1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/ConstantRangeList.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/MC/TargetRegistry.h" 62 #include "llvm/Object/IRSymtab.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/MathExtras.h" 70 #include "llvm/Support/SHA1.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/TargetParser/Triple.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <iterator> 78 #include <map> 79 #include <memory> 80 #include <optional> 81 #include <string> 82 #include <utility> 83 #include <vector> 84 85 using namespace llvm; 86 87 static cl::opt<unsigned> 88 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 89 cl::desc("Number of metadatas above which we emit an index " 90 "to enable lazy-loading")); 91 static cl::opt<uint32_t> FlushThreshold( 92 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 93 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 94 95 static cl::opt<bool> WriteRelBFToSummary( 96 "write-relbf-to-summary", cl::Hidden, cl::init(false), 97 cl::desc("Write relative block frequency to function summary ")); 98 99 namespace llvm { 100 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 101 } 102 103 extern bool WriteNewDbgInfoFormatToBitcode; 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 /// These are manifest constants used by the bitcode writer. They do not need to 109 /// be kept in sync with the reader, but need to be consistent within this file. 110 enum { 111 // VALUE_SYMTAB_BLOCK abbrev id's. 112 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 113 VST_ENTRY_7_ABBREV, 114 VST_ENTRY_6_ABBREV, 115 VST_BBENTRY_6_ABBREV, 116 117 // CONSTANTS_BLOCK abbrev id's. 118 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 119 CONSTANTS_INTEGER_ABBREV, 120 CONSTANTS_CE_CAST_Abbrev, 121 CONSTANTS_NULL_Abbrev, 122 123 // FUNCTION_BLOCK abbrev id's. 124 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 125 FUNCTION_INST_UNOP_ABBREV, 126 FUNCTION_INST_UNOP_FLAGS_ABBREV, 127 FUNCTION_INST_BINOP_ABBREV, 128 FUNCTION_INST_BINOP_FLAGS_ABBREV, 129 FUNCTION_INST_CAST_ABBREV, 130 FUNCTION_INST_CAST_FLAGS_ABBREV, 131 FUNCTION_INST_RET_VOID_ABBREV, 132 FUNCTION_INST_RET_VAL_ABBREV, 133 FUNCTION_INST_UNREACHABLE_ABBREV, 134 FUNCTION_INST_GEP_ABBREV, 135 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 136 }; 137 138 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 139 /// file type. 140 class BitcodeWriterBase { 141 protected: 142 /// The stream created and owned by the client. 143 BitstreamWriter &Stream; 144 145 StringTableBuilder &StrtabBuilder; 146 147 public: 148 /// Constructs a BitcodeWriterBase object that writes to the provided 149 /// \p Stream. 150 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 151 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 152 153 protected: 154 void writeModuleVersion(); 155 }; 156 157 void BitcodeWriterBase::writeModuleVersion() { 158 // VERSION: [version#] 159 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 160 } 161 162 /// Base class to manage the module bitcode writing, currently subclassed for 163 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 164 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 165 protected: 166 /// The Module to write to bitcode. 167 const Module &M; 168 169 /// Enumerates ids for all values in the module. 170 ValueEnumerator VE; 171 172 /// Optional per-module index to write for ThinLTO. 173 const ModuleSummaryIndex *Index; 174 175 /// Map that holds the correspondence between GUIDs in the summary index, 176 /// that came from indirect call profiles, and a value id generated by this 177 /// class to use in the VST and summary block records. 178 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 179 180 /// Tracks the last value id recorded in the GUIDToValueMap. 181 unsigned GlobalValueId; 182 183 /// Saves the offset of the VSTOffset record that must eventually be 184 /// backpatched with the offset of the actual VST. 185 uint64_t VSTOffsetPlaceholder = 0; 186 187 public: 188 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 189 /// writing to the provided \p Buffer. 190 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 191 BitstreamWriter &Stream, 192 bool ShouldPreserveUseListOrder, 193 const ModuleSummaryIndex *Index) 194 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 195 VE(M, ShouldPreserveUseListOrder), Index(Index) { 196 // Assign ValueIds to any callee values in the index that came from 197 // indirect call profiles and were recorded as a GUID not a Value* 198 // (which would have been assigned an ID by the ValueEnumerator). 199 // The starting ValueId is just after the number of values in the 200 // ValueEnumerator, so that they can be emitted in the VST. 201 GlobalValueId = VE.getValues().size(); 202 if (!Index) 203 return; 204 for (const auto &GUIDSummaryLists : *Index) 205 // Examine all summaries for this GUID. 206 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 207 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 208 // For each call in the function summary, see if the call 209 // is to a GUID (which means it is for an indirect call, 210 // otherwise we would have a Value for it). If so, synthesize 211 // a value id. 212 for (auto &CallEdge : FS->calls()) 213 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 214 assignValueId(CallEdge.first.getGUID()); 215 216 // For each referenced variables in the function summary, see if the 217 // variable is represented by a GUID (as opposed to a symbol to 218 // declarations or definitions in the module). If so, synthesize a 219 // value id. 220 for (auto &RefEdge : FS->refs()) 221 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 222 assignValueId(RefEdge.getGUID()); 223 } 224 } 225 226 protected: 227 void writePerModuleGlobalValueSummary(); 228 229 private: 230 void writePerModuleFunctionSummaryRecord( 231 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 232 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 233 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 234 void writeModuleLevelReferences(const GlobalVariable &V, 235 SmallVector<uint64_t, 64> &NameVals, 236 unsigned FSModRefsAbbrev, 237 unsigned FSModVTableRefsAbbrev); 238 239 void assignValueId(GlobalValue::GUID ValGUID) { 240 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 241 } 242 243 unsigned getValueId(GlobalValue::GUID ValGUID) { 244 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 245 // Expect that any GUID value had a value Id assigned by an 246 // earlier call to assignValueId. 247 assert(VMI != GUIDToValueIdMap.end() && 248 "GUID does not have assigned value Id"); 249 return VMI->second; 250 } 251 252 // Helper to get the valueId for the type of value recorded in VI. 253 unsigned getValueId(ValueInfo VI) { 254 if (!VI.haveGVs() || !VI.getValue()) 255 return getValueId(VI.getGUID()); 256 return VE.getValueID(VI.getValue()); 257 } 258 259 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 260 }; 261 262 /// Class to manage the bitcode writing for a module. 263 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 264 /// True if a module hash record should be written. 265 bool GenerateHash; 266 267 /// If non-null, when GenerateHash is true, the resulting hash is written 268 /// into ModHash. 269 ModuleHash *ModHash; 270 271 SHA1 Hasher; 272 273 /// The start bit of the identification block. 274 uint64_t BitcodeStartBit; 275 276 public: 277 /// Constructs a ModuleBitcodeWriter object for the given Module, 278 /// writing to the provided \p Buffer. 279 ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 280 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 281 const ModuleSummaryIndex *Index, bool GenerateHash, 282 ModuleHash *ModHash = nullptr) 283 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 284 ShouldPreserveUseListOrder, Index), 285 GenerateHash(GenerateHash), ModHash(ModHash), 286 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 287 288 /// Emit the current module to the bitstream. 289 void write(); 290 291 private: 292 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 293 294 size_t addToStrtab(StringRef Str); 295 296 void writeAttributeGroupTable(); 297 void writeAttributeTable(); 298 void writeTypeTable(); 299 void writeComdats(); 300 void writeValueSymbolTableForwardDecl(); 301 void writeModuleInfo(); 302 void writeValueAsMetadata(const ValueAsMetadata *MD, 303 SmallVectorImpl<uint64_t> &Record); 304 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 unsigned createDILocationAbbrev(); 307 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned &Abbrev); 309 unsigned createGenericDINodeAbbrev(); 310 void writeGenericDINode(const GenericDINode *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 312 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 313 unsigned Abbrev); 314 void writeDIGenericSubrange(const DIGenericSubrange *N, 315 SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIEnumerator(const DIEnumerator *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDIStringType(const DIStringType *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDIDerivedType(const DIDerivedType *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDICompositeType(const DICompositeType *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDISubroutineType(const DISubroutineType *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDICompileUnit(const DICompileUnit *N, 333 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 334 void writeDISubprogram(const DISubprogram *N, 335 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 336 void writeDILexicalBlock(const DILexicalBlock *N, 337 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 338 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDICommonBlock(const DICommonBlock *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 348 unsigned Abbrev); 349 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 350 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 353 unsigned Abbrev); 354 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 355 SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIGlobalVariable(const DIGlobalVariable *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDILocalVariable(const DILocalVariable *N, 364 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 365 void writeDILabel(const DILabel *N, 366 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 367 void writeDIExpression(const DIExpression *N, 368 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 369 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 370 SmallVectorImpl<uint64_t> &Record, 371 unsigned Abbrev); 372 void writeDIObjCProperty(const DIObjCProperty *N, 373 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 374 void writeDIImportedEntity(const DIImportedEntity *N, 375 SmallVectorImpl<uint64_t> &Record, 376 unsigned Abbrev); 377 unsigned createNamedMetadataAbbrev(); 378 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 379 unsigned createMetadataStringsAbbrev(); 380 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 381 SmallVectorImpl<uint64_t> &Record); 382 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 383 SmallVectorImpl<uint64_t> &Record, 384 std::vector<unsigned> *MDAbbrevs = nullptr, 385 std::vector<uint64_t> *IndexPos = nullptr); 386 void writeModuleMetadata(); 387 void writeFunctionMetadata(const Function &F); 388 void writeFunctionMetadataAttachment(const Function &F); 389 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 390 const GlobalObject &GO); 391 void writeModuleMetadataKinds(); 392 void writeOperandBundleTags(); 393 void writeSyncScopeNames(); 394 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 395 void writeModuleConstants(); 396 bool pushValueAndType(const Value *V, unsigned InstID, 397 SmallVectorImpl<unsigned> &Vals); 398 void writeOperandBundles(const CallBase &CB, unsigned InstID); 399 void pushValue(const Value *V, unsigned InstID, 400 SmallVectorImpl<unsigned> &Vals); 401 void pushValueSigned(const Value *V, unsigned InstID, 402 SmallVectorImpl<uint64_t> &Vals); 403 void writeInstruction(const Instruction &I, unsigned InstID, 404 SmallVectorImpl<unsigned> &Vals); 405 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 406 void writeGlobalValueSymbolTable( 407 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 408 void writeUseList(UseListOrder &&Order); 409 void writeUseListBlock(const Function *F); 410 void 411 writeFunction(const Function &F, 412 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 413 void writeBlockInfo(); 414 void writeModuleHash(StringRef View); 415 416 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 417 return unsigned(SSID); 418 } 419 420 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 421 }; 422 423 /// Class to manage the bitcode writing for a combined index. 424 class IndexBitcodeWriter : public BitcodeWriterBase { 425 /// The combined index to write to bitcode. 426 const ModuleSummaryIndex &Index; 427 428 /// When writing combined summaries, provides the set of global value 429 /// summaries for which the value (function, function alias, etc) should be 430 /// imported as a declaration. 431 const GVSummaryPtrSet *DecSummaries = nullptr; 432 433 /// When writing a subset of the index for distributed backends, client 434 /// provides a map of modules to the corresponding GUIDs/summaries to write. 435 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; 436 437 /// Map that holds the correspondence between the GUID used in the combined 438 /// index and a value id generated by this class to use in references. 439 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 440 441 // The stack ids used by this index, which will be a subset of those in 442 // the full index in the case of distributed indexes. 443 std::vector<uint64_t> StackIds; 444 445 // Keep a map of the stack id indices used by records being written for this 446 // index to the index of the corresponding stack id in the above StackIds 447 // vector. Ensures we write each referenced stack id once. 448 DenseMap<unsigned, unsigned> StackIdIndicesToIndex; 449 450 /// Tracks the last value id recorded in the GUIDToValueMap. 451 unsigned GlobalValueId = 0; 452 453 /// Tracks the assignment of module paths in the module path string table to 454 /// an id assigned for use in summary references to the module path. 455 DenseMap<StringRef, uint64_t> ModuleIdMap; 456 457 public: 458 /// Constructs a IndexBitcodeWriter object for the given combined index, 459 /// writing to the provided \p Buffer. When writing a subset of the index 460 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 461 /// If provided, \p DecSummaries specifies the set of summaries for which 462 /// the corresponding functions or aliased functions should be imported as a 463 /// declaration (but not definition) for each module. 464 IndexBitcodeWriter( 465 BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 466 const ModuleSummaryIndex &Index, 467 const GVSummaryPtrSet *DecSummaries = nullptr, 468 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) 469 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 470 DecSummaries(DecSummaries), 471 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 472 473 // See if the StackIdIndex was already added to the StackId map and 474 // vector. If not, record it. 475 auto RecordStackIdReference = [&](unsigned StackIdIndex) { 476 // If the StackIdIndex is not yet in the map, the below insert ensures 477 // that it will point to the new StackIds vector entry we push to just 478 // below. 479 auto Inserted = 480 StackIdIndicesToIndex.insert({StackIdIndex, StackIds.size()}); 481 if (Inserted.second) 482 StackIds.push_back(Index.getStackIdAtIndex(StackIdIndex)); 483 }; 484 485 // Assign unique value ids to all summaries to be written, for use 486 // in writing out the call graph edges. Save the mapping from GUID 487 // to the new global value id to use when writing those edges, which 488 // are currently saved in the index in terms of GUID. 489 forEachSummary([&](GVInfo I, bool IsAliasee) { 490 GUIDToValueIdMap[I.first] = ++GlobalValueId; 491 if (IsAliasee) 492 return; 493 auto *FS = dyn_cast<FunctionSummary>(I.second); 494 if (!FS) 495 return; 496 // Record all stack id indices actually used in the summary entries being 497 // written, so that we can compact them in the case of distributed ThinLTO 498 // indexes. 499 for (auto &CI : FS->callsites()) { 500 // If the stack id list is empty, this callsite info was synthesized for 501 // a missing tail call frame. Ensure that the callee's GUID gets a value 502 // id. Normally we only generate these for defined summaries, which in 503 // the case of distributed ThinLTO is only the functions already defined 504 // in the module or that we want to import. We don't bother to include 505 // all the callee symbols as they aren't normally needed in the backend. 506 // However, for the synthesized callsite infos we do need the callee 507 // GUID in the backend so that we can correlate the identified callee 508 // with this callsite info (which for non-tail calls is done by the 509 // ordering of the callsite infos and verified via stack ids). 510 if (CI.StackIdIndices.empty()) { 511 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 512 continue; 513 } 514 for (auto Idx : CI.StackIdIndices) 515 RecordStackIdReference(Idx); 516 } 517 for (auto &AI : FS->allocs()) 518 for (auto &MIB : AI.MIBs) 519 for (auto Idx : MIB.StackIdIndices) 520 RecordStackIdReference(Idx); 521 }); 522 } 523 524 /// The below iterator returns the GUID and associated summary. 525 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 526 527 /// Calls the callback for each value GUID and summary to be written to 528 /// bitcode. This hides the details of whether they are being pulled from the 529 /// entire index or just those in a provided ModuleToSummariesForIndex map. 530 template<typename Functor> 531 void forEachSummary(Functor Callback) { 532 if (ModuleToSummariesForIndex) { 533 for (auto &M : *ModuleToSummariesForIndex) 534 for (auto &Summary : M.second) { 535 Callback(Summary, false); 536 // Ensure aliasee is handled, e.g. for assigning a valueId, 537 // even if we are not importing the aliasee directly (the 538 // imported alias will contain a copy of aliasee). 539 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 540 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 541 } 542 } else { 543 for (auto &Summaries : Index) 544 for (auto &Summary : Summaries.second.SummaryList) 545 Callback({Summaries.first, Summary.get()}, false); 546 } 547 } 548 549 /// Calls the callback for each entry in the modulePaths StringMap that 550 /// should be written to the module path string table. This hides the details 551 /// of whether they are being pulled from the entire index or just those in a 552 /// provided ModuleToSummariesForIndex map. 553 template <typename Functor> void forEachModule(Functor Callback) { 554 if (ModuleToSummariesForIndex) { 555 for (const auto &M : *ModuleToSummariesForIndex) { 556 const auto &MPI = Index.modulePaths().find(M.first); 557 if (MPI == Index.modulePaths().end()) { 558 // This should only happen if the bitcode file was empty, in which 559 // case we shouldn't be importing (the ModuleToSummariesForIndex 560 // would only include the module we are writing and index for). 561 assert(ModuleToSummariesForIndex->size() == 1); 562 continue; 563 } 564 Callback(*MPI); 565 } 566 } else { 567 // Since StringMap iteration order isn't guaranteed, order by path string 568 // first. 569 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 570 // map lookup. 571 std::vector<StringRef> ModulePaths; 572 for (auto &[ModPath, _] : Index.modulePaths()) 573 ModulePaths.push_back(ModPath); 574 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 575 for (auto &ModPath : ModulePaths) 576 Callback(*Index.modulePaths().find(ModPath)); 577 } 578 } 579 580 /// Main entry point for writing a combined index to bitcode. 581 void write(); 582 583 private: 584 void writeModStrings(); 585 void writeCombinedGlobalValueSummary(); 586 587 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 588 auto VMI = GUIDToValueIdMap.find(ValGUID); 589 if (VMI == GUIDToValueIdMap.end()) 590 return std::nullopt; 591 return VMI->second; 592 } 593 594 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 595 }; 596 597 } // end anonymous namespace 598 599 static unsigned getEncodedCastOpcode(unsigned Opcode) { 600 switch (Opcode) { 601 default: llvm_unreachable("Unknown cast instruction!"); 602 case Instruction::Trunc : return bitc::CAST_TRUNC; 603 case Instruction::ZExt : return bitc::CAST_ZEXT; 604 case Instruction::SExt : return bitc::CAST_SEXT; 605 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 606 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 607 case Instruction::UIToFP : return bitc::CAST_UITOFP; 608 case Instruction::SIToFP : return bitc::CAST_SITOFP; 609 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 610 case Instruction::FPExt : return bitc::CAST_FPEXT; 611 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 612 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 613 case Instruction::BitCast : return bitc::CAST_BITCAST; 614 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 615 } 616 } 617 618 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 619 switch (Opcode) { 620 default: llvm_unreachable("Unknown binary instruction!"); 621 case Instruction::FNeg: return bitc::UNOP_FNEG; 622 } 623 } 624 625 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 626 switch (Opcode) { 627 default: llvm_unreachable("Unknown binary instruction!"); 628 case Instruction::Add: 629 case Instruction::FAdd: return bitc::BINOP_ADD; 630 case Instruction::Sub: 631 case Instruction::FSub: return bitc::BINOP_SUB; 632 case Instruction::Mul: 633 case Instruction::FMul: return bitc::BINOP_MUL; 634 case Instruction::UDiv: return bitc::BINOP_UDIV; 635 case Instruction::FDiv: 636 case Instruction::SDiv: return bitc::BINOP_SDIV; 637 case Instruction::URem: return bitc::BINOP_UREM; 638 case Instruction::FRem: 639 case Instruction::SRem: return bitc::BINOP_SREM; 640 case Instruction::Shl: return bitc::BINOP_SHL; 641 case Instruction::LShr: return bitc::BINOP_LSHR; 642 case Instruction::AShr: return bitc::BINOP_ASHR; 643 case Instruction::And: return bitc::BINOP_AND; 644 case Instruction::Or: return bitc::BINOP_OR; 645 case Instruction::Xor: return bitc::BINOP_XOR; 646 } 647 } 648 649 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 650 switch (Op) { 651 default: llvm_unreachable("Unknown RMW operation!"); 652 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 653 case AtomicRMWInst::Add: return bitc::RMW_ADD; 654 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 655 case AtomicRMWInst::And: return bitc::RMW_AND; 656 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 657 case AtomicRMWInst::Or: return bitc::RMW_OR; 658 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 659 case AtomicRMWInst::Max: return bitc::RMW_MAX; 660 case AtomicRMWInst::Min: return bitc::RMW_MIN; 661 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 662 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 663 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 664 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 665 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 666 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 667 case AtomicRMWInst::UIncWrap: 668 return bitc::RMW_UINC_WRAP; 669 case AtomicRMWInst::UDecWrap: 670 return bitc::RMW_UDEC_WRAP; 671 case AtomicRMWInst::USubCond: 672 return bitc::RMW_USUB_COND; 673 case AtomicRMWInst::USubSat: 674 return bitc::RMW_USUB_SAT; 675 } 676 } 677 678 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 679 switch (Ordering) { 680 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 681 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 682 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 683 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 684 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 685 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 686 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 687 } 688 llvm_unreachable("Invalid ordering"); 689 } 690 691 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 692 StringRef Str, unsigned AbbrevToUse) { 693 SmallVector<unsigned, 64> Vals; 694 695 // Code: [strchar x N] 696 for (char C : Str) { 697 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 698 AbbrevToUse = 0; 699 Vals.push_back(C); 700 } 701 702 // Emit the finished record. 