1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Bitcode/BitcodeCommon.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/MC/TargetRegistry.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/TargetParser/Triple.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <optional> 80 #include <string> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<unsigned> 87 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 88 cl::desc("Number of metadatas above which we emit an index " 89 "to enable lazy-loading")); 90 static cl::opt<uint32_t> FlushThreshold( 91 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 92 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 93 94 static cl::opt<bool> WriteRelBFToSummary( 95 "write-relbf-to-summary", cl::Hidden, cl::init(false), 96 cl::desc("Write relative block frequency to function summary ")); 97 98 namespace llvm { 99 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 100 } 101 102 extern bool WriteNewDbgInfoFormatToBitcode; 103 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 104 105 namespace { 106 107 /// These are manifest constants used by the bitcode writer. They do not need to 108 /// be kept in sync with the reader, but need to be consistent within this file. 109 enum { 110 // VALUE_SYMTAB_BLOCK abbrev id's. 111 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 VST_ENTRY_7_ABBREV, 113 VST_ENTRY_6_ABBREV, 114 VST_BBENTRY_6_ABBREV, 115 116 // CONSTANTS_BLOCK abbrev id's. 117 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 CONSTANTS_INTEGER_ABBREV, 119 CONSTANTS_CE_CAST_Abbrev, 120 CONSTANTS_NULL_Abbrev, 121 122 // FUNCTION_BLOCK abbrev id's. 123 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 124 FUNCTION_INST_UNOP_ABBREV, 125 FUNCTION_INST_UNOP_FLAGS_ABBREV, 126 FUNCTION_INST_BINOP_ABBREV, 127 FUNCTION_INST_BINOP_FLAGS_ABBREV, 128 FUNCTION_INST_CAST_ABBREV, 129 FUNCTION_INST_CAST_FLAGS_ABBREV, 130 FUNCTION_INST_RET_VOID_ABBREV, 131 FUNCTION_INST_RET_VAL_ABBREV, 132 FUNCTION_INST_UNREACHABLE_ABBREV, 133 FUNCTION_INST_GEP_ABBREV, 134 FUNCTION_DEBUG_RECORD_VALUE_ABBREV, 135 }; 136 137 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 138 /// file type. 139 class BitcodeWriterBase { 140 protected: 141 /// The stream created and owned by the client. 142 BitstreamWriter &Stream; 143 144 StringTableBuilder &StrtabBuilder; 145 146 public: 147 /// Constructs a BitcodeWriterBase object that writes to the provided 148 /// \p Stream. 149 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 150 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 151 152 protected: 153 void writeModuleVersion(); 154 }; 155 156 void BitcodeWriterBase::writeModuleVersion() { 157 // VERSION: [version#] 158 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 159 } 160 161 /// Base class to manage the module bitcode writing, currently subclassed for 162 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 163 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 164 protected: 165 /// The Module to write to bitcode. 166 const Module &M; 167 168 /// Enumerates ids for all values in the module. 169 ValueEnumerator VE; 170 171 /// Optional per-module index to write for ThinLTO. 172 const ModuleSummaryIndex *Index; 173 174 /// Map that holds the correspondence between GUIDs in the summary index, 175 /// that came from indirect call profiles, and a value id generated by this 176 /// class to use in the VST and summary block records. 177 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 178 179 /// Tracks the last value id recorded in the GUIDToValueMap. 180 unsigned GlobalValueId; 181 182 /// Saves the offset of the VSTOffset record that must eventually be 183 /// backpatched with the offset of the actual VST. 184 uint64_t VSTOffsetPlaceholder = 0; 185 186 public: 187 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 188 /// writing to the provided \p Buffer. 189 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 190 BitstreamWriter &Stream, 191 bool ShouldPreserveUseListOrder, 192 const ModuleSummaryIndex *Index) 193 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 194 VE(M, ShouldPreserveUseListOrder), Index(Index) { 195 // Assign ValueIds to any callee values in the index that came from 196 // indirect call profiles and were recorded as a GUID not a Value* 197 // (which would have been assigned an ID by the ValueEnumerator). 198 // The starting ValueId is just after the number of values in the 199 // ValueEnumerator, so that they can be emitted in the VST. 200 GlobalValueId = VE.getValues().size(); 201 if (!Index) 202 return; 203 for (const auto &GUIDSummaryLists : *Index) 204 // Examine all summaries for this GUID. 205 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 206 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) { 207 // For each call in the function summary, see if the call 208 // is to a GUID (which means it is for an indirect call, 209 // otherwise we would have a Value for it). If so, synthesize 210 // a value id. 211 for (auto &CallEdge : FS->calls()) 212 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 213 assignValueId(CallEdge.first.getGUID()); 214 215 // For each referenced variables in the function summary, see if the 216 // variable is represented by a GUID (as opposed to a symbol to 217 // declarations or definitions in the module). If so, synthesize a 218 // value id. 219 for (auto &RefEdge : FS->refs()) 220 if (!RefEdge.haveGVs() || !RefEdge.getValue()) 221 assignValueId(RefEdge.getGUID()); 222 } 223 } 224 225 protected: 226 void writePerModuleGlobalValueSummary(); 227 228 private: 229 void writePerModuleFunctionSummaryRecord( 230 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 231 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 232 unsigned CallsiteAbbrev, unsigned AllocAbbrev, const Function &F); 233 void writeModuleLevelReferences(const GlobalVariable &V, 234 SmallVector<uint64_t, 64> &NameVals, 235 unsigned FSModRefsAbbrev, 236 unsigned FSModVTableRefsAbbrev); 237 238 void assignValueId(GlobalValue::GUID ValGUID) { 239 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 240 } 241 242 unsigned getValueId(GlobalValue::GUID ValGUID) { 243 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 244 // Expect that any GUID value had a value Id assigned by an 245 // earlier call to assignValueId. 246 assert(VMI != GUIDToValueIdMap.end() && 247 "GUID does not have assigned value Id"); 248 return VMI->second; 249 } 250 251 // Helper to get the valueId for the type of value recorded in VI. 252 unsigned getValueId(ValueInfo VI) { 253 if (!VI.haveGVs() || !VI.getValue()) 254 return getValueId(VI.getGUID()); 255 return VE.getValueID(VI.getValue()); 256 } 257 258 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 259 }; 260 261 /// Class to manage the bitcode writing for a module. 262 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 263 /// Pointer to the buffer allocated by caller for bitcode writing. 264 const SmallVectorImpl<char> &Buffer; 265 266 /// True if a module hash record should be written. 267 bool GenerateHash; 268 269 /// If non-null, when GenerateHash is true, the resulting hash is written 270 /// into ModHash. 271 ModuleHash *ModHash; 272 273 SHA1 Hasher; 274 275 /// The start bit of the identification block. 276 uint64_t BitcodeStartBit; 277 278 public: 279 /// Constructs a ModuleBitcodeWriter object for the given Module, 280 /// writing to the provided \p Buffer. 281 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 282 StringTableBuilder &StrtabBuilder, 283 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 284 const ModuleSummaryIndex *Index, bool GenerateHash, 285 ModuleHash *ModHash = nullptr) 286 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 287 ShouldPreserveUseListOrder, Index), 288 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 289 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 290 291 /// Emit the current module to the bitstream. 292 void write(); 293 294 private: 295 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 296 297 size_t addToStrtab(StringRef Str); 298 299 void writeAttributeGroupTable(); 300 void writeAttributeTable(); 301 void writeTypeTable(); 302 void writeComdats(); 303 void writeValueSymbolTableForwardDecl(); 304 void writeModuleInfo(); 305 void writeValueAsMetadata(const ValueAsMetadata *MD, 306 SmallVectorImpl<uint64_t> &Record); 307 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 unsigned createDILocationAbbrev(); 310 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 311 unsigned &Abbrev); 312 unsigned createGenericDINodeAbbrev(); 313 void writeGenericDINode(const GenericDINode *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 315 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 316 unsigned Abbrev); 317 void writeDIGenericSubrange(const DIGenericSubrange *N, 318 SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIEnumerator(const DIEnumerator *N, 321 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 322 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDIStringType(const DIStringType *N, 325 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 326 void writeDIDerivedType(const DIDerivedType *N, 327 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 328 void writeDICompositeType(const DICompositeType *N, 329 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 330 void writeDISubroutineType(const DISubroutineType *N, 331 SmallVectorImpl<uint64_t> &Record, 332 unsigned Abbrev); 333 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDICompileUnit(const DICompileUnit *N, 336 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 337 void writeDISubprogram(const DISubprogram *N, 338 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 339 void writeDILexicalBlock(const DILexicalBlock *N, 340 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 341 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 342 SmallVectorImpl<uint64_t> &Record, 343 unsigned Abbrev); 344 void writeDICommonBlock(const DICommonBlock *N, 345 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 346 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 351 unsigned Abbrev); 352 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); 353 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 354 unsigned Abbrev); 355 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, 356 unsigned Abbrev); 357 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 361 SmallVectorImpl<uint64_t> &Record, 362 unsigned Abbrev); 363 void writeDIGlobalVariable(const DIGlobalVariable *N, 364 SmallVectorImpl<uint64_t> &Record, 365 unsigned Abbrev); 366 void writeDILocalVariable(const DILocalVariable *N, 367 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 368 void writeDILabel(const DILabel *N, 369 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 370 void writeDIExpression(const DIExpression *N, 371 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 372 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 373 SmallVectorImpl<uint64_t> &Record, 374 unsigned Abbrev); 375 void writeDIObjCProperty(const DIObjCProperty *N, 376 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 377 void writeDIImportedEntity(const DIImportedEntity *N, 378 SmallVectorImpl<uint64_t> &Record, 379 unsigned Abbrev); 380 unsigned createNamedMetadataAbbrev(); 381 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 382 unsigned createMetadataStringsAbbrev(); 383 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 384 SmallVectorImpl<uint64_t> &Record); 385 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 386 SmallVectorImpl<uint64_t> &Record, 387 std::vector<unsigned> *MDAbbrevs = nullptr, 388 std::vector<uint64_t> *IndexPos = nullptr); 389 void writeModuleMetadata(); 390 void writeFunctionMetadata(const Function &F); 391 void writeFunctionMetadataAttachment(const Function &F); 392 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 393 const GlobalObject &GO); 394 void writeModuleMetadataKinds(); 395 void writeOperandBundleTags(); 396 void writeSyncScopeNames(); 397 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 398 void writeModuleConstants(); 399 bool pushValueAndType(const Value *V, unsigned InstID, 400 SmallVectorImpl<unsigned> &Vals); 401 void writeOperandBundles(const CallBase &CB, unsigned InstID); 402 void pushValue(const Value *V, unsigned InstID, 403 SmallVectorImpl<unsigned> &Vals); 404 void pushValueSigned(const Value *V, unsigned InstID, 405 SmallVectorImpl<uint64_t> &Vals); 406 void writeInstruction(const Instruction &I, unsigned InstID, 407 SmallVectorImpl<unsigned> &Vals); 408 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 409 void writeGlobalValueSymbolTable( 410 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 411 void writeUseList(UseListOrder &&Order); 412 void writeUseListBlock(const Function *F); 413 void 414 writeFunction(const Function &F, 415 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 416 void writeBlockInfo(); 417 void writeModuleHash(size_t BlockStartPos); 418 419 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 420 return unsigned(SSID); 421 } 422 423 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 424 }; 425 426 /// Class to manage the bitcode writing for a combined index. 427 class IndexBitcodeWriter : public BitcodeWriterBase { 428 /// The combined index to write to bitcode. 429 const ModuleSummaryIndex &Index; 430 431 /// When writing a subset of the index for distributed backends, client 432 /// provides a map of modules to the corresponding GUIDs/summaries to write. 433 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 434 435 /// Map that holds the correspondence between the GUID used in the combined 436 /// index and a value id generated by this class to use in references. 437 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 438 439 // The sorted stack id indices actually used in the summary entries being 440 // written, which will be a subset of those in the full index in the case of 441 // distributed indexes. 442 std::vector<unsigned> StackIdIndices; 443 444 /// Tracks the last value id recorded in the GUIDToValueMap. 445 unsigned GlobalValueId = 0; 446 447 /// Tracks the assignment of module paths in the module path string table to 448 /// an id assigned for use in summary references to the module path. 449 DenseMap<StringRef, uint64_t> ModuleIdMap; 450 451 public: 452 /// Constructs a IndexBitcodeWriter object for the given combined index, 453 /// writing to the provided \p Buffer. When writing a subset of the index 454 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 455 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 456 const ModuleSummaryIndex &Index, 457 const std::map<std::string, GVSummaryMapTy> 458 *ModuleToSummariesForIndex = nullptr) 459 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 460 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 461 // Assign unique value ids to all summaries to be written, for use 462 // in writing out the call graph edges. Save the mapping from GUID 463 // to the new global value id to use when writing those edges, which 464 // are currently saved in the index in terms of GUID. 465 forEachSummary([&](GVInfo I, bool IsAliasee) { 466 GUIDToValueIdMap[I.first] = ++GlobalValueId; 467 if (IsAliasee) 468 return; 469 auto *FS = dyn_cast<FunctionSummary>(I.second); 470 if (!FS) 471 return; 472 // Record all stack id indices actually used in the summary entries being 473 // written, so that we can compact them in the case of distributed ThinLTO 474 // indexes. 475 for (auto &CI : FS->callsites()) { 476 // If the stack id list is empty, this callsite info was synthesized for 477 // a missing tail call frame. Ensure that the callee's GUID gets a value 478 // id. Normally we only generate these for defined summaries, which in 479 // the case of distributed ThinLTO is only the functions already defined 480 // in the module or that we want to import. We don't bother to include 481 // all the callee symbols as they aren't normally needed in the backend. 482 // However, for the synthesized callsite infos we do need the callee 483 // GUID in the backend so that we can correlate the identified callee 484 // with this callsite info (which for non-tail calls is done by the 485 // ordering of the callsite infos and verified via stack ids). 486 if (CI.StackIdIndices.empty()) { 487 GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; 488 continue; 489 } 490 for (auto Idx : CI.StackIdIndices) 491 StackIdIndices.push_back(Idx); 492 } 493 for (auto &AI : FS->allocs()) 494 for (auto &MIB : AI.MIBs) 495 for (auto Idx : MIB.StackIdIndices) 496 StackIdIndices.push_back(Idx); 497 }); 498 llvm::sort(StackIdIndices); 499 StackIdIndices.erase( 500 std::unique(StackIdIndices.begin(), StackIdIndices.end()), 501 StackIdIndices.end()); 502 } 503 504 /// The below iterator returns the GUID and associated summary. 505 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 506 507 /// Calls the callback for each value GUID and summary to be written to 508 /// bitcode. This hides the details of whether they are being pulled from the 509 /// entire index or just those in a provided ModuleToSummariesForIndex map. 510 template<typename Functor> 511 void forEachSummary(Functor Callback) { 512 if (ModuleToSummariesForIndex) { 513 for (auto &M : *ModuleToSummariesForIndex) 514 for (auto &Summary : M.second) { 515 Callback(Summary, false); 516 // Ensure aliasee is handled, e.g. for assigning a valueId, 517 // even if we are not importing the aliasee directly (the 518 // imported alias will contain a copy of aliasee). 519 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 520 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 521 } 522 } else { 523 for (auto &Summaries : Index) 524 for (auto &Summary : Summaries.second.SummaryList) 525 Callback({Summaries.first, Summary.get()}, false); 526 } 527 } 528 529 /// Calls the callback for each entry in the modulePaths StringMap that 530 /// should be written to the module path string table. This hides the details 531 /// of whether they are being pulled from the entire index or just those in a 532 /// provided ModuleToSummariesForIndex map. 533 template <typename Functor> void forEachModule(Functor Callback) { 534 if (ModuleToSummariesForIndex) { 535 for (const auto &M : *ModuleToSummariesForIndex) { 536 const auto &MPI = Index.modulePaths().find(M.first); 537 if (MPI == Index.modulePaths().end()) { 538 // This should only happen if the bitcode file was empty, in which 539 // case we shouldn't be importing (the ModuleToSummariesForIndex 540 // would only include the module we are writing and index for). 541 assert(ModuleToSummariesForIndex->size() == 1); 542 continue; 543 } 544 Callback(*MPI); 545 } 546 } else { 547 // Since StringMap iteration order isn't guaranteed, order by path string 548 // first. 549 // FIXME: Make this a vector of StringMapEntry instead to avoid the later 550 // map lookup. 551 std::vector<StringRef> ModulePaths; 552 for (auto &[ModPath, _] : Index.modulePaths()) 553 ModulePaths.push_back(ModPath); 554 llvm::sort(ModulePaths.begin(), ModulePaths.end()); 555 for (auto &ModPath : ModulePaths) 556 Callback(*Index.modulePaths().find(ModPath)); 557 } 558 } 559 560 /// Main entry point for writing a combined index to bitcode. 561 void write(); 562 563 private: 564 void writeModStrings(); 565 void writeCombinedGlobalValueSummary(); 566 567 std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 568 auto VMI = GUIDToValueIdMap.find(ValGUID); 569 if (VMI == GUIDToValueIdMap.end()) 570 return std::nullopt; 571 return VMI->second; 572 } 573 574 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 575 }; 576 577 } // end anonymous namespace 578 579 static unsigned getEncodedCastOpcode(unsigned Opcode) { 580 switch (Opcode) { 581 default: llvm_unreachable("Unknown cast instruction!"); 582 case Instruction::Trunc : return bitc::CAST_TRUNC; 583 case Instruction::ZExt : return bitc::CAST_ZEXT; 584 case Instruction::SExt : return bitc::CAST_SEXT; 585 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 586 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 587 case Instruction::UIToFP : return bitc::CAST_UITOFP; 588 case Instruction::SIToFP : return bitc::CAST_SITOFP; 589 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 590 case Instruction::FPExt : return bitc::CAST_FPEXT; 591 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 592 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 593 case Instruction::BitCast : return bitc::CAST_BITCAST; 594 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 595 } 596 } 597 598 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 599 switch (Opcode) { 600 default: llvm_unreachable("Unknown binary instruction!"); 601 case Instruction::FNeg: return bitc::UNOP_FNEG; 602 } 603 } 604 605 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 606 switch (Opcode) { 607 default: llvm_unreachable("Unknown binary instruction!"); 608 case Instruction::Add: 609 case Instruction::FAdd: return bitc::BINOP_ADD; 610 case Instruction::Sub: 611 case Instruction::FSub: return bitc::BINOP_SUB; 612 case Instruction::Mul: 613 case Instruction::FMul: return bitc::BINOP_MUL; 614 case Instruction::UDiv: return bitc::BINOP_UDIV; 615 case Instruction::FDiv: 616 case Instruction::SDiv: return bitc::BINOP_SDIV; 617 case Instruction::URem: return bitc::BINOP_UREM; 618 case Instruction::FRem: 619 case Instruction::SRem: return bitc::BINOP_SREM; 620 case Instruction::Shl: return bitc::BINOP_SHL; 621 case Instruction::LShr: return bitc::BINOP_LSHR; 622 case Instruction::AShr: return bitc::BINOP_ASHR; 623 case Instruction::And: return bitc::BINOP_AND; 624 case Instruction::Or: return bitc::BINOP_OR; 625 case Instruction::Xor: return bitc::BINOP_XOR; 626 } 627 } 628 629 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 630 switch (Op) { 631 default: llvm_unreachable("Unknown RMW operation!"); 632 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 633 case AtomicRMWInst::Add: return bitc::RMW_ADD; 634 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 635 case AtomicRMWInst::And: return bitc::RMW_AND; 636 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 637 case AtomicRMWInst::Or: return bitc::RMW_OR; 638 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 639 case AtomicRMWInst::Max: return bitc::RMW_MAX; 640 case AtomicRMWInst::Min: return bitc::RMW_MIN; 641 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 642 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 643 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 644 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 645 case AtomicRMWInst::FMax: return bitc::RMW_FMAX; 646 case AtomicRMWInst::FMin: return bitc::RMW_FMIN; 647 case AtomicRMWInst::UIncWrap: 648 return bitc::RMW_UINC_WRAP; 649 case AtomicRMWInst::UDecWrap: 650 return bitc::RMW_UDEC_WRAP; 651 } 652 } 653 654 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 655 switch (Ordering) { 656 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 657 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 658 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 659 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 660 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 661 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 662 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 663 } 664 llvm_unreachable("Invalid ordering"); 665 } 666 667 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 668 StringRef Str, unsigned AbbrevToUse) { 669 SmallVector<unsigned, 64> Vals; 670 671 // Code: [strchar x N] 672 for (char C : Str) { 673 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) 674 AbbrevToUse = 0; 675 Vals.push_back(C); 676 } 677 678 // Emit the finished record. 