1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringMap.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/Bitcode/BitCodes.h" 29 #include "llvm/Bitcode/BitstreamWriter.h" 30 #include "llvm/Bitcode/LLVMBitCodes.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/Comdat.h" 35 #include "llvm/IR/Constant.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instruction.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSummaryIndex.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/UseListOrder.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/StringTableBuilder.h" 60 #include "llvm/Object/IRSymtab.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Endian.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/SHA1.h" 69 #include "llvm/Support/TargetRegistry.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <utility> 80 #include <vector> 81 82 using namespace llvm; 83 84 static cl::opt<unsigned> 85 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 86 cl::desc("Number of metadatas above which we emit an index " 87 "to enable lazy-loading")); 88 89 cl::opt<bool> WriteRelBFToSummary( 90 "write-relbf-to-summary", cl::Hidden, cl::init(false), 91 cl::desc("Write relative block frequency to function summary ")); 92 93 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 94 95 namespace { 96 97 /// These are manifest constants used by the bitcode writer. They do not need to 98 /// be kept in sync with the reader, but need to be consistent within this file. 99 enum { 100 // VALUE_SYMTAB_BLOCK abbrev id's. 101 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 102 VST_ENTRY_7_ABBREV, 103 VST_ENTRY_6_ABBREV, 104 VST_BBENTRY_6_ABBREV, 105 106 // CONSTANTS_BLOCK abbrev id's. 107 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 108 CONSTANTS_INTEGER_ABBREV, 109 CONSTANTS_CE_CAST_Abbrev, 110 CONSTANTS_NULL_Abbrev, 111 112 // FUNCTION_BLOCK abbrev id's. 113 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 114 FUNCTION_INST_BINOP_ABBREV, 115 FUNCTION_INST_BINOP_FLAGS_ABBREV, 116 FUNCTION_INST_CAST_ABBREV, 117 FUNCTION_INST_RET_VOID_ABBREV, 118 FUNCTION_INST_RET_VAL_ABBREV, 119 FUNCTION_INST_UNREACHABLE_ABBREV, 120 FUNCTION_INST_GEP_ABBREV, 121 }; 122 123 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 124 /// file type. 125 class BitcodeWriterBase { 126 protected: 127 /// The stream created and owned by the client. 128 BitstreamWriter &Stream; 129 130 StringTableBuilder &StrtabBuilder; 131 132 public: 133 /// Constructs a BitcodeWriterBase object that writes to the provided 134 /// \p Stream. 135 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 136 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 137 138 protected: 139 void writeBitcodeHeader(); 140 void writeModuleVersion(); 141 }; 142 143 void BitcodeWriterBase::writeModuleVersion() { 144 // VERSION: [version#] 145 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 146 } 147 148 /// Base class to manage the module bitcode writing, currently subclassed for 149 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 150 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 151 protected: 152 /// The Module to write to bitcode. 153 const Module &M; 154 155 /// Enumerates ids for all values in the module. 156 ValueEnumerator VE; 157 158 /// Optional per-module index to write for ThinLTO. 159 const ModuleSummaryIndex *Index; 160 161 /// Map that holds the correspondence between GUIDs in the summary index, 162 /// that came from indirect call profiles, and a value id generated by this 163 /// class to use in the VST and summary block records. 164 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 165 166 /// Tracks the last value id recorded in the GUIDToValueMap. 167 unsigned GlobalValueId; 168 169 /// Saves the offset of the VSTOffset record that must eventually be 170 /// backpatched with the offset of the actual VST. 171 uint64_t VSTOffsetPlaceholder = 0; 172 173 public: 174 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 175 /// writing to the provided \p Buffer. 176 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 177 BitstreamWriter &Stream, 178 bool ShouldPreserveUseListOrder, 179 const ModuleSummaryIndex *Index) 180 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 181 VE(M, ShouldPreserveUseListOrder), Index(Index) { 182 // Assign ValueIds to any callee values in the index that came from 183 // indirect call profiles and were recorded as a GUID not a Value* 184 // (which would have been assigned an ID by the ValueEnumerator). 185 // The starting ValueId is just after the number of values in the 186 // ValueEnumerator, so that they can be emitted in the VST. 187 GlobalValueId = VE.getValues().size(); 188 if (!Index) 189 return; 190 for (const auto &GUIDSummaryLists : *Index) 191 // Examine all summaries for this GUID. 192 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 193 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 194 // For each call in the function summary, see if the call 195 // is to a GUID (which means it is for an indirect call, 196 // otherwise we would have a Value for it). If so, synthesize 197 // a value id. 198 for (auto &CallEdge : FS->calls()) 199 if (!CallEdge.first.getValue()) 200 assignValueId(CallEdge.first.getGUID()); 201 } 202 203 protected: 204 void writePerModuleGlobalValueSummary(); 205 206 private: 207 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 208 GlobalValueSummary *Summary, 209 unsigned ValueID, 210 unsigned FSCallsAbbrev, 211 unsigned FSCallsProfileAbbrev, 212 const Function &F); 213 void writeModuleLevelReferences(const GlobalVariable &V, 214 SmallVector<uint64_t, 64> &NameVals, 215 unsigned FSModRefsAbbrev); 216 217 void assignValueId(GlobalValue::GUID ValGUID) { 218 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 219 } 220 221 unsigned getValueId(GlobalValue::GUID ValGUID) { 222 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 223 // Expect that any GUID value had a value Id assigned by an 224 // earlier call to assignValueId. 225 assert(VMI != GUIDToValueIdMap.end() && 226 "GUID does not have assigned value Id"); 227 return VMI->second; 228 } 229 230 // Helper to get the valueId for the type of value recorded in VI. 231 unsigned getValueId(ValueInfo VI) { 232 if (!VI.getValue()) 233 return getValueId(VI.getGUID()); 234 return VE.getValueID(VI.getValue()); 235 } 236 237 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 238 }; 239 240 /// Class to manage the bitcode writing for a module. 241 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 242 /// Pointer to the buffer allocated by caller for bitcode writing. 243 const SmallVectorImpl<char> &Buffer; 244 245 /// True if a module hash record should be written. 246 bool GenerateHash; 247 248 /// If non-null, when GenerateHash is true, the resulting hash is written 249 /// into ModHash. 250 ModuleHash *ModHash; 251 252 SHA1 Hasher; 253 254 /// The start bit of the identification block. 255 uint64_t BitcodeStartBit; 256 257 public: 258 /// Constructs a ModuleBitcodeWriter object for the given Module, 259 /// writing to the provided \p Buffer. 260 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 261 StringTableBuilder &StrtabBuilder, 262 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 263 const ModuleSummaryIndex *Index, bool GenerateHash, 264 ModuleHash *ModHash = nullptr) 265 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 266 ShouldPreserveUseListOrder, Index), 267 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 268 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 269 270 /// Emit the current module to the bitstream. 271 void write(); 272 273 private: 274 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 275 276 size_t addToStrtab(StringRef Str); 277 278 void writeAttributeGroupTable(); 279 void writeAttributeTable(); 280 void writeTypeTable(); 281 void writeComdats(); 282 void writeValueSymbolTableForwardDecl(); 283 void writeModuleInfo(); 284 void writeValueAsMetadata(const ValueAsMetadata *MD, 285 SmallVectorImpl<uint64_t> &Record); 286 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 287 unsigned Abbrev); 288 unsigned createDILocationAbbrev(); 289 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 290 unsigned &Abbrev); 291 unsigned createGenericDINodeAbbrev(); 292 void writeGenericDINode(const GenericDINode *N, 293 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 294 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 295 unsigned Abbrev); 296 void writeDIEnumerator(const DIEnumerator *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 298 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 void writeDIDerivedType(const DIDerivedType *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 302 void writeDICompositeType(const DICompositeType *N, 303 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 304 void writeDISubroutineType(const DISubroutineType *N, 305 SmallVectorImpl<uint64_t> &Record, 306 unsigned Abbrev); 307 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 308 unsigned Abbrev); 309 void writeDICompileUnit(const DICompileUnit *N, 310 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 311 void writeDISubprogram(const DISubprogram *N, 312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 313 void writeDILexicalBlock(const DILexicalBlock *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 316 SmallVectorImpl<uint64_t> &Record, 317 unsigned Abbrev); 318 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 319 unsigned Abbrev); 320 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 323 unsigned Abbrev); 324 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 327 SmallVectorImpl<uint64_t> &Record, 328 unsigned Abbrev); 329 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 330 SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDIGlobalVariable(const DIGlobalVariable *N, 333 SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDILocalVariable(const DILocalVariable *N, 336 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 337 void writeDIExpression(const DIExpression *N, 338 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 339 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 340 SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDIObjCProperty(const DIObjCProperty *N, 343 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 344 void writeDIImportedEntity(const DIImportedEntity *N, 345 SmallVectorImpl<uint64_t> &Record, 346 unsigned Abbrev); 347 unsigned createNamedMetadataAbbrev(); 348 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 349 unsigned createMetadataStringsAbbrev(); 350 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 351 SmallVectorImpl<uint64_t> &Record); 352 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 353 SmallVectorImpl<uint64_t> &Record, 354 std::vector<unsigned> *MDAbbrevs = nullptr, 355 std::vector<uint64_t> *IndexPos = nullptr); 356 void writeModuleMetadata(); 357 void writeFunctionMetadata(const Function &F); 358 void writeFunctionMetadataAttachment(const Function &F); 359 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 360 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 361 const GlobalObject &GO); 362 void writeModuleMetadataKinds(); 363 void writeOperandBundleTags(); 364 void writeSyncScopeNames(); 365 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 366 void writeModuleConstants(); 367 bool pushValueAndType(const Value *V, unsigned InstID, 368 SmallVectorImpl<unsigned> &Vals); 369 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 370 void pushValue(const Value *V, unsigned InstID, 371 SmallVectorImpl<unsigned> &Vals); 372 void pushValueSigned(const Value *V, unsigned InstID, 373 SmallVectorImpl<uint64_t> &Vals); 374 void writeInstruction(const Instruction &I, unsigned InstID, 375 SmallVectorImpl<unsigned> &Vals); 376 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 377 void writeGlobalValueSymbolTable( 378 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 379 void writeUseList(UseListOrder &&Order); 380 void writeUseListBlock(const Function *F); 381 void 382 writeFunction(const Function &F, 383 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 384 void writeBlockInfo(); 385 void writeModuleHash(size_t BlockStartPos); 386 387 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 388 return unsigned(SSID); 389 } 390 }; 391 392 /// Class to manage the bitcode writing for a combined index. 393 class IndexBitcodeWriter : public BitcodeWriterBase { 394 /// The combined index to write to bitcode. 395 const ModuleSummaryIndex &Index; 396 397 /// When writing a subset of the index for distributed backends, client 398 /// provides a map of modules to the corresponding GUIDs/summaries to write. 399 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 400 401 /// Map that holds the correspondence between the GUID used in the combined 402 /// index and a value id generated by this class to use in references. 403 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 404 405 /// Tracks the last value id recorded in the GUIDToValueMap. 406 unsigned GlobalValueId = 0; 407 408 public: 409 /// Constructs a IndexBitcodeWriter object for the given combined index, 410 /// writing to the provided \p Buffer. When writing a subset of the index 411 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 412 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 413 const ModuleSummaryIndex &Index, 414 const std::map<std::string, GVSummaryMapTy> 415 *ModuleToSummariesForIndex = nullptr) 416 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 417 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 418 // Assign unique value ids to all summaries to be written, for use 419 // in writing out the call graph edges. Save the mapping from GUID 420 // to the new global value id to use when writing those edges, which 421 // are currently saved in the index in terms of GUID. 422 forEachSummary([&](GVInfo I, bool) { 423 GUIDToValueIdMap[I.first] = ++GlobalValueId; 424 }); 425 } 426 427 /// The below iterator returns the GUID and associated summary. 428 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 429 430 /// Calls the callback for each value GUID and summary to be written to 431 /// bitcode. This hides the details of whether they are being pulled from the 432 /// entire index or just those in a provided ModuleToSummariesForIndex map. 433 template<typename Functor> 434 void forEachSummary(Functor Callback) { 435 if (ModuleToSummariesForIndex) { 436 for (auto &M : *ModuleToSummariesForIndex) 437 for (auto &Summary : M.second) { 438 Callback(Summary, false); 439 // Ensure aliasee is handled, e.g. for assigning a valueId, 440 // even if we are not importing the aliasee directly (the 441 // imported alias will contain a copy of aliasee). 442 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 443 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 444 } 445 } else { 446 for (auto &Summaries : Index) 447 for (auto &Summary : Summaries.second.SummaryList) 448 Callback({Summaries.first, Summary.get()}, false); 449 } 450 } 451 452 /// Calls the callback for each entry in the modulePaths StringMap that 453 /// should be written to the module path string table. This hides the details 454 /// of whether they are being pulled from the entire index or just those in a 455 /// provided ModuleToSummariesForIndex map. 456 template <typename Functor> void forEachModule(Functor Callback) { 457 if (ModuleToSummariesForIndex) { 458 for (const auto &M : *ModuleToSummariesForIndex) { 459 const auto &MPI = Index.modulePaths().find(M.first); 460 if (MPI == Index.modulePaths().end()) { 461 // This should only happen if the bitcode file was empty, in which 462 // case we shouldn't be importing (the ModuleToSummariesForIndex 463 // would only include the module we are writing and index for). 464 assert(ModuleToSummariesForIndex->size() == 1); 465 continue; 466 } 467 Callback(*MPI); 468 } 469 } else { 470 for (const auto &MPSE : Index.modulePaths()) 471 Callback(MPSE); 472 } 473 } 474 475 /// Main entry point for writing a combined index to bitcode. 476 void write(); 477 478 private: 479 void writeModStrings(); 480 void writeCombinedGlobalValueSummary(); 481 482 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 483 auto VMI = GUIDToValueIdMap.find(ValGUID); 484 if (VMI == GUIDToValueIdMap.end()) 485 return None; 486 return VMI->second; 487 } 488 489 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 490 }; 491 492 } // end anonymous namespace 493 494 static unsigned getEncodedCastOpcode(unsigned Opcode) { 495 switch (Opcode) { 496 default: llvm_unreachable("Unknown cast instruction!"); 497 case Instruction::Trunc : return bitc::CAST_TRUNC; 498 case Instruction::ZExt : return bitc::CAST_ZEXT; 499 case Instruction::SExt : return bitc::CAST_SEXT; 500 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 501 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 502 case Instruction::UIToFP : return bitc::CAST_UITOFP; 503 case Instruction::SIToFP : return bitc::CAST_SITOFP; 504 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 505 case Instruction::FPExt : return bitc::CAST_FPEXT; 506 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 507 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 508 case Instruction::BitCast : return bitc::CAST_BITCAST; 509 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 510 } 511 } 512 513 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 514 switch (Opcode) { 515 default: llvm_unreachable("Unknown binary instruction!"); 516 case Instruction::Add: 517 case Instruction::FAdd: return bitc::BINOP_ADD; 518 case Instruction::Sub: 519 case Instruction::FSub: return bitc::BINOP_SUB; 520 case Instruction::Mul: 521 case Instruction::FMul: return bitc::BINOP_MUL; 522 case Instruction::UDiv: return bitc::BINOP_UDIV; 523 case Instruction::FDiv: 524 case Instruction::SDiv: return bitc::BINOP_SDIV; 525 case Instruction::URem: return bitc::BINOP_UREM; 526 case Instruction::FRem: 527 case Instruction::SRem: return bitc::BINOP_SREM; 528 case Instruction::Shl: return bitc::BINOP_SHL; 529 case Instruction::LShr: return bitc::BINOP_LSHR; 530 case Instruction::AShr: return bitc::BINOP_ASHR; 531 case Instruction::And: return bitc::BINOP_AND; 532 case Instruction::Or: return bitc::BINOP_OR; 533 case Instruction::Xor: return bitc::BINOP_XOR; 534 } 535 } 536 537 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 538 switch (Op) { 539 default: llvm_unreachable("Unknown RMW operation!"); 540 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 541 case AtomicRMWInst::Add: return bitc::RMW_ADD; 542 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 543 case AtomicRMWInst::And: return bitc::RMW_AND; 544 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 545 case AtomicRMWInst::Or: return bitc::RMW_OR; 546 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 547 case AtomicRMWInst::Max: return bitc::RMW_MAX; 548 case AtomicRMWInst::Min: return bitc::RMW_MIN; 549 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 550 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 551 } 552 } 553 554 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 555 switch (Ordering) { 556 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 557 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 558 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 559 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 560 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 561 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 562 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 563 } 564 llvm_unreachable("Invalid ordering"); 565 } 566 567 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 568 StringRef Str, unsigned AbbrevToUse) { 569 SmallVector<unsigned, 64> Vals; 570 571 // Code: [strchar x N] 572 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 573 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 574 AbbrevToUse = 0; 575 Vals.push_back(Str[i]); 576 } 577 578 // Emit the finished record. 