1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringMap.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/Bitcode/BitcodeCommon.h" 30 #include "llvm/Bitcode/BitcodeReader.h" 31 #include "llvm/Bitcode/LLVMBitCodes.h" 32 #include "llvm/Bitstream/BitCodes.h" 33 #include "llvm/Bitstream/BitstreamWriter.h" 34 #include "llvm/Config/llvm-config.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/Comdat.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DebugInfoMetadata.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalAlias.h" 45 #include "llvm/IR/GlobalIFunc.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/UseListOrder.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/MC/StringTableBuilder.h" 63 #include "llvm/MC/TargetRegistry.h" 64 #include "llvm/Object/IRSymtab.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Endian.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/SHA1.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 101 namespace { 102 103 /// These are manifest constants used by the bitcode writer. They do not need to 104 /// be kept in sync with the reader, but need to be consistent within this file. 105 enum { 106 // VALUE_SYMTAB_BLOCK abbrev id's. 107 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 VST_ENTRY_7_ABBREV, 109 VST_ENTRY_6_ABBREV, 110 VST_BBENTRY_6_ABBREV, 111 112 // CONSTANTS_BLOCK abbrev id's. 113 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 CONSTANTS_INTEGER_ABBREV, 115 CONSTANTS_CE_CAST_Abbrev, 116 CONSTANTS_NULL_Abbrev, 117 118 // FUNCTION_BLOCK abbrev id's. 119 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 120 FUNCTION_INST_UNOP_ABBREV, 121 FUNCTION_INST_UNOP_FLAGS_ABBREV, 122 FUNCTION_INST_BINOP_ABBREV, 123 FUNCTION_INST_BINOP_FLAGS_ABBREV, 124 FUNCTION_INST_CAST_ABBREV, 125 FUNCTION_INST_RET_VOID_ABBREV, 126 FUNCTION_INST_RET_VAL_ABBREV, 127 FUNCTION_INST_UNREACHABLE_ABBREV, 128 FUNCTION_INST_GEP_ABBREV, 129 }; 130 131 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 132 /// file type. 133 class BitcodeWriterBase { 134 protected: 135 /// The stream created and owned by the client. 136 BitstreamWriter &Stream; 137 138 StringTableBuilder &StrtabBuilder; 139 140 public: 141 /// Constructs a BitcodeWriterBase object that writes to the provided 142 /// \p Stream. 143 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 144 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 145 146 protected: 147 void writeModuleVersion(); 148 }; 149 150 void BitcodeWriterBase::writeModuleVersion() { 151 // VERSION: [version#] 152 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 153 } 154 155 /// Base class to manage the module bitcode writing, currently subclassed for 156 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 157 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 158 protected: 159 /// The Module to write to bitcode. 160 const Module &M; 161 162 /// Enumerates ids for all values in the module. 163 ValueEnumerator VE; 164 165 /// Optional per-module index to write for ThinLTO. 166 const ModuleSummaryIndex *Index; 167 168 /// Map that holds the correspondence between GUIDs in the summary index, 169 /// that came from indirect call profiles, and a value id generated by this 170 /// class to use in the VST and summary block records. 171 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 172 173 /// Tracks the last value id recorded in the GUIDToValueMap. 174 unsigned GlobalValueId; 175 176 /// Saves the offset of the VSTOffset record that must eventually be 177 /// backpatched with the offset of the actual VST. 178 uint64_t VSTOffsetPlaceholder = 0; 179 180 public: 181 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 182 /// writing to the provided \p Buffer. 183 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 184 BitstreamWriter &Stream, 185 bool ShouldPreserveUseListOrder, 186 const ModuleSummaryIndex *Index) 187 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 188 VE(M, ShouldPreserveUseListOrder), Index(Index) { 189 // Assign ValueIds to any callee values in the index that came from 190 // indirect call profiles and were recorded as a GUID not a Value* 191 // (which would have been assigned an ID by the ValueEnumerator). 192 // The starting ValueId is just after the number of values in the 193 // ValueEnumerator, so that they can be emitted in the VST. 194 GlobalValueId = VE.getValues().size(); 195 if (!Index) 196 return; 197 for (const auto &GUIDSummaryLists : *Index) 198 // Examine all summaries for this GUID. 199 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 200 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 201 // For each call in the function summary, see if the call 202 // is to a GUID (which means it is for an indirect call, 203 // otherwise we would have a Value for it). If so, synthesize 204 // a value id. 205 for (auto &CallEdge : FS->calls()) 206 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 207 assignValueId(CallEdge.first.getGUID()); 208 } 209 210 protected: 211 void writePerModuleGlobalValueSummary(); 212 213 private: 214 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 215 GlobalValueSummary *Summary, 216 unsigned ValueID, 217 unsigned FSCallsAbbrev, 218 unsigned FSCallsProfileAbbrev, 219 const Function &F); 220 void writeModuleLevelReferences(const GlobalVariable &V, 221 SmallVector<uint64_t, 64> &NameVals, 222 unsigned FSModRefsAbbrev, 223 unsigned FSModVTableRefsAbbrev); 224 225 void assignValueId(GlobalValue::GUID ValGUID) { 226 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 227 } 228 229 unsigned getValueId(GlobalValue::GUID ValGUID) { 230 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 231 // Expect that any GUID value had a value Id assigned by an 232 // earlier call to assignValueId. 233 assert(VMI != GUIDToValueIdMap.end() && 234 "GUID does not have assigned value Id"); 235 return VMI->second; 236 } 237 238 // Helper to get the valueId for the type of value recorded in VI. 239 unsigned getValueId(ValueInfo VI) { 240 if (!VI.haveGVs() || !VI.getValue()) 241 return getValueId(VI.getGUID()); 242 return VE.getValueID(VI.getValue()); 243 } 244 245 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 246 }; 247 248 /// Class to manage the bitcode writing for a module. 249 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 250 /// Pointer to the buffer allocated by caller for bitcode writing. 251 const SmallVectorImpl<char> &Buffer; 252 253 /// True if a module hash record should be written. 254 bool GenerateHash; 255 256 /// If non-null, when GenerateHash is true, the resulting hash is written 257 /// into ModHash. 258 ModuleHash *ModHash; 259 260 SHA1 Hasher; 261 262 /// The start bit of the identification block. 263 uint64_t BitcodeStartBit; 264 265 public: 266 /// Constructs a ModuleBitcodeWriter object for the given Module, 267 /// writing to the provided \p Buffer. 268 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 269 StringTableBuilder &StrtabBuilder, 270 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 271 const ModuleSummaryIndex *Index, bool GenerateHash, 272 ModuleHash *ModHash = nullptr) 273 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 274 ShouldPreserveUseListOrder, Index), 275 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 276 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 277 278 /// Emit the current module to the bitstream. 279 void write(); 280 281 private: 282 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 283 284 size_t addToStrtab(StringRef Str); 285 286 void writeAttributeGroupTable(); 287 void writeAttributeTable(); 288 void writeTypeTable(); 289 void writeComdats(); 290 void writeValueSymbolTableForwardDecl(); 291 void writeModuleInfo(); 292 void writeValueAsMetadata(const ValueAsMetadata *MD, 293 SmallVectorImpl<uint64_t> &Record); 294 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 unsigned createDILocationAbbrev(); 297 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 298 unsigned &Abbrev); 299 unsigned createGenericDINodeAbbrev(); 300 void writeGenericDINode(const GenericDINode *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 302 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIGenericSubrange(const DIGenericSubrange *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIEnumerator(const DIEnumerator *N, 308 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 309 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIStringType(const DIStringType *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDIDerivedType(const DIDerivedType *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDICompositeType(const DICompositeType *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDISubroutineType(const DISubroutineType *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICompileUnit(const DICompileUnit *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDISubprogram(const DISubprogram *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDILexicalBlock(const DILexicalBlock *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 329 SmallVectorImpl<uint64_t> &Record, 330 unsigned Abbrev); 331 void writeDICommonBlock(const DICommonBlock *N, 332 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 333 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 336 unsigned Abbrev); 337 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 338 unsigned Abbrev); 339 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 342 unsigned Abbrev); 343 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDIGlobalVariable(const DIGlobalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDILocalVariable(const DILocalVariable *N, 355 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 356 void writeDILabel(const DILabel *N, 357 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 358 void writeDIExpression(const DIExpression *N, 359 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 360 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDIObjCProperty(const DIObjCProperty *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDIImportedEntity(const DIImportedEntity *N, 366 SmallVectorImpl<uint64_t> &Record, 367 unsigned Abbrev); 368 unsigned createNamedMetadataAbbrev(); 369 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 370 unsigned createMetadataStringsAbbrev(); 371 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 372 SmallVectorImpl<uint64_t> &Record); 373 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 374 SmallVectorImpl<uint64_t> &Record, 375 std::vector<unsigned> *MDAbbrevs = nullptr, 376 std::vector<uint64_t> *IndexPos = nullptr); 377 void writeModuleMetadata(); 378 void writeFunctionMetadata(const Function &F); 379 void writeFunctionMetadataAttachment(const Function &F); 380 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 381 const GlobalObject &GO); 382 void writeModuleMetadataKinds(); 383 void writeOperandBundleTags(); 384 void writeSyncScopeNames(); 385 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 386 void writeModuleConstants(); 387 bool pushValueAndType(const Value *V, unsigned InstID, 388 SmallVectorImpl<unsigned> &Vals); 389 void writeOperandBundles(const CallBase &CB, unsigned InstID); 390 void pushValue(const Value *V, unsigned InstID, 391 SmallVectorImpl<unsigned> &Vals); 392 void pushValueSigned(const Value *V, unsigned InstID, 393 SmallVectorImpl<uint64_t> &Vals); 394 void writeInstruction(const Instruction &I, unsigned InstID, 395 SmallVectorImpl<unsigned> &Vals); 396 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 397 void writeGlobalValueSymbolTable( 398 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 399 void writeUseList(UseListOrder &&Order); 400 void writeUseListBlock(const Function *F); 401 void 402 writeFunction(const Function &F, 403 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 404 void writeBlockInfo(); 405 void writeModuleHash(size_t BlockStartPos); 406 407 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 408 return unsigned(SSID); 409 } 410 411 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 412 }; 413 414 /// Class to manage the bitcode writing for a combined index. 415 class IndexBitcodeWriter : public BitcodeWriterBase { 416 /// The combined index to write to bitcode. 417 const ModuleSummaryIndex &Index; 418 419 /// When writing a subset of the index for distributed backends, client 420 /// provides a map of modules to the corresponding GUIDs/summaries to write. 421 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 422 423 /// Map that holds the correspondence between the GUID used in the combined 424 /// index and a value id generated by this class to use in references. 425 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 426 427 /// Tracks the last value id recorded in the GUIDToValueMap. 428 unsigned GlobalValueId = 0; 429 430 public: 431 /// Constructs a IndexBitcodeWriter object for the given combined index, 432 /// writing to the provided \p Buffer. When writing a subset of the index 433 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 434 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 435 const ModuleSummaryIndex &Index, 436 const std::map<std::string, GVSummaryMapTy> 437 *ModuleToSummariesForIndex = nullptr) 438 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 439 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 440 // Assign unique value ids to all summaries to be written, for use 441 // in writing out the call graph edges. Save the mapping from GUID 442 // to the new global value id to use when writing those edges, which 443 // are currently saved in the index in terms of GUID. 444 forEachSummary([&](GVInfo I, bool) { 445 GUIDToValueIdMap[I.first] = ++GlobalValueId; 446 }); 447 } 448 449 /// The below iterator returns the GUID and associated summary. 450 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 451 452 /// Calls the callback for each value GUID and summary to be written to 453 /// bitcode. This hides the details of whether they are being pulled from the 454 /// entire index or just those in a provided ModuleToSummariesForIndex map. 455 template<typename Functor> 456 void forEachSummary(Functor Callback) { 457 if (ModuleToSummariesForIndex) { 458 for (auto &M : *ModuleToSummariesForIndex) 459 for (auto &Summary : M.second) { 460 Callback(Summary, false); 461 // Ensure aliasee is handled, e.g. for assigning a valueId, 462 // even if we are not importing the aliasee directly (the 463 // imported alias will contain a copy of aliasee). 464 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 465 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 466 } 467 } else { 468 for (auto &Summaries : Index) 469 for (auto &Summary : Summaries.second.SummaryList) 470 Callback({Summaries.first, Summary.get()}, false); 471 } 472 } 473 474 /// Calls the callback for each entry in the modulePaths StringMap that 475 /// should be written to the module path string table. This hides the details 476 /// of whether they are being pulled from the entire index or just those in a 477 /// provided ModuleToSummariesForIndex map. 478 template <typename Functor> void forEachModule(Functor Callback) { 479 if (ModuleToSummariesForIndex) { 480 for (const auto &M : *ModuleToSummariesForIndex) { 481 const auto &MPI = Index.modulePaths().find(M.first); 482 if (MPI == Index.modulePaths().end()) { 483 // This should only happen if the bitcode file was empty, in which 484 // case we shouldn't be importing (the ModuleToSummariesForIndex 485 // would only include the module we are writing and index for). 486 assert(ModuleToSummariesForIndex->size() == 1); 487 continue; 488 } 489 Callback(*MPI); 490 } 491 } else { 492 for (const auto &MPSE : Index.modulePaths()) 493 Callback(MPSE); 494 } 495 } 496 497 /// Main entry point for writing a combined index to bitcode. 498 void write(); 499 500 private: 501 void writeModStrings(); 502 void writeCombinedGlobalValueSummary(); 503 504 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 505 auto VMI = GUIDToValueIdMap.find(ValGUID); 506 if (VMI == GUIDToValueIdMap.end()) 507 return None; 508 return VMI->second; 509 } 510 511 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 512 }; 513 514 } // end anonymous namespace 515 516 static unsigned getEncodedCastOpcode(unsigned Opcode) { 517 switch (Opcode) { 518 default: llvm_unreachable("Unknown cast instruction!"); 519 case Instruction::Trunc : return bitc::CAST_TRUNC; 520 case Instruction::ZExt : return bitc::CAST_ZEXT; 521 case Instruction::SExt : return bitc::CAST_SEXT; 522 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 523 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 524 case Instruction::UIToFP : return bitc::CAST_UITOFP; 525 case Instruction::SIToFP : return bitc::CAST_SITOFP; 526 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 527 case Instruction::FPExt : return bitc::CAST_FPEXT; 528 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 529 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 530 case Instruction::BitCast : return bitc::CAST_BITCAST; 531 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 532 } 533 } 534 535 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 536 switch (Opcode) { 537 default: llvm_unreachable("Unknown binary instruction!"); 538 case Instruction::FNeg: return bitc::UNOP_FNEG; 539 } 540 } 541 542 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 543 switch (Opcode) { 544 default: llvm_unreachable("Unknown binary instruction!"); 545 case Instruction::Add: 546 case Instruction::FAdd: return bitc::BINOP_ADD; 547 case Instruction::Sub: 548 case Instruction::FSub: return bitc::BINOP_SUB; 549 case Instruction::Mul: 550 case Instruction::FMul: return bitc::BINOP_MUL; 551 case Instruction::UDiv: return bitc::BINOP_UDIV; 552 case Instruction::FDiv: 553 case Instruction::SDiv: return bitc::BINOP_SDIV; 554 case Instruction::URem: return bitc::BINOP_UREM; 555 case Instruction::FRem: 556 case Instruction::SRem: return bitc::BINOP_SREM; 557 case Instruction::Shl: return bitc::BINOP_SHL; 558 case Instruction::LShr: return bitc::BINOP_LSHR; 559 case Instruction::AShr: return bitc::BINOP_ASHR; 560 case Instruction::And: return bitc::BINOP_AND; 561 case Instruction::Or: return bitc::BINOP_OR; 562 case Instruction::Xor: return bitc::BINOP_XOR; 563 } 564 } 565 566 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 567 switch (Op) { 568 default: llvm_unreachable("Unknown RMW operation!"); 569 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 570 case AtomicRMWInst::Add: return bitc::RMW_ADD; 571 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 572 case AtomicRMWInst::And: return bitc::RMW_AND; 573 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 574 case AtomicRMWInst::Or: return bitc::RMW_OR; 575 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 576 case AtomicRMWInst::Max: return bitc::RMW_MAX; 577 case AtomicRMWInst::Min: return bitc::RMW_MIN; 578 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 579 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 580 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 581 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 582 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 583 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 584 } 585 } 586 587 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 588 switch (Ordering) { 589 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 590 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 591 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 592 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 593 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 594 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 595 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 596 } 597 llvm_unreachable("Invalid ordering"); 598 } 599 600 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 601 StringRef Str, unsigned AbbrevToUse) { 602 SmallVector<unsigned, 64> Vals; 603 604 // Code: [strchar x N] 605 for (char C : Str) { 606 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 607 AbbrevToUse = 0; 608 Vals.push_back(C); 609 } 610 611 // Emit the finished record. 