1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "llvm/Bitcode/BitstreamWriter.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "ValueEnumerator.h" 18 #include "llvm/Constants.h" 19 #include "llvm/DerivedTypes.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/ParameterAttributes.h" 23 #include "llvm/TypeSymbolTable.h" 24 #include "llvm/ValueSymbolTable.h" 25 #include "llvm/Support/MathExtras.h" 26 using namespace llvm; 27 28 /// These are manifest constants used by the bitcode writer. They do not need to 29 /// be kept in sync with the reader, but need to be consistent within this file. 30 enum { 31 CurVersion = 0, 32 33 // VALUE_SYMTAB_BLOCK abbrev id's. 34 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 35 VST_ENTRY_7_ABBREV, 36 VST_ENTRY_6_ABBREV, 37 VST_BBENTRY_6_ABBREV, 38 39 // CONSTANTS_BLOCK abbrev id's. 40 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 CONSTANTS_INTEGER_ABBREV, 42 CONSTANTS_CE_CAST_Abbrev, 43 CONSTANTS_NULL_Abbrev 44 }; 45 46 47 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 48 switch (Opcode) { 49 default: assert(0 && "Unknown cast instruction!"); 50 case Instruction::Trunc : return bitc::CAST_TRUNC; 51 case Instruction::ZExt : return bitc::CAST_ZEXT; 52 case Instruction::SExt : return bitc::CAST_SEXT; 53 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 54 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 55 case Instruction::UIToFP : return bitc::CAST_UITOFP; 56 case Instruction::SIToFP : return bitc::CAST_SITOFP; 57 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 58 case Instruction::FPExt : return bitc::CAST_FPEXT; 59 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 60 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 61 case Instruction::BitCast : return bitc::CAST_BITCAST; 62 } 63 } 64 65 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 66 switch (Opcode) { 67 default: assert(0 && "Unknown binary instruction!"); 68 case Instruction::Add: return bitc::BINOP_ADD; 69 case Instruction::Sub: return bitc::BINOP_SUB; 70 case Instruction::Mul: return bitc::BINOP_MUL; 71 case Instruction::UDiv: return bitc::BINOP_UDIV; 72 case Instruction::FDiv: 73 case Instruction::SDiv: return bitc::BINOP_SDIV; 74 case Instruction::URem: return bitc::BINOP_UREM; 75 case Instruction::FRem: 76 case Instruction::SRem: return bitc::BINOP_SREM; 77 case Instruction::Shl: return bitc::BINOP_SHL; 78 case Instruction::LShr: return bitc::BINOP_LSHR; 79 case Instruction::AShr: return bitc::BINOP_ASHR; 80 case Instruction::And: return bitc::BINOP_AND; 81 case Instruction::Or: return bitc::BINOP_OR; 82 case Instruction::Xor: return bitc::BINOP_XOR; 83 } 84 } 85 86 87 88 static void WriteStringRecord(unsigned Code, const std::string &Str, 89 unsigned AbbrevToUse, BitstreamWriter &Stream) { 90 SmallVector<unsigned, 64> Vals; 91 92 // Code: [strchar x N] 93 for (unsigned i = 0, e = Str.size(); i != e; ++i) 94 Vals.push_back(Str[i]); 95 96 // Emit the finished record. 97 Stream.EmitRecord(Code, Vals, AbbrevToUse); 98 } 99 100 // Emit information about parameter attributes. 101 static void WriteParamAttrTable(const ValueEnumerator &VE, 102 BitstreamWriter &Stream) { 103 const std::vector<const ParamAttrsList*> &Attrs = VE.getParamAttrs(); 104 if (Attrs.empty()) return; 105 106 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 107 108 SmallVector<uint64_t, 64> Record; 109 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 110 const ParamAttrsList *A = Attrs[i]; 111 for (unsigned op = 0, e = A->size(); op != e; ++op) { 112 Record.push_back(A->getParamIndex(op)); 113 Record.push_back(A->getParamAttrsAtIndex(op)); 114 } 115 116 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 117 Record.clear(); 118 } 119 120 Stream.ExitBlock(); 121 } 122 123 /// WriteTypeTable - Write out the type table for a module. 124 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 125 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 126 127 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID, 4 /*count from # abbrevs */); 128 SmallVector<uint64_t, 64> TypeVals; 129 130 // Abbrev for TYPE_CODE_POINTER. 131 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 132 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 133 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 134 Log2_32_Ceil(VE.getTypes().size()+1))); 135 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 136 137 // Abbrev for TYPE_CODE_FUNCTION. 