1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/InlineAsm.h" 21 #include "llvm/Instructions.h" 22 #include "llvm/Module.h" 23 #include "llvm/Operator.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/ADT/Triple.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Support/Program.h" 31 #include <cctype> 32 #include <map> 33 using namespace llvm; 34 35 static cl::opt<bool> 36 EnablePreserveUseListOrdering("enable-bc-uselist-preserve", 37 cl::desc("Turn on experimental support for " 38 "use-list order preservation."), 39 cl::init(false), cl::Hidden); 40 41 /// These are manifest constants used by the bitcode writer. They do not need to 42 /// be kept in sync with the reader, but need to be consistent within this file. 43 enum { 44 CurVersion = 0, 45 46 // VALUE_SYMTAB_BLOCK abbrev id's. 47 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 VST_ENTRY_7_ABBREV, 49 VST_ENTRY_6_ABBREV, 50 VST_BBENTRY_6_ABBREV, 51 52 // CONSTANTS_BLOCK abbrev id's. 53 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 CONSTANTS_INTEGER_ABBREV, 55 CONSTANTS_CE_CAST_Abbrev, 56 CONSTANTS_NULL_Abbrev, 57 58 // FUNCTION_BLOCK abbrev id's. 59 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 60 FUNCTION_INST_BINOP_ABBREV, 61 FUNCTION_INST_BINOP_FLAGS_ABBREV, 62 FUNCTION_INST_CAST_ABBREV, 63 FUNCTION_INST_RET_VOID_ABBREV, 64 FUNCTION_INST_RET_VAL_ABBREV, 65 FUNCTION_INST_UNREACHABLE_ABBREV, 66 67 // SwitchInst Magic 68 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 69 }; 70 71 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 72 switch (Opcode) { 73 default: llvm_unreachable("Unknown cast instruction!"); 74 case Instruction::Trunc : return bitc::CAST_TRUNC; 75 case Instruction::ZExt : return bitc::CAST_ZEXT; 76 case Instruction::SExt : return bitc::CAST_SEXT; 77 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 78 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 79 case Instruction::UIToFP : return bitc::CAST_UITOFP; 80 case Instruction::SIToFP : return bitc::CAST_SITOFP; 81 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 82 case Instruction::FPExt : return bitc::CAST_FPEXT; 83 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 84 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 85 case Instruction::BitCast : return bitc::CAST_BITCAST; 86 } 87 } 88 89 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 90 switch (Opcode) { 91 default: llvm_unreachable("Unknown binary instruction!"); 92 case Instruction::Add: 93 case Instruction::FAdd: return bitc::BINOP_ADD; 94 case Instruction::Sub: 95 case Instruction::FSub: return bitc::BINOP_SUB; 96 case Instruction::Mul: 97 case Instruction::FMul: return bitc::BINOP_MUL; 98 case Instruction::UDiv: return bitc::BINOP_UDIV; 99 case Instruction::FDiv: 100 case Instruction::SDiv: return bitc::BINOP_SDIV; 101 case Instruction::URem: return bitc::BINOP_UREM; 102 case Instruction::FRem: 103 case Instruction::SRem: return bitc::BINOP_SREM; 104 case Instruction::Shl: return bitc::BINOP_SHL; 105 case Instruction::LShr: return bitc::BINOP_LSHR; 106 case Instruction::AShr: return bitc::BINOP_ASHR; 107 case Instruction::And: return bitc::BINOP_AND; 108 case Instruction::Or: return bitc::BINOP_OR; 109 case Instruction::Xor: return bitc::BINOP_XOR; 110 } 111 } 112 113 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 114 switch (Op) { 115 default: llvm_unreachable("Unknown RMW operation!"); 116 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 117 case AtomicRMWInst::Add: return bitc::RMW_ADD; 118 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 119 case AtomicRMWInst::And: return bitc::RMW_AND; 120 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 121 case AtomicRMWInst::Or: return bitc::RMW_OR; 122 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 123 case AtomicRMWInst::Max: return bitc::RMW_MAX; 124 case AtomicRMWInst::Min: return bitc::RMW_MIN; 125 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 126 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 127 } 128 } 129 130 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 131 switch (Ordering) { 132 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 133 case Unordered: return bitc::ORDERING_UNORDERED; 134 case Monotonic: return bitc::ORDERING_MONOTONIC; 135 case Acquire: return bitc::ORDERING_ACQUIRE; 136 case Release: return bitc::ORDERING_RELEASE; 137 case AcquireRelease: return bitc::ORDERING_ACQREL; 138 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 139 } 140 llvm_unreachable("Invalid ordering"); 141 } 142 143 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 144 switch (SynchScope) { 145 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 146 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 147 } 148 llvm_unreachable("Invalid synch scope"); 149 } 150 151 static void WriteStringRecord(unsigned Code, StringRef Str, 152 unsigned AbbrevToUse, BitstreamWriter &Stream) { 153 SmallVector<unsigned, 64> Vals; 154 155 // Code: [strchar x N] 156 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 157 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 158 AbbrevToUse = 0; 159 Vals.push_back(Str[i]); 160 } 161 162 // Emit the finished record. 163 Stream.EmitRecord(Code, Vals, AbbrevToUse); 164 } 165 166 // Emit information about parameter attributes. 167 static void WriteAttributeTable(const ValueEnumerator &VE, 168 BitstreamWriter &Stream) { 169 const std::vector<AttrListPtr> &Attrs = VE.getAttributes(); 170 if (Attrs.empty()) return; 171 172 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 173 174 SmallVector<uint64_t, 64> Record; 175 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 176 const AttrListPtr &A = Attrs[i]; 177 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) { 178 const AttributeWithIndex &PAWI = A.getSlot(i); 179 Record.push_back(PAWI.Index); 180 Record.push_back(Attribute::encodeLLVMAttributesForBitcode(PAWI.Attrs)); 181 } 182 183 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 184 Record.clear(); 185 } 186 187 Stream.ExitBlock(); 188 } 189 190 /// WriteTypeTable - Write out the type table for a module. 191 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 192 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 193 194 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 195 SmallVector<uint64_t, 64> TypeVals; 196 197 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 198 199 // Abbrev for TYPE_CODE_POINTER. 200 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 201 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 203 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 204 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 205 206 // Abbrev for TYPE_CODE_FUNCTION. 207 Abbv = new BitCodeAbbrev(); 208 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 210 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 211 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 212 213 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 214 215 // Abbrev for TYPE_CODE_STRUCT_ANON. 216 Abbv = new BitCodeAbbrev(); 217 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 219 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 221 222 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 223 224 // Abbrev for TYPE_CODE_STRUCT_NAME. 225 Abbv = new BitCodeAbbrev(); 226 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 227 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 228 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 229 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 230 231 // Abbrev for TYPE_CODE_STRUCT_NAMED. 232 Abbv = new BitCodeAbbrev(); 233 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 237 238 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 239 240 // Abbrev for TYPE_CODE_ARRAY. 241 Abbv = new BitCodeAbbrev(); 242 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 243 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 245 246 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 247 248 // Emit an entry count so the reader can reserve space. 