612 Stream.EmitRecord(Code, Vals, AbbrevToUse); 613 } 614 615 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 616 switch (Kind) { 617 case Attribute::Alignment: 618 return bitc::ATTR_KIND_ALIGNMENT; 619 case Attribute::AllocAlign: 620 return bitc::ATTR_KIND_ALLOC_ALIGN; 621 case Attribute::AllocSize: 622 return bitc::ATTR_KIND_ALLOC_SIZE; 623 case Attribute::AlwaysInline: 624 return bitc::ATTR_KIND_ALWAYS_INLINE; 625 case Attribute::ArgMemOnly: 626 return bitc::ATTR_KIND_ARGMEMONLY; 627 case Attribute::Builtin: 628 return bitc::ATTR_KIND_BUILTIN; 629 case Attribute::ByVal: 630 return bitc::ATTR_KIND_BY_VAL; 631 case Attribute::Convergent: 632 return bitc::ATTR_KIND_CONVERGENT; 633 case Attribute::InAlloca: 634 return bitc::ATTR_KIND_IN_ALLOCA; 635 case Attribute::Cold: 636 return bitc::ATTR_KIND_COLD; 637 case Attribute::DisableSanitizerInstrumentation: 638 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 639 case Attribute::FnRetThunkExtern: 640 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 641 case Attribute::Hot: 642 return bitc::ATTR_KIND_HOT; 643 case Attribute::ElementType: 644 return bitc::ATTR_KIND_ELEMENTTYPE; 645 case Attribute::InaccessibleMemOnly: 646 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 647 case Attribute::InaccessibleMemOrArgMemOnly: 648 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 649 case Attribute::InlineHint: 650 return bitc::ATTR_KIND_INLINE_HINT; 651 case Attribute::InReg: 652 return bitc::ATTR_KIND_IN_REG; 653 case Attribute::JumpTable: 654 return bitc::ATTR_KIND_JUMP_TABLE; 655 case Attribute::MinSize: 656 return bitc::ATTR_KIND_MIN_SIZE; 657 case Attribute::AllocatedPointer: 658 return bitc::ATTR_KIND_ALLOCATED_POINTER; 659 case Attribute::AllocKind: 660 return bitc::ATTR_KIND_ALLOC_KIND; 661 case Attribute::Memory: 662 return bitc::ATTR_KIND_MEMORY; 663 case Attribute::Naked: 664 return bitc::ATTR_KIND_NAKED; 665 case Attribute::Nest: 666 return bitc::ATTR_KIND_NEST; 667 case Attribute::NoAlias: 668 return bitc::ATTR_KIND_NO_ALIAS; 669 case Attribute::NoBuiltin: 670 return bitc::ATTR_KIND_NO_BUILTIN; 671 case Attribute::NoCallback: 672 return bitc::ATTR_KIND_NO_CALLBACK; 673 case Attribute::NoCapture: 674 return bitc::ATTR_KIND_NO_CAPTURE; 675 case Attribute::NoDuplicate: 676 return bitc::ATTR_KIND_NO_DUPLICATE; 677 case Attribute::NoFree: 678 return bitc::ATTR_KIND_NOFREE; 679 case Attribute::NoImplicitFloat: 680 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 681 case Attribute::NoInline: 682 return bitc::ATTR_KIND_NO_INLINE; 683 case Attribute::NoRecurse: 684 return bitc::ATTR_KIND_NO_RECURSE; 685 case Attribute::NoMerge: 686 return bitc::ATTR_KIND_NO_MERGE; 687 case Attribute::NonLazyBind: 688 return bitc::ATTR_KIND_NON_LAZY_BIND; 689 case Attribute::NonNull: 690 return bitc::ATTR_KIND_NON_NULL; 691 case Attribute::Dereferenceable: 692 return bitc::ATTR_KIND_DEREFERENCEABLE; 693 case Attribute::DereferenceableOrNull: 694 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 695 case Attribute::NoRedZone: 696 return bitc::ATTR_KIND_NO_RED_ZONE; 697 case Attribute::NoReturn: 698 return bitc::ATTR_KIND_NO_RETURN; 699 case Attribute::NoSync: 700 return bitc::ATTR_KIND_NOSYNC; 701 case Attribute::NoCfCheck: 702 return bitc::ATTR_KIND_NOCF_CHECK; 703 case Attribute::NoProfile: 704 return bitc::ATTR_KIND_NO_PROFILE; 705 case Attribute::SkipProfile: 706 return bitc::ATTR_KIND_SKIP_PROFILE; 707 case Attribute::NoUnwind: 708 return bitc::ATTR_KIND_NO_UNWIND; 709 case Attribute::NoSanitizeBounds: 710 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 711 case Attribute::NoSanitizeCoverage: 712 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 713 case Attribute::NullPointerIsValid: 714 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 715 case Attribute::OptForFuzzing: 716 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 717 case Attribute::OptimizeForSize: 718 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 719 case Attribute::OptimizeNone: 720 return bitc::ATTR_KIND_OPTIMIZE_NONE; 721 case Attribute::ReadNone: 722 return bitc::ATTR_KIND_READ_NONE; 723 case Attribute::ReadOnly: 724 return bitc::ATTR_KIND_READ_ONLY; 725 case Attribute::Returned: 726 return bitc::ATTR_KIND_RETURNED; 727 case Attribute::ReturnsTwice: 728 return bitc::ATTR_KIND_RETURNS_TWICE; 729 case Attribute::SExt: 730 return bitc::ATTR_KIND_S_EXT; 731 case Attribute::Speculatable: 732 return bitc::ATTR_KIND_SPECULATABLE; 733 case Attribute::StackAlignment: 734 return bitc::ATTR_KIND_STACK_ALIGNMENT; 735 case Attribute::StackProtect: 736 return bitc::ATTR_KIND_STACK_PROTECT; 737 case Attribute::StackProtectReq: 738 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 739 case Attribute::StackProtectStrong: 740 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 741 case Attribute::SafeStack: 742 return bitc::ATTR_KIND_SAFESTACK; 743 case Attribute::ShadowCallStack: 744 return bitc::ATTR_KIND_SHADOWCALLSTACK; 745 case Attribute::StrictFP: 746 return bitc::ATTR_KIND_STRICT_FP; 747 case Attribute::StructRet: 748 return bitc::ATTR_KIND_STRUCT_RET; 749 case Attribute::SanitizeAddress: 750 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 751 case Attribute::SanitizeHWAddress: 752 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 753 case Attribute::SanitizeThread: 754 return bitc::ATTR_KIND_SANITIZE_THREAD; 755 case Attribute::SanitizeMemory: 756 return bitc::ATTR_KIND_SANITIZE_MEMORY; 757 case Attribute::SpeculativeLoadHardening: 758 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 759 case Attribute::SwiftError: 760 return bitc::ATTR_KIND_SWIFT_ERROR; 761 case Attribute::SwiftSelf: 762 return bitc::ATTR_KIND_SWIFT_SELF; 763 case Attribute::SwiftAsync: 764 return bitc::ATTR_KIND_SWIFT_ASYNC; 765 case Attribute::UWTable: 766 return bitc::ATTR_KIND_UW_TABLE; 767 case Attribute::VScaleRange: 768 return bitc::ATTR_KIND_VSCALE_RANGE; 769 case Attribute::WillReturn: 770 return bitc::ATTR_KIND_WILLRETURN; 771 case Attribute::WriteOnly: 772 return bitc::ATTR_KIND_WRITEONLY; 773 case Attribute::ZExt: 774 return bitc::ATTR_KIND_Z_EXT; 775 case Attribute::ImmArg: 776 return bitc::ATTR_KIND_IMMARG; 777 case Attribute::SanitizeMemTag: 778 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 779 case Attribute::Preallocated: 780 return bitc::ATTR_KIND_PREALLOCATED; 781 case Attribute::NoUndef: 782 return bitc::ATTR_KIND_NOUNDEF; 783 case Attribute::ByRef: 784 return bitc::ATTR_KIND_BYREF; 785 case Attribute::MustProgress: 786 return bitc::ATTR_KIND_MUSTPROGRESS; 787 case Attribute::PresplitCoroutine: 788 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 789 case Attribute::EndAttrKinds: 790 llvm_unreachable("Can not encode end-attribute kinds marker."); 791 case Attribute::None: 792 llvm_unreachable("Can not encode none-attribute."); 793 case Attribute::EmptyKey: 794 case Attribute::TombstoneKey: 795 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 796 } 797 798 llvm_unreachable("Trying to encode unknown attribute"); 799 } 800 801 void ModuleBitcodeWriter::writeAttributeGroupTable() { 802 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 803 VE.getAttributeGroups(); 804 if (AttrGrps.empty()) return; 805 806 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 807 808 SmallVector<uint64_t, 64> Record; 809 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 810 unsigned AttrListIndex = Pair.first; 811 AttributeSet AS = Pair.second; 812 Record.push_back(VE.getAttributeGroupID(Pair)); 813 Record.push_back(AttrListIndex); 814 815 for (Attribute Attr : AS) { 816 if (Attr.isEnumAttribute()) { 817 Record.push_back(0); 818 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 819 } else if (Attr.isIntAttribute()) { 820 Record.push_back(1); 821 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 822 Record.push_back(Attr.getValueAsInt()); 823 } else if (Attr.isStringAttribute()) { 824 StringRef Kind = Attr.getKindAsString(); 825 StringRef Val = Attr.getValueAsString(); 826 827 Record.push_back(Val.empty() ? 3 : 4); 828 Record.append(Kind.begin(), Kind.end()); 829 Record.push_back(0); 830 if (!Val.empty()) { 831 Record.append(Val.begin(), Val.end()); 832 Record.push_back(0); 833 } 834 } else { 835 assert(Attr.isTypeAttribute()); 836 Type *Ty = Attr.getValueAsType(); 837 Record.push_back(Ty ? 6 : 5); 838 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 839 if (Ty) 840 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 841 } 842 } 843 844 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 845 Record.clear(); 846 } 847 848 Stream.ExitBlock(); 849 } 850 851 void ModuleBitcodeWriter::writeAttributeTable() { 852 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 853 if (Attrs.empty()) return; 854 855 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 856 857 SmallVector<uint64_t, 64> Record; 858 for (const AttributeList &AL : Attrs) { 859 for (unsigned i : AL.indexes()) { 860 AttributeSet AS = AL.getAttributes(i); 861 if (AS.hasAttributes()) 862 Record.push_back(VE.getAttributeGroupID({i, AS})); 863 } 864 865 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 866 Record.clear(); 867 } 868 869 Stream.ExitBlock(); 870 } 871 872 /// WriteTypeTable - Write out the type table for a module. 873 void ModuleBitcodeWriter::writeTypeTable() { 874 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 875 876 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 877 SmallVector<uint64_t, 64> TypeVals; 878 879 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 880 881 // Abbrev for TYPE_CODE_POINTER. 882 auto Abbv = std::make_shared<BitCodeAbbrev>(); 883 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 885 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 886 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 887 888 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 889 Abbv = std::make_shared<BitCodeAbbrev>(); 890 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 891 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 892 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 893 894 // Abbrev for TYPE_CODE_FUNCTION. 895 Abbv = std::make_shared<BitCodeAbbrev>(); 896 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 899 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 900 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 901 902 // Abbrev for TYPE_CODE_STRUCT_ANON. 903 Abbv = std::make_shared<BitCodeAbbrev>(); 904 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 906 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 907 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 908 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 909 910 // Abbrev for TYPE_CODE_STRUCT_NAME. 911 Abbv = std::make_shared<BitCodeAbbrev>(); 912 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 915 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 916 917 // Abbrev for TYPE_CODE_STRUCT_NAMED. 918 Abbv = std::make_shared<BitCodeAbbrev>(); 919 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 923 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 924 925 // Abbrev for TYPE_CODE_ARRAY. 926 Abbv = std::make_shared<BitCodeAbbrev>(); 927 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 930 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 931 932 // Emit an entry count so the reader can reserve space. 933 TypeVals.push_back(TypeList.size()); 934 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 935 TypeVals.clear(); 936 937 // Loop over all of the types, emitting each in turn. 938 for (Type *T : TypeList) { 939 int AbbrevToUse = 0; 940 unsigned Code = 0; 941 942 switch (T->getTypeID()) { 943 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 944 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 945 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 946 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 947 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 948 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 949 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 950 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 951 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 952 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 953 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 954 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 955 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 956 case Type::IntegerTyID: 957 // INTEGER: [width] 958 Code = bitc::TYPE_CODE_INTEGER; 959 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 960 break; 961 case Type::PointerTyID: { 962 PointerType *PTy = cast<PointerType>(T); 963 unsigned AddressSpace = PTy->getAddressSpace(); 964 if (PTy->isOpaque()) { 965 // OPAQUE_POINTER: [address space] 966 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 967 TypeVals.push_back(AddressSpace); 968 if (AddressSpace == 0) 969 AbbrevToUse = OpaquePtrAbbrev; 970 } else { 971 // POINTER: [pointee type, address space] 972 Code = bitc::TYPE_CODE_POINTER; 973 TypeVals.push_back(VE.getTypeID(PTy->getNonOpaquePointerElementType())); 974 TypeVals.push_back(AddressSpace); 975 if (AddressSpace == 0) 976 AbbrevToUse = PtrAbbrev; 977 } 978 break; 979 } 980 case Type::FunctionTyID: { 981 FunctionType *FT = cast<FunctionType>(T); 982 // FUNCTION: [isvararg, retty, paramty x N] 983 Code = bitc::TYPE_CODE_FUNCTION; 984 TypeVals.push_back(FT->isVarArg()); 985 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 986 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 987 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 988 AbbrevToUse = FunctionAbbrev; 989 break; 990 } 991 case Type::StructTyID: { 992 StructType *ST = cast<StructType>(T); 993 // STRUCT: [ispacked, eltty x N] 994 TypeVals.push_back(ST->isPacked()); 995 // Output all of the element types. 996 for (Type *ET : ST->elements()) 997 TypeVals.push_back(VE.getTypeID(ET)); 998 999 if (ST->isLiteral()) { 1000 Code = bitc::TYPE_CODE_STRUCT_ANON; 1001 AbbrevToUse = StructAnonAbbrev; 1002 } else { 1003 if (ST->isOpaque()) { 1004 Code = bitc::TYPE_CODE_OPAQUE; 1005 } else { 1006 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1007 AbbrevToUse = StructNamedAbbrev; 1008 } 1009 1010 // Emit the name if it is present. 1011 if (!ST->getName().empty()) 1012 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1013 StructNameAbbrev); 1014 } 1015 break; 1016 } 1017 case Type::ArrayTyID: { 1018 ArrayType *AT = cast<ArrayType>(T); 1019 // ARRAY: [numelts, eltty] 1020 Code = bitc::TYPE_CODE_ARRAY; 1021 TypeVals.push_back(AT->getNumElements()); 1022 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1023 AbbrevToUse = ArrayAbbrev; 1024 break; 1025 } 1026 case Type::FixedVectorTyID: 1027 case Type::ScalableVectorTyID: { 1028 VectorType *VT = cast<VectorType>(T); 1029 // VECTOR [numelts, eltty] or 1030 // [numelts, eltty, scalable] 1031 Code = bitc::TYPE_CODE_VECTOR; 1032 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1033 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1034 if (isa<ScalableVectorType>(VT)) 1035 TypeVals.push_back(true); 1036 break; 1037 } 1038 case Type::TypedPointerTyID: 1039 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1040 } 1041 1042 // Emit the finished record. 1043 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1044 TypeVals.clear(); 1045 } 1046 1047 Stream.ExitBlock(); 1048 } 1049 1050 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1051 switch (Linkage) { 1052 case GlobalValue::ExternalLinkage: 1053 return 0; 1054 case GlobalValue::WeakAnyLinkage: 1055 return 16; 1056 case GlobalValue::AppendingLinkage: 1057 return 2; 1058 case GlobalValue::InternalLinkage: 1059 return 3; 1060 case GlobalValue::LinkOnceAnyLinkage: 1061 return 18; 1062 case GlobalValue::ExternalWeakLinkage: 1063 return 7; 1064 case GlobalValue::CommonLinkage: 1065 return 8; 1066 case GlobalValue::PrivateLinkage: 1067 return 9; 1068 case GlobalValue::WeakODRLinkage: 1069 return 17; 1070 case GlobalValue::LinkOnceODRLinkage: 1071 return 19; 1072 case GlobalValue::AvailableExternallyLinkage: 1073 return 12; 1074 } 1075 llvm_unreachable("Invalid linkage"); 1076 } 1077 1078 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1079 return getEncodedLinkage(GV.getLinkage()); 1080 } 1081 1082 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1083 uint64_t RawFlags = 0; 1084 RawFlags |= Flags.ReadNone; 1085 RawFlags |= (Flags.ReadOnly << 1); 1086 RawFlags |= (Flags.NoRecurse << 2); 1087 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1088 RawFlags |= (Flags.NoInline << 4); 1089 RawFlags |= (Flags.AlwaysInline << 5); 1090 RawFlags |= (Flags.NoUnwind << 6); 1091 RawFlags |= (Flags.MayThrow << 7); 1092 RawFlags |= (Flags.HasUnknownCall << 8); 1093 RawFlags |= (Flags.MustBeUnreachable << 9); 1094 return RawFlags; 1095 } 1096 1097 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1098 // in BitcodeReader.cpp. 1099 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1100 uint64_t RawFlags = 0; 1101 1102 RawFlags |= Flags.NotEligibleToImport; // bool 1103 RawFlags |= (Flags.Live << 1); 1104 RawFlags |= (Flags.DSOLocal << 2); 1105 RawFlags |= (Flags.CanAutoHide << 3); 1106 1107 // Linkage don't need to be remapped at that time for the summary. Any future 1108 // change to the getEncodedLinkage() function will need to be taken into 1109 // account here as well. 1110 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1111 1112 RawFlags |= (Flags.Visibility << 8); // 2 bits 1113 1114 return RawFlags; 1115 } 1116 1117 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1118 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1119 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1120 return RawFlags; 1121 } 1122 1123 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1124 switch (GV.getVisibility()) { 1125 case GlobalValue::DefaultVisibility: return 0; 1126 case GlobalValue::HiddenVisibility: return 1; 1127 case GlobalValue::ProtectedVisibility: return 2; 1128 } 1129 llvm_unreachable("Invalid visibility"); 1130 } 1131 1132 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1133 switch (GV.getDLLStorageClass()) { 1134 case GlobalValue::DefaultStorageClass: return 0; 1135 case GlobalValue::DLLImportStorageClass: return 1; 1136 case GlobalValue::DLLExportStorageClass: return 2; 1137 } 1138 llvm_unreachable("Invalid DLL storage class"); 1139 } 1140 1141 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1142 switch (GV.getThreadLocalMode()) { 1143 case GlobalVariable::NotThreadLocal: return 0; 1144 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1145 case GlobalVariable::LocalDynamicTLSModel: return 2; 1146 case GlobalVariable::InitialExecTLSModel: return 3; 1147 case GlobalVariable::LocalExecTLSModel: return 4; 1148 } 1149 llvm_unreachable("Invalid TLS model"); 1150 } 1151 1152 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1153 switch (C.getSelectionKind()) { 1154 case Comdat::Any: 1155 return bitc::COMDAT_SELECTION_KIND_ANY; 1156 case Comdat::ExactMatch: 1157 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1158 case Comdat::Largest: 1159 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1160 case Comdat::NoDeduplicate: 1161 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1162 case Comdat::SameSize: 1163 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1164 } 1165 llvm_unreachable("Invalid selection kind"); 1166 } 1167 1168 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1169 switch (GV.getUnnamedAddr()) { 1170 case GlobalValue::UnnamedAddr::None: return 0; 1171 case GlobalValue::UnnamedAddr::Local: return 2; 1172 case GlobalValue::UnnamedAddr::Global: return 1; 1173 } 1174 llvm_unreachable("Invalid unnamed_addr"); 1175 } 1176 1177 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1178 if (GenerateHash) 1179 Hasher.update(Str); 1180 return StrtabBuilder.add(Str); 1181 } 1182 1183 void ModuleBitcodeWriter::writeComdats() { 1184 SmallVector<unsigned, 64> Vals; 1185 for (const Comdat *C : VE.getComdats()) { 1186 // COMDAT: [strtab offset, strtab size, selection_kind] 1187 Vals.push_back(addToStrtab(C->getName())); 1188 Vals.push_back(C->getName().size()); 1189 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1190 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1191 Vals.clear(); 1192 } 1193 } 1194 1195 /// Write a record that will eventually hold the word offset of the 1196 /// module-level VST. For now the offset is 0, which will be backpatched 1197 /// after the real VST is written. Saves the bit offset to backpatch. 1198 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1199 // Write a placeholder value in for the offset of the real VST, 1200 // which is written after the function blocks so that it can include 1201 // the offset of each function. The placeholder offset will be 1202 // updated when the real VST is written. 1203 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1204 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1205 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1206 // hold the real VST offset. Must use fixed instead of VBR as we don't 1207 // know how many VBR chunks to reserve ahead of time. 1208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1209 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1210 1211 // Emit the placeholder 1212 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1213 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1214 1215 // Compute and save the bit offset to the placeholder, which will be 1216 // patched when the real VST is written. We can simply subtract the 32-bit 1217 // fixed size from the current bit number to get the location to backpatch. 1218 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1219 } 1220 1221 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1222 1223 /// Determine the encoding to use for the given string name and length. 1224 static StringEncoding getStringEncoding(StringRef Str) { 1225 bool isChar6 = true; 1226 for (char C : Str) { 1227 if (isChar6) 1228 isChar6 = BitCodeAbbrevOp::isChar6(C); 1229 if ((unsigned char)C & 128) 1230 // don't bother scanning the rest. 1231 return SE_Fixed8; 1232 } 1233 if (isChar6) 1234 return SE_Char6; 1235 return SE_Fixed7; 1236 } 1237 1238 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1239 "Sanitizer Metadata is too large for naive serialization."); 1240 static unsigned 1241 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1242 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1243 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1244 } 1245 1246 /// Emit top-level description of module, including target triple, inline asm, 1247 /// descriptors for global variables, and function prototype info. 1248 /// Returns the bit offset to backpatch with the location of the real VST. 1249 void ModuleBitcodeWriter::writeModuleInfo() { 1250 // Emit various pieces of data attached to a module. 1251 if (!M.getTargetTriple().empty()) 1252 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1253 0 /*TODO*/); 1254 const std::string &DL = M.getDataLayoutStr(); 1255 if (!DL.empty()) 1256 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1257 if (!M.getModuleInlineAsm().empty()) 1258 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1259 0 /*TODO*/); 1260 1261 // Emit information about sections and GC, computing how many there are. Also 1262 // compute the maximum alignment value. 1263 std::map<std::string, unsigned> SectionMap; 1264 std::map<std::string, unsigned> GCMap; 1265 MaybeAlign MaxAlignment; 1266 unsigned MaxGlobalType = 0; 1267 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1268 if (A) 1269 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1270 }; 1271 for (const GlobalVariable &GV : M.globals()) { 1272 UpdateMaxAlignment(GV.getAlign()); 1273 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1274 if (GV.hasSection()) { 1275 // Give section names unique ID's. 1276 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1277 if (!Entry) { 1278 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1279 0 /*TODO*/); 1280 Entry = SectionMap.size(); 1281 } 1282 } 1283 } 1284 for (const Function &F : M) { 1285 UpdateMaxAlignment(F.getAlign()); 1286 if (F.hasSection()) { 1287 // Give section names unique ID's. 1288 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1289 if (!Entry) { 1290 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1291 0 /*TODO*/); 1292 Entry = SectionMap.size(); 1293 } 1294 } 1295 if (F.hasGC()) { 1296 // Same for GC names. 1297 unsigned &Entry = GCMap[F.getGC()]; 1298 if (!Entry) { 1299 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1300 0 /*TODO*/); 1301 Entry = GCMap.size(); 1302 } 1303 } 1304 } 1305 1306 // Emit abbrev for globals, now that we know # sections and max alignment. 