138 Abbv = new BitCodeAbbrev(); 139 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 140 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 141 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 142 Log2_32_Ceil(VE.getParamAttrs().size()+1))); 143 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 144 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 145 Log2_32_Ceil(VE.getTypes().size()+1))); 146 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 147 148 // Abbrev for TYPE_CODE_STRUCT. 149 Abbv = new BitCodeAbbrev(); 150 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT)); 151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 152 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 153 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 154 Log2_32_Ceil(VE.getTypes().size()+1))); 155 unsigned StructAbbrev = Stream.EmitAbbrev(Abbv); 156 157 // Abbrev for TYPE_CODE_ARRAY. 158 Abbv = new BitCodeAbbrev(); 159 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 162 Log2_32_Ceil(VE.getTypes().size()+1))); 163 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 164 165 // Emit an entry count so the reader can reserve space. 166 TypeVals.push_back(TypeList.size()); 167 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 168 TypeVals.clear(); 169 170 // Loop over all of the types, emitting each in turn. 171 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 172 const Type *T = TypeList[i].first; 173 int AbbrevToUse = 0; 174 unsigned Code = 0; 175 176 switch (T->getTypeID()) { 177 case Type::PackedStructTyID: // FIXME: Delete Type::PackedStructTyID. 178 default: assert(0 && "Unknown type!"); 179 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 180 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 181 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 182 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 183 case Type::OpaqueTyID: Code = bitc::TYPE_CODE_OPAQUE; break; 184 case Type::IntegerTyID: 185 // INTEGER: [width] 186 Code = bitc::TYPE_CODE_INTEGER; 187 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 188 break; 189 case Type::PointerTyID: 190 // POINTER: [pointee type] 191 Code = bitc::TYPE_CODE_POINTER; 192 TypeVals.push_back(VE.getTypeID(cast<PointerType>(T)->getElementType())); 193 AbbrevToUse = PtrAbbrev; 194 break; 195 196 case Type::FunctionTyID: { 197 const FunctionType *FT = cast<FunctionType>(T); 198 // FUNCTION: [isvararg, attrid, retty, paramty x N] 199 Code = bitc::TYPE_CODE_FUNCTION; 200 TypeVals.push_back(FT->isVarArg()); 201 TypeVals.push_back(VE.getParamAttrID(FT->getParamAttrs())); 202 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 203 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 204 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 205 AbbrevToUse = FunctionAbbrev; 206 break; 207 } 208 case Type::StructTyID: { 209 const StructType *ST = cast<StructType>(T); 210 // STRUCT: [ispacked, eltty x N] 211 Code = bitc::TYPE_CODE_STRUCT; 212 TypeVals.push_back(ST->isPacked()); 213 // Output all of the element types. 214 for (StructType::element_iterator I = ST->element_begin(), 215 E = ST->element_end(); I != E; ++I) 216 TypeVals.push_back(VE.getTypeID(*I)); 217 AbbrevToUse = StructAbbrev; 218 break; 219 } 220 case Type::ArrayTyID: { 221 const ArrayType *AT = cast<ArrayType>(T); 222 // ARRAY: [numelts, eltty] 223 Code = bitc::TYPE_CODE_ARRAY; 224 TypeVals.push_back(AT->getNumElements()); 225 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 226 AbbrevToUse = ArrayAbbrev; 227 break; 228 } 229 case Type::VectorTyID: { 230 const VectorType *VT = cast<VectorType>(T); 231 // VECTOR [numelts, eltty] 232 Code = bitc::TYPE_CODE_VECTOR; 233 TypeVals.push_back(VT->getNumElements()); 234 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 235 break; 236 } 237 } 238 239 // Emit the finished record. 