249 TypeVals.push_back(TypeList.size()); 250 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 251 TypeVals.clear(); 252 253 // Loop over all of the types, emitting each in turn. 254 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 255 Type *T = TypeList[i]; 256 int AbbrevToUse = 0; 257 unsigned Code = 0; 258 259 switch (T->getTypeID()) { 260 default: llvm_unreachable("Unknown type!"); 261 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 262 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 263 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 264 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 265 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 266 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 267 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 268 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 269 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 270 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 271 case Type::IntegerTyID: 272 // INTEGER: [width] 273 Code = bitc::TYPE_CODE_INTEGER; 274 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 275 break; 276 case Type::PointerTyID: { 277 PointerType *PTy = cast<PointerType>(T); 278 // POINTER: [pointee type, address space] 279 Code = bitc::TYPE_CODE_POINTER; 280 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 281 unsigned AddressSpace = PTy->getAddressSpace(); 282 TypeVals.push_back(AddressSpace); 283 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 284 break; 285 } 286 case Type::FunctionTyID: { 287 FunctionType *FT = cast<FunctionType>(T); 288 // FUNCTION: [isvararg, retty, paramty x N] 289 Code = bitc::TYPE_CODE_FUNCTION; 290 TypeVals.push_back(FT->isVarArg()); 291 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 292 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 293 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 294 AbbrevToUse = FunctionAbbrev; 295 break; 296 } 297 case Type::StructTyID: { 298 StructType *ST = cast<StructType>(T); 299 // STRUCT: [ispacked, eltty x N] 300 TypeVals.push_back(ST->isPacked()); 301 // Output all of the element types. 302 for (StructType::element_iterator I = ST->element_begin(), 303 E = ST->element_end(); I != E; ++I) 304 TypeVals.push_back(VE.getTypeID(*I)); 305 306 if (ST->isLiteral()) { 307 Code = bitc::TYPE_CODE_STRUCT_ANON; 308 AbbrevToUse = StructAnonAbbrev; 309 } else { 310 if (ST->isOpaque()) { 311 Code = bitc::TYPE_CODE_OPAQUE; 312 } else { 313 Code = bitc::TYPE_CODE_STRUCT_NAMED; 314 AbbrevToUse = StructNamedAbbrev; 315 } 316 317 // Emit the name if it is present. 318 if (!ST->getName().empty()) 319 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 320 StructNameAbbrev, Stream); 321 } 322 break; 323 } 324 case Type::ArrayTyID: { 325 ArrayType *AT = cast<ArrayType>(T); 326 // ARRAY: [numelts, eltty] 327 Code = bitc::TYPE_CODE_ARRAY; 328 TypeVals.push_back(AT->getNumElements()); 329 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 330 AbbrevToUse = ArrayAbbrev; 331 break; 332 } 333 case Type::VectorTyID: { 334 VectorType *VT = cast<VectorType>(T); 335 // VECTOR [numelts, eltty] 336 Code = bitc::TYPE_CODE_VECTOR; 337 TypeVals.push_back(VT->getNumElements()); 338 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 339 break; 340 } 341 } 342 343 // Emit the finished record. 344 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 345 TypeVals.clear(); 346 } 347 348 Stream.ExitBlock(); 349 } 350 351 static unsigned getEncodedLinkage(const GlobalValue *GV) { 352 switch (GV->getLinkage()) { 353 case GlobalValue::ExternalLinkage: return 0; 354 case GlobalValue::WeakAnyLinkage: return 1; 355 case GlobalValue::AppendingLinkage: return 2; 356 case GlobalValue::InternalLinkage: return 3; 357 case GlobalValue::LinkOnceAnyLinkage: return 4; 358 case GlobalValue::DLLImportLinkage: return 5; 359 case GlobalValue::DLLExportLinkage: return 6; 360 case GlobalValue::ExternalWeakLinkage: return 7; 361 case GlobalValue::CommonLinkage: return 8; 362 case GlobalValue::PrivateLinkage: return 9; 363 case GlobalValue::WeakODRLinkage: return 10; 364 case GlobalValue::LinkOnceODRLinkage: return 11; 365 case GlobalValue::AvailableExternallyLinkage: return 12; 366 case GlobalValue::LinkerPrivateLinkage: return 13; 367 case GlobalValue::LinkerPrivateWeakLinkage: return 14; 368 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: return 15; 369 } 370 llvm_unreachable("Invalid linkage"); 371 } 372 373 static unsigned getEncodedVisibility(const GlobalValue *GV) { 374 switch (GV->getVisibility()) { 375 case GlobalValue::DefaultVisibility: return 0; 376 case GlobalValue::HiddenVisibility: return 1; 377 case GlobalValue::ProtectedVisibility: return 2; 378 } 379 llvm_unreachable("Invalid visibility"); 380 } 381 382 // Emit top-level description of module, including target triple, inline asm, 383 // descriptors for global variables, and function prototype info. 384 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 385 BitstreamWriter &Stream) { 386 // Emit the list of dependent libraries for the Module. 387 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 388 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 389 390 // Emit various pieces of data attached to a module. 391 if (!M->getTargetTriple().empty()) 392 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 393 0/*TODO*/, Stream); 394 if (!M->getDataLayout().empty()) 395 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 396 0/*TODO*/, Stream); 397 if (!M->getModuleInlineAsm().empty()) 398 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 399 0/*TODO*/, Stream); 400 401 // Emit information about sections and GC, computing how many there are. Also 402 // compute the maximum alignment value. 403 std::map<std::string, unsigned> SectionMap; 404 std::map<std::string, unsigned> GCMap; 405 unsigned MaxAlignment = 0; 406 unsigned MaxGlobalType = 0; 407 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 408 GV != E; ++GV) { 409 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 410 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 411 if (GV->hasSection()) { 412 // Give section names unique ID's. 413 unsigned &Entry = SectionMap[GV->getSection()]; 414 if (!Entry) { 415 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 416 0/*TODO*/, Stream); 417 Entry = SectionMap.size(); 418 } 419 } 420 } 421 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 422 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 423 if (F->hasSection()) { 424 // Give section names unique ID's. 425 unsigned &Entry = SectionMap[F->getSection()]; 426 if (!Entry) { 427 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 428 0/*TODO*/, Stream); 429 Entry = SectionMap.size(); 430 } 431 } 432 if (F->hasGC()) { 433 // Same for GC names. 434 unsigned &Entry = GCMap[F->getGC()]; 435 if (!Entry) { 436 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(), 437 0/*TODO*/, Stream); 438 Entry = GCMap.size(); 439 } 440 } 441 } 442 443 // Emit abbrev for globals, now that we know # sections and max alignment. 444 unsigned SimpleGVarAbbrev = 0; 445 if (!M->global_empty()) { 446 // Add an abbrev for common globals with no visibility or thread localness. 447 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 448 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 450 Log2_32_Ceil(MaxGlobalType+1))); 451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 452 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 454 if (MaxAlignment == 0) // Alignment. 455 Abbv->Add(BitCodeAbbrevOp(0)); 456 else { 457 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 459 Log2_32_Ceil(MaxEncAlignment+1))); 460 } 461 if (SectionMap.empty()) // Section. 462 Abbv->Add(BitCodeAbbrevOp(0)); 463 else 464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 465 Log2_32_Ceil(SectionMap.size()+1))); 466 // Don't bother emitting vis + thread local. 467 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 468 } 469 470 // Emit the global variable information. 471 SmallVector<unsigned, 64> Vals; 472 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 473 GV != E; ++GV) { 474 unsigned AbbrevToUse = 0; 475 476 // GLOBALVAR: [type, isconst, initid, 477 // linkage, alignment, section, visibility, threadlocal, 478 // unnamed_addr] 479 Vals.push_back(VE.getTypeID(GV->getType())); 480 Vals.push_back(GV->isConstant()); 481 Vals.push_back(GV->isDeclaration() ? 0 : 482 (VE.getValueID(GV->getInitializer()) + 1)); 483 Vals.push_back(getEncodedLinkage(GV)); 484 Vals.push_back(Log2_32(GV->getAlignment())+1); 485 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 486 if (GV->isThreadLocal() || 487 GV->getVisibility() != GlobalValue::DefaultVisibility || 488 GV->hasUnnamedAddr()) { 489 Vals.push_back(getEncodedVisibility(GV)); 490 Vals.push_back(GV->isThreadLocal()); 491 Vals.push_back(GV->hasUnnamedAddr()); 492 } else { 493 AbbrevToUse = SimpleGVarAbbrev; 494 } 495 496 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 497 Vals.clear(); 498 } 499 500 // Emit the function proto information. 