descriptors for global variables, and function prototype info. 1194 /// Returns the bit offset to backpatch with the location of the real VST. 1195 void ModuleBitcodeWriter::writeModuleInfo() { 1196 // Emit various pieces of data attached to a module. 1197 if (!M.getTargetTriple().empty()) 1198 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1199 0 /*TODO*/); 1200 const std::string &DL = M.getDataLayoutStr(); 1201 if (!DL.empty()) 1202 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1203 if (!M.getModuleInlineAsm().empty()) 1204 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1205 0 /*TODO*/); 1206 1207 // Emit information about sections and GC, computing how many there are. Also 1208 // compute the maximum alignment value. 1209 std::map<std::string, unsigned> SectionMap; 1210 std::map<std::string, unsigned> GCMap; 1211 MaybeAlign MaxAlignment; 1212 unsigned MaxGlobalType = 0; 1213 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1214 if (A) 1215 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1216 }; 1217 for (const GlobalVariable &GV : M.globals()) { 1218 UpdateMaxAlignment(GV.getAlign()); 1219 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1220 if (GV.hasSection()) { 1221 // Give section names unique ID's. 1222 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1223 if (!Entry) { 1224 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1225 0 /*TODO*/); 1226 Entry = SectionMap.size(); 1227 } 1228 } 1229 } 1230 for (const Function &F : M) { 1231 UpdateMaxAlignment(F.getAlign()); 1232 if (F.hasSection()) { 1233 // Give section names unique ID's. 1234 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1235 if (!Entry) { 1236 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1237 0 /*TODO*/); 1238 Entry = SectionMap.size(); 1239 } 1240 } 1241 if (F.hasGC()) { 1242 // Same for GC names. 1243 unsigned &Entry = GCMap[F.getGC()]; 1244 if (!Entry) { 1245 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1246 0 /*TODO*/); 1247 Entry = GCMap.size(); 1248 } 1249 } 1250 } 1251 1252 // Emit abbrev for globals, now that we know # sections and max alignment. 1253 unsigned SimpleGVarAbbrev = 0; 1254 if (!M.global_empty()) { 1255 // Add an abbrev for common globals with no visibility or thread localness. 1256 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1257 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1258 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1259 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1260 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1261 Log2_32_Ceil(MaxGlobalType+1))); 1262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1263 //| explicitType << 1 1264 //| constant 1265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1267 if (!MaxAlignment) // Alignment. 1268 Abbv->Add(BitCodeAbbrevOp(0)); 1269 else { 1270 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1272 Log2_32_Ceil(MaxEncAlignment+1))); 1273 } 1274 if (SectionMap.empty()) // Section. 1275 Abbv->Add(BitCodeAbbrevOp(0)); 1276 else 1277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1278 Log2_32_Ceil(SectionMap.size()+1))); 1279 // Don't bother emitting vis + thread local. 1280 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1281 } 1282 1283 SmallVector<unsigned, 64> Vals; 1284 // Emit the module's source file name. 1285 { 1286 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1287 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1288 if (Bits == SE_Char6) 1289 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1290 else if (Bits == SE_Fixed7) 1291 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1292 1293 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1294 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1295 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1296 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1297 Abbv->Add(AbbrevOpToUse); 1298 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1299 1300 for (const auto P : M.getSourceFileName()) 1301 Vals.push_back((unsigned char)P); 1302 1303 // Emit the finished record. 1304 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1305 Vals.clear(); 1306 } 1307 1308 // Emit the global variable information. 1309 for (const GlobalVariable &GV : M.globals()) { 1310 unsigned AbbrevToUse = 0; 1311 1312 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1313 // linkage, alignment, section, visibility, threadlocal, 1314 // unnamed_addr, externally_initialized, dllstorageclass, 1315 // comdat, attributes, DSO_Local] 1316 Vals.push_back(addToStrtab(GV.getName())); 1317 Vals.push_back(GV.getName().size()); 1318 Vals.push_back(VE.getTypeID(GV.getValueType())); 1319 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1320 Vals.push_back(GV.isDeclaration() ? 0 : 1321 (VE.getValueID(GV.getInitializer()) + 1)); 1322 Vals.push_back(getEncodedLinkage(GV)); 1323 Vals.push_back(getEncodedAlign(GV.getAlign())); 1324 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1325 : 0); 1326 if (GV.isThreadLocal() || 1327 GV.getVisibility() != GlobalValue::DefaultVisibility || 1328 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1329 GV.isExternallyInitialized() || 1330 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1331 GV.hasComdat() || 1332 GV.hasAttributes() || 1333 GV.isDSOLocal() || 1334 GV.hasPartition()) { 1335 Vals.push_back(getEncodedVisibility(GV)); 1336 Vals.push_back(getEncodedThreadLocalMode(GV)); 1337 Vals.push_back(getEncodedUnnamedAddr(GV)); 1338 Vals.push_back(GV.isExternallyInitialized()); 1339 Vals.push_back(getEncodedDLLStorageClass(GV)); 1340 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1341 1342 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1343 Vals.push_back(VE.getAttributeListID(AL)); 1344 1345 Vals.push_back(GV.isDSOLocal()); 1346 Vals.push_back(addToStrtab(GV.getPartition())); 1347 Vals.push_back(GV.getPartition().size()); 1348 } else { 1349 AbbrevToUse = SimpleGVarAbbrev; 1350 } 1351 1352 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1353 Vals.clear(); 1354 } 1355 1356 // Emit the function proto information. 1357 for (const Function &F : M) { 1358 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1359 // linkage, paramattrs, alignment, section, visibility, gc, 1360 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1361 // prefixdata, personalityfn, DSO_Local, addrspace] 1362 Vals.push_back(addToStrtab(F.getName())); 1363 Vals.push_back(F.getName().size()); 1364 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1365 Vals.push_back(F.getCallingConv()); 1366 Vals.push_back(F.isDeclaration()); 1367 Vals.push_back(getEncodedLinkage(F)); 1368 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1369 Vals.push_back(getEncodedAlign(F.getAlign())); 1370 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1371 : 0); 1372 Vals.push_back(getEncodedVisibility(F)); 1373 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1374 Vals.push_back(getEncodedUnnamedAddr(F)); 1375 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1376 : 0); 1377 Vals.push_back(getEncodedDLLStorageClass(F)); 1378 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1379 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1380 : 0); 1381 Vals.push_back( 1382 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1383 1384 Vals.push_back(F.isDSOLocal()); 1385 Vals.push_back(F.getAddressSpace()); 1386 Vals.push_back(addToStrtab(F.getPartition())); 1387 Vals.push_back(F.getPartition().size()); 1388 1389 unsigned AbbrevToUse = 0; 1390 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1391 Vals.clear(); 1392 } 1393 1394 // Emit the alias information. 1395 for (const GlobalAlias &A : M.aliases()) { 1396 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1397 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1398 // DSO_Local] 1399 Vals.push_back(addToStrtab(A.getName())); 1400 Vals.push_back(A.getName().size()); 1401 Vals.push_back(VE.getTypeID(A.getValueType())); 1402 Vals.push_back(A.getType()->getAddressSpace()); 1403 Vals.push_back(VE.getValueID(A.getAliasee())); 1404 Vals.push_back(getEncodedLinkage(A)); 1405 Vals.push_back(getEncodedVisibility(A)); 1406 Vals.push_back(getEncodedDLLStorageClass(A)); 1407 Vals.push_back(getEncodedThreadLocalMode(A)); 1408 Vals.push_back(getEncodedUnnamedAddr(A)); 1409 Vals.push_back(A.isDSOLocal()); 1410 Vals.push_back(addToStrtab(A.getPartition())); 1411 Vals.push_back(A.getPartition().size()); 1412 1413 unsigned AbbrevToUse = 0; 1414 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1415 Vals.clear(); 1416 } 1417 1418 // Emit the ifunc information. 1419 for (const GlobalIFunc &I : M.ifuncs()) { 1420 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1421 // val#, linkage, visibility, DSO_Local] 1422 Vals.push_back(addToStrtab(I.getName())); 1423 Vals.push_back(I.getName().size()); 1424 Vals.push_back(VE.getTypeID(I.getValueType())); 1425 Vals.push_back(I.getType()->getAddressSpace()); 1426 Vals.push_back(VE.getValueID(I.getResolver())); 1427 Vals.push_back(getEncodedLinkage(I)); 1428 Vals.push_back(getEncodedVisibility(I)); 1429 Vals.push_back(I.isDSOLocal()); 1430 Vals.push_back(addToStrtab(I.getPartition())); 1431 Vals.push_back(I.getPartition().size()); 1432 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1433 Vals.clear(); 1434 } 1435 1436 writeValueSymbolTableForwardDecl(); 1437 } 1438 1439 static uint64_t getOptimizationFlags(const Value *V) { 1440 uint64_t Flags = 0; 1441 1442 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1443 if (OBO->hasNoSignedWrap()) 1444 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1445 if (OBO->hasNoUnsignedWrap()) 1446 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1447 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1448 if (PEO->isExact()) 1449 Flags |= 1 << bitc::PEO_EXACT; 1450 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1451 if (FPMO->hasAllowReassoc()) 1452 Flags |= bitc::AllowReassoc; 1453 if (FPMO->hasNoNaNs()) 1454 Flags |= bitc::NoNaNs; 1455 if (FPMO->hasNoInfs()) 1456 Flags |= bitc::NoInfs; 1457 if (FPMO->hasNoSignedZeros()) 1458 Flags |= bitc::NoSignedZeros; 1459 if (FPMO->hasAllowReciprocal()) 1460 Flags |= bitc::AllowReciprocal; 1461 if (FPMO->hasAllowContract()) 1462 Flags |= bitc::AllowContract; 1463 if (FPMO->hasApproxFunc()) 1464 Flags |= bitc::ApproxFunc; 1465 } 1466 1467 return Flags; 1468 } 1469 1470 void ModuleBitcodeWriter::writeValueAsMetadata( 1471 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1472 // Mimic an MDNode with a value as one operand. 1473 Value *V = MD->getValue(); 1474 Record.push_back(VE.getTypeID(V->getType())); 1475 Record.push_back(VE.getValueID(V)); 1476 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1477 Record.clear(); 1478 } 1479 1480 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1481 SmallVectorImpl<uint64_t> &Record, 1482 unsigned Abbrev) { 1483 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1484 Metadata *MD = N->getOperand(i); 1485 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1486 "Unexpected function-local metadata"); 1487 Record.push_back(VE.getMetadataOrNullID(MD)); 1488 } 1489 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1490 : bitc::METADATA_NODE, 1491 Record, Abbrev); 1492 Record.clear(); 1493 } 1494 1495 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1496 // Assume the column is usually under 128, and always output the inlined-at 1497 // location (it's never more expensive than building an array size 1). 1498 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1499 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1506 return Stream.EmitAbbrev(std::move(Abbv)); 1507 } 1508 1509 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1510 SmallVectorImpl<uint64_t> &Record, 1511 unsigned &Abbrev) { 1512 if (!Abbrev) 1513 Abbrev = createDILocationAbbrev(); 1514 1515 Record.push_back(N->isDistinct()); 1516 Record.push_back(N->getLine()); 1517 Record.push_back(N->getColumn()); 1518 Record.push_back(VE.getMetadataID(N->getScope())); 1519 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1520 Record.push_back(N->isImplicitCode()); 1521 1522 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1523 Record.clear(); 1524 } 1525 1526 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1527 // Assume the column is usually under 128, and always output the inlined-at 1528 // location (it's never more expensive than building an array size 1). 1529 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1530 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1534 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1535 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1536 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1537 return Stream.EmitAbbrev(std::move(Abbv)); 1538 } 1539 1540 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1541 SmallVectorImpl<uint64_t> &Record, 1542 unsigned &Abbrev) { 1543 if (!Abbrev) 1544 Abbrev = createGenericDINodeAbbrev(); 1545 1546 Record.push_back(N->isDistinct()); 1547 Record.push_back(N->getTag()); 1548 Record.push_back(0); // Per-tag version field; unused for now. 1549 1550 for (auto &I : N->operands()) 1551 Record.push_back(VE.getMetadataOrNullID(I)); 1552 1553 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1554 Record.clear(); 1555 } 1556 1557 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1558 SmallVectorImpl<uint64_t> &Record, 1559 unsigned Abbrev) { 1560 const uint64_t Version = 2 << 1; 1561 Record.push_back((uint64_t)N->isDistinct() | Version); 1562 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1565 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1566 1567 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1568 Record.clear(); 1569 } 1570 1571 void ModuleBitcodeWriter::writeDIGenericSubrange( 1572 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1573 unsigned Abbrev) { 1574 Record.push_back((uint64_t)N->isDistinct()); 1575 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1576 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1577 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1579 1580 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1581 Record.clear(); 1582 } 1583 1584 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1585 if ((int64_t)V >= 0) 1586 Vals.push_back(V << 1); 1587 else 1588 Vals.push_back((-V << 1) | 1); 1589 } 1590 1591 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1592 // We have an arbitrary precision integer value to write whose 1593 // bit width is > 64. However, in canonical unsigned integer 1594 // format it is likely that the high bits are going to be zero. 1595 // So, we only write the number of active words. 1596 unsigned NumWords = A.getActiveWords(); 1597 const uint64_t *RawData = A.getRawData(); 1598 for (unsigned i = 0; i < NumWords; i++) 1599 emitSignedInt64(Vals, RawData[i]); 1600 } 1601 1602 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1603 SmallVectorImpl<uint64_t> &Record, 1604 unsigned Abbrev) { 1605 const uint64_t IsBigInt = 1 << 2; 1606 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1607 Record.push_back(N->getValue().getBitWidth()); 1608 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1609 emitWideAPInt(Record, N->getValue()); 1610 1611 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1612 Record.clear(); 1613 } 1614 1615 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1616 SmallVectorImpl<uint64_t> &Record, 1617 unsigned Abbrev) { 1618 Record.push_back(N->isDistinct()); 1619 Record.push_back(N->getTag()); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1621 Record.push_back(N->getSizeInBits()); 1622 Record.push_back(N->getAlignInBits()); 1623 Record.push_back(N->getEncoding()); 1624 Record.push_back(N->getFlags()); 1625 1626 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1631 SmallVectorImpl<uint64_t> &Record, 1632 unsigned Abbrev) { 1633 Record.push_back(N->isDistinct()); 1634 Record.push_back(N->getTag()); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1636 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1637 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1638 Record.push_back(N->getSizeInBits()); 1639 Record.push_back(N->getAlignInBits()); 1640 Record.push_back(N->getEncoding()); 1641 1642 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1643 Record.clear(); 1644 } 1645 1646 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1647 SmallVectorImpl<uint64_t> &Record, 1648 unsigned Abbrev) { 1649 Record.push_back(N->isDistinct()); 1650 Record.push_back(N->getTag()); 1651 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1652 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1653 Record.push_back(N->getLine()); 1654 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1655 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1656 Record.push_back(N->getSizeInBits()); 1657 Record.push_back(N->getAlignInBits()); 1658 Record.push_back(N->getOffsetInBits()); 1659 Record.push_back(N->getFlags()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1661 1662 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1663 // that there is no DWARF address space associated with DIDerivedType. 