579 Stream.EmitRecord(Code, Vals, AbbrevToUse); 580 } 581 582 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 583 switch (Kind) { 584 case Attribute::Alignment: 585 return bitc::ATTR_KIND_ALIGNMENT; 586 case Attribute::AllocSize: 587 return bitc::ATTR_KIND_ALLOC_SIZE; 588 case Attribute::AlwaysInline: 589 return bitc::ATTR_KIND_ALWAYS_INLINE; 590 case Attribute::ArgMemOnly: 591 return bitc::ATTR_KIND_ARGMEMONLY; 592 case Attribute::Builtin: 593 return bitc::ATTR_KIND_BUILTIN; 594 case Attribute::ByVal: 595 return bitc::ATTR_KIND_BY_VAL; 596 case Attribute::Convergent: 597 return bitc::ATTR_KIND_CONVERGENT; 598 case Attribute::InAlloca: 599 return bitc::ATTR_KIND_IN_ALLOCA; 600 case Attribute::Cold: 601 return bitc::ATTR_KIND_COLD; 602 case Attribute::InaccessibleMemOnly: 603 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 604 case Attribute::InaccessibleMemOrArgMemOnly: 605 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 606 case Attribute::InlineHint: 607 return bitc::ATTR_KIND_INLINE_HINT; 608 case Attribute::InReg: 609 return bitc::ATTR_KIND_IN_REG; 610 case Attribute::JumpTable: 611 return bitc::ATTR_KIND_JUMP_TABLE; 612 case Attribute::MinSize: 613 return bitc::ATTR_KIND_MIN_SIZE; 614 case Attribute::Naked: 615 return bitc::ATTR_KIND_NAKED; 616 case Attribute::Nest: 617 return bitc::ATTR_KIND_NEST; 618 case Attribute::NoAlias: 619 return bitc::ATTR_KIND_NO_ALIAS; 620 case Attribute::NoBuiltin: 621 return bitc::ATTR_KIND_NO_BUILTIN; 622 case Attribute::NoCapture: 623 return bitc::ATTR_KIND_NO_CAPTURE; 624 case Attribute::NoDuplicate: 625 return bitc::ATTR_KIND_NO_DUPLICATE; 626 case Attribute::NoImplicitFloat: 627 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 628 case Attribute::NoInline: 629 return bitc::ATTR_KIND_NO_INLINE; 630 case Attribute::NoRecurse: 631 return bitc::ATTR_KIND_NO_RECURSE; 632 case Attribute::NonLazyBind: 633 return bitc::ATTR_KIND_NON_LAZY_BIND; 634 case Attribute::NonNull: 635 return bitc::ATTR_KIND_NON_NULL; 636 case Attribute::Dereferenceable: 637 return bitc::ATTR_KIND_DEREFERENCEABLE; 638 case Attribute::DereferenceableOrNull: 639 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 640 case Attribute::NoRedZone: 641 return bitc::ATTR_KIND_NO_RED_ZONE; 642 case Attribute::NoReturn: 643 return bitc::ATTR_KIND_NO_RETURN; 644 case Attribute::NoCfCheck: 645 return bitc::ATTR_KIND_NOCF_CHECK; 646 case Attribute::NoUnwind: 647 return bitc::ATTR_KIND_NO_UNWIND; 648 case Attribute::OptForFuzzing: 649 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 650 case Attribute::OptimizeForSize: 651 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 652 case Attribute::OptimizeNone: 653 return bitc::ATTR_KIND_OPTIMIZE_NONE; 654 case Attribute::ReadNone: 655 return bitc::ATTR_KIND_READ_NONE; 656 case Attribute::ReadOnly: 657 return bitc::ATTR_KIND_READ_ONLY; 658 case Attribute::Returned: 659 return bitc::ATTR_KIND_RETURNED; 660 case Attribute::ReturnsTwice: 661 return bitc::ATTR_KIND_RETURNS_TWICE; 662 case Attribute::SExt: 663 return bitc::ATTR_KIND_S_EXT; 664 case Attribute::Speculatable: 665 return bitc::ATTR_KIND_SPECULATABLE; 666 case Attribute::StackAlignment: 667 return bitc::ATTR_KIND_STACK_ALIGNMENT; 668 case Attribute::StackProtect: 669 return bitc::ATTR_KIND_STACK_PROTECT; 670 case Attribute::StackProtectReq: 671 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 672 case Attribute::StackProtectStrong: 673 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 674 case Attribute::SafeStack: 675 return bitc::ATTR_KIND_SAFESTACK; 676 case Attribute::StrictFP: 677 return bitc::ATTR_KIND_STRICT_FP; 678 case Attribute::StructRet: 679 return bitc::ATTR_KIND_STRUCT_RET; 680 case Attribute::SanitizeAddress: 681 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 682 case Attribute::SanitizeHWAddress: 683 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 684 case Attribute::SanitizeThread: 685 return bitc::ATTR_KIND_SANITIZE_THREAD; 686 case Attribute::SanitizeMemory: 687 return bitc::ATTR_KIND_SANITIZE_MEMORY; 688 case Attribute::SwiftError: 689 return bitc::ATTR_KIND_SWIFT_ERROR; 690 case Attribute::SwiftSelf: 691 return bitc::ATTR_KIND_SWIFT_SELF; 692 case Attribute::UWTable: 693 return bitc::ATTR_KIND_UW_TABLE; 694 case Attribute::WriteOnly: 695 return bitc::ATTR_KIND_WRITEONLY; 696 case Attribute::ZExt: 697 return bitc::ATTR_KIND_Z_EXT; 698 case Attribute::EndAttrKinds: 699 llvm_unreachable("Can not encode end-attribute kinds marker."); 700 case Attribute::None: 701 llvm_unreachable("Can not encode none-attribute."); 702 } 703 704 llvm_unreachable("Trying to encode unknown attribute"); 705 } 706 707 void ModuleBitcodeWriter::writeAttributeGroupTable() { 708 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 709 VE.getAttributeGroups(); 710 if (AttrGrps.empty()) return; 711 712 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 713 714 SmallVector<uint64_t, 64> Record; 715 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 716 unsigned AttrListIndex = Pair.first; 717 AttributeSet AS = Pair.second; 718 Record.push_back(VE.getAttributeGroupID(Pair)); 719 Record.push_back(AttrListIndex); 720 721 for (Attribute Attr : AS) { 722 if (Attr.isEnumAttribute()) { 723 Record.push_back(0); 724 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 725 } else if (Attr.isIntAttribute()) { 726 Record.push_back(1); 727 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 728 Record.push_back(Attr.getValueAsInt()); 729 } else { 730 StringRef Kind = Attr.getKindAsString(); 731 StringRef Val = Attr.getValueAsString(); 732 733 Record.push_back(Val.empty() ? 3 : 4); 734 Record.append(Kind.begin(), Kind.end()); 735 Record.push_back(0); 736 if (!Val.empty()) { 737 Record.append(Val.begin(), Val.end()); 738 Record.push_back(0); 739 } 740 } 741 } 742 743 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 744 Record.clear(); 745 } 746 747 Stream.ExitBlock(); 748 } 749 750 void ModuleBitcodeWriter::writeAttributeTable() { 751 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 752 if (Attrs.empty()) return; 753 754 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 755 756 SmallVector<uint64_t, 64> Record; 757 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 758 AttributeList AL = Attrs[i]; 759 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 760 AttributeSet AS = AL.getAttributes(i); 761 if (AS.hasAttributes()) 762 Record.push_back(VE.getAttributeGroupID({i, AS})); 763 } 764 765 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 766 Record.clear(); 767 } 768 769 Stream.ExitBlock(); 770 } 771 772 /// WriteTypeTable - Write out the type table for a module. 773 void ModuleBitcodeWriter::writeTypeTable() { 774 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 775 776 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 777 SmallVector<uint64_t, 64> TypeVals; 778 779 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 780 781 // Abbrev for TYPE_CODE_POINTER. 782 auto Abbv = std::make_shared<BitCodeAbbrev>(); 783 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 785 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 786 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 787 788 // Abbrev for TYPE_CODE_FUNCTION. 789 Abbv = std::make_shared<BitCodeAbbrev>(); 790 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 792 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 794 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 795 796 // Abbrev for TYPE_CODE_STRUCT_ANON. 797 Abbv = std::make_shared<BitCodeAbbrev>(); 798 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 802 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 803 804 // Abbrev for TYPE_CODE_STRUCT_NAME. 805 Abbv = std::make_shared<BitCodeAbbrev>(); 806 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 809 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 810 811 // Abbrev for TYPE_CODE_STRUCT_NAMED. 812 Abbv = std::make_shared<BitCodeAbbrev>(); 813 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 814 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 816 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 817 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 818 819 // Abbrev for TYPE_CODE_ARRAY. 820 Abbv = std::make_shared<BitCodeAbbrev>(); 821 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 824 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 825 826 // Emit an entry count so the reader can reserve space. 827 TypeVals.push_back(TypeList.size()); 828 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 829 TypeVals.clear(); 830 831 // Loop over all of the types, emitting each in turn. 832 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 833 Type *T = TypeList[i]; 834 int AbbrevToUse = 0; 835 unsigned Code = 0; 836 837 switch (T->getTypeID()) { 838 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 839 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 840 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 841 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 842 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 843 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 844 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 845 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 846 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 847 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 848 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 849 case Type::IntegerTyID: 850 // INTEGER: [width] 851 Code = bitc::TYPE_CODE_INTEGER; 852 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 853 break; 854 case Type::PointerTyID: { 855 PointerType *PTy = cast<PointerType>(T); 856 // POINTER: [pointee type, address space] 857 Code = bitc::TYPE_CODE_POINTER; 858 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 859 unsigned AddressSpace = PTy->getAddressSpace(); 860 TypeVals.push_back(AddressSpace); 861 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 862 break; 863 } 864 case Type::FunctionTyID: { 865 FunctionType *FT = cast<FunctionType>(T); 866 // FUNCTION: [isvararg, retty, paramty x N] 867 Code = bitc::TYPE_CODE_FUNCTION; 868 TypeVals.push_back(FT->isVarArg()); 869 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 870 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 871 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 872 AbbrevToUse = FunctionAbbrev; 873 break; 874 } 875 case Type::StructTyID: { 876 StructType *ST = cast<StructType>(T); 877 // STRUCT: [ispacked, eltty x N] 878 TypeVals.push_back(ST->isPacked()); 879 // Output all of the element types. 880 for (StructType::element_iterator I = ST->element_begin(), 881 E = ST->element_end(); I != E; ++I) 882 TypeVals.push_back(VE.getTypeID(*I)); 883 884 if (ST->isLiteral()) { 885 Code = bitc::TYPE_CODE_STRUCT_ANON; 886 AbbrevToUse = StructAnonAbbrev; 887 } else { 888 if (ST->isOpaque()) { 889 Code = bitc::TYPE_CODE_OPAQUE; 890 } else { 891 Code = bitc::TYPE_CODE_STRUCT_NAMED; 892 AbbrevToUse = StructNamedAbbrev; 893 } 894 895 // Emit the name if it is present. 896 if (!ST->getName().empty()) 897 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 898 StructNameAbbrev); 899 } 900 break; 901 } 902 case Type::ArrayTyID: { 903 ArrayType *AT = cast<ArrayType>(T); 904 // ARRAY: [numelts, eltty] 905 Code = bitc::TYPE_CODE_ARRAY; 906 TypeVals.push_back(AT->getNumElements()); 907 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 908 AbbrevToUse = ArrayAbbrev; 909 break; 910 } 911 case Type::VectorTyID: { 912 VectorType *VT = cast<VectorType>(T); 913 // VECTOR [numelts, eltty] 914 Code = bitc::TYPE_CODE_VECTOR; 915 TypeVals.push_back(VT->getNumElements()); 916 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 917 break; 918 } 919 } 920 921 // Emit the finished record. 922 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 923 TypeVals.clear(); 924 } 925 926 Stream.ExitBlock(); 927 } 928 929 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 930 switch (Linkage) { 931 case GlobalValue::ExternalLinkage: 932 return 0; 933 case GlobalValue::WeakAnyLinkage: 934 return 16; 935 case GlobalValue::AppendingLinkage: 936 return 2; 937 case GlobalValue::InternalLinkage: 938 return 3; 939 case GlobalValue::LinkOnceAnyLinkage: 940 return 18; 941 case GlobalValue::ExternalWeakLinkage: 942 return 7; 943 case GlobalValue::CommonLinkage: 944 return 8; 945 case GlobalValue::PrivateLinkage: 946 return 9; 947 case GlobalValue::WeakODRLinkage: 948 return 17; 949 case GlobalValue::LinkOnceODRLinkage: 950 return 19; 951 case GlobalValue::AvailableExternallyLinkage: 952 return 12; 953 } 954 llvm_unreachable("Invalid linkage"); 955 } 956 957 static unsigned getEncodedLinkage(const GlobalValue &GV) { 958 return getEncodedLinkage(GV.getLinkage()); 959 } 960 961 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 962 uint64_t RawFlags = 0; 963 RawFlags |= Flags.ReadNone; 964 RawFlags |= (Flags.ReadOnly << 1); 965 RawFlags |= (Flags.NoRecurse << 2); 966 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 967 return RawFlags; 968 } 969 970 // Decode the flags for GlobalValue in the summary 971 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 972 uint64_t RawFlags = 0; 973 974 RawFlags |= Flags.NotEligibleToImport; // bool 975 RawFlags |= (Flags.Live << 1); 976 RawFlags |= (Flags.DSOLocal << 2); 977 978 // Linkage don't need to be remapped at that time for the summary. Any future 979 // change to the getEncodedLinkage() function will need to be taken into 980 // account here as well. 981 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 982 983 return RawFlags; 984 } 985 986 static unsigned getEncodedVisibility(const GlobalValue &GV) { 987 switch (GV.getVisibility()) { 988 case GlobalValue::DefaultVisibility: return 0; 989 case GlobalValue::HiddenVisibility: return 1; 990 case GlobalValue::ProtectedVisibility: return 2; 991 } 992 llvm_unreachable("Invalid visibility"); 993 } 994 995 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 996 switch (GV.getDLLStorageClass()) { 997 case GlobalValue::DefaultStorageClass: return 0; 998 case GlobalValue::DLLImportStorageClass: return 1; 999 case GlobalValue::DLLExportStorageClass: return 2; 1000 } 1001 llvm_unreachable("Invalid DLL storage class"); 1002 } 1003 1004 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1005 switch (GV.getThreadLocalMode()) { 1006 case GlobalVariable::NotThreadLocal: return 0; 1007 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1008 case GlobalVariable::LocalDynamicTLSModel: return 2; 1009 case GlobalVariable::InitialExecTLSModel: return 3; 1010 case GlobalVariable::LocalExecTLSModel: return 4; 1011 } 1012 llvm_unreachable("Invalid TLS model"); 1013 } 1014 1015 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1016 switch (C.getSelectionKind()) { 1017 case Comdat::Any: 1018 return bitc::COMDAT_SELECTION_KIND_ANY; 1019 case Comdat::ExactMatch: 1020 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1021 case Comdat::Largest: 1022 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1023 case Comdat::NoDuplicates: 1024 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1025 case Comdat::SameSize: 1026 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1027 } 1028 llvm_unreachable("Invalid selection kind"); 1029 } 1030 1031 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1032 switch (GV.getUnnamedAddr()) { 1033 case GlobalValue::UnnamedAddr::None: return 0; 1034 case GlobalValue::UnnamedAddr::Local: return 2; 1035 case GlobalValue::UnnamedAddr::Global: return 1; 1036 } 1037 llvm_unreachable("Invalid unnamed_addr"); 1038 } 1039 1040 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1041 if (GenerateHash) 1042 Hasher.update(Str); 1043 return StrtabBuilder.add(Str); 1044 } 1045 1046 void ModuleBitcodeWriter::writeComdats() { 1047 SmallVector<unsigned, 64> Vals; 1048 for (const Comdat *C : VE.getComdats()) { 1049 // COMDAT: [strtab offset, strtab size, selection_kind] 1050 Vals.push_back(addToStrtab(C->getName())); 1051 Vals.push_back(C->getName().size()); 1052 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1053 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1054 Vals.clear(); 1055 } 1056 } 1057 1058 /// Write a record that will eventually hold the word offset of the 1059 /// module-level VST. For now the offset is 0, which will be backpatched 1060 /// after the real VST is written. Saves the bit offset to backpatch. 1061 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1062 // Write a placeholder value in for the offset of the real VST, 1063 // which is written after the function blocks so that it can include 1064 // the offset of each function. The placeholder offset will be 1065 // updated when the real VST is written. 1066 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1067 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1068 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1069 // hold the real VST offset. Must use fixed instead of VBR as we don't 1070 // know how many VBR chunks to reserve ahead of time. 1071 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1072 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1073 1074 // Emit the placeholder 1075 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1076 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1077 1078 // Compute and save the bit offset to the placeholder, which will be 1079 // patched when the real VST is written. We can simply subtract the 32-bit 1080 // fixed size from the current bit number to get the location to backpatch. 1081 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1082 } 1083 1084 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1085 1086 /// Determine the encoding to use for the given string name and length. 1087 static StringEncoding getStringEncoding(StringRef Str) { 1088 bool isChar6 = true; 1089 for (char C : Str) { 1090 if (isChar6) 1091 isChar6 = BitCodeAbbrevOp::isChar6(C); 1092 if ((unsigned char)C & 128) 1093 // don't bother scanning the rest. 1094 return SE_Fixed8; 1095 } 1096 if (isChar6) 1097 return SE_Char6; 1098 return SE_Fixed7; 1099 } 1100 1101 /// Emit top-level description of module, including target triple, inline asm, 1102 /// descriptors for global variables, and function prototype info. 1103 /// Returns the bit offset to backpatch with the location of the real VST. 1104 void ModuleBitcodeWriter::writeModuleInfo() { 1105 // Emit various pieces of data attached to a module. 1106 if (!M.getTargetTriple().empty()) 1107 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1108 0 /*TODO*/); 1109 const std::string &DL = M.getDataLayoutStr(); 1110 if (!DL.empty()) 1111 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1112 if (!M.getModuleInlineAsm().empty()) 1113 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1114 0 /*TODO*/); 1115 1116 // Emit information about sections and GC, computing how many there are. Also 1117 // compute the maximum alignment value. 