501 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 502 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 503 // section, visibility, gc, unnamed_addr] 504 Vals.push_back(VE.getTypeID(F->getType())); 505 Vals.push_back(F->getCallingConv()); 506 Vals.push_back(F->isDeclaration()); 507 Vals.push_back(getEncodedLinkage(F)); 508 Vals.push_back(VE.getAttributeID(F->getAttributes())); 509 Vals.push_back(Log2_32(F->getAlignment())+1); 510 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 511 Vals.push_back(getEncodedVisibility(F)); 512 Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0); 513 Vals.push_back(F->hasUnnamedAddr()); 514 515 unsigned AbbrevToUse = 0; 516 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 517 Vals.clear(); 518 } 519 520 // Emit the alias information. 521 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 522 AI != E; ++AI) { 523 // ALIAS: [alias type, aliasee val#, linkage, visibility] 524 Vals.push_back(VE.getTypeID(AI->getType())); 525 Vals.push_back(VE.getValueID(AI->getAliasee())); 526 Vals.push_back(getEncodedLinkage(AI)); 527 Vals.push_back(getEncodedVisibility(AI)); 528 unsigned AbbrevToUse = 0; 529 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 530 Vals.clear(); 531 } 532 } 533 534 static uint64_t GetOptimizationFlags(const Value *V) { 535 uint64_t Flags = 0; 536 537 if (const OverflowingBinaryOperator *OBO = 538 dyn_cast<OverflowingBinaryOperator>(V)) { 539 if (OBO->hasNoSignedWrap()) 540 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 541 if (OBO->hasNoUnsignedWrap()) 542 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 543 } else if (const PossiblyExactOperator *PEO = 544 dyn_cast<PossiblyExactOperator>(V)) { 545 if (PEO->isExact()) 546 Flags |= 1 << bitc::PEO_EXACT; 547 } 548 549 return Flags; 550 } 551 552 static void WriteMDNode(const MDNode *N, 553 const ValueEnumerator &VE, 554 BitstreamWriter &Stream, 555 SmallVector<uint64_t, 64> &Record) { 556 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 557 if (N->getOperand(i)) { 558 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 559 Record.push_back(VE.getValueID(N->getOperand(i))); 560 } else { 561 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 562 Record.push_back(0); 563 } 564 } 565 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 566 bitc::METADATA_NODE; 567 Stream.EmitRecord(MDCode, Record, 0); 568 Record.clear(); 569 } 570 571 static void WriteModuleMetadata(const Module *M, 572 const ValueEnumerator &VE, 573 BitstreamWriter &Stream) { 574 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 575 bool StartedMetadataBlock = false; 576 unsigned MDSAbbrev = 0; 577 SmallVector<uint64_t, 64> Record; 578 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 579 580 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 581 if (!N->isFunctionLocal() || !N->getFunction()) { 582 if (!StartedMetadataBlock) { 583 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 584 StartedMetadataBlock = true; 585 } 586 WriteMDNode(N, VE, Stream, Record); 587 } 588 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 589 if (!StartedMetadataBlock) { 590 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 591 592 // Abbrev for METADATA_STRING. 593 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 594 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 597 MDSAbbrev = Stream.EmitAbbrev(Abbv); 598 StartedMetadataBlock = true; 599 } 600 601 // Code: [strchar x N] 602 Record.append(MDS->begin(), MDS->end()); 603 604 // Emit the finished record. 605 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 606 Record.clear(); 607 } 608 } 609 610 // Write named metadata. 611 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 612 E = M->named_metadata_end(); I != E; ++I) { 613 const NamedMDNode *NMD = I; 614 if (!StartedMetadataBlock) { 615 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 616 StartedMetadataBlock = true; 617 } 618 619 // Write name. 620 StringRef Str = NMD->getName(); 621 for (unsigned i = 0, e = Str.size(); i != e; ++i) 622 Record.push_back(Str[i]); 623 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 624 Record.clear(); 625 626 // Write named metadata operands. 627 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 628 Record.push_back(VE.getValueID(NMD->getOperand(i))); 629 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 630 Record.clear(); 631 } 632 633 if (StartedMetadataBlock) 634 Stream.ExitBlock(); 635 } 636 637 static void WriteFunctionLocalMetadata(const Function &F, 638 const ValueEnumerator &VE, 639 BitstreamWriter &Stream) { 640 bool StartedMetadataBlock = false; 641 SmallVector<uint64_t, 64> Record; 642 const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues(); 643 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 644 if (const MDNode *N = Vals[i]) 645 if (N->isFunctionLocal() && N->getFunction() == &F) { 646 if (!StartedMetadataBlock) { 647 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 648 StartedMetadataBlock = true; 649 } 650 WriteMDNode(N, VE, Stream, Record); 651 } 652 653 if (StartedMetadataBlock) 654 Stream.ExitBlock(); 655 } 656 657 static void WriteMetadataAttachment(const Function &F, 658 const ValueEnumerator &VE, 659 BitstreamWriter &Stream) { 660 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 661 662 SmallVector<uint64_t, 64> Record; 663 664 // Write metadata attachments 665 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 666 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 667 668 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 669 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 670 I != E; ++I) { 671 MDs.clear(); 672 I->getAllMetadataOtherThanDebugLoc(MDs); 673 674 // If no metadata, ignore instruction. 675 if (MDs.empty()) continue; 676 677 Record.push_back(VE.getInstructionID(I)); 678 679 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 680 Record.push_back(MDs[i].first); 681 Record.push_back(VE.getValueID(MDs[i].second)); 682 } 683 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 684 Record.clear(); 685 } 686 687 Stream.ExitBlock(); 688 } 689 690 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 691 SmallVector<uint64_t, 64> Record; 692 693 // Write metadata kinds 694 // METADATA_KIND - [n x [id, name]] 695 SmallVector<StringRef, 4> Names; 696 M->getMDKindNames(Names); 697 698 if (Names.empty()) return; 699 700 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 701 702 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 703 Record.push_back(MDKindID); 704 StringRef KName = Names[MDKindID]; 705 Record.append(KName.begin(), KName.end()); 706 707 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 708 Record.clear(); 709 } 710 711 Stream.ExitBlock(); 712 } 713 714 static void EmitAPInt(SmallVectorImpl<uint64_t> &Vals, 715 unsigned &Code, unsigned &AbbrevToUse, const APInt &Val, 716 bool EmitSizeForWideNumbers = false 717 ) { 718 if (Val.getBitWidth() <= 64) { 719 uint64_t V = Val.getSExtValue(); 720 if ((int64_t)V >= 0) 721 Vals.push_back(V << 1); 722 else 723 Vals.push_back((-V << 1) | 1); 724 Code = bitc::CST_CODE_INTEGER; 725 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 726 } else { 727 // Wide integers, > 64 bits in size. 728 // We have an arbitrary precision integer value to write whose 729 // bit width is > 64. However, in canonical unsigned integer 730 // format it is likely that the high bits are going to be zero. 731 // So, we only write the number of active words. 732 unsigned NWords = Val.getActiveWords(); 733 734 if (EmitSizeForWideNumbers) 735 Vals.push_back(NWords); 736 737 const uint64_t *RawWords = Val.getRawData(); 738 for (unsigned i = 0; i != NWords; ++i) { 739 int64_t V = RawWords[i]; 740 if (V >= 0) 741 Vals.push_back(V << 1); 742 else 743 Vals.push_back((-V << 1) | 1); 744 } 745 Code = bitc::CST_CODE_WIDE_INTEGER; 746 } 747 } 748 749 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 750 const ValueEnumerator &VE, 751 BitstreamWriter &Stream, bool isGlobal) { 752 if (FirstVal == LastVal) return; 753 754 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 755 756 unsigned AggregateAbbrev = 0; 757 unsigned String8Abbrev = 0; 758 unsigned CString7Abbrev = 0; 759 unsigned CString6Abbrev = 0; 760 // If this is a constant pool for the module, emit module-specific abbrevs. 