703 Stream.EmitRecord(Code, Vals, AbbrevToUse); 704 } 705 706 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 707 switch (Kind) { 708 case Attribute::Alignment: 709 return bitc::ATTR_KIND_ALIGNMENT; 710 case Attribute::AllocAlign: 711 return bitc::ATTR_KIND_ALLOC_ALIGN; 712 case Attribute::AllocSize: 713 return bitc::ATTR_KIND_ALLOC_SIZE; 714 case Attribute::AlwaysInline: 715 return bitc::ATTR_KIND_ALWAYS_INLINE; 716 case Attribute::Builtin: 717 return bitc::ATTR_KIND_BUILTIN; 718 case Attribute::ByVal: 719 return bitc::ATTR_KIND_BY_VAL; 720 case Attribute::Convergent: 721 return bitc::ATTR_KIND_CONVERGENT; 722 case Attribute::InAlloca: 723 return bitc::ATTR_KIND_IN_ALLOCA; 724 case Attribute::Cold: 725 return bitc::ATTR_KIND_COLD; 726 case Attribute::DisableSanitizerInstrumentation: 727 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 728 case Attribute::FnRetThunkExtern: 729 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 730 case Attribute::Hot: 731 return bitc::ATTR_KIND_HOT; 732 case Attribute::ElementType: 733 return bitc::ATTR_KIND_ELEMENTTYPE; 734 case Attribute::HybridPatchable: 735 return bitc::ATTR_KIND_HYBRID_PATCHABLE; 736 case Attribute::InlineHint: 737 return bitc::ATTR_KIND_INLINE_HINT; 738 case Attribute::InReg: 739 return bitc::ATTR_KIND_IN_REG; 740 case Attribute::JumpTable: 741 return bitc::ATTR_KIND_JUMP_TABLE; 742 case Attribute::MinSize: 743 return bitc::ATTR_KIND_MIN_SIZE; 744 case Attribute::AllocatedPointer: 745 return bitc::ATTR_KIND_ALLOCATED_POINTER; 746 case Attribute::AllocKind: 747 return bitc::ATTR_KIND_ALLOC_KIND; 748 case Attribute::Memory: 749 return bitc::ATTR_KIND_MEMORY; 750 case Attribute::NoFPClass: 751 return bitc::ATTR_KIND_NOFPCLASS; 752 case Attribute::Naked: 753 return bitc::ATTR_KIND_NAKED; 754 case Attribute::Nest: 755 return bitc::ATTR_KIND_NEST; 756 case Attribute::NoAlias: 757 return bitc::ATTR_KIND_NO_ALIAS; 758 case Attribute::NoBuiltin: 759 return bitc::ATTR_KIND_NO_BUILTIN; 760 case Attribute::NoCallback: 761 return bitc::ATTR_KIND_NO_CALLBACK; 762 case Attribute::NoCapture: 763 return bitc::ATTR_KIND_NO_CAPTURE; 764 case Attribute::NoDuplicate: 765 return bitc::ATTR_KIND_NO_DUPLICATE; 766 case Attribute::NoFree: 767 return bitc::ATTR_KIND_NOFREE; 768 case Attribute::NoImplicitFloat: 769 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 770 case Attribute::NoInline: 771 return bitc::ATTR_KIND_NO_INLINE; 772 case Attribute::NoRecurse: 773 return bitc::ATTR_KIND_NO_RECURSE; 774 case Attribute::NoMerge: 775 return bitc::ATTR_KIND_NO_MERGE; 776 case Attribute::NonLazyBind: 777 return bitc::ATTR_KIND_NON_LAZY_BIND; 778 case Attribute::NonNull: 779 return bitc::ATTR_KIND_NON_NULL; 780 case Attribute::Dereferenceable: 781 return bitc::ATTR_KIND_DEREFERENCEABLE; 782 case Attribute::DereferenceableOrNull: 783 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 784 case Attribute::NoRedZone: 785 return bitc::ATTR_KIND_NO_RED_ZONE; 786 case Attribute::NoReturn: 787 return bitc::ATTR_KIND_NO_RETURN; 788 case Attribute::NoSync: 789 return bitc::ATTR_KIND_NOSYNC; 790 case Attribute::NoCfCheck: 791 return bitc::ATTR_KIND_NOCF_CHECK; 792 case Attribute::NoProfile: 793 return bitc::ATTR_KIND_NO_PROFILE; 794 case Attribute::SkipProfile: 795 return bitc::ATTR_KIND_SKIP_PROFILE; 796 case Attribute::NoUnwind: 797 return bitc::ATTR_KIND_NO_UNWIND; 798 case Attribute::NoSanitizeBounds: 799 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 800 case Attribute::NoSanitizeCoverage: 801 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 802 case Attribute::NullPointerIsValid: 803 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 804 case Attribute::OptimizeForDebugging: 805 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 806 case Attribute::OptForFuzzing: 807 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 808 case Attribute::OptimizeForSize: 809 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 810 case Attribute::OptimizeNone: 811 return bitc::ATTR_KIND_OPTIMIZE_NONE; 812 case Attribute::ReadNone: 813 return bitc::ATTR_KIND_READ_NONE; 814 case Attribute::ReadOnly: 815 return bitc::ATTR_KIND_READ_ONLY; 816 case Attribute::Returned: 817 return bitc::ATTR_KIND_RETURNED; 818 case Attribute::ReturnsTwice: 819 return bitc::ATTR_KIND_RETURNS_TWICE; 820 case Attribute::SExt: 821 return bitc::ATTR_KIND_S_EXT; 822 case Attribute::Speculatable: 823 return bitc::ATTR_KIND_SPECULATABLE; 824 case Attribute::StackAlignment: 825 return bitc::ATTR_KIND_STACK_ALIGNMENT; 826 case Attribute::StackProtect: 827 return bitc::ATTR_KIND_STACK_PROTECT; 828 case Attribute::StackProtectReq: 829 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 830 case Attribute::StackProtectStrong: 831 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 832 case Attribute::SafeStack: 833 return bitc::ATTR_KIND_SAFESTACK; 834 case Attribute::ShadowCallStack: 835 return bitc::ATTR_KIND_SHADOWCALLSTACK; 836 case Attribute::StrictFP: 837 return bitc::ATTR_KIND_STRICT_FP; 838 case Attribute::StructRet: 839 return bitc::ATTR_KIND_STRUCT_RET; 840 case Attribute::SanitizeAddress: 841 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 842 case Attribute::SanitizeHWAddress: 843 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 844 case Attribute::SanitizeThread: 845 return bitc::ATTR_KIND_SANITIZE_THREAD; 846 case Attribute::SanitizeMemory: 847 return bitc::ATTR_KIND_SANITIZE_MEMORY; 848 case Attribute::SanitizeNumericalStability: 849 return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; 850 case Attribute::SanitizeRealtime: 851 return bitc::ATTR_KIND_SANITIZE_REALTIME; 852 case Attribute::SpeculativeLoadHardening: 853 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 854 case Attribute::SwiftError: 855 return bitc::ATTR_KIND_SWIFT_ERROR; 856 case Attribute::SwiftSelf: 857 return bitc::ATTR_KIND_SWIFT_SELF; 858 case Attribute::SwiftAsync: 859 return bitc::ATTR_KIND_SWIFT_ASYNC; 860 case Attribute::UWTable: 861 return bitc::ATTR_KIND_UW_TABLE; 862 case Attribute::VScaleRange: 863 return bitc::ATTR_KIND_VSCALE_RANGE; 864 case Attribute::WillReturn: 865 return bitc::ATTR_KIND_WILLRETURN; 866 case Attribute::WriteOnly: 867 return bitc::ATTR_KIND_WRITEONLY; 868 case Attribute::ZExt: 869 return bitc::ATTR_KIND_Z_EXT; 870 case Attribute::ImmArg: 871 return bitc::ATTR_KIND_IMMARG; 872 case Attribute::SanitizeMemTag: 873 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 874 case Attribute::Preallocated: 875 return bitc::ATTR_KIND_PREALLOCATED; 876 case Attribute::NoUndef: 877 return bitc::ATTR_KIND_NOUNDEF; 878 case Attribute::ByRef: 879 return bitc::ATTR_KIND_BYREF; 880 case Attribute::MustProgress: 881 return bitc::ATTR_KIND_MUSTPROGRESS; 882 case Attribute::PresplitCoroutine: 883 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 884 case Attribute::Writable: 885 return bitc::ATTR_KIND_WRITABLE; 886 case Attribute::CoroDestroyOnlyWhenComplete: 887 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 888 case Attribute::CoroElideSafe: 889 return bitc::ATTR_KIND_CORO_ELIDE_SAFE; 890 case Attribute::DeadOnUnwind: 891 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 892 case Attribute::Range: 893 return bitc::ATTR_KIND_RANGE; 894 case Attribute::Initializes: 895 return bitc::ATTR_KIND_INITIALIZES; 896 case Attribute::EndAttrKinds: 897 llvm_unreachable("Can not encode end-attribute kinds marker."); 898 case Attribute::None: 899 llvm_unreachable("Can not encode none-attribute."); 900 case Attribute::EmptyKey: 901 case Attribute::TombstoneKey: 902 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 903 } 904 905 llvm_unreachable("Trying to encode unknown attribute"); 906 } 907 908 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 909 if ((int64_t)V >= 0) 910 Vals.push_back(V << 1); 911 else 912 Vals.push_back((-V << 1) | 1); 913 } 914 915 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 916 // We have an arbitrary precision integer value to write whose 917 // bit width is > 64. However, in canonical unsigned integer 918 // format it is likely that the high bits are going to be zero. 919 // So, we only write the number of active words. 920 unsigned NumWords = A.getActiveWords(); 921 const uint64_t *RawData = A.getRawData(); 922 for (unsigned i = 0; i < NumWords; i++) 923 emitSignedInt64(Vals, RawData[i]); 924 } 925 926 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 927 const ConstantRange &CR, bool EmitBitWidth) { 928 unsigned BitWidth = CR.getBitWidth(); 929 if (EmitBitWidth) 930 Record.push_back(BitWidth); 931 if (BitWidth > 64) { 932 Record.push_back(CR.getLower().getActiveWords() | 933 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 934 emitWideAPInt(Record, CR.getLower()); 935 emitWideAPInt(Record, CR.getUpper()); 936 } else { 937 emitSignedInt64(Record, CR.getLower().getSExtValue()); 938 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 939 } 940 } 941 942 void ModuleBitcodeWriter::writeAttributeGroupTable() { 943 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 944 VE.getAttributeGroups(); 945 if (AttrGrps.empty()) return; 946 947 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 948 949 SmallVector<uint64_t, 64> Record; 950 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 951 unsigned AttrListIndex = Pair.first; 952 AttributeSet AS = Pair.second; 953 Record.push_back(VE.getAttributeGroupID(Pair)); 954 Record.push_back(AttrListIndex); 955 956 for (Attribute Attr : AS) { 957 if (Attr.isEnumAttribute()) { 958 Record.push_back(0); 959 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 960 } else if (Attr.isIntAttribute()) { 961 Record.push_back(1); 962 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 963 Record.push_back(Attr.getValueAsInt()); 964 } else if (Attr.isStringAttribute()) { 965 StringRef Kind = Attr.getKindAsString(); 966 StringRef Val = Attr.getValueAsString(); 967 968 Record.push_back(Val.empty() ? 3 : 4); 969 Record.append(Kind.begin(), Kind.end()); 970 Record.push_back(0); 971 if (!Val.empty()) { 972 Record.append(Val.begin(), Val.end()); 973 Record.push_back(0); 974 } 975 } else if (Attr.isTypeAttribute()) { 976 Type *Ty = Attr.getValueAsType(); 977 Record.push_back(Ty ? 6 : 5); 978 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 979 if (Ty) 980 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 981 } else if (Attr.isConstantRangeAttribute()) { 982 Record.push_back(7); 983 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 984 emitConstantRange(Record, Attr.getValueAsConstantRange(), 985 /*EmitBitWidth=*/true); 986 } else { 987 assert(Attr.isConstantRangeListAttribute()); 988 Record.push_back(8); 989 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 990 ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); 991 Record.push_back(Val.size()); 992 Record.push_back(Val[0].getBitWidth()); 993 for (auto &CR : Val) 994 emitConstantRange(Record, CR, /*EmitBitWidth=*/false); 995 } 996 } 997 998 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 999 Record.clear(); 1000 } 1001 1002 Stream.ExitBlock(); 1003 } 1004 1005 void ModuleBitcodeWriter::writeAttributeTable() { 1006 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 1007 if (Attrs.empty()) return; 1008 1009 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 1010 1011 SmallVector<uint64_t, 64> Record; 1012 for (const AttributeList &AL : Attrs) { 1013 for (unsigned i : AL.indexes()) { 1014 AttributeSet AS = AL.getAttributes(i); 1015 if (AS.hasAttributes()) 1016 Record.push_back(VE.getAttributeGroupID({i, AS})); 1017 } 1018 1019 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 1020 Record.clear(); 1021 } 1022 1023 Stream.ExitBlock(); 1024 } 1025 1026 /// WriteTypeTable - Write out the type table for a module. 1027 void ModuleBitcodeWriter::writeTypeTable() { 1028 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 1029 1030 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 1031 SmallVector<uint64_t, 64> TypeVals; 1032 1033 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); 1034 1035 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 1036 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1037 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 1038 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 1039 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1040 1041 // Abbrev for TYPE_CODE_FUNCTION. 1042 Abbv = std::make_shared<BitCodeAbbrev>(); 1043 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1044 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1045 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1046 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1047 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1048 1049 // Abbrev for TYPE_CODE_STRUCT_ANON. 1050 Abbv = std::make_shared<BitCodeAbbrev>(); 1051 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1052 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1053 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1055 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1056 1057 // Abbrev for TYPE_CODE_STRUCT_NAME. 1058 Abbv = std::make_shared<BitCodeAbbrev>(); 1059 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1060 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1062 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1063 1064 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1065 Abbv = std::make_shared<BitCodeAbbrev>(); 1066 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1067 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1068 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1070 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1071 1072 // Abbrev for TYPE_CODE_ARRAY. 1073 Abbv = std::make_shared<BitCodeAbbrev>(); 1074 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1077 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1078 1079 // Emit an entry count so the reader can reserve space. 1080 TypeVals.push_back(TypeList.size()); 1081 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1082 TypeVals.clear(); 1083 1084 // Loop over all of the types, emitting each in turn. 1085 for (Type *T : TypeList) { 1086 int AbbrevToUse = 0; 1087 unsigned Code = 0; 1088 1089 switch (T->getTypeID()) { 1090 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1091 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1092 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1093 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1094 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1095 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1096 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1097 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1098 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1099 case Type::MetadataTyID: 1100 Code = bitc::TYPE_CODE_METADATA; 1101 break; 1102 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1103 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1104 case Type::IntegerTyID: 1105 // INTEGER: [width] 1106 Code = bitc::TYPE_CODE_INTEGER; 1107 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1108 break; 1109 case Type::PointerTyID: { 1110 PointerType *PTy = cast<PointerType>(T); 1111 unsigned AddressSpace = PTy->getAddressSpace(); 1112 // OPAQUE_POINTER: [address space] 1113 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1114 TypeVals.push_back(AddressSpace); 1115 if (AddressSpace == 0) 1116 AbbrevToUse = OpaquePtrAbbrev; 1117 break; 1118 } 1119 case Type::FunctionTyID: { 1120 FunctionType *FT = cast<FunctionType>(T); 1121 // FUNCTION: [isvararg, retty, paramty x N] 1122 Code = bitc::TYPE_CODE_FUNCTION; 1123 TypeVals.push_back(FT->isVarArg()); 1124 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1125 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1126 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1127 AbbrevToUse = FunctionAbbrev; 1128 break; 1129 } 1130 case Type::StructTyID: { 1131 StructType *ST = cast<StructType>(T); 1132 // STRUCT: [ispacked, eltty x N] 1133 TypeVals.push_back(ST->isPacked()); 1134 // Output all of the element types. 1135 for (Type *ET : ST->elements()) 1136 TypeVals.push_back(VE.getTypeID(ET)); 1137 1138 if (ST->isLiteral()) { 1139 Code = bitc::TYPE_CODE_STRUCT_ANON; 1140 AbbrevToUse = StructAnonAbbrev; 1141 } else { 1142 if (ST->isOpaque()) { 1143 Code = bitc::TYPE_CODE_OPAQUE; 1144 } else { 1145 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1146 AbbrevToUse = StructNamedAbbrev; 1147 } 1148 1149 // Emit the name if it is present. 1150 if (!ST->getName().empty()) 1151 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1152 StructNameAbbrev); 1153 } 1154 break; 1155 } 1156 case Type::ArrayTyID: { 1157 ArrayType *AT = cast<ArrayType>(T); 1158 // ARRAY: [numelts, eltty] 1159 Code = bitc::TYPE_CODE_ARRAY; 1160 TypeVals.push_back(AT->getNumElements()); 1161 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1162 AbbrevToUse = ArrayAbbrev; 1163 break; 1164 } 1165 case Type::FixedVectorTyID: 1166 case Type::ScalableVectorTyID: { 1167 VectorType *VT = cast<VectorType>(T); 1168 // VECTOR [numelts, eltty] or 1169 // [numelts, eltty, scalable] 1170 Code = bitc::TYPE_CODE_VECTOR; 1171 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1172 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1173 if (isa<ScalableVectorType>(VT)) 1174 TypeVals.push_back(true); 1175 break; 1176 } 1177 case Type::TargetExtTyID: { 1178 TargetExtType *TET = cast<TargetExtType>(T); 1179 Code = bitc::TYPE_CODE_TARGET_TYPE; 1180 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1181 StructNameAbbrev); 1182 TypeVals.push_back(TET->getNumTypeParameters()); 1183 for (Type *InnerTy : TET->type_params()) 1184 TypeVals.push_back(VE.getTypeID(InnerTy)); 1185 for (unsigned IntParam : TET->int_params()) 1186 TypeVals.push_back(IntParam); 1187 break; 1188 } 1189 case Type::TypedPointerTyID: 1190 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1191 } 1192 1193 // Emit the finished record. 1194 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1195 TypeVals.clear(); 1196 } 1197 1198 Stream.ExitBlock(); 1199 } 1200 1201 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1202 switch (Linkage) { 1203 case GlobalValue::ExternalLinkage: 1204 return 0; 1205 case GlobalValue::WeakAnyLinkage: 1206 return 16; 1207 case GlobalValue::AppendingLinkage: 1208 return 2; 1209 case GlobalValue::InternalLinkage: 1210 return 3; 1211 case GlobalValue::LinkOnceAnyLinkage: 1212 return 18; 1213 case GlobalValue::ExternalWeakLinkage: 1214 return 7; 1215 case GlobalValue::CommonLinkage: 1216 return 8; 1217 case GlobalValue::PrivateLinkage: 1218 return 9; 1219 case GlobalValue::WeakODRLinkage: 1220 return 17; 1221 case GlobalValue::LinkOnceODRLinkage: 1222 return 19; 1223 case GlobalValue::AvailableExternallyLinkage: 1224 return 12; 1225 } 1226 llvm_unreachable("Invalid linkage"); 1227 } 1228 1229 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1230 return getEncodedLinkage(GV.getLinkage()); 1231 } 1232 1233 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1234 uint64_t RawFlags = 0; 1235 RawFlags |= Flags.ReadNone; 1236 RawFlags |= (Flags.ReadOnly << 1); 1237 RawFlags |= (Flags.NoRecurse << 2); 1238 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1239 RawFlags |= (Flags.NoInline << 4); 1240 RawFlags |= (Flags.AlwaysInline << 5); 1241 RawFlags |= (Flags.NoUnwind << 6); 1242 RawFlags |= (Flags.MayThrow << 7); 1243 RawFlags |= (Flags.HasUnknownCall << 8); 1244 RawFlags |= (Flags.MustBeUnreachable << 9); 1245 return RawFlags; 1246 } 1247 1248 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1249 // in BitcodeReader.cpp. 1250 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, 1251 bool ImportAsDecl = false) { 1252 uint64_t RawFlags = 0; 1253 1254 RawFlags |= Flags.NotEligibleToImport; // bool 1255 RawFlags |= (Flags.Live << 1); 1256 RawFlags |= (Flags.DSOLocal << 2); 1257 RawFlags |= (Flags.CanAutoHide << 3); 1258 1259 // Linkage don't need to be remapped at that time for the summary. Any future 1260 // change to the getEncodedLinkage() function will need to be taken into 1261 // account here as well. 1262 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1263 1264 RawFlags |= (Flags.Visibility << 8); // 2 bits 1265 1266 unsigned ImportType = Flags.ImportType | ImportAsDecl; 1267 RawFlags |= (ImportType << 10); // 1 bit 1268 1269 return RawFlags; 1270 } 1271 1272 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1273 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1274 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1275 return RawFlags; 1276 } 1277 1278 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1279 uint64_t RawFlags = 0; 1280 1281 RawFlags |= CI.Hotness; // 3 bits 1282 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1283 1284 return RawFlags; 1285 } 1286 1287 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1288 uint64_t RawFlags = 0; 1289 1290 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1291 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1292 1293 return RawFlags; 1294 } 1295 1296 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1297 switch (GV.getVisibility()) { 1298 case GlobalValue::DefaultVisibility: return 0; 1299 case GlobalValue::HiddenVisibility: return 1; 1300 case GlobalValue::ProtectedVisibility: return 2; 1301 } 1302 llvm_unreachable("Invalid visibility"); 1303 } 1304 1305 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1306 switch (GV.getDLLStorageClass()) { 1307 case GlobalValue::DefaultStorageClass: return 0; 1308 case GlobalValue::DLLImportStorageClass: return 1; 1309 case GlobalValue::DLLExportStorageClass: return 2; 1310 } 1311 llvm_unreachable("Invalid DLL storage class"); 1312 } 1313 1314 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1315 switch (GV.getThreadLocalMode()) { 1316 case GlobalVariable::NotThreadLocal: return 0; 1317 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1318 case GlobalVariable::LocalDynamicTLSModel: return 2; 1319 case GlobalVariable::InitialExecTLSModel: return 3; 1320 case GlobalVariable::LocalExecTLSModel: return 4; 1321 } 1322 llvm_unreachable("Invalid TLS model"); 1323 } 1324 1325 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1326 switch (C.getSelectionKind()) { 1327 case Comdat::Any: 1328 return bitc::COMDAT_SELECTION_KIND_ANY; 1329 case Comdat::ExactMatch: 1330 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1331 case Comdat::Largest: 1332 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1333 case Comdat::NoDeduplicate: 1334 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1335 case Comdat::SameSize: 1336 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1337 } 1338 llvm_unreachable("Invalid selection kind"); 1339 } 1340 1341 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1342 switch (GV.getUnnamedAddr()) { 1343 case GlobalValue::UnnamedAddr::None: return 0; 1344 case GlobalValue::UnnamedAddr::Local: return 2; 1345 case GlobalValue::UnnamedAddr::Global: return 1; 1346 } 1347 llvm_unreachable("Invalid unnamed_addr"); 1348 } 1349 1350 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1351 if (GenerateHash) 1352 Hasher.update(Str); 1353 return StrtabBuilder.add(Str); 1354 } 1355 1356 void ModuleBitcodeWriter::writeComdats() { 1357 SmallVector<unsigned, 64> Vals; 1358 for (const Comdat *C : VE.getComdats()) { 1359 // COMDAT: [strtab offset, strtab size, selection_kind] 1360 Vals.push_back(addToStrtab(C->getName())); 1361 Vals.push_back(C->getName().size()); 1362 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1363 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1364 Vals.clear(); 1365 } 1366 } 1367 1368 /// Write a record that will eventually hold the word offset of the 1369 /// module-level VST. For now the offset is 0, which will be backpatched 1370 /// after the real VST is written. Saves the bit offset to backpatch. 1371 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1372 // Write a placeholder value in for the offset of the real VST, 1373 // which is written after the function blocks so that it can include 1374 // the offset of each function. The placeholder offset will be 1375 // updated when the real VST is written. 1376 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1377 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1378 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1379 // hold the real VST offset. Must use fixed instead of VBR as we don't 1380 // know how many VBR chunks to reserve ahead of time. 1381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1382 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1383 1384 // Emit the placeholder 1385 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1386 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1387 1388 // Compute and save the bit offset to the placeholder, which will be 1389 // patched when the real VST is written. We can simply subtract the 32-bit 1390 // fixed size from the current bit number to get the location to backpatch. 