1307 unsigned SimpleGVarAbbrev = 0; 1308 if (!M.global_empty()) { 1309 // Add an abbrev for common globals with no visibility or thread localness. 1310 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1311 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1312 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1315 Log2_32_Ceil(MaxGlobalType+1))); 1316 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1317 //| explicitType << 1 1318 //| constant 1319 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1321 if (!MaxAlignment) // Alignment. 1322 Abbv->Add(BitCodeAbbrevOp(0)); 1323 else { 1324 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1326 Log2_32_Ceil(MaxEncAlignment+1))); 1327 } 1328 if (SectionMap.empty()) // Section. 1329 Abbv->Add(BitCodeAbbrevOp(0)); 1330 else 1331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1332 Log2_32_Ceil(SectionMap.size()+1))); 1333 // Don't bother emitting vis + thread local. 1334 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1335 } 1336 1337 SmallVector<unsigned, 64> Vals; 1338 // Emit the module's source file name. 1339 { 1340 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1341 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1342 if (Bits == SE_Char6) 1343 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1344 else if (Bits == SE_Fixed7) 1345 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1346 1347 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1348 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1349 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1351 Abbv->Add(AbbrevOpToUse); 1352 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1353 1354 for (const auto P : M.getSourceFileName()) 1355 Vals.push_back((unsigned char)P); 1356 1357 // Emit the finished record. 1358 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1359 Vals.clear(); 1360 } 1361 1362 // Emit the global variable information. 1363 for (const GlobalVariable &GV : M.globals()) { 1364 unsigned AbbrevToUse = 0; 1365 1366 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1367 // linkage, alignment, section, visibility, threadlocal, 1368 // unnamed_addr, externally_initialized, dllstorageclass, 1369 // comdat, attributes, DSO_Local, GlobalSanitizer] 1370 Vals.push_back(addToStrtab(GV.getName())); 1371 Vals.push_back(GV.getName().size()); 1372 Vals.push_back(VE.getTypeID(GV.getValueType())); 1373 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1374 Vals.push_back(GV.isDeclaration() ? 0 : 1375 (VE.getValueID(GV.getInitializer()) + 1)); 1376 Vals.push_back(getEncodedLinkage(GV)); 1377 Vals.push_back(getEncodedAlign(GV.getAlign())); 1378 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1379 : 0); 1380 if (GV.isThreadLocal() || 1381 GV.getVisibility() != GlobalValue::DefaultVisibility || 1382 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1383 GV.isExternallyInitialized() || 1384 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1385 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1386 GV.hasPartition() || GV.hasSanitizerMetadata()) { 1387 Vals.push_back(getEncodedVisibility(GV)); 1388 Vals.push_back(getEncodedThreadLocalMode(GV)); 1389 Vals.push_back(getEncodedUnnamedAddr(GV)); 1390 Vals.push_back(GV.isExternallyInitialized()); 1391 Vals.push_back(getEncodedDLLStorageClass(GV)); 1392 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1393 1394 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1395 Vals.push_back(VE.getAttributeListID(AL)); 1396 1397 Vals.push_back(GV.isDSOLocal()); 1398 Vals.push_back(addToStrtab(GV.getPartition())); 1399 Vals.push_back(GV.getPartition().size()); 1400 1401 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1402 GV.getSanitizerMetadata()) 1403 : 0)); 1404 } else { 1405 AbbrevToUse = SimpleGVarAbbrev; 1406 } 1407 1408 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1409 Vals.clear(); 1410 } 1411 1412 // Emit the function proto information. 1413 for (const Function &F : M) { 1414 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1415 // linkage, paramattrs, alignment, section, visibility, gc, 1416 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1417 // prefixdata, personalityfn, DSO_Local, addrspace] 1418 Vals.push_back(addToStrtab(F.getName())); 1419 Vals.push_back(F.getName().size()); 1420 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1421 Vals.push_back(F.getCallingConv()); 1422 Vals.push_back(F.isDeclaration()); 1423 Vals.push_back(getEncodedLinkage(F)); 1424 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1425 Vals.push_back(getEncodedAlign(F.getAlign())); 1426 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1427 : 0); 1428 Vals.push_back(getEncodedVisibility(F)); 1429 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1430 Vals.push_back(getEncodedUnnamedAddr(F)); 1431 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1432 : 0); 1433 Vals.push_back(getEncodedDLLStorageClass(F)); 1434 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1435 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1436 : 0); 1437 Vals.push_back( 1438 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1439 1440 Vals.push_back(F.isDSOLocal()); 1441 Vals.push_back(F.getAddressSpace()); 1442 Vals.push_back(addToStrtab(F.getPartition())); 1443 Vals.push_back(F.getPartition().size()); 1444 1445 unsigned AbbrevToUse = 0; 1446 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1447 Vals.clear(); 1448 } 1449 1450 // Emit the alias information. 1451 for (const GlobalAlias &A : M.aliases()) { 1452 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1453 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1454 // DSO_Local] 1455 Vals.push_back(addToStrtab(A.getName())); 1456 Vals.push_back(A.getName().size()); 1457 Vals.push_back(VE.getTypeID(A.getValueType())); 1458 Vals.push_back(A.getType()->getAddressSpace()); 1459 Vals.push_back(VE.getValueID(A.getAliasee())); 1460 Vals.push_back(getEncodedLinkage(A)); 1461 Vals.push_back(getEncodedVisibility(A)); 1462 Vals.push_back(getEncodedDLLStorageClass(A)); 1463 Vals.push_back(getEncodedThreadLocalMode(A)); 1464 Vals.push_back(getEncodedUnnamedAddr(A)); 1465 Vals.push_back(A.isDSOLocal()); 1466 Vals.push_back(addToStrtab(A.getPartition())); 1467 Vals.push_back(A.getPartition().size()); 1468 1469 unsigned AbbrevToUse = 0; 1470 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1471 Vals.clear(); 1472 } 1473 1474 // Emit the ifunc information. 1475 for (const GlobalIFunc &I : M.ifuncs()) { 1476 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1477 // val#, linkage, visibility, DSO_Local] 1478 Vals.push_back(addToStrtab(I.getName())); 1479 Vals.push_back(I.getName().size()); 1480 Vals.push_back(VE.getTypeID(I.getValueType())); 1481 Vals.push_back(I.getType()->getAddressSpace()); 1482 Vals.push_back(VE.getValueID(I.getResolver())); 1483 Vals.push_back(getEncodedLinkage(I)); 1484 Vals.push_back(getEncodedVisibility(I)); 1485 Vals.push_back(I.isDSOLocal()); 1486 Vals.push_back(addToStrtab(I.getPartition())); 1487 Vals.push_back(I.getPartition().size()); 1488 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1489 Vals.clear(); 1490 } 1491 1492 writeValueSymbolTableForwardDecl(); 1493 } 1494 1495 static uint64_t getOptimizationFlags(const Value *V) { 1496 uint64_t Flags = 0; 1497 1498 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1499 if (OBO->hasNoSignedWrap()) 1500 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1501 if (OBO->hasNoUnsignedWrap()) 1502 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1503 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1504 if (PEO->isExact()) 1505 Flags |= 1 << bitc::PEO_EXACT; 1506 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1507 if (FPMO->hasAllowReassoc()) 1508 Flags |= bitc::AllowReassoc; 1509 if (FPMO->hasNoNaNs()) 1510 Flags |= bitc::NoNaNs; 1511 if (FPMO->hasNoInfs()) 1512 Flags |= bitc::NoInfs; 1513 if (FPMO->hasNoSignedZeros()) 1514 Flags |= bitc::NoSignedZeros; 1515 if (FPMO->hasAllowReciprocal()) 1516 Flags |= bitc::AllowReciprocal; 1517 if (FPMO->hasAllowContract()) 1518 Flags |= bitc::AllowContract; 1519 if (FPMO->hasApproxFunc()) 1520 Flags |= bitc::ApproxFunc; 1521 } 1522 1523 return Flags; 1524 } 1525 1526 void ModuleBitcodeWriter::writeValueAsMetadata( 1527 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1528 // Mimic an MDNode with a value as one operand. 1529 Value *V = MD->getValue(); 1530 Record.push_back(VE.getTypeID(V->getType())); 1531 Record.push_back(VE.getValueID(V)); 1532 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1533 Record.clear(); 1534 } 1535 1536 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1537 SmallVectorImpl<uint64_t> &Record, 1538 unsigned Abbrev) { 1539 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1540 Metadata *MD = N->getOperand(i); 1541 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1542 "Unexpected function-local metadata"); 1543 Record.push_back(VE.getMetadataOrNullID(MD)); 1544 } 1545 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1546 : bitc::METADATA_NODE, 1547 Record, Abbrev); 1548 Record.clear(); 1549 } 1550 1551 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1552 // Assume the column is usually under 128, and always output the inlined-at 1553 // location (it's never more expensive than building an array size 1). 1554 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1555 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1559 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1561 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1562 return Stream.EmitAbbrev(std::move(Abbv)); 1563 } 1564 1565 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1566 SmallVectorImpl<uint64_t> &Record, 1567 unsigned &Abbrev) { 1568 if (!Abbrev) 1569 Abbrev = createDILocationAbbrev(); 1570 1571 Record.push_back(N->isDistinct()); 1572 Record.push_back(N->getLine()); 1573 Record.push_back(N->getColumn()); 1574 Record.push_back(VE.getMetadataID(N->getScope())); 1575 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1576 Record.push_back(N->isImplicitCode()); 1577 1578 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1579 Record.clear(); 1580 } 1581 1582 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1583 // Assume the column is usually under 128, and always output the inlined-at 1584 // location (it's never more expensive than building an array size 1). 1585 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1586 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1592 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1593 return Stream.EmitAbbrev(std::move(Abbv)); 1594 } 1595 1596 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1597 SmallVectorImpl<uint64_t> &Record, 1598 unsigned &Abbrev) { 1599 if (!Abbrev) 1600 Abbrev = createGenericDINodeAbbrev(); 1601 1602 Record.push_back(N->isDistinct()); 1603 Record.push_back(N->getTag()); 1604 Record.push_back(0); // Per-tag version field; unused for now. 1605 1606 for (auto &I : N->operands()) 1607 Record.push_back(VE.getMetadataOrNullID(I)); 1608 1609 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1610 Record.clear(); 1611 } 1612 1613 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1614 SmallVectorImpl<uint64_t> &Record, 1615 unsigned Abbrev) { 1616 const uint64_t Version = 2 << 1; 1617 Record.push_back((uint64_t)N->isDistinct() | Version); 1618 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1619 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1620 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1621 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1622 1623 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1624 Record.clear(); 1625 } 1626 1627 void ModuleBitcodeWriter::writeDIGenericSubrange( 1628 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1629 unsigned Abbrev) { 1630 Record.push_back((uint64_t)N->isDistinct()); 1631 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1633 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1634 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1635 1636 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1637 Record.clear(); 1638 } 1639 1640 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1641 if ((int64_t)V >= 0) 1642 Vals.push_back(V << 1); 1643 else 1644 Vals.push_back((-V << 1) | 1); 1645 } 1646 1647 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1648 // We have an arbitrary precision integer value to write whose 1649 // bit width is > 64. However, in canonical unsigned integer 1650 // format it is likely that the high bits are going to be zero. 1651 // So, we only write the number of active words. 1652 unsigned NumWords = A.getActiveWords(); 1653 const uint64_t *RawData = A.getRawData(); 1654 for (unsigned i = 0; i < NumWords; i++) 1655 emitSignedInt64(Vals, RawData[i]); 1656 } 1657 1658 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1659 SmallVectorImpl<uint64_t> &Record, 1660 unsigned Abbrev) { 1661 const uint64_t IsBigInt = 1 << 2; 1662 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1663 Record.push_back(N->getValue().getBitWidth()); 1664 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1665 emitWideAPInt(Record, N->getValue()); 1666 1667 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1668 Record.clear(); 1669 } 1670 1671 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1672 SmallVectorImpl<uint64_t> &Record, 1673 unsigned Abbrev) { 1674 Record.push_back(N->isDistinct()); 1675 Record.push_back(N->getTag()); 1676 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1677 Record.push_back(N->getSizeInBits()); 1678 Record.push_back(N->getAlignInBits()); 1679 Record.push_back(N->getEncoding()); 1680 Record.push_back(N->getFlags()); 1681 1682 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1683 Record.clear(); 1684 } 1685 1686 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1687 SmallVectorImpl<uint64_t> &Record, 1688 unsigned Abbrev) { 1689 Record.push_back(N->isDistinct()); 1690 Record.push_back(N->getTag()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1693 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1694 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1695 Record.push_back(N->getSizeInBits()); 1696 Record.push_back(N->getAlignInBits()); 1697 Record.push_back(N->getEncoding()); 1698 1699 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1700 Record.clear(); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1704 SmallVectorImpl<uint64_t> &Record, 1705 unsigned Abbrev) { 1706 Record.push_back(N->isDistinct()); 1707 Record.push_back(N->getTag()); 1708 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1710 Record.push_back(N->getLine()); 1711 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1713 Record.push_back(N->getSizeInBits()); 1714 Record.push_back(N->getAlignInBits()); 1715 Record.push_back(N->getOffsetInBits()); 1716 Record.push_back(N->getFlags()); 1717 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1718 1719 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1720 // that there is no DWARF address space associated with DIDerivedType. 1721 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1722 Record.push_back(*DWARFAddressSpace + 1); 1723 else 1724 Record.push_back(0); 1725 1726 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1727 1728 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1729 Record.clear(); 1730 } 1731 1732 void ModuleBitcodeWriter::writeDICompositeType( 1733 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1734 unsigned Abbrev) { 1735 const unsigned IsNotUsedInOldTypeRef = 0x2; 1736 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1737 Record.push_back(N->getTag()); 1738 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1740 Record.push_back(N->getLine()); 1741 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1742 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1743 Record.push_back(N->getSizeInBits()); 1744 Record.push_back(N->getAlignInBits()); 1745 Record.push_back(N->getOffsetInBits()); 1746 Record.push_back(N->getFlags()); 1747 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1748 Record.push_back(N->getRuntimeLang()); 1749 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1751 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1752 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1753 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1754 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1755 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1756 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1757 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1758 1759 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1760 Record.clear(); 1761 } 1762 1763 void ModuleBitcodeWriter::writeDISubroutineType( 1764 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1765 unsigned Abbrev) { 1766 const unsigned HasNoOldTypeRefs = 0x2; 1767 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1768 Record.push_back(N->getFlags()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1770 Record.push_back(N->getCC()); 1771 1772 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1773 Record.clear(); 1774 } 1775 1776 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1777 SmallVectorImpl<uint64_t> &Record, 1778 unsigned Abbrev) { 1779 Record.push_back(N->isDistinct()); 1780 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1781 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1782 if (N->getRawChecksum()) { 1783 Record.push_back(N->getRawChecksum()->Kind); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1785 } else { 1786 // Maintain backwards compatibility with the old internal representation of 1787 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1788 Record.push_back(0); 1789 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1790 } 1791 auto Source = N->getRawSource(); 1792 if (Source) 1793 Record.push_back(VE.getMetadataOrNullID(*Source)); 1794 1795 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1796 Record.clear(); 1797 } 1798 1799 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1800 SmallVectorImpl<uint64_t> &Record, 1801 unsigned Abbrev) { 1802 assert(N->isDistinct() && "Expected distinct compile units"); 1803 Record.push_back(/* IsDistinct */ true); 1804 Record.push_back(N->getSourceLanguage()); 1805 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1806 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1807 Record.push_back(N->isOptimized()); 1808 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1809 Record.push_back(N->getRuntimeVersion()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1811 Record.push_back(N->getEmissionKind()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1814 Record.push_back(/* subprograms */ 0); 1815 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1817 Record.push_back(N->getDWOId()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1819 Record.push_back(N->getSplitDebugInlining()); 1820 Record.push_back(N->getDebugInfoForProfiling()); 1821 Record.push_back((unsigned)N->getNameTableKind()); 1822 Record.push_back(N->getRangesBaseAddress()); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1825 1826 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1827 Record.clear(); 1828 } 1829 1830 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1831 SmallVectorImpl<uint64_t> &Record, 1832 unsigned Abbrev) { 1833 const uint64_t HasUnitFlag = 1 << 1; 1834 const uint64_t HasSPFlagsFlag = 1 << 2; 1835 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1836 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1837 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1839 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1840 Record.push_back(N->getLine()); 1841 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1842 Record.push_back(N->getScopeLine()); 1843 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1844 Record.push_back(N->getSPFlags()); 1845 Record.push_back(N->getVirtualIndex()); 1846 Record.push_back(N->getFlags()); 1847 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1848 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1849 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1851 Record.push_back(N->getThisAdjustment()); 1852 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1853 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1854 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1855 1856 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1857 Record.clear(); 1858 } 1859 1860 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1861 SmallVectorImpl<uint64_t> &Record, 1862 unsigned Abbrev) { 1863 Record.push_back(N->isDistinct()); 1864 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1865 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1866 Record.push_back(N->getLine()); 1867 Record.push_back(N->getColumn()); 1868 1869 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1870 Record.clear(); 1871 } 1872 1873 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1874 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1875 unsigned Abbrev) { 1876 Record.push_back(N->isDistinct()); 1877 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1879 Record.push_back(N->getDiscriminator()); 1880 1881 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1882 Record.clear(); 1883 } 1884 1885 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1886 SmallVectorImpl<uint64_t> &Record, 1887 unsigned Abbrev) { 1888 Record.push_back(N->isDistinct()); 1889 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1890 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1891 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1892 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1893 Record.push_back(N->getLineNo()); 1894 1895 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1896 Record.clear(); 1897 } 1898 1899 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1900 SmallVectorImpl<uint64_t> &Record, 1901 unsigned Abbrev) { 1902 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1903 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1904 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1905 1906 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1907 Record.clear(); 