240 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 241 TypeVals.clear(); 242 } 243 244 Stream.ExitBlock(); 245 } 246 247 static unsigned getEncodedLinkage(const GlobalValue *GV) { 248 switch (GV->getLinkage()) { 249 default: assert(0 && "Invalid linkage!"); 250 case GlobalValue::ExternalLinkage: return 0; 251 case GlobalValue::WeakLinkage: return 1; 252 case GlobalValue::AppendingLinkage: return 2; 253 case GlobalValue::InternalLinkage: return 3; 254 case GlobalValue::LinkOnceLinkage: return 4; 255 case GlobalValue::DLLImportLinkage: return 5; 256 case GlobalValue::DLLExportLinkage: return 6; 257 case GlobalValue::ExternalWeakLinkage: return 7; 258 } 259 } 260 261 static unsigned getEncodedVisibility(const GlobalValue *GV) { 262 switch (GV->getVisibility()) { 263 default: assert(0 && "Invalid visibility!"); 264 case GlobalValue::DefaultVisibility: return 0; 265 case GlobalValue::HiddenVisibility: return 1; 266 case GlobalValue::ProtectedVisibility: return 2; 267 } 268 } 269 270 // Emit top-level description of module, including target triple, inline asm, 271 // descriptors for global variables, and function prototype info. 272 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 273 BitstreamWriter &Stream) { 274 // Emit the list of dependent libraries for the Module. 275 for (Module::lib_iterator I = M->lib_begin(), E = M->lib_end(); I != E; ++I) 276 WriteStringRecord(bitc::MODULE_CODE_DEPLIB, *I, 0/*TODO*/, Stream); 277 278 // Emit various pieces of data attached to a module. 279 if (!M->getTargetTriple().empty()) 280 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 281 0/*TODO*/, Stream); 282 if (!M->getDataLayout().empty()) 283 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(), 284 0/*TODO*/, Stream); 285 if (!M->getModuleInlineAsm().empty()) 286 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 287 0/*TODO*/, Stream); 288 289 // Emit information about sections, computing how many there are. Also 290 // compute the maximum alignment value. 291 std::map<std::string, unsigned> SectionMap; 292 unsigned MaxAlignment = 0; 293 unsigned MaxGlobalType = 0; 294 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 295 GV != E; ++GV) { 296 MaxAlignment = std::max(MaxAlignment, GV->getAlignment()); 297 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType())); 298 299 if (!GV->hasSection()) continue; 300 // Give section names unique ID's. 301 unsigned &Entry = SectionMap[GV->getSection()]; 302 if (Entry != 0) continue; 303 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(), 304 0/*TODO*/, Stream); 305 Entry = SectionMap.size(); 306 } 307 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 308 MaxAlignment = std::max(MaxAlignment, F->getAlignment()); 309 if (!F->hasSection()) continue; 310 // Give section names unique ID's. 311 unsigned &Entry = SectionMap[F->getSection()]; 312 if (Entry != 0) continue; 313 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(), 314 0/*TODO*/, Stream); 315 Entry = SectionMap.size(); 316 } 317 318 // Emit abbrev for globals, now that we know # sections and max alignment. 319 unsigned SimpleGVarAbbrev = 0; 320 if (!M->global_empty()) { 321 // Add an abbrev for common globals with no visibility or thread localness. 322 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 323 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 324 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 325 Log2_32_Ceil(MaxGlobalType+1))); 326 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 327 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 328 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // Linkage. 329 if (MaxAlignment == 0) // Alignment. 330 Abbv->Add(BitCodeAbbrevOp(0)); 331 else { 332 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 334 Log2_32_Ceil(MaxEncAlignment+1))); 335 } 336 if (SectionMap.empty()) // Section. 337 Abbv->Add(BitCodeAbbrevOp(0)); 338 else 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 340 Log2_32_Ceil(SectionMap.size()+1))); 341 // Don't bother emitting vis + thread local. 342 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 343 } 344 345 // Emit the global variable information. 346 SmallVector<unsigned, 64> Vals; 347 for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end(); 348 GV != E; ++GV) { 349 unsigned AbbrevToUse = 0; 350 351 // GLOBALVAR: [type, isconst, initid, 352 // linkage, alignment, section, visibility, threadlocal] 353 Vals.push_back(VE.getTypeID(GV->getType())); 354 Vals.push_back(GV->isConstant()); 355 Vals.push_back(GV->isDeclaration() ? 