679 Stream.EmitRecord(Code, Vals, AbbrevToUse); 680 } 681 682 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 683 switch (Kind) { 684 case Attribute::Alignment: 685 return bitc::ATTR_KIND_ALIGNMENT; 686 case Attribute::AllocAlign: 687 return bitc::ATTR_KIND_ALLOC_ALIGN; 688 case Attribute::AllocSize: 689 return bitc::ATTR_KIND_ALLOC_SIZE; 690 case Attribute::AlwaysInline: 691 return bitc::ATTR_KIND_ALWAYS_INLINE; 692 case Attribute::Builtin: 693 return bitc::ATTR_KIND_BUILTIN; 694 case Attribute::ByVal: 695 return bitc::ATTR_KIND_BY_VAL; 696 case Attribute::Convergent: 697 return bitc::ATTR_KIND_CONVERGENT; 698 case Attribute::InAlloca: 699 return bitc::ATTR_KIND_IN_ALLOCA; 700 case Attribute::Cold: 701 return bitc::ATTR_KIND_COLD; 702 case Attribute::DisableSanitizerInstrumentation: 703 return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; 704 case Attribute::FnRetThunkExtern: 705 return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; 706 case Attribute::Hot: 707 return bitc::ATTR_KIND_HOT; 708 case Attribute::ElementType: 709 return bitc::ATTR_KIND_ELEMENTTYPE; 710 case Attribute::InlineHint: 711 return bitc::ATTR_KIND_INLINE_HINT; 712 case Attribute::InReg: 713 return bitc::ATTR_KIND_IN_REG; 714 case Attribute::JumpTable: 715 return bitc::ATTR_KIND_JUMP_TABLE; 716 case Attribute::MinSize: 717 return bitc::ATTR_KIND_MIN_SIZE; 718 case Attribute::AllocatedPointer: 719 return bitc::ATTR_KIND_ALLOCATED_POINTER; 720 case Attribute::AllocKind: 721 return bitc::ATTR_KIND_ALLOC_KIND; 722 case Attribute::Memory: 723 return bitc::ATTR_KIND_MEMORY; 724 case Attribute::NoFPClass: 725 return bitc::ATTR_KIND_NOFPCLASS; 726 case Attribute::Naked: 727 return bitc::ATTR_KIND_NAKED; 728 case Attribute::Nest: 729 return bitc::ATTR_KIND_NEST; 730 case Attribute::NoAlias: 731 return bitc::ATTR_KIND_NO_ALIAS; 732 case Attribute::NoBuiltin: 733 return bitc::ATTR_KIND_NO_BUILTIN; 734 case Attribute::NoCallback: 735 return bitc::ATTR_KIND_NO_CALLBACK; 736 case Attribute::NoCapture: 737 return bitc::ATTR_KIND_NO_CAPTURE; 738 case Attribute::NoDuplicate: 739 return bitc::ATTR_KIND_NO_DUPLICATE; 740 case Attribute::NoFree: 741 return bitc::ATTR_KIND_NOFREE; 742 case Attribute::NoImplicitFloat: 743 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 744 case Attribute::NoInline: 745 return bitc::ATTR_KIND_NO_INLINE; 746 case Attribute::NoRecurse: 747 return bitc::ATTR_KIND_NO_RECURSE; 748 case Attribute::NoMerge: 749 return bitc::ATTR_KIND_NO_MERGE; 750 case Attribute::NonLazyBind: 751 return bitc::ATTR_KIND_NON_LAZY_BIND; 752 case Attribute::NonNull: 753 return bitc::ATTR_KIND_NON_NULL; 754 case Attribute::Dereferenceable: 755 return bitc::ATTR_KIND_DEREFERENCEABLE; 756 case Attribute::DereferenceableOrNull: 757 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 758 case Attribute::NoRedZone: 759 return bitc::ATTR_KIND_NO_RED_ZONE; 760 case Attribute::NoReturn: 761 return bitc::ATTR_KIND_NO_RETURN; 762 case Attribute::NoSync: 763 return bitc::ATTR_KIND_NOSYNC; 764 case Attribute::NoCfCheck: 765 return bitc::ATTR_KIND_NOCF_CHECK; 766 case Attribute::NoProfile: 767 return bitc::ATTR_KIND_NO_PROFILE; 768 case Attribute::SkipProfile: 769 return bitc::ATTR_KIND_SKIP_PROFILE; 770 case Attribute::NoUnwind: 771 return bitc::ATTR_KIND_NO_UNWIND; 772 case Attribute::NoSanitizeBounds: 773 return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; 774 case Attribute::NoSanitizeCoverage: 775 return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; 776 case Attribute::NullPointerIsValid: 777 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 778 case Attribute::OptimizeForDebugging: 779 return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; 780 case Attribute::OptForFuzzing: 781 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 782 case Attribute::OptimizeForSize: 783 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 784 case Attribute::OptimizeNone: 785 return bitc::ATTR_KIND_OPTIMIZE_NONE; 786 case Attribute::ReadNone: 787 return bitc::ATTR_KIND_READ_NONE; 788 case Attribute::ReadOnly: 789 return bitc::ATTR_KIND_READ_ONLY; 790 case Attribute::Returned: 791 return bitc::ATTR_KIND_RETURNED; 792 case Attribute::ReturnsTwice: 793 return bitc::ATTR_KIND_RETURNS_TWICE; 794 case Attribute::SExt: 795 return bitc::ATTR_KIND_S_EXT; 796 case Attribute::Speculatable: 797 return bitc::ATTR_KIND_SPECULATABLE; 798 case Attribute::StackAlignment: 799 return bitc::ATTR_KIND_STACK_ALIGNMENT; 800 case Attribute::StackProtect: 801 return bitc::ATTR_KIND_STACK_PROTECT; 802 case Attribute::StackProtectReq: 803 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 804 case Attribute::StackProtectStrong: 805 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 806 case Attribute::SafeStack: 807 return bitc::ATTR_KIND_SAFESTACK; 808 case Attribute::ShadowCallStack: 809 return bitc::ATTR_KIND_SHADOWCALLSTACK; 810 case Attribute::StrictFP: 811 return bitc::ATTR_KIND_STRICT_FP; 812 case Attribute::StructRet: 813 return bitc::ATTR_KIND_STRUCT_RET; 814 case Attribute::SanitizeAddress: 815 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 816 case Attribute::SanitizeHWAddress: 817 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 818 case Attribute::SanitizeThread: 819 return bitc::ATTR_KIND_SANITIZE_THREAD; 820 case Attribute::SanitizeMemory: 821 return bitc::ATTR_KIND_SANITIZE_MEMORY; 822 case Attribute::SpeculativeLoadHardening: 823 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 824 case Attribute::SwiftError: 825 return bitc::ATTR_KIND_SWIFT_ERROR; 826 case Attribute::SwiftSelf: 827 return bitc::ATTR_KIND_SWIFT_SELF; 828 case Attribute::SwiftAsync: 829 return bitc::ATTR_KIND_SWIFT_ASYNC; 830 case Attribute::UWTable: 831 return bitc::ATTR_KIND_UW_TABLE; 832 case Attribute::VScaleRange: 833 return bitc::ATTR_KIND_VSCALE_RANGE; 834 case Attribute::WillReturn: 835 return bitc::ATTR_KIND_WILLRETURN; 836 case Attribute::WriteOnly: 837 return bitc::ATTR_KIND_WRITEONLY; 838 case Attribute::ZExt: 839 return bitc::ATTR_KIND_Z_EXT; 840 case Attribute::ImmArg: 841 return bitc::ATTR_KIND_IMMARG; 842 case Attribute::SanitizeMemTag: 843 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 844 case Attribute::Preallocated: 845 return bitc::ATTR_KIND_PREALLOCATED; 846 case Attribute::NoUndef: 847 return bitc::ATTR_KIND_NOUNDEF; 848 case Attribute::ByRef: 849 return bitc::ATTR_KIND_BYREF; 850 case Attribute::MustProgress: 851 return bitc::ATTR_KIND_MUSTPROGRESS; 852 case Attribute::PresplitCoroutine: 853 return bitc::ATTR_KIND_PRESPLIT_COROUTINE; 854 case Attribute::Writable: 855 return bitc::ATTR_KIND_WRITABLE; 856 case Attribute::CoroDestroyOnlyWhenComplete: 857 return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; 858 case Attribute::DeadOnUnwind: 859 return bitc::ATTR_KIND_DEAD_ON_UNWIND; 860 case Attribute::Range: 861 return bitc::ATTR_KIND_RANGE; 862 case Attribute::EndAttrKinds: 863 llvm_unreachable("Can not encode end-attribute kinds marker."); 864 case Attribute::None: 865 llvm_unreachable("Can not encode none-attribute."); 866 case Attribute::EmptyKey: 867 case Attribute::TombstoneKey: 868 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 869 } 870 871 llvm_unreachable("Trying to encode unknown attribute"); 872 } 873 874 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 875 if ((int64_t)V >= 0) 876 Vals.push_back(V << 1); 877 else 878 Vals.push_back((-V << 1) | 1); 879 } 880 881 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 882 // We have an arbitrary precision integer value to write whose 883 // bit width is > 64. However, in canonical unsigned integer 884 // format it is likely that the high bits are going to be zero. 885 // So, we only write the number of active words. 886 unsigned NumWords = A.getActiveWords(); 887 const uint64_t *RawData = A.getRawData(); 888 for (unsigned i = 0; i < NumWords; i++) 889 emitSignedInt64(Vals, RawData[i]); 890 } 891 892 static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, 893 const ConstantRange &CR) { 894 unsigned BitWidth = CR.getBitWidth(); 895 Record.push_back(BitWidth); 896 if (BitWidth > 64) { 897 Record.push_back(CR.getLower().getActiveWords() | 898 (uint64_t(CR.getUpper().getActiveWords()) << 32)); 899 emitWideAPInt(Record, CR.getLower()); 900 emitWideAPInt(Record, CR.getUpper()); 901 } else { 902 emitSignedInt64(Record, CR.getLower().getSExtValue()); 903 emitSignedInt64(Record, CR.getUpper().getSExtValue()); 904 } 905 } 906 907 void ModuleBitcodeWriter::writeAttributeGroupTable() { 908 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 909 VE.getAttributeGroups(); 910 if (AttrGrps.empty()) return; 911 912 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 913 914 SmallVector<uint64_t, 64> Record; 915 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 916 unsigned AttrListIndex = Pair.first; 917 AttributeSet AS = Pair.second; 918 Record.push_back(VE.getAttributeGroupID(Pair)); 919 Record.push_back(AttrListIndex); 920 921 for (Attribute Attr : AS) { 922 if (Attr.isEnumAttribute()) { 923 Record.push_back(0); 924 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 925 } else if (Attr.isIntAttribute()) { 926 Record.push_back(1); 927 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 928 Record.push_back(Attr.getValueAsInt()); 929 } else if (Attr.isStringAttribute()) { 930 StringRef Kind = Attr.getKindAsString(); 931 StringRef Val = Attr.getValueAsString(); 932 933 Record.push_back(Val.empty() ? 3 : 4); 934 Record.append(Kind.begin(), Kind.end()); 935 Record.push_back(0); 936 if (!Val.empty()) { 937 Record.append(Val.begin(), Val.end()); 938 Record.push_back(0); 939 } 940 } else if (Attr.isTypeAttribute()) { 941 Type *Ty = Attr.getValueAsType(); 942 Record.push_back(Ty ? 6 : 5); 943 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 944 if (Ty) 945 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 946 } else { 947 assert(Attr.isConstantRangeAttribute()); 948 Record.push_back(7); 949 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 950 emitConstantRange(Record, Attr.getValueAsConstantRange()); 951 } 952 } 953 954 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 955 Record.clear(); 956 } 957 958 Stream.ExitBlock(); 959 } 960 961 void ModuleBitcodeWriter::writeAttributeTable() { 962 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 963 if (Attrs.empty()) return; 964 965 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 966 967 SmallVector<uint64_t, 64> Record; 968 for (const AttributeList &AL : Attrs) { 969 for (unsigned i : AL.indexes()) { 970 AttributeSet AS = AL.getAttributes(i); 971 if (AS.hasAttributes()) 972 Record.push_back(VE.getAttributeGroupID({i, AS})); 973 } 974 975 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 976 Record.clear(); 977 } 978 979 Stream.ExitBlock(); 980 } 981 982 /// WriteTypeTable - Write out the type table for a module. 983 void ModuleBitcodeWriter::writeTypeTable() { 984 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 985 986 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 987 SmallVector<uint64_t, 64> TypeVals; 988 989 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 990 991 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 992 auto Abbv = std::make_shared<BitCodeAbbrev>(); 993 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 994 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 995 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 996 997 // Abbrev for TYPE_CODE_FUNCTION. 998 Abbv = std::make_shared<BitCodeAbbrev>(); 999 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 1000 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 1001 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1002 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1003 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1004 1005 // Abbrev for TYPE_CODE_STRUCT_ANON. 1006 Abbv = std::make_shared<BitCodeAbbrev>(); 1007 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 1008 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1009 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1010 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1011 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1012 1013 // Abbrev for TYPE_CODE_STRUCT_NAME. 1014 Abbv = std::make_shared<BitCodeAbbrev>(); 1015 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 1016 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1017 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1018 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1019 1020 // Abbrev for TYPE_CODE_STRUCT_NAMED. 1021 Abbv = std::make_shared<BitCodeAbbrev>(); 1022 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 1023 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 1024 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1025 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1026 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1027 1028 // Abbrev for TYPE_CODE_ARRAY. 1029 Abbv = std::make_shared<BitCodeAbbrev>(); 1030 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 1031 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 1032 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 1033 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1034 1035 // Emit an entry count so the reader can reserve space. 1036 TypeVals.push_back(TypeList.size()); 1037 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 1038 TypeVals.clear(); 1039 1040 // Loop over all of the types, emitting each in turn. 1041 for (Type *T : TypeList) { 1042 int AbbrevToUse = 0; 1043 unsigned Code = 0; 1044 1045 switch (T->getTypeID()) { 1046 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 1047 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 1048 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 1049 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 1050 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 1051 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 1052 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 1053 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 1054 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 1055 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 1056 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 1057 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 1058 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 1059 case Type::IntegerTyID: 1060 // INTEGER: [width] 1061 Code = bitc::TYPE_CODE_INTEGER; 1062 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 1063 break; 1064 case Type::PointerTyID: { 1065 PointerType *PTy = cast<PointerType>(T); 1066 unsigned AddressSpace = PTy->getAddressSpace(); 1067 // OPAQUE_POINTER: [address space] 1068 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 1069 TypeVals.push_back(AddressSpace); 1070 if (AddressSpace == 0) 1071 AbbrevToUse = OpaquePtrAbbrev; 1072 break; 1073 } 1074 case Type::FunctionTyID: { 1075 FunctionType *FT = cast<FunctionType>(T); 1076 // FUNCTION: [isvararg, retty, paramty x N] 1077 Code = bitc::TYPE_CODE_FUNCTION; 1078 TypeVals.push_back(FT->isVarArg()); 1079 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 1080 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 1081 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 1082 AbbrevToUse = FunctionAbbrev; 1083 break; 1084 } 1085 case Type::StructTyID: { 1086 StructType *ST = cast<StructType>(T); 1087 // STRUCT: [ispacked, eltty x N] 1088 TypeVals.push_back(ST->isPacked()); 1089 // Output all of the element types. 1090 for (Type *ET : ST->elements()) 1091 TypeVals.push_back(VE.getTypeID(ET)); 1092 1093 if (ST->isLiteral()) { 1094 Code = bitc::TYPE_CODE_STRUCT_ANON; 1095 AbbrevToUse = StructAnonAbbrev; 1096 } else { 1097 if (ST->isOpaque()) { 1098 Code = bitc::TYPE_CODE_OPAQUE; 1099 } else { 1100 Code = bitc::TYPE_CODE_STRUCT_NAMED; 1101 AbbrevToUse = StructNamedAbbrev; 1102 } 1103 1104 // Emit the name if it is present. 1105 if (!ST->getName().empty()) 1106 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 1107 StructNameAbbrev); 1108 } 1109 break; 1110 } 1111 case Type::ArrayTyID: { 1112 ArrayType *AT = cast<ArrayType>(T); 1113 // ARRAY: [numelts, eltty] 1114 Code = bitc::TYPE_CODE_ARRAY; 1115 TypeVals.push_back(AT->getNumElements()); 1116 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 1117 AbbrevToUse = ArrayAbbrev; 1118 break; 1119 } 1120 case Type::FixedVectorTyID: 1121 case Type::ScalableVectorTyID: { 1122 VectorType *VT = cast<VectorType>(T); 1123 // VECTOR [numelts, eltty] or 1124 // [numelts, eltty, scalable] 1125 Code = bitc::TYPE_CODE_VECTOR; 1126 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1127 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1128 if (isa<ScalableVectorType>(VT)) 1129 TypeVals.push_back(true); 1130 break; 1131 } 1132 case Type::TargetExtTyID: { 1133 TargetExtType *TET = cast<TargetExtType>(T); 1134 Code = bitc::TYPE_CODE_TARGET_TYPE; 1135 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, TET->getName(), 1136 StructNameAbbrev); 1137 TypeVals.push_back(TET->getNumTypeParameters()); 1138 for (Type *InnerTy : TET->type_params()) 1139 TypeVals.push_back(VE.getTypeID(InnerTy)); 1140 for (unsigned IntParam : TET->int_params()) 1141 TypeVals.push_back(IntParam); 1142 break; 1143 } 1144 case Type::TypedPointerTyID: 1145 llvm_unreachable("Typed pointers cannot be added to IR modules"); 1146 } 1147 1148 // Emit the finished record. 1149 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1150 TypeVals.clear(); 1151 } 1152 1153 Stream.ExitBlock(); 1154 } 1155 1156 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1157 switch (Linkage) { 1158 case GlobalValue::ExternalLinkage: 1159 return 0; 1160 case GlobalValue::WeakAnyLinkage: 1161 return 16; 1162 case GlobalValue::AppendingLinkage: 1163 return 2; 1164 case GlobalValue::InternalLinkage: 1165 return 3; 1166 case GlobalValue::LinkOnceAnyLinkage: 1167 return 18; 1168 case GlobalValue::ExternalWeakLinkage: 1169 return 7; 1170 case GlobalValue::CommonLinkage: 1171 return 8; 1172 case GlobalValue::PrivateLinkage: 1173 return 9; 1174 case GlobalValue::WeakODRLinkage: 1175 return 17; 1176 case GlobalValue::LinkOnceODRLinkage: 1177 return 19; 1178 case GlobalValue::AvailableExternallyLinkage: 1179 return 12; 1180 } 1181 llvm_unreachable("Invalid linkage"); 1182 } 1183 1184 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1185 return getEncodedLinkage(GV.getLinkage()); 1186 } 1187 1188 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1189 uint64_t RawFlags = 0; 1190 RawFlags |= Flags.ReadNone; 1191 RawFlags |= (Flags.ReadOnly << 1); 1192 RawFlags |= (Flags.NoRecurse << 2); 1193 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1194 RawFlags |= (Flags.NoInline << 4); 1195 RawFlags |= (Flags.AlwaysInline << 5); 1196 RawFlags |= (Flags.NoUnwind << 6); 1197 RawFlags |= (Flags.MayThrow << 7); 1198 RawFlags |= (Flags.HasUnknownCall << 8); 1199 RawFlags |= (Flags.MustBeUnreachable << 9); 1200 return RawFlags; 1201 } 1202 1203 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1204 // in BitcodeReader.cpp. 1205 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1206 uint64_t RawFlags = 0; 1207 1208 RawFlags |= Flags.NotEligibleToImport; // bool 1209 RawFlags |= (Flags.Live << 1); 1210 RawFlags |= (Flags.DSOLocal << 2); 1211 RawFlags |= (Flags.CanAutoHide << 3); 1212 1213 // Linkage don't need to be remapped at that time for the summary. Any future 1214 // change to the getEncodedLinkage() function will need to be taken into 1215 // account here as well. 1216 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1217 1218 RawFlags |= (Flags.Visibility << 8); // 2 bits 1219 1220 RawFlags |= (Flags.ImportType << 10); // 1 bit 1221 1222 return RawFlags; 1223 } 1224 1225 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1226 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1227 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1228 return RawFlags; 1229 } 1230 1231 static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { 1232 uint64_t RawFlags = 0; 1233 1234 RawFlags |= CI.Hotness; // 3 bits 1235 RawFlags |= (CI.HasTailCall << 3); // 1 bit 1236 1237 return RawFlags; 1238 } 1239 1240 static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { 1241 uint64_t RawFlags = 0; 1242 1243 RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits 1244 RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit 1245 1246 return RawFlags; 1247 } 1248 1249 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1250 switch (GV.getVisibility()) { 1251 case GlobalValue::DefaultVisibility: return 0; 1252 case GlobalValue::HiddenVisibility: return 1; 1253 case GlobalValue::ProtectedVisibility: return 2; 1254 } 1255 llvm_unreachable("Invalid visibility"); 1256 } 1257 1258 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1259 switch (GV.getDLLStorageClass()) { 1260 case GlobalValue::DefaultStorageClass: return 0; 1261 case GlobalValue::DLLImportStorageClass: return 1; 1262 case GlobalValue::DLLExportStorageClass: return 2; 1263 } 1264 llvm_unreachable("Invalid DLL storage class"); 1265 } 1266 1267 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1268 switch (GV.getThreadLocalMode()) { 1269 case GlobalVariable::NotThreadLocal: return 0; 1270 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1271 case GlobalVariable::LocalDynamicTLSModel: return 2; 1272 case GlobalVariable::InitialExecTLSModel: return 3; 1273 case GlobalVariable::LocalExecTLSModel: return 4; 1274 } 1275 llvm_unreachable("Invalid TLS model"); 1276 } 1277 1278 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1279 switch (C.getSelectionKind()) { 1280 case Comdat::Any: 1281 return bitc::COMDAT_SELECTION_KIND_ANY; 1282 case Comdat::ExactMatch: 1283 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1284 case Comdat::Largest: 1285 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1286 case Comdat::NoDeduplicate: 1287 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1288 case Comdat::SameSize: 1289 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1290 } 1291 llvm_unreachable("Invalid selection kind"); 1292 } 1293 1294 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1295 switch (GV.getUnnamedAddr()) { 1296 case GlobalValue::UnnamedAddr::None: return 0; 1297 case GlobalValue::UnnamedAddr::Local: return 2; 1298 case GlobalValue::UnnamedAddr::Global: return 1; 1299 } 1300 llvm_unreachable("Invalid unnamed_addr"); 1301 } 1302 1303 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1304 if (GenerateHash) 1305 Hasher.update(Str); 1306 return StrtabBuilder.add(Str); 1307 } 1308 1309 void ModuleBitcodeWriter::writeComdats() { 1310 SmallVector<unsigned, 64> Vals; 1311 for (const Comdat *C : VE.getComdats()) { 1312 // COMDAT: [strtab offset, strtab size, selection_kind] 1313 Vals.push_back(addToStrtab(C->getName())); 1314 Vals.push_back(C->getName().size()); 1315 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1316 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1317 Vals.clear(); 1318 } 1319 } 1320 1321 /// Write a record that will eventually hold the word offset of the 1322 /// module-level VST. For now the offset is 0, which will be backpatched 1323 /// after the real VST is written. Saves the bit offset to backpatch. 1324 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1325 // Write a placeholder value in for the offset of the real VST, 1326 // which is written after the function blocks so that it can include 1327 // the offset of each function. The placeholder offset will be 1328 // updated when the real VST is written. 1329 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1330 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1331 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1332 // hold the real VST offset. Must use fixed instead of VBR as we don't 1333 // know how many VBR chunks to reserve ahead of time. 1334 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1335 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1336 1337 // Emit the placeholder 1338 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1339 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1340 1341 // Compute and save the bit offset to the placeholder, which will be 1342 // patched when the real VST is written. We can simply subtract the 32-bit 1343 // fixed size from the current bit number to get the location to backpatch. 1344 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1345 } 1346 1347 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1348 1349 /// Determine the encoding to use for the given string name and length. 1350 static StringEncoding getStringEncoding(StringRef Str) { 1351 bool isChar6 = true; 1352 for (char C : Str) { 1353 if (isChar6) 1354 isChar6 = BitCodeAbbrevOp::isChar6(C); 1355 if ((unsigned char)C & 128) 1356 // don't bother scanning the rest. 1357 return SE_Fixed8; 1358 } 1359 if (isChar6) 1360 return SE_Char6; 1361 return SE_Fixed7; 1362 } 1363 1364 static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), 1365 "Sanitizer Metadata is too large for naive serialization."); 1366 static unsigned 1367 serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { 1368 return Meta.NoAddress | (Meta.NoHWAddress << 1) | 1369 (Meta.Memtag << 2) | (Meta.IsDynInit << 3); 1370 } 1371 1372 /// Emit top-level description of module, including target triple, inline asm, 1373 /// descriptors for global variables, and function prototype info. 1374 /// Returns the bit offset to backpatch with the location of the real VST. 1375 void ModuleBitcodeWriter::writeModuleInfo() { 1376 // Emit various pieces of data attached to a module. 