1908 } 1909 1910 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1911 SmallVectorImpl<uint64_t> &Record, 1912 unsigned Abbrev) { 1913 Record.push_back(N->isDistinct()); 1914 Record.push_back(N->getMacinfoType()); 1915 Record.push_back(N->getLine()); 1916 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1917 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1918 1919 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1920 Record.clear(); 1921 } 1922 1923 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1924 SmallVectorImpl<uint64_t> &Record, 1925 unsigned Abbrev) { 1926 Record.push_back(N->isDistinct()); 1927 Record.push_back(N->getMacinfoType()); 1928 Record.push_back(N->getLine()); 1929 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1931 1932 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1933 Record.clear(); 1934 } 1935 1936 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1937 SmallVectorImpl<uint64_t> &Record, 1938 unsigned Abbrev) { 1939 Record.reserve(N->getArgs().size()); 1940 for (ValueAsMetadata *MD : N->getArgs()) 1941 Record.push_back(VE.getMetadataID(MD)); 1942 1943 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1944 Record.clear(); 1945 } 1946 1947 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1948 SmallVectorImpl<uint64_t> &Record, 1949 unsigned Abbrev) { 1950 Record.push_back(N->isDistinct()); 1951 for (auto &I : N->operands()) 1952 Record.push_back(VE.getMetadataOrNullID(I)); 1953 Record.push_back(N->getLineNo()); 1954 Record.push_back(N->getIsDecl()); 1955 1956 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1957 Record.clear(); 1958 } 1959 1960 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 1961 SmallVectorImpl<uint64_t> &Record, 1962 unsigned Abbrev) { 1963 // There are no arguments for this metadata type. 1964 Record.push_back(N->isDistinct()); 1965 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 1966 Record.clear(); 1967 } 1968 1969 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1970 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1971 unsigned Abbrev) { 1972 Record.push_back(N->isDistinct()); 1973 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1974 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1975 Record.push_back(N->isDefault()); 1976 1977 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1978 Record.clear(); 1979 } 1980 1981 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1982 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1983 unsigned Abbrev) { 1984 Record.push_back(N->isDistinct()); 1985 Record.push_back(N->getTag()); 1986 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1987 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1988 Record.push_back(N->isDefault()); 1989 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1990 1991 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1992 Record.clear(); 1993 } 1994 1995 void ModuleBitcodeWriter::writeDIGlobalVariable( 1996 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1997 unsigned Abbrev) { 1998 const uint64_t Version = 2 << 1; 1999 Record.push_back((uint64_t)N->isDistinct() | Version); 2000 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2001 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2002 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2004 Record.push_back(N->getLine()); 2005 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2006 Record.push_back(N->isLocalToUnit()); 2007 Record.push_back(N->isDefinition()); 2008 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2009 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2010 Record.push_back(N->getAlignInBits()); 2011 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2012 2013 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2014 Record.clear(); 2015 } 2016 2017 void ModuleBitcodeWriter::writeDILocalVariable( 2018 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2019 unsigned Abbrev) { 2020 // In order to support all possible bitcode formats in BitcodeReader we need 2021 // to distinguish the following cases: 2022 // 1) Record has no artificial tag (Record[1]), 2023 // has no obsolete inlinedAt field (Record[9]). 2024 // In this case Record size will be 8, HasAlignment flag is false. 2025 // 2) Record has artificial tag (Record[1]), 2026 // has no obsolete inlignedAt field (Record[9]). 2027 // In this case Record size will be 9, HasAlignment flag is false. 2028 // 3) Record has both artificial tag (Record[1]) and 2029 // obsolete inlignedAt field (Record[9]). 2030 // In this case Record size will be 10, HasAlignment flag is false. 2031 // 4) Record has neither artificial tag, nor inlignedAt field, but 2032 // HasAlignment flag is true and Record[8] contains alignment value. 2033 const uint64_t HasAlignmentFlag = 1 << 1; 2034 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2035 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2036 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2037 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2038 Record.push_back(N->getLine()); 2039 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2040 Record.push_back(N->getArg()); 2041 Record.push_back(N->getFlags()); 2042 Record.push_back(N->getAlignInBits()); 2043 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2044 2045 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2046 Record.clear(); 2047 } 2048 2049 void ModuleBitcodeWriter::writeDILabel( 2050 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2051 unsigned Abbrev) { 2052 Record.push_back((uint64_t)N->isDistinct()); 2053 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2054 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2056 Record.push_back(N->getLine()); 2057 2058 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2059 Record.clear(); 2060 } 2061 2062 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2063 SmallVectorImpl<uint64_t> &Record, 2064 unsigned Abbrev) { 2065 Record.reserve(N->getElements().size() + 1); 2066 const uint64_t Version = 3 << 1; 2067 Record.push_back((uint64_t)N->isDistinct() | Version); 2068 Record.append(N->elements_begin(), N->elements_end()); 2069 2070 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2071 Record.clear(); 2072 } 2073 2074 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2075 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2076 unsigned Abbrev) { 2077 Record.push_back(N->isDistinct()); 2078 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2079 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2080 2081 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2082 Record.clear(); 2083 } 2084 2085 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2086 SmallVectorImpl<uint64_t> &Record, 2087 unsigned Abbrev) { 2088 Record.push_back(N->isDistinct()); 2089 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2090 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2091 Record.push_back(N->getLine()); 2092 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2093 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2094 Record.push_back(N->getAttributes()); 2095 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2096 2097 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2098 Record.clear(); 2099 } 2100 2101 void ModuleBitcodeWriter::writeDIImportedEntity( 2102 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2103 unsigned Abbrev) { 2104 Record.push_back(N->isDistinct()); 2105 Record.push_back(N->getTag()); 2106 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2107 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2108 Record.push_back(N->getLine()); 2109 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2110 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2111 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2112 2113 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2114 Record.clear(); 2115 } 2116 2117 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2118 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2119 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2120 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2121 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2122 return Stream.EmitAbbrev(std::move(Abbv)); 2123 } 2124 2125 void ModuleBitcodeWriter::writeNamedMetadata( 2126 SmallVectorImpl<uint64_t> &Record) { 2127 if (M.named_metadata_empty()) 2128 return; 2129 2130 unsigned Abbrev = createNamedMetadataAbbrev(); 2131 for (const NamedMDNode &NMD : M.named_metadata()) { 2132 // Write name. 2133 StringRef Str = NMD.getName(); 2134 Record.append(Str.bytes_begin(), Str.bytes_end()); 2135 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2136 Record.clear(); 2137 2138 // Write named metadata operands. 2139 for (const MDNode *N : NMD.operands()) 2140 Record.push_back(VE.getMetadataID(N)); 2141 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2142 Record.clear(); 2143 } 2144 } 2145 2146 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2147 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2148 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2152 return Stream.EmitAbbrev(std::move(Abbv)); 2153 } 2154 2155 /// Write out a record for MDString. 2156 /// 2157 /// All the metadata strings in a metadata block are emitted in a single 2158 /// record. The sizes and strings themselves are shoved into a blob. 2159 void ModuleBitcodeWriter::writeMetadataStrings( 2160 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2161 if (Strings.empty()) 2162 return; 2163 2164 // Start the record with the number of strings. 2165 Record.push_back(bitc::METADATA_STRINGS); 2166 Record.push_back(Strings.size()); 2167 2168 // Emit the sizes of the strings in the blob. 2169 SmallString<256> Blob; 2170 { 2171 BitstreamWriter W(Blob); 2172 for (const Metadata *MD : Strings) 2173 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2174 W.FlushToWord(); 2175 } 2176 2177 // Add the offset to the strings to the record. 2178 Record.push_back(Blob.size()); 2179 2180 // Add the strings to the blob. 2181 for (const Metadata *MD : Strings) 2182 Blob.append(cast<MDString>(MD)->getString()); 2183 2184 // Emit the final record. 2185 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2186 Record.clear(); 2187 } 2188 2189 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2190 enum MetadataAbbrev : unsigned { 2191 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2192 #include "llvm/IR/Metadata.def" 2193 LastPlusOne 2194 }; 2195 2196 void ModuleBitcodeWriter::writeMetadataRecords( 2197 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2198 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2199 if (MDs.empty()) 2200 return; 2201 2202 // Initialize MDNode abbreviations. 2203 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2204 #include "llvm/IR/Metadata.def" 2205 2206 for (const Metadata *MD : MDs) { 2207 if (IndexPos) 2208 IndexPos->push_back(Stream.GetCurrentBitNo()); 2209 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2210 assert(N->isResolved() && "Expected forward references to be resolved"); 2211 2212 switch (N->getMetadataID()) { 2213 default: 2214 llvm_unreachable("Invalid MDNode subclass"); 2215 #define HANDLE_MDNODE_LEAF(CLASS) \ 2216 case Metadata::CLASS##Kind: \ 2217 if (MDAbbrevs) \ 2218 write##CLASS(cast<CLASS>(N), Record, \ 2219 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2220 else \ 2221 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2222 continue; 2223 #include "llvm/IR/Metadata.def" 2224 } 2225 } 2226 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2227 } 2228 } 2229 2230 void ModuleBitcodeWriter::writeModuleMetadata() { 2231 if (!VE.hasMDs() && M.named_metadata_empty()) 2232 return; 2233 2234 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2235 SmallVector<uint64_t, 64> Record; 2236 2237 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2238 // block and load any metadata. 2239 std::vector<unsigned> MDAbbrevs; 2240 2241 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2242 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2243 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2244 createGenericDINodeAbbrev(); 2245 2246 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2247 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2248 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2249 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2250 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2251 2252 Abbv = std::make_shared<BitCodeAbbrev>(); 2253 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2256 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2257 2258 // Emit MDStrings together upfront. 2259 writeMetadataStrings(VE.getMDStrings(), Record); 2260 2261 // We only emit an index for the metadata record if we have more than a given 2262 // (naive) threshold of metadatas, otherwise it is not worth it. 2263 if (VE.getNonMDStrings().size() > IndexThreshold) { 2264 // Write a placeholder value in for the offset of the metadata index, 2265 // which is written after the records, so that it can include 2266 // the offset of each entry. The placeholder offset will be 2267 // updated after all records are emitted. 2268 uint64_t Vals[] = {0, 0}; 2269 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2270 } 2271 2272 // Compute and save the bit offset to the current position, which will be 2273 // patched when we emit the index later. We can simply subtract the 64-bit 2274 // fixed size from the current bit number to get the location to backpatch. 2275 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2276 2277 // This index will contain the bitpos for each individual record. 2278 std::vector<uint64_t> IndexPos; 2279 IndexPos.reserve(VE.getNonMDStrings().size()); 2280 2281 // Write all the records 2282 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2283 2284 if (VE.getNonMDStrings().size() > IndexThreshold) { 2285 // Now that we have emitted all the records we will emit the index. But 2286 // first 2287 // backpatch the forward reference so that the reader can skip the records 2288 // efficiently. 2289 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2290 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2291 2292 // Delta encode the index. 2293 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2294 for (auto &Elt : IndexPos) { 2295 auto EltDelta = Elt - PreviousValue; 2296 PreviousValue = Elt; 2297 Elt = EltDelta; 2298 } 2299 // Emit the index record. 2300 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2301 IndexPos.clear(); 2302 } 2303 2304 // Write the named metadata now. 2305 writeNamedMetadata(Record); 2306 2307 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2308 SmallVector<uint64_t, 4> Record; 2309 Record.push_back(VE.getValueID(&GO)); 2310 pushGlobalMetadataAttachment(Record, GO); 2311 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2312 }; 2313 for (const Function &F : M) 2314 if (F.isDeclaration() && F.hasMetadata()) 2315 AddDeclAttachedMetadata(F); 2316 // FIXME: Only store metadata for declarations here, and move data for global 2317 // variable definitions to a separate block (PR28134). 2318 for (const GlobalVariable &GV : M.globals()) 2319 if (GV.hasMetadata()) 2320 AddDeclAttachedMetadata(GV); 2321 2322 Stream.ExitBlock(); 2323 } 2324 2325 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2326 if (!VE.hasMDs()) 2327 return; 2328 2329 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2330 SmallVector<uint64_t, 64> Record; 2331 writeMetadataStrings(VE.getMDStrings(), Record); 2332 writeMetadataRecords(VE.getNonMDStrings(), Record); 2333 Stream.ExitBlock(); 2334 } 2335 2336 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2337 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2338 // [n x [id, mdnode]] 2339 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2340 GO.getAllMetadata(MDs); 2341 for (const auto &I : MDs) { 2342 Record.push_back(I.first); 2343 Record.push_back(VE.getMetadataID(I.second)); 2344 } 2345 } 2346 2347 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2348 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2349 2350 SmallVector<uint64_t, 64> Record; 2351 2352 if (F.hasMetadata()) { 2353 pushGlobalMetadataAttachment(Record, F); 2354 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2355 Record.clear(); 2356 } 2357 2358 // Write metadata attachments 2359 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2360 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2361 for (const BasicBlock &BB : F) 2362 for (const Instruction &I : BB) { 2363 MDs.clear(); 2364 I.getAllMetadataOtherThanDebugLoc(MDs); 2365 2366 // If no metadata, ignore instruction. 2367 if (MDs.empty()) continue; 2368 2369 Record.push_back(VE.getInstructionID(&I)); 2370 2371 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2372 Record.push_back(MDs[i].first); 2373 Record.push_back(VE.getMetadataID(MDs[i].second)); 2374 } 2375 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2376 Record.clear(); 2377 } 2378 2379 Stream.ExitBlock(); 2380 } 2381 2382 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2383 SmallVector<uint64_t, 64> Record; 2384 2385 // Write metadata kinds 2386 // METADATA_KIND - [n x [id, name]] 2387 SmallVector<StringRef, 8> Names; 2388 M.getMDKindNames(Names); 2389 2390 if (Names.empty()) return; 2391 2392 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2393 2394 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2395 Record.push_back(MDKindID); 2396 StringRef KName = Names[MDKindID]; 2397 Record.append(KName.begin(), KName.end()); 2398 2399 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2400 Record.clear(); 2401 } 2402 2403 Stream.ExitBlock(); 2404 } 2405 2406 void ModuleBitcodeWriter::writeOperandBundleTags() { 2407 // Write metadata kinds 2408 // 2409 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2410 // 2411 // OPERAND_BUNDLE_TAG - [strchr x N] 2412 2413 SmallVector<StringRef, 8> Tags; 2414 M.getOperandBundleTags(Tags); 2415 2416 if (Tags.empty()) 2417 return; 2418 2419 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2420 2421 SmallVector<uint64_t, 64> Record; 2422 2423 for (auto Tag : Tags) { 2424 Record.append(Tag.begin(), Tag.end()); 2425 2426 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2427 Record.clear(); 2428 } 2429 2430 Stream.ExitBlock(); 2431 } 2432 2433 void ModuleBitcodeWriter::writeSyncScopeNames() { 2434 SmallVector<StringRef, 8> SSNs; 2435 M.getContext().getSyncScopeNames(SSNs); 2436 if (SSNs.empty()) 2437 return; 2438 2439 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2440 2441 SmallVector<uint64_t, 64> Record; 2442 for (auto SSN : SSNs) { 2443 Record.append(SSN.begin(), SSN.end()); 2444 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2445 Record.clear(); 2446 } 2447 2448 Stream.ExitBlock(); 2449 } 2450 2451 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2452 bool isGlobal) { 2453 if (FirstVal == LastVal) return; 2454 2455 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2456 2457 unsigned AggregateAbbrev = 0; 2458 unsigned String8Abbrev = 0; 2459 unsigned CString7Abbrev = 0; 2460 unsigned CString6Abbrev = 0; 2461 // If this is a constant pool for the module, emit module-specific abbrevs. 2462 if (isGlobal) { 2463 // Abbrev for CST_CODE_AGGREGATE. 2464 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2465 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2466 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2467 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2468 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2469 2470 // Abbrev for CST_CODE_STRING. 2471 Abbv = std::make_shared<BitCodeAbbrev>(); 2472 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2474 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2475 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2476 // Abbrev for CST_CODE_CSTRING. 2477 Abbv = std::make_shared<BitCodeAbbrev>(); 2478 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2481 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2482 // Abbrev for CST_CODE_CSTRING. 2483 Abbv = std::make_shared<BitCodeAbbrev>(); 2484 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2487 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2488 } 2489 2490 SmallVector<uint64_t, 64> Record; 2491 2492 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2493 Type *LastTy = nullptr; 2494 for (unsigned i = FirstVal; i != LastVal; ++i) { 2495 const Value *V = Vals[i].first; 2496 // If we need to switch types, do so now. 2497 if (V->getType() != LastTy) { 2498 LastTy = V->getType(); 2499 Record.push_back(VE.getTypeID(LastTy)); 2500 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2501 CONSTANTS_SETTYPE_ABBREV); 2502 Record.clear(); 2503 } 2504 2505 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2506 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2507 Record.push_back( 2508 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2509 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2510 2511 // Add the asm string. 2512 const std::string &AsmStr = IA->getAsmString(); 2513 Record.push_back(AsmStr.size()); 2514 Record.append(AsmStr.begin(), AsmStr.end()); 2515 2516 // Add the constraint string. 2517 const std::string &ConstraintStr = IA->getConstraintString(); 2518 Record.push_back(ConstraintStr.size()); 2519 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2520 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2521 Record.clear(); 2522 continue; 2523 } 2524 const Constant *C = cast<Constant>(V); 2525 unsigned Code = -1U; 2526 unsigned AbbrevToUse = 0; 2527 if (C->isNullValue()) { 2528 Code = bitc::CST_CODE_NULL; 2529 } else if (isa<PoisonValue>(C)) { 2530 Code = bitc::CST_CODE_POISON; 2531 } else if (isa<UndefValue>(C)) { 2532 Code = bitc::CST_CODE_UNDEF; 2533 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2534 if (IV->getBitWidth() <= 64) { 2535 uint64_t V = IV->getSExtValue(); 2536 emitSignedInt64(Record, V); 2537 Code = bitc::CST_CODE_INTEGER; 2538 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2539 } else { // Wide integers, > 64 bits in size. 2540 emitWideAPInt(Record, IV->getValue()); 2541 Code = bitc::CST_CODE_WIDE_INTEGER; 2542 } 2543 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2544 Code = bitc::CST_CODE_FLOAT; 2545 Type *Ty = CFP->getType(); 2546 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2547 Ty->isDoubleTy()) { 2548 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2549 } else if (Ty->isX86_FP80Ty()) { 2550 // api needed to prevent premature destruction 2551 // bits are not in the same order as a normal i80 APInt, compensate. 