0 : 356 (VE.getValueID(GV->getInitializer()) + 1)); 357 Vals.push_back(getEncodedLinkage(GV)); 358 Vals.push_back(Log2_32(GV->getAlignment())+1); 359 Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0); 360 if (GV->isThreadLocal() || 361 GV->getVisibility() != GlobalValue::DefaultVisibility) { 362 Vals.push_back(getEncodedVisibility(GV)); 363 Vals.push_back(GV->isThreadLocal()); 364 } else { 365 AbbrevToUse = SimpleGVarAbbrev; 366 } 367 368 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 369 Vals.clear(); 370 } 371 372 // Emit the function proto information. 373 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { 374 // FUNCTION: [type, callingconv, isproto, linkage, alignment, section, 375 // visibility] 376 Vals.push_back(VE.getTypeID(F->getType())); 377 Vals.push_back(F->getCallingConv()); 378 Vals.push_back(F->isDeclaration()); 379 Vals.push_back(getEncodedLinkage(F)); 380 Vals.push_back(Log2_32(F->getAlignment())+1); 381 Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0); 382 Vals.push_back(getEncodedVisibility(F)); 383 384 unsigned AbbrevToUse = 0; 385 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 386 Vals.clear(); 387 } 388 389 390 // Emit the alias information. 391 for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end(); 392 AI != E; ++AI) { 393 Vals.push_back(VE.getTypeID(AI->getType())); 394 Vals.push_back(VE.getValueID(AI->getAliasee())); 395 Vals.push_back(getEncodedLinkage(AI)); 396 unsigned AbbrevToUse = 0; 397 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 398 Vals.clear(); 399 } 400 } 401 402 403 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 404 const ValueEnumerator &VE, 405 BitstreamWriter &Stream, bool isGlobal) { 406 if (FirstVal == LastVal) return; 407 408 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 409 410 unsigned AggregateAbbrev = 0; 411 unsigned GEPAbbrev = 0; 412 // If this is a constant pool for the module, emit module-specific abbrevs. 413 if (isGlobal) { 414 // Abbrev for CST_CODE_AGGREGATE. 415 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 416 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 419 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 420 } 421 422 // FIXME: Install and use abbrevs to reduce size. Install them globally so 423 // they don't need to be reemitted for each function body. 424 425 SmallVector<uint64_t, 64> Record; 426 427 const ValueEnumerator::ValueList &Vals = VE.getValues(); 428 const Type *LastTy = 0; 429 for (unsigned i = FirstVal; i != LastVal; ++i) { 430 const Value *V = Vals[i].first; 431 // If we need to switch types, do so now. 432 if (V->getType() != LastTy) { 433 LastTy = V->getType(); 434 Record.push_back(VE.getTypeID(LastTy)); 435 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 436 CONSTANTS_SETTYPE_ABBREV); 437 Record.clear(); 438 } 439 440 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 441 assert(0 && IA && "FIXME: Inline asm writing unimp!"); 442 continue; 443 } 444 const Constant *C = cast<Constant>(V); 445 unsigned Code = -1U; 446 unsigned AbbrevToUse = 0; 447 if (C->isNullValue()) { 448 Code = bitc::CST_CODE_NULL; 449 } else if (isa<UndefValue>(C)) { 450 Code = bitc::CST_CODE_UNDEF; 451 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 452 if (IV->getBitWidth() <= 64) { 453 int64_t V = IV->getSExtValue(); 454 if (V >= 0) 455 Record.push_back(V << 1); 456 else 457 Record.push_back((-V << 1) | 1); 458 Code = bitc::CST_CODE_INTEGER; 459 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 460 } else { // Wide integers, > 64 bits in size. 461 // We have an arbitrary precision integer value to write whose 462 // bit width is > 64. However, in canonical unsigned integer 463 // format it is likely that the high bits are going to be zero. 464 // So, we only write the number of active words. 