1664 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1665 Record.push_back(*DWARFAddressSpace + 1); 1666 else 1667 Record.push_back(0); 1668 1669 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1670 Record.clear(); 1671 } 1672 1673 void ModuleBitcodeWriter::writeDICompositeType( 1674 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1675 unsigned Abbrev) { 1676 const unsigned IsNotUsedInOldTypeRef = 0x2; 1677 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1678 Record.push_back(N->getTag()); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1680 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1681 Record.push_back(N->getLine()); 1682 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1683 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1684 Record.push_back(N->getSizeInBits()); 1685 Record.push_back(N->getAlignInBits()); 1686 Record.push_back(N->getOffsetInBits()); 1687 Record.push_back(N->getFlags()); 1688 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1689 Record.push_back(N->getRuntimeLang()); 1690 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1691 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1696 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1698 1699 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDISubroutineType( 1704 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 const unsigned HasNoOldTypeRefs = 0x2; 1707 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1708 Record.push_back(N->getFlags()); 1709 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1710 Record.push_back(N->getCC()); 1711 1712 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1713 Record.clear(); 1714 } 1715 1716 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1717 SmallVectorImpl<uint64_t> &Record, 1718 unsigned Abbrev) { 1719 Record.push_back(N->isDistinct()); 1720 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1721 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1722 if (N->getRawChecksum()) { 1723 Record.push_back(N->getRawChecksum()->Kind); 1724 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1725 } else { 1726 // Maintain backwards compatibility with the old internal representation of 1727 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1728 Record.push_back(0); 1729 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1730 } 1731 auto Source = N->getRawSource(); 1732 if (Source) 1733 Record.push_back(VE.getMetadataOrNullID(*Source)); 1734 1735 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1736 Record.clear(); 1737 } 1738 1739 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1740 SmallVectorImpl<uint64_t> &Record, 1741 unsigned Abbrev) { 1742 assert(N->isDistinct() && "Expected distinct compile units"); 1743 Record.push_back(/* IsDistinct */ true); 1744 Record.push_back(N->getSourceLanguage()); 1745 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1746 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1747 Record.push_back(N->isOptimized()); 1748 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1749 Record.push_back(N->getRuntimeVersion()); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1751 Record.push_back(N->getEmissionKind()); 1752 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1754 Record.push_back(/* subprograms */ 0); 1755 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1757 Record.push_back(N->getDWOId()); 1758 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1759 Record.push_back(N->getSplitDebugInlining()); 1760 Record.push_back(N->getDebugInfoForProfiling()); 1761 Record.push_back((unsigned)N->getNameTableKind()); 1762 Record.push_back(N->getRangesBaseAddress()); 1763 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1764 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1765 1766 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1767 Record.clear(); 1768 } 1769 1770 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1771 SmallVectorImpl<uint64_t> &Record, 1772 unsigned Abbrev) { 1773 const uint64_t HasUnitFlag = 1 << 1; 1774 const uint64_t HasSPFlagsFlag = 1 << 2; 1775 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1776 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1777 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1780 Record.push_back(N->getLine()); 1781 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1782 Record.push_back(N->getScopeLine()); 1783 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1784 Record.push_back(N->getSPFlags()); 1785 Record.push_back(N->getVirtualIndex()); 1786 Record.push_back(N->getFlags()); 1787 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1788 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1789 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1790 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1791 Record.push_back(N->getThisAdjustment()); 1792 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1793 1794 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1795 Record.clear(); 1796 } 1797 1798 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1799 SmallVectorImpl<uint64_t> &Record, 1800 unsigned Abbrev) { 1801 Record.push_back(N->isDistinct()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1804 Record.push_back(N->getLine()); 1805 Record.push_back(N->getColumn()); 1806 1807 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1808 Record.clear(); 1809 } 1810 1811 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1812 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1813 unsigned Abbrev) { 1814 Record.push_back(N->isDistinct()); 1815 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1817 Record.push_back(N->getDiscriminator()); 1818 1819 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1824 SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 Record.push_back(N->isDistinct()); 1827 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1828 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1831 Record.push_back(N->getLineNo()); 1832 1833 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1834 Record.clear(); 1835 } 1836 1837 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1838 SmallVectorImpl<uint64_t> &Record, 1839 unsigned Abbrev) { 1840 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1841 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1842 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1843 1844 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1845 Record.clear(); 1846 } 1847 1848 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1849 SmallVectorImpl<uint64_t> &Record, 1850 unsigned Abbrev) { 1851 Record.push_back(N->isDistinct()); 1852 Record.push_back(N->getMacinfoType()); 1853 Record.push_back(N->getLine()); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1855 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1856 1857 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1858 Record.clear(); 1859 } 1860 1861 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1862 SmallVectorImpl<uint64_t> &Record, 1863 unsigned Abbrev) { 1864 Record.push_back(N->isDistinct()); 1865 Record.push_back(N->getMacinfoType()); 1866 Record.push_back(N->getLine()); 1867 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1869 1870 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1871 Record.clear(); 1872 } 1873 1874 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1875 SmallVectorImpl<uint64_t> &Record, 1876 unsigned Abbrev) { 1877 Record.reserve(N->getArgs().size()); 1878 for (ValueAsMetadata *MD : N->getArgs()) 1879 Record.push_back(VE.getMetadataID(MD)); 1880 1881 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1882 Record.clear(); 1883 } 1884 1885 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1886 SmallVectorImpl<uint64_t> &Record, 1887 unsigned Abbrev) { 1888 Record.push_back(N->isDistinct()); 1889 for (auto &I : N->operands()) 1890 Record.push_back(VE.getMetadataOrNullID(I)); 1891 Record.push_back(N->getLineNo()); 1892 Record.push_back(N->getIsDecl()); 1893 1894 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1895 Record.clear(); 1896 } 1897 1898 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1899 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1900 unsigned Abbrev) { 1901 Record.push_back(N->isDistinct()); 1902 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1903 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1904 Record.push_back(N->isDefault()); 1905 1906 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1907 Record.clear(); 1908 } 1909 1910 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1911 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1912 unsigned Abbrev) { 1913 Record.push_back(N->isDistinct()); 1914 Record.push_back(N->getTag()); 1915 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1916 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1917 Record.push_back(N->isDefault()); 1918 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1919 1920 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDIGlobalVariable( 1925 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 const uint64_t Version = 2 << 1; 1928 Record.push_back((uint64_t)N->isDistinct() | Version); 1929 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1933 Record.push_back(N->getLine()); 1934 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1935 Record.push_back(N->isLocalToUnit()); 1936 Record.push_back(N->isDefinition()); 1937 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1939 Record.push_back(N->getAlignInBits()); 1940 1941 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1942 Record.clear(); 1943 } 1944 1945 void ModuleBitcodeWriter::writeDILocalVariable( 1946 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1947 unsigned Abbrev) { 1948 // In order to support all possible bitcode formats in BitcodeReader we need 1949 // to distinguish the following cases: 1950 // 1) Record has no artificial tag (Record[1]), 1951 // has no obsolete inlinedAt field (Record[9]). 1952 // In this case Record size will be 8, HasAlignment flag is false. 1953 // 2) Record has artificial tag (Record[1]), 1954 // has no obsolete inlignedAt field (Record[9]). 1955 // In this case Record size will be 9, HasAlignment flag is false. 1956 // 3) Record has both artificial tag (Record[1]) and 1957 // obsolete inlignedAt field (Record[9]). 1958 // In this case Record size will be 10, HasAlignment flag is false. 1959 // 4) Record has neither artificial tag, nor inlignedAt field, but 1960 // HasAlignment flag is true and Record[8] contains alignment value. 1961 const uint64_t HasAlignmentFlag = 1 << 1; 1962 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1963 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1965 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1966 Record.push_back(N->getLine()); 1967 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1968 Record.push_back(N->getArg()); 1969 Record.push_back(N->getFlags()); 1970 Record.push_back(N->getAlignInBits()); 1971 1972 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1973 Record.clear(); 1974 } 1975 1976 void ModuleBitcodeWriter::writeDILabel( 1977 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1978 unsigned Abbrev) { 1979 Record.push_back((uint64_t)N->isDistinct()); 1980 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1981 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1982 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1983 Record.push_back(N->getLine()); 1984 1985 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1986 Record.clear(); 1987 } 1988 1989 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1990 SmallVectorImpl<uint64_t> &Record, 1991 unsigned Abbrev) { 1992 Record.reserve(N->getElements().size() + 1); 1993 const uint64_t Version = 3 << 1; 1994 Record.push_back((uint64_t)N->isDistinct() | Version); 1995 Record.append(N->elements_begin(), N->elements_end()); 1996 1997 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1998 Record.clear(); 1999 } 2000 2001 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2002 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2003 unsigned Abbrev) { 2004 Record.push_back(N->isDistinct()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2006 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2007 2008 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2009 Record.clear(); 2010 } 2011 2012 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2013 SmallVectorImpl<uint64_t> &Record, 2014 unsigned Abbrev) { 2015 Record.push_back(N->isDistinct()); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2018 Record.push_back(N->getLine()); 2019 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2020 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2021 Record.push_back(N->getAttributes()); 2022 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2023 2024 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2025 Record.clear(); 2026 } 2027 2028 void ModuleBitcodeWriter::writeDIImportedEntity( 2029 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2030 unsigned Abbrev) { 2031 Record.push_back(N->isDistinct()); 2032 Record.push_back(N->getTag()); 2033 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2034 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2035 Record.push_back(N->getLine()); 2036 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2038 2039 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2044 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2045 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2048 return Stream.EmitAbbrev(std::move(Abbv)); 2049 } 2050 2051 void ModuleBitcodeWriter::writeNamedMetadata( 2052 SmallVectorImpl<uint64_t> &Record) { 2053 if (M.named_metadata_empty()) 2054 return; 2055 2056 unsigned Abbrev = createNamedMetadataAbbrev(); 2057 for (const NamedMDNode &NMD : M.named_metadata()) { 2058 // Write name. 2059 StringRef Str = NMD.getName(); 2060 Record.append(Str.bytes_begin(), Str.bytes_end()); 2061 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2062 Record.clear(); 2063 2064 // Write named metadata operands. 2065 for (const MDNode *N : NMD.operands()) 2066 Record.push_back(VE.getMetadataID(N)); 2067 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2068 Record.clear(); 2069 } 2070 } 2071 2072 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2073 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2074 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2078 return Stream.EmitAbbrev(std::move(Abbv)); 2079 } 2080 2081 /// Write out a record for MDString. 2082 /// 2083 /// All the metadata strings in a metadata block are emitted in a single 2084 /// record. The sizes and strings themselves are shoved into a blob. 2085 void ModuleBitcodeWriter::writeMetadataStrings( 2086 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2087 if (Strings.empty()) 2088 return; 2089 2090 // Start the record with the number of strings. 2091 Record.push_back(bitc::METADATA_STRINGS); 2092 Record.push_back(Strings.size()); 2093 2094 // Emit the sizes of the strings in the blob. 2095 SmallString<256> Blob; 2096 { 2097 BitstreamWriter W(Blob); 2098 for (const Metadata *MD : Strings) 2099 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2100 W.FlushToWord(); 2101 } 2102 2103 // Add the offset to the strings to the record. 2104 Record.push_back(Blob.size()); 2105 2106 // Add the strings to the blob. 2107 for (const Metadata *MD : Strings) 2108 Blob.append(cast<MDString>(MD)->getString()); 2109 2110 // Emit the final record. 2111 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2112 Record.clear(); 2113 } 2114 2115 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2116 enum MetadataAbbrev : unsigned { 2117 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2118 #include "llvm/IR/Metadata.def" 2119 LastPlusOne 2120 }; 2121 2122 void ModuleBitcodeWriter::writeMetadataRecords( 2123 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2124 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2125 if (MDs.empty()) 2126 return; 2127 2128 // Initialize MDNode abbreviations. 