1377 if (!M.getTargetTriple().empty()) 1378 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1379 0 /*TODO*/); 1380 const std::string &DL = M.getDataLayoutStr(); 1381 if (!DL.empty()) 1382 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1383 if (!M.getModuleInlineAsm().empty()) 1384 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1385 0 /*TODO*/); 1386 1387 // Emit information about sections and GC, computing how many there are. Also 1388 // compute the maximum alignment value. 1389 std::map<std::string, unsigned> SectionMap; 1390 std::map<std::string, unsigned> GCMap; 1391 MaybeAlign MaxAlignment; 1392 unsigned MaxGlobalType = 0; 1393 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1394 if (A) 1395 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1396 }; 1397 for (const GlobalVariable &GV : M.globals()) { 1398 UpdateMaxAlignment(GV.getAlign()); 1399 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1400 if (GV.hasSection()) { 1401 // Give section names unique ID's. 1402 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1403 if (!Entry) { 1404 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1405 0 /*TODO*/); 1406 Entry = SectionMap.size(); 1407 } 1408 } 1409 } 1410 for (const Function &F : M) { 1411 UpdateMaxAlignment(F.getAlign()); 1412 if (F.hasSection()) { 1413 // Give section names unique ID's. 1414 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1415 if (!Entry) { 1416 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1417 0 /*TODO*/); 1418 Entry = SectionMap.size(); 1419 } 1420 } 1421 if (F.hasGC()) { 1422 // Same for GC names. 1423 unsigned &Entry = GCMap[F.getGC()]; 1424 if (!Entry) { 1425 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1426 0 /*TODO*/); 1427 Entry = GCMap.size(); 1428 } 1429 } 1430 } 1431 1432 // Emit abbrev for globals, now that we know # sections and max alignment. 1433 unsigned SimpleGVarAbbrev = 0; 1434 if (!M.global_empty()) { 1435 // Add an abbrev for common globals with no visibility or thread localness. 1436 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1437 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1438 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1439 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1441 Log2_32_Ceil(MaxGlobalType+1))); 1442 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1443 //| explicitType << 1 1444 //| constant 1445 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1447 if (!MaxAlignment) // Alignment. 1448 Abbv->Add(BitCodeAbbrevOp(0)); 1449 else { 1450 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1451 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1452 Log2_32_Ceil(MaxEncAlignment+1))); 1453 } 1454 if (SectionMap.empty()) // Section. 1455 Abbv->Add(BitCodeAbbrevOp(0)); 1456 else 1457 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1458 Log2_32_Ceil(SectionMap.size()+1))); 1459 // Don't bother emitting vis + thread local. 1460 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1461 } 1462 1463 SmallVector<unsigned, 64> Vals; 1464 // Emit the module's source file name. 1465 { 1466 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1467 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1468 if (Bits == SE_Char6) 1469 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1470 else if (Bits == SE_Fixed7) 1471 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1472 1473 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1474 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1475 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1476 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1477 Abbv->Add(AbbrevOpToUse); 1478 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1479 1480 for (const auto P : M.getSourceFileName()) 1481 Vals.push_back((unsigned char)P); 1482 1483 // Emit the finished record. 1484 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1485 Vals.clear(); 1486 } 1487 1488 // Emit the global variable information. 1489 for (const GlobalVariable &GV : M.globals()) { 1490 unsigned AbbrevToUse = 0; 1491 1492 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1493 // linkage, alignment, section, visibility, threadlocal, 1494 // unnamed_addr, externally_initialized, dllstorageclass, 1495 // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] 1496 Vals.push_back(addToStrtab(GV.getName())); 1497 Vals.push_back(GV.getName().size()); 1498 Vals.push_back(VE.getTypeID(GV.getValueType())); 1499 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1500 Vals.push_back(GV.isDeclaration() ? 0 : 1501 (VE.getValueID(GV.getInitializer()) + 1)); 1502 Vals.push_back(getEncodedLinkage(GV)); 1503 Vals.push_back(getEncodedAlign(GV.getAlign())); 1504 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1505 : 0); 1506 if (GV.isThreadLocal() || 1507 GV.getVisibility() != GlobalValue::DefaultVisibility || 1508 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1509 GV.isExternallyInitialized() || 1510 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1511 GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || 1512 GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { 1513 Vals.push_back(getEncodedVisibility(GV)); 1514 Vals.push_back(getEncodedThreadLocalMode(GV)); 1515 Vals.push_back(getEncodedUnnamedAddr(GV)); 1516 Vals.push_back(GV.isExternallyInitialized()); 1517 Vals.push_back(getEncodedDLLStorageClass(GV)); 1518 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1519 1520 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1521 Vals.push_back(VE.getAttributeListID(AL)); 1522 1523 Vals.push_back(GV.isDSOLocal()); 1524 Vals.push_back(addToStrtab(GV.getPartition())); 1525 Vals.push_back(GV.getPartition().size()); 1526 1527 Vals.push_back((GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( 1528 GV.getSanitizerMetadata()) 1529 : 0)); 1530 Vals.push_back(GV.getCodeModelRaw()); 1531 } else { 1532 AbbrevToUse = SimpleGVarAbbrev; 1533 } 1534 1535 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1536 Vals.clear(); 1537 } 1538 1539 // Emit the function proto information. 1540 for (const Function &F : M) { 1541 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1542 // linkage, paramattrs, alignment, section, visibility, gc, 1543 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1544 // prefixdata, personalityfn, DSO_Local, addrspace] 1545 Vals.push_back(addToStrtab(F.getName())); 1546 Vals.push_back(F.getName().size()); 1547 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1548 Vals.push_back(F.getCallingConv()); 1549 Vals.push_back(F.isDeclaration()); 1550 Vals.push_back(getEncodedLinkage(F)); 1551 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1552 Vals.push_back(getEncodedAlign(F.getAlign())); 1553 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1554 : 0); 1555 Vals.push_back(getEncodedVisibility(F)); 1556 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1557 Vals.push_back(getEncodedUnnamedAddr(F)); 1558 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1559 : 0); 1560 Vals.push_back(getEncodedDLLStorageClass(F)); 1561 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1562 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1563 : 0); 1564 Vals.push_back( 1565 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1566 1567 Vals.push_back(F.isDSOLocal()); 1568 Vals.push_back(F.getAddressSpace()); 1569 Vals.push_back(addToStrtab(F.getPartition())); 1570 Vals.push_back(F.getPartition().size()); 1571 1572 unsigned AbbrevToUse = 0; 1573 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1574 Vals.clear(); 1575 } 1576 1577 // Emit the alias information. 1578 for (const GlobalAlias &A : M.aliases()) { 1579 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1580 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1581 // DSO_Local] 1582 Vals.push_back(addToStrtab(A.getName())); 1583 Vals.push_back(A.getName().size()); 1584 Vals.push_back(VE.getTypeID(A.getValueType())); 1585 Vals.push_back(A.getType()->getAddressSpace()); 1586 Vals.push_back(VE.getValueID(A.getAliasee())); 1587 Vals.push_back(getEncodedLinkage(A)); 1588 Vals.push_back(getEncodedVisibility(A)); 1589 Vals.push_back(getEncodedDLLStorageClass(A)); 1590 Vals.push_back(getEncodedThreadLocalMode(A)); 1591 Vals.push_back(getEncodedUnnamedAddr(A)); 1592 Vals.push_back(A.isDSOLocal()); 1593 Vals.push_back(addToStrtab(A.getPartition())); 1594 Vals.push_back(A.getPartition().size()); 1595 1596 unsigned AbbrevToUse = 0; 1597 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1598 Vals.clear(); 1599 } 1600 1601 // Emit the ifunc information. 1602 for (const GlobalIFunc &I : M.ifuncs()) { 1603 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1604 // val#, linkage, visibility, DSO_Local] 1605 Vals.push_back(addToStrtab(I.getName())); 1606 Vals.push_back(I.getName().size()); 1607 Vals.push_back(VE.getTypeID(I.getValueType())); 1608 Vals.push_back(I.getType()->getAddressSpace()); 1609 Vals.push_back(VE.getValueID(I.getResolver())); 1610 Vals.push_back(getEncodedLinkage(I)); 1611 Vals.push_back(getEncodedVisibility(I)); 1612 Vals.push_back(I.isDSOLocal()); 1613 Vals.push_back(addToStrtab(I.getPartition())); 1614 Vals.push_back(I.getPartition().size()); 1615 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1616 Vals.clear(); 1617 } 1618 1619 writeValueSymbolTableForwardDecl(); 1620 } 1621 1622 static uint64_t getOptimizationFlags(const Value *V) { 1623 uint64_t Flags = 0; 1624 1625 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1626 if (OBO->hasNoSignedWrap()) 1627 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1628 if (OBO->hasNoUnsignedWrap()) 1629 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1630 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1631 if (PEO->isExact()) 1632 Flags |= 1 << bitc::PEO_EXACT; 1633 } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(V)) { 1634 if (PDI->isDisjoint()) 1635 Flags |= 1 << bitc::PDI_DISJOINT; 1636 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1637 if (FPMO->hasAllowReassoc()) 1638 Flags |= bitc::AllowReassoc; 1639 if (FPMO->hasNoNaNs()) 1640 Flags |= bitc::NoNaNs; 1641 if (FPMO->hasNoInfs()) 1642 Flags |= bitc::NoInfs; 1643 if (FPMO->hasNoSignedZeros()) 1644 Flags |= bitc::NoSignedZeros; 1645 if (FPMO->hasAllowReciprocal()) 1646 Flags |= bitc::AllowReciprocal; 1647 if (FPMO->hasAllowContract()) 1648 Flags |= bitc::AllowContract; 1649 if (FPMO->hasApproxFunc()) 1650 Flags |= bitc::ApproxFunc; 1651 } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(V)) { 1652 if (NNI->hasNonNeg()) 1653 Flags |= 1 << bitc::PNNI_NON_NEG; 1654 } else if (const auto *TI = dyn_cast<TruncInst>(V)) { 1655 if (TI->hasNoSignedWrap()) 1656 Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; 1657 if (TI->hasNoUnsignedWrap()) 1658 Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; 1659 } 1660 1661 return Flags; 1662 } 1663 1664 void ModuleBitcodeWriter::writeValueAsMetadata( 1665 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1666 // Mimic an MDNode with a value as one operand. 1667 Value *V = MD->getValue(); 1668 Record.push_back(VE.getTypeID(V->getType())); 1669 Record.push_back(VE.getValueID(V)); 1670 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1671 Record.clear(); 1672 } 1673 1674 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1675 SmallVectorImpl<uint64_t> &Record, 1676 unsigned Abbrev) { 1677 for (const MDOperand &MDO : N->operands()) { 1678 Metadata *MD = MDO; 1679 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1680 "Unexpected function-local metadata"); 1681 Record.push_back(VE.getMetadataOrNullID(MD)); 1682 } 1683 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1684 : bitc::METADATA_NODE, 1685 Record, Abbrev); 1686 Record.clear(); 1687 } 1688 1689 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1690 // Assume the column is usually under 128, and always output the inlined-at 1691 // location (it's never more expensive than building an array size 1). 1692 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1693 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1700 return Stream.EmitAbbrev(std::move(Abbv)); 1701 } 1702 1703 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1704 SmallVectorImpl<uint64_t> &Record, 1705 unsigned &Abbrev) { 1706 if (!Abbrev) 1707 Abbrev = createDILocationAbbrev(); 1708 1709 Record.push_back(N->isDistinct()); 1710 Record.push_back(N->getLine()); 1711 Record.push_back(N->getColumn()); 1712 Record.push_back(VE.getMetadataID(N->getScope())); 1713 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1714 Record.push_back(N->isImplicitCode()); 1715 1716 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1717 Record.clear(); 1718 } 1719 1720 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1721 // Assume the column is usually under 128, and always output the inlined-at 1722 // location (it's never more expensive than building an array size 1). 1723 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1724 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1725 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1726 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1727 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1729 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1730 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1731 return Stream.EmitAbbrev(std::move(Abbv)); 1732 } 1733 1734 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1735 SmallVectorImpl<uint64_t> &Record, 1736 unsigned &Abbrev) { 1737 if (!Abbrev) 1738 Abbrev = createGenericDINodeAbbrev(); 1739 1740 Record.push_back(N->isDistinct()); 1741 Record.push_back(N->getTag()); 1742 Record.push_back(0); // Per-tag version field; unused for now. 1743 1744 for (auto &I : N->operands()) 1745 Record.push_back(VE.getMetadataOrNullID(I)); 1746 1747 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1748 Record.clear(); 1749 } 1750 1751 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1752 SmallVectorImpl<uint64_t> &Record, 1753 unsigned Abbrev) { 1754 const uint64_t Version = 2 << 1; 1755 Record.push_back((uint64_t)N->isDistinct() | Version); 1756 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1757 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1758 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1759 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1760 1761 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1762 Record.clear(); 1763 } 1764 1765 void ModuleBitcodeWriter::writeDIGenericSubrange( 1766 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1767 unsigned Abbrev) { 1768 Record.push_back((uint64_t)N->isDistinct()); 1769 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1770 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1772 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1773 1774 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1775 Record.clear(); 1776 } 1777 1778 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1779 SmallVectorImpl<uint64_t> &Record, 1780 unsigned Abbrev) { 1781 const uint64_t IsBigInt = 1 << 2; 1782 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1783 Record.push_back(N->getValue().getBitWidth()); 1784 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1785 emitWideAPInt(Record, N->getValue()); 1786 1787 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1788 Record.clear(); 1789 } 1790 1791 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1792 SmallVectorImpl<uint64_t> &Record, 1793 unsigned Abbrev) { 1794 Record.push_back(N->isDistinct()); 1795 Record.push_back(N->getTag()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1797 Record.push_back(N->getSizeInBits()); 1798 Record.push_back(N->getAlignInBits()); 1799 Record.push_back(N->getEncoding()); 1800 Record.push_back(N->getFlags()); 1801 1802 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1803 Record.clear(); 1804 } 1805 1806 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1807 SmallVectorImpl<uint64_t> &Record, 1808 unsigned Abbrev) { 1809 Record.push_back(N->isDistinct()); 1810 Record.push_back(N->getTag()); 1811 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1812 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1814 Record.push_back(VE.getMetadataOrNullID(N->getStringLocationExp())); 1815 Record.push_back(N->getSizeInBits()); 1816 Record.push_back(N->getAlignInBits()); 1817 Record.push_back(N->getEncoding()); 1818 1819 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1820 Record.clear(); 1821 } 1822 1823 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1824 SmallVectorImpl<uint64_t> &Record, 1825 unsigned Abbrev) { 1826 Record.push_back(N->isDistinct()); 1827 Record.push_back(N->getTag()); 1828 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1829 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1830 Record.push_back(N->getLine()); 1831 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1832 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1833 Record.push_back(N->getSizeInBits()); 1834 Record.push_back(N->getAlignInBits()); 1835 Record.push_back(N->getOffsetInBits()); 1836 Record.push_back(N->getFlags()); 1837 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1838 1839 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1840 // that there is no DWARF address space associated with DIDerivedType. 1841 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1842 Record.push_back(*DWARFAddressSpace + 1); 1843 else 1844 Record.push_back(0); 1845 1846 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1847 1848 if (auto PtrAuthData = N->getPtrAuthData()) 1849 Record.push_back(PtrAuthData->RawData); 1850 else 1851 Record.push_back(0); 1852 1853 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1854 Record.clear(); 1855 } 1856 1857 void ModuleBitcodeWriter::writeDICompositeType( 1858 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1859 unsigned Abbrev) { 1860 const unsigned IsNotUsedInOldTypeRef = 0x2; 1861 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1862 Record.push_back(N->getTag()); 1863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1864 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1865 Record.push_back(N->getLine()); 1866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1867 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1868 Record.push_back(N->getSizeInBits()); 1869 Record.push_back(N->getAlignInBits()); 1870 Record.push_back(N->getOffsetInBits()); 1871 Record.push_back(N->getFlags()); 1872 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1873 Record.push_back(N->getRuntimeLang()); 1874 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1875 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1877 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1878 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1879 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1880 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1881 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1882 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1883 1884 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1885 Record.clear(); 1886 } 1887 1888 void ModuleBitcodeWriter::writeDISubroutineType( 1889 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1890 unsigned Abbrev) { 1891 const unsigned HasNoOldTypeRefs = 0x2; 1892 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1893 Record.push_back(N->getFlags()); 1894 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1895 Record.push_back(N->getCC()); 1896 1897 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1898 Record.clear(); 1899 } 1900 1901 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1902 SmallVectorImpl<uint64_t> &Record, 1903 unsigned Abbrev) { 1904 Record.push_back(N->isDistinct()); 1905 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1906 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1907 if (N->getRawChecksum()) { 1908 Record.push_back(N->getRawChecksum()->Kind); 1909 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1910 } else { 1911 // Maintain backwards compatibility with the old internal representation of 1912 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1913 Record.push_back(0); 1914 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1915 } 1916 auto Source = N->getRawSource(); 1917 if (Source) 1918 Record.push_back(VE.getMetadataOrNullID(Source)); 1919 1920 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1921 Record.clear(); 1922 } 1923 1924 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1925 SmallVectorImpl<uint64_t> &Record, 1926 unsigned Abbrev) { 1927 assert(N->isDistinct() && "Expected distinct compile units"); 1928 Record.push_back(/* IsDistinct */ true); 1929 Record.push_back(N->getSourceLanguage()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1932 Record.push_back(N->isOptimized()); 1933 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1934 Record.push_back(N->getRuntimeVersion()); 1935 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1936 Record.push_back(N->getEmissionKind()); 1937 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1938 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1939 Record.push_back(/* subprograms */ 0); 1940 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1941 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1942 Record.push_back(N->getDWOId()); 1943 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1944 Record.push_back(N->getSplitDebugInlining()); 1945 Record.push_back(N->getDebugInfoForProfiling()); 1946 Record.push_back((unsigned)N->getNameTableKind()); 1947 Record.push_back(N->getRangesBaseAddress()); 1948 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1949 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1950 1951 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1952 Record.clear(); 1953 } 1954 1955 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1956 SmallVectorImpl<uint64_t> &Record, 1957 unsigned Abbrev) { 1958 const uint64_t HasUnitFlag = 1 << 1; 1959 const uint64_t HasSPFlagsFlag = 1 << 2; 1960 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1961 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1962 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1963 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1964 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1965 Record.push_back(N->getLine()); 1966 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1967 Record.push_back(N->getScopeLine()); 1968 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1969 Record.push_back(N->getSPFlags()); 1970 Record.push_back(N->getVirtualIndex()); 1971 Record.push_back(N->getFlags()); 1972 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1973 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1974 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1975 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1976 Record.push_back(N->getThisAdjustment()); 1977 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1978 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 1979 Record.push_back(VE.getMetadataOrNullID(N->getRawTargetFuncName())); 1980 1981 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1982 Record.clear(); 1983 } 1984 1985 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1986 SmallVectorImpl<uint64_t> &Record, 1987 unsigned Abbrev) { 1988 Record.push_back(N->isDistinct()); 1989 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1990 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1991 Record.push_back(N->getLine()); 1992 Record.push_back(N->getColumn()); 1993 1994 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1995 Record.clear(); 1996 } 1997 1998 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1999 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 2000 unsigned Abbrev) { 2001 Record.push_back(N->isDistinct()); 2002 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2003 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2004 Record.push_back(N->getDiscriminator()); 2005 2006 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 2007 Record.clear(); 2008 } 2009 2010 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 2011 SmallVectorImpl<uint64_t> &Record, 2012 unsigned Abbrev) { 2013 Record.push_back(N->isDistinct()); 2014 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2015 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 2016 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2017 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2018 Record.push_back(N->getLineNo()); 2019 2020 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 2021 Record.clear(); 2022 } 2023 2024 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 2025 SmallVectorImpl<uint64_t> &Record, 2026 unsigned Abbrev) { 