761 if (isGlobal) { 762 // Abbrev for CST_CODE_AGGREGATE. 763 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 764 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 767 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 768 769 // Abbrev for CST_CODE_STRING. 770 Abbv = new BitCodeAbbrev(); 771 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 774 String8Abbrev = Stream.EmitAbbrev(Abbv); 775 // Abbrev for CST_CODE_CSTRING. 776 Abbv = new BitCodeAbbrev(); 777 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 780 CString7Abbrev = Stream.EmitAbbrev(Abbv); 781 // Abbrev for CST_CODE_CSTRING. 782 Abbv = new BitCodeAbbrev(); 783 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 786 CString6Abbrev = Stream.EmitAbbrev(Abbv); 787 } 788 789 SmallVector<uint64_t, 64> Record; 790 791 const ValueEnumerator::ValueList &Vals = VE.getValues(); 792 Type *LastTy = 0; 793 for (unsigned i = FirstVal; i != LastVal; ++i) { 794 const Value *V = Vals[i].first; 795 // If we need to switch types, do so now. 796 if (V->getType() != LastTy) { 797 LastTy = V->getType(); 798 Record.push_back(VE.getTypeID(LastTy)); 799 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 800 CONSTANTS_SETTYPE_ABBREV); 801 Record.clear(); 802 } 803 804 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 805 Record.push_back(unsigned(IA->hasSideEffects()) | 806 unsigned(IA->isAlignStack()) << 1); 807 808 // Add the asm string. 809 const std::string &AsmStr = IA->getAsmString(); 810 Record.push_back(AsmStr.size()); 811 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 812 Record.push_back(AsmStr[i]); 813 814 // Add the constraint string. 815 const std::string &ConstraintStr = IA->getConstraintString(); 816 Record.push_back(ConstraintStr.size()); 817 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 818 Record.push_back(ConstraintStr[i]); 819 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 820 Record.clear(); 821 continue; 822 } 823 const Constant *C = cast<Constant>(V); 824 unsigned Code = -1U; 825 unsigned AbbrevToUse = 0; 826 if (C->isNullValue()) { 827 Code = bitc::CST_CODE_NULL; 828 } else if (isa<UndefValue>(C)) { 829 Code = bitc::CST_CODE_UNDEF; 830 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 831 EmitAPInt(Record, Code, AbbrevToUse, IV->getValue()); 832 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 833 Code = bitc::CST_CODE_FLOAT; 834 Type *Ty = CFP->getType(); 835 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 836 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 837 } else if (Ty->isX86_FP80Ty()) { 838 // api needed to prevent premature destruction 839 // bits are not in the same order as a normal i80 APInt, compensate. 840 APInt api = CFP->getValueAPF().bitcastToAPInt(); 841 const uint64_t *p = api.getRawData(); 842 Record.push_back((p[1] << 48) | (p[0] >> 16)); 843 Record.push_back(p[0] & 0xffffLL); 844 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 845 APInt api = CFP->getValueAPF().bitcastToAPInt(); 846 const uint64_t *p = api.getRawData(); 847 Record.push_back(p[0]); 848 Record.push_back(p[1]); 849 } else { 850 assert (0 && "Unknown FP type!"); 851 } 852 } else if (isa<ConstantDataSequential>(C) && 853 cast<ConstantDataSequential>(C)->isString()) { 854 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 855 // Emit constant strings specially. 856 unsigned NumElts = Str->getNumElements(); 857 // If this is a null-terminated string, use the denser CSTRING encoding. 858 if (Str->isCString()) { 859 Code = bitc::CST_CODE_CSTRING; 860 --NumElts; // Don't encode the null, which isn't allowed by char6. 861 } else { 862 Code = bitc::CST_CODE_STRING; 863 AbbrevToUse = String8Abbrev; 864 } 865 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 866 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 867 for (unsigned i = 0; i != NumElts; ++i) { 868 unsigned char V = Str->getElementAsInteger(i); 869 Record.push_back(V); 870 isCStr7 &= (V & 128) == 0; 871 if (isCStrChar6) 872 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 873 } 874 875 if (isCStrChar6) 876 AbbrevToUse = CString6Abbrev; 877 else if (isCStr7) 878 AbbrevToUse = CString7Abbrev; 879 } else if (const ConstantDataSequential *CDS = 880 dyn_cast<ConstantDataSequential>(C)) { 881 Code = bitc::CST_CODE_DATA; 882 Type *EltTy = CDS->getType()->getElementType(); 883 if (isa<IntegerType>(EltTy)) { 884 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 885 Record.push_back(CDS->getElementAsInteger(i)); 886 } else if (EltTy->isFloatTy()) { 887 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 888 union { float F; uint32_t I; }; 889 F = CDS->getElementAsFloat(i); 890 Record.push_back(I); 891 } 892 } else { 893 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 894 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 895 union { double F; uint64_t I; }; 896 F = CDS->getElementAsDouble(i); 897 Record.push_back(I); 898 } 899 } 900 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 901 isa<ConstantVector>(C)) { 902 Code = bitc::CST_CODE_AGGREGATE; 903 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 904 Record.push_back(VE.getValueID(C->getOperand(i))); 905 AbbrevToUse = AggregateAbbrev; 906 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 907 switch (CE->getOpcode()) { 908 default: 909 if (Instruction::isCast(CE->getOpcode())) { 910 Code = bitc::CST_CODE_CE_CAST; 911 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 912 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 913 Record.push_back(VE.getValueID(C->getOperand(0))); 914 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 915 } else { 916 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 917 Code = bitc::CST_CODE_CE_BINOP; 918 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 919 Record.push_back(VE.getValueID(C->getOperand(0))); 920 Record.push_back(VE.getValueID(C->getOperand(1))); 921 uint64_t Flags = GetOptimizationFlags(CE); 922 if (Flags != 0) 923 Record.push_back(Flags); 924 } 925 break; 926 case Instruction::GetElementPtr: 927 Code = bitc::CST_CODE_CE_GEP; 928 if (cast<GEPOperator>(C)->isInBounds()) 929 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 930 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 931 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 932 Record.push_back(VE.getValueID(C->getOperand(i))); 933 } 934 break; 935 case Instruction::Select: 936 Code = bitc::CST_CODE_CE_SELECT; 937 Record.push_back(VE.getValueID(C->getOperand(0))); 938 Record.push_back(VE.getValueID(C->getOperand(1))); 939 Record.push_back(VE.getValueID(C->getOperand(2))); 940 break; 941 case Instruction::ExtractElement: 942 Code = bitc::CST_CODE_CE_EXTRACTELT; 943 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 944 Record.push_back(VE.getValueID(C->getOperand(0))); 945 Record.push_back(VE.getValueID(C->getOperand(1))); 946 break; 947 case Instruction::InsertElement: 948 Code = bitc::CST_CODE_CE_INSERTELT; 949 Record.push_back(VE.getValueID(C->getOperand(0))); 950 Record.push_back(VE.getValueID(C->getOperand(1))); 951 Record.push_back(VE.getValueID(C->getOperand(2))); 952 break; 953 case Instruction::ShuffleVector: 954 // If the return type and argument types are the same, this is a 955 // standard shufflevector instruction. If the types are different, 956 // then the shuffle is widening or truncating the input vectors, and 957 // the argument type must also be encoded. 958 if (C->getType() == C->getOperand(0)->getType()) { 959 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 960 } else { 961 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 962 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 963 } 964 Record.push_back(VE.getValueID(C->getOperand(0))); 965 Record.push_back(VE.getValueID(C->getOperand(1))); 966 Record.push_back(VE.getValueID(C->getOperand(2))); 967 break; 968 case Instruction::ICmp: 969 case Instruction::FCmp: 970 Code = bitc::CST_CODE_CE_CMP; 971 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 972 Record.push_back(VE.getValueID(C->getOperand(0))); 973 Record.push_back(VE.getValueID(C->getOperand(1))); 974 Record.push_back(CE->getPredicate()); 975 break; 976 } 977 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 978 Code = bitc::CST_CODE_BLOCKADDRESS; 979 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 980 Record.push_back(VE.getValueID(BA->getFunction())); 981 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 982 } else { 983 #ifndef NDEBUG 984 C->dump(); 985 #endif 986 llvm_unreachable("Unknown constant!"); 987 } 988 Stream.EmitRecord(Code, Record, AbbrevToUse); 989 Record.clear(); 990 } 991 992 Stream.ExitBlock(); 993 } 994 995 static void WriteModuleConstants(const ValueEnumerator &VE, 996 BitstreamWriter &Stream) { 997 const ValueEnumerator::ValueList &Vals = VE.getValues(); 998 999 // Find the first constant to emit, which is the first non-globalvalue value. 