1391 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1392 } 1393 1394 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1395 1396 /// Determine the encoding to use for the given string name and length. 1397 static StringEncoding getStringEncoding(StringRef Str) { 1398 bool isChar6 = true; 1399 for (char C : Str) { 1400 if (isChar6) 1401 isChar6 = BitCodeAbbrevOp::isChar6(C); 1402 if ((unsigned char)C & 128) 1403 // don't bother scanning the rest. 1404 return SE_Fixed8; 1405 } 1406 if (isChar6) 1407 return SE_Char6; 1408 return SE_Fixed7; 1409 } 1410 1411 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1412 "Sanitizer Metadata is too large for naive serialization."); 1413 static unsigned 1414 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1415 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1416 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1417 } 1418 1419 /// Emit top-level description of module, including target triple, inline asm, 1420 /// descriptors for global variables, and function prototype info. 1421 /// Returns the bit offset to backpatch with the location of the real VST. 1422 void ModuleBitcodeWriter::writeModuleInfo() { 1423 // Emit various pieces of data attached to a module. 1424 if (!M.getTargetTriple().empty()) 1425 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1426 0 /*TODO*/); 1427 const std::string &DL = M.getDataLayoutStr(); 1428 if (!DL.empty()) 1429 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1430 if (!M.getModuleInlineAsm().empty()) 1431 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1432 0 /*TODO*/); 1433 1434 // Emit information about sections and GC, computing how many there are. Also 1435 // compute the maximum alignment value. 1436 std::map<std::string, unsigned> SectionMap; 1437 std::map<std::string, unsigned> GCMap; 1438 MaybeAlign MaxAlignment; 1439 unsigned MaxGlobalType = 0; 1440 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1441 if (A) 1442 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1443 }; 1444 for (const GlobalVariable &GV : M.globals()) { 1445 UpdateMaxAlignment(GV.getAlign()); 1446 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1447 if (GV.hasSection()) { 1448 // Give section names unique ID's. 1449 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1450 if (!Entry) { 1451 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1452 0 /*TODO*/); 1453 Entry = SectionMap.size(); 1454 } 1455 } 1456 } 1457 for (const Function &F : M) { 1458 UpdateMaxAlignment(F.getAlign()); 1459 if (F.hasSection()) { 1460 // Give section names unique ID's. 1461 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1462 if (!Entry) { 1463 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1464 0 /*TODO*/); 1465 Entry = SectionMap.size(); 1466 } 1467 } 1468 if (F.hasGC()) { 1469 // Same for GC names. 1470 unsigned &Entry = GCMap[F.getGC()]; 1471 if (!Entry) { 1472 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1473 0 /*TODO*/); 1474 Entry = GCMap.size(); 1475 } 1476 } 1477 } 1478 1479 // Emit abbrev for globals, now that we know # sections and max alignment. 1480 unsigned SimpleGVarAbbrev = 0; 1481 if (!M.global_empty()) { 1482 // Add an abbrev for common globals with no visibility or thread localness. 1483 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1484 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1485 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1486 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1488 Log2_32_Ceil(MaxGlobalType+1))); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1490 //| explicitType << 1 1491 //| constant 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1494 if (!MaxAlignment) // Alignment. 1495 Abbv->Add(BitCodeAbbrevOp(0)); 1496 else { 1497 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1499 Log2_32_Ceil(MaxEncAlignment+1))); 1500 } 1501 if (SectionMap.empty()) // Section. 1502 Abbv->Add(BitCodeAbbrevOp(0)); 1503 else 1504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1505 Log2_32_Ceil(SectionMap.size()+1))); 1506 // Don't bother emitting vis + thread local. 1507 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1508 } 1509 1510 SmallVector<unsigned, 64> Vals; 1511 // Emit the module's source file name. 1512 { 1513 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1514 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1515 if (Bits == SE_Char6) 1516 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1517 else if (Bits == SE_Fixed7) 1518 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1519 1520 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1521 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1522 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1524 Abbv->Add(AbbrevOpToUse); 1525 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1526 1527 for (const auto P : M.getSourceFileName()) 1528 Vals.push_back((unsigned char)P); 1529 1530 // Emit the finished record. 1531 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1532 Vals.clear(); 1533 } 1534 1535 // Emit the global variable information. 1536 for (const GlobalVariable &GV : M.globals()) { 1537 unsigned AbbrevToUse = 0; 1538 1539 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1540 // linkage, alignment, section, visibility, threadlocal, 1541 // unnamed_addr, externally_initialized, dllstorageclass, 1542 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1543 Vals.push_back(addToStrtab(GV.getName())); 1544 Vals.push_back(GV.getName().size()); 1545 Vals.push_back(VE.getTypeID(GV.getValueType())); 1546 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1547 Vals.push_back(GV.isDeclaration() ? 0 : 1548 (VE.getValueID(GV.getInitializer()) + 1)); 1549 Vals.push_back(getEncodedLinkage(GV)); 1550 Vals.push_back(getEncodedAlign(GV.getAlign())); 1551 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1552 : 0); 1553 if (GV.isThreadLocal() || 1554 GV.getVisibility() != GlobalValue::DefaultVisibility || 1555 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1556 GV.isExternallyInitialized() || 1557 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1558 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1559 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1560 Vals.push_back(getEncodedVisibility(GV)); 1561 Vals.push_back(getEncodedThreadLocalMode(GV)); 1562 Vals.push_back(getEncodedUnnamedAddr(GV)); 1563 Vals.push_back(GV.isExternallyInitialized()); 1564 Vals.push_back(getEncodedDLLStorageClass(GV)); 1565 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1566 1567 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1568 Vals.push_back(VE.getAttributeListID(AL)); 1569 1570 Vals.push_back(GV.isDSOLocal()); 1571 Vals.push_back(addToStrtab(GV.getPartition())); 1572 Vals.push_back(GV.getPartition().size()); 1573 1574 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1575 GV.getSanitizerMetadata()) 1576 : 0)); 1577 Vals.push_back(GV.getCodeModelRaw()); 1578 } else { 1579 AbbrevToUse = SimpleGVarAbbrev; 1580 } 1581 1582 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1583 Vals.clear(); 1584 } 1585 1586 // Emit the function proto information. 1587 for (const Function &F : M) { 1588 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1589 // linkage, paramattrs, alignment, section, visibility, gc, 1590 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1591 // prefixdata, personalityfn, DSO_Local, addrspace] 1592 Vals.push_back(addToStrtab(F.getName())); 1593 Vals.push_back(F.getName().size()); 1594 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1595 Vals.push_back(F.getCallingConv()); 1596 Vals.push_back(F.isDeclaration()); 1597 Vals.push_back(getEncodedLinkage(F)); 1598 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1599 Vals.push_back(getEncodedAlign(F.getAlign())); 1600 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1601 : 0); 1602 Vals.push_back(getEncodedVisibility(F)); 1603 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1604 Vals.push_back(getEncodedUnnamedAddr(F)); 1605 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1606 : 0); 1607 Vals.push_back(getEncodedDLLStorageClass(F)); 1608 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1609 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1610 : 0); 1611 Vals.push_back( 1612 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1613 1614 Vals.push_back(F.isDSOLocal()); 1615 Vals.push_back(F.getAddressSpace()); 1616 Vals.push_back(addToStrtab(F.getPartition())); 1617 Vals.push_back(F.getPartition().size()); 1618 1619 unsigned AbbrevToUse = 0; 1620 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1621 Vals.clear(); 1622 } 1623 1624 // Emit the alias information. 1625 for (const GlobalAlias &A : M.aliases()) { 1626 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1627 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1628 // DSO_Local] 1629 Vals.push_back(addToStrtab(A.getName())); 1630 Vals.push_back(A.getName().size()); 1631 Vals.push_back(VE.getTypeID(A.getValueType())); 1632 Vals.push_back(A.getType()->getAddressSpace()); 1633 Vals.push_back(VE.getValueID(A.getAliasee())); 1634 Vals.push_back(getEncodedLinkage(A)); 1635 Vals.push_back(getEncodedVisibility(A)); 1636 Vals.push_back(getEncodedDLLStorageClass(A)); 1637 Vals.push_back(getEncodedThreadLocalMode(A)); 1638 Vals.push_back(getEncodedUnnamedAddr(A)); 1639 Vals.push_back(A.isDSOLocal()); 1640 Vals.push_back(addToStrtab(A.getPartition())); 1641 Vals.push_back(A.getPartition().size()); 1642 1643 unsigned AbbrevToUse = 0; 1644 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1645 Vals.clear(); 1646 } 1647 1648 // Emit the ifunc information. 1649 for (const GlobalIFunc &I : M.ifuncs()) { 1650 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1651 // val#, linkage, visibility, DSO_Local] 1652 Vals.push_back(addToStrtab(I.getName())); 1653 Vals.push_back(I.getName().size()); 1654 Vals.push_back(VE.getTypeID(I.getValueType())); 1655 Vals.push_back(I.getType()->getAddressSpace()); 1656 Vals.push_back(VE.getValueID(I.getResolver())); 1657 Vals.push_back(getEncodedLinkage(I)); 1658 Vals.push_back(getEncodedVisibility(I)); 1659 Vals.push_back(I.isDSOLocal()); 1660 Vals.push_back(addToStrtab(I.getPartition())); 1661 Vals.push_back(I.getPartition().size()); 1662 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1663 Vals.clear(); 1664 } 1665 1666 writeValueSymbolTableForwardDecl(); 1667 } 1668 1669 static uint64_t getOptimizationFlags(const Value *V) { 1670 uint64_t Flags = 0; 1671 1672 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1673 if (OBO->hasNoSignedWrap()) 1674 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1675 if (OBO->hasNoUnsignedWrap()) 1676 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1677 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1678 if (PEO->isExact()) 1679 Flags |= 1 << bitc::PEO_EXACT; 1680 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1681 if (PDI->isDisjoint()) 1682 Flags |= 1 << bitc::PDI_DISJOINT; 1683 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1684 if (FPMO->hasAllowReassoc()) 1685 Flags |= bitc::AllowReassoc; 1686 if (FPMO->hasNoNaNs()) 1687 Flags |= bitc::NoNaNs; 1688 if (FPMO->hasNoInfs()) 1689 Flags |= bitc::NoInfs; 1690 if (FPMO->hasNoSignedZeros()) 1691 Flags |= bitc::NoSignedZeros; 1692 if (FPMO->hasAllowReciprocal()) 1693 Flags |= bitc::AllowReciprocal; 1694 if (FPMO->hasAllowContract()) 1695 Flags |= bitc::AllowContract; 1696 if (FPMO->hasApproxFunc()) 1697 Flags |= bitc::ApproxFunc; 1698 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1699 if (NNI->hasNonNeg()) 1700 Flags |= 1 << bitc::PNNI_NON_NEG; 1701 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1702 if (TI->hasNoSignedWrap()) 1703 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1704 if (TI->hasNoUnsignedWrap()) 1705 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1706 } else if (const auto *GEP = dyn_cast<GEPOperator>(V)) { 1707 if (GEP->isInBounds()) 1708 Flags |= 1 << bitc::GEP_INBOUNDS; 1709 if (GEP->hasNoUnsignedSignedWrap()) 1710 Flags |= 1 << bitc::GEP_NUSW; 1711 if (GEP->hasNoUnsignedWrap()) 1712 Flags |= 1 << bitc::GEP_NUW; 1713 } 1714 1715 return Flags; 1716 } 1717 1718 void ModuleBitcodeWriter::writeValueAsMetadata( 1719 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1720 // Mimic an MDNode with a value as one operand. 1721 Value *V = MD->getValue(); 1722 Record.push_back(VE.getTypeID(V->getType())); 1723 Record.push_back(VE.getValueID(V)); 1724 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1725 Record.clear(); 1726 } 1727 1728 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1729 SmallVectorImpl<uint64_t> &Record, 1730 unsigned Abbrev) { 1731 for (const MDOperand &MDO : N->operands()) { 1732 Metadata *MD = MDO; 1733 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1734 "Unexpected function-local metadata"); 1735 Record.push_back(VE.getMetadataOrNullID(MD)); 1736 } 1737 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1738 : bitc::METADATA_NODE, 1739 Record, Abbrev); 1740 Record.clear(); 1741 } 1742 1743 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1744 // Assume the column is usually under 128, and always output the inlined-at 1745 // location (it's never more expensive than building an array size 1). 1746 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1747 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1752 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1754 return Stream.EmitAbbrev(std::move(Abbv)); 1755 } 1756 1757 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1758 SmallVectorImpl<uint64_t> &Record, 1759 unsigned &Abbrev) { 1760 if (!Abbrev) 1761 Abbrev = createDILocationAbbrev(); 1762 1763 Record.push_back(N->isDistinct()); 1764 Record.push_back(N->getLine()); 1765 Record.push_back(N->getColumn()); 1766 Record.push_back(VE.getMetadataID(N->getScope())); 1767 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1768 Record.push_back(N->isImplicitCode()); 1769 1770 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1771 Record.clear(); 1772 } 1773 1774 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1775 // Assume the column is usually under 128, and always output the inlined-at 1776 // location (it's never more expensive than building an array size 1). 1777 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1778 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1785 return Stream.EmitAbbrev(std::move(Abbv)); 1786 } 1787 1788 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1789 SmallVectorImpl<uint64_t> &Record, 1790 unsigned &Abbrev) { 1791 if (!Abbrev) 1792 Abbrev = createGenericDINodeAbbrev(); 1793 1794 Record.push_back(N->isDistinct()); 1795 Record.push_back(N->getTag()); 1796 Record.push_back(0); // Per-tag version field; unused for now. 1797 1798 for (auto &I : N->operands()) 1799 Record.push_back(VE.getMetadataOrNullID(I)); 1800 1801 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1802 Record.clear(); 1803 } 1804 1805 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1806 SmallVectorImpl<uint64_t> &Record, 1807 unsigned Abbrev) { 1808 const uint64_t Version = 2 << 1; 1809 Record.push_back((uint64_t)N->isDistinct() | Version); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1814 1815 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1816 Record.clear(); 1817 } 1818 1819 void ModuleBitcodeWriter::writeDIGenericSubrange( 1820 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1821 unsigned Abbrev) { 1822 Record.push_back((uint64_t)N->isDistinct()); 1823 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1824 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1827 1828 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1829 Record.clear(); 1830 } 1831 1832 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1833 SmallVectorImpl<uint64_t> &Record, 1834 unsigned Abbrev) { 1835 const uint64_t IsBigInt = 1 << 2; 1836 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1837 Record.push_back(N->getValue().getBitWidth()); 1838 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1839 emitWideAPInt(Record, N->getValue()); 1840 1841 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1842 Record.clear(); 1843 } 1844 1845 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1846 SmallVectorImpl<uint64_t> &Record, 1847 unsigned Abbrev) { 1848 Record.push_back(N->isDistinct()); 1849 Record.push_back(N->getTag()); 1850 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1851 Record.push_back(N->getSizeInBits()); 1852 Record.push_back(N->getAlignInBits()); 1853 Record.push_back(N->getEncoding()); 1854 Record.push_back(N->getFlags()); 1855 1856 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1857 Record.clear(); 1858 } 1859 1860 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1861 SmallVectorImpl<uint64_t> &Record, 1862 unsigned Abbrev) { 1863 Record.push_back(N->isDistinct()); 1864 Record.push_back(N->getTag()); 1865 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1866 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1868 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1869 Record.push_back(N->getSizeInBits()); 1870 Record.push_back(N->getAlignInBits()); 1871 Record.push_back(N->getEncoding()); 1872 1873 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1874 Record.clear(); 1875 } 1876 1877 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1878 SmallVectorImpl<uint64_t> &Record, 1879 unsigned Abbrev) { 1880 Record.push_back(N->isDistinct()); 1881 Record.push_back(N->getTag()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1884 Record.push_back(N->getLine()); 1885 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1886 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1887 Record.push_back(N->getSizeInBits()); 1888 Record.push_back(N->getAlignInBits()); 1889 Record.push_back(N->getOffsetInBits()); 1890 Record.push_back(N->getFlags()); 1891 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1892 1893 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1894 // that there is no DWARF address space associated with DIDerivedType. 1895 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1896 Record.push_back(*DWARFAddressSpace + 1); 1897 else 1898 Record.push_back(0); 1899 1900 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1901 1902 if (auto PtrAuthData = N->getPtrAuthData()) 1903 Record.push_back(PtrAuthData->RawData); 1904 else 1905 Record.push_back(0); 1906 1907 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1908 Record.clear(); 1909 } 1910 1911 void ModuleBitcodeWriter::writeDICompositeType( 1912 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1913 unsigned Abbrev) { 1914 const unsigned IsNotUsedInOldTypeRef = 0x2; 1915 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1916 Record.push_back(N->getTag()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1919 Record.push_back(N->getLine()); 1920 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1921 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1922 Record.push_back(N->getSizeInBits()); 1923 Record.push_back(N->getAlignInBits()); 1924 Record.push_back(N->getOffsetInBits()); 1925 Record.push_back(N->getFlags()); 1926 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1927 Record.push_back(N->getRuntimeLang()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1934 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1935 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1936 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1937 1938 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1939 Record.clear(); 1940 } 1941 1942 void ModuleBitcodeWriter::writeDISubroutineType( 1943 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1944 unsigned Abbrev) { 1945 const unsigned HasNoOldTypeRefs = 0x2; 1946 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1947 Record.push_back(N->getFlags()); 1948 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1949 Record.push_back(N->getCC()); 1950 1951 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1952 Record.clear(); 1953 } 1954 1955 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1956 SmallVectorImpl<uint64_t> &Record, 1957 unsigned Abbrev) { 1958 Record.push_back(N->isDistinct()); 1959 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1960 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1961 if (N->getRawChecksum()) { 1962 Record.push_back(N->getRawChecksum()->Kind); 1963 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1964 } else { 1965 // Maintain backwards compatibility with the old internal representation of 1966 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1967 Record.push_back(0); 1968 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1969 } 1970 auto Source = N->getRawSource(); 1971 if (Source) 1972 Record.push_back(VE.getMetadataOrNullID(Source)); 1973 1974 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1975 Record.clear(); 1976 } 1977 1978 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1979 SmallVectorImpl<uint64_t> &Record, 1980 unsigned Abbrev) { 1981 assert(N->isDistinct() && "Expected distinct compile units"); 1982 Record.push_back(/* IsDistinct */ true); 1983 Record.push_back(N->getSourceLanguage()); 1984 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1985 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1986 Record.push_back(N->isOptimized()); 1987 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1988 Record.push_back(N->getRuntimeVersion()); 1989 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1990 Record.push_back(N->getEmissionKind()); 1991 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1992 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1993 Record.push_back(/* subprograms */ 0); 1994 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1995 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1996 Record.push_back(N->getDWOId()); 1997 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1998 Record.push_back(N->getSplitDebugInlining()); 1999 Record.push_back(N->getDebugInfoForProfiling()); 2000 Record.push_back((unsigned)N->getNameTableKind()); 2001 Record.push_back(N->getRangesBaseAddress()); 2002 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 2004 2005 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 2006 Record.clear(); 2007 } 2008 2009 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 2010 SmallVectorImpl<uint64_t> &Record, 2011 unsigned Abbrev) { 2012 const uint64_t HasUnitFlag = 1 << 1; 2013 const uint64_t HasSPFlagsFlag = 1 << 2; 2014 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 2015 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2018 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2019 Record.push_back(N->getLine()); 2020 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2021 Record.push_back(N->getScopeLine()); 2022 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 2023 Record.push_back(N->getSPFlags()); 2024 Record.push_back(N->getVirtualIndex()); 2025 Record.push_back(N->getFlags()); 2026 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 2027 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 2028 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 2029 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 2030 Record.push_back(N->getThisAdjustment()); 2031 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 2032 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2033 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 2034 2035 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 2036 Record.clear(); 2037 } 2038 2039 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 2040 SmallVectorImpl<uint64_t> &Record, 2041 unsigned Abbrev) { 2042 Record.push_back(N->isDistinct()); 2043 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2044 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2045 Record.push_back(N->getLine()); 2046 Record.push_back(N->getColumn()); 2047 2048 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 2049 Record.clear(); 2050 } 2051 2052 void ModuleBitcodeWriter::writeDILexicalBlockFile( 2053 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2054 unsigned Abbrev) { 2055 Record.push_back(N->isDistinct()); 2056 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2057 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2058 Record.push_back(N->getDiscriminator()); 2059 2060 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2061 Record.clear(); 2062 } 2063 2064 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2065 SmallVectorImpl<uint64_t> &Record, 2066 unsigned Abbrev) { 2067 Record.push_back(N->isDistinct()); 2068 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2069 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2070 