2027 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 2028 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2029 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2030 2031 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 2032 Record.clear(); 2033 } 2034 2035 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 2036 SmallVectorImpl<uint64_t> &Record, 2037 unsigned Abbrev) { 2038 Record.push_back(N->isDistinct()); 2039 Record.push_back(N->getMacinfoType()); 2040 Record.push_back(N->getLine()); 2041 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2042 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 2043 2044 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 2045 Record.clear(); 2046 } 2047 2048 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 2049 SmallVectorImpl<uint64_t> &Record, 2050 unsigned Abbrev) { 2051 Record.push_back(N->isDistinct()); 2052 Record.push_back(N->getMacinfoType()); 2053 Record.push_back(N->getLine()); 2054 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2055 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2056 2057 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 2058 Record.clear(); 2059 } 2060 2061 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 2062 SmallVectorImpl<uint64_t> &Record) { 2063 Record.reserve(N->getArgs().size()); 2064 for (ValueAsMetadata *MD : N->getArgs()) 2065 Record.push_back(VE.getMetadataID(MD)); 2066 2067 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record); 2068 Record.clear(); 2069 } 2070 2071 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 2072 SmallVectorImpl<uint64_t> &Record, 2073 unsigned Abbrev) { 2074 Record.push_back(N->isDistinct()); 2075 for (auto &I : N->operands()) 2076 Record.push_back(VE.getMetadataOrNullID(I)); 2077 Record.push_back(N->getLineNo()); 2078 Record.push_back(N->getIsDecl()); 2079 2080 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 2081 Record.clear(); 2082 } 2083 2084 void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, 2085 SmallVectorImpl<uint64_t> &Record, 2086 unsigned Abbrev) { 2087 // There are no arguments for this metadata type. 2088 Record.push_back(N->isDistinct()); 2089 Stream.EmitRecord(bitc::METADATA_ASSIGN_ID, Record, Abbrev); 2090 Record.clear(); 2091 } 2092 2093 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 2094 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 2095 unsigned Abbrev) { 2096 Record.push_back(N->isDistinct()); 2097 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2098 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2099 Record.push_back(N->isDefault()); 2100 2101 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 2102 Record.clear(); 2103 } 2104 2105 void ModuleBitcodeWriter::writeDITemplateValueParameter( 2106 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 2107 unsigned Abbrev) { 2108 Record.push_back(N->isDistinct()); 2109 Record.push_back(N->getTag()); 2110 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2111 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2112 Record.push_back(N->isDefault()); 2113 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 2114 2115 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 2116 Record.clear(); 2117 } 2118 2119 void ModuleBitcodeWriter::writeDIGlobalVariable( 2120 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 2121 unsigned Abbrev) { 2122 const uint64_t Version = 2 << 1; 2123 Record.push_back((uint64_t)N->isDistinct() | Version); 2124 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2125 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2126 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 2127 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2128 Record.push_back(N->getLine()); 2129 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2130 Record.push_back(N->isLocalToUnit()); 2131 Record.push_back(N->isDefinition()); 2132 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 2133 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 2134 Record.push_back(N->getAlignInBits()); 2135 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2136 2137 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 2138 Record.clear(); 2139 } 2140 2141 void ModuleBitcodeWriter::writeDILocalVariable( 2142 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 2143 unsigned Abbrev) { 2144 // In order to support all possible bitcode formats in BitcodeReader we need 2145 // to distinguish the following cases: 2146 // 1) Record has no artificial tag (Record[1]), 2147 // has no obsolete inlinedAt field (Record[9]). 2148 // In this case Record size will be 8, HasAlignment flag is false. 2149 // 2) Record has artificial tag (Record[1]), 2150 // has no obsolete inlignedAt field (Record[9]). 2151 // In this case Record size will be 9, HasAlignment flag is false. 2152 // 3) Record has both artificial tag (Record[1]) and 2153 // obsolete inlignedAt field (Record[9]). 2154 // In this case Record size will be 10, HasAlignment flag is false. 2155 // 4) Record has neither artificial tag, nor inlignedAt field, but 2156 // HasAlignment flag is true and Record[8] contains alignment value. 2157 const uint64_t HasAlignmentFlag = 1 << 1; 2158 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 2159 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2160 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2161 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2162 Record.push_back(N->getLine()); 2163 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2164 Record.push_back(N->getArg()); 2165 Record.push_back(N->getFlags()); 2166 Record.push_back(N->getAlignInBits()); 2167 Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get())); 2168 2169 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 2170 Record.clear(); 2171 } 2172 2173 void ModuleBitcodeWriter::writeDILabel( 2174 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 2175 unsigned Abbrev) { 2176 Record.push_back((uint64_t)N->isDistinct()); 2177 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2178 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2179 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2180 Record.push_back(N->getLine()); 2181 2182 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2183 Record.clear(); 2184 } 2185 2186 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2187 SmallVectorImpl<uint64_t> &Record, 2188 unsigned Abbrev) { 2189 Record.reserve(N->getElements().size() + 1); 2190 const uint64_t Version = 3 << 1; 2191 Record.push_back((uint64_t)N->isDistinct() | Version); 2192 Record.append(N->elements_begin(), N->elements_end()); 2193 2194 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2195 Record.clear(); 2196 } 2197 2198 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2199 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2200 unsigned Abbrev) { 2201 Record.push_back(N->isDistinct()); 2202 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2203 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2204 2205 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2206 Record.clear(); 2207 } 2208 2209 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2210 SmallVectorImpl<uint64_t> &Record, 2211 unsigned Abbrev) { 2212 Record.push_back(N->isDistinct()); 2213 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2214 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2215 Record.push_back(N->getLine()); 2216 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2217 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2218 Record.push_back(N->getAttributes()); 2219 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2220 2221 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2222 Record.clear(); 2223 } 2224 2225 void ModuleBitcodeWriter::writeDIImportedEntity( 2226 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2227 unsigned Abbrev) { 2228 Record.push_back(N->isDistinct()); 2229 Record.push_back(N->getTag()); 2230 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2231 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2232 Record.push_back(N->getLine()); 2233 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2234 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2235 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 2236 2237 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2238 Record.clear(); 2239 } 2240 2241 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2243 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2246 return Stream.EmitAbbrev(std::move(Abbv)); 2247 } 2248 2249 void ModuleBitcodeWriter::writeNamedMetadata( 2250 SmallVectorImpl<uint64_t> &Record) { 2251 if (M.named_metadata_empty()) 2252 return; 2253 2254 unsigned Abbrev = createNamedMetadataAbbrev(); 2255 for (const NamedMDNode &NMD : M.named_metadata()) { 2256 // Write name. 2257 StringRef Str = NMD.getName(); 2258 Record.append(Str.bytes_begin(), Str.bytes_end()); 2259 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2260 Record.clear(); 2261 2262 // Write named metadata operands. 2263 for (const MDNode *N : NMD.operands()) 2264 Record.push_back(VE.getMetadataID(N)); 2265 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2266 Record.clear(); 2267 } 2268 } 2269 2270 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2271 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2272 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2276 return Stream.EmitAbbrev(std::move(Abbv)); 2277 } 2278 2279 /// Write out a record for MDString. 2280 /// 2281 /// All the metadata strings in a metadata block are emitted in a single 2282 /// record. The sizes and strings themselves are shoved into a blob. 2283 void ModuleBitcodeWriter::writeMetadataStrings( 2284 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2285 if (Strings.empty()) 2286 return; 2287 2288 // Start the record with the number of strings. 2289 Record.push_back(bitc::METADATA_STRINGS); 2290 Record.push_back(Strings.size()); 2291 2292 // Emit the sizes of the strings in the blob. 2293 SmallString<256> Blob; 2294 { 2295 BitstreamWriter W(Blob); 2296 for (const Metadata *MD : Strings) 2297 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2298 W.FlushToWord(); 2299 } 2300 2301 // Add the offset to the strings to the record. 2302 Record.push_back(Blob.size()); 2303 2304 // Add the strings to the blob. 2305 for (const Metadata *MD : Strings) 2306 Blob.append(cast<MDString>(MD)->getString()); 2307 2308 // Emit the final record. 2309 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2310 Record.clear(); 2311 } 2312 2313 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2314 enum MetadataAbbrev : unsigned { 2315 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2316 #include "llvm/IR/Metadata.def" 2317 LastPlusOne 2318 }; 2319 2320 void ModuleBitcodeWriter::writeMetadataRecords( 2321 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2322 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2323 if (MDs.empty()) 2324 return; 2325 2326 // Initialize MDNode abbreviations. 2327 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2328 #include "llvm/IR/Metadata.def" 2329 2330 for (const Metadata *MD : MDs) { 2331 if (IndexPos) 2332 IndexPos->push_back(Stream.GetCurrentBitNo()); 2333 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2334 assert(N->isResolved() && "Expected forward references to be resolved"); 2335 2336 switch (N->getMetadataID()) { 2337 default: 2338 llvm_unreachable("Invalid MDNode subclass"); 2339 #define HANDLE_MDNODE_LEAF(CLASS) \ 2340 case Metadata::CLASS##Kind: \ 2341 if (MDAbbrevs) \ 2342 write##CLASS(cast<CLASS>(N), Record, \ 2343 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2344 else \ 2345 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2346 continue; 2347 #include "llvm/IR/Metadata.def" 2348 } 2349 } 2350 if (auto *AL = dyn_cast<DIArgList>(MD)) { 2351 writeDIArgList(AL, Record); 2352 continue; 2353 } 2354 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2355 } 2356 } 2357 2358 void ModuleBitcodeWriter::writeModuleMetadata() { 2359 if (!VE.hasMDs() && M.named_metadata_empty()) 2360 return; 2361 2362 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2363 SmallVector<uint64_t, 64> Record; 2364 2365 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2366 // block and load any metadata. 2367 std::vector<unsigned> MDAbbrevs; 2368 2369 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2370 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2371 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2372 createGenericDINodeAbbrev(); 2373 2374 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2375 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2378 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2379 2380 Abbv = std::make_shared<BitCodeAbbrev>(); 2381 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2383 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2384 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2385 2386 // Emit MDStrings together upfront. 2387 writeMetadataStrings(VE.getMDStrings(), Record); 2388 2389 // We only emit an index for the metadata record if we have more than a given 2390 // (naive) threshold of metadatas, otherwise it is not worth it. 2391 if (VE.getNonMDStrings().size() > IndexThreshold) { 2392 // Write a placeholder value in for the offset of the metadata index, 2393 // which is written after the records, so that it can include 2394 // the offset of each entry. The placeholder offset will be 2395 // updated after all records are emitted. 2396 uint64_t Vals[] = {0, 0}; 2397 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2398 } 2399 2400 // Compute and save the bit offset to the current position, which will be 2401 // patched when we emit the index later. We can simply subtract the 64-bit 2402 // fixed size from the current bit number to get the location to backpatch. 2403 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2404 2405 // This index will contain the bitpos for each individual record. 2406 std::vector<uint64_t> IndexPos; 2407 IndexPos.reserve(VE.getNonMDStrings().size()); 2408 2409 // Write all the records 2410 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2411 2412 if (VE.getNonMDStrings().size() > IndexThreshold) { 2413 // Now that we have emitted all the records we will emit the index. But 2414 // first 2415 // backpatch the forward reference so that the reader can skip the records 2416 // efficiently. 2417 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2418 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2419 2420 // Delta encode the index. 2421 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2422 for (auto &Elt : IndexPos) { 2423 auto EltDelta = Elt - PreviousValue; 2424 PreviousValue = Elt; 2425 Elt = EltDelta; 2426 } 2427 // Emit the index record. 2428 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2429 IndexPos.clear(); 2430 } 2431 2432 // Write the named metadata now. 2433 writeNamedMetadata(Record); 2434 2435 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2436 SmallVector<uint64_t, 4> Record; 2437 Record.push_back(VE.getValueID(&GO)); 2438 pushGlobalMetadataAttachment(Record, GO); 2439 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2440 }; 2441 for (const Function &F : M) 2442 if (F.isDeclaration() && F.hasMetadata()) 2443 AddDeclAttachedMetadata(F); 2444 // FIXME: Only store metadata for declarations here, and move data for global 2445 // variable definitions to a separate block (PR28134). 2446 for (const GlobalVariable &GV : M.globals()) 2447 if (GV.hasMetadata()) 2448 AddDeclAttachedMetadata(GV); 2449 2450 Stream.ExitBlock(); 2451 } 2452 2453 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2454 if (!VE.hasMDs()) 2455 return; 2456 2457 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2458 SmallVector<uint64_t, 64> Record; 2459 writeMetadataStrings(VE.getMDStrings(), Record); 2460 writeMetadataRecords(VE.getNonMDStrings(), Record); 2461 Stream.ExitBlock(); 2462 } 2463 2464 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2465 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2466 // [n x [id, mdnode]] 2467 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2468 GO.getAllMetadata(MDs); 2469 for (const auto &I : MDs) { 2470 Record.push_back(I.first); 2471 Record.push_back(VE.getMetadataID(I.second)); 2472 } 2473 } 2474 2475 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2476 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2477 2478 SmallVector<uint64_t, 64> Record; 2479 2480 if (F.hasMetadata()) { 2481 pushGlobalMetadataAttachment(Record, F); 2482 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2483 Record.clear(); 2484 } 2485 2486 // Write metadata attachments 2487 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2488 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2489 for (const BasicBlock &BB : F) 2490 for (const Instruction &I : BB) { 2491 MDs.clear(); 2492 I.getAllMetadataOtherThanDebugLoc(MDs); 2493 2494 // If no metadata, ignore instruction. 2495 if (MDs.empty()) continue; 2496 2497 Record.push_back(VE.getInstructionID(&I)); 2498 2499 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2500 Record.push_back(MDs[i].first); 2501 Record.push_back(VE.getMetadataID(MDs[i].second)); 2502 } 2503 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2504 Record.clear(); 2505 } 2506 2507 Stream.ExitBlock(); 2508 } 2509 2510 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2511 SmallVector<uint64_t, 64> Record; 2512 2513 // Write metadata kinds 2514 // METADATA_KIND - [n x [id, name]] 2515 SmallVector<StringRef, 8> Names; 2516 M.getMDKindNames(Names); 2517 2518 if (Names.empty()) return; 2519 2520 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2521 2522 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2523 Record.push_back(MDKindID); 2524 StringRef KName = Names[MDKindID]; 2525 Record.append(KName.begin(), KName.end()); 2526 2527 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2528 Record.clear(); 2529 } 2530 2531 Stream.ExitBlock(); 2532 } 2533 2534 void ModuleBitcodeWriter::writeOperandBundleTags() { 2535 // Write metadata kinds 2536 // 2537 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2538 // 2539 // OPERAND_BUNDLE_TAG - [strchr x N] 2540 2541 SmallVector<StringRef, 8> Tags; 2542 M.getOperandBundleTags(Tags); 2543 2544 if (Tags.empty()) 2545 return; 2546 2547 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2548 2549 SmallVector<uint64_t, 64> Record; 2550 2551 for (auto Tag : Tags) { 2552 Record.append(Tag.begin(), Tag.end()); 2553 2554 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2555 Record.clear(); 2556 } 2557 2558 Stream.ExitBlock(); 2559 } 2560 2561 void ModuleBitcodeWriter::writeSyncScopeNames() { 2562 SmallVector<StringRef, 8> SSNs; 2563 M.getContext().getSyncScopeNames(SSNs); 2564 if (SSNs.empty()) 2565 return; 2566 2567 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2568 2569 SmallVector<uint64_t, 64> Record; 2570 for (auto SSN : SSNs) { 2571 Record.append(SSN.begin(), SSN.end()); 2572 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2573 Record.clear(); 2574 } 2575 2576 Stream.ExitBlock(); 2577 } 2578 2579 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2580 bool isGlobal) { 2581 if (FirstVal == LastVal) return; 2582 2583 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2584 2585 unsigned AggregateAbbrev = 0; 2586 unsigned String8Abbrev = 0; 2587 unsigned CString7Abbrev = 0; 2588 unsigned CString6Abbrev = 0; 2589 // If this is a constant pool for the module, emit module-specific abbrevs. 2590 if (isGlobal) { 2591 // Abbrev for CST_CODE_AGGREGATE. 2592 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2593 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2596 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2597 2598 // Abbrev for CST_CODE_STRING. 2599 Abbv = std::make_shared<BitCodeAbbrev>(); 2600 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2603 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2604 // Abbrev for CST_CODE_CSTRING. 2605 Abbv = std::make_shared<BitCodeAbbrev>(); 2606 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2607 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2608 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2609 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2610 // Abbrev for CST_CODE_CSTRING. 2611 Abbv = std::make_shared<BitCodeAbbrev>(); 2612 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2613 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2614 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2615 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2616 } 2617 2618 SmallVector<uint64_t, 64> Record; 2619 2620 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2621 Type *LastTy = nullptr; 2622 for (unsigned i = FirstVal; i != LastVal; ++i) { 2623 const Value *V = Vals[i].first; 2624 // If we need to switch types, do so now. 2625 if (V->getType() != LastTy) { 2626 LastTy = V->getType(); 2627 Record.push_back(VE.getTypeID(LastTy)); 2628 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2629 CONSTANTS_SETTYPE_ABBREV); 2630 Record.clear(); 2631 } 2632 2633 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2634 Record.push_back(VE.getTypeID(IA->getFunctionType())); 2635 Record.push_back( 2636 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2637 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2638 2639 // Add the asm string. 2640 const std::string &AsmStr = IA->getAsmString(); 2641 Record.push_back(AsmStr.size()); 2642 Record.append(AsmStr.begin(), AsmStr.end()); 2643 2644 // Add the constraint string. 2645 const std::string &ConstraintStr = IA->getConstraintString(); 2646 Record.push_back(ConstraintStr.size()); 2647 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2648 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2649 Record.clear(); 2650 continue; 2651 } 2652 const Constant *C = cast<Constant>(V); 2653 unsigned Code = -1U; 2654 unsigned AbbrevToUse = 0; 2655 if (C->isNullValue()) { 2656 Code = bitc::CST_CODE_NULL; 2657 } else if (isa<PoisonValue>(C)) { 2658 Code = bitc::CST_CODE_POISON; 2659 } else if (isa<UndefValue>(C)) { 2660 Code = bitc::CST_CODE_UNDEF; 2661 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2662 if (IV->getBitWidth() <= 64) { 2663 uint64_t V = IV->getSExtValue(); 2664 emitSignedInt64(Record, V); 2665 Code = bitc::CST_CODE_INTEGER; 2666 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2667 } else { // Wide integers, > 64 bits in size. 2668 emitWideAPInt(Record, IV->getValue()); 2669 Code = bitc::CST_CODE_WIDE_INTEGER; 2670 } 2671 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2672 Code = bitc::CST_CODE_FLOAT; 2673 Type *Ty = CFP->getType()->getScalarType(); 2674 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2675 Ty->isDoubleTy()) { 2676 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2677 } else if (Ty->isX86_FP80Ty()) { 2678 // api needed to prevent premature destruction 2679 // bits are not in the same order as a normal i80 APInt, compensate. 2680 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2681 const uint64_t *p = api.getRawData(); 2682 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2683 Record.push_back(p[0] & 0xffffLL); 2684 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2685 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2686 const uint64_t *p = api.getRawData(); 2687 Record.push_back(p[0]); 2688 Record.push_back(p[1]); 2689 } else { 2690 assert(0 && "Unknown FP type!"); 2691 } 2692 } else if (isa<ConstantDataSequential>(C) && 2693 cast<ConstantDataSequential>(C)->isString()) { 2694 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2695 // Emit constant strings specially. 2696 unsigned NumElts = Str->getNumElements(); 2697 // If this is a null-terminated string, use the denser CSTRING encoding. 2698 if (Str->isCString()) { 2699 Code = bitc::CST_CODE_CSTRING; 2700 --NumElts; // Don't encode the null, which isn't allowed by char6. 