2129 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2130 #include "llvm/IR/Metadata.def" 2131 2132 for (const Metadata *MD : MDs) { 2133 if (IndexPos) 2134 IndexPos->push_back(Stream.GetCurrentBitNo()); 2135 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2136 assert(N->isResolved() && "Expected forward references to be resolved"); 2137 2138 switch (N->getMetadataID()) { 2139 default: 2140 llvm_unreachable("Invalid MDNode subclass"); 2141 #define HANDLE_MDNODE_LEAF(CLASS) \ 2142 case Metadata::CLASS##Kind: \ 2143 if (MDAbbrevs) \ 2144 write##CLASS(cast<CLASS>(N), Record, \ 2145 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2146 else \ 2147 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2148 continue; 2149 #include "llvm/IR/Metadata.def" 2150 } 2151 } 2152 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2153 } 2154 } 2155 2156 void ModuleBitcodeWriter::writeModuleMetadata() { 2157 if (!VE.hasMDs() && M.named_metadata_empty()) 2158 return; 2159 2160 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2161 SmallVector<uint64_t, 64> Record; 2162 2163 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2164 // block and load any metadata. 2165 std::vector<unsigned> MDAbbrevs; 2166 2167 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2168 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2169 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2170 createGenericDINodeAbbrev(); 2171 2172 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2173 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2176 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2177 2178 Abbv = std::make_shared<BitCodeAbbrev>(); 2179 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2182 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2183 2184 // Emit MDStrings together upfront. 2185 writeMetadataStrings(VE.getMDStrings(), Record); 2186 2187 // We only emit an index for the metadata record if we have more than a given 2188 // (naive) threshold of metadatas, otherwise it is not worth it. 2189 if (VE.getNonMDStrings().size() > IndexThreshold) { 2190 // Write a placeholder value in for the offset of the metadata index, 2191 // which is written after the records, so that it can include 2192 // the offset of each entry. The placeholder offset will be 2193 // updated after all records are emitted. 2194 uint64_t Vals[] = {0, 0}; 2195 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2196 } 2197 2198 // Compute and save the bit offset to the current position, which will be 2199 // patched when we emit the index later. We can simply subtract the 64-bit 2200 // fixed size from the current bit number to get the location to backpatch. 2201 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2202 2203 // This index will contain the bitpos for each individual record. 2204 std::vector<uint64_t> IndexPos; 2205 IndexPos.reserve(VE.getNonMDStrings().size()); 2206 2207 // Write all the records 2208 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2209 2210 if (VE.getNonMDStrings().size() > IndexThreshold) { 2211 // Now that we have emitted all the records we will emit the index. But 2212 // first 2213 // backpatch the forward reference so that the reader can skip the records 2214 // efficiently. 2215 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2216 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2217 2218 // Delta encode the index. 2219 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2220 for (auto &Elt : IndexPos) { 2221 auto EltDelta = Elt - PreviousValue; 2222 PreviousValue = Elt; 2223 Elt = EltDelta; 2224 } 2225 // Emit the index record. 2226 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2227 IndexPos.clear(); 2228 } 2229 2230 // Write the named metadata now. 2231 writeNamedMetadata(Record); 2232 2233 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2234 SmallVector<uint64_t, 4> Record; 2235 Record.push_back(VE.getValueID(&GO)); 2236 pushGlobalMetadataAttachment(Record, GO); 2237 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2238 }; 2239 for (const Function &F : M) 2240 if (F.isDeclaration() && F.hasMetadata()) 2241 AddDeclAttachedMetadata(F); 2242 // FIXME: Only store metadata for declarations here, and move data for global 2243 // variable definitions to a separate block (PR28134). 2244 for (const GlobalVariable &GV : M.globals()) 2245 if (GV.hasMetadata()) 2246 AddDeclAttachedMetadata(GV); 2247 2248 Stream.ExitBlock(); 2249 } 2250 2251 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2252 if (!VE.hasMDs()) 2253 return; 2254 2255 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2256 SmallVector<uint64_t, 64> Record; 2257 writeMetadataStrings(VE.getMDStrings(), Record); 2258 writeMetadataRecords(VE.getNonMDStrings(), Record); 2259 Stream.ExitBlock(); 2260 } 2261 2262 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2263 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2264 // [n x [id, mdnode]] 2265 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2266 GO.getAllMetadata(MDs); 2267 for (const auto &I : MDs) { 2268 Record.push_back(I.first); 2269 Record.push_back(VE.getMetadataID(I.second)); 2270 } 2271 } 2272 2273 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2274 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2275 2276 SmallVector<uint64_t, 64> Record; 2277 2278 if (F.hasMetadata()) { 2279 pushGlobalMetadataAttachment(Record, F); 2280 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2281 Record.clear(); 2282 } 2283 2284 // Write metadata attachments 2285 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2286 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2287 for (const BasicBlock &BB : F) 2288 for (const Instruction &I : BB) { 2289 MDs.clear(); 2290 I.getAllMetadataOtherThanDebugLoc(MDs); 2291 2292 // If no metadata, ignore instruction. 2293 if (MDs.empty()) continue; 2294 2295 Record.push_back(VE.getInstructionID(&I)); 2296 2297 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2298 Record.push_back(MDs[i].first); 2299 Record.push_back(VE.getMetadataID(MDs[i].second)); 2300 } 2301 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2302 Record.clear(); 2303 } 2304 2305 Stream.ExitBlock(); 2306 } 2307 2308 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2309 SmallVector<uint64_t, 64> Record; 2310 2311 // Write metadata kinds 2312 // METADATA_KIND - [n x [id, name]] 2313 SmallVector<StringRef, 8> Names; 2314 M.getMDKindNames(Names); 2315 2316 if (Names.empty()) return; 2317 2318 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2319 2320 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2321 Record.push_back(MDKindID); 2322 StringRef KName = Names[MDKindID]; 2323 Record.append(KName.begin(), KName.end()); 2324 2325 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2326 Record.clear(); 2327 } 2328 2329 Stream.ExitBlock(); 2330 } 2331 2332 void ModuleBitcodeWriter::writeOperandBundleTags() { 2333 // Write metadata kinds 2334 // 2335 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2336 // 2337 // OPERAND_BUNDLE_TAG - [strchr x N] 2338 2339 SmallVector<StringRef, 8> Tags; 2340 M.getOperandBundleTags(Tags); 2341 2342 if (Tags.empty()) 2343 return; 2344 2345 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2346 2347 SmallVector<uint64_t, 64> Record; 2348 2349 for (auto Tag : Tags) { 2350 Record.append(Tag.begin(), Tag.end()); 2351 2352 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2353 Record.clear(); 2354 } 2355 2356 Stream.ExitBlock(); 2357 } 2358 2359 void ModuleBitcodeWriter::writeSyncScopeNames() { 2360 SmallVector<StringRef, 8> SSNs; 2361 M.getContext().getSyncScopeNames(SSNs); 2362 if (SSNs.empty()) 2363 return; 2364 2365 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2366 2367 SmallVector<uint64_t, 64> Record; 2368 for (auto SSN : SSNs) { 2369 Record.append(SSN.begin(), SSN.end()); 2370 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2371 Record.clear(); 2372 } 2373 2374 Stream.ExitBlock(); 2375 } 2376 2377 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2378 bool isGlobal) { 2379 if (FirstVal == LastVal) return; 2380 2381 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2382 2383 unsigned AggregateAbbrev = 0; 2384 unsigned String8Abbrev = 0; 2385 unsigned CString7Abbrev = 0; 2386 unsigned CString6Abbrev = 0; 2387 // If this is a constant pool for the module, emit module-specific abbrevs. 2388 if (isGlobal) { 2389 // Abbrev for CST_CODE_AGGREGATE. 2390 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2391 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2394 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2395 2396 // Abbrev for CST_CODE_STRING. 2397 Abbv = std::make_shared<BitCodeAbbrev>(); 2398 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2399 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2400 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2401 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2402 // Abbrev for CST_CODE_CSTRING. 2403 Abbv = std::make_shared<BitCodeAbbrev>(); 2404 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2407 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2408 // Abbrev for CST_CODE_CSTRING. 2409 Abbv = std::make_shared<BitCodeAbbrev>(); 2410 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2411 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2413 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2414 } 2415 2416 SmallVector<uint64_t, 64> Record; 2417 2418 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2419 Type *LastTy = nullptr; 2420 for (unsigned i = FirstVal; i != LastVal; ++i) { 2421 const Value *V = Vals[i].first; 2422 // If we need to switch types, do so now. 2423 if (V->getType() != LastTy) { 2424 LastTy = V->getType(); 2425 Record.push_back(VE.getTypeID(LastTy)); 2426 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2427 CONSTANTS_SETTYPE_ABBREV); 2428 Record.clear(); 2429 } 2430 2431 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2432 Record.push_back(unsigned(IA->hasSideEffects()) | 2433 unsigned(IA->isAlignStack()) << 1 | 2434 unsigned(IA->getDialect()&1) << 2); 2435 2436 // Add the asm string. 2437 const std::string &AsmStr = IA->getAsmString(); 2438 Record.push_back(AsmStr.size()); 2439 Record.append(AsmStr.begin(), AsmStr.end()); 2440 2441 // Add the constraint string. 2442 const std::string &ConstraintStr = IA->getConstraintString(); 2443 Record.push_back(ConstraintStr.size()); 2444 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2445 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2446 Record.clear(); 2447 continue; 2448 } 2449 const Constant *C = cast<Constant>(V); 2450 unsigned Code = -1U; 2451 unsigned AbbrevToUse = 0; 2452 if (C->isNullValue()) { 2453 Code = bitc::CST_CODE_NULL; 2454 } else if (isa<PoisonValue>(C)) { 2455 Code = bitc::CST_CODE_POISON; 2456 } else if (isa<UndefValue>(C)) { 2457 Code = bitc::CST_CODE_UNDEF; 2458 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2459 if (IV->getBitWidth() <= 64) { 2460 uint64_t V = IV->getSExtValue(); 2461 emitSignedInt64(Record, V); 2462 Code = bitc::CST_CODE_INTEGER; 2463 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2464 } else { // Wide integers, > 64 bits in size. 2465 emitWideAPInt(Record, IV->getValue()); 2466 Code = bitc::CST_CODE_WIDE_INTEGER; 2467 } 2468 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2469 Code = bitc::CST_CODE_FLOAT; 2470 Type *Ty = CFP->getType(); 2471 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2472 Ty->isDoubleTy()) { 2473 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2474 } else if (Ty->isX86_FP80Ty()) { 2475 // api needed to prevent premature destruction 2476 // bits are not in the same order as a normal i80 APInt, compensate. 2477 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2478 const uint64_t *p = api.getRawData(); 2479 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2480 Record.push_back(p[0] & 0xffffLL); 2481 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2482 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2483 const uint64_t *p = api.getRawData(); 2484 Record.push_back(p[0]); 2485 Record.push_back(p[1]); 2486 } else { 2487 assert(0 && "Unknown FP type!"); 2488 } 2489 } else if (isa<ConstantDataSequential>(C) && 2490 cast<ConstantDataSequential>(C)->isString()) { 2491 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2492 // Emit constant strings specially. 2493 unsigned NumElts = Str->getNumElements(); 2494 // If this is a null-terminated string, use the denser CSTRING encoding. 2495 if (Str->isCString()) { 2496 Code = bitc::CST_CODE_CSTRING; 2497 --NumElts; // Don't encode the null, which isn't allowed by char6. 2498 } else { 2499 Code = bitc::CST_CODE_STRING; 2500 AbbrevToUse = String8Abbrev; 2501 } 2502 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2503 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2504 for (unsigned i = 0; i != NumElts; ++i) { 2505 unsigned char V = Str->getElementAsInteger(i); 2506 Record.push_back(V); 2507 isCStr7 &= (V & 128) == 0; 2508 if (isCStrChar6) 2509 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2510 } 2511 2512 if (isCStrChar6) 2513 AbbrevToUse = CString6Abbrev; 2514 else if (isCStr7) 2515 AbbrevToUse = CString7Abbrev; 2516 } else if (const ConstantDataSequential *CDS = 2517 dyn_cast<ConstantDataSequential>(C)) { 2518 Code = bitc::CST_CODE_DATA; 2519 Type *EltTy = CDS->getElementType(); 2520 if (isa<IntegerType>(EltTy)) { 2521 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2522 Record.push_back(CDS->getElementAsInteger(i)); 2523 } else { 2524 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2525 Record.push_back( 2526 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2527 } 2528 } else if (isa<ConstantAggregate>(C)) { 2529 Code = bitc::CST_CODE_AGGREGATE; 2530 for (const Value *Op : C->operands()) 2531 Record.push_back(VE.getValueID(Op)); 2532 AbbrevToUse = AggregateAbbrev; 2533 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2534 switch (CE->getOpcode()) { 2535 default: 2536 if (Instruction::isCast(CE->getOpcode())) { 2537 Code = bitc::CST_CODE_CE_CAST; 2538 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2539 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2540 Record.push_back(VE.getValueID(C->getOperand(0))); 2541 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2542 } else { 2543 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2544 Code = bitc::CST_CODE_CE_BINOP; 2545 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2546 Record.push_back(VE.getValueID(C->getOperand(0))); 2547 Record.push_back(VE.getValueID(C->getOperand(1))); 2548 uint64_t Flags = getOptimizationFlags(CE); 2549 if (Flags != 0) 2550 Record.push_back(Flags); 2551 } 2552 break; 2553 case Instruction::FNeg: { 2554 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2555 Code = bitc::CST_CODE_CE_UNOP; 2556 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2557 Record.push_back(VE.getValueID(C->getOperand(0))); 2558 uint64_t Flags = getOptimizationFlags(CE); 2559 if (Flags != 0) 2560 Record.push_back(Flags); 2561 break; 2562 } 2563 case Instruction::GetElementPtr: { 2564 Code = bitc::CST_CODE_CE_GEP; 2565 const auto *GO = cast<GEPOperator>(C); 2566 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2567 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2568 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2569 Record.push_back((*Idx << 1) | GO->isInBounds()); 2570 } else if (GO->isInBounds()) 2571 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2572 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2573 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2574 Record.push_back(VE.getValueID(C->getOperand(i))); 2575 } 2576 break; 2577 } 2578 case Instruction::Select: 2579 Code = bitc::CST_CODE_CE_SELECT; 2580 Record.push_back(VE.getValueID(C->getOperand(0))); 2581 Record.push_back(VE.getValueID(C->getOperand(1))); 2582 Record.push_back(VE.getValueID(C->getOperand(2))); 2583 break; 2584 case Instruction::ExtractElement: 2585 Code = bitc::CST_CODE_CE_EXTRACTELT; 2586 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2587 Record.push_back(VE.getValueID(C->getOperand(0))); 2588 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2589 Record.push_back(VE.getValueID(C->getOperand(1))); 2590 break; 2591 case Instruction::InsertElement: 2592 Code = bitc::CST_CODE_CE_INSERTELT; 2593 Record.push_back(VE.getValueID(C->getOperand(0))); 2594 Record.push_back(VE.getValueID(C->getOperand(1))); 2595 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2596 Record.push_back(VE.getValueID(C->getOperand(2))); 2597 break; 2598 case Instruction::ShuffleVector: 2599 // If the return type and argument types are the same, this is a 2600 // standard shufflevector instruction. If the types are different, 2601 // then the shuffle is widening or truncating the input vectors, and 2602 // the argument type must also be encoded. 