1000 // We know globalvalues have been emitted by WriteModuleInfo. 1001 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1002 if (!isa<GlobalValue>(Vals[i].first)) { 1003 WriteConstants(i, Vals.size(), VE, Stream, true); 1004 return; 1005 } 1006 } 1007 } 1008 1009 /// PushValueAndType - The file has to encode both the value and type id for 1010 /// many values, because we need to know what type to create for forward 1011 /// references. However, most operands are not forward references, so this type 1012 /// field is not needed. 1013 /// 1014 /// This function adds V's value ID to Vals. If the value ID is higher than the 1015 /// instruction ID, then it is a forward reference, and it also includes the 1016 /// type ID. 1017 static bool PushValueAndType(const Value *V, unsigned InstID, 1018 SmallVector<unsigned, 64> &Vals, 1019 ValueEnumerator &VE) { 1020 unsigned ValID = VE.getValueID(V); 1021 Vals.push_back(ValID); 1022 if (ValID >= InstID) { 1023 Vals.push_back(VE.getTypeID(V->getType())); 1024 return true; 1025 } 1026 return false; 1027 } 1028 1029 /// WriteInstruction - Emit an instruction to the specified stream. 1030 static void WriteInstruction(const Instruction &I, unsigned InstID, 1031 ValueEnumerator &VE, BitstreamWriter &Stream, 1032 SmallVector<unsigned, 64> &Vals) { 1033 unsigned Code = 0; 1034 unsigned AbbrevToUse = 0; 1035 VE.setInstructionID(&I); 1036 switch (I.getOpcode()) { 1037 default: 1038 if (Instruction::isCast(I.getOpcode())) { 1039 Code = bitc::FUNC_CODE_INST_CAST; 1040 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1041 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1042 Vals.push_back(VE.getTypeID(I.getType())); 1043 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1044 } else { 1045 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1046 Code = bitc::FUNC_CODE_INST_BINOP; 1047 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1048 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1049 Vals.push_back(VE.getValueID(I.getOperand(1))); 1050 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1051 uint64_t Flags = GetOptimizationFlags(&I); 1052 if (Flags != 0) { 1053 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1054 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1055 Vals.push_back(Flags); 1056 } 1057 } 1058 break; 1059 1060 case Instruction::GetElementPtr: 1061 Code = bitc::FUNC_CODE_INST_GEP; 1062 if (cast<GEPOperator>(&I)->isInBounds()) 1063 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1064 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1065 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1066 break; 1067 case Instruction::ExtractValue: { 1068 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1069 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1070 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1071 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1072 Vals.push_back(*i); 1073 break; 1074 } 1075 case Instruction::InsertValue: { 1076 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1077 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1078 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1079 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1080 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1081 Vals.push_back(*i); 1082 break; 1083 } 1084 case Instruction::Select: 1085 Code = bitc::FUNC_CODE_INST_VSELECT; 1086 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1087 Vals.push_back(VE.getValueID(I.getOperand(2))); 1088 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1089 break; 1090 case Instruction::ExtractElement: 1091 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1092 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1093 Vals.push_back(VE.getValueID(I.getOperand(1))); 1094 break; 1095 case Instruction::InsertElement: 1096 Code = bitc::FUNC_CODE_INST_INSERTELT; 1097 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1098 Vals.push_back(VE.getValueID(I.getOperand(1))); 1099 Vals.push_back(VE.getValueID(I.getOperand(2))); 1100 break; 1101 case Instruction::ShuffleVector: 1102 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1103 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1104 Vals.push_back(VE.getValueID(I.getOperand(1))); 1105 Vals.push_back(VE.getValueID(I.getOperand(2))); 1106 break; 1107 case Instruction::ICmp: 1108 case Instruction::FCmp: 1109 // compare returning Int1Ty or vector of Int1Ty 1110 Code = bitc::FUNC_CODE_INST_CMP2; 1111 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1112 Vals.push_back(VE.getValueID(I.getOperand(1))); 1113 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1114 break; 1115 1116 case Instruction::Ret: 1117 { 1118 Code = bitc::FUNC_CODE_INST_RET; 1119 unsigned NumOperands = I.getNumOperands(); 1120 if (NumOperands == 0) 1121 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1122 else if (NumOperands == 1) { 1123 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1124 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1125 } else { 1126 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1127 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1128 } 1129 } 1130 break; 1131 case Instruction::Br: 1132 { 1133 Code = bitc::FUNC_CODE_INST_BR; 1134 BranchInst &II = cast<BranchInst>(I); 1135 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1136 if (II.isConditional()) { 1137 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1138 Vals.push_back(VE.getValueID(II.getCondition())); 1139 } 1140 } 1141 break; 1142 case Instruction::Switch: 1143 { 1144 // Redefine Vals, since here we need to use 64 bit values 1145 // explicitly to store large APInt numbers. 1146 SmallVector<uint64_t, 128> Vals64; 1147 1148 Code = bitc::FUNC_CODE_INST_SWITCH; 1149 SwitchInst &SI = cast<SwitchInst>(I); 1150 1151 uint32_t SwitchRecordHeader = SI.hash() | (SWITCH_INST_MAGIC << 16); 1152 Vals64.push_back(SwitchRecordHeader); 1153 1154 Vals64.push_back(VE.getTypeID(SI.getCondition()->getType())); 1155 Vals64.push_back(VE.getValueID(SI.getCondition())); 1156 Vals64.push_back(VE.getValueID(SI.getDefaultDest())); 1157 Vals64.push_back(SI.getNumCases()); 1158 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); 1159 i != e; ++i) { 1160 ConstantRangesSet CRS = i.getCaseValueEx(); 1161 Vals64.push_back(CRS.getNumItems()); 1162 for (unsigned ri = 0, rn = CRS.getNumItems(); ri != rn; ++ri) { 1163 ConstantRangesSet::Range r = CRS.getItem(ri); 1164 1165 Vals64.push_back(CRS.isSingleNumber(ri)); 1166 1167 const APInt &Low = r.Low; 1168 const APInt &High = r.High; 1169 unsigned Code, Abbrev; // will unused. 1170 1171 EmitAPInt(Vals64, Code, Abbrev, Low, true); 1172 if (r.Low != r.High) 1173 EmitAPInt(Vals64, Code, Abbrev, High, true); 1174 } 1175 Vals64.push_back(VE.getValueID(i.getCaseSuccessor())); 1176 } 1177 1178 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1179 1180 // Also do expected action - clear external Vals collection: 1181 Vals.clear(); 1182 return; 1183 } 1184 break; 1185 case Instruction::IndirectBr: 1186 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1187 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1188 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1189 Vals.push_back(VE.getValueID(I.getOperand(i))); 1190 break; 1191 1192 case Instruction::Invoke: { 1193 const InvokeInst *II = cast<InvokeInst>(&I); 1194 const Value *Callee(II->getCalledValue()); 1195 PointerType *PTy = cast<PointerType>(Callee->getType()); 1196 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1197 Code = bitc::FUNC_CODE_INST_INVOKE; 1198 1199 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1200 Vals.push_back(II->getCallingConv()); 1201 Vals.push_back(VE.getValueID(II->getNormalDest())); 1202 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1203 PushValueAndType(Callee, InstID, Vals, VE); 1204 1205 // Emit value #'s for the fixed parameters. 