2552 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2553 const uint64_t *p = api.getRawData(); 2554 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2555 Record.push_back(p[0] & 0xffffLL); 2556 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2557 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2558 const uint64_t *p = api.getRawData(); 2559 Record.push_back(p[0]); 2560 Record.push_back(p[1]); 2561 } else { 2562 assert(0 && "Unknown FP type!"); 2563 } 2564 } else if (isa<ConstantDataSequential>(C) && 2565 cast<ConstantDataSequential>(C)->isString()) { 2566 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2567 // Emit constant strings specially. 2568 unsigned NumElts = Str->getNumElements(); 2569 // If this is a null-terminated string, use the denser CSTRING encoding. 2570 if (Str->isCString()) { 2571 Code = bitc::CST_CODE_CSTRING; 2572 --NumElts; // Don't encode the null, which isn't allowed by char6. 2573 } else { 2574 Code = bitc::CST_CODE_STRING; 2575 AbbrevToUse = String8Abbrev; 2576 } 2577 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2578 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2579 for (unsigned i = 0; i != NumElts; ++i) { 2580 unsigned char V = Str->getElementAsInteger(i); 2581 Record.push_back(V); 2582 isCStr7 &= (V & 128) == 0; 2583 if (isCStrChar6) 2584 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2585 } 2586 2587 if (isCStrChar6) 2588 AbbrevToUse = CString6Abbrev; 2589 else if (isCStr7) 2590 AbbrevToUse = CString7Abbrev; 2591 } else if (const ConstantDataSequential *CDS = 2592 dyn_cast<ConstantDataSequential>(C)) { 2593 Code = bitc::CST_CODE_DATA; 2594 Type *EltTy = CDS->getElementType(); 2595 if (isa<IntegerType>(EltTy)) { 2596 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2597 Record.push_back(CDS->getElementAsInteger(i)); 2598 } else { 2599 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2600 Record.push_back( 2601 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2602 } 2603 } else if (isa<ConstantAggregate>(C)) { 2604 Code = bitc::CST_CODE_AGGREGATE; 2605 for (const Value *Op : C->operands()) 2606 Record.push_back(VE.getValueID(Op)); 2607 AbbrevToUse = AggregateAbbrev; 2608 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2609 switch (CE->getOpcode()) { 2610 default: 2611 if (Instruction::isCast(CE->getOpcode())) { 2612 Code = bitc::CST_CODE_CE_CAST; 2613 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2614 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2615 Record.push_back(VE.getValueID(C->getOperand(0))); 2616 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2617 } else { 2618 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2619 Code = bitc::CST_CODE_CE_BINOP; 2620 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2621 Record.push_back(VE.getValueID(C->getOperand(0))); 2622 Record.push_back(VE.getValueID(C->getOperand(1))); 2623 uint64_t Flags = getOptimizationFlags(CE); 2624 if (Flags != 0) 2625 Record.push_back(Flags); 2626 } 2627 break; 2628 case Instruction::FNeg: { 2629 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2630 Code = bitc::CST_CODE_CE_UNOP; 2631 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2632 Record.push_back(VE.getValueID(C->getOperand(0))); 2633 uint64_t Flags = getOptimizationFlags(CE); 2634 if (Flags != 0) 2635 Record.push_back(Flags); 2636 break; 2637 } 2638 case Instruction::GetElementPtr: { 2639 Code = bitc::CST_CODE_CE_GEP; 2640 const auto *GO = cast<GEPOperator>(C); 2641 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2642 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2643 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2644 Record.push_back((*Idx << 1) | GO->isInBounds()); 2645 } else if (GO->isInBounds()) 2646 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2647 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2648 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2649 Record.push_back(VE.getValueID(C->getOperand(i))); 2650 } 2651 break; 2652 } 2653 case Instruction::Select: 2654 Code = bitc::CST_CODE_CE_SELECT; 2655 Record.push_back(VE.getValueID(C->getOperand(0))); 2656 Record.push_back(VE.getValueID(C->getOperand(1))); 2657 Record.push_back(VE.getValueID(C->getOperand(2))); 2658 break; 2659 case Instruction::ExtractElement: 2660 Code = bitc::CST_CODE_CE_EXTRACTELT; 2661 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2662 Record.push_back(VE.getValueID(C->getOperand(0))); 2663 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2664 Record.push_back(VE.getValueID(C->getOperand(1))); 2665 break; 2666 case Instruction::InsertElement: 2667 Code = bitc::CST_CODE_CE_INSERTELT; 2668 Record.push_back(VE.getValueID(C->getOperand(0))); 2669 Record.push_back(VE.getValueID(C->getOperand(1))); 2670 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2671 Record.push_back(VE.getValueID(C->getOperand(2))); 2672 break; 2673 case Instruction::ShuffleVector: 2674 // If the return type and argument types are the same, this is a 2675 // standard shufflevector instruction. If the types are different, 2676 // then the shuffle is widening or truncating the input vectors, and 2677 // the argument type must also be encoded. 2678 if (C->getType() == C->getOperand(0)->getType()) { 2679 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2680 } else { 2681 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2682 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2683 } 2684 Record.push_back(VE.getValueID(C->getOperand(0))); 2685 Record.push_back(VE.getValueID(C->getOperand(1))); 2686 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2687 break; 2688 case Instruction::ICmp: 2689 case Instruction::FCmp: 2690 Code = bitc::CST_CODE_CE_CMP; 2691 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2692 Record.push_back(VE.getValueID(C->getOperand(0))); 2693 Record.push_back(VE.getValueID(C->getOperand(1))); 2694 Record.push_back(CE->getPredicate()); 2695 break; 2696 } 2697 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2698 Code = bitc::CST_CODE_BLOCKADDRESS; 2699 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2700 Record.push_back(VE.getValueID(BA->getFunction())); 2701 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2702 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2703 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2704 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2705 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2706 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2707 Code = bitc::CST_CODE_NO_CFI_VALUE; 2708 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2709 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2710 } else { 2711 #ifndef NDEBUG 2712 C->dump(); 2713 #endif 2714 llvm_unreachable("Unknown constant!"); 2715 } 2716 Stream.EmitRecord(Code, Record, AbbrevToUse); 2717 Record.clear(); 2718 } 2719 2720 Stream.ExitBlock(); 2721 } 2722 2723 void ModuleBitcodeWriter::writeModuleConstants() { 2724 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2725 2726 // Find the first constant to emit, which is the first non-globalvalue value. 2727 // We know globalvalues have been emitted by WriteModuleInfo. 2728 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2729 if (!isa<GlobalValue>(Vals[i].first)) { 2730 writeConstants(i, Vals.size(), true); 2731 return; 2732 } 2733 } 2734 } 2735 2736 /// pushValueAndType - The file has to encode both the value and type id for 2737 /// many values, because we need to know what type to create for forward 2738 /// references. However, most operands are not forward references, so this type 2739 /// field is not needed. 2740 /// 2741 /// This function adds V's value ID to Vals. If the value ID is higher than the 2742 /// instruction ID, then it is a forward reference, and it also includes the 2743 /// type ID. The value ID that is written is encoded relative to the InstID. 2744 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2745 SmallVectorImpl<unsigned> &Vals) { 2746 unsigned ValID = VE.getValueID(V); 2747 // Make encoding relative to the InstID. 2748 Vals.push_back(InstID - ValID); 2749 if (ValID >= InstID) { 2750 Vals.push_back(VE.getTypeID(V->getType())); 2751 return true; 2752 } 2753 return false; 2754 } 2755 2756 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2757 unsigned InstID) { 2758 SmallVector<unsigned, 64> Record; 2759 LLVMContext &C = CS.getContext(); 2760 2761 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2762 const auto &Bundle = CS.getOperandBundleAt(i); 2763 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2764 2765 for (auto &Input : Bundle.Inputs) 2766 pushValueAndType(Input, InstID, Record); 2767 2768 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2769 Record.clear(); 2770 } 2771 } 2772 2773 /// pushValue - Like pushValueAndType, but where the type of the value is 2774 /// omitted (perhaps it was already encoded in an earlier operand). 2775 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2776 SmallVectorImpl<unsigned> &Vals) { 2777 unsigned ValID = VE.getValueID(V); 2778 Vals.push_back(InstID - ValID); 2779 } 2780 2781 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2782 SmallVectorImpl<uint64_t> &Vals) { 2783 unsigned ValID = VE.getValueID(V); 2784 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2785 emitSignedInt64(Vals, diff); 2786 } 2787 2788 /// WriteInstruction - Emit an instruction to the specified stream. 2789 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2790 unsigned InstID, 2791 SmallVectorImpl<unsigned> &Vals) { 2792 unsigned Code = 0; 2793 unsigned AbbrevToUse = 0; 2794 VE.setInstructionID(&I); 2795 switch (I.getOpcode()) { 2796 default: 2797 if (Instruction::isCast(I.getOpcode())) { 2798 Code = bitc::FUNC_CODE_INST_CAST; 2799 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2800 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2801 Vals.push_back(VE.getTypeID(I.getType())); 2802 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2803 } else { 2804 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2805 Code = bitc::FUNC_CODE_INST_BINOP; 2806 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2807 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2808 pushValue(I.getOperand(1), InstID, Vals); 2809 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2810 uint64_t Flags = getOptimizationFlags(&I); 2811 if (Flags != 0) { 2812 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2813 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2814 Vals.push_back(Flags); 2815 } 2816 } 2817 break; 2818 case Instruction::FNeg: { 2819 Code = bitc::FUNC_CODE_INST_UNOP; 2820 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2821 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2822 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2823 uint64_t Flags = getOptimizationFlags(&I); 2824 if (Flags != 0) { 2825 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2826 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2827 Vals.push_back(Flags); 2828 } 2829 break; 2830 } 2831 case Instruction::GetElementPtr: { 2832 Code = bitc::FUNC_CODE_INST_GEP; 2833 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2834 auto &GEPInst = cast<GetElementPtrInst>(I); 2835 Vals.push_back(GEPInst.isInBounds()); 2836 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2837 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2838 pushValueAndType(I.getOperand(i), InstID, Vals); 2839 break; 2840 } 2841 case Instruction::ExtractValue: { 2842 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2843 pushValueAndType(I.getOperand(0), InstID, Vals); 2844 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2845 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2846 break; 2847 } 2848 case Instruction::InsertValue: { 2849 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2850 pushValueAndType(I.getOperand(0), InstID, Vals); 2851 pushValueAndType(I.getOperand(1), InstID, Vals); 2852 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2853 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2854 break; 2855 } 2856 case Instruction::Select: { 2857 Code = bitc::FUNC_CODE_INST_VSELECT; 2858 pushValueAndType(I.getOperand(1), InstID, Vals); 2859 pushValue(I.getOperand(2), InstID, Vals); 2860 pushValueAndType(I.getOperand(0), InstID, Vals); 2861 uint64_t Flags = getOptimizationFlags(&I); 2862 if (Flags != 0) 2863 Vals.push_back(Flags); 2864 break; 2865 } 2866 case Instruction::ExtractElement: 2867 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2868 pushValueAndType(I.getOperand(0), InstID, Vals); 2869 pushValueAndType(I.getOperand(1), InstID, Vals); 2870 break; 2871 case Instruction::InsertElement: 2872 Code = bitc::FUNC_CODE_INST_INSERTELT; 2873 pushValueAndType(I.getOperand(0), InstID, Vals); 2874 pushValue(I.getOperand(1), InstID, Vals); 2875 pushValueAndType(I.getOperand(2), InstID, Vals); 2876 break; 2877 case Instruction::ShuffleVector: 2878 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2879 pushValueAndType(I.getOperand(0), InstID, Vals); 2880 pushValue(I.getOperand(1), InstID, Vals); 2881 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2882 Vals); 2883 break; 2884 case Instruction::ICmp: 2885 case Instruction::FCmp: { 2886 // compare returning Int1Ty or vector of Int1Ty 2887 Code = bitc::FUNC_CODE_INST_CMP2; 2888 pushValueAndType(I.getOperand(0), InstID, Vals); 2889 pushValue(I.getOperand(1), InstID, Vals); 2890 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2891 uint64_t Flags = getOptimizationFlags(&I); 2892 if (Flags != 0) 2893 Vals.push_back(Flags); 2894 break; 2895 } 2896 2897 case Instruction::Ret: 2898 { 2899 Code = bitc::FUNC_CODE_INST_RET; 2900 unsigned NumOperands = I.getNumOperands(); 2901 if (NumOperands == 0) 2902 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2903 else if (NumOperands == 1) { 2904 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2905 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2906 } else { 2907 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2908 pushValueAndType(I.getOperand(i), InstID, Vals); 2909 } 2910 } 2911 break; 2912 case Instruction::Br: 2913 { 2914 Code = bitc::FUNC_CODE_INST_BR; 2915 const BranchInst &II = cast<BranchInst>(I); 2916 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2917 if (II.isConditional()) { 2918 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2919 pushValue(II.getCondition(), InstID, Vals); 2920 } 2921 } 2922 break; 2923 case Instruction::Switch: 2924 { 2925 Code = bitc::FUNC_CODE_INST_SWITCH; 2926 const SwitchInst &SI = cast<SwitchInst>(I); 2927 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2928 pushValue(SI.getCondition(), InstID, Vals); 2929 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2930 for (auto Case : SI.cases()) { 2931 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2932 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2933 } 2934 } 2935 break; 2936 case Instruction::IndirectBr: 2937 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2938 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2939 // Encode the address operand as relative, but not the basic blocks. 2940 pushValue(I.getOperand(0), InstID, Vals); 2941 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2942 Vals.push_back(VE.getValueID(I.getOperand(i))); 2943 break; 2944 2945 case Instruction::Invoke: { 2946 const InvokeInst *II = cast<InvokeInst>(&I); 2947 const Value *Callee = II->getCalledOperand(); 2948 FunctionType *FTy = II->getFunctionType(); 2949 2950 if (II->hasOperandBundles()) 2951 writeOperandBundles(*II, InstID); 2952 2953 Code = bitc::FUNC_CODE_INST_INVOKE; 2954 2955 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2956 Vals.push_back(II->getCallingConv() | 1 << 13); 2957 Vals.push_back(VE.getValueID(II->getNormalDest())); 2958 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2959 Vals.push_back(VE.getTypeID(FTy)); 2960 pushValueAndType(Callee, InstID, Vals); 2961 2962 // Emit value #'s for the fixed parameters. 2963 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2964 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2965 2966 // Emit type/value pairs for varargs params. 2967 if (FTy->isVarArg()) { 2968 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 2969 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2970 } 2971 break; 2972 } 2973 case Instruction::Resume: 2974 Code = bitc::FUNC_CODE_INST_RESUME; 2975 pushValueAndType(I.getOperand(0), InstID, Vals); 2976 break; 2977 case Instruction::CleanupRet: { 2978 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2979 const auto &CRI = cast<CleanupReturnInst>(I); 2980 pushValue(CRI.getCleanupPad(), InstID, Vals); 2981 if (CRI.hasUnwindDest()) 2982 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2983 break; 2984 } 2985 case Instruction::CatchRet: { 2986 Code = bitc::FUNC_CODE_INST_CATCHRET; 2987 const auto &CRI = cast<CatchReturnInst>(I); 2988 pushValue(CRI.getCatchPad(), InstID, Vals); 2989 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2990 break; 2991 } 2992 case Instruction::CleanupPad: 2993 case Instruction::CatchPad: { 2994 const auto &FuncletPad = cast<FuncletPadInst>(I); 2995 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2996 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2997 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2998 2999 unsigned NumArgOperands = FuncletPad.arg_size(); 3000 Vals.push_back(NumArgOperands); 3001 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3002 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3003 break; 3004 } 3005 case Instruction::CatchSwitch: { 3006 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3007 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3008 3009 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3010 3011 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3012 Vals.push_back(NumHandlers); 3013 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3014 Vals.push_back(VE.getValueID(CatchPadBB)); 3015 3016 if (CatchSwitch.hasUnwindDest()) 3017 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3018 break; 3019 } 3020 case Instruction::CallBr: { 3021 const CallBrInst *CBI = cast<CallBrInst>(&I); 3022 const Value *Callee = CBI->getCalledOperand(); 3023 FunctionType *FTy = CBI->getFunctionType(); 3024 3025 if (CBI->hasOperandBundles()) 3026 writeOperandBundles(*CBI, InstID); 3027 3028 Code = bitc::FUNC_CODE_INST_CALLBR; 3029 3030 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3031 3032 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3033 1 << bitc::CALL_EXPLICIT_TYPE); 3034 3035 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3036 Vals.push_back(CBI->getNumIndirectDests()); 3037 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3038 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3039 3040 Vals.push_back(VE.getTypeID(FTy)); 3041 pushValueAndType(Callee, InstID, Vals); 3042 3043 // Emit value #'s for the fixed parameters. 3044 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3045 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3046 3047 // Emit type/value pairs for varargs params. 3048 if (FTy->isVarArg()) { 3049 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3050 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3051 } 3052 break; 3053 } 3054 case Instruction::Unreachable: 3055 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3056 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3057 break; 3058 3059 case Instruction::PHI: { 3060 const PHINode &PN = cast<PHINode>(I); 3061 Code = bitc::FUNC_CODE_INST_PHI; 3062 // With the newer instruction encoding, forward references could give 3063 // negative valued IDs. This is most common for PHIs, so we use 3064 // signed VBRs. 3065 SmallVector<uint64_t, 128> Vals64; 3066 Vals64.push_back(VE.getTypeID(PN.getType())); 3067 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3068 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3069 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3070 } 3071 3072 uint64_t Flags = getOptimizationFlags(&I); 3073 if (Flags != 0) 3074 Vals64.push_back(Flags); 3075 3076 // Emit a Vals64 vector and exit. 3077 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3078 Vals64.clear(); 3079 return; 3080 } 3081 3082 case Instruction::LandingPad: { 3083 const LandingPadInst &LP = cast<LandingPadInst>(I); 3084 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3085 Vals.push_back(VE.getTypeID(LP.getType())); 3086 Vals.push_back(LP.isCleanup()); 3087 Vals.push_back(LP.getNumClauses()); 3088 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3089 if (LP.isCatch(I)) 3090 Vals.push_back(LandingPadInst::Catch); 3091 else 3092 Vals.push_back(LandingPadInst::Filter); 3093 pushValueAndType(LP.getClause(I), InstID, Vals); 3094 } 3095 break; 3096 } 3097 3098 case Instruction::Alloca: { 3099 Code = bitc::FUNC_CODE_INST_ALLOCA; 3100 const AllocaInst &AI = cast<AllocaInst>(I); 3101 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3102 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3103 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3104 using APV = AllocaPackedValues; 3105 unsigned Record = 0; 3106 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3107 Bitfield::set<APV::AlignLower>( 3108 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3109 Bitfield::set<APV::AlignUpper>(Record, 3110 EncodedAlign >> APV::AlignLower::Bits); 3111 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3112 Bitfield::set<APV::ExplicitType>(Record, true); 3113 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3114 Vals.push_back(Record); 3115 3116 unsigned AS = AI.getAddressSpace(); 3117 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3118 Vals.push_back(AS); 3119 break; 3120 } 3121 3122 case Instruction::Load: 3123 if (cast<LoadInst>(I).isAtomic()) { 3124 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3125 pushValueAndType(I.getOperand(0), InstID, Vals); 3126 } else { 3127 Code = bitc::FUNC_CODE_INST_LOAD; 3128 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3129 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3130 } 3131 Vals.push_back(VE.getTypeID(I.getType())); 3132 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3133 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3134 if (cast<LoadInst>(I).isAtomic()) { 3135 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3136 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3137 } 3138 break; 3139 case Instruction::Store: 3140 if (cast<StoreInst>(I).isAtomic()) 3141 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3142 else 3143 Code = bitc::FUNC_CODE_INST_STORE; 3144 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3145 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3146 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3147 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3148 if (cast<StoreInst>(I).isAtomic()) { 3149 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3150 Vals.push_back( 3151 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3152 } 3153 break; 3154 case Instruction::AtomicCmpXchg: 3155 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3156 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3157 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3158 pushValue(I.getOperand(2), InstID, Vals); // newval. 