465 unsigned NWords = IV->getValue().getActiveWords(); 466 const uint64_t *RawWords = IV->getValue().getRawData(); 467 for (unsigned i = 0; i != NWords; ++i) { 468 int64_t V = RawWords[i]; 469 if (V >= 0) 470 Record.push_back(V << 1); 471 else 472 Record.push_back((-V << 1) | 1); 473 } 474 Code = bitc::CST_CODE_WIDE_INTEGER; 475 } 476 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 477 Code = bitc::CST_CODE_FLOAT; 478 if (CFP->getType() == Type::FloatTy) { 479 Record.push_back(FloatToBits((float)CFP->getValue())); 480 } else { 481 assert (CFP->getType() == Type::DoubleTy && "Unknown FP type!"); 482 Record.push_back(DoubleToBits((double)CFP->getValue())); 483 } 484 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(V) || 485 isa<ConstantVector>(V)) { 486 Code = bitc::CST_CODE_AGGREGATE; 487 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 488 Record.push_back(VE.getValueID(C->getOperand(i))); 489 AbbrevToUse = AggregateAbbrev; 490 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 491 switch (CE->getOpcode()) { 492 default: 493 if (Instruction::isCast(CE->getOpcode())) { 494 Code = bitc::CST_CODE_CE_CAST; 495 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 496 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 497 Record.push_back(VE.getValueID(C->getOperand(0))); 498 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 499 } else { 500 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 501 Code = bitc::CST_CODE_CE_BINOP; 502 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 503 Record.push_back(VE.getValueID(C->getOperand(0))); 504 Record.push_back(VE.getValueID(C->getOperand(1))); 505 } 506 break; 507 case Instruction::GetElementPtr: 508 Code = bitc::CST_CODE_CE_GEP; 509 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 510 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 511 Record.push_back(VE.getValueID(C->getOperand(i))); 512 } 513 AbbrevToUse = GEPAbbrev; 514 break; 515 case Instruction::Select: 516 Code = bitc::CST_CODE_CE_SELECT; 517 Record.push_back(VE.getValueID(C->getOperand(0))); 518 Record.push_back(VE.getValueID(C->getOperand(1))); 519 Record.push_back(VE.getValueID(C->getOperand(2))); 520 break; 521 case Instruction::ExtractElement: 522 Code = bitc::CST_CODE_CE_EXTRACTELT; 523 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 524 Record.push_back(VE.getValueID(C->getOperand(0))); 525 Record.push_back(VE.getValueID(C->getOperand(1))); 526 break; 527 case Instruction::InsertElement: 528 Code = bitc::CST_CODE_CE_INSERTELT; 529 Record.push_back(VE.getValueID(C->getOperand(0))); 530 Record.push_back(VE.getValueID(C->getOperand(1))); 531 Record.push_back(VE.getValueID(C->getOperand(2))); 532 break; 533 case Instruction::ShuffleVector: 534 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 535 Record.push_back(VE.getValueID(C->getOperand(0))); 536 Record.push_back(VE.getValueID(C->getOperand(1))); 537 Record.push_back(VE.getValueID(C->getOperand(2))); 538 break; 539 case Instruction::ICmp: 540 case Instruction::FCmp: 541 Code = bitc::CST_CODE_CE_CMP; 542 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 543 Record.push_back(VE.getValueID(C->getOperand(0))); 544 Record.push_back(VE.getValueID(C->getOperand(1))); 545 Record.push_back(CE->getPredicate()); 546 break; 547 } 548 } else { 549 assert(0 && "Unknown constant!"); 550 } 551 Stream.EmitRecord(Code, Record, AbbrevToUse); 552 Record.clear(); 553 } 554 555 Stream.ExitBlock(); 556 } 557 558 static void WriteModuleConstants(const ValueEnumerator &VE, 559 BitstreamWriter &Stream) { 560 const ValueEnumerator::ValueList &Vals = VE.getValues(); 561 562 // Find the first constant to emit, which is the first non-globalvalue value. 563 // We know globalvalues have been emitted by WriteModuleInfo. 564 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 565 if (!isa<GlobalValue>(Vals[i].first)) { 566 WriteConstants(i, Vals.size(), VE, Stream, true); 567 return; 568 } 569 } 570 } 571 572 /// WriteInstruction - Emit an instruction to the specified stream. 573 static void WriteInstruction(const Instruction &I, ValueEnumerator &VE, 574 BitstreamWriter &Stream, 575 SmallVector<unsigned, 64> &Vals) { 576 unsigned Code = 0; 577 unsigned AbbrevToUse = 0; 578 switch (I.getOpcode()) { 579 default: 580 if (Instruction::isCast(I.getOpcode())) { 581 Code = bitc::FUNC_CODE_INST_CAST; 582 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 583 Vals.push_back(VE.getTypeID(I.getType())); 584 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 585 Vals.push_back(VE.getValueID(I.getOperand(0))); 586 } else { 587 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 588 Code = bitc::FUNC_CODE_INST_BINOP; 589 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 590 Vals.push_back(VE.getTypeID(I.getType())); 591 Vals.push_back(VE.getValueID(I.getOperand(0))); 592 Vals.push_back(VE.getValueID(I.getOperand(1))); 