2603 if (C->getType() == C->getOperand(0)->getType()) { 2604 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2605 } else { 2606 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2607 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2608 } 2609 Record.push_back(VE.getValueID(C->getOperand(0))); 2610 Record.push_back(VE.getValueID(C->getOperand(1))); 2611 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2612 break; 2613 case Instruction::ICmp: 2614 case Instruction::FCmp: 2615 Code = bitc::CST_CODE_CE_CMP; 2616 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2617 Record.push_back(VE.getValueID(C->getOperand(0))); 2618 Record.push_back(VE.getValueID(C->getOperand(1))); 2619 Record.push_back(CE->getPredicate()); 2620 break; 2621 } 2622 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2623 Code = bitc::CST_CODE_BLOCKADDRESS; 2624 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2625 Record.push_back(VE.getValueID(BA->getFunction())); 2626 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2627 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2628 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2629 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2630 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2631 } else { 2632 #ifndef NDEBUG 2633 C->dump(); 2634 #endif 2635 llvm_unreachable("Unknown constant!"); 2636 } 2637 Stream.EmitRecord(Code, Record, AbbrevToUse); 2638 Record.clear(); 2639 } 2640 2641 Stream.ExitBlock(); 2642 } 2643 2644 void ModuleBitcodeWriter::writeModuleConstants() { 2645 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2646 2647 // Find the first constant to emit, which is the first non-globalvalue value. 2648 // We know globalvalues have been emitted by WriteModuleInfo. 2649 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2650 if (!isa<GlobalValue>(Vals[i].first)) { 2651 writeConstants(i, Vals.size(), true); 2652 return; 2653 } 2654 } 2655 } 2656 2657 /// pushValueAndType - The file has to encode both the value and type id for 2658 /// many values, because we need to know what type to create for forward 2659 /// references. However, most operands are not forward references, so this type 2660 /// field is not needed. 2661 /// 2662 /// This function adds V's value ID to Vals. If the value ID is higher than the 2663 /// instruction ID, then it is a forward reference, and it also includes the 2664 /// type ID. The value ID that is written is encoded relative to the InstID. 2665 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2666 SmallVectorImpl<unsigned> &Vals) { 2667 unsigned ValID = VE.getValueID(V); 2668 // Make encoding relative to the InstID. 2669 Vals.push_back(InstID - ValID); 2670 if (ValID >= InstID) { 2671 Vals.push_back(VE.getTypeID(V->getType())); 2672 return true; 2673 } 2674 return false; 2675 } 2676 2677 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2678 unsigned InstID) { 2679 SmallVector<unsigned, 64> Record; 2680 LLVMContext &C = CS.getContext(); 2681 2682 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2683 const auto &Bundle = CS.getOperandBundleAt(i); 2684 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2685 2686 for (auto &Input : Bundle.Inputs) 2687 pushValueAndType(Input, InstID, Record); 2688 2689 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2690 Record.clear(); 2691 } 2692 } 2693 2694 /// pushValue - Like pushValueAndType, but where the type of the value is 2695 /// omitted (perhaps it was already encoded in an earlier operand). 2696 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2697 SmallVectorImpl<unsigned> &Vals) { 2698 unsigned ValID = VE.getValueID(V); 2699 Vals.push_back(InstID - ValID); 2700 } 2701 2702 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2703 SmallVectorImpl<uint64_t> &Vals) { 2704 unsigned ValID = VE.getValueID(V); 2705 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2706 emitSignedInt64(Vals, diff); 2707 } 2708 2709 /// WriteInstruction - Emit an instruction to the specified stream. 2710 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2711 unsigned InstID, 2712 SmallVectorImpl<unsigned> &Vals) { 2713 unsigned Code = 0; 2714 unsigned AbbrevToUse = 0; 2715 VE.setInstructionID(&I); 2716 switch (I.getOpcode()) { 2717 default: 2718 if (Instruction::isCast(I.getOpcode())) { 2719 Code = bitc::FUNC_CODE_INST_CAST; 2720 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2721 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2722 Vals.push_back(VE.getTypeID(I.getType())); 2723 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2724 } else { 2725 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2726 Code = bitc::FUNC_CODE_INST_BINOP; 2727 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2728 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2729 pushValue(I.getOperand(1), InstID, Vals); 2730 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2731 uint64_t Flags = getOptimizationFlags(&I); 2732 if (Flags != 0) { 2733 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2734 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2735 Vals.push_back(Flags); 2736 } 2737 } 2738 break; 2739 case Instruction::FNeg: { 2740 Code = bitc::FUNC_CODE_INST_UNOP; 2741 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2742 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2743 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2744 uint64_t Flags = getOptimizationFlags(&I); 2745 if (Flags != 0) { 2746 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2747 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2748 Vals.push_back(Flags); 2749 } 2750 break; 2751 } 2752 case Instruction::GetElementPtr: { 2753 Code = bitc::FUNC_CODE_INST_GEP; 2754 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2755 auto &GEPInst = cast<GetElementPtrInst>(I); 2756 Vals.push_back(GEPInst.isInBounds()); 2757 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2758 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2759 pushValueAndType(I.getOperand(i), InstID, Vals); 2760 break; 2761 } 2762 case Instruction::ExtractValue: { 2763 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2764 pushValueAndType(I.getOperand(0), InstID, Vals); 2765 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2766 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2767 break; 2768 } 2769 case Instruction::InsertValue: { 2770 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2771 pushValueAndType(I.getOperand(0), InstID, Vals); 2772 pushValueAndType(I.getOperand(1), InstID, Vals); 2773 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2774 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2775 break; 2776 } 2777 case Instruction::Select: { 2778 Code = bitc::FUNC_CODE_INST_VSELECT; 2779 pushValueAndType(I.getOperand(1), InstID, Vals); 2780 pushValue(I.getOperand(2), InstID, Vals); 2781 pushValueAndType(I.getOperand(0), InstID, Vals); 2782 uint64_t Flags = getOptimizationFlags(&I); 2783 if (Flags != 0) 2784 Vals.push_back(Flags); 2785 break; 2786 } 2787 case Instruction::ExtractElement: 2788 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2789 pushValueAndType(I.getOperand(0), InstID, Vals); 2790 pushValueAndType(I.getOperand(1), InstID, Vals); 2791 break; 2792 case Instruction::InsertElement: 2793 Code = bitc::FUNC_CODE_INST_INSERTELT; 2794 pushValueAndType(I.getOperand(0), InstID, Vals); 2795 pushValue(I.getOperand(1), InstID, Vals); 2796 pushValueAndType(I.getOperand(2), InstID, Vals); 2797 break; 2798 case Instruction::ShuffleVector: 2799 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2800 pushValueAndType(I.getOperand(0), InstID, Vals); 2801 pushValue(I.getOperand(1), InstID, Vals); 2802 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2803 Vals); 2804 break; 2805 case Instruction::ICmp: 2806 case Instruction::FCmp: { 2807 // compare returning Int1Ty or vector of Int1Ty 2808 Code = bitc::FUNC_CODE_INST_CMP2; 2809 pushValueAndType(I.getOperand(0), InstID, Vals); 2810 pushValue(I.getOperand(1), InstID, Vals); 2811 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2812 uint64_t Flags = getOptimizationFlags(&I); 2813 if (Flags != 0) 2814 Vals.push_back(Flags); 2815 break; 2816 } 2817 2818 case Instruction::Ret: 2819 { 2820 Code = bitc::FUNC_CODE_INST_RET; 2821 unsigned NumOperands = I.getNumOperands(); 2822 if (NumOperands == 0) 2823 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2824 else if (NumOperands == 1) { 2825 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2826 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2827 } else { 2828 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2829 pushValueAndType(I.getOperand(i), InstID, Vals); 2830 } 2831 } 2832 break; 2833 case Instruction::Br: 2834 { 2835 Code = bitc::FUNC_CODE_INST_BR; 2836 const BranchInst &II = cast<BranchInst>(I); 2837 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2838 if (II.isConditional()) { 2839 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2840 pushValue(II.getCondition(), InstID, Vals); 2841 } 2842 } 2843 break; 2844 case Instruction::Switch: 2845 { 2846 Code = bitc::FUNC_CODE_INST_SWITCH; 2847 const SwitchInst &SI = cast<SwitchInst>(I); 2848 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2849 pushValue(SI.getCondition(), InstID, Vals); 2850 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2851 for (auto Case : SI.cases()) { 2852 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2853 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2854 } 2855 } 2856 break; 2857 case Instruction::IndirectBr: 2858 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2859 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2860 // Encode the address operand as relative, but not the basic blocks. 2861 pushValue(I.getOperand(0), InstID, Vals); 2862 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2863 Vals.push_back(VE.getValueID(I.getOperand(i))); 2864 break; 2865 2866 case Instruction::Invoke: { 2867 const InvokeInst *II = cast<InvokeInst>(&I); 2868 const Value *Callee = II->getCalledOperand(); 2869 FunctionType *FTy = II->getFunctionType(); 2870 2871 if (II->hasOperandBundles()) 2872 writeOperandBundles(*II, InstID); 2873 2874 Code = bitc::FUNC_CODE_INST_INVOKE; 2875 2876 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2877 Vals.push_back(II->getCallingConv() | 1 << 13); 2878 Vals.push_back(VE.getValueID(II->getNormalDest())); 2879 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2880 Vals.push_back(VE.getTypeID(FTy)); 2881 pushValueAndType(Callee, InstID, Vals); 2882 2883 // Emit value #'s for the fixed parameters. 2884 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2885 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2886 2887 // Emit type/value pairs for varargs params. 2888 if (FTy->isVarArg()) { 2889 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2890 i != e; ++i) 2891 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2892 } 2893 break; 2894 } 2895 case Instruction::Resume: 2896 Code = bitc::FUNC_CODE_INST_RESUME; 2897 pushValueAndType(I.getOperand(0), InstID, Vals); 2898 break; 2899 case Instruction::CleanupRet: { 2900 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2901 const auto &CRI = cast<CleanupReturnInst>(I); 2902 pushValue(CRI.getCleanupPad(), InstID, Vals); 2903 if (CRI.hasUnwindDest()) 2904 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2905 break; 2906 } 2907 case Instruction::CatchRet: { 2908 Code = bitc::FUNC_CODE_INST_CATCHRET; 2909 const auto &CRI = cast<CatchReturnInst>(I); 2910 pushValue(CRI.getCatchPad(), InstID, Vals); 2911 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2912 break; 2913 } 2914 case Instruction::CleanupPad: 2915 case Instruction::CatchPad: { 2916 const auto &FuncletPad = cast<FuncletPadInst>(I); 2917 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2918 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2919 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2920 2921 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2922 Vals.push_back(NumArgOperands); 2923 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2924 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2925 break; 2926 } 2927 case Instruction::CatchSwitch: { 2928 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2929 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2930 2931 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2932 2933 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2934 Vals.push_back(NumHandlers); 2935 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2936 Vals.push_back(VE.getValueID(CatchPadBB)); 2937 2938 if (CatchSwitch.hasUnwindDest()) 2939 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2940 break; 2941 } 2942 case Instruction::CallBr: { 2943 const CallBrInst *CBI = cast<CallBrInst>(&I); 2944 const Value *Callee = CBI->getCalledOperand(); 2945 FunctionType *FTy = CBI->getFunctionType(); 2946 2947 if (CBI->hasOperandBundles()) 2948 writeOperandBundles(*CBI, InstID); 2949 2950 Code = bitc::FUNC_CODE_INST_CALLBR; 2951 2952 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2953 2954 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2955 1 << bitc::CALL_EXPLICIT_TYPE); 2956 2957 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2958 Vals.push_back(CBI->getNumIndirectDests()); 2959 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2960 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2961 2962 Vals.push_back(VE.getTypeID(FTy)); 2963 pushValueAndType(Callee, InstID, Vals); 2964 2965 // Emit value #'s for the fixed parameters. 2966 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2967 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2968 2969 // Emit type/value pairs for varargs params. 2970 if (FTy->isVarArg()) { 2971 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2972 i != e; ++i) 2973 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2974 } 2975 break; 2976 } 2977 case Instruction::Unreachable: 2978 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2979 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2980 break; 2981 2982 case Instruction::PHI: { 2983 const PHINode &PN = cast<PHINode>(I); 2984 Code = bitc::FUNC_CODE_INST_PHI; 2985 // With the newer instruction encoding, forward references could give 2986 // negative valued IDs. This is most common for PHIs, so we use 2987 // signed VBRs. 2988 SmallVector<uint64_t, 128> Vals64; 2989 Vals64.push_back(VE.getTypeID(PN.getType())); 2990 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2991 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2992 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2993 } 2994 2995 uint64_t Flags = getOptimizationFlags(&I); 2996 if (Flags != 0) 2997 Vals64.push_back(Flags); 2998 2999 // Emit a Vals64 vector and exit. 3000 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3001 Vals64.clear(); 3002 return; 3003 } 3004 3005 case Instruction::LandingPad: { 3006 const LandingPadInst &LP = cast<LandingPadInst>(I); 3007 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3008 Vals.push_back(VE.getTypeID(LP.getType())); 3009 Vals.push_back(LP.isCleanup()); 3010 Vals.push_back(LP.getNumClauses()); 3011 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3012 if (LP.isCatch(I)) 3013 Vals.push_back(LandingPadInst::Catch); 3014 else 3015 Vals.push_back(LandingPadInst::Filter); 3016 pushValueAndType(LP.getClause(I), InstID, Vals); 3017 } 3018 break; 3019 } 3020 3021 case Instruction::Alloca: { 3022 Code = bitc::FUNC_CODE_INST_ALLOCA; 3023 const AllocaInst &AI = cast<AllocaInst>(I); 3024 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3025 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3026 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3027 using APV = AllocaPackedValues; 3028 unsigned Record = 0; 3029 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3030 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3031 Bitfield::set<APV::ExplicitType>(Record, true); 3032 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3033 Vals.push_back(Record); 3034 break; 3035 } 3036 3037 case Instruction::Load: 3038 if (cast<LoadInst>(I).isAtomic()) { 3039 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3040 pushValueAndType(I.getOperand(0), InstID, Vals); 3041 } else { 3042 Code = bitc::FUNC_CODE_INST_LOAD; 3043 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3044 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3045 } 3046 Vals.push_back(VE.getTypeID(I.getType())); 3047 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3048 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3049 if (cast<LoadInst>(I).isAtomic()) { 3050 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3051 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3052 } 3053 break; 3054 case Instruction::Store: 3055 if (cast<StoreInst>(I).isAtomic()) 3056 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3057 else 3058 Code = bitc::FUNC_CODE_INST_STORE; 3059 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3060 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3061 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3062 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3063 if (cast<StoreInst>(I).isAtomic()) { 3064 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3065 Vals.push_back( 3066 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3067 } 3068 break; 3069 case Instruction::AtomicCmpXchg: 3070 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3071 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3072 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3073 pushValue(I.getOperand(2), InstID, Vals); // newval. 