3159 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3160 Vals.push_back( 3161 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3162 Vals.push_back( 3163 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3164 Vals.push_back( 3165 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3166 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3167 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3168 break; 3169 case Instruction::AtomicRMW: 3170 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3171 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3172 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3173 Vals.push_back( 3174 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3175 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3176 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3177 Vals.push_back( 3178 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3179 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3180 break; 3181 case Instruction::Fence: 3182 Code = bitc::FUNC_CODE_INST_FENCE; 3183 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3184 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3185 break; 3186 case Instruction::Call: { 3187 const CallInst &CI = cast<CallInst>(I); 3188 FunctionType *FTy = CI.getFunctionType(); 3189 3190 if (CI.hasOperandBundles()) 3191 writeOperandBundles(CI, InstID); 3192 3193 Code = bitc::FUNC_CODE_INST_CALL; 3194 3195 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3196 3197 unsigned Flags = getOptimizationFlags(&I); 3198 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3199 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3200 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3201 1 << bitc::CALL_EXPLICIT_TYPE | 3202 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3203 unsigned(Flags != 0) << bitc::CALL_FMF); 3204 if (Flags != 0) 3205 Vals.push_back(Flags); 3206 3207 Vals.push_back(VE.getTypeID(FTy)); 3208 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3209 3210 // Emit value #'s for the fixed parameters. 3211 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3212 // Check for labels (can happen with asm labels). 3213 if (FTy->getParamType(i)->isLabelTy()) 3214 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3215 else 3216 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3217 } 3218 3219 // Emit type/value pairs for varargs params. 3220 if (FTy->isVarArg()) { 3221 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3222 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3223 } 3224 break; 3225 } 3226 case Instruction::VAArg: 3227 Code = bitc::FUNC_CODE_INST_VAARG; 3228 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3229 pushValue(I.getOperand(0), InstID, Vals); // valist. 3230 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3231 break; 3232 case Instruction::Freeze: 3233 Code = bitc::FUNC_CODE_INST_FREEZE; 3234 pushValueAndType(I.getOperand(0), InstID, Vals); 3235 break; 3236 } 3237 3238 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3239 Vals.clear(); 3240 } 3241 3242 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3243 /// to allow clients to efficiently find the function body. 3244 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3245 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3246 // Get the offset of the VST we are writing, and backpatch it into 3247 // the VST forward declaration record. 3248 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3249 // The BitcodeStartBit was the stream offset of the identification block. 3250 VSTOffset -= bitcodeStartBit(); 3251 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3252 // Note that we add 1 here because the offset is relative to one word 3253 // before the start of the identification block, which was historically 3254 // always the start of the regular bitcode header. 3255 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3256 3257 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3258 3259 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3260 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3261 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3262 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3263 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3264 3265 for (const Function &F : M) { 3266 uint64_t Record[2]; 3267 3268 if (F.isDeclaration()) 3269 continue; 3270 3271 Record[0] = VE.getValueID(&F); 3272 3273 // Save the word offset of the function (from the start of the 3274 // actual bitcode written to the stream). 3275 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3276 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3277 // Note that we add 1 here because the offset is relative to one word 3278 // before the start of the identification block, which was historically 3279 // always the start of the regular bitcode header. 3280 Record[1] = BitcodeIndex / 32 + 1; 3281 3282 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3283 } 3284 3285 Stream.ExitBlock(); 3286 } 3287 3288 /// Emit names for arguments, instructions and basic blocks in a function. 3289 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3290 const ValueSymbolTable &VST) { 3291 if (VST.empty()) 3292 return; 3293 3294 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3295 3296 // FIXME: Set up the abbrev, we know how many values there are! 3297 // FIXME: We know if the type names can use 7-bit ascii. 3298 SmallVector<uint64_t, 64> NameVals; 3299 3300 for (const ValueName &Name : VST) { 3301 // Figure out the encoding to use for the name. 3302 StringEncoding Bits = getStringEncoding(Name.getKey()); 3303 3304 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3305 NameVals.push_back(VE.getValueID(Name.getValue())); 3306 3307 // VST_CODE_ENTRY: [valueid, namechar x N] 3308 // VST_CODE_BBENTRY: [bbid, namechar x N] 3309 unsigned Code; 3310 if (isa<BasicBlock>(Name.getValue())) { 3311 Code = bitc::VST_CODE_BBENTRY; 3312 if (Bits == SE_Char6) 3313 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3314 } else { 3315 Code = bitc::VST_CODE_ENTRY; 3316 if (Bits == SE_Char6) 3317 AbbrevToUse = VST_ENTRY_6_ABBREV; 3318 else if (Bits == SE_Fixed7) 3319 AbbrevToUse = VST_ENTRY_7_ABBREV; 3320 } 3321 3322 for (const auto P : Name.getKey()) 3323 NameVals.push_back((unsigned char)P); 3324 3325 // Emit the finished record. 3326 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3327 NameVals.clear(); 3328 } 3329 3330 Stream.ExitBlock(); 3331 } 3332 3333 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3334 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3335 unsigned Code; 3336 if (isa<BasicBlock>(Order.V)) 3337 Code = bitc::USELIST_CODE_BB; 3338 else 3339 Code = bitc::USELIST_CODE_DEFAULT; 3340 3341 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3342 Record.push_back(VE.getValueID(Order.V)); 3343 Stream.EmitRecord(Code, Record); 3344 } 3345 3346 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3347 assert(VE.shouldPreserveUseListOrder() && 3348 "Expected to be preserving use-list order"); 3349 3350 auto hasMore = [&]() { 3351 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3352 }; 3353 if (!hasMore()) 3354 // Nothing to do. 3355 return; 3356 3357 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3358 while (hasMore()) { 3359 writeUseList(std::move(VE.UseListOrders.back())); 3360 VE.UseListOrders.pop_back(); 3361 } 3362 Stream.ExitBlock(); 3363 } 3364 3365 /// Emit a function body to the module stream. 3366 void ModuleBitcodeWriter::writeFunction( 3367 const Function &F, 3368 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3369 // Save the bitcode index of the start of this function block for recording 3370 // in the VST. 3371 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3372 3373 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3374 VE.incorporateFunction(F); 3375 3376 SmallVector<unsigned, 64> Vals; 3377 3378 // Emit the number of basic blocks, so the reader can create them ahead of 3379 // time. 3380 Vals.push_back(VE.getBasicBlocks().size()); 3381 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3382 Vals.clear(); 3383 3384 // If there are function-local constants, emit them now. 3385 unsigned CstStart, CstEnd; 3386 VE.getFunctionConstantRange(CstStart, CstEnd); 3387 writeConstants(CstStart, CstEnd, false); 3388 3389 // If there is function-local metadata, emit it now. 3390 writeFunctionMetadata(F); 3391 3392 // Keep a running idea of what the instruction ID is. 3393 unsigned InstID = CstEnd; 3394 3395 bool NeedsMetadataAttachment = F.hasMetadata(); 3396 3397 DILocation *LastDL = nullptr; 3398 SmallSetVector<Function *, 4> BlockAddressUsers; 3399 3400 // Finally, emit all the instructions, in order. 3401 for (const BasicBlock &BB : F) { 3402 for (const Instruction &I : BB) { 3403 writeInstruction(I, InstID, Vals); 3404 3405 if (!I.getType()->isVoidTy()) 3406 ++InstID; 3407 3408 // If the instruction has metadata, write a metadata attachment later. 3409 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3410 3411 // If the instruction has a debug location, emit it. 3412 DILocation *DL = I.getDebugLoc(); 3413 if (!DL) 3414 continue; 3415 3416 if (DL == LastDL) { 3417 // Just repeat the same debug loc as last time. 3418 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3419 continue; 3420 } 3421 3422 Vals.push_back(DL->getLine()); 3423 Vals.push_back(DL->getColumn()); 3424 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3425 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3426 Vals.push_back(DL->isImplicitCode()); 3427 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3428 Vals.clear(); 3429 3430 LastDL = DL; 3431 } 3432 3433 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3434 SmallVector<Value *> Worklist{BA}; 3435 SmallPtrSet<Value *, 8> Visited{BA}; 3436 while (!Worklist.empty()) { 3437 Value *V = Worklist.pop_back_val(); 3438 for (User *U : V->users()) { 3439 if (auto *I = dyn_cast<Instruction>(U)) { 3440 Function *P = I->getFunction(); 3441 if (P != &F) 3442 BlockAddressUsers.insert(P); 3443 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3444 Visited.insert(U).second) 3445 Worklist.push_back(U); 3446 } 3447 } 3448 } 3449 } 3450 3451 if (!BlockAddressUsers.empty()) { 3452 Vals.resize(BlockAddressUsers.size()); 3453 for (auto I : llvm::enumerate(BlockAddressUsers)) 3454 Vals[I.index()] = VE.getValueID(I.value()); 3455 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3456 Vals.clear(); 3457 } 3458 3459 // Emit names for all the instructions etc. 3460 if (auto *Symtab = F.getValueSymbolTable()) 3461 writeFunctionLevelValueSymbolTable(*Symtab); 3462 3463 if (NeedsMetadataAttachment) 3464 writeFunctionMetadataAttachment(F); 3465 if (VE.shouldPreserveUseListOrder()) 3466 writeUseListBlock(&F); 3467 VE.purgeFunction(); 3468 Stream.ExitBlock(); 3469 } 3470 3471 // Emit blockinfo, which defines the standard abbreviations etc. 3472 void ModuleBitcodeWriter::writeBlockInfo() { 3473 // We only want to emit block info records for blocks that have multiple 3474 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3475 // Other blocks can define their abbrevs inline. 3476 Stream.EnterBlockInfoBlock(); 3477 3478 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3479 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3482 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3483 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3484 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3485 VST_ENTRY_8_ABBREV) 3486 llvm_unreachable("Unexpected abbrev ordering!"); 3487 } 3488 3489 { // 7-bit fixed width VST_CODE_ENTRY strings. 3490 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3491 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3495 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3496 VST_ENTRY_7_ABBREV) 3497 llvm_unreachable("Unexpected abbrev ordering!"); 3498 } 3499 { // 6-bit char6 VST_CODE_ENTRY strings. 3500 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3501 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3502 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3505 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3506 VST_ENTRY_6_ABBREV) 3507 llvm_unreachable("Unexpected abbrev ordering!"); 3508 } 3509 { // 6-bit char6 VST_CODE_BBENTRY strings. 3510 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3511 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3515 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3516 VST_BBENTRY_6_ABBREV) 3517 llvm_unreachable("Unexpected abbrev ordering!"); 3518 } 3519 3520 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3521 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3522 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3524 VE.computeBitsRequiredForTypeIndicies())); 3525 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3526 CONSTANTS_SETTYPE_ABBREV) 3527 llvm_unreachable("Unexpected abbrev ordering!"); 3528 } 3529 3530 { // INTEGER abbrev for CONSTANTS_BLOCK. 3531 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3532 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3534 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3535 CONSTANTS_INTEGER_ABBREV) 3536 llvm_unreachable("Unexpected abbrev ordering!"); 3537 } 3538 3539 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3540 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3541 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3544 VE.computeBitsRequiredForTypeIndicies())); 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3546 3547 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3548 CONSTANTS_CE_CAST_Abbrev) 3549 llvm_unreachable("Unexpected abbrev ordering!"); 3550 } 3551 { // NULL abbrev for CONSTANTS_BLOCK. 3552 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3553 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3554 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3555 CONSTANTS_NULL_Abbrev) 3556 llvm_unreachable("Unexpected abbrev ordering!"); 3557 } 3558 3559 // FIXME: This should only use space for first class types! 3560 3561 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3562 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3563 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3566 VE.computeBitsRequiredForTypeIndicies())); 3567 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3568 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3569 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3570 FUNCTION_INST_LOAD_ABBREV) 3571 llvm_unreachable("Unexpected abbrev ordering!"); 3572 } 3573 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3574 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3575 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3578 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3579 FUNCTION_INST_UNOP_ABBREV) 3580 llvm_unreachable("Unexpected abbrev ordering!"); 3581 } 3582 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3583 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3584 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3588 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3589 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3590 llvm_unreachable("Unexpected abbrev ordering!"); 3591 } 3592 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3593 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3594 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3598 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3599 FUNCTION_INST_BINOP_ABBREV) 3600 llvm_unreachable("Unexpected abbrev ordering!"); 3601 } 3602 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3603 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3604 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3609 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3610 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3611 llvm_unreachable("Unexpected abbrev ordering!"); 3612 } 3613 { // INST_CAST abbrev for FUNCTION_BLOCK. 3614 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3615 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3616 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3618 VE.computeBitsRequiredForTypeIndicies())); 3619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3620 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3621 FUNCTION_INST_CAST_ABBREV) 3622 llvm_unreachable("Unexpected abbrev ordering!"); 3623 } 3624 3625 { // INST_RET abbrev for FUNCTION_BLOCK. 3626 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3627 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3628 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3629 FUNCTION_INST_RET_VOID_ABBREV) 3630 llvm_unreachable("Unexpected abbrev ordering!"); 3631 } 3632 { // INST_RET abbrev for FUNCTION_BLOCK. 3633 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3634 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3636 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3637 FUNCTION_INST_RET_VAL_ABBREV) 3638 llvm_unreachable("Unexpected abbrev ordering!"); 3639 } 3640 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3641 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3642 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3643 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3644 FUNCTION_INST_UNREACHABLE_ABBREV) 3645 llvm_unreachable("Unexpected abbrev ordering!"); 3646 } 3647 { 3648 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3649 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3652 Log2_32_Ceil(VE.getTypes().size() + 1))); 3653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3654 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3655 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3656 FUNCTION_INST_GEP_ABBREV) 3657 llvm_unreachable("Unexpected abbrev ordering!"); 3658 } 3659 3660 Stream.ExitBlock(); 3661 } 3662 3663 /// Write the module path strings, currently only used when generating 3664 /// a combined index file. 3665 void IndexBitcodeWriter::writeModStrings() { 3666 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3667 3668 // TODO: See which abbrev sizes we actually need to emit 3669 3670 // 8-bit fixed-width MST_ENTRY strings. 3671 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3672 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3676 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3677 3678 // 7-bit fixed width MST_ENTRY strings. 3679 Abbv = std::make_shared<BitCodeAbbrev>(); 3680 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3684 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3685 3686 // 6-bit char6 MST_ENTRY strings. 3687 Abbv = std::make_shared<BitCodeAbbrev>(); 3688 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3692 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3693 3694 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3695 Abbv = std::make_shared<BitCodeAbbrev>(); 3696 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3702 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3703 3704 SmallVector<unsigned, 64> Vals; 3705 forEachModule( 3706 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3707 StringRef Key = MPSE.getKey(); 3708 const auto &Value = MPSE.getValue(); 3709 StringEncoding Bits = getStringEncoding(Key); 3710 unsigned AbbrevToUse = Abbrev8Bit; 3711 if (Bits == SE_Char6) 3712 AbbrevToUse = Abbrev6Bit; 3713 else if (Bits == SE_Fixed7) 3714 AbbrevToUse = Abbrev7Bit; 3715 3716 Vals.push_back(Value.first); 3717 Vals.append(Key.begin(), Key.end()); 3718 3719 // Emit the finished record. 3720 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3721 3722 // Emit an optional hash for the module now 3723 const auto &Hash = Value.second; 3724 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3725 Vals.assign(Hash.begin(), Hash.end()); 3726 // Emit the hash record. 3727 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3728 } 3729 3730 Vals.clear(); 3731 }); 3732 Stream.ExitBlock(); 3733 } 3734 3735 /// Write the function type metadata related records that need to appear before 3736 /// a function summary entry (whether per-module or combined). 3737 template <typename Fn> 3738 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3739 FunctionSummary *FS, 3740 Fn GetValueID) { 3741 if (!FS->type_tests().empty()) 3742 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3743 3744 SmallVector<uint64_t, 64> Record; 3745 3746 auto WriteVFuncIdVec = [&](uint64_t Ty, 3747 ArrayRef<FunctionSummary::VFuncId> VFs) { 3748 if (VFs.empty()) 3749 return; 3750 Record.clear(); 3751 for (auto &VF : VFs) { 3752 Record.push_back(VF.GUID); 3753 Record.push_back(VF.Offset); 3754 } 3755 Stream.EmitRecord(Ty, Record); 3756 }; 3757 3758 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3759 FS->type_test_assume_vcalls()); 3760 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3761 FS->type_checked_load_vcalls()); 3762 3763 auto WriteConstVCallVec = [&](uint64_t Ty, 3764 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3765 for (auto &VC : VCs) { 3766 Record.clear(); 3767 Record.push_back(VC.VFunc.GUID); 3768 Record.push_back(VC.VFunc.Offset); 3769 llvm::append_range(Record, VC.Args); 3770 Stream.EmitRecord(Ty, Record); 3771 } 3772 }; 3773 3774 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3775 FS->type_test_assume_const_vcalls()); 3776 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3777 FS->type_checked_load_const_vcalls()); 3778 3779 auto WriteRange = [&](ConstantRange Range) { 3780 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3781 assert(Range.getLower().getNumWords() == 1); 3782 assert(Range.getUpper().getNumWords() == 1); 3783 emitSignedInt64(Record, *Range.getLower().getRawData()); 3784 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3785 }; 3786 3787 if (!FS->paramAccesses().empty()) { 3788 Record.clear(); 3789 for (auto &Arg : FS->paramAccesses()) { 3790 size_t UndoSize = Record.size(); 3791 Record.push_back(Arg.ParamNo); 3792 WriteRange(Arg.Use); 3793 Record.push_back(Arg.Calls.size()); 3794 for (auto &Call : Arg.Calls) { 3795 Record.push_back(Call.ParamNo); 3796 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3797 if (!ValueID) { 3798 // If ValueID is unknown we can't drop just this call, we must drop 3799 // entire parameter. 