1118 std::map<std::string, unsigned> SectionMap; 1119 std::map<std::string, unsigned> GCMap; 1120 unsigned MaxAlignment = 0; 1121 unsigned MaxGlobalType = 0; 1122 for (const GlobalValue &GV : M.globals()) { 1123 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1124 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1125 if (GV.hasSection()) { 1126 // Give section names unique ID's. 1127 unsigned &Entry = SectionMap[GV.getSection()]; 1128 if (!Entry) { 1129 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1130 0 /*TODO*/); 1131 Entry = SectionMap.size(); 1132 } 1133 } 1134 } 1135 for (const Function &F : M) { 1136 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1137 if (F.hasSection()) { 1138 // Give section names unique ID's. 1139 unsigned &Entry = SectionMap[F.getSection()]; 1140 if (!Entry) { 1141 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1142 0 /*TODO*/); 1143 Entry = SectionMap.size(); 1144 } 1145 } 1146 if (F.hasGC()) { 1147 // Same for GC names. 1148 unsigned &Entry = GCMap[F.getGC()]; 1149 if (!Entry) { 1150 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1151 0 /*TODO*/); 1152 Entry = GCMap.size(); 1153 } 1154 } 1155 } 1156 1157 // Emit abbrev for globals, now that we know # sections and max alignment. 1158 unsigned SimpleGVarAbbrev = 0; 1159 if (!M.global_empty()) { 1160 // Add an abbrev for common globals with no visibility or thread localness. 1161 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1162 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1164 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1166 Log2_32_Ceil(MaxGlobalType+1))); 1167 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1168 //| explicitType << 1 1169 //| constant 1170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1172 if (MaxAlignment == 0) // Alignment. 1173 Abbv->Add(BitCodeAbbrevOp(0)); 1174 else { 1175 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1177 Log2_32_Ceil(MaxEncAlignment+1))); 1178 } 1179 if (SectionMap.empty()) // Section. 1180 Abbv->Add(BitCodeAbbrevOp(0)); 1181 else 1182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1183 Log2_32_Ceil(SectionMap.size()+1))); 1184 // Don't bother emitting vis + thread local. 1185 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1186 } 1187 1188 SmallVector<unsigned, 64> Vals; 1189 // Emit the module's source file name. 1190 { 1191 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1192 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1193 if (Bits == SE_Char6) 1194 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1195 else if (Bits == SE_Fixed7) 1196 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1197 1198 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1199 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1200 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1201 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1202 Abbv->Add(AbbrevOpToUse); 1203 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1204 1205 for (const auto P : M.getSourceFileName()) 1206 Vals.push_back((unsigned char)P); 1207 1208 // Emit the finished record. 1209 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1210 Vals.clear(); 1211 } 1212 1213 // Emit the global variable information. 1214 for (const GlobalVariable &GV : M.globals()) { 1215 unsigned AbbrevToUse = 0; 1216 1217 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1218 // linkage, alignment, section, visibility, threadlocal, 1219 // unnamed_addr, externally_initialized, dllstorageclass, 1220 // comdat, attributes, DSO_Local] 1221 Vals.push_back(addToStrtab(GV.getName())); 1222 Vals.push_back(GV.getName().size()); 1223 Vals.push_back(VE.getTypeID(GV.getValueType())); 1224 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1225 Vals.push_back(GV.isDeclaration() ? 0 : 1226 (VE.getValueID(GV.getInitializer()) + 1)); 1227 Vals.push_back(getEncodedLinkage(GV)); 1228 Vals.push_back(Log2_32(GV.getAlignment())+1); 1229 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 1230 if (GV.isThreadLocal() || 1231 GV.getVisibility() != GlobalValue::DefaultVisibility || 1232 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1233 GV.isExternallyInitialized() || 1234 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1235 GV.hasComdat() || 1236 GV.hasAttributes() || 1237 GV.isDSOLocal()) { 1238 Vals.push_back(getEncodedVisibility(GV)); 1239 Vals.push_back(getEncodedThreadLocalMode(GV)); 1240 Vals.push_back(getEncodedUnnamedAddr(GV)); 1241 Vals.push_back(GV.isExternallyInitialized()); 1242 Vals.push_back(getEncodedDLLStorageClass(GV)); 1243 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1244 1245 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1246 Vals.push_back(VE.getAttributeListID(AL)); 1247 1248 Vals.push_back(GV.isDSOLocal()); 1249 } else { 1250 AbbrevToUse = SimpleGVarAbbrev; 1251 } 1252 1253 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1254 Vals.clear(); 1255 } 1256 1257 // Emit the function proto information. 1258 for (const Function &F : M) { 1259 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1260 // linkage, paramattrs, alignment, section, visibility, gc, 1261 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1262 // prefixdata, personalityfn, DSO_Local] 1263 Vals.push_back(addToStrtab(F.getName())); 1264 Vals.push_back(F.getName().size()); 1265 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1266 Vals.push_back(F.getCallingConv()); 1267 Vals.push_back(F.isDeclaration()); 1268 Vals.push_back(getEncodedLinkage(F)); 1269 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1270 Vals.push_back(Log2_32(F.getAlignment())+1); 1271 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 1272 Vals.push_back(getEncodedVisibility(F)); 1273 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1274 Vals.push_back(getEncodedUnnamedAddr(F)); 1275 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1276 : 0); 1277 Vals.push_back(getEncodedDLLStorageClass(F)); 1278 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1279 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1280 : 0); 1281 Vals.push_back( 1282 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1283 1284 Vals.push_back(F.isDSOLocal()); 1285 unsigned AbbrevToUse = 0; 1286 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1287 Vals.clear(); 1288 } 1289 1290 // Emit the alias information. 1291 for (const GlobalAlias &A : M.aliases()) { 1292 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1293 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1294 // DSO_Local] 1295 Vals.push_back(addToStrtab(A.getName())); 1296 Vals.push_back(A.getName().size()); 1297 Vals.push_back(VE.getTypeID(A.getValueType())); 1298 Vals.push_back(A.getType()->getAddressSpace()); 1299 Vals.push_back(VE.getValueID(A.getAliasee())); 1300 Vals.push_back(getEncodedLinkage(A)); 1301 Vals.push_back(getEncodedVisibility(A)); 1302 Vals.push_back(getEncodedDLLStorageClass(A)); 1303 Vals.push_back(getEncodedThreadLocalMode(A)); 1304 Vals.push_back(getEncodedUnnamedAddr(A)); 1305 Vals.push_back(A.isDSOLocal()); 1306 1307 unsigned AbbrevToUse = 0; 1308 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1309 Vals.clear(); 1310 } 1311 1312 // Emit the ifunc information. 1313 for (const GlobalIFunc &I : M.ifuncs()) { 1314 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1315 // val#, linkage, visibility, DSO_Local] 1316 Vals.push_back(addToStrtab(I.getName())); 1317 Vals.push_back(I.getName().size()); 1318 Vals.push_back(VE.getTypeID(I.getValueType())); 1319 Vals.push_back(I.getType()->getAddressSpace()); 1320 Vals.push_back(VE.getValueID(I.getResolver())); 1321 Vals.push_back(getEncodedLinkage(I)); 1322 Vals.push_back(getEncodedVisibility(I)); 1323 Vals.push_back(I.isDSOLocal()); 1324 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1325 Vals.clear(); 1326 } 1327 1328 writeValueSymbolTableForwardDecl(); 1329 } 1330 1331 static uint64_t getOptimizationFlags(const Value *V) { 1332 uint64_t Flags = 0; 1333 1334 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1335 if (OBO->hasNoSignedWrap()) 1336 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1337 if (OBO->hasNoUnsignedWrap()) 1338 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1339 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1340 if (PEO->isExact()) 1341 Flags |= 1 << bitc::PEO_EXACT; 1342 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1343 if (FPMO->hasAllowReassoc()) 1344 Flags |= bitc::AllowReassoc; 1345 if (FPMO->hasNoNaNs()) 1346 Flags |= bitc::NoNaNs; 1347 if (FPMO->hasNoInfs()) 1348 Flags |= bitc::NoInfs; 1349 if (FPMO->hasNoSignedZeros()) 1350 Flags |= bitc::NoSignedZeros; 1351 if (FPMO->hasAllowReciprocal()) 1352 Flags |= bitc::AllowReciprocal; 1353 if (FPMO->hasAllowContract()) 1354 Flags |= bitc::AllowContract; 1355 if (FPMO->hasApproxFunc()) 1356 Flags |= bitc::ApproxFunc; 1357 } 1358 1359 return Flags; 1360 } 1361 1362 void ModuleBitcodeWriter::writeValueAsMetadata( 1363 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1364 // Mimic an MDNode with a value as one operand. 1365 Value *V = MD->getValue(); 1366 Record.push_back(VE.getTypeID(V->getType())); 1367 Record.push_back(VE.getValueID(V)); 1368 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1369 Record.clear(); 1370 } 1371 1372 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1373 SmallVectorImpl<uint64_t> &Record, 1374 unsigned Abbrev) { 1375 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1376 Metadata *MD = N->getOperand(i); 1377 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1378 "Unexpected function-local metadata"); 1379 Record.push_back(VE.getMetadataOrNullID(MD)); 1380 } 1381 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1382 : bitc::METADATA_NODE, 1383 Record, Abbrev); 1384 Record.clear(); 1385 } 1386 1387 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1388 // Assume the column is usually under 128, and always output the inlined-at 1389 // location (it's never more expensive than building an array size 1). 1390 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1391 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1392 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1393 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1394 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1397 return Stream.EmitAbbrev(std::move(Abbv)); 1398 } 1399 1400 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1401 SmallVectorImpl<uint64_t> &Record, 1402 unsigned &Abbrev) { 1403 if (!Abbrev) 1404 Abbrev = createDILocationAbbrev(); 1405 1406 Record.push_back(N->isDistinct()); 1407 Record.push_back(N->getLine()); 1408 Record.push_back(N->getColumn()); 1409 Record.push_back(VE.getMetadataID(N->getScope())); 1410 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1411 1412 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1413 Record.clear(); 1414 } 1415 1416 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1417 // Assume the column is usually under 128, and always output the inlined-at 1418 // location (it's never more expensive than building an array size 1). 1419 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1420 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1422 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1423 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1424 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1427 return Stream.EmitAbbrev(std::move(Abbv)); 1428 } 1429 1430 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1431 SmallVectorImpl<uint64_t> &Record, 1432 unsigned &Abbrev) { 1433 if (!Abbrev) 1434 Abbrev = createGenericDINodeAbbrev(); 1435 1436 Record.push_back(N->isDistinct()); 1437 Record.push_back(N->getTag()); 1438 Record.push_back(0); // Per-tag version field; unused for now. 1439 1440 for (auto &I : N->operands()) 1441 Record.push_back(VE.getMetadataOrNullID(I)); 1442 1443 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1444 Record.clear(); 1445 } 1446 1447 static uint64_t rotateSign(int64_t I) { 1448 uint64_t U = I; 1449 return I < 0 ? ~(U << 1) : U << 1; 1450 } 1451 1452 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1453 SmallVectorImpl<uint64_t> &Record, 1454 unsigned Abbrev) { 1455 const uint64_t Version = 1 << 1; 1456 Record.push_back((uint64_t)N->isDistinct() | Version); 1457 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1458 Record.push_back(rotateSign(N->getLowerBound())); 1459 1460 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1461 Record.clear(); 1462 } 1463 1464 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1465 SmallVectorImpl<uint64_t> &Record, 1466 unsigned Abbrev) { 1467 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1468 Record.push_back(rotateSign(N->getValue())); 1469 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1470 1471 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1472 Record.clear(); 1473 } 1474 1475 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1476 SmallVectorImpl<uint64_t> &Record, 1477 unsigned Abbrev) { 1478 Record.push_back(N->isDistinct()); 1479 Record.push_back(N->getTag()); 1480 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1481 Record.push_back(N->getSizeInBits()); 1482 Record.push_back(N->getAlignInBits()); 1483 Record.push_back(N->getEncoding()); 1484 1485 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1486 Record.clear(); 1487 } 1488 1489 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1490 SmallVectorImpl<uint64_t> &Record, 1491 unsigned Abbrev) { 1492 Record.push_back(N->isDistinct()); 1493 Record.push_back(N->getTag()); 1494 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1495 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1496 Record.push_back(N->getLine()); 1497 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1498 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1499 Record.push_back(N->getSizeInBits()); 1500 Record.push_back(N->getAlignInBits()); 1501 Record.push_back(N->getOffsetInBits()); 1502 Record.push_back(N->getFlags()); 1503 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1504 1505 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1506 // that there is no DWARF address space associated with DIDerivedType. 1507 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1508 Record.push_back(*DWARFAddressSpace + 1); 1509 else 1510 Record.push_back(0); 1511 1512 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1513 Record.clear(); 1514 } 1515 1516 void ModuleBitcodeWriter::writeDICompositeType( 1517 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1518 unsigned Abbrev) { 1519 const unsigned IsNotUsedInOldTypeRef = 0x2; 1520 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1521 Record.push_back(N->getTag()); 1522 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1523 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1524 Record.push_back(N->getLine()); 1525 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1526 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1527 Record.push_back(N->getSizeInBits()); 1528 Record.push_back(N->getAlignInBits()); 1529 Record.push_back(N->getOffsetInBits()); 1530 Record.push_back(N->getFlags()); 1531 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1532 Record.push_back(N->getRuntimeLang()); 1533 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1534 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1535 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1536 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1537 1538 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1539 Record.clear(); 1540 } 1541 1542 void ModuleBitcodeWriter::writeDISubroutineType( 1543 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1544 unsigned Abbrev) { 1545 const unsigned HasNoOldTypeRefs = 0x2; 1546 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1547 Record.push_back(N->getFlags()); 1548 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1549 Record.push_back(N->getCC()); 1550 1551 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1552 Record.clear(); 1553 } 1554 1555 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1556 SmallVectorImpl<uint64_t> &Record, 1557 unsigned Abbrev) { 1558 Record.push_back(N->isDistinct()); 1559 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1560 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1561 if (N->getRawChecksum()) { 1562 Record.push_back(N->getRawChecksum()->Kind); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1564 } else { 1565 // Maintain backwards compatibility with the old internal representation of 1566 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1567 Record.push_back(0); 1568 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1569 } 1570 auto Source = N->getRawSource(); 1571 if (Source) 1572 Record.push_back(VE.getMetadataOrNullID(*Source)); 1573 1574 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1575 Record.clear(); 1576 } 1577 1578 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1579 SmallVectorImpl<uint64_t> &Record, 1580 unsigned Abbrev) { 1581 assert(N->isDistinct() && "Expected distinct compile units"); 1582 Record.push_back(/* IsDistinct */ true); 1583 Record.push_back(N->getSourceLanguage()); 1584 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1585 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1586 Record.push_back(N->isOptimized()); 1587 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1588 Record.push_back(N->getRuntimeVersion()); 1589 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1590 Record.push_back(N->getEmissionKind()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1593 Record.push_back(/* subprograms */ 0); 1594 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1596 Record.push_back(N->getDWOId()); 1597 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1598 Record.push_back(N->getSplitDebugInlining()); 1599 Record.push_back(N->getDebugInfoForProfiling()); 1600 Record.push_back(N->getGnuPubnames()); 1601 1602 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1603 Record.clear(); 1604 } 1605 1606 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1607 SmallVectorImpl<uint64_t> &Record, 1608 unsigned Abbrev) { 1609 uint64_t HasUnitFlag = 1 << 1; 1610 Record.push_back(N->isDistinct() | HasUnitFlag); 1611 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1612 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1613 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1614 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1615 Record.push_back(N->getLine()); 1616 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1617 Record.push_back(N->isLocalToUnit()); 1618 Record.push_back(N->isDefinition()); 1619 Record.push_back(N->getScopeLine()); 1620 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1621 Record.push_back(N->getVirtuality()); 1622 Record.push_back(N->getVirtualIndex()); 1623 Record.push_back(N->getFlags()); 1624 Record.push_back(N->isOptimized()); 1625 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1626 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1627 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1628 Record.push_back(VE.getMetadataOrNullID(N->getVariables().get())); 1629 Record.push_back(N->getThisAdjustment()); 1630 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1631 1632 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1633 Record.clear(); 1634 } 1635 1636 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1637 SmallVectorImpl<uint64_t> &Record, 1638 unsigned Abbrev) { 1639 Record.push_back(N->isDistinct()); 1640 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1641 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1642 Record.push_back(N->getLine()); 1643 Record.push_back(N->getColumn()); 1644 1645 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1646 Record.clear(); 1647 } 1648 1649 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1650 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1651 unsigned Abbrev) { 1652 Record.push_back(N->isDistinct()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1655 