3074 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3075 Vals.push_back( 3076 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3077 Vals.push_back( 3078 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3079 Vals.push_back( 3080 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3081 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3082 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3083 break; 3084 case Instruction::AtomicRMW: 3085 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3086 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3087 pushValue(I.getOperand(1), InstID, Vals); // val. 3088 Vals.push_back( 3089 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3090 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3091 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3092 Vals.push_back( 3093 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3094 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3095 break; 3096 case Instruction::Fence: 3097 Code = bitc::FUNC_CODE_INST_FENCE; 3098 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3099 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3100 break; 3101 case Instruction::Call: { 3102 const CallInst &CI = cast<CallInst>(I); 3103 FunctionType *FTy = CI.getFunctionType(); 3104 3105 if (CI.hasOperandBundles()) 3106 writeOperandBundles(CI, InstID); 3107 3108 Code = bitc::FUNC_CODE_INST_CALL; 3109 3110 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3111 3112 unsigned Flags = getOptimizationFlags(&I); 3113 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3114 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3115 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3116 1 << bitc::CALL_EXPLICIT_TYPE | 3117 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3118 unsigned(Flags != 0) << bitc::CALL_FMF); 3119 if (Flags != 0) 3120 Vals.push_back(Flags); 3121 3122 Vals.push_back(VE.getTypeID(FTy)); 3123 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3124 3125 // Emit value #'s for the fixed parameters. 3126 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3127 // Check for labels (can happen with asm labels). 3128 if (FTy->getParamType(i)->isLabelTy()) 3129 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3130 else 3131 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3132 } 3133 3134 // Emit type/value pairs for varargs params. 3135 if (FTy->isVarArg()) { 3136 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3137 i != e; ++i) 3138 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3139 } 3140 break; 3141 } 3142 case Instruction::VAArg: 3143 Code = bitc::FUNC_CODE_INST_VAARG; 3144 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3145 pushValue(I.getOperand(0), InstID, Vals); // valist. 3146 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3147 break; 3148 case Instruction::Freeze: 3149 Code = bitc::FUNC_CODE_INST_FREEZE; 3150 pushValueAndType(I.getOperand(0), InstID, Vals); 3151 break; 3152 } 3153 3154 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3155 Vals.clear(); 3156 } 3157 3158 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3159 /// to allow clients to efficiently find the function body. 3160 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3161 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3162 // Get the offset of the VST we are writing, and backpatch it into 3163 // the VST forward declaration record. 3164 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3165 // The BitcodeStartBit was the stream offset of the identification block. 3166 VSTOffset -= bitcodeStartBit(); 3167 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3168 // Note that we add 1 here because the offset is relative to one word 3169 // before the start of the identification block, which was historically 3170 // always the start of the regular bitcode header. 3171 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3172 3173 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3174 3175 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3176 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3178 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3179 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3180 3181 for (const Function &F : M) { 3182 uint64_t Record[2]; 3183 3184 if (F.isDeclaration()) 3185 continue; 3186 3187 Record[0] = VE.getValueID(&F); 3188 3189 // Save the word offset of the function (from the start of the 3190 // actual bitcode written to the stream). 3191 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3192 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3193 // Note that we add 1 here because the offset is relative to one word 3194 // before the start of the identification block, which was historically 3195 // always the start of the regular bitcode header. 3196 Record[1] = BitcodeIndex / 32 + 1; 3197 3198 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3199 } 3200 3201 Stream.ExitBlock(); 3202 } 3203 3204 /// Emit names for arguments, instructions and basic blocks in a function. 3205 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3206 const ValueSymbolTable &VST) { 3207 if (VST.empty()) 3208 return; 3209 3210 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3211 3212 // FIXME: Set up the abbrev, we know how many values there are! 3213 // FIXME: We know if the type names can use 7-bit ascii. 3214 SmallVector<uint64_t, 64> NameVals; 3215 3216 for (const ValueName &Name : VST) { 3217 // Figure out the encoding to use for the name. 3218 StringEncoding Bits = getStringEncoding(Name.getKey()); 3219 3220 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3221 NameVals.push_back(VE.getValueID(Name.getValue())); 3222 3223 // VST_CODE_ENTRY: [valueid, namechar x N] 3224 // VST_CODE_BBENTRY: [bbid, namechar x N] 3225 unsigned Code; 3226 if (isa<BasicBlock>(Name.getValue())) { 3227 Code = bitc::VST_CODE_BBENTRY; 3228 if (Bits == SE_Char6) 3229 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3230 } else { 3231 Code = bitc::VST_CODE_ENTRY; 3232 if (Bits == SE_Char6) 3233 AbbrevToUse = VST_ENTRY_6_ABBREV; 3234 else if (Bits == SE_Fixed7) 3235 AbbrevToUse = VST_ENTRY_7_ABBREV; 3236 } 3237 3238 for (const auto P : Name.getKey()) 3239 NameVals.push_back((unsigned char)P); 3240 3241 // Emit the finished record. 3242 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3243 NameVals.clear(); 3244 } 3245 3246 Stream.ExitBlock(); 3247 } 3248 3249 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3250 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3251 unsigned Code; 3252 if (isa<BasicBlock>(Order.V)) 3253 Code = bitc::USELIST_CODE_BB; 3254 else 3255 Code = bitc::USELIST_CODE_DEFAULT; 3256 3257 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3258 Record.push_back(VE.getValueID(Order.V)); 3259 Stream.EmitRecord(Code, Record); 3260 } 3261 3262 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3263 assert(VE.shouldPreserveUseListOrder() && 3264 "Expected to be preserving use-list order"); 3265 3266 auto hasMore = [&]() { 3267 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3268 }; 3269 if (!hasMore()) 3270 // Nothing to do. 3271 return; 3272 3273 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3274 while (hasMore()) { 3275 writeUseList(std::move(VE.UseListOrders.back())); 3276 VE.UseListOrders.pop_back(); 3277 } 3278 Stream.ExitBlock(); 3279 } 3280 3281 /// Emit a function body to the module stream. 3282 void ModuleBitcodeWriter::writeFunction( 3283 const Function &F, 3284 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3285 // Save the bitcode index of the start of this function block for recording 3286 // in the VST. 3287 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3288 3289 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3290 VE.incorporateFunction(F); 3291 3292 SmallVector<unsigned, 64> Vals; 3293 3294 // Emit the number of basic blocks, so the reader can create them ahead of 3295 // time. 3296 Vals.push_back(VE.getBasicBlocks().size()); 3297 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3298 Vals.clear(); 3299 3300 // If there are function-local constants, emit them now. 3301 unsigned CstStart, CstEnd; 3302 VE.getFunctionConstantRange(CstStart, CstEnd); 3303 writeConstants(CstStart, CstEnd, false); 3304 3305 // If there is function-local metadata, emit it now. 3306 writeFunctionMetadata(F); 3307 3308 // Keep a running idea of what the instruction ID is. 3309 unsigned InstID = CstEnd; 3310 3311 bool NeedsMetadataAttachment = F.hasMetadata(); 3312 3313 DILocation *LastDL = nullptr; 3314 // Finally, emit all the instructions, in order. 3315 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3316 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3317 I != E; ++I) { 3318 writeInstruction(*I, InstID, Vals); 3319 3320 if (!I->getType()->isVoidTy()) 3321 ++InstID; 3322 3323 // If the instruction has metadata, write a metadata attachment later. 3324 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3325 3326 // If the instruction has a debug location, emit it. 3327 DILocation *DL = I->getDebugLoc(); 3328 if (!DL) 3329 continue; 3330 3331 if (DL == LastDL) { 3332 // Just repeat the same debug loc as last time. 3333 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3334 continue; 3335 } 3336 3337 Vals.push_back(DL->getLine()); 3338 Vals.push_back(DL->getColumn()); 3339 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3340 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3341 Vals.push_back(DL->isImplicitCode()); 3342 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3343 Vals.clear(); 3344 3345 LastDL = DL; 3346 } 3347 3348 // Emit names for all the instructions etc. 3349 if (auto *Symtab = F.getValueSymbolTable()) 3350 writeFunctionLevelValueSymbolTable(*Symtab); 3351 3352 if (NeedsMetadataAttachment) 3353 writeFunctionMetadataAttachment(F); 3354 if (VE.shouldPreserveUseListOrder()) 3355 writeUseListBlock(&F); 3356 VE.purgeFunction(); 3357 Stream.ExitBlock(); 3358 } 3359 3360 // Emit blockinfo, which defines the standard abbreviations etc. 3361 void ModuleBitcodeWriter::writeBlockInfo() { 3362 // We only want to emit block info records for blocks that have multiple 3363 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3364 // Other blocks can define their abbrevs inline. 3365 Stream.EnterBlockInfoBlock(); 3366 3367 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3368 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3369 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3373 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3374 VST_ENTRY_8_ABBREV) 3375 llvm_unreachable("Unexpected abbrev ordering!"); 3376 } 3377 3378 { // 7-bit fixed width VST_CODE_ENTRY strings. 3379 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3380 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3384 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3385 VST_ENTRY_7_ABBREV) 3386 llvm_unreachable("Unexpected abbrev ordering!"); 3387 } 3388 { // 6-bit char6 VST_CODE_ENTRY strings. 3389 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3390 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3394 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3395 VST_ENTRY_6_ABBREV) 3396 llvm_unreachable("Unexpected abbrev ordering!"); 3397 } 3398 { // 6-bit char6 VST_CODE_BBENTRY strings. 3399 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3400 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3404 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3405 VST_BBENTRY_6_ABBREV) 3406 llvm_unreachable("Unexpected abbrev ordering!"); 3407 } 3408 3409 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3410 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3411 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3412 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3413 VE.computeBitsRequiredForTypeIndicies())); 3414 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3415 CONSTANTS_SETTYPE_ABBREV) 3416 llvm_unreachable("Unexpected abbrev ordering!"); 3417 } 3418 3419 { // INTEGER abbrev for CONSTANTS_BLOCK. 3420 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3421 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3423 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3424 CONSTANTS_INTEGER_ABBREV) 3425 llvm_unreachable("Unexpected abbrev ordering!"); 3426 } 3427 3428 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3429 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3430 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3433 VE.computeBitsRequiredForTypeIndicies())); 3434 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3435 3436 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3437 CONSTANTS_CE_CAST_Abbrev) 3438 llvm_unreachable("Unexpected abbrev ordering!"); 3439 } 3440 { // NULL abbrev for CONSTANTS_BLOCK. 3441 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3442 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3443 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3444 CONSTANTS_NULL_Abbrev) 3445 llvm_unreachable("Unexpected abbrev ordering!"); 3446 } 3447 3448 // FIXME: This should only use space for first class types! 3449 3450 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3451 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3452 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3454 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3455 VE.computeBitsRequiredForTypeIndicies())); 3456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3458 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3459 FUNCTION_INST_LOAD_ABBREV) 3460 llvm_unreachable("Unexpected abbrev ordering!"); 3461 } 3462 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3463 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3464 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3467 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3468 FUNCTION_INST_UNOP_ABBREV) 3469 llvm_unreachable("Unexpected abbrev ordering!"); 3470 } 3471 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3472 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3473 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3475 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3477 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3478 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3479 llvm_unreachable("Unexpected abbrev ordering!"); 3480 } 3481 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3482 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3483 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3484 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3487 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3488 FUNCTION_INST_BINOP_ABBREV) 3489 llvm_unreachable("Unexpected abbrev ordering!"); 3490 } 3491 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3492 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3493 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3498 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3499 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3500 llvm_unreachable("Unexpected abbrev ordering!"); 3501 } 3502 { // INST_CAST abbrev for FUNCTION_BLOCK. 