3800 Record.resize(UndoSize); 3801 break; 3802 } 3803 Record.push_back(*ValueID); 3804 WriteRange(Call.Offsets); 3805 } 3806 } 3807 if (!Record.empty()) 3808 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3809 } 3810 } 3811 3812 /// Collect type IDs from type tests used by function. 3813 static void 3814 getReferencedTypeIds(FunctionSummary *FS, 3815 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3816 if (!FS->type_tests().empty()) 3817 for (auto &TT : FS->type_tests()) 3818 ReferencedTypeIds.insert(TT); 3819 3820 auto GetReferencedTypesFromVFuncIdVec = 3821 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3822 for (auto &VF : VFs) 3823 ReferencedTypeIds.insert(VF.GUID); 3824 }; 3825 3826 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3827 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3828 3829 auto GetReferencedTypesFromConstVCallVec = 3830 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3831 for (auto &VC : VCs) 3832 ReferencedTypeIds.insert(VC.VFunc.GUID); 3833 }; 3834 3835 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3836 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3837 } 3838 3839 static void writeWholeProgramDevirtResolutionByArg( 3840 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3841 const WholeProgramDevirtResolution::ByArg &ByArg) { 3842 NameVals.push_back(args.size()); 3843 llvm::append_range(NameVals, args); 3844 3845 NameVals.push_back(ByArg.TheKind); 3846 NameVals.push_back(ByArg.Info); 3847 NameVals.push_back(ByArg.Byte); 3848 NameVals.push_back(ByArg.Bit); 3849 } 3850 3851 static void writeWholeProgramDevirtResolution( 3852 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3853 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3854 NameVals.push_back(Id); 3855 3856 NameVals.push_back(Wpd.TheKind); 3857 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3858 NameVals.push_back(Wpd.SingleImplName.size()); 3859 3860 NameVals.push_back(Wpd.ResByArg.size()); 3861 for (auto &A : Wpd.ResByArg) 3862 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3863 } 3864 3865 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3866 StringTableBuilder &StrtabBuilder, 3867 const std::string &Id, 3868 const TypeIdSummary &Summary) { 3869 NameVals.push_back(StrtabBuilder.add(Id)); 3870 NameVals.push_back(Id.size()); 3871 3872 NameVals.push_back(Summary.TTRes.TheKind); 3873 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3874 NameVals.push_back(Summary.TTRes.AlignLog2); 3875 NameVals.push_back(Summary.TTRes.SizeM1); 3876 NameVals.push_back(Summary.TTRes.BitMask); 3877 NameVals.push_back(Summary.TTRes.InlineBits); 3878 3879 for (auto &W : Summary.WPDRes) 3880 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3881 W.second); 3882 } 3883 3884 static void writeTypeIdCompatibleVtableSummaryRecord( 3885 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3886 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3887 ValueEnumerator &VE) { 3888 NameVals.push_back(StrtabBuilder.add(Id)); 3889 NameVals.push_back(Id.size()); 3890 3891 for (auto &P : Summary) { 3892 NameVals.push_back(P.AddressPointOffset); 3893 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3894 } 3895 } 3896 3897 // Helper to emit a single function summary record. 3898 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3899 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3900 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3901 const Function &F) { 3902 NameVals.push_back(ValueID); 3903 3904 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3905 3906 writeFunctionTypeMetadataRecords( 3907 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3908 return {VE.getValueID(VI.getValue())}; 3909 }); 3910 3911 auto SpecialRefCnts = FS->specialRefCounts(); 3912 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3913 NameVals.push_back(FS->instCount()); 3914 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3915 NameVals.push_back(FS->refs().size()); 3916 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3917 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3918 3919 for (auto &RI : FS->refs()) 3920 NameVals.push_back(VE.getValueID(RI.getValue())); 3921 3922 bool HasProfileData = 3923 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3924 for (auto &ECI : FS->calls()) { 3925 NameVals.push_back(getValueId(ECI.first)); 3926 if (HasProfileData) 3927 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3928 else if (WriteRelBFToSummary) 3929 NameVals.push_back(ECI.second.RelBlockFreq); 3930 } 3931 3932 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3933 unsigned Code = 3934 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3935 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3936 : bitc::FS_PERMODULE)); 3937 3938 // Emit the finished record. 3939 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3940 NameVals.clear(); 3941 } 3942 3943 // Collect the global value references in the given variable's initializer, 3944 // and emit them in a summary record. 3945 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3946 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3947 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3948 auto VI = Index->getValueInfo(V.getGUID()); 3949 if (!VI || VI.getSummaryList().empty()) { 3950 // Only declarations should not have a summary (a declaration might however 3951 // have a summary if the def was in module level asm). 3952 assert(V.isDeclaration()); 3953 return; 3954 } 3955 auto *Summary = VI.getSummaryList()[0].get(); 3956 NameVals.push_back(VE.getValueID(&V)); 3957 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3958 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3959 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3960 3961 auto VTableFuncs = VS->vTableFuncs(); 3962 if (!VTableFuncs.empty()) 3963 NameVals.push_back(VS->refs().size()); 3964 3965 unsigned SizeBeforeRefs = NameVals.size(); 3966 for (auto &RI : VS->refs()) 3967 NameVals.push_back(VE.getValueID(RI.getValue())); 3968 // Sort the refs for determinism output, the vector returned by FS->refs() has 3969 // been initialized from a DenseSet. 3970 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3971 3972 if (VTableFuncs.empty()) 3973 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3974 FSModRefsAbbrev); 3975 else { 3976 // VTableFuncs pairs should already be sorted by offset. 3977 for (auto &P : VTableFuncs) { 3978 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3979 NameVals.push_back(P.VTableOffset); 3980 } 3981 3982 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3983 FSModVTableRefsAbbrev); 3984 } 3985 NameVals.clear(); 3986 } 3987 3988 /// Emit the per-module summary section alongside the rest of 3989 /// the module's bitcode. 3990 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3991 // By default we compile with ThinLTO if the module has a summary, but the 3992 // client can request full LTO with a module flag. 3993 bool IsThinLTO = true; 3994 if (auto *MD = 3995 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3996 IsThinLTO = MD->getZExtValue(); 3997 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3998 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3999 4); 4000 4001 Stream.EmitRecord( 4002 bitc::FS_VERSION, 4003 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4004 4005 // Write the index flags. 4006 uint64_t Flags = 0; 4007 // Bits 1-3 are set only in the combined index, skip them. 4008 if (Index->enableSplitLTOUnit()) 4009 Flags |= 0x8; 4010 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4011 4012 if (Index->begin() == Index->end()) { 4013 Stream.ExitBlock(); 4014 return; 4015 } 4016 4017 for (const auto &GVI : valueIds()) { 4018 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4019 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4020 } 4021 4022 // Abbrev for FS_PERMODULE_PROFILE. 4023 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4024 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4026 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4027 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4028 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4029 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4030 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4032 // numrefs x valueid, n x (valueid, hotness) 4033 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4034 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4035 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4036 4037 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 4038 Abbv = std::make_shared<BitCodeAbbrev>(); 4039 if (WriteRelBFToSummary) 4040 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4041 else 4042 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 4043 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4047 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4048 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4050 // numrefs x valueid, n x (valueid [, rel_block_freq]) 4051 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4053 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4054 4055 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4056 Abbv = std::make_shared<BitCodeAbbrev>(); 4057 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4058 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4059 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4062 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4063 4064 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4065 Abbv = std::make_shared<BitCodeAbbrev>(); 4066 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4070 // numrefs x valueid, n x (valueid , offset) 4071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4073 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4074 4075 // Abbrev for FS_ALIAS. 4076 Abbv = std::make_shared<BitCodeAbbrev>(); 4077 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4081 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4082 4083 // Abbrev for FS_TYPE_ID_METADATA 4084 Abbv = std::make_shared<BitCodeAbbrev>(); 4085 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4086 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4087 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4088 // n x (valueid , offset) 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4091 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4092 4093 SmallVector<uint64_t, 64> NameVals; 4094 // Iterate over the list of functions instead of the Index to 4095 // ensure the ordering is stable. 4096 for (const Function &F : M) { 4097 // Summary emission does not support anonymous functions, they have to 4098 // renamed using the anonymous function renaming pass. 4099 if (!F.hasName()) 4100 report_fatal_error("Unexpected anonymous function when writing summary"); 4101 4102 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4103 if (!VI || VI.getSummaryList().empty()) { 4104 // Only declarations should not have a summary (a declaration might 4105 // however have a summary if the def was in module level asm). 4106 assert(F.isDeclaration()); 4107 continue; 4108 } 4109 auto *Summary = VI.getSummaryList()[0].get(); 4110 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4111 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4112 } 4113 4114 // Capture references from GlobalVariable initializers, which are outside 4115 // of a function scope. 4116 for (const GlobalVariable &G : M.globals()) 4117 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4118 FSModVTableRefsAbbrev); 4119 4120 for (const GlobalAlias &A : M.aliases()) { 4121 auto *Aliasee = A.getAliaseeObject(); 4122 // Skip ifunc and nameless functions which don't have an entry in the 4123 // summary. 4124 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4125 continue; 4126 auto AliasId = VE.getValueID(&A); 4127 auto AliaseeId = VE.getValueID(Aliasee); 4128 NameVals.push_back(AliasId); 4129 auto *Summary = Index->getGlobalValueSummary(A); 4130 AliasSummary *AS = cast<AliasSummary>(Summary); 4131 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4132 NameVals.push_back(AliaseeId); 4133 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4134 NameVals.clear(); 4135 } 4136 4137 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4138 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4139 S.second, VE); 4140 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4141 TypeIdCompatibleVtableAbbrev); 4142 NameVals.clear(); 4143 } 4144 4145 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4146 ArrayRef<uint64_t>{Index->getBlockCount()}); 4147 4148 Stream.ExitBlock(); 4149 } 4150 4151 /// Emit the combined summary section into the combined index file. 4152 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4153 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4154 Stream.EmitRecord( 4155 bitc::FS_VERSION, 4156 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4157 4158 // Write the index flags. 4159 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4160 4161 for (const auto &GVI : valueIds()) { 4162 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4163 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4164 } 4165 4166 // Abbrev for FS_COMBINED. 4167 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4168 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4169 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4178 // numrefs x valueid, n x (valueid) 4179 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4181 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4182 4183 // Abbrev for FS_COMBINED_PROFILE. 4184 Abbv = std::make_shared<BitCodeAbbrev>(); 4185 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4186 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4194 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4195 // numrefs x valueid, n x (valueid, hotness) 4196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4198 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4199 4200 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4201 Abbv = std::make_shared<BitCodeAbbrev>(); 4202 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4204 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4205 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4208 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4209 4210 // Abbrev for FS_COMBINED_ALIAS. 4211 Abbv = std::make_shared<BitCodeAbbrev>(); 4212 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4217 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4218 4219 // The aliases are emitted as a post-pass, and will point to the value 4220 // id of the aliasee. Save them in a vector for post-processing. 4221 SmallVector<AliasSummary *, 64> Aliases; 4222 4223 // Save the value id for each summary for alias emission. 4224 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4225 4226 SmallVector<uint64_t, 64> NameVals; 4227 4228 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4229 // with the type ids referenced by this index file. 4230 std::set<GlobalValue::GUID> ReferencedTypeIds; 4231 4232 // For local linkage, we also emit the original name separately 4233 // immediately after the record. 4234 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4235 // We don't need to emit the original name if we are writing the index for 4236 // distributed backends (in which case ModuleToSummariesForIndex is 4237 // non-null). The original name is only needed during the thin link, since 4238 // for SamplePGO the indirect call targets for local functions have 4239 // have the original name annotated in profile. 4240 // Continue to emit it when writing out the entire combined index, which is 4241 // used in testing the thin link via llvm-lto. 4242 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4243 return; 4244 NameVals.push_back(S.getOriginalName()); 4245 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4246 NameVals.clear(); 4247 }; 4248 4249 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4250 forEachSummary([&](GVInfo I, bool IsAliasee) { 4251 GlobalValueSummary *S = I.second; 4252 assert(S); 4253 DefOrUseGUIDs.insert(I.first); 4254 for (const ValueInfo &VI : S->refs()) 4255 DefOrUseGUIDs.insert(VI.getGUID()); 4256 4257 auto ValueId = getValueId(I.first); 4258 assert(ValueId); 4259 SummaryToValueIdMap[S] = *ValueId; 4260 4261 // If this is invoked for an aliasee, we want to record the above 4262 // mapping, but then not emit a summary entry (if the aliasee is 4263 // to be imported, we will invoke this separately with IsAliasee=false). 4264 if (IsAliasee) 4265 return; 4266 4267 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4268 // Will process aliases as a post-pass because the reader wants all 4269 // global to be loaded first. 4270 Aliases.push_back(AS); 4271 return; 4272 } 4273 4274 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4275 NameVals.push_back(*ValueId); 4276 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4277 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4278 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4279 for (auto &RI : VS->refs()) { 4280 auto RefValueId = getValueId(RI.getGUID()); 4281 if (!RefValueId) 4282 continue; 4283 NameVals.push_back(*RefValueId); 4284 } 4285 4286 // Emit the finished record. 4287 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4288 FSModRefsAbbrev); 4289 NameVals.clear(); 4290 MaybeEmitOriginalName(*S); 4291 return; 4292 } 4293 4294 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4295 return getValueId(VI.getGUID()); 4296 }; 4297 4298 auto *FS = cast<FunctionSummary>(S); 4299 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4300 getReferencedTypeIds(FS, ReferencedTypeIds); 4301 4302 NameVals.push_back(*ValueId); 4303 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4304 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4305 NameVals.push_back(FS->instCount()); 4306 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4307 NameVals.push_back(FS->entryCount()); 4308 4309 // Fill in below 4310 NameVals.push_back(0); // numrefs 4311 NameVals.push_back(0); // rorefcnt 4312 NameVals.push_back(0); // worefcnt 4313 4314 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4315 for (auto &RI : FS->refs()) { 4316 auto RefValueId = getValueId(RI.getGUID()); 4317 if (!RefValueId) 4318 continue; 4319 NameVals.push_back(*RefValueId); 4320 if (RI.isReadOnly()) 4321 RORefCnt++; 4322 else if (RI.isWriteOnly()) 4323 WORefCnt++; 4324 Count++; 4325 } 4326 NameVals[6] = Count; 4327 NameVals[7] = RORefCnt; 4328 NameVals[8] = WORefCnt; 4329 4330 bool HasProfileData = false; 4331 for (auto &EI : FS->calls()) { 4332 HasProfileData |= 4333 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4334 if (HasProfileData) 4335 break; 4336 } 4337 4338 for (auto &EI : FS->calls()) { 4339 // If this GUID doesn't have a value id, it doesn't have a function 4340 // summary and we don't need to record any calls to it. 4341 Optional<unsigned> CallValueId = GetValueId(EI.first); 4342 if (!CallValueId) 4343 continue; 4344 NameVals.push_back(*CallValueId); 4345 if (HasProfileData) 4346 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4347 } 4348 4349 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4350 unsigned Code = 4351 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4352 4353 // Emit the finished record. 4354 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4355 NameVals.clear(); 4356 MaybeEmitOriginalName(*S); 4357 }); 4358 4359 for (auto *AS : Aliases) { 4360 auto AliasValueId = SummaryToValueIdMap[AS]; 4361 assert(AliasValueId); 4362 NameVals.push_back(AliasValueId); 4363 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4364 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4365 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4366 assert(AliaseeValueId); 4367 NameVals.push_back(AliaseeValueId); 4368 4369 // Emit the finished record. 4370 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4371 NameVals.clear(); 4372 MaybeEmitOriginalName(*AS); 4373 4374 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4375 getReferencedTypeIds(FS, ReferencedTypeIds); 4376 } 4377 4378 if (!Index.cfiFunctionDefs().empty()) { 4379 for (auto &S : Index.cfiFunctionDefs()) { 4380 if (DefOrUseGUIDs.count( 4381 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4382 NameVals.push_back(StrtabBuilder.add(S)); 4383 NameVals.push_back(S.size()); 4384 } 4385 } 4386 if (!NameVals.empty()) { 4387 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4388 NameVals.clear(); 4389 } 4390 } 4391 4392 if (!Index.cfiFunctionDecls().empty()) { 4393 for (auto &S : Index.cfiFunctionDecls()) { 4394 if (DefOrUseGUIDs.count( 4395 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4396 NameVals.push_back(StrtabBuilder.add(S)); 4397 NameVals.push_back(S.size()); 4398 } 4399 } 4400 if (!NameVals.empty()) { 4401 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4402 NameVals.clear(); 4403 } 4404 } 4405 4406 // Walk the GUIDs that were referenced, and write the 4407 // corresponding type id records. 