Record.push_back(N->getDiscriminator()); 1656 1657 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1662 SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1665 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1666 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1667 1668 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1669 Record.clear(); 1670 } 1671 1672 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1673 SmallVectorImpl<uint64_t> &Record, 1674 unsigned Abbrev) { 1675 Record.push_back(N->isDistinct()); 1676 Record.push_back(N->getMacinfoType()); 1677 Record.push_back(N->getLine()); 1678 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1679 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1680 1681 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1682 Record.clear(); 1683 } 1684 1685 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1686 SmallVectorImpl<uint64_t> &Record, 1687 unsigned Abbrev) { 1688 Record.push_back(N->isDistinct()); 1689 Record.push_back(N->getMacinfoType()); 1690 Record.push_back(N->getLine()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1692 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1693 1694 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1695 Record.clear(); 1696 } 1697 1698 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1699 SmallVectorImpl<uint64_t> &Record, 1700 unsigned Abbrev) { 1701 Record.push_back(N->isDistinct()); 1702 for (auto &I : N->operands()) 1703 Record.push_back(VE.getMetadataOrNullID(I)); 1704 1705 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1706 Record.clear(); 1707 } 1708 1709 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1710 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1711 unsigned Abbrev) { 1712 Record.push_back(N->isDistinct()); 1713 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1714 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1715 1716 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1717 Record.clear(); 1718 } 1719 1720 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1721 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1722 unsigned Abbrev) { 1723 Record.push_back(N->isDistinct()); 1724 Record.push_back(N->getTag()); 1725 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1726 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1727 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1728 1729 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1730 Record.clear(); 1731 } 1732 1733 void ModuleBitcodeWriter::writeDIGlobalVariable( 1734 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1735 unsigned Abbrev) { 1736 const uint64_t Version = 1 << 1; 1737 Record.push_back((uint64_t)N->isDistinct() | Version); 1738 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1739 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1740 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1741 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1742 Record.push_back(N->getLine()); 1743 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1744 Record.push_back(N->isLocalToUnit()); 1745 Record.push_back(N->isDefinition()); 1746 Record.push_back(/* expr */ 0); 1747 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1748 Record.push_back(N->getAlignInBits()); 1749 1750 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 void ModuleBitcodeWriter::writeDILocalVariable( 1755 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1756 unsigned Abbrev) { 1757 // In order to support all possible bitcode formats in BitcodeReader we need 1758 // to distinguish the following cases: 1759 // 1) Record has no artificial tag (Record[1]), 1760 // has no obsolete inlinedAt field (Record[9]). 1761 // In this case Record size will be 8, HasAlignment flag is false. 1762 // 2) Record has artificial tag (Record[1]), 1763 // has no obsolete inlignedAt field (Record[9]). 1764 // In this case Record size will be 9, HasAlignment flag is false. 1765 // 3) Record has both artificial tag (Record[1]) and 1766 // obsolete inlignedAt field (Record[9]). 1767 // In this case Record size will be 10, HasAlignment flag is false. 1768 // 4) Record has neither artificial tag, nor inlignedAt field, but 1769 // HasAlignment flag is true and Record[8] contains alignment value. 1770 const uint64_t HasAlignmentFlag = 1 << 1; 1771 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1772 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1773 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1774 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1775 Record.push_back(N->getLine()); 1776 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1777 Record.push_back(N->getArg()); 1778 Record.push_back(N->getFlags()); 1779 Record.push_back(N->getAlignInBits()); 1780 1781 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1782 Record.clear(); 1783 } 1784 1785 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1786 SmallVectorImpl<uint64_t> &Record, 1787 unsigned Abbrev) { 1788 Record.reserve(N->getElements().size() + 1); 1789 const uint64_t Version = 3 << 1; 1790 Record.push_back((uint64_t)N->isDistinct() | Version); 1791 Record.append(N->elements_begin(), N->elements_end()); 1792 1793 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1794 Record.clear(); 1795 } 1796 1797 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1798 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1799 unsigned Abbrev) { 1800 Record.push_back(N->isDistinct()); 1801 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1802 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1803 1804 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1805 Record.clear(); 1806 } 1807 1808 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1809 SmallVectorImpl<uint64_t> &Record, 1810 unsigned Abbrev) { 1811 Record.push_back(N->isDistinct()); 1812 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1813 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1814 Record.push_back(N->getLine()); 1815 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1816 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1817 Record.push_back(N->getAttributes()); 1818 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1819 1820 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1821 Record.clear(); 1822 } 1823 1824 void ModuleBitcodeWriter::writeDIImportedEntity( 1825 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1826 unsigned Abbrev) { 1827 Record.push_back(N->isDistinct()); 1828 Record.push_back(N->getTag()); 1829 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1830 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1831 Record.push_back(N->getLine()); 1832 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1834 1835 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1836 Record.clear(); 1837 } 1838 1839 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1840 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1841 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1844 return Stream.EmitAbbrev(std::move(Abbv)); 1845 } 1846 1847 void ModuleBitcodeWriter::writeNamedMetadata( 1848 SmallVectorImpl<uint64_t> &Record) { 1849 if (M.named_metadata_empty()) 1850 return; 1851 1852 unsigned Abbrev = createNamedMetadataAbbrev(); 1853 for (const NamedMDNode &NMD : M.named_metadata()) { 1854 // Write name. 1855 StringRef Str = NMD.getName(); 1856 Record.append(Str.bytes_begin(), Str.bytes_end()); 1857 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1858 Record.clear(); 1859 1860 // Write named metadata operands. 1861 for (const MDNode *N : NMD.operands()) 1862 Record.push_back(VE.getMetadataID(N)); 1863 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1864 Record.clear(); 1865 } 1866 } 1867 1868 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1869 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1870 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1874 return Stream.EmitAbbrev(std::move(Abbv)); 1875 } 1876 1877 /// Write out a record for MDString. 1878 /// 1879 /// All the metadata strings in a metadata block are emitted in a single 1880 /// record. The sizes and strings themselves are shoved into a blob. 1881 void ModuleBitcodeWriter::writeMetadataStrings( 1882 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1883 if (Strings.empty()) 1884 return; 1885 1886 // Start the record with the number of strings. 1887 Record.push_back(bitc::METADATA_STRINGS); 1888 Record.push_back(Strings.size()); 1889 1890 // Emit the sizes of the strings in the blob. 1891 SmallString<256> Blob; 1892 { 1893 BitstreamWriter W(Blob); 1894 for (const Metadata *MD : Strings) 1895 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1896 W.FlushToWord(); 1897 } 1898 1899 // Add the offset to the strings to the record. 1900 Record.push_back(Blob.size()); 1901 1902 // Add the strings to the blob. 1903 for (const Metadata *MD : Strings) 1904 Blob.append(cast<MDString>(MD)->getString()); 1905 1906 // Emit the final record. 1907 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 1908 Record.clear(); 1909 } 1910 1911 // Generates an enum to use as an index in the Abbrev array of Metadata record. 1912 enum MetadataAbbrev : unsigned { 1913 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 1914 #include "llvm/IR/Metadata.def" 1915 LastPlusOne 1916 }; 1917 1918 void ModuleBitcodeWriter::writeMetadataRecords( 1919 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 1920 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 1921 if (MDs.empty()) 1922 return; 1923 1924 // Initialize MDNode abbreviations. 1925 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1926 #include "llvm/IR/Metadata.def" 1927 1928 for (const Metadata *MD : MDs) { 1929 if (IndexPos) 1930 IndexPos->push_back(Stream.GetCurrentBitNo()); 1931 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1932 assert(N->isResolved() && "Expected forward references to be resolved"); 1933 1934 switch (N->getMetadataID()) { 1935 default: 1936 llvm_unreachable("Invalid MDNode subclass"); 1937 #define HANDLE_MDNODE_LEAF(CLASS) \ 1938 case Metadata::CLASS##Kind: \ 1939 if (MDAbbrevs) \ 1940 write##CLASS(cast<CLASS>(N), Record, \ 1941 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 1942 else \ 1943 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 1944 continue; 1945 #include "llvm/IR/Metadata.def" 1946 } 1947 } 1948 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 1949 } 1950 } 1951 1952 void ModuleBitcodeWriter::writeModuleMetadata() { 1953 if (!VE.hasMDs() && M.named_metadata_empty()) 1954 return; 1955 1956 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 1957 SmallVector<uint64_t, 64> Record; 1958 1959 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 1960 // block and load any metadata. 1961 std::vector<unsigned> MDAbbrevs; 1962 1963 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 1964 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 1965 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 1966 createGenericDINodeAbbrev(); 1967 1968 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1969 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 1970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1972 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1973 1974 Abbv = std::make_shared<BitCodeAbbrev>(); 1975 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 1976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1977 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1978 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1979 1980 // Emit MDStrings together upfront. 1981 writeMetadataStrings(VE.getMDStrings(), Record); 1982 1983 // We only emit an index for the metadata record if we have more than a given 1984 // (naive) threshold of metadatas, otherwise it is not worth it. 1985 if (VE.getNonMDStrings().size() > IndexThreshold) { 1986 // Write a placeholder value in for the offset of the metadata index, 1987 // which is written after the records, so that it can include 1988 // the offset of each entry. The placeholder offset will be 1989 // updated after all records are emitted. 1990 uint64_t Vals[] = {0, 0}; 1991 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 1992 } 1993 1994 // Compute and save the bit offset to the current position, which will be 1995 // patched when we emit the index later. We can simply subtract the 64-bit 1996 // fixed size from the current bit number to get the location to backpatch. 1997 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 1998 1999 // This index will contain the bitpos for each individual record. 2000 std::vector<uint64_t> IndexPos; 2001 IndexPos.reserve(VE.getNonMDStrings().size()); 2002 2003 // Write all the records 2004 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2005 2006 if (VE.getNonMDStrings().size() > IndexThreshold) { 2007 // Now that we have emitted all the records we will emit the index. But 2008 // first 2009 // backpatch the forward reference so that the reader can skip the records 2010 // efficiently. 2011 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2012 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2013 2014 // Delta encode the index. 2015 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2016 for (auto &Elt : IndexPos) { 2017 auto EltDelta = Elt - PreviousValue; 2018 PreviousValue = Elt; 2019 Elt = EltDelta; 2020 } 2021 // Emit the index record. 2022 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2023 IndexPos.clear(); 2024 } 2025 2026 // Write the named metadata now. 2027 writeNamedMetadata(Record); 2028 2029 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2030 SmallVector<uint64_t, 4> Record; 2031 Record.push_back(VE.getValueID(&GO)); 2032 pushGlobalMetadataAttachment(Record, GO); 2033 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2034 }; 2035 for (const Function &F : M) 2036 if (F.isDeclaration() && F.hasMetadata()) 2037 AddDeclAttachedMetadata(F); 2038 // FIXME: Only store metadata for declarations here, and move data for global 2039 // variable definitions to a separate block (PR28134). 2040 for (const GlobalVariable &GV : M.globals()) 2041 if (GV.hasMetadata()) 2042 AddDeclAttachedMetadata(GV); 2043 2044 Stream.ExitBlock(); 2045 } 2046 2047 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2048 if (!VE.hasMDs()) 2049 return; 2050 2051 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2052 SmallVector<uint64_t, 64> Record; 2053 writeMetadataStrings(VE.getMDStrings(), Record); 2054 writeMetadataRecords(VE.getNonMDStrings(), Record); 2055 Stream.ExitBlock(); 2056 } 2057 2058 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2059 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2060 // [n x [id, mdnode]] 2061 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2062 GO.getAllMetadata(MDs); 2063 for (const auto &I : MDs) { 2064 Record.push_back(I.first); 2065 Record.push_back(VE.getMetadataID(I.second)); 2066 } 2067 } 2068 2069 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2070 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2071 2072 SmallVector<uint64_t, 64> Record; 2073 2074 if (F.hasMetadata()) { 2075 pushGlobalMetadataAttachment(Record, F); 2076 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2077 Record.clear(); 2078 } 2079 2080 // Write metadata attachments 2081 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2082 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2083 for (const BasicBlock &BB : F) 2084 for (const Instruction &I : BB) { 2085 MDs.clear(); 2086 I.getAllMetadataOtherThanDebugLoc(MDs); 2087 2088 // If no metadata, ignore instruction. 2089 if (MDs.empty()) continue; 2090 2091 Record.push_back(VE.getInstructionID(&I)); 2092 2093 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2094 Record.push_back(MDs[i].first); 2095 Record.push_back(VE.getMetadataID(MDs[i].second)); 2096 } 2097 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2098 Record.clear(); 2099 } 2100 2101 Stream.ExitBlock(); 2102 } 2103 2104 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2105 SmallVector<uint64_t, 64> Record; 2106 2107 // Write metadata kinds 2108 // METADATA_KIND - [n x [id, name]] 2109 SmallVector<StringRef, 8> Names; 2110 M.getMDKindNames(Names); 2111 2112 if (Names.empty()) return; 2113 2114 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2115 2116 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2117 Record.push_back(MDKindID); 2118 StringRef KName = Names[MDKindID]; 2119 Record.append(KName.begin(), KName.end()); 2120 2121 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2122 Record.clear(); 2123 } 2124 2125 Stream.ExitBlock(); 2126 } 2127 2128 void ModuleBitcodeWriter::writeOperandBundleTags() { 2129 // Write metadata kinds 2130 // 2131 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2132 // 2133 // OPERAND_BUNDLE_TAG - [strchr x N] 2134 2135 SmallVector<StringRef, 8> Tags; 2136 M.getOperandBundleTags(Tags); 2137 2138 if (Tags.empty()) 2139 return; 2140 2141 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2142 2143 SmallVector<uint64_t, 64> Record; 2144 2145 for (auto Tag : Tags) { 2146 Record.append(Tag.begin(), Tag.end()); 2147 2148 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2149 Record.clear(); 2150 } 2151 2152 Stream.ExitBlock(); 2153 } 2154 2155 void ModuleBitcodeWriter::writeSyncScopeNames() { 2156 SmallVector<StringRef, 8> SSNs; 2157 M.getContext().getSyncScopeNames(SSNs); 2158 if (SSNs.empty()) 2159 return; 2160 2161 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2162 2163 SmallVector<uint64_t, 64> Record; 2164 for (auto SSN : SSNs) { 2165 Record.append(SSN.begin(), SSN.end()); 2166 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2167 Record.clear(); 2168 } 2169 2170 Stream.ExitBlock(); 2171 } 2172 2173 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2174 if ((int64_t)V >= 0) 2175 Vals.push_back(V << 1); 2176 else 2177 Vals.push_back((-V << 1) | 1); 2178 } 2179 2180 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2181 bool isGlobal) { 2182 if (FirstVal == LastVal) return; 2183 2184 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2185 2186 unsigned AggregateAbbrev = 0; 2187 unsigned String8Abbrev = 0; 2188 unsigned CString7Abbrev = 0; 2189 unsigned CString6Abbrev = 0; 2190 // If this is a constant pool for the module, emit module-specific abbrevs. 2191 if (isGlobal) { 2192 // Abbrev for CST_CODE_AGGREGATE. 2193 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2194 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2197 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2198 2199 // Abbrev for CST_CODE_STRING. 2200 Abbv = std::make_shared<BitCodeAbbrev>(); 2201 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2204 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2205 // Abbrev for CST_CODE_CSTRING. 2206 Abbv = std::make_shared<BitCodeAbbrev>(); 2207 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2210 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2211 // Abbrev for CST_CODE_CSTRING. 2212 Abbv = std::make_shared<BitCodeAbbrev>(); 2213 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2214 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2216 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2217 } 2218 2219 SmallVector<uint64_t, 64> Record; 2220 2221 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2222 Type *LastTy = nullptr; 2223 for (unsigned i = FirstVal; i != LastVal; ++i) { 2224 const Value *V = Vals[i].first; 2225 // If we need to switch types, do so now. 2226 if (V->getType() != LastTy) { 2227 LastTy = V->getType(); 2228 Record.push_back(VE.getTypeID(LastTy)); 2229 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2230 CONSTANTS_SETTYPE_ABBREV); 2231 Record.clear(); 2232 } 2233 2234 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2235 Record.push_back(unsigned(IA->hasSideEffects()) | 2236 unsigned(IA->isAlignStack()) << 1 | 2237 unsigned(IA->getDialect()&1) << 2); 2238 2239 // Add the asm string. 