3503 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3504 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3507 VE.computeBitsRequiredForTypeIndicies())); 3508 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3509 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3510 FUNCTION_INST_CAST_ABBREV) 3511 llvm_unreachable("Unexpected abbrev ordering!"); 3512 } 3513 3514 { // INST_RET abbrev for FUNCTION_BLOCK. 3515 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3516 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3517 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3518 FUNCTION_INST_RET_VOID_ABBREV) 3519 llvm_unreachable("Unexpected abbrev ordering!"); 3520 } 3521 { // INST_RET abbrev for FUNCTION_BLOCK. 3522 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3523 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3525 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3526 FUNCTION_INST_RET_VAL_ABBREV) 3527 llvm_unreachable("Unexpected abbrev ordering!"); 3528 } 3529 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3530 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3531 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3532 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3533 FUNCTION_INST_UNREACHABLE_ABBREV) 3534 llvm_unreachable("Unexpected abbrev ordering!"); 3535 } 3536 { 3537 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3538 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3541 Log2_32_Ceil(VE.getTypes().size() + 1))); 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3544 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3545 FUNCTION_INST_GEP_ABBREV) 3546 llvm_unreachable("Unexpected abbrev ordering!"); 3547 } 3548 3549 Stream.ExitBlock(); 3550 } 3551 3552 /// Write the module path strings, currently only used when generating 3553 /// a combined index file. 3554 void IndexBitcodeWriter::writeModStrings() { 3555 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3556 3557 // TODO: See which abbrev sizes we actually need to emit 3558 3559 // 8-bit fixed-width MST_ENTRY strings. 3560 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3561 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3562 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3565 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3566 3567 // 7-bit fixed width MST_ENTRY strings. 3568 Abbv = std::make_shared<BitCodeAbbrev>(); 3569 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3573 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3574 3575 // 6-bit char6 MST_ENTRY strings. 3576 Abbv = std::make_shared<BitCodeAbbrev>(); 3577 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3581 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3582 3583 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3584 Abbv = std::make_shared<BitCodeAbbrev>(); 3585 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3591 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3592 3593 SmallVector<unsigned, 64> Vals; 3594 forEachModule( 3595 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3596 StringRef Key = MPSE.getKey(); 3597 const auto &Value = MPSE.getValue(); 3598 StringEncoding Bits = getStringEncoding(Key); 3599 unsigned AbbrevToUse = Abbrev8Bit; 3600 if (Bits == SE_Char6) 3601 AbbrevToUse = Abbrev6Bit; 3602 else if (Bits == SE_Fixed7) 3603 AbbrevToUse = Abbrev7Bit; 3604 3605 Vals.push_back(Value.first); 3606 Vals.append(Key.begin(), Key.end()); 3607 3608 // Emit the finished record. 3609 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3610 3611 // Emit an optional hash for the module now 3612 const auto &Hash = Value.second; 3613 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3614 Vals.assign(Hash.begin(), Hash.end()); 3615 // Emit the hash record. 3616 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3617 } 3618 3619 Vals.clear(); 3620 }); 3621 Stream.ExitBlock(); 3622 } 3623 3624 /// Write the function type metadata related records that need to appear before 3625 /// a function summary entry (whether per-module or combined). 3626 template <typename Fn> 3627 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3628 FunctionSummary *FS, 3629 Fn GetValueID) { 3630 if (!FS->type_tests().empty()) 3631 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3632 3633 SmallVector<uint64_t, 64> Record; 3634 3635 auto WriteVFuncIdVec = [&](uint64_t Ty, 3636 ArrayRef<FunctionSummary::VFuncId> VFs) { 3637 if (VFs.empty()) 3638 return; 3639 Record.clear(); 3640 for (auto &VF : VFs) { 3641 Record.push_back(VF.GUID); 3642 Record.push_back(VF.Offset); 3643 } 3644 Stream.EmitRecord(Ty, Record); 3645 }; 3646 3647 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3648 FS->type_test_assume_vcalls()); 3649 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3650 FS->type_checked_load_vcalls()); 3651 3652 auto WriteConstVCallVec = [&](uint64_t Ty, 3653 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3654 for (auto &VC : VCs) { 3655 Record.clear(); 3656 Record.push_back(VC.VFunc.GUID); 3657 Record.push_back(VC.VFunc.Offset); 3658 llvm::append_range(Record, VC.Args); 3659 Stream.EmitRecord(Ty, Record); 3660 } 3661 }; 3662 3663 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3664 FS->type_test_assume_const_vcalls()); 3665 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3666 FS->type_checked_load_const_vcalls()); 3667 3668 auto WriteRange = [&](ConstantRange Range) { 3669 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3670 assert(Range.getLower().getNumWords() == 1); 3671 assert(Range.getUpper().getNumWords() == 1); 3672 emitSignedInt64(Record, *Range.getLower().getRawData()); 3673 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3674 }; 3675 3676 if (!FS->paramAccesses().empty()) { 3677 Record.clear(); 3678 for (auto &Arg : FS->paramAccesses()) { 3679 size_t UndoSize = Record.size(); 3680 Record.push_back(Arg.ParamNo); 3681 WriteRange(Arg.Use); 3682 Record.push_back(Arg.Calls.size()); 3683 for (auto &Call : Arg.Calls) { 3684 Record.push_back(Call.ParamNo); 3685 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3686 if (!ValueID) { 3687 // If ValueID is unknown we can't drop just this call, we must drop 3688 // entire parameter. 3689 Record.resize(UndoSize); 3690 break; 3691 } 3692 Record.push_back(*ValueID); 3693 WriteRange(Call.Offsets); 3694 } 3695 } 3696 if (!Record.empty()) 3697 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3698 } 3699 } 3700 3701 /// Collect type IDs from type tests used by function. 3702 static void 3703 getReferencedTypeIds(FunctionSummary *FS, 3704 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3705 if (!FS->type_tests().empty()) 3706 for (auto &TT : FS->type_tests()) 3707 ReferencedTypeIds.insert(TT); 3708 3709 auto GetReferencedTypesFromVFuncIdVec = 3710 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3711 for (auto &VF : VFs) 3712 ReferencedTypeIds.insert(VF.GUID); 3713 }; 3714 3715 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3716 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3717 3718 auto GetReferencedTypesFromConstVCallVec = 3719 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3720 for (auto &VC : VCs) 3721 ReferencedTypeIds.insert(VC.VFunc.GUID); 3722 }; 3723 3724 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3725 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3726 } 3727 3728 static void writeWholeProgramDevirtResolutionByArg( 3729 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3730 const WholeProgramDevirtResolution::ByArg &ByArg) { 3731 NameVals.push_back(args.size()); 3732 llvm::append_range(NameVals, args); 3733 3734 NameVals.push_back(ByArg.TheKind); 3735 NameVals.push_back(ByArg.Info); 3736 NameVals.push_back(ByArg.Byte); 3737 NameVals.push_back(ByArg.Bit); 3738 } 3739 3740 static void writeWholeProgramDevirtResolution( 3741 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3742 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3743 NameVals.push_back(Id); 3744 3745 NameVals.push_back(Wpd.TheKind); 3746 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3747 NameVals.push_back(Wpd.SingleImplName.size()); 3748 3749 NameVals.push_back(Wpd.ResByArg.size()); 3750 for (auto &A : Wpd.ResByArg) 3751 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3752 } 3753 3754 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3755 StringTableBuilder &StrtabBuilder, 3756 const std::string &Id, 3757 const TypeIdSummary &Summary) { 3758 NameVals.push_back(StrtabBuilder.add(Id)); 3759 NameVals.push_back(Id.size()); 3760 3761 NameVals.push_back(Summary.TTRes.TheKind); 3762 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3763 NameVals.push_back(Summary.TTRes.AlignLog2); 3764 NameVals.push_back(Summary.TTRes.SizeM1); 3765 NameVals.push_back(Summary.TTRes.BitMask); 3766 NameVals.push_back(Summary.TTRes.InlineBits); 3767 3768 for (auto &W : Summary.WPDRes) 3769 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3770 W.second); 3771 } 3772 3773 static void writeTypeIdCompatibleVtableSummaryRecord( 3774 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3775 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3776 ValueEnumerator &VE) { 3777 NameVals.push_back(StrtabBuilder.add(Id)); 3778 NameVals.push_back(Id.size()); 3779 3780 for (auto &P : Summary) { 3781 NameVals.push_back(P.AddressPointOffset); 3782 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3783 } 3784 } 3785 3786 // Helper to emit a single function summary record. 3787 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3788 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3789 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3790 const Function &F) { 3791 NameVals.push_back(ValueID); 3792 3793 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3794 3795 writeFunctionTypeMetadataRecords( 3796 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3797 return {VE.getValueID(VI.getValue())}; 3798 }); 3799 3800 auto SpecialRefCnts = FS->specialRefCounts(); 3801 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3802 NameVals.push_back(FS->instCount()); 3803 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3804 NameVals.push_back(FS->refs().size()); 3805 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3806 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3807 3808 for (auto &RI : FS->refs()) 3809 NameVals.push_back(VE.getValueID(RI.getValue())); 3810 3811 bool HasProfileData = 3812 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3813 for (auto &ECI : FS->calls()) { 3814 NameVals.push_back(getValueId(ECI.first)); 3815 if (HasProfileData) 3816 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3817 else if (WriteRelBFToSummary) 3818 NameVals.push_back(ECI.second.RelBlockFreq); 3819 } 3820 3821 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3822 unsigned Code = 3823 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3824 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3825 : bitc::FS_PERMODULE)); 3826 3827 // Emit the finished record. 3828 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3829 NameVals.clear(); 3830 } 3831 3832 // Collect the global value references in the given variable's initializer, 3833 // and emit them in a summary record. 3834 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3835 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3836 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3837 auto VI = Index->getValueInfo(V.getGUID()); 3838 if (!VI || VI.getSummaryList().empty()) { 3839 // Only declarations should not have a summary (a declaration might however 3840 // have a summary if the def was in module level asm). 3841 assert(V.isDeclaration()); 3842 return; 3843 } 3844 auto *Summary = VI.getSummaryList()[0].get(); 3845 NameVals.push_back(VE.getValueID(&V)); 3846 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3847 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3848 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3849 3850 auto VTableFuncs = VS->vTableFuncs(); 3851 if (!VTableFuncs.empty()) 3852 NameVals.push_back(VS->refs().size()); 3853 3854 unsigned SizeBeforeRefs = NameVals.size(); 3855 for (auto &RI : VS->refs()) 3856 NameVals.push_back(VE.getValueID(RI.getValue())); 3857 // Sort the refs for determinism output, the vector returned by FS->refs() has 3858 // been initialized from a DenseSet. 3859 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3860 3861 if (VTableFuncs.empty()) 3862 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3863 FSModRefsAbbrev); 3864 else { 3865 // VTableFuncs pairs should already be sorted by offset. 3866 for (auto &P : VTableFuncs) { 3867 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3868 NameVals.push_back(P.VTableOffset); 3869 } 3870 3871 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3872 FSModVTableRefsAbbrev); 3873 } 3874 NameVals.clear(); 3875 } 3876 3877 /// Emit the per-module summary section alongside the rest of 3878 /// the module's bitcode. 3879 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3880 // By default we compile with ThinLTO if the module has a summary, but the 3881 // client can request full LTO with a module flag. 3882 bool IsThinLTO = true; 3883 if (auto *MD = 3884 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3885 IsThinLTO = MD->getZExtValue(); 3886 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3887 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3888 4); 3889 3890 Stream.EmitRecord( 3891 bitc::FS_VERSION, 3892 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3893 3894 // Write the index flags. 3895 uint64_t Flags = 0; 3896 // Bits 1-3 are set only in the combined index, skip them. 3897 if (Index->enableSplitLTOUnit()) 3898 Flags |= 0x8; 3899 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3900 3901 if (Index->begin() == Index->end()) { 3902 Stream.ExitBlock(); 3903 return; 3904 } 3905 3906 for (const auto &GVI : valueIds()) { 3907 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3908 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3909 } 3910 3911 // Abbrev for FS_PERMODULE_PROFILE. 3912 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3913 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3915 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3921 // numrefs x valueid, n x (valueid, hotness) 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3924 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3925 3926 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3927 Abbv = std::make_shared<BitCodeAbbrev>(); 3928 if (WriteRelBFToSummary) 3929 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3930 else 3931 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3939 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3942 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3943 3944 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3945 Abbv = std::make_shared<BitCodeAbbrev>(); 3946 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3951 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3952 3953 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3954 Abbv = std::make_shared<BitCodeAbbrev>(); 3955 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3957 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3959 // numrefs x valueid, n x (valueid , offset) 3960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3962 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3963 3964 // Abbrev for FS_ALIAS. 3965 Abbv = std::make_shared<BitCodeAbbrev>(); 3966 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3969 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3970 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3971 3972 // Abbrev for FS_TYPE_ID_METADATA 3973 Abbv = std::make_shared<BitCodeAbbrev>(); 3974 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3977 // n x (valueid , offset) 3978 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3980 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3981 3982 SmallVector<uint64_t, 64> NameVals; 3983 // Iterate over the list of functions instead of the Index to 3984 // ensure the ordering is stable. 