2701 } else { 2702 Code = bitc::CST_CODE_STRING; 2703 AbbrevToUse = String8Abbrev; 2704 } 2705 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2706 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2707 for (unsigned i = 0; i != NumElts; ++i) { 2708 unsigned char V = Str->getElementAsInteger(i); 2709 Record.push_back(V); 2710 isCStr7 &= (V & 128) == 0; 2711 if (isCStrChar6) 2712 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2713 } 2714 2715 if (isCStrChar6) 2716 AbbrevToUse = CString6Abbrev; 2717 else if (isCStr7) 2718 AbbrevToUse = CString7Abbrev; 2719 } else if (const ConstantDataSequential *CDS = 2720 dyn_cast<ConstantDataSequential>(C)) { 2721 Code = bitc::CST_CODE_DATA; 2722 Type *EltTy = CDS->getElementType(); 2723 if (isa<IntegerType>(EltTy)) { 2724 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2725 Record.push_back(CDS->getElementAsInteger(i)); 2726 } else { 2727 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2728 Record.push_back( 2729 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2730 } 2731 } else if (isa<ConstantAggregate>(C)) { 2732 Code = bitc::CST_CODE_AGGREGATE; 2733 for (const Value *Op : C->operands()) 2734 Record.push_back(VE.getValueID(Op)); 2735 AbbrevToUse = AggregateAbbrev; 2736 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2737 switch (CE->getOpcode()) { 2738 default: 2739 if (Instruction::isCast(CE->getOpcode())) { 2740 Code = bitc::CST_CODE_CE_CAST; 2741 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2742 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2743 Record.push_back(VE.getValueID(C->getOperand(0))); 2744 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2745 } else { 2746 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2747 Code = bitc::CST_CODE_CE_BINOP; 2748 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2749 Record.push_back(VE.getValueID(C->getOperand(0))); 2750 Record.push_back(VE.getValueID(C->getOperand(1))); 2751 uint64_t Flags = getOptimizationFlags(CE); 2752 if (Flags != 0) 2753 Record.push_back(Flags); 2754 } 2755 break; 2756 case Instruction::FNeg: { 2757 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2758 Code = bitc::CST_CODE_CE_UNOP; 2759 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2760 Record.push_back(VE.getValueID(C->getOperand(0))); 2761 uint64_t Flags = getOptimizationFlags(CE); 2762 if (Flags != 0) 2763 Record.push_back(Flags); 2764 break; 2765 } 2766 case Instruction::GetElementPtr: { 2767 Code = bitc::CST_CODE_CE_GEP; 2768 const auto *GO = cast<GEPOperator>(C); 2769 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2770 if (std::optional<ConstantRange> Range = GO->getInRange()) { 2771 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; 2772 Record.push_back(GO->isInBounds()); 2773 emitConstantRange(Record, *Range); 2774 } else if (GO->isInBounds()) 2775 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2776 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2777 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2778 Record.push_back(VE.getValueID(C->getOperand(i))); 2779 } 2780 break; 2781 } 2782 case Instruction::ExtractElement: 2783 Code = bitc::CST_CODE_CE_EXTRACTELT; 2784 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2785 Record.push_back(VE.getValueID(C->getOperand(0))); 2786 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2787 Record.push_back(VE.getValueID(C->getOperand(1))); 2788 break; 2789 case Instruction::InsertElement: 2790 Code = bitc::CST_CODE_CE_INSERTELT; 2791 Record.push_back(VE.getValueID(C->getOperand(0))); 2792 Record.push_back(VE.getValueID(C->getOperand(1))); 2793 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2794 Record.push_back(VE.getValueID(C->getOperand(2))); 2795 break; 2796 case Instruction::ShuffleVector: 2797 // If the return type and argument types are the same, this is a 2798 // standard shufflevector instruction. If the types are different, 2799 // then the shuffle is widening or truncating the input vectors, and 2800 // the argument type must also be encoded. 2801 if (C->getType() == C->getOperand(0)->getType()) { 2802 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2803 } else { 2804 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2805 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2806 } 2807 Record.push_back(VE.getValueID(C->getOperand(0))); 2808 Record.push_back(VE.getValueID(C->getOperand(1))); 2809 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2810 break; 2811 case Instruction::ICmp: 2812 case Instruction::FCmp: 2813 Code = bitc::CST_CODE_CE_CMP; 2814 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2815 Record.push_back(VE.getValueID(C->getOperand(0))); 2816 Record.push_back(VE.getValueID(C->getOperand(1))); 2817 Record.push_back(CE->getPredicate()); 2818 break; 2819 } 2820 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2821 Code = bitc::CST_CODE_BLOCKADDRESS; 2822 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2823 Record.push_back(VE.getValueID(BA->getFunction())); 2824 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2825 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2826 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2827 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2828 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2829 } else if (const auto *NC = dyn_cast<NoCFIValue>(C)) { 2830 Code = bitc::CST_CODE_NO_CFI_VALUE; 2831 Record.push_back(VE.getTypeID(NC->getGlobalValue()->getType())); 2832 Record.push_back(VE.getValueID(NC->getGlobalValue())); 2833 } else { 2834 #ifndef NDEBUG 2835 C->dump(); 2836 #endif 2837 llvm_unreachable("Unknown constant!"); 2838 } 2839 Stream.EmitRecord(Code, Record, AbbrevToUse); 2840 Record.clear(); 2841 } 2842 2843 Stream.ExitBlock(); 2844 } 2845 2846 void ModuleBitcodeWriter::writeModuleConstants() { 2847 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2848 2849 // Find the first constant to emit, which is the first non-globalvalue value. 2850 // We know globalvalues have been emitted by WriteModuleInfo. 2851 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2852 if (!isa<GlobalValue>(Vals[i].first)) { 2853 writeConstants(i, Vals.size(), true); 2854 return; 2855 } 2856 } 2857 } 2858 2859 /// pushValueAndType - The file has to encode both the value and type id for 2860 /// many values, because we need to know what type to create for forward 2861 /// references. However, most operands are not forward references, so this type 2862 /// field is not needed. 2863 /// 2864 /// This function adds V's value ID to Vals. If the value ID is higher than the 2865 /// instruction ID, then it is a forward reference, and it also includes the 2866 /// type ID. The value ID that is written is encoded relative to the InstID. 2867 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2868 SmallVectorImpl<unsigned> &Vals) { 2869 unsigned ValID = VE.getValueID(V); 2870 // Make encoding relative to the InstID. 2871 Vals.push_back(InstID - ValID); 2872 if (ValID >= InstID) { 2873 Vals.push_back(VE.getTypeID(V->getType())); 2874 return true; 2875 } 2876 return false; 2877 } 2878 2879 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2880 unsigned InstID) { 2881 SmallVector<unsigned, 64> Record; 2882 LLVMContext &C = CS.getContext(); 2883 2884 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2885 const auto &Bundle = CS.getOperandBundleAt(i); 2886 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2887 2888 for (auto &Input : Bundle.Inputs) 2889 pushValueAndType(Input, InstID, Record); 2890 2891 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2892 Record.clear(); 2893 } 2894 } 2895 2896 /// pushValue - Like pushValueAndType, but where the type of the value is 2897 /// omitted (perhaps it was already encoded in an earlier operand). 2898 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2899 SmallVectorImpl<unsigned> &Vals) { 2900 unsigned ValID = VE.getValueID(V); 2901 Vals.push_back(InstID - ValID); 2902 } 2903 2904 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2905 SmallVectorImpl<uint64_t> &Vals) { 2906 unsigned ValID = VE.getValueID(V); 2907 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2908 emitSignedInt64(Vals, diff); 2909 } 2910 2911 /// WriteInstruction - Emit an instruction to the specified stream. 2912 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2913 unsigned InstID, 2914 SmallVectorImpl<unsigned> &Vals) { 2915 unsigned Code = 0; 2916 unsigned AbbrevToUse = 0; 2917 VE.setInstructionID(&I); 2918 switch (I.getOpcode()) { 2919 default: 2920 if (Instruction::isCast(I.getOpcode())) { 2921 Code = bitc::FUNC_CODE_INST_CAST; 2922 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2923 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2924 Vals.push_back(VE.getTypeID(I.getType())); 2925 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2926 uint64_t Flags = getOptimizationFlags(&I); 2927 if (Flags != 0) { 2928 if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) 2929 AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; 2930 Vals.push_back(Flags); 2931 } 2932 } else { 2933 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2934 Code = bitc::FUNC_CODE_INST_BINOP; 2935 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2936 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2937 pushValue(I.getOperand(1), InstID, Vals); 2938 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2939 uint64_t Flags = getOptimizationFlags(&I); 2940 if (Flags != 0) { 2941 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2942 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2943 Vals.push_back(Flags); 2944 } 2945 } 2946 break; 2947 case Instruction::FNeg: { 2948 Code = bitc::FUNC_CODE_INST_UNOP; 2949 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2950 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2951 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2952 uint64_t Flags = getOptimizationFlags(&I); 2953 if (Flags != 0) { 2954 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2955 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2956 Vals.push_back(Flags); 2957 } 2958 break; 2959 } 2960 case Instruction::GetElementPtr: { 2961 Code = bitc::FUNC_CODE_INST_GEP; 2962 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2963 auto &GEPInst = cast<GetElementPtrInst>(I); 2964 Vals.push_back(GEPInst.isInBounds()); 2965 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2966 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2967 pushValueAndType(I.getOperand(i), InstID, Vals); 2968 break; 2969 } 2970 case Instruction::ExtractValue: { 2971 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2972 pushValueAndType(I.getOperand(0), InstID, Vals); 2973 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2974 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2975 break; 2976 } 2977 case Instruction::InsertValue: { 2978 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2979 pushValueAndType(I.getOperand(0), InstID, Vals); 2980 pushValueAndType(I.getOperand(1), InstID, Vals); 2981 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2982 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2983 break; 2984 } 2985 case Instruction::Select: { 2986 Code = bitc::FUNC_CODE_INST_VSELECT; 2987 pushValueAndType(I.getOperand(1), InstID, Vals); 2988 pushValue(I.getOperand(2), InstID, Vals); 2989 pushValueAndType(I.getOperand(0), InstID, Vals); 2990 uint64_t Flags = getOptimizationFlags(&I); 2991 if (Flags != 0) 2992 Vals.push_back(Flags); 2993 break; 2994 } 2995 case Instruction::ExtractElement: 2996 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2997 pushValueAndType(I.getOperand(0), InstID, Vals); 2998 pushValueAndType(I.getOperand(1), InstID, Vals); 2999 break; 3000 case Instruction::InsertElement: 3001 Code = bitc::FUNC_CODE_INST_INSERTELT; 3002 pushValueAndType(I.getOperand(0), InstID, Vals); 3003 pushValue(I.getOperand(1), InstID, Vals); 3004 pushValueAndType(I.getOperand(2), InstID, Vals); 3005 break; 3006 case Instruction::ShuffleVector: 3007 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 3008 pushValueAndType(I.getOperand(0), InstID, Vals); 3009 pushValue(I.getOperand(1), InstID, Vals); 3010 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 3011 Vals); 3012 break; 3013 case Instruction::ICmp: 3014 case Instruction::FCmp: { 3015 // compare returning Int1Ty or vector of Int1Ty 3016 Code = bitc::FUNC_CODE_INST_CMP2; 3017 pushValueAndType(I.getOperand(0), InstID, Vals); 3018 pushValue(I.getOperand(1), InstID, Vals); 3019 Vals.push_back(cast<CmpInst>(I).getPredicate()); 3020 uint64_t Flags = getOptimizationFlags(&I); 3021 if (Flags != 0) 3022 Vals.push_back(Flags); 3023 break; 3024 } 3025 3026 case Instruction::Ret: 3027 { 3028 Code = bitc::FUNC_CODE_INST_RET; 3029 unsigned NumOperands = I.getNumOperands(); 3030 if (NumOperands == 0) 3031 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 3032 else if (NumOperands == 1) { 3033 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 3034 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 3035 } else { 3036 for (unsigned i = 0, e = NumOperands; i != e; ++i) 3037 pushValueAndType(I.getOperand(i), InstID, Vals); 3038 } 3039 } 3040 break; 3041 case Instruction::Br: 3042 { 3043 Code = bitc::FUNC_CODE_INST_BR; 3044 const BranchInst &II = cast<BranchInst>(I); 3045 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 3046 if (II.isConditional()) { 3047 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 3048 pushValue(II.getCondition(), InstID, Vals); 3049 } 3050 } 3051 break; 3052 case Instruction::Switch: 3053 { 3054 Code = bitc::FUNC_CODE_INST_SWITCH; 3055 const SwitchInst &SI = cast<SwitchInst>(I); 3056 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 3057 pushValue(SI.getCondition(), InstID, Vals); 3058 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 3059 for (auto Case : SI.cases()) { 3060 Vals.push_back(VE.getValueID(Case.getCaseValue())); 3061 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 3062 } 3063 } 3064 break; 3065 case Instruction::IndirectBr: 3066 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 3067 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3068 // Encode the address operand as relative, but not the basic blocks. 3069 pushValue(I.getOperand(0), InstID, Vals); 3070 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 3071 Vals.push_back(VE.getValueID(I.getOperand(i))); 3072 break; 3073 3074 case Instruction::Invoke: { 3075 const InvokeInst *II = cast<InvokeInst>(&I); 3076 const Value *Callee = II->getCalledOperand(); 3077 FunctionType *FTy = II->getFunctionType(); 3078 3079 if (II->hasOperandBundles()) 3080 writeOperandBundles(*II, InstID); 3081 3082 Code = bitc::FUNC_CODE_INST_INVOKE; 3083 3084 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 3085 Vals.push_back(II->getCallingConv() | 1 << 13); 3086 Vals.push_back(VE.getValueID(II->getNormalDest())); 3087 Vals.push_back(VE.getValueID(II->getUnwindDest())); 3088 Vals.push_back(VE.getTypeID(FTy)); 3089 pushValueAndType(Callee, InstID, Vals); 3090 3091 // Emit value #'s for the fixed parameters. 3092 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3093 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3094 3095 // Emit type/value pairs for varargs params. 3096 if (FTy->isVarArg()) { 3097 for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) 3098 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3099 } 3100 break; 3101 } 3102 case Instruction::Resume: 3103 Code = bitc::FUNC_CODE_INST_RESUME; 3104 pushValueAndType(I.getOperand(0), InstID, Vals); 3105 break; 3106 case Instruction::CleanupRet: { 3107 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 3108 const auto &CRI = cast<CleanupReturnInst>(I); 3109 pushValue(CRI.getCleanupPad(), InstID, Vals); 3110 if (CRI.hasUnwindDest()) 3111 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 3112 break; 3113 } 3114 case Instruction::CatchRet: { 3115 Code = bitc::FUNC_CODE_INST_CATCHRET; 3116 const auto &CRI = cast<CatchReturnInst>(I); 3117 pushValue(CRI.getCatchPad(), InstID, Vals); 3118 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 3119 break; 3120 } 3121 case Instruction::CleanupPad: 3122 case Instruction::CatchPad: { 3123 const auto &FuncletPad = cast<FuncletPadInst>(I); 3124 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 3125 : bitc::FUNC_CODE_INST_CLEANUPPAD; 3126 pushValue(FuncletPad.getParentPad(), InstID, Vals); 3127 3128 unsigned NumArgOperands = FuncletPad.arg_size(); 3129 Vals.push_back(NumArgOperands); 3130 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 3131 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 3132 break; 3133 } 3134 case Instruction::CatchSwitch: { 3135 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 3136 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 3137 3138 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 3139 3140 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 3141 Vals.push_back(NumHandlers); 3142 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 3143 Vals.push_back(VE.getValueID(CatchPadBB)); 3144 3145 if (CatchSwitch.hasUnwindDest()) 3146 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 3147 break; 3148 } 3149 case Instruction::CallBr: { 3150 const CallBrInst *CBI = cast<CallBrInst>(&I); 3151 const Value *Callee = CBI->getCalledOperand(); 3152 FunctionType *FTy = CBI->getFunctionType(); 3153 3154 if (CBI->hasOperandBundles()) 3155 writeOperandBundles(*CBI, InstID); 3156 3157 Code = bitc::FUNC_CODE_INST_CALLBR; 3158 3159 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 3160 3161 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 3162 1 << bitc::CALL_EXPLICIT_TYPE); 3163 3164 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 3165 Vals.push_back(CBI->getNumIndirectDests()); 3166 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 3167 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 3168 3169 Vals.push_back(VE.getTypeID(FTy)); 3170 pushValueAndType(Callee, InstID, Vals); 3171 3172 // Emit value #'s for the fixed parameters. 3173 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 3174 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 3175 3176 // Emit type/value pairs for varargs params. 3177 if (FTy->isVarArg()) { 3178 for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) 3179 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 3180 } 3181 break; 3182 } 3183 case Instruction::Unreachable: 3184 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 3185 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 3186 break; 3187 3188 case Instruction::PHI: { 3189 const PHINode &PN = cast<PHINode>(I); 3190 Code = bitc::FUNC_CODE_INST_PHI; 3191 // With the newer instruction encoding, forward references could give 3192 // negative valued IDs. This is most common for PHIs, so we use 3193 // signed VBRs. 3194 SmallVector<uint64_t, 128> Vals64; 3195 Vals64.push_back(VE.getTypeID(PN.getType())); 3196 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3197 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3198 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3199 } 3200 3201 uint64_t Flags = getOptimizationFlags(&I); 3202 if (Flags != 0) 3203 Vals64.push_back(Flags); 3204 3205 // Emit a Vals64 vector and exit. 3206 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3207 Vals64.clear(); 3208 return; 3209 } 3210 3211 case Instruction::LandingPad: { 3212 const LandingPadInst &LP = cast<LandingPadInst>(I); 3213 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3214 Vals.push_back(VE.getTypeID(LP.getType())); 3215 Vals.push_back(LP.isCleanup()); 3216 Vals.push_back(LP.getNumClauses()); 3217 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3218 if (LP.isCatch(I)) 3219 Vals.push_back(LandingPadInst::Catch); 3220 else 3221 Vals.push_back(LandingPadInst::Filter); 3222 pushValueAndType(LP.getClause(I), InstID, Vals); 3223 } 3224 break; 3225 } 3226 3227 case Instruction::Alloca: { 3228 Code = bitc::FUNC_CODE_INST_ALLOCA; 3229 const AllocaInst &AI = cast<AllocaInst>(I); 3230 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3231 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3232 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3233 using APV = AllocaPackedValues; 3234 unsigned Record = 0; 3235 unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); 3236 Bitfield::set<APV::AlignLower>( 3237 Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); 3238 Bitfield::set<APV::AlignUpper>(Record, 3239 EncodedAlign >> APV::AlignLower::Bits); 3240 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3241 Bitfield::set<APV::ExplicitType>(Record, true); 3242 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3243 Vals.push_back(Record); 3244 3245 unsigned AS = AI.getAddressSpace(); 3246 if (AS != M.getDataLayout().getAllocaAddrSpace()) 3247 Vals.push_back(AS); 3248 break; 3249 } 3250 3251 case Instruction::Load: 3252 if (cast<LoadInst>(I).isAtomic()) { 3253 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3254 pushValueAndType(I.getOperand(0), InstID, Vals); 3255 } else { 3256 Code = bitc::FUNC_CODE_INST_LOAD; 3257 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3258 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3259 } 3260 Vals.push_back(VE.getTypeID(I.getType())); 3261 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3262 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3263 if (cast<LoadInst>(I).isAtomic()) { 3264 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3265 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3266 } 3267 break; 3268 case Instruction::Store: 3269 if (cast<StoreInst>(I).isAtomic()) 3270 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3271 else 3272 Code = bitc::FUNC_CODE_INST_STORE; 3273 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3274 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3275 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3276 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3277 if (cast<StoreInst>(I).isAtomic()) { 3278 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3279 Vals.push_back( 3280 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3281 } 3282 break; 3283 case Instruction::AtomicCmpXchg: 3284 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3285 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3286 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3287 pushValue(I.getOperand(2), InstID, Vals); // newval. 3288 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3289 Vals.push_back( 3290 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3291 Vals.push_back( 3292 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3293 Vals.push_back( 3294 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3295 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3296 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3297 break; 3298 case Instruction::AtomicRMW: 3299 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3300 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3301 pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val 3302 Vals.push_back( 3303 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3304 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3305 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3306 Vals.push_back( 3307 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3308 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3309 break; 3310 case Instruction::Fence: 3311 Code = bitc::FUNC_CODE_INST_FENCE; 3312 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3313 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3314 break; 3315 case Instruction::Call: { 3316 const CallInst &CI = cast<CallInst>(I); 3317 FunctionType *FTy = CI.getFunctionType(); 3318 3319 if (CI.hasOperandBundles()) 3320 writeOperandBundles(CI, InstID); 3321 3322 Code = bitc::FUNC_CODE_INST_CALL; 3323 3324 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3325 3326 unsigned Flags = getOptimizationFlags(&I); 3327 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3328 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3329 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3330 1 << bitc::CALL_EXPLICIT_TYPE | 3331 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3332 unsigned(Flags != 0) << bitc::CALL_FMF); 3333 if (Flags != 0) 3334 Vals.push_back(Flags); 3335 3336 Vals.push_back(VE.getTypeID(FTy)); 3337 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3338 3339 // Emit value #'s for the fixed parameters. 3340 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3341 // Check for labels (can happen with asm labels). 3342 if (FTy->getParamType(i)->isLabelTy()) 3343 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3344 else 3345 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3346 } 3347 3348 // Emit type/value pairs for varargs params. 3349 if (FTy->isVarArg()) { 3350 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) 3351 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3352 } 3353 break; 3354 } 3355 case Instruction::VAArg: 3356 Code = bitc::FUNC_CODE_INST_VAARG; 3357 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3358 pushValue(I.getOperand(0), InstID, Vals); // valist. 