2240 const std::string &AsmStr = IA->getAsmString(); 2241 Record.push_back(AsmStr.size()); 2242 Record.append(AsmStr.begin(), AsmStr.end()); 2243 2244 // Add the constraint string. 2245 const std::string &ConstraintStr = IA->getConstraintString(); 2246 Record.push_back(ConstraintStr.size()); 2247 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2248 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2249 Record.clear(); 2250 continue; 2251 } 2252 const Constant *C = cast<Constant>(V); 2253 unsigned Code = -1U; 2254 unsigned AbbrevToUse = 0; 2255 if (C->isNullValue()) { 2256 Code = bitc::CST_CODE_NULL; 2257 } else if (isa<UndefValue>(C)) { 2258 Code = bitc::CST_CODE_UNDEF; 2259 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2260 if (IV->getBitWidth() <= 64) { 2261 uint64_t V = IV->getSExtValue(); 2262 emitSignedInt64(Record, V); 2263 Code = bitc::CST_CODE_INTEGER; 2264 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2265 } else { // Wide integers, > 64 bits in size. 2266 // We have an arbitrary precision integer value to write whose 2267 // bit width is > 64. However, in canonical unsigned integer 2268 // format it is likely that the high bits are going to be zero. 2269 // So, we only write the number of active words. 2270 unsigned NWords = IV->getValue().getActiveWords(); 2271 const uint64_t *RawWords = IV->getValue().getRawData(); 2272 for (unsigned i = 0; i != NWords; ++i) { 2273 emitSignedInt64(Record, RawWords[i]); 2274 } 2275 Code = bitc::CST_CODE_WIDE_INTEGER; 2276 } 2277 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2278 Code = bitc::CST_CODE_FLOAT; 2279 Type *Ty = CFP->getType(); 2280 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2281 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2282 } else if (Ty->isX86_FP80Ty()) { 2283 // api needed to prevent premature destruction 2284 // bits are not in the same order as a normal i80 APInt, compensate. 2285 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2286 const uint64_t *p = api.getRawData(); 2287 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2288 Record.push_back(p[0] & 0xffffLL); 2289 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2290 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2291 const uint64_t *p = api.getRawData(); 2292 Record.push_back(p[0]); 2293 Record.push_back(p[1]); 2294 } else { 2295 assert(0 && "Unknown FP type!"); 2296 } 2297 } else if (isa<ConstantDataSequential>(C) && 2298 cast<ConstantDataSequential>(C)->isString()) { 2299 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2300 // Emit constant strings specially. 2301 unsigned NumElts = Str->getNumElements(); 2302 // If this is a null-terminated string, use the denser CSTRING encoding. 2303 if (Str->isCString()) { 2304 Code = bitc::CST_CODE_CSTRING; 2305 --NumElts; // Don't encode the null, which isn't allowed by char6. 2306 } else { 2307 Code = bitc::CST_CODE_STRING; 2308 AbbrevToUse = String8Abbrev; 2309 } 2310 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2311 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2312 for (unsigned i = 0; i != NumElts; ++i) { 2313 unsigned char V = Str->getElementAsInteger(i); 2314 Record.push_back(V); 2315 isCStr7 &= (V & 128) == 0; 2316 if (isCStrChar6) 2317 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2318 } 2319 2320 if (isCStrChar6) 2321 AbbrevToUse = CString6Abbrev; 2322 else if (isCStr7) 2323 AbbrevToUse = CString7Abbrev; 2324 } else if (const ConstantDataSequential *CDS = 2325 dyn_cast<ConstantDataSequential>(C)) { 2326 Code = bitc::CST_CODE_DATA; 2327 Type *EltTy = CDS->getType()->getElementType(); 2328 if (isa<IntegerType>(EltTy)) { 2329 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2330 Record.push_back(CDS->getElementAsInteger(i)); 2331 } else { 2332 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2333 Record.push_back( 2334 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2335 } 2336 } else if (isa<ConstantAggregate>(C)) { 2337 Code = bitc::CST_CODE_AGGREGATE; 2338 for (const Value *Op : C->operands()) 2339 Record.push_back(VE.getValueID(Op)); 2340 AbbrevToUse = AggregateAbbrev; 2341 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2342 switch (CE->getOpcode()) { 2343 default: 2344 if (Instruction::isCast(CE->getOpcode())) { 2345 Code = bitc::CST_CODE_CE_CAST; 2346 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2347 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2348 Record.push_back(VE.getValueID(C->getOperand(0))); 2349 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2350 } else { 2351 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2352 Code = bitc::CST_CODE_CE_BINOP; 2353 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2354 Record.push_back(VE.getValueID(C->getOperand(0))); 2355 Record.push_back(VE.getValueID(C->getOperand(1))); 2356 uint64_t Flags = getOptimizationFlags(CE); 2357 if (Flags != 0) 2358 Record.push_back(Flags); 2359 } 2360 break; 2361 case Instruction::GetElementPtr: { 2362 Code = bitc::CST_CODE_CE_GEP; 2363 const auto *GO = cast<GEPOperator>(C); 2364 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2365 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2366 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2367 Record.push_back((*Idx << 1) | GO->isInBounds()); 2368 } else if (GO->isInBounds()) 2369 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2370 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2371 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2372 Record.push_back(VE.getValueID(C->getOperand(i))); 2373 } 2374 break; 2375 } 2376 case Instruction::Select: 2377 Code = bitc::CST_CODE_CE_SELECT; 2378 Record.push_back(VE.getValueID(C->getOperand(0))); 2379 Record.push_back(VE.getValueID(C->getOperand(1))); 2380 Record.push_back(VE.getValueID(C->getOperand(2))); 2381 break; 2382 case Instruction::ExtractElement: 2383 Code = bitc::CST_CODE_CE_EXTRACTELT; 2384 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2385 Record.push_back(VE.getValueID(C->getOperand(0))); 2386 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2387 Record.push_back(VE.getValueID(C->getOperand(1))); 2388 break; 2389 case Instruction::InsertElement: 2390 Code = bitc::CST_CODE_CE_INSERTELT; 2391 Record.push_back(VE.getValueID(C->getOperand(0))); 2392 Record.push_back(VE.getValueID(C->getOperand(1))); 2393 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2394 Record.push_back(VE.getValueID(C->getOperand(2))); 2395 break; 2396 case Instruction::ShuffleVector: 2397 // If the return type and argument types are the same, this is a 2398 // standard shufflevector instruction. If the types are different, 2399 // then the shuffle is widening or truncating the input vectors, and 2400 // the argument type must also be encoded. 2401 if (C->getType() == C->getOperand(0)->getType()) { 2402 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2403 } else { 2404 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2405 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2406 } 2407 Record.push_back(VE.getValueID(C->getOperand(0))); 2408 Record.push_back(VE.getValueID(C->getOperand(1))); 2409 Record.push_back(VE.getValueID(C->getOperand(2))); 2410 break; 2411 case Instruction::ICmp: 2412 case Instruction::FCmp: 2413 Code = bitc::CST_CODE_CE_CMP; 2414 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2415 Record.push_back(VE.getValueID(C->getOperand(0))); 2416 Record.push_back(VE.getValueID(C->getOperand(1))); 2417 Record.push_back(CE->getPredicate()); 2418 break; 2419 } 2420 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2421 Code = bitc::CST_CODE_BLOCKADDRESS; 2422 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2423 Record.push_back(VE.getValueID(BA->getFunction())); 2424 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2425 } else { 2426 #ifndef NDEBUG 2427 C->dump(); 2428 #endif 2429 llvm_unreachable("Unknown constant!"); 2430 } 2431 Stream.EmitRecord(Code, Record, AbbrevToUse); 2432 Record.clear(); 2433 } 2434 2435 Stream.ExitBlock(); 2436 } 2437 2438 void ModuleBitcodeWriter::writeModuleConstants() { 2439 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2440 2441 // Find the first constant to emit, which is the first non-globalvalue value. 2442 // We know globalvalues have been emitted by WriteModuleInfo. 2443 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2444 if (!isa<GlobalValue>(Vals[i].first)) { 2445 writeConstants(i, Vals.size(), true); 2446 return; 2447 } 2448 } 2449 } 2450 2451 /// pushValueAndType - The file has to encode both the value and type id for 2452 /// many values, because we need to know what type to create for forward 2453 /// references. However, most operands are not forward references, so this type 2454 /// field is not needed. 2455 /// 2456 /// This function adds V's value ID to Vals. If the value ID is higher than the 2457 /// instruction ID, then it is a forward reference, and it also includes the 2458 /// type ID. The value ID that is written is encoded relative to the InstID. 2459 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2460 SmallVectorImpl<unsigned> &Vals) { 2461 unsigned ValID = VE.getValueID(V); 2462 // Make encoding relative to the InstID. 2463 Vals.push_back(InstID - ValID); 2464 if (ValID >= InstID) { 2465 Vals.push_back(VE.getTypeID(V->getType())); 2466 return true; 2467 } 2468 return false; 2469 } 2470 2471 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2472 unsigned InstID) { 2473 SmallVector<unsigned, 64> Record; 2474 LLVMContext &C = CS.getInstruction()->getContext(); 2475 2476 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2477 const auto &Bundle = CS.getOperandBundleAt(i); 2478 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2479 2480 for (auto &Input : Bundle.Inputs) 2481 pushValueAndType(Input, InstID, Record); 2482 2483 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2484 Record.clear(); 2485 } 2486 } 2487 2488 /// pushValue - Like pushValueAndType, but where the type of the value is 2489 /// omitted (perhaps it was already encoded in an earlier operand). 2490 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2491 SmallVectorImpl<unsigned> &Vals) { 2492 unsigned ValID = VE.getValueID(V); 2493 Vals.push_back(InstID - ValID); 2494 } 2495 2496 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2497 SmallVectorImpl<uint64_t> &Vals) { 2498 unsigned ValID = VE.getValueID(V); 2499 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2500 emitSignedInt64(Vals, diff); 2501 } 2502 2503 /// WriteInstruction - Emit an instruction to the specified stream. 2504 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2505 unsigned InstID, 2506 SmallVectorImpl<unsigned> &Vals) { 2507 unsigned Code = 0; 2508 unsigned AbbrevToUse = 0; 2509 VE.setInstructionID(&I); 2510 switch (I.getOpcode()) { 2511 default: 2512 if (Instruction::isCast(I.getOpcode())) { 2513 Code = bitc::FUNC_CODE_INST_CAST; 2514 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2515 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2516 Vals.push_back(VE.getTypeID(I.getType())); 2517 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2518 } else { 2519 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2520 Code = bitc::FUNC_CODE_INST_BINOP; 2521 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2522 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2523 pushValue(I.getOperand(1), InstID, Vals); 2524 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2525 uint64_t Flags = getOptimizationFlags(&I); 2526 if (Flags != 0) { 2527 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2528 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2529 Vals.push_back(Flags); 2530 } 2531 } 2532 break; 2533 2534 case Instruction::GetElementPtr: { 2535 Code = bitc::FUNC_CODE_INST_GEP; 2536 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2537 auto &GEPInst = cast<GetElementPtrInst>(I); 2538 Vals.push_back(GEPInst.isInBounds()); 2539 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2540 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2541 pushValueAndType(I.getOperand(i), InstID, Vals); 2542 break; 2543 } 2544 case Instruction::ExtractValue: { 2545 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2546 pushValueAndType(I.getOperand(0), InstID, Vals); 2547 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2548 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2549 break; 2550 } 2551 case Instruction::InsertValue: { 2552 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2553 pushValueAndType(I.getOperand(0), InstID, Vals); 2554 pushValueAndType(I.getOperand(1), InstID, Vals); 2555 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2556 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2557 break; 2558 } 2559 case Instruction::Select: 2560 Code = bitc::FUNC_CODE_INST_VSELECT; 2561 pushValueAndType(I.getOperand(1), InstID, Vals); 2562 pushValue(I.getOperand(2), InstID, Vals); 2563 pushValueAndType(I.getOperand(0), InstID, Vals); 2564 break; 2565 case Instruction::ExtractElement: 2566 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2567 pushValueAndType(I.getOperand(0), InstID, Vals); 2568 pushValueAndType(I.getOperand(1), InstID, Vals); 2569 break; 2570 case Instruction::InsertElement: 2571 Code = bitc::FUNC_CODE_INST_INSERTELT; 2572 pushValueAndType(I.getOperand(0), InstID, Vals); 2573 pushValue(I.getOperand(1), InstID, Vals); 2574 pushValueAndType(I.getOperand(2), InstID, Vals); 2575 break; 2576 case Instruction::ShuffleVector: 2577 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2578 pushValueAndType(I.getOperand(0), InstID, Vals); 2579 pushValue(I.getOperand(1), InstID, Vals); 2580 pushValue(I.getOperand(2), InstID, Vals); 2581 break; 2582 case Instruction::ICmp: 2583 case Instruction::FCmp: { 2584 // compare returning Int1Ty or vector of Int1Ty 2585 Code = bitc::FUNC_CODE_INST_CMP2; 2586 pushValueAndType(I.getOperand(0), InstID, Vals); 2587 pushValue(I.getOperand(1), InstID, Vals); 2588 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2589 uint64_t Flags = getOptimizationFlags(&I); 2590 if (Flags != 0) 2591 Vals.push_back(Flags); 2592 break; 2593 } 2594 2595 case Instruction::Ret: 2596 { 2597 Code = bitc::FUNC_CODE_INST_RET; 2598 unsigned NumOperands = I.getNumOperands(); 2599 if (NumOperands == 0) 2600 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2601 else if (NumOperands == 1) { 2602 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2603 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2604 } else { 2605 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2606 pushValueAndType(I.getOperand(i), InstID, Vals); 2607 } 2608 } 2609 break; 2610 case Instruction::Br: 2611 { 2612 Code = bitc::FUNC_CODE_INST_BR; 2613 const BranchInst &II = cast<BranchInst>(I); 2614 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2615 if (II.isConditional()) { 2616 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2617 pushValue(II.getCondition(), InstID, Vals); 2618 } 2619 } 2620 break; 2621 case Instruction::Switch: 2622 { 2623 Code = bitc::FUNC_CODE_INST_SWITCH; 2624 const SwitchInst &SI = cast<SwitchInst>(I); 2625 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2626 pushValue(SI.getCondition(), InstID, Vals); 2627 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2628 for (auto Case : SI.cases()) { 2629 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2630 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2631 } 2632 } 2633 break; 2634 case Instruction::IndirectBr: 2635 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2636 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2637 // Encode the address operand as relative, but not the basic blocks. 2638 pushValue(I.getOperand(0), InstID, Vals); 2639 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2640 Vals.push_back(VE.getValueID(I.getOperand(i))); 2641 break; 2642 2643 case Instruction::Invoke: { 2644 const InvokeInst *II = cast<InvokeInst>(&I); 2645 const Value *Callee = II->getCalledValue(); 2646 FunctionType *FTy = II->getFunctionType(); 2647 2648 if (II->hasOperandBundles()) 2649 writeOperandBundles(II, InstID); 2650 2651 Code = bitc::FUNC_CODE_INST_INVOKE; 2652 2653 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2654 Vals.push_back(II->getCallingConv() | 1 << 13); 2655 Vals.push_back(VE.getValueID(II->getNormalDest())); 2656 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2657 Vals.push_back(VE.getTypeID(FTy)); 2658 pushValueAndType(Callee, InstID, Vals); 2659 2660 // Emit value #'s for the fixed parameters. 2661 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2662 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2663 2664 // Emit type/value pairs for varargs params. 