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2071 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2072 Record.push_back(N->getLineNo()); 2073 2074 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2075 Record.clear(); 2076 } 2077 2078 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2079 SmallVectorImpl<uint64_t> &Record, 2080 unsigned Abbrev) { 2081 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2082 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2083 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2084 2085 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2086 Record.clear(); 2087 } 2088 2089 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2090 SmallVectorImpl<uint64_t> &Record, 2091 unsigned Abbrev) { 2092 Record.push_back(N->isDistinct()); 2093 Record.push_back(N->getMacinfoType()); 2094 Record.push_back(N->getLine()); 2095 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2096 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2097 2098 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2099 Record.clear(); 2100 } 2101 2102 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2103 SmallVectorImpl<uint64_t> &Record, 2104 unsigned Abbrev) { 2105 Record.push_back(N->isDistinct()); 2106 Record.push_back(N->getMacinfoType()); 2107 Record.push_back(N->getLine()); 2108 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2109 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2110 2111 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2112 Record.clear(); 2113 } 2114 2115 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2116 SmallVectorImpl<uint64_t> &Record) { 2117 Record.reserve(N->getArgs().size()); 2118 for (ValueAsMetadata *MD : N->getArgs()) 2119 Record.push_back(VE.getMetadataID(MD)); 2120 2121 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2122 Record.clear(); 2123 } 2124 2125 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2126 SmallVectorImpl<uint64_t> &Record, 2127 unsigned Abbrev) { 2128 Record.push_back(N->isDistinct()); 2129 for (auto &I : N->operands()) 2130 Record.push_back(VE.getMetadataOrNullID(I)); 2131 Record.push_back(N->getLineNo()); 2132 Record.push_back(N->getIsDecl()); 2133 2134 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2135 Record.clear(); 2136 } 2137 2138 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2139 SmallVectorImpl<uint64_t> &Record, 2140 unsigned Abbrev) { 2141 // There are no arguments for this metadata type. 2142 Record.push_back(N->isDistinct()); 2143 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2144 Record.clear(); 2145 } 2146 2147 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2148 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2149 unsigned Abbrev) { 2150 Record.push_back(N->isDistinct()); 2151 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2152 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2153 Record.push_back(N->isDefault()); 2154 2155 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2156 Record.clear(); 2157 } 2158 2159 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2160 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2161 unsigned Abbrev) { 2162 Record.push_back(N->isDistinct()); 2163 Record.push_back(N->getTag()); 2164 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2165 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2166 Record.push_back(N->isDefault()); 2167 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2168 2169 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2170 Record.clear(); 2171 } 2172 2173 void ModuleBitcodeWriter::writeDIGlobalVariable( 2174 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2175 unsigned Abbrev) { 2176 const uint64_t Version = 2 << 1; 2177 Record.push_back((uint64_t)N->isDistinct() | Version); 2178 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2179 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2180 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2181 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2182 Record.push_back(N->getLine()); 2183 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2184 Record.push_back(N->isLocalToUnit()); 2185 Record.push_back(N->isDefinition()); 2186 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2187 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2188 Record.push_back(N->getAlignInBits()); 2189 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2190 2191 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2192 Record.clear(); 2193 } 2194 2195 void ModuleBitcodeWriter::writeDILocalVariable( 2196 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2197 unsigned Abbrev) { 2198 // In order to support all possible bitcode formats in BitcodeReader we need 2199 // to distinguish the following cases: 2200 // 1) Record has no artificial tag (Record[1]), 2201 // has no obsolete inlinedAt field (Record[9]). 2202 // In this case Record size will be 8, HasAlignment flag is false. 2203 // 2) Record has artificial tag (Record[1]), 2204 // has no obsolete inlignedAt field (Record[9]). 2205 // In this case Record size will be 9, HasAlignment flag is false. 2206 // 3) Record has both artificial tag (Record[1]) and 2207 // obsolete inlignedAt field (Record[9]). 2208 // In this case Record size will be 10, HasAlignment flag is false. 2209 // 4) Record has neither artificial tag, nor inlignedAt field, but 2210 // HasAlignment flag is true and Record[8] contains alignment value. 2211 const uint64_t HasAlignmentFlag = 1 << 1; 2212 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2213 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2214 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2215 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2216 Record.push_back(N->getLine()); 2217 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2218 Record.push_back(N->getArg()); 2219 Record.push_back(N->getFlags()); 2220 Record.push_back(N->getAlignInBits()); 2221 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2222 2223 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2224 Record.clear(); 2225 } 2226 2227 void ModuleBitcodeWriter::writeDILabel( 2228 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2229 unsigned Abbrev) { 2230 Record.push_back((uint64_t)N->isDistinct()); 2231 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2232 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2233 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2234 Record.push_back(N->getLine()); 2235 2236 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2237 Record.clear(); 2238 } 2239 2240 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2241 SmallVectorImpl<uint64_t> &Record, 2242 unsigned Abbrev) { 2243 Record.reserve(N->getElements().size() + 1); 2244 const uint64_t Version = 3 << 1; 2245 Record.push_back((uint64_t)N->isDistinct() | Version); 2246 Record.append(N->elements_begin(), N->elements_end()); 2247 2248 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2249 Record.clear(); 2250 } 2251 2252 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2253 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2254 unsigned Abbrev) { 2255 Record.push_back(N->isDistinct()); 2256 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2257 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2258 2259 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2260 Record.clear(); 2261 } 2262 2263 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2264 SmallVectorImpl<uint64_t> &Record, 2265 unsigned Abbrev) { 2266 Record.push_back(N->isDistinct()); 2267 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2268 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2269 Record.push_back(N->getLine()); 2270 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2271 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2272 Record.push_back(N->getAttributes()); 2273 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2274 2275 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2276 Record.clear(); 2277 } 2278 2279 void ModuleBitcodeWriter::writeDIImportedEntity( 2280 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2281 unsigned Abbrev) { 2282 Record.push_back(N->isDistinct()); 2283 Record.push_back(N->getTag()); 2284 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2285 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2286 Record.push_back(N->getLine()); 2287 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2288 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2289 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2290 2291 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2292 Record.clear(); 2293 } 2294 2295 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2296 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2297 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2300 return Stream.EmitAbbrev(std::move(Abbv)); 2301 } 2302 2303 void ModuleBitcodeWriter::writeNamedMetadata( 2304 SmallVectorImpl<uint64_t> &Record) { 2305 if (M.named_metadata_empty()) 2306 return; 2307 2308 unsigned Abbrev = createNamedMetadataAbbrev(); 2309 for (const NamedMDNode &NMD : M.named_metadata()) { 2310 // Write name. 2311 StringRef Str = NMD.getName(); 2312 Record.append(Str.bytes_begin(), Str.bytes_end()); 2313 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2314 Record.clear(); 2315 2316 // Write named metadata operands. 2317 for (const MDNode *N : NMD.operands()) 2318 Record.push_back(VE.getMetadataID(N)); 2319 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2320 Record.clear(); 2321 } 2322 } 2323 2324 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2325 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2326 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2330 return Stream.EmitAbbrev(std::move(Abbv)); 2331 } 2332 2333 /// Write out a record for MDString. 2334 /// 2335 /// All the metadata strings in a metadata block are emitted in a single 2336 /// record. The sizes and strings themselves are shoved into a blob. 2337 void ModuleBitcodeWriter::writeMetadataStrings( 2338 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2339 if (Strings.empty()) 2340 return; 2341 2342 // Start the record with the number of strings. 2343 Record.push_back(bitc::METADATA_STRINGS); 2344 Record.push_back(Strings.size()); 2345 2346 // Emit the sizes of the strings in the blob. 2347 SmallString<256> Blob; 2348 { 2349 BitstreamWriter W(Blob); 2350 for (const Metadata *MD : Strings) 2351 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2352 W.FlushToWord(); 2353 } 2354 2355 // Add the offset to the strings to the record. 2356 Record.push_back(Blob.size()); 2357 2358 // Add the strings to the blob. 2359 for (const Metadata *MD : Strings) 2360 Blob.append(cast<MDString>(MD)->getString()); 2361 2362 // Emit the final record. 2363 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2364 Record.clear(); 2365 } 2366 2367 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2368 enum MetadataAbbrev : unsigned { 2369 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2370 #include "llvm/IR/Metadata.def" 2371 LastPlusOne 2372 }; 2373 2374 void ModuleBitcodeWriter::writeMetadataRecords( 2375 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2376 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2377 if (MDs.empty()) 2378 return; 2379 2380 // Initialize MDNode abbreviations. 2381 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2382 #include "llvm/IR/Metadata.def" 2383 2384 for (const Metadata *MD : MDs) { 2385 if (IndexPos) 2386 IndexPos->push_back(Stream.GetCurrentBitNo()); 2387 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2388 assert(N->isResolved() && "Expected forward references to be resolved"); 2389 2390 switch (N->getMetadataID()) { 2391 default: 2392 llvm_unreachable("Invalid MDNode subclass"); 2393 #define HANDLE_MDNODE_LEAF(CLASS) \ 2394 case Metadata::CLASS##Kind: \ 2395 if (MDAbbrevs) \ 2396 write##CLASS(cast<CLASS>(N), Record, \ 2397 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2398 else \ 2399 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2400 continue; 2401 #include "llvm/IR/Metadata.def" 2402 } 2403 } 2404 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2405 writeDIArgList(AL, Record); 2406 continue; 2407 } 2408 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2409 } 2410 } 2411 2412 void ModuleBitcodeWriter::writeModuleMetadata() { 2413 if (!VE.hasMDs() && M.named_metadata_empty()) 2414 return; 2415 2416 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2417 SmallVector<uint64_t, 64> Record; 2418 2419 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2420 // block and load any metadata. 2421 std::vector<unsigned> MDAbbrevs; 2422 2423 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2424 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2425 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2426 createGenericDINodeAbbrev(); 2427 2428 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2429 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2431 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2432 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2433 2434 Abbv = std::make_shared<BitCodeAbbrev>(); 2435 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2438 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2439 2440 // Emit MDStrings together upfront. 2441 writeMetadataStrings(VE.getMDStrings(), Record); 2442 2443 // We only emit an index for the metadata record if we have more than a given 2444 // (naive) threshold of metadatas, otherwise it is not worth it. 2445 if (VE.getNonMDStrings().size() > IndexThreshold) { 2446 // Write a placeholder value in for the offset of the metadata index, 2447 // which is written after the records, so that it can include 2448 // the offset of each entry. The placeholder offset will be 2449 // updated after all records are emitted. 2450 uint64_t Vals[] = {0, 0}; 2451 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2452 } 2453 2454 // Compute and save the bit offset to the current position, which will be 2455 // patched when we emit the index later. We can simply subtract the 64-bit 2456 // fixed size from the current bit number to get the location to backpatch. 2457 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2458 2459 // This index will contain the bitpos for each individual record. 2460 std::vector<uint64_t> IndexPos; 2461 IndexPos.reserve(VE.getNonMDStrings().size()); 2462 2463 // Write all the records 2464 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2465 2466 if (VE.getNonMDStrings().size() > IndexThreshold) { 2467 // Now that we have emitted all the records we will emit the index. But 2468 // first 2469 // backpatch the forward reference so that the reader can skip the records 2470 // efficiently. 2471 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2472 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2473 2474 // Delta encode the index. 2475 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2476 for (auto &Elt : IndexPos) { 2477 auto EltDelta = Elt - PreviousValue; 2478 PreviousValue = Elt; 2479 Elt = EltDelta; 2480 } 2481 // Emit the index record. 2482 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2483 IndexPos.clear(); 2484 } 2485 2486 // Write the named metadata now. 2487 writeNamedMetadata(Record); 2488 2489 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2490 SmallVector<uint64_t, 4> Record; 2491 Record.push_back(VE.getValueID(&GO)); 2492 pushGlobalMetadataAttachment(Record, GO); 2493 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2494 }; 2495 for (const Function &F : M) 2496 if (F.isDeclaration() && F.hasMetadata()) 2497 AddDeclAttachedMetadata(F); 2498 // FIXME: Only store metadata for declarations here, and move data for global 2499 // variable definitions to a separate block (PR28134). 2500 for (const GlobalVariable &GV : M.globals()) 2501 if (GV.hasMetadata()) 2502 AddDeclAttachedMetadata(GV); 2503 2504 Stream.ExitBlock(); 2505 } 2506 2507 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2508 if (!VE.hasMDs()) 2509 return; 2510 2511 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2512 SmallVector<uint64_t, 64> Record; 2513 writeMetadataStrings(VE.getMDStrings(), Record); 2514 writeMetadataRecords(VE.getNonMDStrings(), Record); 2515 Stream.ExitBlock(); 2516 } 2517 2518 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2519 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2520 // [n x [id, mdnode]] 2521 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2522 GO.getAllMetadata(MDs); 2523 for (const auto &I : MDs) { 2524 Record.push_back(I.first); 2525 Record.push_back(VE.getMetadataID(I.second)); 2526 } 2527 } 2528 2529 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2530 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2531 2532 SmallVector<uint64_t, 64> Record; 2533 2534 if (F.hasMetadata()) { 2535 pushGlobalMetadataAttachment(Record, F); 2536 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2537 Record.clear(); 2538 } 2539 2540 // Write metadata attachments 2541 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2542 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2543 for (const BasicBlock &BB : F) 2544 for (const Instruction &I : BB) { 2545 MDs.clear(); 2546 I.getAllMetadataOtherThanDebugLoc(MDs); 2547 2548 // If no metadata, ignore instruction. 2549 if (MDs.empty()) continue; 2550 2551 Record.push_back(VE.getInstructionID(&I)); 2552 2553 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2554 Record.push_back(MDs[i].first); 2555 Record.push_back(VE.getMetadataID(MDs[i].second)); 2556 } 2557 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2558 Record.clear(); 2559 } 2560 2561 Stream.ExitBlock(); 2562 } 2563 2564 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2565 SmallVector<uint64_t, 64> Record; 2566 2567 // Write metadata kinds 2568 // METADATA_KIND - [n x [id, name]] 2569 SmallVector<StringRef, 8> Names; 2570 M.getMDKindNames(Names); 2571 2572 if (Names.empty()) return; 2573 2574 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2575 2576 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2577 Record.push_back(MDKindID); 2578 StringRef KName = Names[MDKindID]; 2579 Record.append(KName.begin(), KName.end()); 2580 2581 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2582 Record.clear(); 2583 } 2584 2585 Stream.ExitBlock(); 2586 } 2587 2588 void ModuleBitcodeWriter::writeOperandBundleTags() { 2589 // Write metadata kinds 2590 // 2591 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2592 // 2593 // OPERAND_BUNDLE_TAG - [strchr x N] 2594 2595 SmallVector<StringRef, 8> Tags; 2596 M.getOperandBundleTags(Tags); 2597 2598 if (Tags.empty()) 2599 return; 2600 2601 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2602 2603 SmallVector<uint64_t, 64> Record; 2604 2605 for (auto Tag : Tags) { 2606 Record.append(Tag.begin(), Tag.end()); 2607 2608 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2609 Record.clear(); 2610 } 2611 2612 Stream.ExitBlock(); 2613 } 2614 2615 void ModuleBitcodeWriter::writeSyncScopeNames() { 2616 SmallVector<StringRef, 8> SSNs; 2617 M.getContext().getSyncScopeNames(SSNs); 2618 if (SSNs.empty()) 2619 return; 2620 2621 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2622 2623 SmallVector<uint64_t, 64> Record; 2624 for (auto SSN : SSNs) { 2625 Record.append(SSN.begin(), SSN.end()); 2626 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2627 Record.clear(); 2628 } 2629 2630 Stream.ExitBlock(); 2631 } 2632 2633 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2634 bool isGlobal) { 2635 if (FirstVal == LastVal) return; 2636 2637 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2638 2639 unsigned AggregateAbbrev = 0; 2640 unsigned String8Abbrev = 0; 2641 unsigned CString7Abbrev = 0; 2642 unsigned CString6Abbrev = 0; 2643 // If this is a constant pool for the module, emit module-specific abbrevs. 2644 if (isGlobal) { 2645 // Abbrev for CST_CODE_AGGREGATE. 2646 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2647 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2650 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2651 2652 // Abbrev for CST_CODE_STRING. 2653 Abbv = std::make_shared<BitCodeAbbrev>(); 2654 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2657 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2658 // Abbrev for CST_CODE_CSTRING. 2659 Abbv = std::make_shared<BitCodeAbbrev>(); 2660 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2661 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2663 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2664 // Abbrev for CST_CODE_CSTRING. 2665 Abbv = std::make_shared<BitCodeAbbrev>(); 2666 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2667 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2668 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2669 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2670 } 2671 2672 SmallVector<uint64_t, 64> Record; 2673 2674 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2675 Type *LastTy = nullptr; 2676 for (unsigned i = FirstVal; i != LastVal; ++i) { 2677 const Value *V = Vals[i].first; 2678 // If we need to switch types, do so now. 2679 if (V->getType() != LastTy) { 2680 LastTy = V->getType(); 2681 Record.push_back(VE.getTypeID(LastTy)); 2682 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2683 CONSTANTS_SETTYPE_ABBREV); 2684 Record.clear(); 2685 } 2686 2687 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2688 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2689 Record.push_back( 2690 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2691 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2692 2693 // Add the asm string. 2694 const std::string &AsmStr = IA->getAsmString(); 2695 Record.push_back(AsmStr.size()); 2696 Record.append(AsmStr.begin(), AsmStr.end()); 2697 2698 // Add the constraint string. 2699 const std::string &ConstraintStr = IA->getConstraintString(); 2700 Record.push_back(ConstraintStr.size()); 2701 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2702 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2703 Record.clear(); 2704 continue; 2705 } 2706 const Constant *C = cast<Constant>(V); 2707 unsigned Code = -1U; 2708 unsigned AbbrevToUse = 0; 2709 if (C->isNullValue()) { 2710 Code = bitc::CST_CODE_NULL; 2711 } else if (isa<PoisonValue>(C)) { 2712 Code = bitc::CST_CODE_POISON; 2713 } else if (isa<UndefValue>(C)) { 2714 Code = bitc::CST_CODE_UNDEF; 2715 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2716 if (IV->getBitWidth() <= 64) { 2717 uint64_t V = IV->getSExtValue(); 2718 emitSignedInt64(Record, V); 2719 Code = bitc::CST_CODE_INTEGER; 2720 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2721 } else { // Wide integers, > 64 bits in size. 2722 emitWideAPInt(Record, IV->getValue()); 2723 Code = bitc::CST_CODE_WIDE_INTEGER; 2724 } 2725 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2726 Code = bitc::CST_CODE_FLOAT; 2727 Type *Ty = CFP->getType()->getScalarType(); 2728 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2729 Ty->isDoubleTy()) { 2730 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2731 } else if (Ty->isX86_FP80Ty()) { 2732 // api needed to prevent premature destruction 2733 // bits are not in the same order as a normal i80 APInt, compensate. 2734 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2735 const uint64_t *p = api.getRawData(); 2736 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2737 Record.push_back(p[0] & 0xffffLL); 2738 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2739 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2740 const uint64_t *p = api.getRawData(); 2741 Record.push_back(p[0]); 2742 Record.push_back(p[1]); 2743 } else { 2744 assert(0 && "Unknown FP type!"); 2745 } 2746 } else if (isa<ConstantDataSequential>(C) && 2747 cast<ConstantDataSequential>(C)->isString()) { 2748 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2749 // Emit constant strings specially. 2750 unsigned NumElts = Str->getNumElements(); 2751 // If this is a null-terminated string, use the denser CSTRING encoding. 2752 if (Str->isCString()) { 2753 Code = bitc::CST_CODE_CSTRING; 2754 --NumElts; // Don't encode the null, which isn't allowed by char6. 