3359 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3360 break; 3361 case Instruction::Freeze: 3362 Code = bitc::FUNC_CODE_INST_FREEZE; 3363 pushValueAndType(I.getOperand(0), InstID, Vals); 3364 break; 3365 } 3366 3367 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3368 Vals.clear(); 3369 } 3370 3371 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3372 /// to allow clients to efficiently find the function body. 3373 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3374 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3375 // Get the offset of the VST we are writing, and backpatch it into 3376 // the VST forward declaration record. 3377 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3378 // The BitcodeStartBit was the stream offset of the identification block. 3379 VSTOffset -= bitcodeStartBit(); 3380 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3381 // Note that we add 1 here because the offset is relative to one word 3382 // before the start of the identification block, which was historically 3383 // always the start of the regular bitcode header. 3384 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3385 3386 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3387 3388 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3389 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3391 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3392 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3393 3394 for (const Function &F : M) { 3395 uint64_t Record[2]; 3396 3397 if (F.isDeclaration()) 3398 continue; 3399 3400 Record[0] = VE.getValueID(&F); 3401 3402 // Save the word offset of the function (from the start of the 3403 // actual bitcode written to the stream). 3404 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3405 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3406 // Note that we add 1 here because the offset is relative to one word 3407 // before the start of the identification block, which was historically 3408 // always the start of the regular bitcode header. 3409 Record[1] = BitcodeIndex / 32 + 1; 3410 3411 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3412 } 3413 3414 Stream.ExitBlock(); 3415 } 3416 3417 /// Emit names for arguments, instructions and basic blocks in a function. 3418 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3419 const ValueSymbolTable &VST) { 3420 if (VST.empty()) 3421 return; 3422 3423 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3424 3425 // FIXME: Set up the abbrev, we know how many values there are! 3426 // FIXME: We know if the type names can use 7-bit ascii. 3427 SmallVector<uint64_t, 64> NameVals; 3428 3429 for (const ValueName &Name : VST) { 3430 // Figure out the encoding to use for the name. 3431 StringEncoding Bits = getStringEncoding(Name.getKey()); 3432 3433 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3434 NameVals.push_back(VE.getValueID(Name.getValue())); 3435 3436 // VST_CODE_ENTRY: [valueid, namechar x N] 3437 // VST_CODE_BBENTRY: [bbid, namechar x N] 3438 unsigned Code; 3439 if (isa<BasicBlock>(Name.getValue())) { 3440 Code = bitc::VST_CODE_BBENTRY; 3441 if (Bits == SE_Char6) 3442 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3443 } else { 3444 Code = bitc::VST_CODE_ENTRY; 3445 if (Bits == SE_Char6) 3446 AbbrevToUse = VST_ENTRY_6_ABBREV; 3447 else if (Bits == SE_Fixed7) 3448 AbbrevToUse = VST_ENTRY_7_ABBREV; 3449 } 3450 3451 for (const auto P : Name.getKey()) 3452 NameVals.push_back((unsigned char)P); 3453 3454 // Emit the finished record. 3455 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3456 NameVals.clear(); 3457 } 3458 3459 Stream.ExitBlock(); 3460 } 3461 3462 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3463 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3464 unsigned Code; 3465 if (isa<BasicBlock>(Order.V)) 3466 Code = bitc::USELIST_CODE_BB; 3467 else 3468 Code = bitc::USELIST_CODE_DEFAULT; 3469 3470 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3471 Record.push_back(VE.getValueID(Order.V)); 3472 Stream.EmitRecord(Code, Record); 3473 } 3474 3475 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3476 assert(VE.shouldPreserveUseListOrder() && 3477 "Expected to be preserving use-list order"); 3478 3479 auto hasMore = [&]() { 3480 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3481 }; 3482 if (!hasMore()) 3483 // Nothing to do. 3484 return; 3485 3486 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3487 while (hasMore()) { 3488 writeUseList(std::move(VE.UseListOrders.back())); 3489 VE.UseListOrders.pop_back(); 3490 } 3491 Stream.ExitBlock(); 3492 } 3493 3494 /// Emit a function body to the module stream. 3495 void ModuleBitcodeWriter::writeFunction( 3496 const Function &F, 3497 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3498 // Save the bitcode index of the start of this function block for recording 3499 // in the VST. 3500 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3501 3502 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3503 VE.incorporateFunction(F); 3504 3505 SmallVector<unsigned, 64> Vals; 3506 3507 // Emit the number of basic blocks, so the reader can create them ahead of 3508 // time. 3509 Vals.push_back(VE.getBasicBlocks().size()); 3510 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3511 Vals.clear(); 3512 3513 // If there are function-local constants, emit them now. 3514 unsigned CstStart, CstEnd; 3515 VE.getFunctionConstantRange(CstStart, CstEnd); 3516 writeConstants(CstStart, CstEnd, false); 3517 3518 // If there is function-local metadata, emit it now. 3519 writeFunctionMetadata(F); 3520 3521 // Keep a running idea of what the instruction ID is. 3522 unsigned InstID = CstEnd; 3523 3524 bool NeedsMetadataAttachment = F.hasMetadata(); 3525 3526 DILocation *LastDL = nullptr; 3527 SmallSetVector<Function *, 4> BlockAddressUsers; 3528 3529 // Finally, emit all the instructions, in order. 3530 for (const BasicBlock &BB : F) { 3531 for (const Instruction &I : BB) { 3532 writeInstruction(I, InstID, Vals); 3533 3534 if (!I.getType()->isVoidTy()) 3535 ++InstID; 3536 3537 // If the instruction has metadata, write a metadata attachment later. 3538 NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); 3539 3540 // If the instruction has a debug location, emit it. 3541 if (DILocation *DL = I.getDebugLoc()) { 3542 if (DL == LastDL) { 3543 // Just repeat the same debug loc as last time. 3544 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3545 } else { 3546 Vals.push_back(DL->getLine()); 3547 Vals.push_back(DL->getColumn()); 3548 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3549 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3550 Vals.push_back(DL->isImplicitCode()); 3551 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3552 Vals.clear(); 3553 LastDL = DL; 3554 } 3555 } 3556 3557 // If the instruction has DbgRecords attached to it, emit them. Note that 3558 // they come after the instruction so that it's easy to attach them again 3559 // when reading the bitcode, even though conceptually the debug locations 3560 // start "before" the instruction. 3561 if (I.hasDbgRecords() && WriteNewDbgInfoFormatToBitcode) { 3562 /// Try to push the value only (unwrapped), otherwise push the 3563 /// metadata wrapped value. Returns true if the value was pushed 3564 /// without the ValueAsMetadata wrapper. 3565 auto PushValueOrMetadata = [&Vals, InstID, 3566 this](Metadata *RawLocation) { 3567 assert(RawLocation && 3568 "RawLocation unexpectedly null in DbgVariableRecord"); 3569 if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(RawLocation)) { 3570 SmallVector<unsigned, 2> ValAndType; 3571 // If the value is a fwd-ref the type is also pushed. We don't 3572 // want the type, so fwd-refs are kept wrapped (pushValueAndType 3573 // returns false if the value is pushed without type). 3574 if (!pushValueAndType(VAM->getValue(), InstID, ValAndType)) { 3575 Vals.push_back(ValAndType[0]); 3576 return true; 3577 } 3578 } 3579 // The metadata is a DIArgList, or ValueAsMetadata wrapping a 3580 // fwd-ref. Push the metadata ID. 3581 Vals.push_back(VE.getMetadataID(RawLocation)); 3582 return false; 3583 }; 3584 3585 // Write out non-instruction debug information attached to this 3586 // instruction. Write it after the instruction so that it's easy to 3587 // re-attach to the instruction reading the records in. 3588 for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { 3589 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) { 3590 Vals.push_back(VE.getMetadataID(&*DLR->getDebugLoc())); 3591 Vals.push_back(VE.getMetadataID(DLR->getLabel())); 3592 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); 3593 Vals.clear(); 3594 continue; 3595 } 3596 3597 // First 3 fields are common to all kinds: 3598 // DILocation, DILocalVariable, DIExpression 3599 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 3600 // ..., LocationMetadata 3601 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 3602 // ..., Value 3603 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 3604 // ..., LocationMetadata 3605 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 3606 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 3607 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR); 3608 Vals.push_back(VE.getMetadataID(&*DVR.getDebugLoc())); 3609 Vals.push_back(VE.getMetadataID(DVR.getVariable())); 3610 Vals.push_back(VE.getMetadataID(DVR.getExpression())); 3611 if (DVR.isDbgValue()) { 3612 if (PushValueOrMetadata(DVR.getRawLocation())) 3613 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, 3614 FUNCTION_DEBUG_RECORD_VALUE_ABBREV); 3615 else 3616 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); 3617 } else if (DVR.isDbgDeclare()) { 3618 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3619 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); 3620 } else { 3621 assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind"); 3622 Vals.push_back(VE.getMetadataID(DVR.getRawLocation())); 3623 Vals.push_back(VE.getMetadataID(DVR.getAssignID())); 3624 Vals.push_back(VE.getMetadataID(DVR.getAddressExpression())); 3625 Vals.push_back(VE.getMetadataID(DVR.getRawAddress())); 3626 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); 3627 } 3628 Vals.clear(); 3629 } 3630 } 3631 } 3632 3633 if (BlockAddress *BA = BlockAddress::lookup(&BB)) { 3634 SmallVector<Value *> Worklist{BA}; 3635 SmallPtrSet<Value *, 8> Visited{BA}; 3636 while (!Worklist.empty()) { 3637 Value *V = Worklist.pop_back_val(); 3638 for (User *U : V->users()) { 3639 if (auto *I = dyn_cast<Instruction>(U)) { 3640 Function *P = I->getFunction(); 3641 if (P != &F) 3642 BlockAddressUsers.insert(P); 3643 } else if (isa<Constant>(U) && !isa<GlobalValue>(U) && 3644 Visited.insert(U).second) 3645 Worklist.push_back(U); 3646 } 3647 } 3648 } 3649 } 3650 3651 if (!BlockAddressUsers.empty()) { 3652 Vals.resize(BlockAddressUsers.size()); 3653 for (auto I : llvm::enumerate(BlockAddressUsers)) 3654 Vals[I.index()] = VE.getValueID(I.value()); 3655 Stream.EmitRecord(bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); 3656 Vals.clear(); 3657 } 3658 3659 // Emit names for all the instructions etc. 3660 if (auto *Symtab = F.getValueSymbolTable()) 3661 writeFunctionLevelValueSymbolTable(*Symtab); 3662 3663 if (NeedsMetadataAttachment) 3664 writeFunctionMetadataAttachment(F); 3665 if (VE.shouldPreserveUseListOrder()) 3666 writeUseListBlock(&F); 3667 VE.purgeFunction(); 3668 Stream.ExitBlock(); 3669 } 3670 3671 // Emit blockinfo, which defines the standard abbreviations etc. 3672 void ModuleBitcodeWriter::writeBlockInfo() { 3673 // We only want to emit block info records for blocks that have multiple 3674 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3675 // Other blocks can define their abbrevs inline. 3676 Stream.EnterBlockInfoBlock(); 3677 3678 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3679 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3680 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3681 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3682 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3683 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3684 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3685 VST_ENTRY_8_ABBREV) 3686 llvm_unreachable("Unexpected abbrev ordering!"); 3687 } 3688 3689 { // 7-bit fixed width VST_CODE_ENTRY strings. 3690 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3691 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3692 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3693 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3694 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3695 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3696 VST_ENTRY_7_ABBREV) 3697 llvm_unreachable("Unexpected abbrev ordering!"); 3698 } 3699 { // 6-bit char6 VST_CODE_ENTRY strings. 3700 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3701 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3703 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3704 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3705 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3706 VST_ENTRY_6_ABBREV) 3707 llvm_unreachable("Unexpected abbrev ordering!"); 3708 } 3709 { // 6-bit char6 VST_CODE_BBENTRY strings. 3710 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3711 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3715 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3716 VST_BBENTRY_6_ABBREV) 3717 llvm_unreachable("Unexpected abbrev ordering!"); 3718 } 3719 3720 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3721 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3722 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3724 VE.computeBitsRequiredForTypeIndicies())); 3725 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3726 CONSTANTS_SETTYPE_ABBREV) 3727 llvm_unreachable("Unexpected abbrev ordering!"); 3728 } 3729 3730 { // INTEGER abbrev for CONSTANTS_BLOCK. 3731 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3732 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3734 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3735 CONSTANTS_INTEGER_ABBREV) 3736 llvm_unreachable("Unexpected abbrev ordering!"); 3737 } 3738 3739 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3740 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3741 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3742 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3744 VE.computeBitsRequiredForTypeIndicies())); 3745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3746 3747 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3748 CONSTANTS_CE_CAST_Abbrev) 3749 llvm_unreachable("Unexpected abbrev ordering!"); 3750 } 3751 { // NULL abbrev for CONSTANTS_BLOCK. 3752 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3753 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3754 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3755 CONSTANTS_NULL_Abbrev) 3756 llvm_unreachable("Unexpected abbrev ordering!"); 3757 } 3758 3759 // FIXME: This should only use space for first class types! 3760 3761 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3762 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3763 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3764 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3765 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3766 VE.computeBitsRequiredForTypeIndicies())); 3767 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3768 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3769 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3770 FUNCTION_INST_LOAD_ABBREV) 3771 llvm_unreachable("Unexpected abbrev ordering!"); 3772 } 3773 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3774 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3775 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3778 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3779 FUNCTION_INST_UNOP_ABBREV) 3780 llvm_unreachable("Unexpected abbrev ordering!"); 3781 } 3782 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3783 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3784 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3787 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3788 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3789 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3790 llvm_unreachable("Unexpected abbrev ordering!"); 3791 } 3792 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3793 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3794 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3798 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3799 FUNCTION_INST_BINOP_ABBREV) 3800 llvm_unreachable("Unexpected abbrev ordering!"); 3801 } 3802 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3803 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3804 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3809 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3810 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3811 llvm_unreachable("Unexpected abbrev ordering!"); 3812 } 3813 { // INST_CAST abbrev for FUNCTION_BLOCK. 3814 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3815 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3818 VE.computeBitsRequiredForTypeIndicies())); 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3820 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3821 FUNCTION_INST_CAST_ABBREV) 3822 llvm_unreachable("Unexpected abbrev ordering!"); 3823 } 3824 { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. 3825 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3826 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3829 VE.computeBitsRequiredForTypeIndicies())); 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3832 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3833 FUNCTION_INST_CAST_FLAGS_ABBREV) 3834 llvm_unreachable("Unexpected abbrev ordering!"); 3835 } 3836 3837 { // INST_RET abbrev for FUNCTION_BLOCK. 3838 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3839 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3840 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3841 FUNCTION_INST_RET_VOID_ABBREV) 3842 llvm_unreachable("Unexpected abbrev ordering!"); 3843 } 3844 { // INST_RET abbrev for FUNCTION_BLOCK. 3845 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3846 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3847 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3848 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3849 FUNCTION_INST_RET_VAL_ABBREV) 3850 llvm_unreachable("Unexpected abbrev ordering!"); 3851 } 3852 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3853 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3854 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3855 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3856 FUNCTION_INST_UNREACHABLE_ABBREV) 3857 llvm_unreachable("Unexpected abbrev ordering!"); 3858 } 3859 { 3860 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3861 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3862 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3864 Log2_32_Ceil(VE.getTypes().size() + 1))); 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3867 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3868 FUNCTION_INST_GEP_ABBREV) 3869 llvm_unreachable("Unexpected abbrev ordering!"); 3870 } 3871 { 3872 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); 3874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc 3875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var 3876 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr 3877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // val 3878 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3879 FUNCTION_DEBUG_RECORD_VALUE_ABBREV) 3880 llvm_unreachable("Unexpected abbrev ordering! 1"); 3881 } 3882 Stream.ExitBlock(); 3883 } 3884 3885 /// Write the module path strings, currently only used when generating 3886 /// a combined index file. 3887 void IndexBitcodeWriter::writeModStrings() { 3888 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3889 3890 // TODO: See which abbrev sizes we actually need to emit 3891 3892 // 8-bit fixed-width MST_ENTRY strings. 3893 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3894 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3896 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3897 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3898 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3899 3900 // 7-bit fixed width MST_ENTRY strings. 3901 Abbv = std::make_shared<BitCodeAbbrev>(); 3902 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3903 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3904 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3905 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3906 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3907 3908 // 6-bit char6 MST_ENTRY strings. 3909 Abbv = std::make_shared<BitCodeAbbrev>(); 3910 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3914 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3915 3916 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3917 Abbv = std::make_shared<BitCodeAbbrev>(); 3918 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3924 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3925 3926 SmallVector<unsigned, 64> Vals; 3927 forEachModule([&](const StringMapEntry<ModuleHash> &MPSE) { 3928 StringRef Key = MPSE.getKey(); 3929 const auto &Hash = MPSE.getValue(); 3930 StringEncoding Bits = getStringEncoding(Key); 3931 unsigned AbbrevToUse = Abbrev8Bit; 3932 if (Bits == SE_Char6) 3933 AbbrevToUse = Abbrev6Bit; 3934 else if (Bits == SE_Fixed7) 3935 AbbrevToUse = Abbrev7Bit; 3936 3937 auto ModuleId = ModuleIdMap.size(); 3938 ModuleIdMap[Key] = ModuleId; 3939 Vals.push_back(ModuleId); 3940 Vals.append(Key.begin(), Key.end()); 3941 3942 // Emit the finished record. 3943 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3944 3945 // Emit an optional hash for the module now 3946 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3947 Vals.assign(Hash.begin(), Hash.end()); 3948 // Emit the hash record. 3949 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3950 } 3951 3952 Vals.clear(); 3953 }); 3954 Stream.ExitBlock(); 3955 } 3956 3957 /// Write the function type metadata related records that need to appear before 3958 /// a function summary entry (whether per-module or combined). 3959 template <typename Fn> 3960 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3961 FunctionSummary *FS, 3962 Fn GetValueID) { 3963 if (!FS->type_tests().empty()) 3964 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3965 3966 SmallVector<uint64_t, 64> Record; 3967 3968 auto WriteVFuncIdVec = [&](uint64_t Ty, 3969 ArrayRef<FunctionSummary::VFuncId> VFs) { 3970 if (VFs.empty()) 3971 return; 3972 Record.clear(); 3973 for (auto &VF : VFs) { 3974 Record.push_back(VF.GUID); 3975 Record.push_back(VF.Offset); 3976 } 3977 Stream.EmitRecord(Ty, Record); 3978 }; 3979 3980 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3981 FS->type_test_assume_vcalls()); 3982 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3983 FS->type_checked_load_vcalls()); 3984 3985 auto WriteConstVCallVec = [&](uint64_t Ty, 3986 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3987 for (auto &VC : VCs) { 3988 Record.clear(); 3989 Record.push_back(VC.VFunc.GUID); 3990 Record.push_back(VC.VFunc.Offset); 3991 llvm::append_range(Record, VC.Args); 3992 Stream.EmitRecord(Ty, Record); 3993 } 3994 }; 3995 3996 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3997 FS->type_test_assume_const_vcalls()); 3998 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3999 FS->type_checked_load_const_vcalls()); 4000 4001 auto WriteRange = [&](ConstantRange Range) { 4002 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 4003 assert(Range.getLower().getNumWords() == 1); 4004 assert(Range.getUpper().getNumWords() == 1); 4005 emitSignedInt64(Record, *Range.getLower().getRawData()); 4006 emitSignedInt64(Record, *Range.getUpper().getRawData()); 4007 }; 4008 4009 if (!FS->paramAccesses().empty()) { 4010 Record.clear(); 4011 for (auto &Arg : FS->paramAccesses()) { 4012 size_t UndoSize = Record.size(); 4013 Record.push_back(Arg.ParamNo); 4014 WriteRange(Arg.Use); 4015 Record.push_back(Arg.Calls.size()); 4016 for (auto &Call : Arg.Calls) { 4017 Record.push_back(Call.ParamNo); 4018 std::optional<unsigned> ValueID = GetValueID(Call.Callee); 4019 if (!ValueID) { 4020 // If ValueID is unknown we can't drop just this call, we must drop 4021 // entire parameter. 4022 Record.resize(UndoSize); 4023 break; 4024 } 4025 Record.push_back(*ValueID); 4026 WriteRange(Call.Offsets); 4027 } 4028 } 4029 if (!Record.empty()) 4030 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 4031 } 4032 } 4033 4034 /// Collect type IDs from type tests used by function. 