2665 if (FTy->isVarArg()) { 2666 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2667 i != e; ++i) 2668 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2669 } 2670 break; 2671 } 2672 case Instruction::Resume: 2673 Code = bitc::FUNC_CODE_INST_RESUME; 2674 pushValueAndType(I.getOperand(0), InstID, Vals); 2675 break; 2676 case Instruction::CleanupRet: { 2677 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2678 const auto &CRI = cast<CleanupReturnInst>(I); 2679 pushValue(CRI.getCleanupPad(), InstID, Vals); 2680 if (CRI.hasUnwindDest()) 2681 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2682 break; 2683 } 2684 case Instruction::CatchRet: { 2685 Code = bitc::FUNC_CODE_INST_CATCHRET; 2686 const auto &CRI = cast<CatchReturnInst>(I); 2687 pushValue(CRI.getCatchPad(), InstID, Vals); 2688 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2689 break; 2690 } 2691 case Instruction::CleanupPad: 2692 case Instruction::CatchPad: { 2693 const auto &FuncletPad = cast<FuncletPadInst>(I); 2694 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2695 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2696 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2697 2698 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2699 Vals.push_back(NumArgOperands); 2700 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2701 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2702 break; 2703 } 2704 case Instruction::CatchSwitch: { 2705 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2706 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2707 2708 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2709 2710 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2711 Vals.push_back(NumHandlers); 2712 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2713 Vals.push_back(VE.getValueID(CatchPadBB)); 2714 2715 if (CatchSwitch.hasUnwindDest()) 2716 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2717 break; 2718 } 2719 case Instruction::Unreachable: 2720 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2721 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2722 break; 2723 2724 case Instruction::PHI: { 2725 const PHINode &PN = cast<PHINode>(I); 2726 Code = bitc::FUNC_CODE_INST_PHI; 2727 // With the newer instruction encoding, forward references could give 2728 // negative valued IDs. This is most common for PHIs, so we use 2729 // signed VBRs. 2730 SmallVector<uint64_t, 128> Vals64; 2731 Vals64.push_back(VE.getTypeID(PN.getType())); 2732 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2733 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2734 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2735 } 2736 // Emit a Vals64 vector and exit. 2737 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2738 Vals64.clear(); 2739 return; 2740 } 2741 2742 case Instruction::LandingPad: { 2743 const LandingPadInst &LP = cast<LandingPadInst>(I); 2744 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2745 Vals.push_back(VE.getTypeID(LP.getType())); 2746 Vals.push_back(LP.isCleanup()); 2747 Vals.push_back(LP.getNumClauses()); 2748 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2749 if (LP.isCatch(I)) 2750 Vals.push_back(LandingPadInst::Catch); 2751 else 2752 Vals.push_back(LandingPadInst::Filter); 2753 pushValueAndType(LP.getClause(I), InstID, Vals); 2754 } 2755 break; 2756 } 2757 2758 case Instruction::Alloca: { 2759 Code = bitc::FUNC_CODE_INST_ALLOCA; 2760 const AllocaInst &AI = cast<AllocaInst>(I); 2761 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2762 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2763 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2764 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2765 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2766 "not enough bits for maximum alignment"); 2767 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2768 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2769 AlignRecord |= 1 << 6; 2770 AlignRecord |= AI.isSwiftError() << 7; 2771 Vals.push_back(AlignRecord); 2772 break; 2773 } 2774 2775 case Instruction::Load: 2776 if (cast<LoadInst>(I).isAtomic()) { 2777 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2778 pushValueAndType(I.getOperand(0), InstID, Vals); 2779 } else { 2780 Code = bitc::FUNC_CODE_INST_LOAD; 2781 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2782 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2783 } 2784 Vals.push_back(VE.getTypeID(I.getType())); 2785 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2786 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2787 if (cast<LoadInst>(I).isAtomic()) { 2788 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2789 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2790 } 2791 break; 2792 case Instruction::Store: 2793 if (cast<StoreInst>(I).isAtomic()) 2794 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2795 else 2796 Code = bitc::FUNC_CODE_INST_STORE; 2797 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2798 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2799 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2800 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2801 if (cast<StoreInst>(I).isAtomic()) { 2802 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2803 Vals.push_back( 2804 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2805 } 2806 break; 2807 case Instruction::AtomicCmpXchg: 2808 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2809 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2810 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2811 pushValue(I.getOperand(2), InstID, Vals); // newval. 2812 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2813 Vals.push_back( 2814 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2815 Vals.push_back( 2816 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2817 Vals.push_back( 2818 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2819 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2820 break; 2821 case Instruction::AtomicRMW: 2822 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2823 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2824 pushValue(I.getOperand(1), InstID, Vals); // val. 2825 Vals.push_back( 2826 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2827 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2828 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2829 Vals.push_back( 2830 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2831 break; 2832 case Instruction::Fence: 2833 Code = bitc::FUNC_CODE_INST_FENCE; 2834 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 2835 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 2836 break; 2837 case Instruction::Call: { 2838 const CallInst &CI = cast<CallInst>(I); 2839 FunctionType *FTy = CI.getFunctionType(); 2840 2841 if (CI.hasOperandBundles()) 2842 writeOperandBundles(&CI, InstID); 2843 2844 Code = bitc::FUNC_CODE_INST_CALL; 2845 2846 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 2847 2848 unsigned Flags = getOptimizationFlags(&I); 2849 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 2850 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 2851 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 2852 1 << bitc::CALL_EXPLICIT_TYPE | 2853 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 2854 unsigned(Flags != 0) << bitc::CALL_FMF); 2855 if (Flags != 0) 2856 Vals.push_back(Flags); 2857 2858 Vals.push_back(VE.getTypeID(FTy)); 2859 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 2860 2861 // Emit value #'s for the fixed parameters. 2862 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 2863 // Check for labels (can happen with asm labels). 2864 if (FTy->getParamType(i)->isLabelTy()) 2865 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 2866 else 2867 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 2868 } 2869 2870 // Emit type/value pairs for varargs params. 2871 if (FTy->isVarArg()) { 2872 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 2873 i != e; ++i) 2874 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 2875 } 2876 break; 2877 } 2878 case Instruction::VAArg: 2879 Code = bitc::FUNC_CODE_INST_VAARG; 2880 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 2881 pushValue(I.getOperand(0), InstID, Vals); // valist. 2882 Vals.push_back(VE.getTypeID(I.getType())); // restype. 2883 break; 2884 } 2885 2886 Stream.EmitRecord(Code, Vals, AbbrevToUse); 2887 Vals.clear(); 2888 } 2889 2890 /// Write a GlobalValue VST to the module. The purpose of this data structure is 2891 /// to allow clients to efficiently find the function body. 2892 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 2893 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 2894 // Get the offset of the VST we are writing, and backpatch it into 2895 // the VST forward declaration record. 2896 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 2897 // The BitcodeStartBit was the stream offset of the identification block. 2898 VSTOffset -= bitcodeStartBit(); 2899 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 2900 // Note that we add 1 here because the offset is relative to one word 2901 // before the start of the identification block, which was historically 2902 // always the start of the regular bitcode header. 2903 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 2904 2905 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2906 2907 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2908 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 2909 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 2911 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2912 2913 for (const Function &F : M) { 2914 uint64_t Record[2]; 2915 2916 if (F.isDeclaration()) 2917 continue; 2918 2919 Record[0] = VE.getValueID(&F); 2920 2921 // Save the word offset of the function (from the start of the 2922 // actual bitcode written to the stream). 2923 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 2924 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 2925 // Note that we add 1 here because the offset is relative to one word 2926 // before the start of the identification block, which was historically 2927 // always the start of the regular bitcode header. 2928 Record[1] = BitcodeIndex / 32 + 1; 2929 2930 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 2931 } 2932 2933 Stream.ExitBlock(); 2934 } 2935 2936 /// Emit names for arguments, instructions and basic blocks in a function. 2937 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 2938 const ValueSymbolTable &VST) { 2939 if (VST.empty()) 2940 return; 2941 2942 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 2943 2944 // FIXME: Set up the abbrev, we know how many values there are! 2945 // FIXME: We know if the type names can use 7-bit ascii. 2946 SmallVector<uint64_t, 64> NameVals; 2947 2948 for (const ValueName &Name : VST) { 2949 // Figure out the encoding to use for the name. 2950 StringEncoding Bits = getStringEncoding(Name.getKey()); 2951 2952 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2953 NameVals.push_back(VE.getValueID(Name.getValue())); 2954 2955 // VST_CODE_ENTRY: [valueid, namechar x N] 2956 // VST_CODE_BBENTRY: [bbid, namechar x N] 2957 unsigned Code; 2958 if (isa<BasicBlock>(Name.getValue())) { 2959 Code = bitc::VST_CODE_BBENTRY; 2960 if (Bits == SE_Char6) 2961 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2962 } else { 2963 Code = bitc::VST_CODE_ENTRY; 2964 if (Bits == SE_Char6) 2965 AbbrevToUse = VST_ENTRY_6_ABBREV; 2966 else if (Bits == SE_Fixed7) 2967 AbbrevToUse = VST_ENTRY_7_ABBREV; 2968 } 2969 2970 for (const auto P : Name.getKey()) 2971 NameVals.push_back((unsigned char)P); 2972 2973 // Emit the finished record. 2974 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2975 NameVals.clear(); 2976 } 2977 2978 Stream.ExitBlock(); 2979 } 2980 2981 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 2982 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2983 unsigned Code; 2984 if (isa<BasicBlock>(Order.V)) 2985 Code = bitc::USELIST_CODE_BB; 2986 else 2987 Code = bitc::USELIST_CODE_DEFAULT; 2988 2989 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 2990 Record.push_back(VE.getValueID(Order.V)); 2991 Stream.EmitRecord(Code, Record); 2992 } 2993 2994 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 2995 assert(VE.shouldPreserveUseListOrder() && 2996 "Expected to be preserving use-list order"); 2997 2998 auto hasMore = [&]() { 2999 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3000 }; 3001 if (!hasMore()) 3002 // Nothing to do. 3003 return; 3004 3005 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3006 while (hasMore()) { 3007 writeUseList(std::move(VE.UseListOrders.back())); 3008 VE.UseListOrders.pop_back(); 3009 } 3010 Stream.ExitBlock(); 3011 } 3012 3013 /// Emit a function body to the module stream. 3014 void ModuleBitcodeWriter::writeFunction( 3015 const Function &F, 3016 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3017 // Save the bitcode index of the start of this function block for recording 3018 // in the VST. 3019 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3020 3021 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3022 VE.incorporateFunction(F); 3023 3024 SmallVector<unsigned, 64> Vals; 3025 3026 // Emit the number of basic blocks, so the reader can create them ahead of 3027 // time. 3028 Vals.push_back(VE.getBasicBlocks().size()); 3029 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3030 Vals.clear(); 3031 3032 // If there are function-local constants, emit them now. 3033 unsigned CstStart, CstEnd; 3034 VE.getFunctionConstantRange(CstStart, CstEnd); 3035 writeConstants(CstStart, CstEnd, false); 3036 3037 // If there is function-local metadata, emit it now. 3038 writeFunctionMetadata(F); 3039 3040 // Keep a running idea of what the instruction ID is. 3041 unsigned InstID = CstEnd; 3042 3043 bool NeedsMetadataAttachment = F.hasMetadata(); 3044 3045 DILocation *LastDL = nullptr; 3046 // Finally, emit all the instructions, in order. 3047 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3048 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3049 I != E; ++I) { 3050 writeInstruction(*I, InstID, Vals); 3051 3052 if (!I->getType()->isVoidTy()) 3053 ++InstID; 3054 3055 // If the instruction has metadata, write a metadata attachment later. 3056 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3057 3058 // If the instruction has a debug location, emit it. 3059 DILocation *DL = I->getDebugLoc(); 3060 if (!DL) 3061 continue; 3062 3063 if (DL == LastDL) { 3064 // Just repeat the same debug loc as last time. 3065 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3066 continue; 3067 } 3068 3069 Vals.push_back(DL->getLine()); 3070 Vals.push_back(DL->getColumn()); 3071 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3072 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3073 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3074 Vals.clear(); 3075 3076 LastDL = DL; 3077 } 3078 3079 // Emit names for all the instructions etc. 3080 if (auto *Symtab = F.getValueSymbolTable()) 3081 writeFunctionLevelValueSymbolTable(*Symtab); 3082 3083 if (NeedsMetadataAttachment) 3084 writeFunctionMetadataAttachment(F); 3085 if (VE.shouldPreserveUseListOrder()) 3086 writeUseListBlock(&F); 3087 VE.purgeFunction(); 3088 Stream.ExitBlock(); 3089 } 3090 3091 // Emit blockinfo, which defines the standard abbreviations etc. 3092 void ModuleBitcodeWriter::writeBlockInfo() { 3093 // We only want to emit block info records for blocks that have multiple 3094 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3095 // Other blocks can define their abbrevs inline. 3096 Stream.EnterBlockInfoBlock(); 3097 3098 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3099 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3101 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3102 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3103 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3104 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3105 VST_ENTRY_8_ABBREV) 3106 llvm_unreachable("Unexpected abbrev ordering!"); 3107 } 3108 3109 { // 7-bit fixed width VST_CODE_ENTRY strings. 3110 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3111 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3112 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3113 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3114 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3115 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3116 VST_ENTRY_7_ABBREV) 3117 llvm_unreachable("Unexpected abbrev ordering!"); 3118 } 3119 { // 6-bit char6 VST_CODE_ENTRY strings. 3120 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3121 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3122 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3123 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3125 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3126 VST_ENTRY_6_ABBREV) 3127 llvm_unreachable("Unexpected abbrev ordering!"); 3128 } 3129 { // 6-bit char6 VST_CODE_BBENTRY strings. 3130 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3131 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3132 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3134 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3135 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3136 VST_BBENTRY_6_ABBREV) 3137 llvm_unreachable("Unexpected abbrev ordering!"); 3138 } 3139 3140 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3141 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3142 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3144 VE.computeBitsRequiredForTypeIndicies())); 3145 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3146 CONSTANTS_SETTYPE_ABBREV) 3147 llvm_unreachable("Unexpected abbrev ordering!"); 3148 } 3149 3150 { // INTEGER abbrev for CONSTANTS_BLOCK. 3151 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3152 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3154 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3155 CONSTANTS_INTEGER_ABBREV) 3156 llvm_unreachable("Unexpected abbrev ordering!"); 3157 } 3158 3159 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3160 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3161 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3163 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3164 VE.computeBitsRequiredForTypeIndicies())); 3165 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3166 3167 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3168 CONSTANTS_CE_CAST_Abbrev) 3169 llvm_unreachable("Unexpected abbrev ordering!"); 3170 } 3171 { // NULL abbrev for CONSTANTS_BLOCK. 3172 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3173 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3174 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3175 CONSTANTS_NULL_Abbrev) 3176 llvm_unreachable("Unexpected abbrev ordering!"); 3177 } 3178 3179 // FIXME: This should only use space for first class types! 3180 3181 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3182 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3183 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3184 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3185 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3186 VE.computeBitsRequiredForTypeIndicies())); 3187 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3189 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3190 FUNCTION_INST_LOAD_ABBREV) 3191 llvm_unreachable("Unexpected abbrev ordering!"); 3192 } 3193 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3194 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3195 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3197 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3198 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3199 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3200 FUNCTION_INST_BINOP_ABBREV) 3201 llvm_unreachable("Unexpected abbrev ordering!"); 3202 } 3203 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3204 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3205 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3206 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3207 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3208 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3209 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3210 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3211 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3212 llvm_unreachable("Unexpected abbrev ordering!"); 3213 } 3214 { // INST_CAST abbrev for FUNCTION_BLOCK. 3215 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3216 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3219 VE.computeBitsRequiredForTypeIndicies())); 3220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3221 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3222 FUNCTION_INST_CAST_ABBREV) 3223 llvm_unreachable("Unexpected abbrev ordering!"); 3224 } 3225 3226 { // INST_RET abbrev for FUNCTION_BLOCK. 3227 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3228 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3229 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3230 FUNCTION_INST_RET_VOID_ABBREV) 3231 llvm_unreachable("Unexpected abbrev ordering!"); 3232 } 3233 { // INST_RET abbrev for FUNCTION_BLOCK. 3234 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3235 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3237 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3238 FUNCTION_INST_RET_VAL_ABBREV) 3239 llvm_unreachable("Unexpected abbrev ordering!"); 3240 } 3241 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3242 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3243 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3244 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3245 FUNCTION_INST_UNREACHABLE_ABBREV) 3246 llvm_unreachable("Unexpected abbrev ordering!"); 3247 } 3248 { 3249 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3250 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3251 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3252 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3253 Log2_32_Ceil(VE.getTypes().size() + 1))); 3254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3256 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3257 FUNCTION_INST_GEP_ABBREV) 3258 llvm_unreachable("Unexpected abbrev ordering!"); 3259 } 3260 3261 Stream.ExitBlock(); 3262 } 3263 3264 /// Write the module path strings, currently only used when generating 3265 /// a combined index file. 3266 void IndexBitcodeWriter::writeModStrings() { 3267 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3268 3269 // TODO: See which abbrev sizes we actually need to emit 3270 3271 // 8-bit fixed-width MST_ENTRY strings. 