1206 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1207 Vals.push_back(VE.getValueID(I.getOperand(i))); // fixed param. 1208 1209 // Emit type/value pairs for varargs params. 1210 if (FTy->isVarArg()) { 1211 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1212 i != e; ++i) 1213 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1214 } 1215 break; 1216 } 1217 case Instruction::Resume: 1218 Code = bitc::FUNC_CODE_INST_RESUME; 1219 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1220 break; 1221 case Instruction::Unreachable: 1222 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1223 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1224 break; 1225 1226 case Instruction::PHI: { 1227 const PHINode &PN = cast<PHINode>(I); 1228 Code = bitc::FUNC_CODE_INST_PHI; 1229 Vals.push_back(VE.getTypeID(PN.getType())); 1230 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1231 Vals.push_back(VE.getValueID(PN.getIncomingValue(i))); 1232 Vals.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1233 } 1234 break; 1235 } 1236 1237 case Instruction::LandingPad: { 1238 const LandingPadInst &LP = cast<LandingPadInst>(I); 1239 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1240 Vals.push_back(VE.getTypeID(LP.getType())); 1241 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1242 Vals.push_back(LP.isCleanup()); 1243 Vals.push_back(LP.getNumClauses()); 1244 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1245 if (LP.isCatch(I)) 1246 Vals.push_back(LandingPadInst::Catch); 1247 else 1248 Vals.push_back(LandingPadInst::Filter); 1249 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1250 } 1251 break; 1252 } 1253 1254 case Instruction::Alloca: 1255 Code = bitc::FUNC_CODE_INST_ALLOCA; 1256 Vals.push_back(VE.getTypeID(I.getType())); 1257 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1258 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1259 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 1260 break; 1261 1262 case Instruction::Load: 1263 if (cast<LoadInst>(I).isAtomic()) { 1264 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1265 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1266 } else { 1267 Code = bitc::FUNC_CODE_INST_LOAD; 1268 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1269 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1270 } 1271 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1272 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1273 if (cast<LoadInst>(I).isAtomic()) { 1274 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1275 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1276 } 1277 break; 1278 case Instruction::Store: 1279 if (cast<StoreInst>(I).isAtomic()) 1280 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1281 else 1282 Code = bitc::FUNC_CODE_INST_STORE; 1283 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1284 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 1285 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1286 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1287 if (cast<StoreInst>(I).isAtomic()) { 1288 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1289 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1290 } 1291 break; 1292 case Instruction::AtomicCmpXchg: 1293 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1294 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1295 Vals.push_back(VE.getValueID(I.getOperand(1))); // cmp. 1296 Vals.push_back(VE.getValueID(I.getOperand(2))); // newval. 1297 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1298 Vals.push_back(GetEncodedOrdering( 1299 cast<AtomicCmpXchgInst>(I).getOrdering())); 1300 Vals.push_back(GetEncodedSynchScope( 1301 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1302 break; 1303 case Instruction::AtomicRMW: 1304 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1305 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1306 Vals.push_back(VE.getValueID(I.getOperand(1))); // val. 1307 Vals.push_back(GetEncodedRMWOperation( 1308 cast<AtomicRMWInst>(I).getOperation())); 1309 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1310 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1311 Vals.push_back(GetEncodedSynchScope( 1312 cast<AtomicRMWInst>(I).getSynchScope())); 1313 break; 1314 case Instruction::Fence: 1315 Code = bitc::FUNC_CODE_INST_FENCE; 1316 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1317 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1318 break; 1319 case Instruction::Call: { 1320 const CallInst &CI = cast<CallInst>(I); 1321 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1322 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1323 1324 Code = bitc::FUNC_CODE_INST_CALL; 1325 1326 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1327 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall())); 1328 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1329 1330 // Emit value #'s for the fixed parameters. 1331 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1332 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); // fixed param. 1333 1334 // Emit type/value pairs for varargs params. 1335 if (FTy->isVarArg()) { 1336 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1337 i != e; ++i) 1338 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1339 } 1340 break; 1341 } 1342 case Instruction::VAArg: 1343 Code = bitc::FUNC_CODE_INST_VAARG; 1344 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1345 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 1346 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1347 break; 1348 } 1349 1350 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1351 Vals.clear(); 1352 } 1353 1354 // Emit names for globals/functions etc. 1355 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1356 const ValueEnumerator &VE, 1357 BitstreamWriter &Stream) { 1358 if (VST.empty()) return; 1359 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1360 1361 // FIXME: Set up the abbrev, we know how many values there are! 1362 // FIXME: We know if the type names can use 7-bit ascii. 1363 SmallVector<unsigned, 64> NameVals; 1364 1365 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1366 SI != SE; ++SI) { 1367 1368 const ValueName &Name = *SI; 1369 1370 // Figure out the encoding to use for the name. 1371 bool is7Bit = true; 1372 bool isChar6 = true; 1373 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1374 C != E; ++C) { 1375 if (isChar6) 1376 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1377 if ((unsigned char)*C & 128) { 1378 is7Bit = false; 1379 break; // don't bother scanning the rest. 1380 } 1381 } 1382 1383 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1384 1385 // VST_ENTRY: [valueid, namechar x N] 1386 // VST_BBENTRY: [bbid, namechar x N] 1387 unsigned Code; 1388 if (isa<BasicBlock>(SI->getValue())) { 1389 Code = bitc::VST_CODE_BBENTRY; 1390 if (isChar6) 1391 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1392 } else { 1393 Code = bitc::VST_CODE_ENTRY; 1394 if (isChar6) 1395 AbbrevToUse = VST_ENTRY_6_ABBREV; 1396 else if (is7Bit) 1397 AbbrevToUse = VST_ENTRY_7_ABBREV; 1398 } 1399 1400 NameVals.push_back(VE.getValueID(SI->getValue())); 1401 for (const char *P = Name.getKeyData(), 1402 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1403 NameVals.push_back((unsigned char)*P); 1404 1405 // Emit the finished record. 1406 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1407 NameVals.clear(); 1408 } 1409 Stream.ExitBlock(); 1410 } 1411 1412 /// WriteFunction - Emit a function body to the module stream. 1413 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1414 BitstreamWriter &Stream) { 1415 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1416 VE.incorporateFunction(F); 1417 1418 SmallVector<unsigned, 64> Vals; 1419 1420 // Emit the number of basic blocks, so the reader can create them ahead of 1421 // time. 1422 Vals.push_back(VE.getBasicBlocks().size()); 1423 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1424 Vals.clear(); 1425 1426 // If there are function-local constants, emit them now. 1427 unsigned CstStart, CstEnd; 1428 VE.getFunctionConstantRange(CstStart, CstEnd); 1429 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1430 1431 // If there is function-local metadata, emit it now. 1432 WriteFunctionLocalMetadata(F, VE, Stream); 1433 1434 // Keep a running idea of what the instruction ID is. 1435 unsigned InstID = CstEnd; 1436 1437 bool NeedsMetadataAttachment = false; 1438 1439 DebugLoc LastDL; 1440 1441 // Finally, emit all the instructions, in order. 