4035 static void 4036 getReferencedTypeIds(FunctionSummary *FS, 4037 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 4038 if (!FS->type_tests().empty()) 4039 for (auto &TT : FS->type_tests()) 4040 ReferencedTypeIds.insert(TT); 4041 4042 auto GetReferencedTypesFromVFuncIdVec = 4043 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 4044 for (auto &VF : VFs) 4045 ReferencedTypeIds.insert(VF.GUID); 4046 }; 4047 4048 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 4049 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 4050 4051 auto GetReferencedTypesFromConstVCallVec = 4052 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 4053 for (auto &VC : VCs) 4054 ReferencedTypeIds.insert(VC.VFunc.GUID); 4055 }; 4056 4057 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 4058 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 4059 } 4060 4061 static void writeWholeProgramDevirtResolutionByArg( 4062 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 4063 const WholeProgramDevirtResolution::ByArg &ByArg) { 4064 NameVals.push_back(args.size()); 4065 llvm::append_range(NameVals, args); 4066 4067 NameVals.push_back(ByArg.TheKind); 4068 NameVals.push_back(ByArg.Info); 4069 NameVals.push_back(ByArg.Byte); 4070 NameVals.push_back(ByArg.Bit); 4071 } 4072 4073 static void writeWholeProgramDevirtResolution( 4074 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4075 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 4076 NameVals.push_back(Id); 4077 4078 NameVals.push_back(Wpd.TheKind); 4079 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 4080 NameVals.push_back(Wpd.SingleImplName.size()); 4081 4082 NameVals.push_back(Wpd.ResByArg.size()); 4083 for (auto &A : Wpd.ResByArg) 4084 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 4085 } 4086 4087 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 4088 StringTableBuilder &StrtabBuilder, 4089 const std::string &Id, 4090 const TypeIdSummary &Summary) { 4091 NameVals.push_back(StrtabBuilder.add(Id)); 4092 NameVals.push_back(Id.size()); 4093 4094 NameVals.push_back(Summary.TTRes.TheKind); 4095 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 4096 NameVals.push_back(Summary.TTRes.AlignLog2); 4097 NameVals.push_back(Summary.TTRes.SizeM1); 4098 NameVals.push_back(Summary.TTRes.BitMask); 4099 NameVals.push_back(Summary.TTRes.InlineBits); 4100 4101 for (auto &W : Summary.WPDRes) 4102 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 4103 W.second); 4104 } 4105 4106 static void writeTypeIdCompatibleVtableSummaryRecord( 4107 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 4108 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 4109 ValueEnumerator &VE) { 4110 NameVals.push_back(StrtabBuilder.add(Id)); 4111 NameVals.push_back(Id.size()); 4112 4113 for (auto &P : Summary) { 4114 NameVals.push_back(P.AddressPointOffset); 4115 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 4116 } 4117 } 4118 4119 static void writeFunctionHeapProfileRecords( 4120 BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, 4121 unsigned AllocAbbrev, bool PerModule, 4122 std::function<unsigned(const ValueInfo &VI)> GetValueID, 4123 std::function<unsigned(unsigned)> GetStackIndex) { 4124 SmallVector<uint64_t> Record; 4125 4126 for (auto &CI : FS->callsites()) { 4127 Record.clear(); 4128 // Per module callsite clones should always have a single entry of 4129 // value 0. 4130 assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); 4131 Record.push_back(GetValueID(CI.Callee)); 4132 if (!PerModule) { 4133 Record.push_back(CI.StackIdIndices.size()); 4134 Record.push_back(CI.Clones.size()); 4135 } 4136 for (auto Id : CI.StackIdIndices) 4137 Record.push_back(GetStackIndex(Id)); 4138 if (!PerModule) { 4139 for (auto V : CI.Clones) 4140 Record.push_back(V); 4141 } 4142 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO 4143 : bitc::FS_COMBINED_CALLSITE_INFO, 4144 Record, CallsiteAbbrev); 4145 } 4146 4147 for (auto &AI : FS->allocs()) { 4148 Record.clear(); 4149 // Per module alloc versions should always have a single entry of 4150 // value 0. 4151 assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); 4152 if (!PerModule) { 4153 Record.push_back(AI.MIBs.size()); 4154 Record.push_back(AI.Versions.size()); 4155 } 4156 for (auto &MIB : AI.MIBs) { 4157 Record.push_back((uint8_t)MIB.AllocType); 4158 Record.push_back(MIB.StackIdIndices.size()); 4159 for (auto Id : MIB.StackIdIndices) 4160 Record.push_back(GetStackIndex(Id)); 4161 } 4162 if (!PerModule) { 4163 for (auto V : AI.Versions) 4164 Record.push_back(V); 4165 } 4166 Stream.EmitRecord(PerModule ? bitc::FS_PERMODULE_ALLOC_INFO 4167 : bitc::FS_COMBINED_ALLOC_INFO, 4168 Record, AllocAbbrev); 4169 } 4170 } 4171 4172 // Helper to emit a single function summary record. 4173 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 4174 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 4175 unsigned ValueID, unsigned FSCallsRelBFAbbrev, 4176 unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, 4177 unsigned AllocAbbrev, const Function &F) { 4178 NameVals.push_back(ValueID); 4179 4180 FunctionSummary *FS = cast<FunctionSummary>(Summary); 4181 4182 writeFunctionTypeMetadataRecords( 4183 Stream, FS, [&](const ValueInfo &VI) -> std::optional<unsigned> { 4184 return {VE.getValueID(VI.getValue())}; 4185 }); 4186 4187 writeFunctionHeapProfileRecords( 4188 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4189 /*PerModule*/ true, 4190 /*GetValueId*/ [&](const ValueInfo &VI) { return getValueId(VI); }, 4191 /*GetStackIndex*/ [&](unsigned I) { return I; }); 4192 4193 auto SpecialRefCnts = FS->specialRefCounts(); 4194 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4195 NameVals.push_back(FS->instCount()); 4196 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4197 NameVals.push_back(FS->refs().size()); 4198 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 4199 NameVals.push_back(SpecialRefCnts.second); // worefcnt 4200 4201 for (auto &RI : FS->refs()) 4202 NameVals.push_back(getValueId(RI)); 4203 4204 const bool UseRelBFRecord = 4205 WriteRelBFToSummary && !F.hasProfileData() && 4206 ForceSummaryEdgesCold == FunctionSummary::FSHT_None; 4207 for (auto &ECI : FS->calls()) { 4208 NameVals.push_back(getValueId(ECI.first)); 4209 if (UseRelBFRecord) 4210 NameVals.push_back(getEncodedRelBFCallEdgeInfo(ECI.second)); 4211 else 4212 NameVals.push_back(getEncodedHotnessCallEdgeInfo(ECI.second)); 4213 } 4214 4215 unsigned FSAbbrev = 4216 (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); 4217 unsigned Code = 4218 (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); 4219 4220 // Emit the finished record. 4221 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4222 NameVals.clear(); 4223 } 4224 4225 // Collect the global value references in the given variable's initializer, 4226 // and emit them in a summary record. 4227 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 4228 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 4229 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 4230 auto VI = Index->getValueInfo(V.getGUID()); 4231 if (!VI || VI.getSummaryList().empty()) { 4232 // Only declarations should not have a summary (a declaration might however 4233 // have a summary if the def was in module level asm). 4234 assert(V.isDeclaration()); 4235 return; 4236 } 4237 auto *Summary = VI.getSummaryList()[0].get(); 4238 NameVals.push_back(VE.getValueID(&V)); 4239 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 4240 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4241 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4242 4243 auto VTableFuncs = VS->vTableFuncs(); 4244 if (!VTableFuncs.empty()) 4245 NameVals.push_back(VS->refs().size()); 4246 4247 unsigned SizeBeforeRefs = NameVals.size(); 4248 for (auto &RI : VS->refs()) 4249 NameVals.push_back(VE.getValueID(RI.getValue())); 4250 // Sort the refs for determinism output, the vector returned by FS->refs() has 4251 // been initialized from a DenseSet. 4252 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 4253 4254 if (VTableFuncs.empty()) 4255 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 4256 FSModRefsAbbrev); 4257 else { 4258 // VTableFuncs pairs should already be sorted by offset. 4259 for (auto &P : VTableFuncs) { 4260 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 4261 NameVals.push_back(P.VTableOffset); 4262 } 4263 4264 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 4265 FSModVTableRefsAbbrev); 4266 } 4267 NameVals.clear(); 4268 } 4269 4270 /// Emit the per-module summary section alongside the rest of 4271 /// the module's bitcode. 4272 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 4273 // By default we compile with ThinLTO if the module has a summary, but the 4274 // client can request full LTO with a module flag. 4275 bool IsThinLTO = true; 4276 if (auto *MD = 4277 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 4278 IsThinLTO = MD->getZExtValue(); 4279 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 4280 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 4281 4); 4282 4283 Stream.EmitRecord( 4284 bitc::FS_VERSION, 4285 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4286 4287 // Write the index flags. 4288 uint64_t Flags = 0; 4289 // Bits 1-3 are set only in the combined index, skip them. 4290 if (Index->enableSplitLTOUnit()) 4291 Flags |= 0x8; 4292 if (Index->hasUnifiedLTO()) 4293 Flags |= 0x200; 4294 4295 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 4296 4297 if (Index->begin() == Index->end()) { 4298 Stream.ExitBlock(); 4299 return; 4300 } 4301 4302 for (const auto &GVI : valueIds()) { 4303 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4304 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4305 } 4306 4307 if (!Index->stackIds().empty()) { 4308 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4309 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4310 // numids x stackid 4311 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4312 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4313 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4314 Stream.EmitRecord(bitc::FS_STACK_IDS, Index->stackIds(), StackIdAbbvId); 4315 } 4316 4317 // Abbrev for FS_PERMODULE_PROFILE. 4318 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4319 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 4320 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4321 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags 4322 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4325 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4327 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4329 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4330 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4331 4332 // Abbrev for FS_PERMODULE_RELBF. 4333 Abbv = std::make_shared<BitCodeAbbrev>(); 4334 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 4335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4336 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4341 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4342 // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) 4343 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4344 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4345 unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4346 4347 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 4348 Abbv = std::make_shared<BitCodeAbbrev>(); 4349 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 4350 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4353 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4354 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4355 4356 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 4357 Abbv = std::make_shared<BitCodeAbbrev>(); 4358 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 4359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4360 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4361 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4362 // numrefs x valueid, n x (valueid , offset) 4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4365 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4366 4367 // Abbrev for FS_ALIAS. 4368 Abbv = std::make_shared<BitCodeAbbrev>(); 4369 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 4370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4373 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4374 4375 // Abbrev for FS_TYPE_ID_METADATA 4376 Abbv = std::make_shared<BitCodeAbbrev>(); 4377 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 4378 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 4379 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 4380 // n x (valueid , offset) 4381 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4382 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4383 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4384 4385 Abbv = std::make_shared<BitCodeAbbrev>(); 4386 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); 4387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4388 // n x stackidindex 4389 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4390 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4391 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4392 4393 Abbv = std::make_shared<BitCodeAbbrev>(); 4394 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); 4395 // n x (alloc type, numstackids, numstackids x stackidindex) 4396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4398 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4399 4400 SmallVector<uint64_t, 64> NameVals; 4401 // Iterate over the list of functions instead of the Index to 4402 // ensure the ordering is stable. 4403 for (const Function &F : M) { 4404 // Summary emission does not support anonymous functions, they have to 4405 // renamed using the anonymous function renaming pass. 4406 if (!F.hasName()) 4407 report_fatal_error("Unexpected anonymous function when writing summary"); 4408 4409 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4410 if (!VI || VI.getSummaryList().empty()) { 4411 // Only declarations should not have a summary (a declaration might 4412 // however have a summary if the def was in module level asm). 4413 assert(F.isDeclaration()); 4414 continue; 4415 } 4416 auto *Summary = VI.getSummaryList()[0].get(); 4417 writePerModuleFunctionSummaryRecord( 4418 NameVals, Summary, VE.getValueID(&F), FSCallsRelBFAbbrev, 4419 FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, F); 4420 } 4421 4422 // Capture references from GlobalVariable initializers, which are outside 4423 // of a function scope. 4424 for (const GlobalVariable &G : M.globals()) 4425 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4426 FSModVTableRefsAbbrev); 4427 4428 for (const GlobalAlias &A : M.aliases()) { 4429 auto *Aliasee = A.getAliaseeObject(); 4430 // Skip ifunc and nameless functions which don't have an entry in the 4431 // summary. 4432 if (!Aliasee->hasName() || isa<GlobalIFunc>(Aliasee)) 4433 continue; 4434 auto AliasId = VE.getValueID(&A); 4435 auto AliaseeId = VE.getValueID(Aliasee); 4436 NameVals.push_back(AliasId); 4437 auto *Summary = Index->getGlobalValueSummary(A); 4438 AliasSummary *AS = cast<AliasSummary>(Summary); 4439 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4440 NameVals.push_back(AliaseeId); 4441 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4442 NameVals.clear(); 4443 } 4444 4445 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4446 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4447 S.second, VE); 4448 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4449 TypeIdCompatibleVtableAbbrev); 4450 NameVals.clear(); 4451 } 4452 4453 if (Index->getBlockCount()) 4454 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4455 ArrayRef<uint64_t>{Index->getBlockCount()}); 4456 4457 Stream.ExitBlock(); 4458 } 4459 4460 /// Emit the combined summary section into the combined index file. 4461 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4462 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4); 4463 Stream.EmitRecord( 4464 bitc::FS_VERSION, 4465 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4466 4467 // Write the index flags. 4468 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4469 4470 for (const auto &GVI : valueIds()) { 4471 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4472 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4473 } 4474 4475 if (!StackIdIndices.empty()) { 4476 auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); 4477 StackIdAbbv->Add(BitCodeAbbrevOp(bitc::FS_STACK_IDS)); 4478 // numids x stackid 4479 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4480 StackIdAbbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4481 unsigned StackIdAbbvId = Stream.EmitAbbrev(std::move(StackIdAbbv)); 4482 // Write the stack ids used by this index, which will be a subset of those in 4483 // the full index in the case of distributed indexes. 4484 std::vector<uint64_t> StackIds; 4485 for (auto &I : StackIdIndices) 4486 StackIds.push_back(Index.getStackIdAtIndex(I)); 4487 Stream.EmitRecord(bitc::FS_STACK_IDS, StackIds, StackIdAbbvId); 4488 } 4489 4490 // Abbrev for FS_COMBINED_PROFILE. 4491 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4492 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4495 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4496 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4497 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4498 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4502 // numrefs x valueid, n x (valueid, hotness+tailcall flags) 4503 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4504 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4505 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4506 4507 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4508 Abbv = std::make_shared<BitCodeAbbrev>(); 4509 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4513 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4514 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4515 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4516 4517 // Abbrev for FS_COMBINED_ALIAS. 4518 Abbv = std::make_shared<BitCodeAbbrev>(); 4519 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4522 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4524 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4525 4526 Abbv = std::make_shared<BitCodeAbbrev>(); 4527 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); 4528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices 4530 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4531 // numstackindices x stackidindex, numver x version 4532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4533 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4534 unsigned CallsiteAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4535 4536 Abbv = std::make_shared<BitCodeAbbrev>(); 4537 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALLOC_INFO)); 4538 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib 4539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver 4540 // nummib x (alloc type, numstackids, numstackids x stackidindex), 4541 // numver x version 4542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4544 unsigned AllocAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4545 4546 // The aliases are emitted as a post-pass, and will point to the value 4547 // id of the aliasee. Save them in a vector for post-processing. 4548 SmallVector<AliasSummary *, 64> Aliases; 4549 4550 // Save the value id for each summary for alias emission. 4551 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4552 4553 SmallVector<uint64_t, 64> NameVals; 4554 4555 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4556 // with the type ids referenced by this index file. 4557 std::set<GlobalValue::GUID> ReferencedTypeIds; 4558 4559 // For local linkage, we also emit the original name separately 4560 // immediately after the record. 4561 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4562 // We don't need to emit the original name if we are writing the index for 4563 // distributed backends (in which case ModuleToSummariesForIndex is 4564 // non-null). The original name is only needed during the thin link, since 4565 // for SamplePGO the indirect call targets for local functions have 4566 // have the original name annotated in profile. 4567 // Continue to emit it when writing out the entire combined index, which is 4568 // used in testing the thin link via llvm-lto. 4569 if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(S.linkage())) 4570 return; 4571 NameVals.push_back(S.getOriginalName()); 4572 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4573 NameVals.clear(); 4574 }; 4575 4576 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4577 forEachSummary([&](GVInfo I, bool IsAliasee) { 4578 GlobalValueSummary *S = I.second; 4579 assert(S); 4580 DefOrUseGUIDs.insert(I.first); 4581 for (const ValueInfo &VI : S->refs()) 4582 DefOrUseGUIDs.insert(VI.getGUID()); 4583 4584 auto ValueId = getValueId(I.first); 4585 assert(ValueId); 4586 SummaryToValueIdMap[S] = *ValueId; 4587 4588 // If this is invoked for an aliasee, we want to record the above 4589 // mapping, but then not emit a summary entry (if the aliasee is 4590 // to be imported, we will invoke this separately with IsAliasee=false). 4591 if (IsAliasee) 4592 return; 4593 4594 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4595 // Will process aliases as a post-pass because the reader wants all 4596 // global to be loaded first. 4597 Aliases.push_back(AS); 4598 return; 4599 } 4600 4601 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4602 NameVals.push_back(*ValueId); 4603 assert(ModuleIdMap.count(VS->modulePath())); 4604 NameVals.push_back(ModuleIdMap[VS->modulePath()]); 4605 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4606 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4607 for (auto &RI : VS->refs()) { 4608 auto RefValueId = getValueId(RI.getGUID()); 4609 if (!RefValueId) 4610 continue; 4611 NameVals.push_back(*RefValueId); 4612 } 4613 4614 // Emit the finished record. 4615 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4616 FSModRefsAbbrev); 4617 NameVals.clear(); 4618 MaybeEmitOriginalName(*S); 4619 return; 4620 } 4621 4622 auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { 4623 if (!VI) 4624 return std::nullopt; 4625 return getValueId(VI.getGUID()); 4626 }; 4627 4628 auto *FS = cast<FunctionSummary>(S); 4629 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4630 getReferencedTypeIds(FS, ReferencedTypeIds); 4631 4632 writeFunctionHeapProfileRecords( 4633 Stream, FS, CallsiteAbbrev, AllocAbbrev, 4634 /*PerModule*/ false, 4635 /*GetValueId*/ [&](const ValueInfo &VI) -> unsigned { 4636 std::optional<unsigned> ValueID = GetValueId(VI); 4637 // This can happen in shared index files for distributed ThinLTO if 4638 // the callee function summary is not included. Record 0 which we 4639 // will have to deal with conservatively when doing any kind of 4640 // validation in the ThinLTO backends. 4641 if (!ValueID) 4642 return 0; 4643 return *ValueID; 4644 }, 4645 /*GetStackIndex*/ [&](unsigned I) { 4646 // Get the corresponding index into the list of StackIdIndices 4647 // actually being written for this combined index (which may be a 4648 // subset in the case of distributed indexes). 4649 auto Lower = llvm::lower_bound(StackIdIndices, I); 4650 return std::distance(StackIdIndices.begin(), Lower); 4651 }); 4652 4653 NameVals.push_back(*ValueId); 4654 assert(ModuleIdMap.count(FS->modulePath())); 4655 NameVals.push_back(ModuleIdMap[FS->modulePath()]); 4656 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4657 NameVals.push_back(FS->instCount()); 4658 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4659 NameVals.push_back(FS->entryCount()); 4660 4661 // Fill in below 4662 NameVals.push_back(0); // numrefs 4663 NameVals.push_back(0); // rorefcnt 4664 NameVals.push_back(0); // worefcnt 4665 4666 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4667 for (auto &RI : FS->refs()) { 4668 auto RefValueId = getValueId(RI.getGUID()); 4669 if (!RefValueId) 4670 continue; 4671 NameVals.push_back(*RefValueId); 4672 if (RI.isReadOnly()) 4673 RORefCnt++; 4674 else if (RI.isWriteOnly()) 4675 WORefCnt++; 4676 Count++; 4677 } 4678 NameVals[6] = Count; 4679 NameVals[7] = RORefCnt; 4680 NameVals[8] = WORefCnt; 4681 4682 for (auto &EI : FS->calls()) { 4683 // If this GUID doesn't have a value id, it doesn't have a function 4684 // summary and we don't need to record any calls to it. 4685 std::optional<unsigned> CallValueId = GetValueId(EI.first); 4686 if (!CallValueId) 4687 continue; 4688 NameVals.push_back(*CallValueId); 4689 NameVals.push_back(getEncodedHotnessCallEdgeInfo(EI.second)); 4690 } 4691 4692 // Emit the finished record. 