2755 } else { 2756 Code = bitc::CST_CODE_STRING; 2757 AbbrevToUse = String8Abbrev; 2758 } 2759 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2760 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2761 for (unsigned i = 0; i != NumElts; ++i) { 2762 unsigned char V = Str->getElementAsInteger(i); 2763 Record.push_back(V); 2764 isCStr7 &= (V & 128) == 0; 2765 if (isCStrChar6) 2766 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2767 } 2768 2769 if (isCStrChar6) 2770 AbbrevToUse = CString6Abbrev; 2771 else if (isCStr7) 2772 AbbrevToUse = CString7Abbrev; 2773 } else if (const ConstantDataSequential *CDS = 2774 dyn_cast<ConstantDataSequential>(C)) { 2775 Code = bitc::CST_CODE_DATA; 2776 Type *EltTy = CDS->getElementType(); 2777 if (isa<IntegerType>(EltTy)) { 2778 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2779 Record.push_back(CDS->getElementAsInteger(i)); 2780 } else { 2781 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2782 Record.push_back( 2783 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2784 } 2785 } else if (isa<ConstantAggregate>(C)) { 2786 Code = bitc::CST_CODE_AGGREGATE; 2787 for (const Value *Op : C->operands()) 2788 Record.push_back(VE.getValueID(Op)); 2789 AbbrevToUse = AggregateAbbrev; 2790 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2791 switch (CE->getOpcode()) { 2792 default: 2793 if (Instruction::isCast(CE->getOpcode())) { 2794 Code = bitc::CST_CODE_CE_CAST; 2795 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2796 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2797 Record.push_back(VE.getValueID(C->getOperand(0))); 2798 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2799 } else { 2800 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2801 Code = bitc::CST_CODE_CE_BINOP; 2802 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2803 Record.push_back(VE.getValueID(C->getOperand(0))); 2804 Record.push_back(VE.getValueID(C->getOperand(1))); 2805 uint64_t Flags = getOptimizationFlags(CE); 2806 if (Flags != 0) 2807 Record.push_back(Flags); 2808 } 2809 break; 2810 case Instruction::FNeg: { 2811 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2812 Code = bitc::CST_CODE_CE_UNOP; 2813 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2814 Record.push_back(VE.getValueID(C->getOperand(0))); 2815 uint64_t Flags = getOptimizationFlags(CE); 2816 if (Flags != 0) 2817 Record.push_back(Flags); 2818 break; 2819 } 2820 case Instruction::GetElementPtr: { 2821 Code = bitc::CST_CODE_CE_GEP; 2822 const auto *GO = cast<GEPOperator>(C); 2823 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2824 Record.push_back(getOptimizationFlags(GO)); 2825 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2826 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2827 emitConstantRange(Record, *Range, /*EmitBitWidth=*/true); 2828 } 2829 for (const Value *Op : CE->operands()) { 2830 Record.push_back(VE.getTypeID(Op->getType())); 2831 Record.push_back(VE.getValueID(Op)); 2832 } 2833 break; 2834 } 2835 case Instruction::ExtractElement: 2836 Code = bitc::CST_CODE_CE_EXTRACTELT; 2837 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2838 Record.push_back(VE.getValueID(C->getOperand(0))); 2839 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2840 Record.push_back(VE.getValueID(C->getOperand(1))); 2841 break; 2842 case Instruction::InsertElement: 2843 Code = bitc::CST_CODE_CE_INSERTELT; 2844 Record.push_back(VE.getValueID(C->getOperand(0))); 2845 Record.push_back(VE.getValueID(C->getOperand(1))); 2846 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2847 Record.push_back(VE.getValueID(C->getOperand(2))); 2848 break; 2849 case Instruction::ShuffleVector: 2850 // If the return type and argument types are the same, this is a 2851 // standard shufflevector instruction. If the types are different, 2852 // then the shuffle is widening or truncating the input vectors, and 2853 // the argument type must also be encoded. 2854 if (C->getType() == C->getOperand(0)->getType()) { 2855 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2856 } else { 2857 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2858 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2859 } 2860 Record.push_back(VE.getValueID(C->getOperand(0))); 2861 Record.push_back(VE.getValueID(C->getOperand(1))); 2862 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2863 break; 2864 } 2865 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2866 Code = bitc::CST_CODE_BLOCKADDRESS; 2867 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2868 Record.push_back(VE.getValueID(BA->getFunction())); 2869 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2870 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2871 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2872 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2873 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2874 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2875 Code = bitc::CST_CODE_NO_CFI_VALUE; 2876 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2877 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2878 } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(C)) { 2879 Code = bitc::CST_CODE_PTRAUTH; 2880 Record.push_back(VE.getValueID(CPA->getPointer())); 2881 Record.push_back(VE.getValueID(CPA->getKey())); 2882 Record.push_back(VE.getValueID(CPA->getDiscriminator())); 2883 Record.push_back(VE.getValueID(CPA->getAddrDiscriminator())); 2884 } else { 2885 #ifndef NDEBUG 2886 C->dump(); 2887 #endif 2888 llvm_unreachable("Unknown constant!"); 2889 } 2890 Stream.EmitRecord(Code, Record, AbbrevToUse); 2891 Record.clear(); 2892 } 2893 2894 Stream.ExitBlock(); 2895 } 2896 2897 void ModuleBitcodeWriter::writeModuleConstants() { 2898 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2899 2900 // Find the first constant to emit, which is the first non-globalvalue value. 2901 // We know globalvalues have been emitted by WriteModuleInfo. 2902 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2903 if (!isa<GlobalValue>(Vals[i].first)) { 2904 writeConstants(i, Vals.size(), true); 2905 return; 2906 } 2907 } 2908 } 2909 2910 /// pushValueAndType - The file has to encode both the value and type id for 2911 /// many values, because we need to know what type to create for forward 2912 /// references. However, most operands are not forward references, so this type 2913 /// field is not needed. 2914 /// 2915 /// This function adds V's value ID to Vals. If the value ID is higher than the 2916 /// instruction ID, then it is a forward reference, and it also includes the 2917 /// type ID. The value ID that is written is encoded relative to the InstID. 2918 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2919 SmallVectorImpl<unsigned> &Vals) { 2920 unsigned ValID = VE.getValueID(V); 2921 // Make encoding relative to the InstID. 2922 Vals.push_back(InstID - ValID); 2923 if (ValID >= InstID) { 2924 Vals.push_back(VE.getTypeID(V->getType())); 2925 return true; 2926 } 2927 return false; 2928 } 2929 2930 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2931 unsigned InstID) { 2932 SmallVector<unsigned, 64> Record; 2933 LLVMContext &C = CS.getContext(); 2934 2935 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2936 const auto &Bundle = CS.getOperandBundleAt(i); 2937 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2938 2939 for (auto &Input : Bundle.Inputs) 2940 pushValueAndType(Input, InstID, Record); 2941 2942 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2943 Record.clear(); 2944 } 2945 } 2946 2947 /// pushValue - Like pushValueAndType, but where the type of the value is 2948 /// omitted (perhaps it was already encoded in an earlier operand). 2949 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2950 SmallVectorImpl<unsigned> &Vals) { 2951 unsigned ValID = VE.getValueID(V); 2952 Vals.push_back(InstID - ValID); 2953 } 2954 2955 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2956 SmallVectorImpl<uint64_t> &Vals) { 2957 unsigned ValID = VE.getValueID(V); 2958 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2959 emitSignedInt64(Vals, diff); 2960 } 2961 2962 /// WriteInstruction - Emit an instruction to the specified stream. 2963 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2964 unsigned InstID, 2965 SmallVectorImpl<unsigned> &Vals) { 2966 unsigned Code = 0; 2967 unsigned AbbrevToUse = 0; 2968 VE.setInstructionID(&I); 2969 switch (I.getOpcode()) { 2970 default: 2971 if (Instruction::isCast(I.getOpcode())) { 2972 Code = bitc::FUNC_CODE_INST_CAST; 2973 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2974 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2975 Vals.push_back(VE.getTypeID(I.getType())); 2976 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2977 uint64_t Flags = getOptimizationFlags(&I); 2978 if (Flags != 0) { 2979 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2980 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2981 Vals.push_back(Flags); 2982 } 2983 } else { 2984 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2985 Code = bitc::FUNC_CODE_INST_BINOP; 2986 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2987 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2988 pushValue(I.getOperand(1), InstID, Vals); 2989 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2990 uint64_t Flags = getOptimizationFlags(&I); 2991 if (Flags != 0) { 2992 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2993 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2994 Vals.push_back(Flags); 2995 } 2996 } 2997 break; 2998 case Instruction::FNeg: { 2999 Code = bitc::FUNC_CODE_INST_UNOP; 3000 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3001 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 3002 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 3003 uint64_t Flags = getOptimizationFlags(&I); 3004 if (Flags != 0) { 3005 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 3006 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 3007 Vals.push_back(Flags); 3008 } 3009 break; 3010 } 3011 case Instruction::GetElementPtr: { 3012 Code = bitc::FUNC_CODE_INST_GEP; 3013 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 3014 auto &GEPInst = cast<GetElementPtrInst>(I); 3015 Vals.push_back(getOptimizationFlags(&I)); 3016 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 3017 for (const Value *Op : I.operands()) 3018 pushValueAndType(Op, InstID, Vals); 3019 break; 3020 } 3021 case Instruction::ExtractValue: { 3022 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 3023 pushValueAndType(I.getOperand(0), InstID, Vals); 3024 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 3025 Vals.append(EVI->idx_begin(), EVI->idx_end()); 3026 break; 3027 } 3028 case Instruction::InsertValue: { 3029 Code = bitc::FUNC_CODE_INST_INSERTVAL; 3030 pushValueAndType(I.getOperand(0), InstID, Vals); 3031 pushValueAndType(I.getOperand(1), InstID, Vals); 3032 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 3033 Vals.append(IVI->idx_begin(), IVI->idx_end()); 3034 break; 3035 } 3036 case Instruction::Select: { 3037 Code = bitc::FUNC_CODE_INST_VSELECT; 3038 pushValueAndType(I.getOperand(1), InstID, Vals); 3039 pushValue(I.getOperand(2), InstID, Vals); 3040 pushValueAndType(I.getOperand(0), InstID, Vals); 3041 uint64_t Flags = getOptimizationFlags(&I); 3042 if (Flags != 0) 3043 Vals.push_back(Flags); 3044 break; 3045 } 3046 case Instruction::ExtractElement: 3047 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 3048 pushValueAndType(I.getOperand(0), InstID, Vals); 3049 pushValueAndType(I.getOperand(1), InstID, Vals); 3050 break; 3051 case Instruction::InsertElement: 3052 Code = bitc::FUNC_CODE_INST_INSERTELT; 3053 pushValueAndType(I.getOperand(0), InstID, Vals); 3054 pushValue(I.getOperand(1), InstID, Vals); 3055 pushValueAndType(I.getOperand(2), InstID, Vals); 3056 break; 3057 case Instruction::ShuffleVector: 3058 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3059 pushValueAndType(I.getOperand(0), InstID, Vals); 3060 pushValue(I.getOperand(1), InstID, Vals); 3061 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3062 Vals); 3063 break; 3064 case Instruction::ICmp: 3065 case Instruction::FCmp: { 3066 // compare returning Int1Ty or vector of Int1Ty 3067 Code = bitc::FUNC_CODE_INST_CMP2; 3068 pushValueAndType(I.getOperand(0), InstID, Vals); 3069 pushValue(I.getOperand(1), InstID, Vals); 3070 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3071 uint64_t Flags = getOptimizationFlags(&I); 3072 if (Flags != 0) 3073 Vals.push_back(Flags); 3074 break; 3075 } 3076 3077 case Instruction::Ret: 3078 { 3079 Code = bitc::FUNC_CODE_INST_RET; 3080 unsigned NumOperands = I.getNumOperands(); 3081 if (NumOperands == 0) 3082 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3083 else if (NumOperands == 1) { 3084 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3085 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3086 } else { 3087 for (const Value *Op : I.operands()) 3088 pushValueAndType(Op, InstID, Vals); 3089 } 3090 } 3091 break; 3092 case Instruction::Br: 3093 { 3094 Code = bitc::FUNC_CODE_INST_BR; 3095 const BranchInst &II = cast<BranchInst>(I); 3096 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3097 if (II.isConditional()) { 3098 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3099 pushValue(II.getCondition(), InstID, Vals); 3100 } 3101 } 3102 break; 3103 case Instruction::Switch: 3104 { 3105 Code = bitc::FUNC_CODE_INST_SWITCH; 3106 const SwitchInst &SI = cast<SwitchInst>(I); 3107 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3108 pushValue(SI.getCondition(), InstID, Vals); 3109 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3110 for (auto Case : SI.cases()) { 3111 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3112 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3113 } 3114 } 3115 break; 3116 case Instruction::IndirectBr: 3117 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3118 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3119 // Encode the address operand as relative, but not the basic blocks. 3120 pushValue(I.getOperand(0), InstID, Vals); 3121 for (const Value *Op : drop_begin(I.operands())) 3122 Vals.push_back(VE.getValueID(Op)); 3123 break; 3124 3125 case Instruction::Invoke: { 3126 const InvokeInst *II = cast<InvokeInst>(&I); 3127 const Value *Callee = II->getCalledOperand(); 3128 FunctionType *FTy = II->getFunctionType(); 3129 3130 if (II->hasOperandBundles()) 3131 writeOperandBundles(*II, InstID); 3132 3133 Code = bitc::FUNC_CODE_INST_INVOKE; 3134 3135 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3136 Vals.push_back(II->getCallingConv() | 1 << 13); 3137 Vals.push_back(VE.getValueID(II->getNormalDest())); 3138 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3139 Vals.push_back(VE.getTypeID(FTy)); 3140 pushValueAndType(Callee, InstID, Vals); 3141 3142 // Emit value #'s for the fixed parameters. 3143 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3144 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3145 3146 // Emit type/value pairs for varargs params. 3147 if (FTy->isVarArg()) { 3148 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3149 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3150 } 3151 break; 3152 } 3153 case Instruction::Resume: 3154 Code = bitc::FUNC_CODE_INST_RESUME; 3155 pushValueAndType(I.getOperand(0), InstID, Vals); 3156 break; 3157 case Instruction::CleanupRet: { 3158 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3159 const auto &CRI = cast<CleanupReturnInst>(I); 3160 pushValue(CRI.getCleanupPad(), InstID, Vals); 3161 if (CRI.hasUnwindDest()) 3162 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3163 break; 3164 } 3165 case Instruction::CatchRet: { 3166 Code = bitc::FUNC_CODE_INST_CATCHRET; 3167 const auto &CRI = cast<CatchReturnInst>(I); 3168 pushValue(CRI.getCatchPad(), InstID, Vals); 3169 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3170 break; 3171 } 3172 case Instruction::CleanupPad: 3173 case Instruction::CatchPad: { 3174 const auto &FuncletPad = cast<FuncletPadInst>(I); 3175 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3176 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3177 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3178 3179 unsigned NumArgOperands = FuncletPad.arg_size(); 3180 Vals.push_back(NumArgOperands); 3181 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3182 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3183 break; 3184 } 3185 case Instruction::CatchSwitch: { 3186 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3187 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3188 3189 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3190 3191 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3192 Vals.push_back(NumHandlers); 3193 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3194 Vals.push_back(VE.getValueID(CatchPadBB)); 3195 3196 if (CatchSwitch.hasUnwindDest()) 3197 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3198 break; 3199 } 3200 case Instruction::CallBr: { 3201 const CallBrInst *CBI = cast<CallBrInst>(&I); 3202 const Value *Callee = CBI->getCalledOperand(); 3203 FunctionType *FTy = CBI->getFunctionType(); 3204 3205 if (CBI->hasOperandBundles()) 3206 writeOperandBundles(*CBI, InstID); 3207 3208 Code = bitc::FUNC_CODE_INST_CALLBR; 3209 3210 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3211 3212 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3213 1 << bitc::CALL_EXPLICIT_TYPE); 3214 3215 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3216 Vals.push_back(CBI->getNumIndirectDests()); 3217 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3218 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3219 3220 Vals.push_back(VE.getTypeID(FTy)); 3221 pushValueAndType(Callee, InstID, Vals); 3222 3223 // Emit value #'s for the fixed parameters. 3224 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3225 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3226 3227 // Emit type/value pairs for varargs params. 3228 if (FTy->isVarArg()) { 3229 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3230 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3231 } 3232 break; 3233 } 3234 case Instruction::Unreachable: 3235 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3236 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3237 break; 3238 3239 case Instruction::PHI: { 3240 const PHINode &PN = cast<PHINode>(I); 3241 Code = bitc::FUNC_CODE_INST_PHI; 3242 // With the newer instruction encoding, forward references could give 3243 // negative valued IDs. This is most common for PHIs, so we use 3244 // signed VBRs. 3245 SmallVector<uint64_t, 128> Vals64; 3246 Vals64.push_back(VE.getTypeID(PN.getType())); 3247 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3248 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3249 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3250 } 3251 3252 uint64_t Flags = getOptimizationFlags(&I); 3253 if (Flags != 0) 3254 Vals64.push_back(Flags); 3255 3256 // Emit a Vals64 vector and exit. 3257 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3258 Vals64.clear(); 3259 return; 3260 } 3261 3262 case Instruction::LandingPad: { 3263 const LandingPadInst &LP = cast<LandingPadInst>(I); 3264 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3265 Vals.push_back(VE.getTypeID(LP.getType())); 3266 Vals.push_back(LP.isCleanup()); 3267 Vals.push_back(LP.getNumClauses()); 3268 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3269 if (LP.isCatch(I)) 3270 Vals.push_back(LandingPadInst::Catch); 3271 else 3272 Vals.push_back(LandingPadInst::Filter); 3273 pushValueAndType(LP.getClause(I), InstID, Vals); 3274 } 3275 break; 3276 } 3277 3278 case Instruction::Alloca: { 3279 Code = bitc::FUNC_CODE_INST_ALLOCA; 3280 const AllocaInst &AI = cast<AllocaInst>(I); 3281 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3282 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3283 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3284 using APV = AllocaPackedValues; 3285 unsigned Record = 0; 3286 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3287 Bitfield::set<APV::AlignLower>( 3288 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3289 Bitfield::set<APV::AlignUpper>(Record, 3290 EncodedAlign >> APV::AlignLower::Bits); 3291 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3292 Bitfield::set<APV::ExplicitType>(Record, true); 3293 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3294 Vals.push_back(Record); 3295 3296 unsigned AS = AI.getAddressSpace(); 3297 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3298 Vals.push_back(AS); 3299 break; 3300 } 3301 3302 case Instruction::Load: 3303 if (cast<LoadInst>(I).isAtomic()) { 3304 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3305 pushValueAndType(I.getOperand(0), InstID, Vals); 3306 } else { 3307 Code = bitc::FUNC_CODE_INST_LOAD; 3308 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3309 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3310 } 3311 Vals.push_back(VE.getTypeID(I.getType())); 3312 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3313 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3314 if (cast<LoadInst>(I).isAtomic()) { 3315 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3316 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3317 } 3318 break; 3319 case Instruction::Store: 3320 if (cast<StoreInst>(I).isAtomic()) 3321 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3322 else 3323 Code = bitc::FUNC_CODE_INST_STORE; 3324 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3325 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3326 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3327 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3328 if (cast<StoreInst>(I).isAtomic()) { 3329 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3330 Vals.push_back( 3331 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3332 } 3333 break; 3334 case Instruction::AtomicCmpXchg: 3335 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3336 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3337 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3338 pushValue(I.getOperand(2), InstID, Vals); // newval. 3339 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3340 Vals.push_back( 3341 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3342 Vals.push_back( 3343 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3344 Vals.push_back( 3345 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3346 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3347 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3348 break; 3349 case Instruction::AtomicRMW: 3350 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3351 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3352 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3353 Vals.push_back( 3354 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3355 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3356 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3357 Vals.push_back( 3358 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3359 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3360 break; 3361 case Instruction::Fence: 3362 Code = bitc::FUNC_CODE_INST_FENCE; 3363 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3364 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3365 break; 3366 case Instruction::Call: { 3367 const CallInst &CI = cast<CallInst>(I); 3368 FunctionType *FTy = CI.getFunctionType(); 3369 3370 if (CI.hasOperandBundles()) 3371 writeOperandBundles(CI, InstID); 3372 3373 Code = bitc::FUNC_CODE_INST_CALL; 3374 3375 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3376 3377 unsigned Flags = getOptimizationFlags(&I); 3378 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3379 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3380 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3381 1 << bitc::CALL_EXPLICIT_TYPE | 3382 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3383 unsigned(Flags != 0) << bitc::CALL_FMF); 3384 if (Flags != 0) 3385 Vals.push_back(Flags); 3386 3387 Vals.push_back(VE.getTypeID(FTy)); 3388 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3389 3390 // Emit value #'s for the fixed parameters. 3391 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3392 // Check for labels (can happen with asm labels). 3393 if (FTy->getParamType(i)->isLabelTy()) 3394 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3395 else 3396 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3397 } 3398 3399 // Emit type/value pairs for varargs params. 3400 if (FTy->isVarArg()) { 3401 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3402 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3403 } 3404 break; 3405 } 3406 case Instruction::VAArg: 3407 Code = bitc::FUNC_CODE_INST_VAARG; 3408 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3409 pushValue(I.getOperand(0), InstID, Vals); // valist. 