3272 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3273 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3276 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3277 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3278 3279 // 7-bit fixed width MST_ENTRY strings. 3280 Abbv = std::make_shared<BitCodeAbbrev>(); 3281 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3285 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3286 3287 // 6-bit char6 MST_ENTRY strings. 3288 Abbv = std::make_shared<BitCodeAbbrev>(); 3289 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3290 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3291 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3293 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3294 3295 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3296 Abbv = std::make_shared<BitCodeAbbrev>(); 3297 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3298 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3299 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3300 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3303 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3304 3305 SmallVector<unsigned, 64> Vals; 3306 forEachModule( 3307 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3308 StringRef Key = MPSE.getKey(); 3309 const auto &Value = MPSE.getValue(); 3310 StringEncoding Bits = getStringEncoding(Key); 3311 unsigned AbbrevToUse = Abbrev8Bit; 3312 if (Bits == SE_Char6) 3313 AbbrevToUse = Abbrev6Bit; 3314 else if (Bits == SE_Fixed7) 3315 AbbrevToUse = Abbrev7Bit; 3316 3317 Vals.push_back(Value.first); 3318 Vals.append(Key.begin(), Key.end()); 3319 3320 // Emit the finished record. 3321 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3322 3323 // Emit an optional hash for the module now 3324 const auto &Hash = Value.second; 3325 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3326 Vals.assign(Hash.begin(), Hash.end()); 3327 // Emit the hash record. 3328 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3329 } 3330 3331 Vals.clear(); 3332 }); 3333 Stream.ExitBlock(); 3334 } 3335 3336 /// Write the function type metadata related records that need to appear before 3337 /// a function summary entry (whether per-module or combined). 3338 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3339 FunctionSummary *FS) { 3340 if (!FS->type_tests().empty()) 3341 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3342 3343 SmallVector<uint64_t, 64> Record; 3344 3345 auto WriteVFuncIdVec = [&](uint64_t Ty, 3346 ArrayRef<FunctionSummary::VFuncId> VFs) { 3347 if (VFs.empty()) 3348 return; 3349 Record.clear(); 3350 for (auto &VF : VFs) { 3351 Record.push_back(VF.GUID); 3352 Record.push_back(VF.Offset); 3353 } 3354 Stream.EmitRecord(Ty, Record); 3355 }; 3356 3357 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3358 FS->type_test_assume_vcalls()); 3359 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3360 FS->type_checked_load_vcalls()); 3361 3362 auto WriteConstVCallVec = [&](uint64_t Ty, 3363 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3364 for (auto &VC : VCs) { 3365 Record.clear(); 3366 Record.push_back(VC.VFunc.GUID); 3367 Record.push_back(VC.VFunc.Offset); 3368 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3369 Stream.EmitRecord(Ty, Record); 3370 } 3371 }; 3372 3373 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3374 FS->type_test_assume_const_vcalls()); 3375 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3376 FS->type_checked_load_const_vcalls()); 3377 } 3378 3379 static void writeWholeProgramDevirtResolutionByArg( 3380 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3381 const WholeProgramDevirtResolution::ByArg &ByArg) { 3382 NameVals.push_back(args.size()); 3383 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3384 3385 NameVals.push_back(ByArg.TheKind); 3386 NameVals.push_back(ByArg.Info); 3387 NameVals.push_back(ByArg.Byte); 3388 NameVals.push_back(ByArg.Bit); 3389 } 3390 3391 static void writeWholeProgramDevirtResolution( 3392 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3393 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3394 NameVals.push_back(Id); 3395 3396 NameVals.push_back(Wpd.TheKind); 3397 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3398 NameVals.push_back(Wpd.SingleImplName.size()); 3399 3400 NameVals.push_back(Wpd.ResByArg.size()); 3401 for (auto &A : Wpd.ResByArg) 3402 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3403 } 3404 3405 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3406 StringTableBuilder &StrtabBuilder, 3407 const std::string &Id, 3408 const TypeIdSummary &Summary) { 3409 NameVals.push_back(StrtabBuilder.add(Id)); 3410 NameVals.push_back(Id.size()); 3411 3412 NameVals.push_back(Summary.TTRes.TheKind); 3413 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3414 NameVals.push_back(Summary.TTRes.AlignLog2); 3415 NameVals.push_back(Summary.TTRes.SizeM1); 3416 NameVals.push_back(Summary.TTRes.BitMask); 3417 NameVals.push_back(Summary.TTRes.InlineBits); 3418 3419 for (auto &W : Summary.WPDRes) 3420 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3421 W.second); 3422 } 3423 3424 // Helper to emit a single function summary record. 3425 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3426 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3427 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3428 const Function &F) { 3429 NameVals.push_back(ValueID); 3430 3431 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3432 writeFunctionTypeMetadataRecords(Stream, FS); 3433 3434 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3435 NameVals.push_back(FS->instCount()); 3436 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3437 NameVals.push_back(FS->refs().size()); 3438 3439 for (auto &RI : FS->refs()) 3440 NameVals.push_back(VE.getValueID(RI.getValue())); 3441 3442 bool HasProfileData = 3443 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3444 for (auto &ECI : FS->calls()) { 3445 NameVals.push_back(getValueId(ECI.first)); 3446 if (HasProfileData) 3447 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3448 else if (WriteRelBFToSummary) 3449 NameVals.push_back(ECI.second.RelBlockFreq); 3450 } 3451 3452 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3453 unsigned Code = 3454 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3455 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3456 : bitc::FS_PERMODULE)); 3457 3458 // Emit the finished record. 3459 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3460 NameVals.clear(); 3461 } 3462 3463 // Collect the global value references in the given variable's initializer, 3464 // and emit them in a summary record. 3465 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3466 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3467 unsigned FSModRefsAbbrev) { 3468 auto VI = Index->getValueInfo(GlobalValue::getGUID(V.getName())); 3469 if (!VI || VI.getSummaryList().empty()) { 3470 // Only declarations should not have a summary (a declaration might however 3471 // have a summary if the def was in module level asm). 3472 assert(V.isDeclaration()); 3473 return; 3474 } 3475 auto *Summary = VI.getSummaryList()[0].get(); 3476 NameVals.push_back(VE.getValueID(&V)); 3477 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3478 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3479 3480 unsigned SizeBeforeRefs = NameVals.size(); 3481 for (auto &RI : VS->refs()) 3482 NameVals.push_back(VE.getValueID(RI.getValue())); 3483 // Sort the refs for determinism output, the vector returned by FS->refs() has 3484 // been initialized from a DenseSet. 3485 std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3486 3487 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3488 FSModRefsAbbrev); 3489 NameVals.clear(); 3490 } 3491 3492 // Current version for the summary. 3493 // This is bumped whenever we introduce changes in the way some record are 3494 // interpreted, like flags for instance. 3495 static const uint64_t INDEX_VERSION = 4; 3496 3497 /// Emit the per-module summary section alongside the rest of 3498 /// the module's bitcode. 3499 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3500 // By default we compile with ThinLTO if the module has a summary, but the 3501 // client can request full LTO with a module flag. 3502 bool IsThinLTO = true; 3503 if (auto *MD = 3504 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3505 IsThinLTO = MD->getZExtValue(); 3506 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3507 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3508 4); 3509 3510 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3511 3512 if (Index->begin() == Index->end()) { 3513 Stream.ExitBlock(); 3514 return; 3515 } 3516 3517 for (const auto &GVI : valueIds()) { 3518 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3519 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3520 } 3521 3522 // Abbrev for FS_PERMODULE_PROFILE. 3523 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3524 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3525 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3526 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3527 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3528 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3529 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3530 // numrefs x valueid, n x (valueid, hotness) 3531 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3532 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3533 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3534 3535 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3536 Abbv = std::make_shared<BitCodeAbbrev>(); 3537 if (WriteRelBFToSummary) 3538 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3539 else 3540 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3541 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3542 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3543 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3544 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3545 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3546 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3549 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3550 3551 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3552 Abbv = std::make_shared<BitCodeAbbrev>(); 3553 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3556 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3558 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3559 3560 // Abbrev for FS_ALIAS. 3561 Abbv = std::make_shared<BitCodeAbbrev>(); 3562 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3564 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3565 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3566 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3567 3568 SmallVector<uint64_t, 64> NameVals; 3569 // Iterate over the list of functions instead of the Index to 3570 // ensure the ordering is stable. 3571 for (const Function &F : M) { 3572 // Summary emission does not support anonymous functions, they have to 3573 // renamed using the anonymous function renaming pass. 3574 if (!F.hasName()) 3575 report_fatal_error("Unexpected anonymous function when writing summary"); 3576 3577 ValueInfo VI = Index->getValueInfo(GlobalValue::getGUID(F.getName())); 3578 if (!VI || VI.getSummaryList().empty()) { 3579 // Only declarations should not have a summary (a declaration might 3580 // however have a summary if the def was in module level asm). 3581 assert(F.isDeclaration()); 3582 continue; 3583 } 3584 auto *Summary = VI.getSummaryList()[0].get(); 3585 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3586 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3587 } 3588 3589 // Capture references from GlobalVariable initializers, which are outside 3590 // of a function scope. 3591 for (const GlobalVariable &G : M.globals()) 3592 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev); 3593 3594 for (const GlobalAlias &A : M.aliases()) { 3595 auto *Aliasee = A.getBaseObject(); 3596 if (!Aliasee->hasName()) 3597 // Nameless function don't have an entry in the summary, skip it. 3598 continue; 3599 auto AliasId = VE.getValueID(&A); 3600 auto AliaseeId = VE.getValueID(Aliasee); 3601 NameVals.push_back(AliasId); 3602 auto *Summary = Index->getGlobalValueSummary(A); 3603 AliasSummary *AS = cast<AliasSummary>(Summary); 3604 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3605 NameVals.push_back(AliaseeId); 3606 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3607 NameVals.clear(); 3608 } 3609 3610 Stream.ExitBlock(); 3611 } 3612 3613 /// Emit the combined summary section into the combined index file. 3614 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3615 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3616 Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION}); 3617 3618 // Write the index flags. 3619 uint64_t Flags = 0; 3620 if (Index.withGlobalValueDeadStripping()) 3621 Flags |= 0x1; 3622 if (Index.skipModuleByDistributedBackend()) 3623 Flags |= 0x2; 3624 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3625 3626 for (const auto &GVI : valueIds()) { 3627 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3628 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3629 } 3630 3631 // Abbrev for FS_COMBINED. 3632 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3633 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3634 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3636 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3637 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3639 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3640 // numrefs x valueid, n x (valueid) 3641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3642 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3643 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3644 3645 // Abbrev for FS_COMBINED_PROFILE. 3646 Abbv = std::make_shared<BitCodeAbbrev>(); 3647 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3648 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3649 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3650 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3651 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3652 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3653 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3654 // numrefs x valueid, n x (valueid, hotness) 3655 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3656 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3657 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3658 3659 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3660 Abbv = std::make_shared<BitCodeAbbrev>(); 3661 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3662 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3663 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3664 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3665 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3666 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3667 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3668 3669 // Abbrev for FS_COMBINED_ALIAS. 3670 Abbv = std::make_shared<BitCodeAbbrev>(); 3671 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3672 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3673 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3674 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3675 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3676 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3677 3678 // The aliases are emitted as a post-pass, and will point to the value 3679 // id of the aliasee. Save them in a vector for post-processing. 3680 SmallVector<AliasSummary *, 64> Aliases; 3681 3682 // Save the value id for each summary for alias emission. 3683 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3684 3685 SmallVector<uint64_t, 64> NameVals; 3686 3687 // For local linkage, we also emit the original name separately 3688 // immediately after the record. 3689 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3690 if (!GlobalValue::isLocalLinkage(S.linkage())) 3691 return; 3692 NameVals.push_back(S.getOriginalName()); 3693 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3694 NameVals.clear(); 3695 }; 3696 3697 forEachSummary([&](GVInfo I, bool IsAliasee) { 3698 GlobalValueSummary *S = I.second; 3699 assert(S); 3700 3701 auto ValueId = getValueId(I.first); 3702 assert(ValueId); 3703 SummaryToValueIdMap[S] = *ValueId; 3704 3705 // If this is invoked for an aliasee, we want to record the above 3706 // mapping, but then not emit a summary entry (if the aliasee is 3707 // to be imported, we will invoke this separately with IsAliasee=false). 3708 if (IsAliasee) 3709 return; 3710 3711 if (auto *AS = dyn_cast<AliasSummary>(S)) { 3712 // Will process aliases as a post-pass because the reader wants all 3713 // global to be loaded first. 3714 Aliases.push_back(AS); 3715 return; 3716 } 3717 3718 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 3719 NameVals.push_back(*ValueId); 3720 NameVals.push_back(Index.getModuleId(VS->modulePath())); 3721 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3722 for (auto &RI : VS->refs()) { 3723 auto RefValueId = getValueId(RI.getGUID()); 3724 if (!RefValueId) 3725 continue; 3726 NameVals.push_back(*RefValueId); 3727 } 3728 3729 // Emit the finished record. 3730 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 3731 FSModRefsAbbrev); 3732 NameVals.clear(); 3733 MaybeEmitOriginalName(*S); 3734 return; 3735 } 3736 3737 auto *FS = cast<FunctionSummary>(S); 3738 writeFunctionTypeMetadataRecords(Stream, FS); 3739 3740 NameVals.push_back(*ValueId); 3741 NameVals.push_back(Index.getModuleId(FS->modulePath())); 3742 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3743 NameVals.push_back(FS->instCount()); 3744 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3745 // Fill in below 3746 NameVals.push_back(0); 3747 3748 unsigned Count = 0; 3749 for (auto &RI : FS->refs()) { 3750 auto RefValueId = getValueId(RI.getGUID()); 3751 if (!RefValueId) 3752 continue; 3753 NameVals.push_back(*RefValueId); 3754 Count++; 3755 } 3756 NameVals[5] = Count; 3757 3758 bool HasProfileData = false; 3759 for (auto &EI : FS->calls()) { 3760 HasProfileData |= 3761 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 3762 if (HasProfileData) 3763 break; 3764 } 3765 3766 for (auto &EI : FS->calls()) { 3767 // If this GUID doesn't have a value id, it doesn't have a function 3768 // summary and we don't need to record any calls to it. 3769 GlobalValue::GUID GUID = EI.first.getGUID(); 3770 auto CallValueId = getValueId(GUID); 3771 if (!CallValueId) { 3772 // For SamplePGO, the indirect call targets for local functions will 3773 // have its original name annotated in profile. We try to find the 3774 // corresponding PGOFuncName as the GUID. 3775 GUID = Index.getGUIDFromOriginalID(GUID); 3776 if (GUID == 0) 3777 continue; 3778 CallValueId = getValueId(GUID); 3779 if (!CallValueId) 3780 continue; 3781 // The mapping from OriginalId to GUID may return a GUID 3782 // that corresponds to a static variable. Filter it out here. 3783 // This can happen when 3784 // 1) There is a call to a library function which does not have 3785 // a CallValidId; 3786 // 2) There is a static variable with the OriginalGUID identical 3787 // to the GUID of the library function in 1); 3788 // When this happens, the logic for SamplePGO kicks in and 3789 // the static variable in 2) will be found, which needs to be 3790 // filtered out. 3791 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 3792 if (GVSum && 3793 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 3794 continue; 3795 } 3796 NameVals.push_back(*CallValueId); 3797 if (HasProfileData) 3798 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 3799 } 3800 3801 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3802 unsigned Code = 3803 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 3804 3805 // Emit the finished record. 