1442 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1443 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1444 I != E; ++I) { 1445 WriteInstruction(*I, InstID, VE, Stream, Vals); 1446 1447 if (!I->getType()->isVoidTy()) 1448 ++InstID; 1449 1450 // If the instruction has metadata, write a metadata attachment later. 1451 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1452 1453 // If the instruction has a debug location, emit it. 1454 DebugLoc DL = I->getDebugLoc(); 1455 if (DL.isUnknown()) { 1456 // nothing todo. 1457 } else if (DL == LastDL) { 1458 // Just repeat the same debug loc as last time. 1459 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1460 } else { 1461 MDNode *Scope, *IA; 1462 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1463 1464 Vals.push_back(DL.getLine()); 1465 Vals.push_back(DL.getCol()); 1466 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1467 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1468 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1469 Vals.clear(); 1470 1471 LastDL = DL; 1472 } 1473 } 1474 1475 // Emit names for all the instructions etc. 1476 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1477 1478 if (NeedsMetadataAttachment) 1479 WriteMetadataAttachment(F, VE, Stream); 1480 VE.purgeFunction(); 1481 Stream.ExitBlock(); 1482 } 1483 1484 // Emit blockinfo, which defines the standard abbreviations etc. 1485 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1486 // We only want to emit block info records for blocks that have multiple 1487 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 1488 // blocks can defined their abbrevs inline. 1489 Stream.EnterBlockInfoBlock(2); 1490 1491 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1492 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1497 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1498 Abbv) != VST_ENTRY_8_ABBREV) 1499 llvm_unreachable("Unexpected abbrev ordering!"); 1500 } 1501 1502 { // 7-bit fixed width VST_ENTRY strings. 1503 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1504 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1505 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1506 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1507 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1508 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1509 Abbv) != VST_ENTRY_7_ABBREV) 1510 llvm_unreachable("Unexpected abbrev ordering!"); 1511 } 1512 { // 6-bit char6 VST_ENTRY strings. 1513 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1514 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1518 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1519 Abbv) != VST_ENTRY_6_ABBREV) 1520 llvm_unreachable("Unexpected abbrev ordering!"); 1521 } 1522 { // 6-bit char6 VST_BBENTRY strings. 1523 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1524 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1528 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1529 Abbv) != VST_BBENTRY_6_ABBREV) 1530 llvm_unreachable("Unexpected abbrev ordering!"); 1531 } 1532 1533 1534 1535 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1536 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1537 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1539 Log2_32_Ceil(VE.getTypes().size()+1))); 1540 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1541 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1542 llvm_unreachable("Unexpected abbrev ordering!"); 1543 } 1544 1545 { // INTEGER abbrev for CONSTANTS_BLOCK. 1546 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1547 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1549 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1550 Abbv) != CONSTANTS_INTEGER_ABBREV) 1551 llvm_unreachable("Unexpected abbrev ordering!"); 1552 } 1553 1554 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1555 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1556 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1559 Log2_32_Ceil(VE.getTypes().size()+1))); 1560 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1561 1562 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1563 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1564 llvm_unreachable("Unexpected abbrev ordering!"); 1565 } 1566 { // NULL abbrev for CONSTANTS_BLOCK. 1567 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1568 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1569 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1570 Abbv) != CONSTANTS_NULL_Abbrev) 1571 llvm_unreachable("Unexpected abbrev ordering!"); 1572 } 1573 1574 // FIXME: This should only use space for first class types! 1575 1576 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1577 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1578 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1581 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1582 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1583 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1584 llvm_unreachable("Unexpected abbrev ordering!"); 1585 } 1586 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1587 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1588 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1591 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1592 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1593 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1594 llvm_unreachable("Unexpected abbrev ordering!"); 1595 } 1596 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1597 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1598 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1600 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1603 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1604 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1605 llvm_unreachable("Unexpected abbrev ordering!"); 1606 } 1607 { // INST_CAST abbrev for FUNCTION_BLOCK. 1608 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1609 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1610 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1611 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1612 Log2_32_Ceil(VE.getTypes().size()+1))); 1613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1614 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1615 Abbv) != FUNCTION_INST_CAST_ABBREV) 1616 llvm_unreachable("Unexpected abbrev ordering!"); 1617 } 1618 1619 { // INST_RET abbrev for FUNCTION_BLOCK. 1620 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1621 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1622 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1623 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1624 llvm_unreachable("Unexpected abbrev ordering!"); 1625 } 1626 { // INST_RET abbrev for FUNCTION_BLOCK. 1627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1628 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1630 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1631 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1632 llvm_unreachable("Unexpected abbrev ordering!"); 1633 } 1634 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1635 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1636 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1637 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1638 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1639 llvm_unreachable("Unexpected abbrev ordering!"); 1640 } 1641 1642 Stream.ExitBlock(); 1643 } 1644 1645 // Sort the Users based on the order in which the reader parses the bitcode 1646 // file. 1647 static bool bitcodereader_order(const User *lhs, const User *rhs) { 1648 // TODO: Implement. 1649 return true; 1650 } 1651 1652 static void WriteUseList(const Value *V, const ValueEnumerator &VE, 1653 BitstreamWriter &Stream) { 1654 1655 // One or zero uses can't get out of order. 1656 if (V->use_empty() || V->hasNUses(1)) 1657 return; 1658 1659 // Make a copy of the in-memory use-list for sorting. 