3985 for (const Function &F : M) { 3986 // Summary emission does not support anonymous functions, they have to 3987 // renamed using the anonymous function renaming pass. 3988 if (!F.hasName()) 3989 report_fatal_error("Unexpected anonymous function when writing summary"); 3990 3991 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3992 if (!VI || VI.getSummaryList().empty()) { 3993 // Only declarations should not have a summary (a declaration might 3994 // however have a summary if the def was in module level asm). 3995 assert(F.isDeclaration()); 3996 continue; 3997 } 3998 auto *Summary = VI.getSummaryList()[0].get(); 3999 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4000 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4001 } 4002 4003 // Capture references from GlobalVariable initializers, which are outside 4004 // of a function scope. 4005 for (const GlobalVariable &G : M.globals()) 4006 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4007 FSModVTableRefsAbbrev); 4008 4009 for (const GlobalAlias &A : M.aliases()) { 4010 auto *Aliasee = A.getBaseObject(); 4011 if (!Aliasee->hasName()) 4012 // Nameless function don't have an entry in the summary, skip it. 4013 continue; 4014 auto AliasId = VE.getValueID(&A); 4015 auto AliaseeId = VE.getValueID(Aliasee); 4016 NameVals.push_back(AliasId); 4017 auto *Summary = Index->getGlobalValueSummary(A); 4018 AliasSummary *AS = cast<AliasSummary>(Summary); 4019 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4020 NameVals.push_back(AliaseeId); 4021 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4022 NameVals.clear(); 4023 } 4024 4025 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4026 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4027 S.second, VE); 4028 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4029 TypeIdCompatibleVtableAbbrev); 4030 NameVals.clear(); 4031 } 4032 4033 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4034 ArrayRef<uint64_t>{Index->getBlockCount()}); 4035 4036 Stream.ExitBlock(); 4037 } 4038 4039 /// Emit the combined summary section into the combined index file. 4040 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4041 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4042 Stream.EmitRecord( 4043 bitc::FS_VERSION, 4044 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4045 4046 // Write the index flags. 4047 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4048 4049 for (const auto &GVI : valueIds()) { 4050 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4051 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4052 } 4053 4054 // Abbrev for FS_COMBINED. 4055 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4056 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4057 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4063 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4064 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4065 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4066 // numrefs x valueid, n x (valueid) 4067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4069 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4070 4071 // Abbrev for FS_COMBINED_PROFILE. 4072 Abbv = std::make_shared<BitCodeAbbrev>(); 4073 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4081 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4083 // numrefs x valueid, n x (valueid, hotness) 4084 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4085 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4086 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4087 4088 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4089 Abbv = std::make_shared<BitCodeAbbrev>(); 4090 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4096 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4097 4098 // Abbrev for FS_COMBINED_ALIAS. 4099 Abbv = std::make_shared<BitCodeAbbrev>(); 4100 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4104 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4105 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4106 4107 // The aliases are emitted as a post-pass, and will point to the value 4108 // id of the aliasee. Save them in a vector for post-processing. 4109 SmallVector<AliasSummary *, 64> Aliases; 4110 4111 // Save the value id for each summary for alias emission. 4112 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4113 4114 SmallVector<uint64_t, 64> NameVals; 4115 4116 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4117 // with the type ids referenced by this index file. 4118 std::set<GlobalValue::GUID> ReferencedTypeIds; 4119 4120 // For local linkage, we also emit the original name separately 4121 // immediately after the record. 4122 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4123 if (!GlobalValue::isLocalLinkage(S.linkage())) 4124 return; 4125 NameVals.push_back(S.getOriginalName()); 4126 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4127 NameVals.clear(); 4128 }; 4129 4130 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4131 forEachSummary([&](GVInfo I, bool IsAliasee) { 4132 GlobalValueSummary *S = I.second; 4133 assert(S); 4134 DefOrUseGUIDs.insert(I.first); 4135 for (const ValueInfo &VI : S->refs()) 4136 DefOrUseGUIDs.insert(VI.getGUID()); 4137 4138 auto ValueId = getValueId(I.first); 4139 assert(ValueId); 4140 SummaryToValueIdMap[S] = *ValueId; 4141 4142 // If this is invoked for an aliasee, we want to record the above 4143 // mapping, but then not emit a summary entry (if the aliasee is 4144 // to be imported, we will invoke this separately with IsAliasee=false). 4145 if (IsAliasee) 4146 return; 4147 4148 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4149 // Will process aliases as a post-pass because the reader wants all 4150 // global to be loaded first. 4151 Aliases.push_back(AS); 4152 return; 4153 } 4154 4155 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4156 NameVals.push_back(*ValueId); 4157 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4158 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4159 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4160 for (auto &RI : VS->refs()) { 4161 auto RefValueId = getValueId(RI.getGUID()); 4162 if (!RefValueId) 4163 continue; 4164 NameVals.push_back(*RefValueId); 4165 } 4166 4167 // Emit the finished record. 4168 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4169 FSModRefsAbbrev); 4170 NameVals.clear(); 4171 MaybeEmitOriginalName(*S); 4172 return; 4173 } 4174 4175 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4176 GlobalValue::GUID GUID = VI.getGUID(); 4177 Optional<unsigned> CallValueId = getValueId(GUID); 4178 if (CallValueId) 4179 return CallValueId; 4180 // For SamplePGO, the indirect call targets for local functions will 4181 // have its original name annotated in profile. We try to find the 4182 // corresponding PGOFuncName as the GUID. 4183 GUID = Index.getGUIDFromOriginalID(GUID); 4184 if (!GUID) 4185 return None; 4186 CallValueId = getValueId(GUID); 4187 if (!CallValueId) 4188 return None; 4189 // The mapping from OriginalId to GUID may return a GUID 4190 // that corresponds to a static variable. Filter it out here. 4191 // This can happen when 4192 // 1) There is a call to a library function which does not have 4193 // a CallValidId; 4194 // 2) There is a static variable with the OriginalGUID identical 4195 // to the GUID of the library function in 1); 4196 // When this happens, the logic for SamplePGO kicks in and 4197 // the static variable in 2) will be found, which needs to be 4198 // filtered out. 4199 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4200 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4201 return None; 4202 return CallValueId; 4203 }; 4204 4205 auto *FS = cast<FunctionSummary>(S); 4206 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4207 getReferencedTypeIds(FS, ReferencedTypeIds); 4208 4209 NameVals.push_back(*ValueId); 4210 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4211 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4212 NameVals.push_back(FS->instCount()); 4213 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4214 NameVals.push_back(FS->entryCount()); 4215 4216 // Fill in below 4217 NameVals.push_back(0); // numrefs 4218 NameVals.push_back(0); // rorefcnt 4219 NameVals.push_back(0); // worefcnt 4220 4221 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4222 for (auto &RI : FS->refs()) { 4223 auto RefValueId = getValueId(RI.getGUID()); 4224 if (!RefValueId) 4225 continue; 4226 NameVals.push_back(*RefValueId); 4227 if (RI.isReadOnly()) 4228 RORefCnt++; 4229 else if (RI.isWriteOnly()) 4230 WORefCnt++; 4231 Count++; 4232 } 4233 NameVals[6] = Count; 4234 NameVals[7] = RORefCnt; 4235 NameVals[8] = WORefCnt; 4236 4237 bool HasProfileData = false; 4238 for (auto &EI : FS->calls()) { 4239 HasProfileData |= 4240 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4241 if (HasProfileData) 4242 break; 4243 } 4244 4245 for (auto &EI : FS->calls()) { 4246 // If this GUID doesn't have a value id, it doesn't have a function 4247 // summary and we don't need to record any calls to it. 4248 Optional<unsigned> CallValueId = GetValueId(EI.first); 4249 if (!CallValueId) 4250 continue; 4251 NameVals.push_back(*CallValueId); 4252 if (HasProfileData) 4253 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4254 } 4255 4256 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4257 unsigned Code = 4258 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4259 4260 // Emit the finished record. 4261 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4262 NameVals.clear(); 4263 MaybeEmitOriginalName(*S); 4264 }); 4265 4266 for (auto *AS : Aliases) { 4267 auto AliasValueId = SummaryToValueIdMap[AS]; 4268 assert(AliasValueId); 4269 NameVals.push_back(AliasValueId); 4270 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4271 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4272 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4273 assert(AliaseeValueId); 4274 NameVals.push_back(AliaseeValueId); 4275 4276 // Emit the finished record. 4277 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4278 NameVals.clear(); 4279 MaybeEmitOriginalName(*AS); 4280 4281 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4282 getReferencedTypeIds(FS, ReferencedTypeIds); 4283 } 4284 4285 if (!Index.cfiFunctionDefs().empty()) { 4286 for (auto &S : Index.cfiFunctionDefs()) { 4287 if (DefOrUseGUIDs.count( 4288 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4289 NameVals.push_back(StrtabBuilder.add(S)); 4290 NameVals.push_back(S.size()); 4291 } 4292 } 4293 if (!NameVals.empty()) { 4294 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4295 NameVals.clear(); 4296 } 4297 } 4298 4299 if (!Index.cfiFunctionDecls().empty()) { 4300 for (auto &S : Index.cfiFunctionDecls()) { 4301 if (DefOrUseGUIDs.count( 4302 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4303 NameVals.push_back(StrtabBuilder.add(S)); 4304 NameVals.push_back(S.size()); 4305 } 4306 } 4307 if (!NameVals.empty()) { 4308 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4309 NameVals.clear(); 4310 } 4311 } 4312 4313 // Walk the GUIDs that were referenced, and write the 4314 // corresponding type id records. 4315 for (auto &T : ReferencedTypeIds) { 4316 auto TidIter = Index.typeIds().equal_range(T); 4317 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4318 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4319 It->second.second); 4320 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4321 NameVals.clear(); 4322 } 4323 } 4324 4325 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4326 ArrayRef<uint64_t>{Index.getBlockCount()}); 4327 4328 Stream.ExitBlock(); 4329 } 4330 4331 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4332 /// current llvm version, and a record for the epoch number. 4333 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4334 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4335 4336 // Write the "user readable" string identifying the bitcode producer 4337 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4338 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4341 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4342 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4343 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4344 4345 // Write the epoch version 4346 Abbv = std::make_shared<BitCodeAbbrev>(); 4347 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4349 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4350 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4351 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4352 Stream.ExitBlock(); 4353 } 4354 4355 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4356 // Emit the module's hash. 4357 // MODULE_CODE_HASH: [5*i32] 4358 if (GenerateHash) { 4359 uint32_t Vals[5]; 4360 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4361 Buffer.size() - BlockStartPos)); 4362 StringRef Hash = Hasher.result(); 4363 for (int Pos = 0; Pos < 20; Pos += 4) { 4364 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4365 } 4366 4367 // Emit the finished record. 4368 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4369 4370 if (ModHash) 4371 // Save the written hash value. 4372 llvm::copy(Vals, std::begin(*ModHash)); 4373 } 4374 } 4375 4376 void ModuleBitcodeWriter::write() { 4377 writeIdentificationBlock(Stream); 4378 4379 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4380 size_t BlockStartPos = Buffer.size(); 4381 4382 writeModuleVersion(); 4383 4384 // Emit blockinfo, which defines the standard abbreviations etc. 4385 writeBlockInfo(); 4386 4387 // Emit information describing all of the types in the module. 4388 writeTypeTable(); 4389 4390 // Emit information about attribute groups. 4391 writeAttributeGroupTable(); 4392 4393 // Emit information about parameter attributes. 4394 writeAttributeTable(); 4395 4396 writeComdats(); 4397 4398 // Emit top-level description of module, including target triple, inline asm, 4399 // descriptors for global variables, and function prototype info. 4400 writeModuleInfo(); 4401 4402 // Emit constants. 4403 writeModuleConstants(); 4404 4405 // Emit metadata kind names. 4406 writeModuleMetadataKinds(); 4407 4408 // Emit metadata. 4409 writeModuleMetadata(); 4410 4411 // Emit module-level use-lists. 4412 if (VE.shouldPreserveUseListOrder()) 4413 writeUseListBlock(nullptr); 4414 4415 writeOperandBundleTags(); 4416 writeSyncScopeNames(); 4417 4418 // Emit function bodies. 4419 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4420 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4421 if (!F->isDeclaration()) 4422 writeFunction(*F, FunctionToBitcodeIndex); 4423 4424 // Need to write after the above call to WriteFunction which populates 4425 // the summary information in the index. 4426 if (Index) 4427 writePerModuleGlobalValueSummary(); 4428 4429 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4430 4431 writeModuleHash(BlockStartPos); 4432 4433 Stream.ExitBlock(); 4434 } 4435 4436 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4437 uint32_t &Position) { 4438 support::endian::write32le(&Buffer[Position], Value); 4439 Position += 4; 4440 } 4441 4442 /// If generating a bc file on darwin, we have to emit a 4443 /// header and trailer to make it compatible with the system archiver. To do 4444 /// this we emit the following header, and then emit a trailer that pads the 4445 /// file out to be a multiple of 16 bytes. 4446 /// 4447 /// struct bc_header { 4448 /// uint32_t Magic; // 0x0B17C0DE 4449 /// uint32_t Version; // Version, currently always 0. 4450 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4451 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4452 /// uint32_t CPUType; // CPU specifier. 4453 /// ... potentially more later ... 4454 /// }; 4455 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4456 const Triple &TT) { 4457 unsigned CPUType = ~0U; 4458 4459 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4460 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4461 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4462 // specific constants here because they are implicitly part of the Darwin ABI. 4463 enum { 4464 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4465 DARWIN_CPU_TYPE_X86 = 7, 4466 DARWIN_CPU_TYPE_ARM = 12, 4467 DARWIN_CPU_TYPE_POWERPC = 18 4468 }; 4469 4470 Triple::ArchType Arch = TT.getArch(); 4471 if (Arch == Triple::x86_64) 4472 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4473 else if (Arch == Triple::x86) 4474 CPUType = DARWIN_CPU_TYPE_X86; 4475 else if (Arch == Triple::ppc) 4476 CPUType = DARWIN_CPU_TYPE_POWERPC; 4477 else if (Arch == Triple::ppc64) 4478 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4479 else if (Arch == Triple::arm || Arch == Triple::thumb) 4480 CPUType = DARWIN_CPU_TYPE_ARM; 4481 4482 // Traditional Bitcode starts after header. 