3806 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3807 NameVals.clear(); 3808 MaybeEmitOriginalName(*S); 3809 }); 3810 3811 for (auto *AS : Aliases) { 3812 auto AliasValueId = SummaryToValueIdMap[AS]; 3813 assert(AliasValueId); 3814 NameVals.push_back(AliasValueId); 3815 NameVals.push_back(Index.getModuleId(AS->modulePath())); 3816 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3817 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 3818 assert(AliaseeValueId); 3819 NameVals.push_back(AliaseeValueId); 3820 3821 // Emit the finished record. 3822 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 3823 NameVals.clear(); 3824 MaybeEmitOriginalName(*AS); 3825 } 3826 3827 if (!Index.cfiFunctionDefs().empty()) { 3828 for (auto &S : Index.cfiFunctionDefs()) { 3829 NameVals.push_back(StrtabBuilder.add(S)); 3830 NameVals.push_back(S.size()); 3831 } 3832 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 3833 NameVals.clear(); 3834 } 3835 3836 if (!Index.cfiFunctionDecls().empty()) { 3837 for (auto &S : Index.cfiFunctionDecls()) { 3838 NameVals.push_back(StrtabBuilder.add(S)); 3839 NameVals.push_back(S.size()); 3840 } 3841 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 3842 NameVals.clear(); 3843 } 3844 3845 if (!Index.typeIds().empty()) { 3846 for (auto &S : Index.typeIds()) { 3847 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, S.first, S.second); 3848 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 3849 NameVals.clear(); 3850 } 3851 } 3852 3853 Stream.ExitBlock(); 3854 } 3855 3856 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 3857 /// current llvm version, and a record for the epoch number. 3858 static void writeIdentificationBlock(BitstreamWriter &Stream) { 3859 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 3860 3861 // Write the "user readable" string identifying the bitcode producer 3862 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3863 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 3864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3866 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3867 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 3868 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 3869 3870 // Write the epoch version 3871 Abbv = std::make_shared<BitCodeAbbrev>(); 3872 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 3873 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3874 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3875 SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH}; 3876 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 3877 Stream.ExitBlock(); 3878 } 3879 3880 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 3881 // Emit the module's hash. 3882 // MODULE_CODE_HASH: [5*i32] 3883 if (GenerateHash) { 3884 uint32_t Vals[5]; 3885 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 3886 Buffer.size() - BlockStartPos)); 3887 StringRef Hash = Hasher.result(); 3888 for (int Pos = 0; Pos < 20; Pos += 4) { 3889 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 3890 } 3891 3892 // Emit the finished record. 3893 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 3894 3895 if (ModHash) 3896 // Save the written hash value. 3897 std::copy(std::begin(Vals), std::end(Vals), std::begin(*ModHash)); 3898 } 3899 } 3900 3901 void ModuleBitcodeWriter::write() { 3902 writeIdentificationBlock(Stream); 3903 3904 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 3905 size_t BlockStartPos = Buffer.size(); 3906 3907 writeModuleVersion(); 3908 3909 // Emit blockinfo, which defines the standard abbreviations etc. 3910 writeBlockInfo(); 3911 3912 // Emit information about attribute groups. 3913 writeAttributeGroupTable(); 3914 3915 // Emit information about parameter attributes. 3916 writeAttributeTable(); 3917 3918 // Emit information describing all of the types in the module. 3919 writeTypeTable(); 3920 3921 writeComdats(); 3922 3923 // Emit top-level description of module, including target triple, inline asm, 3924 // descriptors for global variables, and function prototype info. 3925 writeModuleInfo(); 3926 3927 // Emit constants. 3928 writeModuleConstants(); 3929 3930 // Emit metadata kind names. 3931 writeModuleMetadataKinds(); 3932 3933 // Emit metadata. 3934 writeModuleMetadata(); 3935 3936 // Emit module-level use-lists. 3937 if (VE.shouldPreserveUseListOrder()) 3938 writeUseListBlock(nullptr); 3939 3940 writeOperandBundleTags(); 3941 writeSyncScopeNames(); 3942 3943 // Emit function bodies. 3944 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 3945 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 3946 if (!F->isDeclaration()) 3947 writeFunction(*F, FunctionToBitcodeIndex); 3948 3949 // Need to write after the above call to WriteFunction which populates 3950 // the summary information in the index. 3951 if (Index) 3952 writePerModuleGlobalValueSummary(); 3953 3954 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 3955 3956 writeModuleHash(BlockStartPos); 3957 3958 Stream.ExitBlock(); 3959 } 3960 3961 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 3962 uint32_t &Position) { 3963 support::endian::write32le(&Buffer[Position], Value); 3964 Position += 4; 3965 } 3966 3967 /// If generating a bc file on darwin, we have to emit a 3968 /// header and trailer to make it compatible with the system archiver. To do 3969 /// this we emit the following header, and then emit a trailer that pads the 3970 /// file out to be a multiple of 16 bytes. 3971 /// 3972 /// struct bc_header { 3973 /// uint32_t Magic; // 0x0B17C0DE 3974 /// uint32_t Version; // Version, currently always 0. 3975 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 3976 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 3977 /// uint32_t CPUType; // CPU specifier. 3978 /// ... potentially more later ... 3979 /// }; 3980 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 3981 const Triple &TT) { 3982 unsigned CPUType = ~0U; 3983 3984 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 3985 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 3986 // number from /usr/include/mach/machine.h. It is ok to reproduce the 3987 // specific constants here because they are implicitly part of the Darwin ABI. 3988 enum { 3989 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 3990 DARWIN_CPU_TYPE_X86 = 7, 3991 DARWIN_CPU_TYPE_ARM = 12, 3992 DARWIN_CPU_TYPE_POWERPC = 18 3993 }; 3994 3995 Triple::ArchType Arch = TT.getArch(); 3996 if (Arch == Triple::x86_64) 3997 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 3998 else if (Arch == Triple::x86) 3999 CPUType = DARWIN_CPU_TYPE_X86; 4000 else if (Arch == Triple::ppc) 4001 CPUType = DARWIN_CPU_TYPE_POWERPC; 4002 else if (Arch == Triple::ppc64) 4003 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4004 else if (Arch == Triple::arm || Arch == Triple::thumb) 4005 CPUType = DARWIN_CPU_TYPE_ARM; 4006 4007 // Traditional Bitcode starts after header. 4008 assert(Buffer.size() >= BWH_HeaderSize && 4009 "Expected header size to be reserved"); 4010 unsigned BCOffset = BWH_HeaderSize; 4011 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4012 4013 // Write the magic and version. 4014 unsigned Position = 0; 4015 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4016 writeInt32ToBuffer(0, Buffer, Position); // Version. 4017 writeInt32ToBuffer(BCOffset, Buffer, Position); 4018 writeInt32ToBuffer(BCSize, Buffer, Position); 4019 writeInt32ToBuffer(CPUType, Buffer, Position); 4020 4021 // If the file is not a multiple of 16 bytes, insert dummy padding. 4022 while (Buffer.size() & 15) 4023 Buffer.push_back(0); 4024 } 4025 4026 /// Helper to write the header common to all bitcode files. 4027 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4028 // Emit the file header. 4029 Stream.Emit((unsigned)'B', 8); 4030 Stream.Emit((unsigned)'C', 8); 4031 Stream.Emit(0x0, 4); 4032 Stream.Emit(0xC, 4); 4033 Stream.Emit(0xE, 4); 4034 Stream.Emit(0xD, 4); 4035 } 4036 4037 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4038 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4039 writeBitcodeHeader(*Stream); 4040 } 4041 4042 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4043 4044 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4045 Stream->EnterSubblock(Block, 3); 4046 4047 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4048 Abbv->Add(BitCodeAbbrevOp(Record)); 4049 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4050 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4051 4052 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4053 4054 Stream->ExitBlock(); 4055 } 4056 4057 void BitcodeWriter::writeSymtab() { 4058 assert(!WroteStrtab && !WroteSymtab); 4059 4060 // If any module has module-level inline asm, we will require a registered asm 4061 // parser for the target so that we can create an accurate symbol table for 4062 // the module. 4063 for (Module *M : Mods) { 4064 if (M->getModuleInlineAsm().empty()) 4065 continue; 4066 4067 std::string Err; 4068 const Triple TT(M->getTargetTriple()); 4069 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4070 if (!T || !T->hasMCAsmParser()) 4071 return; 4072 } 4073 4074 WroteSymtab = true; 4075 SmallVector<char, 0> Symtab; 4076 // The irsymtab::build function may be unable to create a symbol table if the 4077 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4078 // table is not required for correctness, but we still want to be able to 4079 // write malformed modules to bitcode files, so swallow the error. 4080 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4081 consumeError(std::move(E)); 4082 return; 4083 } 4084 4085 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4086 {Symtab.data(), Symtab.size()}); 4087 } 4088 4089 void BitcodeWriter::writeStrtab() { 4090 assert(!WroteStrtab); 4091 4092 std::vector<char> Strtab; 4093 StrtabBuilder.finalizeInOrder(); 4094 Strtab.resize(StrtabBuilder.getSize()); 4095 StrtabBuilder.write((uint8_t *)Strtab.data()); 4096 4097 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4098 {Strtab.data(), Strtab.size()}); 4099 4100 WroteStrtab = true; 4101 } 4102 4103 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4104 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4105 WroteStrtab = true; 4106 } 4107 4108 void BitcodeWriter::writeModule(const Module &M, 4109 bool ShouldPreserveUseListOrder, 4110 const ModuleSummaryIndex *Index, 4111 bool GenerateHash, ModuleHash *ModHash) { 4112 assert(!WroteStrtab); 4113 4114 // The Mods vector is used by irsymtab::build, which requires non-const 4115 // Modules in case it needs to materialize metadata. But the bitcode writer 4116 // requires that the module is materialized, so we can cast to non-const here, 4117 // after checking that it is in fact materialized. 4118 assert(M.isMaterialized()); 4119 Mods.push_back(const_cast<Module *>(&M)); 4120 4121 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4122 ShouldPreserveUseListOrder, Index, 4123 GenerateHash, ModHash); 4124 ModuleWriter.write(); 4125 } 4126 4127 void BitcodeWriter::writeIndex( 4128 const ModuleSummaryIndex *Index, 4129 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4130 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4131 ModuleToSummariesForIndex); 4132 IndexWriter.write(); 4133 } 4134 4135 /// Write the specified module to the specified output stream. 4136 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4137 bool ShouldPreserveUseListOrder, 4138 const ModuleSummaryIndex *Index, 4139 bool GenerateHash, ModuleHash *ModHash) { 4140 SmallVector<char, 0> Buffer; 4141 Buffer.reserve(256*1024); 4142 4143 // If this is darwin or another generic macho target, reserve space for the 4144 // header. 4145 Triple TT(M.getTargetTriple()); 4146 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4147 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4148 4149 BitcodeWriter Writer(Buffer); 4150 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4151 ModHash); 4152 Writer.writeSymtab(); 4153 Writer.writeStrtab(); 4154 4155 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4156 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4157 4158 // Write the generated bitstream to "Out". 4159 Out.write((char*)&Buffer.front(), Buffer.size()); 4160 } 4161 4162 void IndexBitcodeWriter::write() { 4163 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4164 4165 writeModuleVersion(); 4166 4167 // Write the module paths in the combined index. 4168 writeModStrings(); 4169 4170 // Write the summary combined index records. 4171 writeCombinedGlobalValueSummary(); 4172 4173 Stream.ExitBlock(); 4174 } 4175 4176 // Write the specified module summary index to the given raw output stream, 4177 // where it will be written in a new bitcode block. This is used when 4178 // writing the combined index file for ThinLTO. When writing a subset of the 4179 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4180 void llvm::WriteIndexToFile( 4181 const ModuleSummaryIndex &Index, raw_ostream &Out, 4182 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4183 SmallVector<char, 0> Buffer; 4184 Buffer.reserve(256 * 1024); 4185 4186 BitcodeWriter Writer(Buffer); 4187 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4188 Writer.writeStrtab(); 4189 4190 Out.write((char *)&Buffer.front(), Buffer.size()); 4191 } 4192 4193 namespace { 4194 4195 /// Class to manage the bitcode writing for a thin link bitcode file. 4196 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4197 /// ModHash is for use in ThinLTO incremental build, generated while writing 4198 /// the module bitcode file. 4199 const ModuleHash *ModHash; 4200 4201 public: 4202 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4203 BitstreamWriter &Stream, 4204 const ModuleSummaryIndex &Index, 4205 const ModuleHash &ModHash) 4206 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4207 /*ShouldPreserveUseListOrder=*/false, &Index), 4208 ModHash(&ModHash) {} 4209 4210 void write(); 4211 4212 private: 4213 void writeSimplifiedModuleInfo(); 4214 }; 4215 4216 } // end anonymous namespace 4217 4218 // This function writes a simpilified module info for thin link bitcode file. 4219 // It only contains the source file name along with the name(the offset and 4220 // size in strtab) and linkage for global values. For the global value info 4221 // entry, in order to keep linkage at offset 5, there are three zeros used 4222 // as padding. 4223 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4224 SmallVector<unsigned, 64> Vals; 4225 // Emit the module's source file name. 4226 { 4227 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4228 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4229 if (Bits == SE_Char6) 4230 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4231 else if (Bits == SE_Fixed7) 4232 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4233 4234 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4235 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4236 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4237 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4238 Abbv->Add(AbbrevOpToUse); 4239 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4240 4241 for (const auto P : M.getSourceFileName()) 4242 Vals.push_back((unsigned char)P); 4243 4244 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4245 Vals.clear(); 4246 } 4247 4248 // Emit the global variable information. 4249 for (const GlobalVariable &GV : M.globals()) { 4250 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4251 Vals.push_back(StrtabBuilder.add(GV.getName())); 4252 Vals.push_back(GV.getName().size()); 4253 Vals.push_back(0); 4254 Vals.push_back(0); 4255 Vals.push_back(0); 4256 Vals.push_back(getEncodedLinkage(GV)); 4257 4258 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4259 Vals.clear(); 4260 } 4261 4262 // Emit the function proto information. 4263 for (const Function &F : M) { 4264 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4265 Vals.push_back(StrtabBuilder.add(F.getName())); 4266 Vals.push_back(F.getName().size()); 4267 Vals.push_back(0); 4268 Vals.push_back(0); 4269 Vals.push_back(0); 4270 Vals.push_back(getEncodedLinkage(F)); 4271 4272 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4273 Vals.clear(); 4274 } 4275 4276 // Emit the alias information. 4277 for (const GlobalAlias &A : M.aliases()) { 4278 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4279 Vals.push_back(StrtabBuilder.add(A.getName())); 4280 Vals.push_back(A.getName().size()); 4281 Vals.push_back(0); 4282 Vals.push_back(0); 4283 Vals.push_back(0); 4284 Vals.push_back(getEncodedLinkage(A)); 4285 4286 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4287 Vals.clear(); 4288 } 4289 4290 // Emit the ifunc information. 4291 for (const GlobalIFunc &I : M.ifuncs()) { 4292 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4293 Vals.push_back(StrtabBuilder.add(I.getName())); 4294 Vals.push_back(I.getName().size()); 4295 Vals.push_back(0); 4296 Vals.push_back(0); 4297 Vals.push_back(0); 4298 Vals.push_back(getEncodedLinkage(I)); 4299 4300 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4301 Vals.clear(); 4302 } 4303 } 4304 4305 void ThinLinkBitcodeWriter::write() { 4306 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4307 4308 writeModuleVersion(); 4309 4310 writeSimplifiedModuleInfo(); 4311 4312 writePerModuleGlobalValueSummary(); 4313 4314 // Write module hash. 4315 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4316 4317 Stream.ExitBlock(); 4318 } 4319 4320 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4321 const ModuleSummaryIndex &Index, 4322 const ModuleHash &ModHash) { 4323 assert(!WroteStrtab); 4324 4325 // The Mods vector is used by irsymtab::build, which requires non-const 4326 // Modules in case it needs to materialize metadata. But the bitcode writer 4327 // requires that the module is materialized, so we can cast to non-const here, 4328 // after checking that it is in fact materialized. 4329 assert(M.isMaterialized()); 4330 Mods.push_back(const_cast<Module *>(&M)); 4331 4332 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4333 ModHash); 4334 ThinLinkWriter.write(); 4335 } 4336 4337 // Write the specified thin link bitcode file to the given raw output stream, 4338 // where it will be written in a new bitcode block. This is used when 4339 // writing the per-module index file for ThinLTO. 4340 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4341 const ModuleSummaryIndex &Index, 4342 const ModuleHash &ModHash) { 4343 SmallVector<char, 0> Buffer; 4344 Buffer.reserve(256 * 1024); 4345 4346 BitcodeWriter Writer(Buffer); 4347 Writer.writeThinLinkBitcode(M, Index, ModHash); 4348 Writer.writeSymtab(); 4349 Writer.writeStrtab(); 4350 4351 Out.write((char *)&Buffer.front(), Buffer.size()); 4352 } 4353