1660 unsigned UseListSize = std::distance(V->use_begin(), V->use_end()); 1661 SmallVector<const User*, 8> UseList; 1662 UseList.reserve(UseListSize); 1663 for (Value::const_use_iterator I = V->use_begin(), E = V->use_end(); 1664 I != E; ++I) { 1665 const User *U = *I; 1666 UseList.push_back(U); 1667 } 1668 1669 // Sort the copy based on the order read by the BitcodeReader. 1670 std::sort(UseList.begin(), UseList.end(), bitcodereader_order); 1671 1672 // TODO: Generate a diff between the BitcodeWriter in-memory use-list and the 1673 // sorted list (i.e., the expected BitcodeReader in-memory use-list). 1674 1675 // TODO: Emit the USELIST_CODE_ENTRYs. 1676 } 1677 1678 static void WriteFunctionUseList(const Function *F, ValueEnumerator &VE, 1679 BitstreamWriter &Stream) { 1680 VE.incorporateFunction(*F); 1681 1682 for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end(); 1683 AI != AE; ++AI) 1684 WriteUseList(AI, VE, Stream); 1685 for (Function::const_iterator BB = F->begin(), FE = F->end(); BB != FE; 1686 ++BB) { 1687 WriteUseList(BB, VE, Stream); 1688 for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); II != IE; 1689 ++II) { 1690 WriteUseList(II, VE, Stream); 1691 for (User::const_op_iterator OI = II->op_begin(), E = II->op_end(); 1692 OI != E; ++OI) { 1693 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || 1694 isa<InlineAsm>(*OI)) 1695 WriteUseList(*OI, VE, Stream); 1696 } 1697 } 1698 } 1699 VE.purgeFunction(); 1700 } 1701 1702 // Emit use-lists. 1703 static void WriteModuleUseLists(const Module *M, ValueEnumerator &VE, 1704 BitstreamWriter &Stream) { 1705 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1706 1707 // XXX: this modifies the module, but in a way that should never change the 1708 // behavior of any pass or codegen in LLVM. The problem is that GVs may 1709 // contain entries in the use_list that do not exist in the Module and are 1710 // not stored in the .bc file. 1711 for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); 1712 I != E; ++I) 1713 I->removeDeadConstantUsers(); 1714 1715 // Write the global variables. 1716 for (Module::const_global_iterator GI = M->global_begin(), 1717 GE = M->global_end(); GI != GE; ++GI) { 1718 WriteUseList(GI, VE, Stream); 1719 1720 // Write the global variable initializers. 1721 if (GI->hasInitializer()) 1722 WriteUseList(GI->getInitializer(), VE, Stream); 1723 } 1724 1725 // Write the functions. 1726 for (Module::const_iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) { 1727 WriteUseList(FI, VE, Stream); 1728 if (!FI->isDeclaration()) 1729 WriteFunctionUseList(FI, VE, Stream); 1730 } 1731 1732 // Write the aliases. 1733 for (Module::const_alias_iterator AI = M->alias_begin(), AE = M->alias_end(); 1734 AI != AE; ++AI) { 1735 WriteUseList(AI, VE, Stream); 1736 WriteUseList(AI->getAliasee(), VE, Stream); 1737 } 1738 1739 Stream.ExitBlock(); 1740 } 1741 1742 /// WriteModule - Emit the specified module to the bitstream. 1743 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1744 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1745 1746 // Emit the version number if it is non-zero. 1747 if (CurVersion) { 1748 SmallVector<unsigned, 1> Vals; 1749 Vals.push_back(CurVersion); 1750 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1751 } 1752 1753 // Analyze the module, enumerating globals, functions, etc. 1754 ValueEnumerator VE(M); 1755 1756 // Emit blockinfo, which defines the standard abbreviations etc. 1757 WriteBlockInfo(VE, Stream); 1758 1759 // Emit information about parameter attributes. 1760 WriteAttributeTable(VE, Stream); 1761 1762 // Emit information describing all of the types in the module. 1763 WriteTypeTable(VE, Stream); 1764 1765 // Emit top-level description of module, including target triple, inline asm, 1766 // descriptors for global variables, and function prototype info. 1767 WriteModuleInfo(M, VE, Stream); 1768 1769 // Emit constants. 1770 WriteModuleConstants(VE, Stream); 1771 1772 // Emit metadata. 1773 WriteModuleMetadata(M, VE, Stream); 1774 1775 // Emit metadata. 1776 WriteModuleMetadataStore(M, Stream); 1777 1778 // Emit names for globals/functions etc. 1779 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1780 1781 // Emit use-lists. 1782 if (EnablePreserveUseListOrdering) 1783 WriteModuleUseLists(M, VE, Stream); 1784 1785 // Emit function bodies. 1786 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1787 if (!F->isDeclaration()) 1788 WriteFunction(*F, VE, Stream); 1789 1790 Stream.ExitBlock(); 1791 } 1792 1793 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1794 /// header and trailer to make it compatible with the system archiver. To do 1795 /// this we emit the following header, and then emit a trailer that pads the 1796 /// file out to be a multiple of 16 bytes. 1797 /// 1798 /// struct bc_header { 1799 /// uint32_t Magic; // 0x0B17C0DE 1800 /// uint32_t Version; // Version, currently always 0. 1801 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1802 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1803 /// uint32_t CPUType; // CPU specifier. 1804 /// ... potentially more later ... 1805 /// }; 1806 enum { 1807 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1808 DarwinBCHeaderSize = 5*4 1809 }; 1810 1811 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1812 uint32_t &Position) { 1813 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1814 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1815 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1816 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1817 Position += 4; 1818 } 1819 1820 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1821 const Triple &TT) { 1822 unsigned CPUType = ~0U; 1823 1824 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1825 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1826 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1827 // specific constants here because they are implicitly part of the Darwin ABI. 1828 enum { 1829 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1830 DARWIN_CPU_TYPE_X86 = 7, 1831 DARWIN_CPU_TYPE_ARM = 12, 1832 DARWIN_CPU_TYPE_POWERPC = 18 1833 }; 1834 1835 Triple::ArchType Arch = TT.getArch(); 1836 if (Arch == Triple::x86_64) 1837 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1838 else if (Arch == Triple::x86) 1839 CPUType = DARWIN_CPU_TYPE_X86; 1840 else if (Arch == Triple::ppc) 1841 CPUType = DARWIN_CPU_TYPE_POWERPC; 1842 else if (Arch == Triple::ppc64) 1843 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1844 else if (Arch == Triple::arm || Arch == Triple::thumb) 1845 CPUType = DARWIN_CPU_TYPE_ARM; 1846 1847 // Traditional Bitcode starts after header. 1848 assert(Buffer.size() >= DarwinBCHeaderSize && 1849 "Expected header size to be reserved"); 1850 unsigned BCOffset = DarwinBCHeaderSize; 1851 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1852 1853 // Write the magic and version. 1854 unsigned Position = 0; 1855 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1856 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1857 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1858 WriteInt32ToBuffer(BCSize , Buffer, Position); 1859 WriteInt32ToBuffer(CPUType , Buffer, Position); 1860 1861 // If the file is not a multiple of 16 bytes, insert dummy padding. 1862 while (Buffer.size() & 15) 1863 Buffer.push_back(0); 1864 } 1865 1866 /// WriteBitcodeToFile - Write the specified module to the specified output 1867 /// stream. 1868 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 1869 SmallVector<char, 1024> Buffer; 1870 Buffer.reserve(256*1024); 1871 1872 // If this is darwin or another generic macho target, reserve space for the 1873 // header. 1874 Triple TT(M->getTargetTriple()); 1875 if (TT.isOSDarwin()) 1876 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 1877 1878 // Emit the module into the buffer. 1879 { 1880 BitstreamWriter Stream(Buffer); 1881 1882 // Emit the file header. 1883 Stream.Emit((unsigned)'B', 8); 1884 Stream.Emit((unsigned)'C', 8); 1885 Stream.Emit(0x0, 4); 1886 Stream.Emit(0xC, 4); 1887 Stream.Emit(0xE, 4); 1888 Stream.Emit(0xD, 4); 1889 1890 // Emit the module. 1891 WriteModule(M, Stream); 1892 } 1893 1894 if (TT.isOSDarwin()) 1895 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 1896 1897 // Write the generated bitstream to "Out". 1898 Out.write((char*)&Buffer.front(), Buffer.size()); 1899 } 1900