3410 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3411 break; 3412 case Instruction::Freeze: 3413 Code = bitc::FUNC_CODE_INST_FREEZE; 3414 pushValueAndType(I.getOperand(0), InstID, Vals); 3415 break; 3416 } 3417 3418 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3419 Vals.clear(); 3420 } 3421 3422 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3423 /// to allow clients to efficiently find the function body. 3424 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3425 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3426 // Get the offset of the VST we are writing, and backpatch it into 3427 // the VST forward declaration record. 3428 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3429 // The BitcodeStartBit was the stream offset of the identification block. 3430 VSTOffset -= bitcodeStartBit(); 3431 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3432 // Note that we add 1 here because the offset is relative to one word 3433 // before the start of the identification block, which was historically 3434 // always the start of the regular bitcode header. 3435 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3436 3437 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3438 3439 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3440 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3443 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3444 3445 for (const Function &F : M) { 3446 uint64_t Record[2]; 3447 3448 if (F.isDeclaration()) 3449 continue; 3450 3451 Record[0] = VE.getValueID(&F); 3452 3453 // Save the word offset of the function (from the start of the 3454 // actual bitcode written to the stream). 3455 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3456 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3457 // Note that we add 1 here because the offset is relative to one word 3458 // before the start of the identification block, which was historically 3459 // always the start of the regular bitcode header. 3460 Record[1] = BitcodeIndex / 32 + 1; 3461 3462 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3463 } 3464 3465 Stream.ExitBlock(); 3466 } 3467 3468 /// Emit names for arguments, instructions and basic blocks in a function. 3469 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3470 const ValueSymbolTable &VST) { 3471 if (VST.empty()) 3472 return; 3473 3474 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3475 3476 // FIXME: Set up the abbrev, we know how many values there are! 3477 // FIXME: We know if the type names can use 7-bit ascii. 3478 SmallVector<uint64_t, 64> NameVals; 3479 3480 for (const ValueName &Name : VST) { 3481 // Figure out the encoding to use for the name. 3482 StringEncoding Bits = getStringEncoding(Name.getKey()); 3483 3484 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3485 NameVals.push_back(VE.getValueID(Name.getValue())); 3486 3487 // VST_CODE_ENTRY: [valueid, namechar x N] 3488 // VST_CODE_BBENTRY: [bbid, namechar x N] 3489 unsigned Code; 3490 if (isa<BasicBlock>(Name.getValue())) { 3491 Code = bitc::VST_CODE_BBENTRY; 3492 if (Bits == SE_Char6) 3493 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3494 } else { 3495 Code = bitc::VST_CODE_ENTRY; 3496 if (Bits == SE_Char6) 3497 AbbrevToUse = VST_ENTRY_6_ABBREV; 3498 else if (Bits == SE_Fixed7) 3499 AbbrevToUse = VST_ENTRY_7_ABBREV; 3500 } 3501 3502 for (const auto P : Name.getKey()) 3503 NameVals.push_back((unsigned char)P); 3504 3505 // Emit the finished record. 3506 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3507 NameVals.clear(); 3508 } 3509 3510 Stream.ExitBlock(); 3511 } 3512 3513 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3514 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3515 unsigned Code; 3516 if (isa<BasicBlock>(Order.V)) 3517 Code = bitc::USELIST_CODE_BB; 3518 else 3519 Code = bitc::USELIST_CODE_DEFAULT; 3520 3521 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3522 Record.push_back(VE.getValueID(Order.V)); 3523 Stream.EmitRecord(Code, Record); 3524 } 3525 3526 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3527 assert(VE.shouldPreserveUseListOrder() && 3528 "Expected to be preserving use-list order"); 3529 3530 auto hasMore = [&]() { 3531 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3532 }; 3533 if (!hasMore()) 3534 // Nothing to do. 3535 return; 3536 3537 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3538 while (hasMore()) { 3539 writeUseList(std::move(VE.UseListOrders.back())); 3540 VE.UseListOrders.pop_back(); 3541 } 3542 Stream.ExitBlock(); 3543 } 3544 3545 /// Emit a function body to the module stream. 3546 void ModuleBitcodeWriter::writeFunction( 3547 const Function &F, 3548 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3549 // Save the bitcode index of the start of this function block for recording 3550 // in the VST. 3551 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3552 3553 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3554 VE.incorporateFunction(F); 3555 3556 SmallVector<unsigned, 64> Vals; 3557 3558 // Emit the number of basic blocks, so the reader can create them ahead of 3559 // time. 3560 Vals.push_back(VE.getBasicBlocks().size()); 3561 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3562 Vals.clear(); 3563 3564 // If there are function-local constants, emit them now. 3565 unsigned CstStart, CstEnd; 3566 VE.getFunctionConstantRange(CstStart, CstEnd); 3567 writeConstants(CstStart, CstEnd, false); 3568 3569 // If there is function-local metadata, emit it now. 3570 writeFunctionMetadata(F); 3571 3572 // Keep a running idea of what the instruction ID is. 3573 unsigned InstID = CstEnd; 3574 3575 bool NeedsMetadataAttachment = F.hasMetadata(); 3576 3577 DILocation *LastDL = nullptr; 3578 SmallSetVector<Function *, 4> BlockAddressUsers; 3579 3580 // Finally, emit all the instructions, in order. 3581 for (const BasicBlock &BB : F) { 3582 for (const Instruction &I : BB) { 3583 writeInstruction(I, InstID, Vals); 3584 3585 if (!I.getType()->isVoidTy()) 3586 ++InstID; 3587 3588 // If the instruction has metadata, write a metadata attachment later. 3589 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3590 3591 // If the instruction has a debug location, emit it. 3592 if (DILocation *DL = I.getDebugLoc()) { 3593 if (DL == LastDL) { 3594 // Just repeat the same debug loc as last time. 3595 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3596 } else { 3597 Vals.push_back(DL->getLine()); 3598 Vals.push_back(DL->getColumn()); 3599 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3600 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3601 Vals.push_back(DL->isImplicitCode()); 3602 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3603 Vals.clear(); 3604 LastDL = DL; 3605 } 3606 } 3607 3608 // If the instruction has DbgRecords attached to it, emit them. Note that 3609 // they come after the instruction so that it's easy to attach them again 3610 // when reading the bitcode, even though conceptually the debug locations 3611 // start "before" the instruction. 3612 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3613 /// Try to push the value only (unwrapped), otherwise push the 3614 /// metadata wrapped value. Returns true if the value was pushed 3615 /// without the ValueAsMetadata wrapper. 3616 auto PushValueOrMetadata = [&Vals, InstID, 3617 this](Metadata *RawLocation) { 3618 assert(RawLocation && 3619 "RawLocation unexpectedly null in DbgVariableRecord"); 3620 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3621 SmallVector<unsigned, 2> ValAndType; 3622 // If the value is a fwd-ref the type is also pushed. We don't 3623 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3624 // returns false if the value is pushed without type). 3625 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3626 Vals.push_back(ValAndType[0]); 3627 return true; 3628 } 3629 } 3630 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3631 // fwd-ref. Push the metadata ID. 3632 Vals.push_back(VE.getMetadataID(RawLocation)); 3633 return false; 3634 }; 3635 3636 // Write out non-instruction debug information attached to this 3637 // instruction. Write it after the instruction so that it's easy to 3638 // re-attach to the instruction reading the records in. 3639 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3640 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3641 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3642 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3643 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3644 Vals.clear(); 3645 continue; 3646 } 3647 3648 // First 3 fields are common to all kinds: 3649 // DILocation, DILocalVariable, DIExpression 3650 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3651 // ..., LocationMetadata 3652 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3653 // ..., Value 3654 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3655 // ..., LocationMetadata 3656 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3657 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3658 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3659 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3660 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3661 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3662 if (DVR.isDbgValue()) { 3663 if (PushValueOrMetadata(DVR.getRawLocation())) 3664 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3665 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3666 else 3667 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3668 } else if (DVR.isDbgDeclare()) { 3669 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3670 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3671 } else { 3672 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3673 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3674 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3675 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3676 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3677 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3678 } 3679 Vals.clear(); 3680 } 3681 } 3682 } 3683 3684 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3685 SmallVector<Value *> Worklist{BA}; 3686 SmallPtrSet<Value *, 8> Visited{BA}; 3687 while (!Worklist.empty()) { 3688 Value *V = Worklist.pop_back_val(); 3689 for (User *U : V->users()) { 3690 if (auto *I = dyn_cast<Instruction>(U)) { 3691 Function *P = I->getFunction(); 3692 if (P != &F) 3693 BlockAddressUsers.insert(P); 3694 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3695 Visited.insert(U).second) 3696 Worklist.push_back(U); 3697 } 3698 } 3699 } 3700 } 3701 3702 if (!BlockAddressUsers.empty()) { 3703 Vals.resize(BlockAddressUsers.size()); 3704 for (auto I : llvm::enumerate(BlockAddressUsers)) 3705 Vals[I.index()] = VE.getValueID(I.value()); 3706 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3707 Vals.clear(); 3708 } 3709 3710 // Emit names for all the instructions etc. 3711 if (auto *Symtab = F.getValueSymbolTable()) 3712 writeFunctionLevelValueSymbolTable(*Symtab); 3713 3714 if (NeedsMetadataAttachment) 3715 writeFunctionMetadataAttachment(F); 3716 if (VE.shouldPreserveUseListOrder()) 3717 writeUseListBlock(&F); 3718 VE.purgeFunction(); 3719 Stream.ExitBlock(); 3720 } 3721 3722 // Emit blockinfo, which defines the standard abbreviations etc. 3723 void ModuleBitcodeWriter::writeBlockInfo() { 3724 // We only want to emit block info records for blocks that have multiple 3725 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3726 // Other blocks can define their abbrevs inline. 3727 Stream.EnterBlockInfoBlock(); 3728 3729 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3730 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3732 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3735 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3736 VST_ENTRY_8_ABBREV) 3737 llvm_unreachable("Unexpected abbrev ordering!"); 3738 } 3739 3740 { // 7-bit fixed width VST_CODE_ENTRY strings. 3741 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3742 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3746 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3747 VST_ENTRY_7_ABBREV) 3748 llvm_unreachable("Unexpected abbrev ordering!"); 3749 } 3750 { // 6-bit char6 VST_CODE_ENTRY strings. 3751 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3752 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3756 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3757 VST_ENTRY_6_ABBREV) 3758 llvm_unreachable("Unexpected abbrev ordering!"); 3759 } 3760 { // 6-bit char6 VST_CODE_BBENTRY strings. 3761 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3762 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3763 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3766 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3767 VST_BBENTRY_6_ABBREV) 3768 llvm_unreachable("Unexpected abbrev ordering!"); 3769 } 3770 3771 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3773 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3775 VE.computeBitsRequiredForTypeIndices())); 3776 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3777 CONSTANTS_SETTYPE_ABBREV) 3778 llvm_unreachable("Unexpected abbrev ordering!"); 3779 } 3780 3781 { // INTEGER abbrev for CONSTANTS_BLOCK. 3782 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3783 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3785 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3786 CONSTANTS_INTEGER_ABBREV) 3787 llvm_unreachable("Unexpected abbrev ordering!"); 3788 } 3789 3790 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3791 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3792 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3795 VE.computeBitsRequiredForTypeIndices())); 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3797 3798 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3799 CONSTANTS_CE_CAST_Abbrev) 3800 llvm_unreachable("Unexpected abbrev ordering!"); 3801 } 3802 { // NULL abbrev for CONSTANTS_BLOCK. 3803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3804 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3805 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3806 CONSTANTS_NULL_Abbrev) 3807 llvm_unreachable("Unexpected abbrev ordering!"); 3808 } 3809 3810 // FIXME: This should only use space for first class types! 3811 3812 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3813 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3814 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3817 VE.computeBitsRequiredForTypeIndices())); 3818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3820 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3821 FUNCTION_INST_LOAD_ABBREV) 3822 llvm_unreachable("Unexpected abbrev ordering!"); 3823 } 3824 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3825 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3826 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3829 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3830 FUNCTION_INST_UNOP_ABBREV) 3831 llvm_unreachable("Unexpected abbrev ordering!"); 3832 } 3833 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3834 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3835 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3837 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3839 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3840 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3841 llvm_unreachable("Unexpected abbrev ordering!"); 3842 } 3843 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3844 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3845 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3849 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3850 FUNCTION_INST_BINOP_ABBREV) 3851 llvm_unreachable("Unexpected abbrev ordering!"); 3852 } 3853 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3854 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3855 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3858 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3859 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3860 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3861 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3862 llvm_unreachable("Unexpected abbrev ordering!"); 3863 } 3864 { // INST_CAST abbrev for FUNCTION_BLOCK. 3865 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3866 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3867 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3869 VE.computeBitsRequiredForTypeIndices())); 3870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3871 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3872 FUNCTION_INST_CAST_ABBREV) 3873 llvm_unreachable("Unexpected abbrev ordering!"); 3874 } 3875 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3876 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3877 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3880 VE.computeBitsRequiredForTypeIndices())); 3881 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3882 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3883 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3884 FUNCTION_INST_CAST_FLAGS_ABBREV) 3885 llvm_unreachable("Unexpected abbrev ordering!"); 3886 } 3887 3888 { // INST_RET abbrev for FUNCTION_BLOCK. 3889 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3890 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3891 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3892 FUNCTION_INST_RET_VOID_ABBREV) 3893 llvm_unreachable("Unexpected abbrev ordering!"); 3894 } 3895 { // INST_RET abbrev for FUNCTION_BLOCK. 3896 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3897 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3898 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3899 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3900 FUNCTION_INST_RET_VAL_ABBREV) 3901 llvm_unreachable("Unexpected abbrev ordering!"); 3902 } 3903 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3904 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3905 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3906 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3907 FUNCTION_INST_UNREACHABLE_ABBREV) 3908 llvm_unreachable("Unexpected abbrev ordering!"); 3909 } 3910 { 3911 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3912 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3914 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3915 Log2_32_Ceil(VE.getTypes().size() + 1))); 3916 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3918 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3919 FUNCTION_INST_GEP_ABBREV) 3920 llvm_unreachable("Unexpected abbrev ordering!"); 3921 } 3922 { 3923 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3924 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3929 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3930 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3931 llvm_unreachable("Unexpected abbrev ordering! 1"); 3932 } 3933 Stream.ExitBlock(); 3934 } 3935 3936 /// Write the module path strings, currently only used when generating 3937 /// a combined index file. 3938 void IndexBitcodeWriter::writeModStrings() { 3939 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3940 3941 // TODO: See which abbrev sizes we actually need to emit 3942 3943 // 8-bit fixed-width MST_ENTRY strings. 3944 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3945 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3946 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3949 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3950 3951 // 7-bit fixed width MST_ENTRY strings. 3952 Abbv = std::make_shared<BitCodeAbbrev>(); 3953 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3957 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3958 3959 // 6-bit char6 MST_ENTRY strings. 3960 Abbv = std::make_shared<BitCodeAbbrev>(); 3961 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3965 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3966 3967 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3968 Abbv = std::make_shared<BitCodeAbbrev>(); 3969 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3975 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3976 3977 SmallVector<unsigned, 64> Vals; 3978 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3979 StringRef Key = MPSE.getKey(); 3980 const auto &Hash = MPSE.getValue(); 3981 StringEncoding Bits = getStringEncoding(Key); 3982 unsigned AbbrevToUse = Abbrev8Bit; 3983 if (Bits == SE_Char6) 3984 AbbrevToUse = Abbrev6Bit; 3985 else if (Bits == SE_Fixed7) 3986 AbbrevToUse = Abbrev7Bit; 3987 3988 auto ModuleId = ModuleIdMap.size(); 3989 ModuleIdMap[Key] = ModuleId; 3990 Vals.push_back(ModuleId); 3991 Vals.append(Key.begin(), Key.end()); 3992 3993 // Emit the finished record. 3994 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3995 3996 // Emit an optional hash for the module now 3997 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3998 Vals.assign(Hash.begin(), Hash.end()); 3999 // Emit the hash record. 4000 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 4001 } 4002 4003 Vals.clear(); 4004 }); 4005 Stream.ExitBlock(); 4006 } 4007 4008 /// Write the function type metadata related records that need to appear before 4009 /// a function summary entry (whether per-module or combined). 4010 template <typename Fn> 4011 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 4012 FunctionSummary *FS, 4013 Fn GetValueID) { 4014 if (!FS->type_tests().empty()) 4015 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 4016 4017 SmallVector<uint64_t, 64> Record; 4018 4019 auto WriteVFuncIdVec = [&](uint64_t Ty, 4020 ArrayRef<FunctionSummary::VFuncId> VFs) { 4021 if (VFs.empty()) 4022 return; 4023 Record.clear(); 4024 for (auto &VF : VFs) { 4025 Record.push_back(VF.GUID); 4026 Record.push_back(VF.Offset); 4027 } 4028 Stream.EmitRecord(Ty, Record); 4029 }; 4030 4031 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 4032 FS->type_test_assume_vcalls()); 4033 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 4034 FS->type_checked_load_vcalls()); 4035 4036 auto WriteConstVCallVec = [&](uint64_t Ty, 4037 ArrayRef<FunctionSummary::ConstVCall> VCs) { 4038 for (auto &VC : VCs) { 4039 Record.clear(); 4040 Record.push_back(VC.VFunc.GUID); 4041 Record.push_back(VC.VFunc.Offset); 4042 llvm::append_range(Record, VC.Args); 4043 Stream.EmitRecord(Ty, Record); 4044 } 4045 }; 4046 4047 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 4048 FS->type_test_assume_const_vcalls()); 4049 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 4050 FS->type_checked_load_const_vcalls()); 4051 4052 auto WriteRange = [&](ConstantRange Range) { 4053 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4054 assert(Range.getLower().getNumWords() == 1); 4055 assert(Range.getUpper().getNumWords() == 1); 4056 emitSignedInt64(Record, *Range.getLower().getRawData()); 4057 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4058 }; 4059 4060 if (!FS->paramAccesses().empty()) { 4061 Record.clear(); 4062 for (auto &Arg : FS->paramAccesses()) { 4063 size_t UndoSize = Record.size(); 4064 Record.push_back(Arg.ParamNo); 4065 WriteRange(Arg.Use); 4066 Record.push_back(Arg.Calls.size()); 4067 for (auto &Call : Arg.Calls) { 4068 Record.push_back(Call.ParamNo); 4069 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4070 if (!ValueID) { 4071 // If ValueID is unknown we can't drop just this call, we must drop 4072 // entire parameter. 4073 Record.resize(UndoSize); 4074 break; 4075 } 4076 Record.push_back(*ValueID); 4077 WriteRange(Call.Offsets); 4078 } 4079 } 4080 if (!Record.empty()) 4081 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4082 } 4083 } 4084 4085 /// Collect type IDs from type tests used by function. 