4693 Stream.EmitRecord(bitc::FS_COMBINED_PROFILE, NameVals, 4694 FSCallsProfileAbbrev); 4695 NameVals.clear(); 4696 MaybeEmitOriginalName(*S); 4697 }); 4698 4699 for (auto *AS : Aliases) { 4700 auto AliasValueId = SummaryToValueIdMap[AS]; 4701 assert(AliasValueId); 4702 NameVals.push_back(AliasValueId); 4703 assert(ModuleIdMap.count(AS->modulePath())); 4704 NameVals.push_back(ModuleIdMap[AS->modulePath()]); 4705 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4706 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4707 assert(AliaseeValueId); 4708 NameVals.push_back(AliaseeValueId); 4709 4710 // Emit the finished record. 4711 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4712 NameVals.clear(); 4713 MaybeEmitOriginalName(*AS); 4714 4715 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4716 getReferencedTypeIds(FS, ReferencedTypeIds); 4717 } 4718 4719 if (!Index.cfiFunctionDefs().empty()) { 4720 for (auto &S : Index.cfiFunctionDefs()) { 4721 if (DefOrUseGUIDs.count( 4722 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4723 NameVals.push_back(StrtabBuilder.add(S)); 4724 NameVals.push_back(S.size()); 4725 } 4726 } 4727 if (!NameVals.empty()) { 4728 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4729 NameVals.clear(); 4730 } 4731 } 4732 4733 if (!Index.cfiFunctionDecls().empty()) { 4734 for (auto &S : Index.cfiFunctionDecls()) { 4735 if (DefOrUseGUIDs.count( 4736 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4737 NameVals.push_back(StrtabBuilder.add(S)); 4738 NameVals.push_back(S.size()); 4739 } 4740 } 4741 if (!NameVals.empty()) { 4742 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4743 NameVals.clear(); 4744 } 4745 } 4746 4747 // Walk the GUIDs that were referenced, and write the 4748 // corresponding type id records. 4749 for (auto &T : ReferencedTypeIds) { 4750 auto TidIter = Index.typeIds().equal_range(T); 4751 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4752 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4753 It->second.second); 4754 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4755 NameVals.clear(); 4756 } 4757 } 4758 4759 if (Index.getBlockCount()) 4760 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4761 ArrayRef<uint64_t>{Index.getBlockCount()}); 4762 4763 Stream.ExitBlock(); 4764 } 4765 4766 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4767 /// current llvm version, and a record for the epoch number. 4768 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4769 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4770 4771 // Write the "user readable" string identifying the bitcode producer 4772 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4773 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4774 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4776 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4777 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4778 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4779 4780 // Write the epoch version 4781 Abbv = std::make_shared<BitCodeAbbrev>(); 4782 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4784 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4785 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4786 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4787 Stream.ExitBlock(); 4788 } 4789 4790 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4791 // Emit the module's hash. 4792 // MODULE_CODE_HASH: [5*i32] 4793 if (GenerateHash) { 4794 uint32_t Vals[5]; 4795 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4796 Buffer.size() - BlockStartPos)); 4797 std::array<uint8_t, 20> Hash = Hasher.result(); 4798 for (int Pos = 0; Pos < 20; Pos += 4) { 4799 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4800 } 4801 4802 // Emit the finished record. 4803 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4804 4805 if (ModHash) 4806 // Save the written hash value. 4807 llvm::copy(Vals, std::begin(*ModHash)); 4808 } 4809 } 4810 4811 void ModuleBitcodeWriter::write() { 4812 writeIdentificationBlock(Stream); 4813 4814 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4815 size_t BlockStartPos = Buffer.size(); 4816 4817 writeModuleVersion(); 4818 4819 // Emit blockinfo, which defines the standard abbreviations etc. 4820 writeBlockInfo(); 4821 4822 // Emit information describing all of the types in the module. 4823 writeTypeTable(); 4824 4825 // Emit information about attribute groups. 4826 writeAttributeGroupTable(); 4827 4828 // Emit information about parameter attributes. 4829 writeAttributeTable(); 4830 4831 writeComdats(); 4832 4833 // Emit top-level description of module, including target triple, inline asm, 4834 // descriptors for global variables, and function prototype info. 4835 writeModuleInfo(); 4836 4837 // Emit constants. 4838 writeModuleConstants(); 4839 4840 // Emit metadata kind names. 4841 writeModuleMetadataKinds(); 4842 4843 // Emit metadata. 4844 writeModuleMetadata(); 4845 4846 // Emit module-level use-lists. 4847 if (VE.shouldPreserveUseListOrder()) 4848 writeUseListBlock(nullptr); 4849 4850 writeOperandBundleTags(); 4851 writeSyncScopeNames(); 4852 4853 // Emit function bodies. 4854 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4855 for (const Function &F : M) 4856 if (!F.isDeclaration()) 4857 writeFunction(F, FunctionToBitcodeIndex); 4858 4859 // Need to write after the above call to WriteFunction which populates 4860 // the summary information in the index. 4861 if (Index) 4862 writePerModuleGlobalValueSummary(); 4863 4864 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4865 4866 writeModuleHash(BlockStartPos); 4867 4868 Stream.ExitBlock(); 4869 } 4870 4871 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4872 uint32_t &Position) { 4873 support::endian::write32le(&Buffer[Position], Value); 4874 Position += 4; 4875 } 4876 4877 /// If generating a bc file on darwin, we have to emit a 4878 /// header and trailer to make it compatible with the system archiver. To do 4879 /// this we emit the following header, and then emit a trailer that pads the 4880 /// file out to be a multiple of 16 bytes. 4881 /// 4882 /// struct bc_header { 4883 /// uint32_t Magic; // 0x0B17C0DE 4884 /// uint32_t Version; // Version, currently always 0. 4885 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4886 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4887 /// uint32_t CPUType; // CPU specifier. 4888 /// ... potentially more later ... 4889 /// }; 4890 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4891 const Triple &TT) { 4892 unsigned CPUType = ~0U; 4893 4894 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4895 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4896 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4897 // specific constants here because they are implicitly part of the Darwin ABI. 4898 enum { 4899 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4900 DARWIN_CPU_TYPE_X86 = 7, 4901 DARWIN_CPU_TYPE_ARM = 12, 4902 DARWIN_CPU_TYPE_POWERPC = 18 4903 }; 4904 4905 Triple::ArchType Arch = TT.getArch(); 4906 if (Arch == Triple::x86_64) 4907 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4908 else if (Arch == Triple::x86) 4909 CPUType = DARWIN_CPU_TYPE_X86; 4910 else if (Arch == Triple::ppc) 4911 CPUType = DARWIN_CPU_TYPE_POWERPC; 4912 else if (Arch == Triple::ppc64) 4913 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4914 else if (Arch == Triple::arm || Arch == Triple::thumb) 4915 CPUType = DARWIN_CPU_TYPE_ARM; 4916 4917 // Traditional Bitcode starts after header. 4918 assert(Buffer.size() >= BWH_HeaderSize && 4919 "Expected header size to be reserved"); 4920 unsigned BCOffset = BWH_HeaderSize; 4921 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4922 4923 // Write the magic and version. 4924 unsigned Position = 0; 4925 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4926 writeInt32ToBuffer(0, Buffer, Position); // Version. 4927 writeInt32ToBuffer(BCOffset, Buffer, Position); 4928 writeInt32ToBuffer(BCSize, Buffer, Position); 4929 writeInt32ToBuffer(CPUType, Buffer, Position); 4930 4931 // If the file is not a multiple of 16 bytes, insert dummy padding. 4932 while (Buffer.size() & 15) 4933 Buffer.push_back(0); 4934 } 4935 4936 /// Helper to write the header common to all bitcode files. 4937 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4938 // Emit the file header. 4939 Stream.Emit((unsigned)'B', 8); 4940 Stream.Emit((unsigned)'C', 8); 4941 Stream.Emit(0x0, 4); 4942 Stream.Emit(0xC, 4); 4943 Stream.Emit(0xE, 4); 4944 Stream.Emit(0xD, 4); 4945 } 4946 4947 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4948 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4949 writeBitcodeHeader(*Stream); 4950 } 4951 4952 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4953 4954 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4955 Stream->EnterSubblock(Block, 3); 4956 4957 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4958 Abbv->Add(BitCodeAbbrevOp(Record)); 4959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4960 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4961 4962 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4963 4964 Stream->ExitBlock(); 4965 } 4966 4967 void BitcodeWriter::writeSymtab() { 4968 assert(!WroteStrtab && !WroteSymtab); 4969 4970 // If any module has module-level inline asm, we will require a registered asm 4971 // parser for the target so that we can create an accurate symbol table for 4972 // the module. 4973 for (Module *M : Mods) { 4974 if (M->getModuleInlineAsm().empty()) 4975 continue; 4976 4977 std::string Err; 4978 const Triple TT(M->getTargetTriple()); 4979 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4980 if (!T || !T->hasMCAsmParser()) 4981 return; 4982 } 4983 4984 WroteSymtab = true; 4985 SmallVector<char, 0> Symtab; 4986 // The irsymtab::build function may be unable to create a symbol table if the 4987 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4988 // table is not required for correctness, but we still want to be able to 4989 // write malformed modules to bitcode files, so swallow the error. 4990 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4991 consumeError(std::move(E)); 4992 return; 4993 } 4994 4995 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4996 {Symtab.data(), Symtab.size()}); 4997 } 4998 4999 void BitcodeWriter::writeStrtab() { 5000 assert(!WroteStrtab); 5001 5002 std::vector<char> Strtab; 5003 StrtabBuilder.finalizeInOrder(); 5004 Strtab.resize(StrtabBuilder.getSize()); 5005 StrtabBuilder.write((uint8_t *)Strtab.data()); 5006 5007 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 5008 {Strtab.data(), Strtab.size()}); 5009 5010 WroteStrtab = true; 5011 } 5012 5013 void BitcodeWriter::copyStrtab(StringRef Strtab) { 5014 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 5015 WroteStrtab = true; 5016 } 5017 5018 void BitcodeWriter::writeModule(const Module &M, 5019 bool ShouldPreserveUseListOrder, 5020 const ModuleSummaryIndex *Index, 5021 bool GenerateHash, ModuleHash *ModHash) { 5022 assert(!WroteStrtab); 5023 5024 // The Mods vector is used by irsymtab::build, which requires non-const 5025 // Modules in case it needs to materialize metadata. But the bitcode writer 5026 // requires that the module is materialized, so we can cast to non-const here, 5027 // after checking that it is in fact materialized. 5028 assert(M.isMaterialized()); 5029 Mods.push_back(const_cast<Module *>(&M)); 5030 5031 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 5032 ShouldPreserveUseListOrder, Index, 5033 GenerateHash, ModHash); 5034 ModuleWriter.write(); 5035 } 5036 5037 void BitcodeWriter::writeIndex( 5038 const ModuleSummaryIndex *Index, 5039 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 5040 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 5041 ModuleToSummariesForIndex); 5042 IndexWriter.write(); 5043 } 5044 5045 /// Write the specified module to the specified output stream. 5046 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 5047 bool ShouldPreserveUseListOrder, 5048 const ModuleSummaryIndex *Index, 5049 bool GenerateHash, ModuleHash *ModHash) { 5050 SmallVector<char, 0> Buffer; 5051 Buffer.reserve(256*1024); 5052 5053 // If this is darwin or another generic macho target, reserve space for the 5054 // header. 5055 Triple TT(M.getTargetTriple()); 5056 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 5057 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 5058 5059 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 5060 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 5061 ModHash); 5062 Writer.writeSymtab(); 5063 Writer.writeStrtab(); 5064 5065 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 5066 emitDarwinBCHeaderAndTrailer(Buffer, TT); 5067 5068 // Write the generated bitstream to "Out". 5069 if (!Buffer.empty()) 5070 Out.write((char *)&Buffer.front(), Buffer.size()); 5071 } 5072 5073 void IndexBitcodeWriter::write() { 5074 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5075 5076 writeModuleVersion(); 5077 5078 // Write the module paths in the combined index. 5079 writeModStrings(); 5080 5081 // Write the summary combined index records. 5082 writeCombinedGlobalValueSummary(); 5083 5084 Stream.ExitBlock(); 5085 } 5086 5087 // Write the specified module summary index to the given raw output stream, 5088 // where it will be written in a new bitcode block. This is used when 5089 // writing the combined index file for ThinLTO. When writing a subset of the 5090 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 5091 void llvm::writeIndexToFile( 5092 const ModuleSummaryIndex &Index, raw_ostream &Out, 5093 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 5094 SmallVector<char, 0> Buffer; 5095 Buffer.reserve(256 * 1024); 5096 5097 BitcodeWriter Writer(Buffer); 5098 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 5099 Writer.writeStrtab(); 5100 5101 Out.write((char *)&Buffer.front(), Buffer.size()); 5102 } 5103 5104 namespace { 5105 5106 /// Class to manage the bitcode writing for a thin link bitcode file. 5107 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 5108 /// ModHash is for use in ThinLTO incremental build, generated while writing 5109 /// the module bitcode file. 5110 const ModuleHash *ModHash; 5111 5112 public: 5113 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 5114 BitstreamWriter &Stream, 5115 const ModuleSummaryIndex &Index, 5116 const ModuleHash &ModHash) 5117 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 5118 /*ShouldPreserveUseListOrder=*/false, &Index), 5119 ModHash(&ModHash) {} 5120 5121 void write(); 5122 5123 private: 5124 void writeSimplifiedModuleInfo(); 5125 }; 5126 5127 } // end anonymous namespace 5128 5129 // This function writes a simpilified module info for thin link bitcode file. 5130 // It only contains the source file name along with the name(the offset and 5131 // size in strtab) and linkage for global values. For the global value info 5132 // entry, in order to keep linkage at offset 5, there are three zeros used 5133 // as padding. 5134 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 5135 SmallVector<unsigned, 64> Vals; 5136 // Emit the module's source file name. 5137 { 5138 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 5139 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 5140 if (Bits == SE_Char6) 5141 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 5142 else if (Bits == SE_Fixed7) 5143 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 5144 5145 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5146 auto Abbv = std::make_shared<BitCodeAbbrev>(); 5147 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 5148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 5149 Abbv->Add(AbbrevOpToUse); 5150 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 5151 5152 for (const auto P : M.getSourceFileName()) 5153 Vals.push_back((unsigned char)P); 5154 5155 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 5156 Vals.clear(); 5157 } 5158 5159 // Emit the global variable information. 5160 for (const GlobalVariable &GV : M.globals()) { 5161 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 5162 Vals.push_back(StrtabBuilder.add(GV.getName())); 5163 Vals.push_back(GV.getName().size()); 5164 Vals.push_back(0); 5165 Vals.push_back(0); 5166 Vals.push_back(0); 5167 Vals.push_back(getEncodedLinkage(GV)); 5168 5169 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 5170 Vals.clear(); 5171 } 5172 5173 // Emit the function proto information. 5174 for (const Function &F : M) { 5175 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 5176 Vals.push_back(StrtabBuilder.add(F.getName())); 5177 Vals.push_back(F.getName().size()); 5178 Vals.push_back(0); 5179 Vals.push_back(0); 5180 Vals.push_back(0); 5181 Vals.push_back(getEncodedLinkage(F)); 5182 5183 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 5184 Vals.clear(); 5185 } 5186 5187 // Emit the alias information. 5188 for (const GlobalAlias &A : M.aliases()) { 5189 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 5190 Vals.push_back(StrtabBuilder.add(A.getName())); 5191 Vals.push_back(A.getName().size()); 5192 Vals.push_back(0); 5193 Vals.push_back(0); 5194 Vals.push_back(0); 5195 Vals.push_back(getEncodedLinkage(A)); 5196 5197 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 5198 Vals.clear(); 5199 } 5200 5201 // Emit the ifunc information. 5202 for (const GlobalIFunc &I : M.ifuncs()) { 5203 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 5204 Vals.push_back(StrtabBuilder.add(I.getName())); 5205 Vals.push_back(I.getName().size()); 5206 Vals.push_back(0); 5207 Vals.push_back(0); 5208 Vals.push_back(0); 5209 Vals.push_back(getEncodedLinkage(I)); 5210 5211 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 5212 Vals.clear(); 5213 } 5214 } 5215 5216 void ThinLinkBitcodeWriter::write() { 5217 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 5218 5219 writeModuleVersion(); 5220 5221 writeSimplifiedModuleInfo(); 5222 5223 writePerModuleGlobalValueSummary(); 5224 5225 // Write module hash. 5226 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 5227 5228 Stream.ExitBlock(); 5229 } 5230 5231 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 5232 const ModuleSummaryIndex &Index, 5233 const ModuleHash &ModHash) { 5234 assert(!WroteStrtab); 5235 5236 // The Mods vector is used by irsymtab::build, which requires non-const 5237 // Modules in case it needs to materialize metadata. But the bitcode writer 5238 // requires that the module is materialized, so we can cast to non-const here, 5239 // after checking that it is in fact materialized. 5240 assert(M.isMaterialized()); 5241 Mods.push_back(const_cast<Module *>(&M)); 5242 5243 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 5244 ModHash); 5245 ThinLinkWriter.write(); 5246 } 5247 5248 // Write the specified thin link bitcode file to the given raw output stream, 5249 // where it will be written in a new bitcode block. This is used when 5250 // writing the per-module index file for ThinLTO. 5251 void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 5252 const ModuleSummaryIndex &Index, 5253 const ModuleHash &ModHash) { 5254 SmallVector<char, 0> Buffer; 5255 Buffer.reserve(256 * 1024); 5256 5257 BitcodeWriter Writer(Buffer); 5258 Writer.writeThinLinkBitcode(M, Index, ModHash); 5259 Writer.writeSymtab(); 5260 Writer.writeStrtab(); 5261 5262 Out.write((char *)&Buffer.front(), Buffer.size()); 5263 } 5264 5265 static const char *getSectionNameForBitcode(const Triple &T) { 5266 switch (T.getObjectFormat()) { 5267 case Triple::MachO: 5268 return "__LLVM,__bitcode"; 5269 case Triple::COFF: 5270 case Triple::ELF: 5271 case Triple::Wasm: 5272 case Triple::UnknownObjectFormat: 5273 return ".llvmbc"; 5274 case Triple::GOFF: 5275 llvm_unreachable("GOFF is not yet implemented"); 5276 break; 5277 case Triple::SPIRV: 5278 llvm_unreachable("SPIRV is not yet implemented"); 5279 break; 5280 case Triple::XCOFF: 5281 llvm_unreachable("XCOFF is not yet implemented"); 5282 break; 5283 case Triple::DXContainer: 5284 llvm_unreachable("DXContainer is not yet implemented"); 5285 break; 5286 } 5287 llvm_unreachable("Unimplemented ObjectFormatType"); 5288 } 5289 5290 static const char *getSectionNameForCommandline(const Triple &T) { 5291 switch (T.getObjectFormat()) { 5292 case Triple::MachO: 5293 return "__LLVM,__cmdline"; 5294 case Triple::COFF: 5295 case Triple::ELF: 5296 case Triple::Wasm: 5297 case Triple::UnknownObjectFormat: 5298 return ".llvmcmd"; 5299 case Triple::GOFF: 5300 llvm_unreachable("GOFF is not yet implemented"); 5301 break; 5302 case Triple::SPIRV: 5303 llvm_unreachable("SPIRV is not yet implemented"); 5304 break; 5305 case Triple::XCOFF: 5306 llvm_unreachable("XCOFF is not yet implemented"); 5307 break; 5308 case Triple::DXContainer: 5309 llvm_unreachable("DXC is not yet implemented"); 5310 break; 5311 } 5312 llvm_unreachable("Unimplemented ObjectFormatType"); 5313 } 5314 5315 void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 5316 bool EmbedBitcode, bool EmbedCmdline, 5317 const std::vector<uint8_t> &CmdArgs) { 5318 // Save llvm.compiler.used and remove it. 5319 SmallVector<Constant *, 2> UsedArray; 5320 SmallVector<GlobalValue *, 4> UsedGlobals; 5321 Type *UsedElementType = PointerType::getUnqual(M.getContext()); 5322 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 5323 for (auto *GV : UsedGlobals) { 5324 if (GV->getName() != "llvm.embedded.module" && 5325 GV->getName() != "llvm.cmdline") 5326 UsedArray.push_back( 5327 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5328 } 5329 if (Used) 5330 Used->eraseFromParent(); 5331 5332 // Embed the bitcode for the llvm module. 5333 std::string Data; 5334 ArrayRef<uint8_t> ModuleData; 5335 Triple T(M.getTargetTriple()); 5336 5337 if (EmbedBitcode) { 5338 if (Buf.getBufferSize() == 0 || 5339 !isBitcode((const unsigned char *)Buf.getBufferStart(), 5340 (const unsigned char *)Buf.getBufferEnd())) { 5341 // If the input is LLVM Assembly, bitcode is produced by serializing 5342 // the module. Use-lists order need to be preserved in this case. 5343 llvm::raw_string_ostream OS(Data); 5344 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 5345 ModuleData = 5346 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 5347 } else 5348 // If the input is LLVM bitcode, write the input byte stream directly. 5349 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 5350 Buf.getBufferSize()); 5351 } 5352 llvm::Constant *ModuleConstant = 5353 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 5354 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 5355 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 5356 ModuleConstant); 5357 GV->setSection(getSectionNameForBitcode(T)); 5358 // Set alignment to 1 to prevent padding between two contributions from input 5359 // sections after linking. 5360 GV->setAlignment(Align(1)); 5361 UsedArray.push_back( 5362 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5363 if (llvm::GlobalVariable *Old = 5364 M.getGlobalVariable("llvm.embedded.module", true)) { 5365 assert(Old->hasZeroLiveUses() && 5366 "llvm.embedded.module can only be used once in llvm.compiler.used"); 5367 GV->takeName(Old); 5368 Old->eraseFromParent(); 5369 } else { 5370 GV->setName("llvm.embedded.module"); 5371 } 5372 5373 // Skip if only bitcode needs to be embedded. 5374 if (EmbedCmdline) { 5375 // Embed command-line options. 5376 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 5377 CmdArgs.size()); 5378 llvm::Constant *CmdConstant = 5379 llvm::ConstantDataArray::get(M.getContext(), CmdData); 5380 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 5381 llvm::GlobalValue::PrivateLinkage, 5382 CmdConstant); 5383 GV->setSection(getSectionNameForCommandline(T)); 5384 GV->setAlignment(Align(1)); 5385 UsedArray.push_back( 5386 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 5387 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 5388 assert(Old->hasZeroLiveUses() && 5389 "llvm.cmdline can only be used once in llvm.compiler.used"); 5390 GV->takeName(Old); 5391 Old->eraseFromParent(); 5392 } else { 5393 GV->setName("llvm.cmdline"); 5394 } 5395 } 5396 5397 if (UsedArray.empty()) 5398 return; 5399 5400 // Recreate llvm.compiler.used. 5401 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 5402 auto *NewUsed = new GlobalVariable( 5403 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 5404 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 5405 NewUsed->setSection("llvm.metadata"); 5406 } 5407