4483 assert(Buffer.size() >= BWH_HeaderSize && 4484 "Expected header size to be reserved"); 4485 unsigned BCOffset = BWH_HeaderSize; 4486 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4487 4488 // Write the magic and version. 4489 unsigned Position = 0; 4490 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4491 writeInt32ToBuffer(0, Buffer, Position); // Version. 4492 writeInt32ToBuffer(BCOffset, Buffer, Position); 4493 writeInt32ToBuffer(BCSize, Buffer, Position); 4494 writeInt32ToBuffer(CPUType, Buffer, Position); 4495 4496 // If the file is not a multiple of 16 bytes, insert dummy padding. 4497 while (Buffer.size() & 15) 4498 Buffer.push_back(0); 4499 } 4500 4501 /// Helper to write the header common to all bitcode files. 4502 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4503 // Emit the file header. 4504 Stream.Emit((unsigned)'B', 8); 4505 Stream.Emit((unsigned)'C', 8); 4506 Stream.Emit(0x0, 4); 4507 Stream.Emit(0xC, 4); 4508 Stream.Emit(0xE, 4); 4509 Stream.Emit(0xD, 4); 4510 } 4511 4512 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4513 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4514 writeBitcodeHeader(*Stream); 4515 } 4516 4517 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4518 4519 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4520 Stream->EnterSubblock(Block, 3); 4521 4522 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4523 Abbv->Add(BitCodeAbbrevOp(Record)); 4524 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4525 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4526 4527 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4528 4529 Stream->ExitBlock(); 4530 } 4531 4532 void BitcodeWriter::writeSymtab() { 4533 assert(!WroteStrtab && !WroteSymtab); 4534 4535 // If any module has module-level inline asm, we will require a registered asm 4536 // parser for the target so that we can create an accurate symbol table for 4537 // the module. 4538 for (Module *M : Mods) { 4539 if (M->getModuleInlineAsm().empty()) 4540 continue; 4541 4542 std::string Err; 4543 const Triple TT(M->getTargetTriple()); 4544 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4545 if (!T || !T->hasMCAsmParser()) 4546 return; 4547 } 4548 4549 WroteSymtab = true; 4550 SmallVector<char, 0> Symtab; 4551 // The irsymtab::build function may be unable to create a symbol table if the 4552 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4553 // table is not required for correctness, but we still want to be able to 4554 // write malformed modules to bitcode files, so swallow the error. 4555 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4556 consumeError(std::move(E)); 4557 return; 4558 } 4559 4560 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4561 {Symtab.data(), Symtab.size()}); 4562 } 4563 4564 void BitcodeWriter::writeStrtab() { 4565 assert(!WroteStrtab); 4566 4567 std::vector<char> Strtab; 4568 StrtabBuilder.finalizeInOrder(); 4569 Strtab.resize(StrtabBuilder.getSize()); 4570 StrtabBuilder.write((uint8_t *)Strtab.data()); 4571 4572 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4573 {Strtab.data(), Strtab.size()}); 4574 4575 WroteStrtab = true; 4576 } 4577 4578 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4579 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4580 WroteStrtab = true; 4581 } 4582 4583 void BitcodeWriter::writeModule(const Module &M, 4584 bool ShouldPreserveUseListOrder, 4585 const ModuleSummaryIndex *Index, 4586 bool GenerateHash, ModuleHash *ModHash) { 4587 assert(!WroteStrtab); 4588 4589 // The Mods vector is used by irsymtab::build, which requires non-const 4590 // Modules in case it needs to materialize metadata. But the bitcode writer 4591 // requires that the module is materialized, so we can cast to non-const here, 4592 // after checking that it is in fact materialized. 4593 assert(M.isMaterialized()); 4594 Mods.push_back(const_cast<Module *>(&M)); 4595 4596 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4597 ShouldPreserveUseListOrder, Index, 4598 GenerateHash, ModHash); 4599 ModuleWriter.write(); 4600 } 4601 4602 void BitcodeWriter::writeIndex( 4603 const ModuleSummaryIndex *Index, 4604 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4605 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4606 ModuleToSummariesForIndex); 4607 IndexWriter.write(); 4608 } 4609 4610 /// Write the specified module to the specified output stream. 4611 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4612 bool ShouldPreserveUseListOrder, 4613 const ModuleSummaryIndex *Index, 4614 bool GenerateHash, ModuleHash *ModHash) { 4615 SmallVector<char, 0> Buffer; 4616 Buffer.reserve(256*1024); 4617 4618 // If this is darwin or another generic macho target, reserve space for the 4619 // header. 4620 Triple TT(M.getTargetTriple()); 4621 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4622 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4623 4624 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4625 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4626 ModHash); 4627 Writer.writeSymtab(); 4628 Writer.writeStrtab(); 4629 4630 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4631 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4632 4633 // Write the generated bitstream to "Out". 4634 if (!Buffer.empty()) 4635 Out.write((char *)&Buffer.front(), Buffer.size()); 4636 } 4637 4638 void IndexBitcodeWriter::write() { 4639 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4640 4641 writeModuleVersion(); 4642 4643 // Write the module paths in the combined index. 4644 writeModStrings(); 4645 4646 // Write the summary combined index records. 4647 writeCombinedGlobalValueSummary(); 4648 4649 Stream.ExitBlock(); 4650 } 4651 4652 // Write the specified module summary index to the given raw output stream, 4653 // where it will be written in a new bitcode block. This is used when 4654 // writing the combined index file for ThinLTO. When writing a subset of the 4655 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4656 void llvm::WriteIndexToFile( 4657 const ModuleSummaryIndex &Index, raw_ostream &Out, 4658 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4659 SmallVector<char, 0> Buffer; 4660 Buffer.reserve(256 * 1024); 4661 4662 BitcodeWriter Writer(Buffer); 4663 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4664 Writer.writeStrtab(); 4665 4666 Out.write((char *)&Buffer.front(), Buffer.size()); 4667 } 4668 4669 namespace { 4670 4671 /// Class to manage the bitcode writing for a thin link bitcode file. 4672 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4673 /// ModHash is for use in ThinLTO incremental build, generated while writing 4674 /// the module bitcode file. 4675 const ModuleHash *ModHash; 4676 4677 public: 4678 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4679 BitstreamWriter &Stream, 4680 const ModuleSummaryIndex &Index, 4681 const ModuleHash &ModHash) 4682 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4683 /*ShouldPreserveUseListOrder=*/false, &Index), 4684 ModHash(&ModHash) {} 4685 4686 void write(); 4687 4688 private: 4689 void writeSimplifiedModuleInfo(); 4690 }; 4691 4692 } // end anonymous namespace 4693 4694 // This function writes a simpilified module info for thin link bitcode file. 4695 // It only contains the source file name along with the name(the offset and 4696 // size in strtab) and linkage for global values. For the global value info 4697 // entry, in order to keep linkage at offset 5, there are three zeros used 4698 // as padding. 4699 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4700 SmallVector<unsigned, 64> Vals; 4701 // Emit the module's source file name. 4702 { 4703 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4704 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4705 if (Bits == SE_Char6) 4706 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4707 else if (Bits == SE_Fixed7) 4708 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4709 4710 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4711 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4712 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4714 Abbv->Add(AbbrevOpToUse); 4715 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4716 4717 for (const auto P : M.getSourceFileName()) 4718 Vals.push_back((unsigned char)P); 4719 4720 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4721 Vals.clear(); 4722 } 4723 4724 // Emit the global variable information. 4725 for (const GlobalVariable &GV : M.globals()) { 4726 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4727 Vals.push_back(StrtabBuilder.add(GV.getName())); 4728 Vals.push_back(GV.getName().size()); 4729 Vals.push_back(0); 4730 Vals.push_back(0); 4731 Vals.push_back(0); 4732 Vals.push_back(getEncodedLinkage(GV)); 4733 4734 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4735 Vals.clear(); 4736 } 4737 4738 // Emit the function proto information. 4739 for (const Function &F : M) { 4740 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4741 Vals.push_back(StrtabBuilder.add(F.getName())); 4742 Vals.push_back(F.getName().size()); 4743 Vals.push_back(0); 4744 Vals.push_back(0); 4745 Vals.push_back(0); 4746 Vals.push_back(getEncodedLinkage(F)); 4747 4748 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4749 Vals.clear(); 4750 } 4751 4752 // Emit the alias information. 4753 for (const GlobalAlias &A : M.aliases()) { 4754 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4755 Vals.push_back(StrtabBuilder.add(A.getName())); 4756 Vals.push_back(A.getName().size()); 4757 Vals.push_back(0); 4758 Vals.push_back(0); 4759 Vals.push_back(0); 4760 Vals.push_back(getEncodedLinkage(A)); 4761 4762 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4763 Vals.clear(); 4764 } 4765 4766 // Emit the ifunc information. 4767 for (const GlobalIFunc &I : M.ifuncs()) { 4768 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4769 Vals.push_back(StrtabBuilder.add(I.getName())); 4770 Vals.push_back(I.getName().size()); 4771 Vals.push_back(0); 4772 Vals.push_back(0); 4773 Vals.push_back(0); 4774 Vals.push_back(getEncodedLinkage(I)); 4775 4776 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4777 Vals.clear(); 4778 } 4779 } 4780 4781 void ThinLinkBitcodeWriter::write() { 4782 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4783 4784 writeModuleVersion(); 4785 4786 writeSimplifiedModuleInfo(); 4787 4788 writePerModuleGlobalValueSummary(); 4789 4790 // Write module hash. 4791 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4792 4793 Stream.ExitBlock(); 4794 } 4795 4796 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4797 const ModuleSummaryIndex &Index, 4798 const ModuleHash &ModHash) { 4799 assert(!WroteStrtab); 4800 4801 // The Mods vector is used by irsymtab::build, which requires non-const 4802 // Modules in case it needs to materialize metadata. But the bitcode writer 4803 // requires that the module is materialized, so we can cast to non-const here, 4804 // after checking that it is in fact materialized. 4805 assert(M.isMaterialized()); 4806 Mods.push_back(const_cast<Module *>(&M)); 4807 4808 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4809 ModHash); 4810 ThinLinkWriter.write(); 4811 } 4812 4813 // Write the specified thin link bitcode file to the given raw output stream, 4814 // where it will be written in a new bitcode block. This is used when 4815 // writing the per-module index file for ThinLTO. 4816 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4817 const ModuleSummaryIndex &Index, 4818 const ModuleHash &ModHash) { 4819 SmallVector<char, 0> Buffer; 4820 Buffer.reserve(256 * 1024); 4821 4822 BitcodeWriter Writer(Buffer); 4823 Writer.writeThinLinkBitcode(M, Index, ModHash); 4824 Writer.writeSymtab(); 4825 Writer.writeStrtab(); 4826 4827 Out.write((char *)&Buffer.front(), Buffer.size()); 4828 } 4829 4830 static const char *getSectionNameForBitcode(const Triple &T) { 4831 switch (T.getObjectFormat()) { 4832 case Triple::MachO: 4833 return "__LLVM,__bitcode"; 4834 case Triple::COFF: 4835 case Triple::ELF: 4836 case Triple::Wasm: 4837 case Triple::UnknownObjectFormat: 4838 return ".llvmbc"; 4839 case Triple::GOFF: 4840 llvm_unreachable("GOFF is not yet implemented"); 4841 break; 4842 case Triple::XCOFF: 4843 llvm_unreachable("XCOFF is not yet implemented"); 4844 break; 4845 } 4846 llvm_unreachable("Unimplemented ObjectFormatType"); 4847 } 4848 4849 static const char *getSectionNameForCommandline(const Triple &T) { 4850 switch (T.getObjectFormat()) { 4851 case Triple::MachO: 4852 return "__LLVM,__cmdline"; 4853 case Triple::COFF: 4854 case Triple::ELF: 4855 case Triple::Wasm: 4856 case Triple::UnknownObjectFormat: 4857 return ".llvmcmd"; 4858 case Triple::GOFF: 4859 llvm_unreachable("GOFF is not yet implemented"); 4860 break; 4861 case Triple::XCOFF: 4862 llvm_unreachable("XCOFF is not yet implemented"); 4863 break; 4864 } 4865 llvm_unreachable("Unimplemented ObjectFormatType"); 4866 } 4867 4868 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4869 bool EmbedBitcode, bool EmbedCmdline, 4870 const std::vector<uint8_t> &CmdArgs) { 4871 // Save llvm.compiler.used and remove it. 4872 SmallVector<Constant *, 2> UsedArray; 4873 SmallVector<GlobalValue *, 4> UsedGlobals; 4874 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4875 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4876 for (auto *GV : UsedGlobals) { 4877 if (GV->getName() != "llvm.embedded.module" && 4878 GV->getName() != "llvm.cmdline") 4879 UsedArray.push_back( 4880 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4881 } 4882 if (Used) 4883 Used->eraseFromParent(); 4884 4885 // Embed the bitcode for the llvm module. 4886 std::string Data; 4887 ArrayRef<uint8_t> ModuleData; 4888 Triple T(M.getTargetTriple()); 4889 4890 if (EmbedBitcode) { 4891 if (Buf.getBufferSize() == 0 || 4892 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4893 (const unsigned char *)Buf.getBufferEnd())) { 4894 // If the input is LLVM Assembly, bitcode is produced by serializing 4895 // the module. Use-lists order need to be preserved in this case. 4896 llvm::raw_string_ostream OS(Data); 4897 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4898 ModuleData = 4899 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4900 } else 4901 // If the input is LLVM bitcode, write the input byte stream directly. 4902 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4903 Buf.getBufferSize()); 4904 } 4905 llvm::Constant *ModuleConstant = 4906 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4907 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4908 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4909 ModuleConstant); 4910 GV->setSection(getSectionNameForBitcode(T)); 4911 // Set alignment to 1 to prevent padding between two contributions from input 4912 // sections after linking. 4913 GV->setAlignment(Align(1)); 4914 UsedArray.push_back( 4915 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4916 if (llvm::GlobalVariable *Old = 4917 M.getGlobalVariable("llvm.embedded.module", true)) { 4918 assert(Old->hasOneUse() && 4919 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4920 GV->takeName(Old); 4921 Old->eraseFromParent(); 4922 } else { 4923 GV->setName("llvm.embedded.module"); 4924 } 4925 4926 // Skip if only bitcode needs to be embedded. 4927 if (EmbedCmdline) { 4928 // Embed command-line options. 4929 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4930 CmdArgs.size()); 4931 llvm::Constant *CmdConstant = 4932 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4933 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4934 llvm::GlobalValue::PrivateLinkage, 4935 CmdConstant); 4936 GV->setSection(getSectionNameForCommandline(T)); 4937 GV->setAlignment(Align(1)); 4938 UsedArray.push_back( 4939 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4940 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4941 assert(Old->hasOneUse() && 4942 "llvm.cmdline can only be used once in llvm.compiler.used"); 4943 GV->takeName(Old); 4944 Old->eraseFromParent(); 4945 } else { 4946 GV->setName("llvm.cmdline"); 4947 } 4948 } 4949 4950 if (UsedArray.empty()) 4951 return; 4952 4953 // Recreate llvm.compiler.used. 4954 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4955 auto *NewUsed = new GlobalVariable( 4956 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4957 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4958 NewUsed->setSection("llvm.metadata"); 4959 } 4960