4086 static void 4087 getReferencedTypeIds(FunctionSummary *FS, 4088 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4089 if (!FS->type_tests().empty()) 4090 for (auto &TT : FS->type_tests()) 4091 ReferencedTypeIds.insert(TT); 4092 4093 auto GetReferencedTypesFromVFuncIdVec = 4094 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4095 for (auto &VF : VFs) 4096 ReferencedTypeIds.insert(VF.GUID); 4097 }; 4098 4099 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4100 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4101 4102 auto GetReferencedTypesFromConstVCallVec = 4103 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4104 for (auto &VC : VCs) 4105 ReferencedTypeIds.insert(VC.VFunc.GUID); 4106 }; 4107 4108 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4109 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4110 } 4111 4112 static void writeWholeProgramDevirtResolutionByArg( 4113 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4114 const WholeProgramDevirtResolution::ByArg &ByArg) { 4115 NameVals.push_back(args.size()); 4116 llvm::append_range(NameVals, args); 4117 4118 NameVals.push_back(ByArg.TheKind); 4119 NameVals.push_back(ByArg.Info); 4120 NameVals.push_back(ByArg.Byte); 4121 NameVals.push_back(ByArg.Bit); 4122 } 4123 4124 static void writeWholeProgramDevirtResolution( 4125 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4126 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4127 NameVals.push_back(Id); 4128 4129 NameVals.push_back(Wpd.TheKind); 4130 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4131 NameVals.push_back(Wpd.SingleImplName.size()); 4132 4133 NameVals.push_back(Wpd.ResByArg.size()); 4134 for (auto &A : Wpd.ResByArg) 4135 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4136 } 4137 4138 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4139 StringTableBuilder &StrtabBuilder, 4140 const std::string &Id, 4141 const TypeIdSummary &Summary) { 4142 NameVals.push_back(StrtabBuilder.add(Id)); 4143 NameVals.push_back(Id.size()); 4144 4145 NameVals.push_back(Summary.TTRes.TheKind); 4146 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4147 NameVals.push_back(Summary.TTRes.AlignLog2); 4148 NameVals.push_back(Summary.TTRes.SizeM1); 4149 NameVals.push_back(Summary.TTRes.BitMask); 4150 NameVals.push_back(Summary.TTRes.InlineBits); 4151 4152 for (auto &W : Summary.WPDRes) 4153 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4154 W.second); 4155 } 4156 4157 static void writeTypeIdCompatibleVtableSummaryRecord( 4158 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4159 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4160 ValueEnumerator &VE) { 4161 NameVals.push_back(StrtabBuilder.add(Id)); 4162 NameVals.push_back(Id.size()); 4163 4164 for (auto &P : Summary) { 4165 NameVals.push_back(P.AddressPointOffset); 4166 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4167 } 4168 } 4169 4170 static void writeFunctionHeapProfileRecords( 4171 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4172 unsigned AllocAbbrev, bool PerModule, 4173 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4174 std::function<unsigned(unsigned)> GetStackIndex) { 4175 SmallVector<uint64_t> Record; 4176 4177 for (auto &CI : FS->callsites()) { 4178 Record.clear(); 4179 // Per module callsite clones should always have a single entry of 4180 // value 0. 4181 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4182 Record.push_back(GetValueID(CI.Callee)); 4183 if (!PerModule) { 4184 Record.push_back(CI.StackIdIndices.size()); 4185 Record.push_back(CI.Clones.size()); 4186 } 4187 for (auto Id : CI.StackIdIndices) 4188 Record.push_back(GetStackIndex(Id)); 4189 if (!PerModule) { 4190 for (auto V : CI.Clones) 4191 Record.push_back(V); 4192 } 4193 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4194 : bitc::FS_COMBINED_CALLSITE_INFO, 4195 Record, CallsiteAbbrev); 4196 } 4197 4198 for (auto &AI : FS->allocs()) { 4199 Record.clear(); 4200 // Per module alloc versions should always have a single entry of 4201 // value 0. 4202 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4203 Record.push_back(AI.MIBs.size()); 4204 if (!PerModule) 4205 Record.push_back(AI.Versions.size()); 4206 for (auto &MIB : AI.MIBs) { 4207 Record.push_back((uint8_t)MIB.AllocType); 4208 Record.push_back(MIB.StackIdIndices.size()); 4209 for (auto Id : MIB.StackIdIndices) 4210 Record.push_back(GetStackIndex(Id)); 4211 } 4212 if (!PerModule) { 4213 for (auto V : AI.Versions) 4214 Record.push_back(V); 4215 } 4216 assert(AI.TotalSizes.empty() || AI.TotalSizes.size() == AI.MIBs.size()); 4217 if (!AI.TotalSizes.empty()) { 4218 for (auto Size : AI.TotalSizes) 4219 Record.push_back(Size); 4220 } 4221 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4222 : bitc::FS_COMBINED_ALLOC_INFO, 4223 Record, AllocAbbrev); 4224 } 4225 } 4226 4227 // Helper to emit a single function summary record. 4228 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4229 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4230 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4231 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4232 unsigned AllocAbbrev, const Function &F) { 4233 NameVals.push_back(ValueID); 4234 4235 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4236 4237 writeFunctionTypeMetadataRecords( 4238 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4239 return {VE.getValueID(VI.getValue())}; 4240 }); 4241 4242 writeFunctionHeapProfileRecords( 4243 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4244 /*PerModule*/ true, 4245 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4246 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4247 4248 auto SpecialRefCnts = FS->specialRefCounts(); 4249 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4250 NameVals.push_back(FS->instCount()); 4251 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4252 NameVals.push_back(FS->refs().size()); 4253 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4254 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4255 4256 for (auto &RI : FS->refs()) 4257 NameVals.push_back(getValueId(RI)); 4258 4259 const bool UseRelBFRecord = 4260 WriteRelBFToSummary && !F.hasProfileData() && 4261 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4262 for (auto &ECI : FS->calls()) { 4263 NameVals.push_back(getValueId(ECI.first)); 4264 if (UseRelBFRecord) 4265 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4266 else 4267 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4268 } 4269 4270 unsigned FSAbbrev = 4271 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4272 unsigned Code = 4273 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4274 4275 // Emit the finished record. 4276 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4277 NameVals.clear(); 4278 } 4279 4280 // Collect the global value references in the given variable's initializer, 4281 // and emit them in a summary record. 4282 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4283 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4284 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4285 auto VI = Index->getValueInfo(V.getGUID()); 4286 if (!VI || VI.getSummaryList().empty()) { 4287 // Only declarations should not have a summary (a declaration might however 4288 // have a summary if the def was in module level asm). 4289 assert(V.isDeclaration()); 4290 return; 4291 } 4292 auto *Summary = VI.getSummaryList()[0].get(); 4293 NameVals.push_back(VE.getValueID(&V)); 4294 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4295 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4296 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4297 4298 auto VTableFuncs = VS->vTableFuncs(); 4299 if (!VTableFuncs.empty()) 4300 NameVals.push_back(VS->refs().size()); 4301 4302 unsigned SizeBeforeRefs = NameVals.size(); 4303 for (auto &RI : VS->refs()) 4304 NameVals.push_back(VE.getValueID(RI.getValue())); 4305 // Sort the refs for determinism output, the vector returned by FS->refs() has 4306 // been initialized from a DenseSet. 4307 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4308 4309 if (VTableFuncs.empty()) 4310 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4311 FSModRefsAbbrev); 4312 else { 4313 // VTableFuncs pairs should already be sorted by offset. 4314 for (auto &P : VTableFuncs) { 4315 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4316 NameVals.push_back(P.VTableOffset); 4317 } 4318 4319 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4320 FSModVTableRefsAbbrev); 4321 } 4322 NameVals.clear(); 4323 } 4324 4325 /// Emit the per-module summary section alongside the rest of 4326 /// the module's bitcode. 4327 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4328 // By default we compile with ThinLTO if the module has a summary, but the 4329 // client can request full LTO with a module flag. 4330 bool IsThinLTO = true; 4331 if (auto *MD = 4332 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4333 IsThinLTO = MD->getZExtValue(); 4334 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4335 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4336 4); 4337 4338 Stream.EmitRecord( 4339 bitc::FS_VERSION, 4340 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4341 4342 // Write the index flags. 4343 uint64_t Flags = 0; 4344 // Bits 1-3 are set only in the combined index, skip them. 4345 if (Index->enableSplitLTOUnit()) 4346 Flags |= 0x8; 4347 if (Index->hasUnifiedLTO()) 4348 Flags |= 0x200; 4349 4350 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4351 4352 if (Index->begin() == Index->end()) { 4353 Stream.ExitBlock(); 4354 return; 4355 } 4356 4357 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4358 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4360 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4363 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4364 4365 for (const auto &GVI : valueIds()) { 4366 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4367 ArrayRef<uint32_t>{GVI.second, 4368 static_cast<uint32_t>(GVI.first >> 32), 4369 static_cast<uint32_t>(GVI.first)}, 4370 ValueGuidAbbrev); 4371 } 4372 4373 if (!Index->stackIds().empty()) { 4374 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4375 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4376 // numids x stackid 4377 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4378 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4379 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4380 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4381 } 4382 4383 // Abbrev for FS_PERMODULE_PROFILE. 4384 Abbv = std::make_shared<BitCodeAbbrev>(); 4385 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4388 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4393 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4396 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4397 4398 // Abbrev for FS_PERMODULE_RELBF. 4399 Abbv = std::make_shared<BitCodeAbbrev>(); 4400 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4401 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4402 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4403 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4404 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4405 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4408 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4410 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4411 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4412 4413 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4414 Abbv = std::make_shared<BitCodeAbbrev>(); 4415 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4419 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4420 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4421 4422 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4423 Abbv = std::make_shared<BitCodeAbbrev>(); 4424 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4428 // numrefs x valueid, n x (valueid , offset) 4429 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4430 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4431 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4432 4433 // Abbrev for FS_ALIAS. 4434 Abbv = std::make_shared<BitCodeAbbrev>(); 4435 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4436 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4439 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4440 4441 // Abbrev for FS_TYPE_ID_METADATA 4442 Abbv = std::make_shared<BitCodeAbbrev>(); 4443 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4446 // n x (valueid , offset) 4447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4448 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4449 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4450 4451 Abbv = std::make_shared<BitCodeAbbrev>(); 4452 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4453 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4454 // n x stackidindex 4455 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4456 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4457 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4458 4459 Abbv = std::make_shared<BitCodeAbbrev>(); 4460 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4462 // n x (alloc type, numstackids, numstackids x stackidindex) 4463 // optional: nummib x total size 4464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4466 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4467 4468 SmallVector<uint64_t, 64> NameVals; 4469 // Iterate over the list of functions instead of the Index to 4470 // ensure the ordering is stable. 4471 for (const Function &F : M) { 4472 // Summary emission does not support anonymous functions, they have to 4473 // renamed using the anonymous function renaming pass. 4474 if (!F.hasName()) 4475 report_fatal_error("Unexpected anonymous function when writing summary"); 4476 4477 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4478 if (!VI || VI.getSummaryList().empty()) { 4479 // Only declarations should not have a summary (a declaration might 4480 // however have a summary if the def was in module level asm). 4481 assert(F.isDeclaration()); 4482 continue; 4483 } 4484 auto *Summary = VI.getSummaryList()[0].get(); 4485 writePerModuleFunctionSummaryRecord( 4486 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4487 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4488 } 4489 4490 // Capture references from GlobalVariable initializers, which are outside 4491 // of a function scope. 4492 for (const GlobalVariable &G : M.globals()) 4493 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4494 FSModVTableRefsAbbrev); 4495 4496 for (const GlobalAlias &A : M.aliases()) { 4497 auto *Aliasee = A.getAliaseeObject(); 4498 // Skip ifunc and nameless functions which don't have an entry in the 4499 // summary. 4500 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4501 continue; 4502 auto AliasId = VE.getValueID(&A); 4503 auto AliaseeId = VE.getValueID(Aliasee); 4504 NameVals.push_back(AliasId); 4505 auto *Summary = Index->getGlobalValueSummary(A); 4506 AliasSummary *AS = cast<AliasSummary>(Summary); 4507 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4508 NameVals.push_back(AliaseeId); 4509 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4510 NameVals.clear(); 4511 } 4512 4513 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4514 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4515 S.second, VE); 4516 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4517 TypeIdCompatibleVtableAbbrev); 4518 NameVals.clear(); 4519 } 4520 4521 if (Index->getBlockCount()) 4522 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4523 ArrayRef<uint64_t>{Index->getBlockCount()}); 4524 4525 Stream.ExitBlock(); 4526 } 4527 4528 /// Emit the combined summary section into the combined index file. 4529 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4530 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4531 Stream.EmitRecord( 4532 bitc::FS_VERSION, 4533 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4534 4535 // Write the index flags. 4536 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4537 4538 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4539 Abbv->Add(BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); 4540 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4541 // GUIDS often use up most of 64-bits, so encode as two Fixed 32. 4542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 4544 unsigned ValueGuidAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4545 4546 for (const auto &GVI : valueIds()) { 4547 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4548 ArrayRef<uint32_t>{GVI.second, 4549 static_cast<uint32_t>(GVI.first >> 32), 4550 static_cast<uint32_t>(GVI.first)}, 4551 ValueGuidAbbrev); 4552 } 4553 4554 // Write the stack ids used by this index, which will be a subset of those in 4555 // the full index in the case of distributed indexes. 4556 if (!StackIds.empty()) { 4557 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4558 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4559 // numids x stackid 4560 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4561 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4562 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4563 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4564 } 4565 4566 // Abbrev for FS_COMBINED_PROFILE. 4567 Abbv = std::make_shared<BitCodeAbbrev>(); 4568 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4569 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4570 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4571 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4572 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4573 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4574 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4575 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4576 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4578 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4580 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4581 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4582 4583 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4584 Abbv = std::make_shared<BitCodeAbbrev>(); 4585 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4588 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4589 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4590 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4591 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4592 4593 // Abbrev for FS_COMBINED_ALIAS. 4594 Abbv = std::make_shared<BitCodeAbbrev>(); 4595 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4596 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4597 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4598 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4599 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4600 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4601 4602 Abbv = std::make_shared<BitCodeAbbrev>(); 4603 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4606 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4607 // numstackindices x stackidindex, numver x version 4608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4609 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4610 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4611 4612 Abbv = std::make_shared<BitCodeAbbrev>(); 4613 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4616 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4617 // numver x version 4618 // optional: nummib x total size 4619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4620 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4621 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4622 4623 auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { 4624 if (DecSummaries == nullptr) 4625 return false; 4626 return DecSummaries->count(GVS); 4627 }; 4628 4629 // The aliases are emitted as a post-pass, and will point to the value 4630 // id of the aliasee. Save them in a vector for post-processing. 4631 SmallVector<AliasSummary *, 64> Aliases; 4632 4633 // Save the value id for each summary for alias emission. 4634 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4635 4636 SmallVector<uint64_t, 64> NameVals; 4637 4638 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4639 // with the type ids referenced by this index file. 4640 std::set<GlobalValue::GUID> ReferencedTypeIds; 4641 4642 // For local linkage, we also emit the original name separately 4643 // immediately after the record. 4644 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4645 // We don't need to emit the original name if we are writing the index for 4646 // distributed backends (in which case ModuleToSummariesForIndex is 4647 // non-null). The original name is only needed during the thin link, since 4648 // for SamplePGO the indirect call targets for local functions have 4649 // have the original name annotated in profile. 4650 // Continue to emit it when writing out the entire combined index, which is 4651 // used in testing the thin link via llvm-lto. 4652 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4653 return; 4654 NameVals.push_back(S.getOriginalName()); 4655 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4656 NameVals.clear(); 4657 }; 4658 4659 DenseSet<GlobalValue::GUID> DefOrUseGUIDs; 4660 forEachSummary([&](GVInfo I, bool IsAliasee) { 4661 GlobalValueSummary *S = I.second; 4662 assert(S); 4663 DefOrUseGUIDs.insert(I.first); 4664 for (const ValueInfo &VI : S->refs()) 4665 DefOrUseGUIDs.insert(VI.getGUID()); 4666 4667 auto ValueId = getValueId(I.first); 4668 assert(ValueId); 4669 SummaryToValueIdMap[S] = *ValueId; 4670 4671 // If this is invoked for an aliasee, we want to record the above 4672 // mapping, but then not emit a summary entry (if the aliasee is 4673 // to be imported, we will invoke this separately with IsAliasee=false). 4674 if (IsAliasee) 4675 return; 4676 4677 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4678 // Will process aliases as a post-pass because the reader wants all 4679 // global to be loaded first. 4680 Aliases.push_back(AS); 4681 return; 4682 } 4683 4684 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4685 NameVals.push_back(*ValueId); 4686 assert(ModuleIdMap.count(VS->modulePath())); 4687 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4688 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4689 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4690 for (auto &RI : VS->refs()) { 4691 auto RefValueId = getValueId(RI.getGUID()); 4692 if (!RefValueId) 4693 continue; 4694 NameVals.push_back(*RefValueId); 4695 } 4696 4697 // Emit the finished record. 4698 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4699 FSModRefsAbbrev); 4700 NameVals.clear(); 4701 MaybeEmitOriginalName(*S); 4702 return; 4703 } 4704 4705 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4706 if (!VI) 4707 return std::nullopt; 4708 return getValueId(VI.getGUID()); 4709 }; 4710 4711 auto *FS = cast<FunctionSummary>(S); 4712 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4713 getReferencedTypeIds(FS, ReferencedTypeIds); 4714 4715 writeFunctionHeapProfileRecords( 4716 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4717 /*PerModule*/ false, 4718 /*GetValueId*/ 4719 [&](const ValueInfo &VI) -> unsigned { 4720 std::optional<unsigned> ValueID = GetValueId(VI); 4721 // This can happen in shared index files for distributed ThinLTO if 4722 // the callee function summary is not included. Record 0 which we 4723 // will have to deal with conservatively when doing any kind of 4724 // validation in the ThinLTO backends. 4725 if (!ValueID) 4726 return 0; 4727 return *ValueID; 4728 }, 4729 /*GetStackIndex*/ 4730 [&](unsigned I) { 4731 // Get the corresponding index into the list of StackIds actually 4732 // being written for this combined index (which may be a subset in 4733 // the case of distributed indexes). 4734 assert(StackIdIndicesToIndex.contains(I)); 4735 return StackIdIndicesToIndex[I]; 4736 }); 4737 4738 NameVals.push_back(*ValueId); 4739 assert(ModuleIdMap.count(FS->modulePath())); 4740 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4741 NameVals.push_back( 4742 getEncodedGVSummaryFlags(FS->flags(), shouldImportValueAsDecl(FS))); 4743 NameVals.push_back(FS->instCount()); 4744 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4745 // TODO: Stop writing entry count and bump bitcode version. 4746 NameVals.push_back(0 /* EntryCount */); 4747 4748 // Fill in below 4749 NameVals.push_back(0); // numrefs 4750 NameVals.push_back(0); // rorefcnt 4751 NameVals.push_back(0); // worefcnt 4752 4753 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4754 for (auto &RI : FS->refs()) { 4755 auto RefValueId = getValueId(RI.getGUID()); 4756 if (!RefValueId) 4757 continue; 4758 NameVals.push_back(*RefValueId); 4759 if (RI.isReadOnly()) 4760 RORefCnt++; 4761 else if (RI.isWriteOnly()) 4762 WORefCnt++; 4763 Count++; 4764 } 4765 NameVals[6] = Count; 4766 NameVals[7] = RORefCnt; 4767 NameVals[8] = WORefCnt; 4768 4769 for (auto &EI : FS->calls()) { 4770 // If this GUID doesn't have a value id, it doesn't have a function 4771 // summary and we don't need to record any calls to it. 4772 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4773 if (!CallValueId) 4774 continue; 4775 NameVals.push_back(*CallValueId); 4776 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4777 } 4778 4779 // Emit the finished record. 4780 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4781 FSCallsProfileAbbrev); 4782 NameVals.clear(); 4783 MaybeEmitOriginalName(*S); 4784 }); 4785 4786 for (auto *AS : Aliases) { 4787 auto AliasValueId = SummaryToValueIdMap[AS]; 4788 assert(AliasValueId); 4789 NameVals.push_back(AliasValueId); 4790 assert(ModuleIdMap.count(AS->modulePath())); 4791 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4792 NameVals.push_back( 4793 getEncodedGVSummaryFlags(AS->flags(), shouldImportValueAsDecl(AS))); 4794 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4795 assert(AliaseeValueId); 4796 NameVals.push_back(AliaseeValueId); 4797 4798 // Emit the finished record. 