4408 for (auto &T : ReferencedTypeIds) { 4409 auto TidIter = Index.typeIds().equal_range(T); 4410 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4411 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4412 It->second.second); 4413 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4414 NameVals.clear(); 4415 } 4416 } 4417 4418 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4419 ArrayRef<uint64_t>{Index.getBlockCount()}); 4420 4421 Stream.ExitBlock(); 4422 } 4423 4424 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4425 /// current llvm version, and a record for the epoch number. 4426 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4427 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4428 4429 // Write the "user readable" string identifying the bitcode producer 4430 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4431 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4432 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4433 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4434 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4435 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4436 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4437 4438 // Write the epoch version 4439 Abbv = std::make_shared<BitCodeAbbrev>(); 4440 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4442 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4443 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4444 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4445 Stream.ExitBlock(); 4446 } 4447 4448 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4449 // Emit the module's hash. 4450 // MODULE_CODE_HASH: [5*i32] 4451 if (GenerateHash) { 4452 uint32_t Vals[5]; 4453 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4454 Buffer.size() - BlockStartPos)); 4455 std::array<uint8_t, 20> Hash = Hasher.result(); 4456 for (int Pos = 0; Pos < 20; Pos += 4) { 4457 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4458 } 4459 4460 // Emit the finished record. 4461 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4462 4463 if (ModHash) 4464 // Save the written hash value. 4465 llvm::copy(Vals, std::begin(*ModHash)); 4466 } 4467 } 4468 4469 void ModuleBitcodeWriter::write() { 4470 writeIdentificationBlock(Stream); 4471 4472 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4473 size_t BlockStartPos = Buffer.size(); 4474 4475 writeModuleVersion(); 4476 4477 // Emit blockinfo, which defines the standard abbreviations etc. 4478 writeBlockInfo(); 4479 4480 // Emit information describing all of the types in the module. 4481 writeTypeTable(); 4482 4483 // Emit information about attribute groups. 4484 writeAttributeGroupTable(); 4485 4486 // Emit information about parameter attributes. 4487 writeAttributeTable(); 4488 4489 writeComdats(); 4490 4491 // Emit top-level description of module, including target triple, inline asm, 4492 // descriptors for global variables, and function prototype info. 4493 writeModuleInfo(); 4494 4495 // Emit constants. 4496 writeModuleConstants(); 4497 4498 // Emit metadata kind names. 4499 writeModuleMetadataKinds(); 4500 4501 // Emit metadata. 4502 writeModuleMetadata(); 4503 4504 // Emit module-level use-lists. 4505 if (VE.shouldPreserveUseListOrder()) 4506 writeUseListBlock(nullptr); 4507 4508 writeOperandBundleTags(); 4509 writeSyncScopeNames(); 4510 4511 // Emit function bodies. 4512 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4513 for (const Function &F : M) 4514 if (!F.isDeclaration()) 4515 writeFunction(F, FunctionToBitcodeIndex); 4516 4517 // Need to write after the above call to WriteFunction which populates 4518 // the summary information in the index. 4519 if (Index) 4520 writePerModuleGlobalValueSummary(); 4521 4522 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4523 4524 writeModuleHash(BlockStartPos); 4525 4526 Stream.ExitBlock(); 4527 } 4528 4529 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4530 uint32_t &Position) { 4531 support::endian::write32le(&Buffer[Position], Value); 4532 Position += 4; 4533 } 4534 4535 /// If generating a bc file on darwin, we have to emit a 4536 /// header and trailer to make it compatible with the system archiver. To do 4537 /// this we emit the following header, and then emit a trailer that pads the 4538 /// file out to be a multiple of 16 bytes. 4539 /// 4540 /// struct bc_header { 4541 /// uint32_t Magic; // 0x0B17C0DE 4542 /// uint32_t Version; // Version, currently always 0. 4543 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4544 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4545 /// uint32_t CPUType; // CPU specifier. 4546 /// ... potentially more later ... 4547 /// }; 4548 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4549 const Triple &TT) { 4550 unsigned CPUType = ~0U; 4551 4552 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4553 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4554 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4555 // specific constants here because they are implicitly part of the Darwin ABI. 4556 enum { 4557 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4558 DARWIN_CPU_TYPE_X86 = 7, 4559 DARWIN_CPU_TYPE_ARM = 12, 4560 DARWIN_CPU_TYPE_POWERPC = 18 4561 }; 4562 4563 Triple::ArchType Arch = TT.getArch(); 4564 if (Arch == Triple::x86_64) 4565 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4566 else if (Arch == Triple::x86) 4567 CPUType = DARWIN_CPU_TYPE_X86; 4568 else if (Arch == Triple::ppc) 4569 CPUType = DARWIN_CPU_TYPE_POWERPC; 4570 else if (Arch == Triple::ppc64) 4571 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4572 else if (Arch == Triple::arm || Arch == Triple::thumb) 4573 CPUType = DARWIN_CPU_TYPE_ARM; 4574 4575 // Traditional Bitcode starts after header. 4576 assert(Buffer.size() >= BWH_HeaderSize && 4577 "Expected header size to be reserved"); 4578 unsigned BCOffset = BWH_HeaderSize; 4579 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4580 4581 // Write the magic and version. 4582 unsigned Position = 0; 4583 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4584 writeInt32ToBuffer(0, Buffer, Position); // Version. 4585 writeInt32ToBuffer(BCOffset, Buffer, Position); 4586 writeInt32ToBuffer(BCSize, Buffer, Position); 4587 writeInt32ToBuffer(CPUType, Buffer, Position); 4588 4589 // If the file is not a multiple of 16 bytes, insert dummy padding. 4590 while (Buffer.size() & 15) 4591 Buffer.push_back(0); 4592 } 4593 4594 /// Helper to write the header common to all bitcode files. 4595 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4596 // Emit the file header. 4597 Stream.Emit((unsigned)'B', 8); 4598 Stream.Emit((unsigned)'C', 8); 4599 Stream.Emit(0x0, 4); 4600 Stream.Emit(0xC, 4); 4601 Stream.Emit(0xE, 4); 4602 Stream.Emit(0xD, 4); 4603 } 4604 4605 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4606 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4607 writeBitcodeHeader(*Stream); 4608 } 4609 4610 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4611 4612 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4613 Stream->EnterSubblock(Block, 3); 4614 4615 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4616 Abbv->Add(BitCodeAbbrevOp(Record)); 4617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4618 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4619 4620 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4621 4622 Stream->ExitBlock(); 4623 } 4624 4625 void BitcodeWriter::writeSymtab() { 4626 assert(!WroteStrtab && !WroteSymtab); 4627 4628 // If any module has module-level inline asm, we will require a registered asm 4629 // parser for the target so that we can create an accurate symbol table for 4630 // the module. 4631 for (Module *M : Mods) { 4632 if (M->getModuleInlineAsm().empty()) 4633 continue; 4634 4635 std::string Err; 4636 const Triple TT(M->getTargetTriple()); 4637 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4638 if (!T || !T->hasMCAsmParser()) 4639 return; 4640 } 4641 4642 WroteSymtab = true; 4643 SmallVector<char, 0> Symtab; 4644 // The irsymtab::build function may be unable to create a symbol table if the 4645 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4646 // table is not required for correctness, but we still want to be able to 4647 // write malformed modules to bitcode files, so swallow the error. 4648 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4649 consumeError(std::move(E)); 4650 return; 4651 } 4652 4653 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4654 {Symtab.data(), Symtab.size()}); 4655 } 4656 4657 void BitcodeWriter::writeStrtab() { 4658 assert(!WroteStrtab); 4659 4660 std::vector<char> Strtab; 4661 StrtabBuilder.finalizeInOrder(); 4662 Strtab.resize(StrtabBuilder.getSize()); 4663 StrtabBuilder.write((uint8_t *)Strtab.data()); 4664 4665 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4666 {Strtab.data(), Strtab.size()}); 4667 4668 WroteStrtab = true; 4669 } 4670 4671 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4672 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4673 WroteStrtab = true; 4674 } 4675 4676 void BitcodeWriter::writeModule(const Module &M, 4677 bool ShouldPreserveUseListOrder, 4678 const ModuleSummaryIndex *Index, 4679 bool GenerateHash, ModuleHash *ModHash) { 4680 assert(!WroteStrtab); 4681 4682 // The Mods vector is used by irsymtab::build, which requires non-const 4683 // Modules in case it needs to materialize metadata. But the bitcode writer 4684 // requires that the module is materialized, so we can cast to non-const here, 4685 // after checking that it is in fact materialized. 4686 assert(M.isMaterialized()); 4687 Mods.push_back(const_cast<Module *>(&M)); 4688 4689 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4690 ShouldPreserveUseListOrder, Index, 4691 GenerateHash, ModHash); 4692 ModuleWriter.write(); 4693 } 4694 4695 void BitcodeWriter::writeIndex( 4696 const ModuleSummaryIndex *Index, 4697 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4698 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4699 ModuleToSummariesForIndex); 4700 IndexWriter.write(); 4701 } 4702 4703 /// Write the specified module to the specified output stream. 4704 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4705 bool ShouldPreserveUseListOrder, 4706 const ModuleSummaryIndex *Index, 4707 bool GenerateHash, ModuleHash *ModHash) { 4708 SmallVector<char, 0> Buffer; 4709 Buffer.reserve(256*1024); 4710 4711 // If this is darwin or another generic macho target, reserve space for the 4712 // header. 4713 Triple TT(M.getTargetTriple()); 4714 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4715 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4716 4717 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4718 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4719 ModHash); 4720 Writer.writeSymtab(); 4721 Writer.writeStrtab(); 4722 4723 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4724 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4725 4726 // Write the generated bitstream to "Out". 4727 if (!Buffer.empty()) 4728 Out.write((char *)&Buffer.front(), Buffer.size()); 4729 } 4730 4731 void IndexBitcodeWriter::write() { 4732 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4733 4734 writeModuleVersion(); 4735 4736 // Write the module paths in the combined index. 4737 writeModStrings(); 4738 4739 // Write the summary combined index records. 4740 writeCombinedGlobalValueSummary(); 4741 4742 Stream.ExitBlock(); 4743 } 4744 4745 // Write the specified module summary index to the given raw output stream, 4746 // where it will be written in a new bitcode block. This is used when 4747 // writing the combined index file for ThinLTO. When writing a subset of the 4748 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4749 void llvm::writeIndexToFile( 4750 const ModuleSummaryIndex &Index, raw_ostream &Out, 4751 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4752 SmallVector<char, 0> Buffer; 4753 Buffer.reserve(256 * 1024); 4754 4755 BitcodeWriter Writer(Buffer); 4756 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4757 Writer.writeStrtab(); 4758 4759 Out.write((char *)&Buffer.front(), Buffer.size()); 4760 } 4761 4762 namespace { 4763 4764 /// Class to manage the bitcode writing for a thin link bitcode file. 4765 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4766 /// ModHash is for use in ThinLTO incremental build, generated while writing 4767 /// the module bitcode file. 4768 const ModuleHash *ModHash; 4769 4770 public: 4771 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4772 BitstreamWriter &Stream, 4773 const ModuleSummaryIndex &Index, 4774 const ModuleHash &ModHash) 4775 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4776 /*ShouldPreserveUseListOrder=*/false, &Index), 4777 ModHash(&ModHash) {} 4778 4779 void write(); 4780 4781 private: 4782 void writeSimplifiedModuleInfo(); 4783 }; 4784 4785 } // end anonymous namespace 4786 4787 // This function writes a simpilified module info for thin link bitcode file. 4788 // It only contains the source file name along with the name(the offset and 4789 // size in strtab) and linkage for global values. For the global value info 4790 // entry, in order to keep linkage at offset 5, there are three zeros used 4791 // as padding. 4792 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4793 SmallVector<unsigned, 64> Vals; 4794 // Emit the module's source file name. 4795 { 4796 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4797 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4798 if (Bits == SE_Char6) 4799 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4800 else if (Bits == SE_Fixed7) 4801 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4802 4803 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4804 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4805 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4807 Abbv->Add(AbbrevOpToUse); 4808 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4809 4810 for (const auto P : M.getSourceFileName()) 4811 Vals.push_back((unsigned char)P); 4812 4813 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4814 Vals.clear(); 4815 } 4816 4817 // Emit the global variable information. 4818 for (const GlobalVariable &GV : M.globals()) { 4819 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4820 Vals.push_back(StrtabBuilder.add(GV.getName())); 4821 Vals.push_back(GV.getName().size()); 4822 Vals.push_back(0); 4823 Vals.push_back(0); 4824 Vals.push_back(0); 4825 Vals.push_back(getEncodedLinkage(GV)); 4826 4827 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4828 Vals.clear(); 4829 } 4830 4831 // Emit the function proto information. 4832 for (const Function &F : M) { 4833 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4834 Vals.push_back(StrtabBuilder.add(F.getName())); 4835 Vals.push_back(F.getName().size()); 4836 Vals.push_back(0); 4837 Vals.push_back(0); 4838 Vals.push_back(0); 4839 Vals.push_back(getEncodedLinkage(F)); 4840 4841 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4842 Vals.clear(); 4843 } 4844 4845 // Emit the alias information. 4846 for (const GlobalAlias &A : M.aliases()) { 4847 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4848 Vals.push_back(StrtabBuilder.add(A.getName())); 4849 Vals.push_back(A.getName().size()); 4850 Vals.push_back(0); 4851 Vals.push_back(0); 4852 Vals.push_back(0); 4853 Vals.push_back(getEncodedLinkage(A)); 4854 4855 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4856 Vals.clear(); 4857 } 4858 4859 // Emit the ifunc information. 4860 for (const GlobalIFunc &I : M.ifuncs()) { 4861 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4862 Vals.push_back(StrtabBuilder.add(I.getName())); 4863 Vals.push_back(I.getName().size()); 4864 Vals.push_back(0); 4865 Vals.push_back(0); 4866 Vals.push_back(0); 4867 Vals.push_back(getEncodedLinkage(I)); 4868 4869 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4870 Vals.clear(); 4871 } 4872 } 4873 4874 void ThinLinkBitcodeWriter::write() { 4875 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4876 4877 writeModuleVersion(); 4878 4879 writeSimplifiedModuleInfo(); 4880 4881 writePerModuleGlobalValueSummary(); 4882 4883 // Write module hash. 4884 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4885 4886 Stream.ExitBlock(); 4887 } 4888 4889 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4890 const ModuleSummaryIndex &Index, 4891 const ModuleHash &ModHash) { 4892 assert(!WroteStrtab); 4893 4894 // The Mods vector is used by irsymtab::build, which requires non-const 4895 // Modules in case it needs to materialize metadata. But the bitcode writer 4896 // requires that the module is materialized, so we can cast to non-const here, 4897 // after checking that it is in fact materialized. 4898 assert(M.isMaterialized()); 4899 Mods.push_back(const_cast<Module *>(&M)); 4900 4901 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4902 ModHash); 4903 ThinLinkWriter.write(); 4904 } 4905 4906 // Write the specified thin link bitcode file to the given raw output stream, 4907 // where it will be written in a new bitcode block. This is used when 4908 // writing the per-module index file for ThinLTO. 4909 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4910 const ModuleSummaryIndex &Index, 4911 const ModuleHash &ModHash) { 4912 SmallVector<char, 0> Buffer; 4913 Buffer.reserve(256 * 1024); 4914 4915 BitcodeWriter Writer(Buffer); 4916 Writer.writeThinLinkBitcode(M, Index, ModHash); 4917 Writer.writeSymtab(); 4918 Writer.writeStrtab(); 4919 4920 Out.write((char *)&Buffer.front(), Buffer.size()); 4921 } 4922 4923 static const char *getSectionNameForBitcode(const Triple &T) { 4924 switch (T.getObjectFormat()) { 4925 case Triple::MachO: 4926 return "__LLVM,__bitcode"; 4927 case Triple::COFF: 4928 case Triple::ELF: 4929 case Triple::Wasm: 4930 case Triple::UnknownObjectFormat: 4931 return ".llvmbc"; 4932 case Triple::GOFF: 4933 llvm_unreachable("GOFF is not yet implemented"); 4934 break; 4935 case Triple::SPIRV: 4936 llvm_unreachable("SPIRV is not yet implemented"); 4937 break; 4938 case Triple::XCOFF: 4939 llvm_unreachable("XCOFF is not yet implemented"); 4940 break; 4941 case Triple::DXContainer: 4942 llvm_unreachable("DXContainer is not yet implemented"); 4943 break; 4944 } 4945 llvm_unreachable("Unimplemented ObjectFormatType"); 4946 } 4947 4948 static const char *getSectionNameForCommandline(const Triple &T) { 4949 switch (T.getObjectFormat()) { 4950 case Triple::MachO: 4951 return "__LLVM,__cmdline"; 4952 case Triple::COFF: 4953 case Triple::ELF: 4954 case Triple::Wasm: 4955 case Triple::UnknownObjectFormat: 4956 return ".llvmcmd"; 4957 case Triple::GOFF: 4958 llvm_unreachable("GOFF is not yet implemented"); 4959 break; 4960 case Triple::SPIRV: 4961 llvm_unreachable("SPIRV is not yet implemented"); 4962 break; 4963 case Triple::XCOFF: 4964 llvm_unreachable("XCOFF is not yet implemented"); 4965 break; 4966 case Triple::DXContainer: 4967 llvm_unreachable("DXC is not yet implemented"); 4968 break; 4969 } 4970 llvm_unreachable("Unimplemented ObjectFormatType"); 4971 } 4972 4973 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4974 bool EmbedBitcode, bool EmbedCmdline, 4975 const std::vector<uint8_t> &CmdArgs) { 4976 // Save llvm.compiler.used and remove it. 4977 SmallVector<Constant *, 2> UsedArray; 4978 SmallVector<GlobalValue *, 4> UsedGlobals; 4979 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4980 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4981 for (auto *GV : UsedGlobals) { 4982 if (GV->getName() != "llvm.embedded.module" && 4983 GV->getName() != "llvm.cmdline") 4984 UsedArray.push_back( 4985 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4986 } 4987 if (Used) 4988 Used->eraseFromParent(); 4989 4990 // Embed the bitcode for the llvm module. 4991 std::string Data; 4992 ArrayRef<uint8_t> ModuleData; 4993 Triple T(M.getTargetTriple()); 4994 4995 if (EmbedBitcode) { 4996 if (Buf.getBufferSize() == 0 || 4997 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4998 (const unsigned char *)Buf.getBufferEnd())) { 4999 // If the input is LLVM Assembly, bitcode is produced by serializing 5000 // the module. Use-lists order need to be preserved in this case. 5001 llvm::raw_string_ostream OS(Data); 5002 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5003 ModuleData = 5004 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5005 } else 5006 // If the input is LLVM bitcode, write the input byte stream directly. 5007 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5008 Buf.getBufferSize()); 5009 } 5010 llvm::Constant *ModuleConstant = 5011 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5012 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5013 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5014 ModuleConstant); 5015 GV->setSection(getSectionNameForBitcode(T)); 5016 // Set alignment to 1 to prevent padding between two contributions from input 5017 // sections after linking. 5018 GV->setAlignment(Align(1)); 5019 UsedArray.push_back( 5020 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5021 if (llvm::GlobalVariable *Old = 5022 M.getGlobalVariable("llvm.embedded.module", true)) { 5023 assert(Old->hasZeroLiveUses() && 5024 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5025 GV->takeName(Old); 5026 Old->eraseFromParent(); 5027 } else { 5028 GV->setName("llvm.embedded.module"); 5029 } 5030 5031 // Skip if only bitcode needs to be embedded. 5032 if (EmbedCmdline) { 5033 // Embed command-line options. 5034 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5035 CmdArgs.size()); 5036 llvm::Constant *CmdConstant = 5037 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5038 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5039 llvm::GlobalValue::PrivateLinkage, 5040 CmdConstant); 5041 GV->setSection(getSectionNameForCommandline(T)); 5042 GV->setAlignment(Align(1)); 5043 UsedArray.push_back( 5044 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5045 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5046 assert(Old->hasZeroLiveUses() && 5047 "llvm.cmdline can only be used once in llvm.compiler.used"); 5048 GV->takeName(Old); 5049 Old->eraseFromParent(); 5050 } else { 5051 GV->setName("llvm.cmdline"); 5052 } 5053 } 5054 5055 if (UsedArray.empty()) 5056 return; 5057 5058 // Recreate llvm.compiler.used. 5059 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5060 auto *NewUsed = new GlobalVariable( 5061 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5062 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5063 NewUsed->setSection("llvm.metadata"); 5064 } 5065