4799 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4800 NameVals.clear(); 4801 MaybeEmitOriginalName(*AS); 4802 4803 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4804 getReferencedTypeIds(FS, ReferencedTypeIds); 4805 } 4806 4807 if (!Index.cfiFunctionDefs().empty()) { 4808 for (auto &S : Index.cfiFunctionDefs()) { 4809 if (DefOrUseGUIDs.contains( 4810 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4811 NameVals.push_back(StrtabBuilder.add(S)); 4812 NameVals.push_back(S.size()); 4813 } 4814 } 4815 if (!NameVals.empty()) { 4816 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4817 NameVals.clear(); 4818 } 4819 } 4820 4821 if (!Index.cfiFunctionDecls().empty()) { 4822 for (auto &S : Index.cfiFunctionDecls()) { 4823 if (DefOrUseGUIDs.contains( 4824 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4825 NameVals.push_back(StrtabBuilder.add(S)); 4826 NameVals.push_back(S.size()); 4827 } 4828 } 4829 if (!NameVals.empty()) { 4830 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4831 NameVals.clear(); 4832 } 4833 } 4834 4835 // Walk the GUIDs that were referenced, and write the 4836 // corresponding type id records. 4837 for (auto &T : ReferencedTypeIds) { 4838 auto TidIter = Index.typeIds().equal_range(T); 4839 for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) { 4840 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, TypeIdPair.first, 4841 TypeIdPair.second); 4842 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4843 NameVals.clear(); 4844 } 4845 } 4846 4847 if (Index.getBlockCount()) 4848 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4849 ArrayRef<uint64_t>{Index.getBlockCount()}); 4850 4851 Stream.ExitBlock(); 4852 } 4853 4854 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4855 /// current llvm version, and a record for the epoch number. 4856 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4857 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4858 4859 // Write the "user readable" string identifying the bitcode producer 4860 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4861 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4864 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4865 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4866 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4867 4868 // Write the epoch version 4869 Abbv = std::make_shared<BitCodeAbbrev>(); 4870 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4872 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4873 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4874 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4875 Stream.ExitBlock(); 4876 } 4877 4878 void ModuleBitcodeWriter::writeModuleHash(StringRef View) { 4879 // Emit the module's hash. 4880 // MODULE_CODE_HASH: [5*i32] 4881 if (GenerateHash) { 4882 uint32_t Vals[5]; 4883 Hasher.update(ArrayRef<uint8_t>( 4884 reinterpret_cast<const uint8_t *>(View.data()), View.size())); 4885 std::array<uint8_t, 20> Hash = Hasher.result(); 4886 for (int Pos = 0; Pos < 20; Pos += 4) { 4887 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4888 } 4889 4890 // Emit the finished record. 4891 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4892 4893 if (ModHash) 4894 // Save the written hash value. 4895 llvm::copy(Vals, std::begin(*ModHash)); 4896 } 4897 } 4898 4899 void ModuleBitcodeWriter::write() { 4900 writeIdentificationBlock(Stream); 4901 4902 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4903 // We will want to write the module hash at this point. Block any flushing so 4904 // we can have access to the whole underlying data later. 4905 Stream.markAndBlockFlushing(); 4906 4907 writeModuleVersion(); 4908 4909 // Emit blockinfo, which defines the standard abbreviations etc. 4910 writeBlockInfo(); 4911 4912 // Emit information describing all of the types in the module. 4913 writeTypeTable(); 4914 4915 // Emit information about attribute groups. 4916 writeAttributeGroupTable(); 4917 4918 // Emit information about parameter attributes. 4919 writeAttributeTable(); 4920 4921 writeComdats(); 4922 4923 // Emit top-level description of module, including target triple, inline asm, 4924 // descriptors for global variables, and function prototype info. 4925 writeModuleInfo(); 4926 4927 // Emit constants. 4928 writeModuleConstants(); 4929 4930 // Emit metadata kind names. 4931 writeModuleMetadataKinds(); 4932 4933 // Emit metadata. 4934 writeModuleMetadata(); 4935 4936 // Emit module-level use-lists. 4937 if (VE.shouldPreserveUseListOrder()) 4938 writeUseListBlock(nullptr); 4939 4940 writeOperandBundleTags(); 4941 writeSyncScopeNames(); 4942 4943 // Emit function bodies. 4944 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4945 for (const Function &F : M) 4946 if (!F.isDeclaration()) 4947 writeFunction(F, FunctionToBitcodeIndex); 4948 4949 // Need to write after the above call to WriteFunction which populates 4950 // the summary information in the index. 4951 if (Index) 4952 writePerModuleGlobalValueSummary(); 4953 4954 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4955 4956 writeModuleHash(Stream.getMarkedBufferAndResumeFlushing()); 4957 4958 Stream.ExitBlock(); 4959 } 4960 4961 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4962 uint32_t &Position) { 4963 support::endian::write32le(&Buffer[Position], Value); 4964 Position += 4; 4965 } 4966 4967 /// If generating a bc file on darwin, we have to emit a 4968 /// header and trailer to make it compatible with the system archiver. To do 4969 /// this we emit the following header, and then emit a trailer that pads the 4970 /// file out to be a multiple of 16 bytes. 4971 /// 4972 /// struct bc_header { 4973 /// uint32_t Magic; // 0x0B17C0DE 4974 /// uint32_t Version; // Version, currently always 0. 4975 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4976 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4977 /// uint32_t CPUType; // CPU specifier. 4978 /// ... potentially more later ... 4979 /// }; 4980 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4981 const Triple &TT) { 4982 unsigned CPUType = ~0U; 4983 4984 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4985 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4986 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4987 // specific constants here because they are implicitly part of the Darwin ABI. 4988 enum { 4989 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4990 DARWIN_CPU_TYPE_X86 = 7, 4991 DARWIN_CPU_TYPE_ARM = 12, 4992 DARWIN_CPU_TYPE_POWERPC = 18 4993 }; 4994 4995 Triple::ArchType Arch = TT.getArch(); 4996 if (Arch == Triple::x86_64) 4997 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4998 else if (Arch == Triple::x86) 4999 CPUType = DARWIN_CPU_TYPE_X86; 5000 else if (Arch == Triple::ppc) 5001 CPUType = DARWIN_CPU_TYPE_POWERPC; 5002 else if (Arch == Triple::ppc64) 5003 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 5004 else if (Arch == Triple::arm || Arch == Triple::thumb) 5005 CPUType = DARWIN_CPU_TYPE_ARM; 5006 5007 // Traditional Bitcode starts after header. 5008 assert(Buffer.size() >= BWH_HeaderSize && 5009 "Expected header size to be reserved"); 5010 unsigned BCOffset = BWH_HeaderSize; 5011 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 5012 5013 // Write the magic and version. 5014 unsigned Position = 0; 5015 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 5016 writeInt32ToBuffer(0, Buffer, Position); // Version. 5017 writeInt32ToBuffer(BCOffset, Buffer, Position); 5018 writeInt32ToBuffer(BCSize, Buffer, Position); 5019 writeInt32ToBuffer(CPUType, Buffer, Position); 5020 5021 // If the file is not a multiple of 16 bytes, insert dummy padding. 5022 while (Buffer.size() & 15) 5023 Buffer.push_back(0); 5024 } 5025 5026 /// Helper to write the header common to all bitcode files. 5027 static void writeBitcodeHeader(BitstreamWriter &Stream) { 5028 // Emit the file header. 5029 Stream.Emit((unsigned)'B', 8); 5030 Stream.Emit((unsigned)'C', 8); 5031 Stream.Emit(0x0, 4); 5032 Stream.Emit(0xC, 4); 5033 Stream.Emit(0xE, 4); 5034 Stream.Emit(0xD, 4); 5035 } 5036 5037 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 5038 : Stream(new BitstreamWriter(Buffer)) { 5039 writeBitcodeHeader(*Stream); 5040 } 5041 5042 BitcodeWriter::BitcodeWriter(raw_ostream &FS) 5043 : Stream(new BitstreamWriter(FS, FlushThreshold)) { 5044 writeBitcodeHeader(*Stream); 5045 } 5046 5047 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 5048 5049 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 5050 Stream->EnterSubblock(Block, 3); 5051 5052 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5053 Abbv->Add(BitCodeAbbrevOp(Record)); 5054 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 5055 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 5056 5057 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 5058 5059 Stream->ExitBlock(); 5060 } 5061 5062 void BitcodeWriter::writeSymtab() { 5063 assert(!WroteStrtab && !WroteSymtab); 5064 5065 // If any module has module-level inline asm, we will require a registered asm 5066 // parser for the target so that we can create an accurate symbol table for 5067 // the module. 5068 for (Module *M : Mods) { 5069 if (M->getModuleInlineAsm().empty()) 5070 continue; 5071 5072 std::string Err; 5073 const Triple TT(M->getTargetTriple()); 5074 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 5075 if (!T || !T->hasMCAsmParser()) 5076 return; 5077 } 5078 5079 WroteSymtab = true; 5080 SmallVector<char, 0> Symtab; 5081 // The irsymtab::build function may be unable to create a symbol table if the 5082 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 5083 // table is not required for correctness, but we still want to be able to 5084 // write malformed modules to bitcode files, so swallow the error. 5085 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 5086 consumeError(std::move(E)); 5087 return; 5088 } 5089 5090 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 5091 {Symtab.data(), Symtab.size()}); 5092 } 5093 5094 void BitcodeWriter::writeStrtab() { 5095 assert(!WroteStrtab); 5096 5097 std::vector<char> Strtab; 5098 StrtabBuilder.finalizeInOrder(); 5099 Strtab.resize(StrtabBuilder.getSize()); 5100 StrtabBuilder.write((uint8_t *)Strtab.data()); 5101 5102 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5103 {Strtab.data(), Strtab.size()}); 5104 5105 WroteStrtab = true; 5106 } 5107 5108 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5109 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5110 WroteStrtab = true; 5111 } 5112 5113 void BitcodeWriter::writeModule(const Module &M, 5114 bool ShouldPreserveUseListOrder, 5115 const ModuleSummaryIndex *Index, 5116 bool GenerateHash, ModuleHash *ModHash) { 5117 assert(!WroteStrtab); 5118 5119 // The Mods vector is used by irsymtab::build, which requires non-const 5120 // Modules in case it needs to materialize metadata. But the bitcode writer 5121 // requires that the module is materialized, so we can cast to non-const here, 5122 // after checking that it is in fact materialized. 5123 assert(M.isMaterialized()); 5124 Mods.push_back(const_cast<Module *>(&M)); 5125 5126 ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, 5127 ShouldPreserveUseListOrder, Index, 5128 GenerateHash, ModHash); 5129 ModuleWriter.write(); 5130 } 5131 5132 void BitcodeWriter::writeIndex( 5133 const ModuleSummaryIndex *Index, 5134 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5135 const GVSummaryPtrSet *DecSummaries) { 5136 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, 5137 ModuleToSummariesForIndex); 5138 IndexWriter.write(); 5139 } 5140 5141 /// Write the specified module to the specified output stream. 5142 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5143 bool ShouldPreserveUseListOrder, 5144 const ModuleSummaryIndex *Index, 5145 bool GenerateHash, ModuleHash *ModHash) { 5146 auto Write = [&](BitcodeWriter &Writer) { 5147 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5148 ModHash); 5149 Writer.writeSymtab(); 5150 Writer.writeStrtab(); 5151 }; 5152 Triple TT(M.getTargetTriple()); 5153 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { 5154 // If this is darwin or another generic macho target, reserve space for the 5155 // header. Note that the header is computed *after* the output is known, so 5156 // we currently explicitly use a buffer, write to it, and then subsequently 5157 // flush to Out. 5158 SmallVector<char, 0> Buffer; 5159 Buffer.reserve(256 * 1024); 5160 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5161 BitcodeWriter Writer(Buffer); 5162 Write(Writer); 5163 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5164 Out.write(Buffer.data(), Buffer.size()); 5165 } else { 5166 BitcodeWriter Writer(Out); 5167 Write(Writer); 5168 } 5169 } 5170 5171 void IndexBitcodeWriter::write() { 5172 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5173 5174 writeModuleVersion(); 5175 5176 // Write the module paths in the combined index. 5177 writeModStrings(); 5178 5179 // Write the summary combined index records. 5180 writeCombinedGlobalValueSummary(); 5181 5182 Stream.ExitBlock(); 5183 } 5184 5185 // Write the specified module summary index to the given raw output stream, 5186 // where it will be written in a new bitcode block. This is used when 5187 // writing the combined index file for ThinLTO. When writing a subset of the 5188 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5189 void llvm::writeIndexToFile( 5190 const ModuleSummaryIndex &Index, raw_ostream &Out, 5191 const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, 5192 const GVSummaryPtrSet *DecSummaries) { 5193 SmallVector<char, 0> Buffer; 5194 Buffer.reserve(256 * 1024); 5195 5196 BitcodeWriter Writer(Buffer); 5197 Writer.writeIndex(&Index, ModuleToSummariesForIndex, DecSummaries); 5198 Writer.writeStrtab(); 5199 5200 Out.write((char *)&Buffer.front(), Buffer.size()); 5201 } 5202 5203 namespace { 5204 5205 /// Class to manage the bitcode writing for a thin link bitcode file. 5206 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5207 /// ModHash is for use in ThinLTO incremental build, generated while writing 5208 /// the module bitcode file. 5209 const ModuleHash *ModHash; 5210 5211 public: 5212 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5213 BitstreamWriter &Stream, 5214 const ModuleSummaryIndex &Index, 5215 const ModuleHash &ModHash) 5216 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5217 /*ShouldPreserveUseListOrder=*/false, &Index), 5218 ModHash(&ModHash) {} 5219 5220 void write(); 5221 5222 private: 5223 void writeSimplifiedModuleInfo(); 5224 }; 5225 5226 } // end anonymous namespace 5227 5228 // This function writes a simpilified module info for thin link bitcode file. 5229 // It only contains the source file name along with the name(the offset and 5230 // size in strtab) and linkage for global values. For the global value info 5231 // entry, in order to keep linkage at offset 5, there are three zeros used 5232 // as padding. 5233 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5234 SmallVector<unsigned, 64> Vals; 5235 // Emit the module's source file name. 5236 { 5237 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5238 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5239 if (Bits == SE_Char6) 5240 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5241 else if (Bits == SE_Fixed7) 5242 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5243 5244 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5245 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5246 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5247 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5248 Abbv->Add(AbbrevOpToUse); 5249 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5250 5251 for (const auto P : M.getSourceFileName()) 5252 Vals.push_back((unsigned char)P); 5253 5254 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5255 Vals.clear(); 5256 } 5257 5258 // Emit the global variable information. 5259 for (const GlobalVariable &GV : M.globals()) { 5260 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5261 Vals.push_back(StrtabBuilder.add(GV.getName())); 5262 Vals.push_back(GV.getName().size()); 5263 Vals.push_back(0); 5264 Vals.push_back(0); 5265 Vals.push_back(0); 5266 Vals.push_back(getEncodedLinkage(GV)); 5267 5268 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5269 Vals.clear(); 5270 } 5271 5272 // Emit the function proto information. 5273 for (const Function &F : M) { 5274 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5275 Vals.push_back(StrtabBuilder.add(F.getName())); 5276 Vals.push_back(F.getName().size()); 5277 Vals.push_back(0); 5278 Vals.push_back(0); 5279 Vals.push_back(0); 5280 Vals.push_back(getEncodedLinkage(F)); 5281 5282 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5283 Vals.clear(); 5284 } 5285 5286 // Emit the alias information. 5287 for (const GlobalAlias &A : M.aliases()) { 5288 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5289 Vals.push_back(StrtabBuilder.add(A.getName())); 5290 Vals.push_back(A.getName().size()); 5291 Vals.push_back(0); 5292 Vals.push_back(0); 5293 Vals.push_back(0); 5294 Vals.push_back(getEncodedLinkage(A)); 5295 5296 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5297 Vals.clear(); 5298 } 5299 5300 // Emit the ifunc information. 5301 for (const GlobalIFunc &I : M.ifuncs()) { 5302 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5303 Vals.push_back(StrtabBuilder.add(I.getName())); 5304 Vals.push_back(I.getName().size()); 5305 Vals.push_back(0); 5306 Vals.push_back(0); 5307 Vals.push_back(0); 5308 Vals.push_back(getEncodedLinkage(I)); 5309 5310 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5311 Vals.clear(); 5312 } 5313 } 5314 5315 void ThinLinkBitcodeWriter::write() { 5316 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5317 5318 writeModuleVersion(); 5319 5320 writeSimplifiedModuleInfo(); 5321 5322 writePerModuleGlobalValueSummary(); 5323 5324 // Write module hash. 5325 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5326 5327 Stream.ExitBlock(); 5328 } 5329 5330 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5331 const ModuleSummaryIndex &Index, 5332 const ModuleHash &ModHash) { 5333 assert(!WroteStrtab); 5334 5335 // The Mods vector is used by irsymtab::build, which requires non-const 5336 // Modules in case it needs to materialize metadata. But the bitcode writer 5337 // requires that the module is materialized, so we can cast to non-const here, 5338 // after checking that it is in fact materialized. 5339 assert(M.isMaterialized()); 5340 Mods.push_back(const_cast<Module *>(&M)); 5341 5342 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5343 ModHash); 5344 ThinLinkWriter.write(); 5345 } 5346 5347 // Write the specified thin link bitcode file to the given raw output stream, 5348 // where it will be written in a new bitcode block. This is used when 5349 // writing the per-module index file for ThinLTO. 5350 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5351 const ModuleSummaryIndex &Index, 5352 const ModuleHash &ModHash) { 5353 SmallVector<char, 0> Buffer; 5354 Buffer.reserve(256 * 1024); 5355 5356 BitcodeWriter Writer(Buffer); 5357 Writer.writeThinLinkBitcode(M, Index, ModHash); 5358 Writer.writeSymtab(); 5359 Writer.writeStrtab(); 5360 5361 Out.write((char *)&Buffer.front(), Buffer.size()); 5362 } 5363 5364 static const char *getSectionNameForBitcode(const Triple &T) { 5365 switch (T.getObjectFormat()) { 5366 case Triple::MachO: 5367 return "__LLVM,__bitcode"; 5368 case Triple::COFF: 5369 case Triple::ELF: 5370 case Triple::Wasm: 5371 case Triple::UnknownObjectFormat: 5372 return ".llvmbc"; 5373 case Triple::GOFF: 5374 llvm_unreachable("GOFF is not yet implemented"); 5375 break; 5376 case Triple::SPIRV: 5377 if (T.getVendor() == Triple::AMD) 5378 return ".llvmbc"; 5379 llvm_unreachable("SPIRV is not yet implemented"); 5380 break; 5381 case Triple::XCOFF: 5382 llvm_unreachable("XCOFF is not yet implemented"); 5383 break; 5384 case Triple::DXContainer: 5385 llvm_unreachable("DXContainer is not yet implemented"); 5386 break; 5387 } 5388 llvm_unreachable("Unimplemented ObjectFormatType"); 5389 } 5390 5391 static const char *getSectionNameForCommandline(const Triple &T) { 5392 switch (T.getObjectFormat()) { 5393 case Triple::MachO: 5394 return "__LLVM,__cmdline"; 5395 case Triple::COFF: 5396 case Triple::ELF: 5397 case Triple::Wasm: 5398 case Triple::UnknownObjectFormat: 5399 return ".llvmcmd"; 5400 case Triple::GOFF: 5401 llvm_unreachable("GOFF is not yet implemented"); 5402 break; 5403 case Triple::SPIRV: 5404 if (T.getVendor() == Triple::AMD) 5405 return ".llvmcmd"; 5406 llvm_unreachable("SPIRV is not yet implemented"); 5407 break; 5408 case Triple::XCOFF: 5409 llvm_unreachable("XCOFF is not yet implemented"); 5410 break; 5411 case Triple::DXContainer: 5412 llvm_unreachable("DXC is not yet implemented"); 5413 break; 5414 } 5415 llvm_unreachable("Unimplemented ObjectFormatType"); 5416 } 5417 5418 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5419 bool EmbedBitcode, bool EmbedCmdline, 5420 const std::vector<uint8_t> &CmdArgs) { 5421 // Save llvm.compiler.used and remove it. 5422 SmallVector<Constant *, 2> UsedArray; 5423 SmallVector<GlobalValue *, 4> UsedGlobals; 5424 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5425 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5426 for (auto *GV : UsedGlobals) { 5427 if (GV->getName() != "llvm.embedded.module" && 5428 GV->getName() != "llvm.cmdline") 5429 UsedArray.push_back( 5430 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5431 } 5432 if (Used) 5433 Used->eraseFromParent(); 5434 5435 // Embed the bitcode for the llvm module. 5436 std::string Data; 5437 ArrayRef<uint8_t> ModuleData; 5438 Triple T(M.getTargetTriple()); 5439 5440 if (EmbedBitcode) { 5441 if (Buf.getBufferSize() == 0 || 5442 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5443 (const unsigned char *)Buf.getBufferEnd())) { 5444 // If the input is LLVM Assembly, bitcode is produced by serializing 5445 // the module. Use-lists order need to be preserved in this case. 5446 llvm::raw_string_ostream OS(Data); 5447 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5448 ModuleData = 5449 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5450 } else 5451 // If the input is LLVM bitcode, write the input byte stream directly. 5452 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5453 Buf.getBufferSize()); 5454 } 5455 llvm::Constant *ModuleConstant = 5456 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5457 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5458 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5459 ModuleConstant); 5460 GV->setSection(getSectionNameForBitcode(T)); 5461 // Set alignment to 1 to prevent padding between two contributions from input 5462 // sections after linking. 5463 GV->setAlignment(Align(1)); 5464 UsedArray.push_back( 5465 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5466 if (llvm::GlobalVariable *Old = 5467 M.getGlobalVariable("llvm.embedded.module", true)) { 5468 assert(Old->hasZeroLiveUses() && 5469 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5470 GV->takeName(Old); 5471 Old->eraseFromParent(); 5472 } else { 5473 GV->setName("llvm.embedded.module"); 5474 } 5475 5476 // Skip if only bitcode needs to be embedded. 5477 if (EmbedCmdline) { 5478 // Embed command-line options. 5479 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5480 CmdArgs.size()); 5481 llvm::Constant *CmdConstant = 5482 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5483 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5484 llvm::GlobalValue::PrivateLinkage, 5485 CmdConstant); 5486 GV->setSection(getSectionNameForCommandline(T)); 5487 GV->setAlignment(Align(1)); 5488 UsedArray.push_back( 5489 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5490 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5491 assert(Old->hasZeroLiveUses() && 5492 "llvm.cmdline can only be used once in llvm.compiler.used"); 5493 GV->takeName(Old); 5494 Old->eraseFromParent(); 5495 } else { 5496 GV->setName("llvm.cmdline"); 5497 } 5498 } 5499 5500 if (UsedArray.empty()) 5501 return; 5502 5503 // Recreate llvm.compiler.used. 5504 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5505 auto *NewUsed = new GlobalVariable( 5506 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5507 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5508 NewUsed->setSection("llvm.metadata"); 5509 } 5510