593 } 594 break; 595 596 case Instruction::GetElementPtr: 597 Code = bitc::FUNC_CODE_INST_GEP; 598 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 599 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 600 Vals.push_back(VE.getValueID(I.getOperand(i))); 601 } 602 break; 603 case Instruction::Select: 604 Code = bitc::FUNC_CODE_INST_SELECT; 605 Vals.push_back(VE.getTypeID(I.getType())); 606 Vals.push_back(VE.getValueID(I.getOperand(0))); 607 Vals.push_back(VE.getValueID(I.getOperand(1))); 608 Vals.push_back(VE.getValueID(I.getOperand(2))); 609 break; 610 case Instruction::ExtractElement: 611 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 612 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 613 Vals.push_back(VE.getValueID(I.getOperand(0))); 614 Vals.push_back(VE.getValueID(I.getOperand(1))); 615 break; 616 case Instruction::InsertElement: 617 Code = bitc::FUNC_CODE_INST_INSERTELT; 618 Vals.push_back(VE.getTypeID(I.getType())); 619 Vals.push_back(VE.getValueID(I.getOperand(0))); 620 Vals.push_back(VE.getValueID(I.getOperand(1))); 621 Vals.push_back(VE.getValueID(I.getOperand(2))); 622 break; 623 case Instruction::ShuffleVector: 624 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 625 Vals.push_back(VE.getTypeID(I.getType())); 626 Vals.push_back(VE.getValueID(I.getOperand(0))); 627 Vals.push_back(VE.getValueID(I.getOperand(1))); 628 Vals.push_back(VE.getValueID(I.getOperand(2))); 629 break; 630 case Instruction::ICmp: 631 case Instruction::FCmp: 632 Code = bitc::FUNC_CODE_INST_CMP; 633 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 634 Vals.push_back(VE.getValueID(I.getOperand(0))); 635 Vals.push_back(VE.getValueID(I.getOperand(1))); 636 Vals.push_back(cast<CmpInst>(I).getPredicate()); 637 break; 638 639 case Instruction::Ret: 640 Code = bitc::FUNC_CODE_INST_RET; 641 if (I.getNumOperands()) { 642 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 643 Vals.push_back(VE.getValueID(I.getOperand(0))); 644 } 645 break; 646 case Instruction::Br: 647 Code = bitc::FUNC_CODE_INST_BR; 648 Vals.push_back(VE.getValueID(I.getOperand(0))); 649 if (cast<BranchInst>(I).isConditional()) { 650 Vals.push_back(VE.getValueID(I.getOperand(1))); 651 Vals.push_back(VE.getValueID(I.getOperand(2))); 652 } 653 break; 654 case Instruction::Switch: 655 Code = bitc::FUNC_CODE_INST_SWITCH; 656 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 657 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 658 Vals.push_back(VE.getValueID(I.getOperand(i))); 659 break; 660 case Instruction::Invoke: { 661 Code = bitc::FUNC_CODE_INST_INVOKE; 662 Vals.push_back(cast<InvokeInst>(I).getCallingConv()); 663 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 664 Vals.push_back(VE.getValueID(I.getOperand(0))); // callee 665 Vals.push_back(VE.getValueID(I.getOperand(1))); // normal 666 Vals.push_back(VE.getValueID(I.getOperand(2))); // unwind 667 668 // Emit value #'s for the fixed parameters. 669 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 670 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 671 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 672 Vals.push_back(VE.getValueID(I.getOperand(i+3))); // fixed param. 673 674 // Emit type/value pairs for varargs params. 675 if (FTy->isVarArg()) { 676 unsigned NumVarargs = I.getNumOperands()-3-FTy->getNumParams(); 677 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 678 i != e; ++i) { 679 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 680 Vals.push_back(VE.getValueID(I.getOperand(i))); 681 } 682 } 683 break; 684 } 685 case Instruction::Unwind: 686 Code = bitc::FUNC_CODE_INST_UNWIND; 687 break; 688 case Instruction::Unreachable: 689 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 690 break; 691 692 case Instruction::PHI: 693 Code = bitc::FUNC_CODE_INST_PHI; 694 Vals.push_back(VE.getTypeID(I.getType())); 695 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 696 Vals.push_back(VE.getValueID(I.getOperand(i))); 697 break; 698 699 case Instruction::Malloc: 700 Code = bitc::FUNC_CODE_INST_MALLOC; 701 Vals.push_back(VE.getTypeID(I.getType())); 702 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 703 Vals.push_back(Log2_32(cast<MallocInst>(I).getAlignment())+1); 704 break; 705 706 case Instruction::Free: 707 Code = bitc::FUNC_CODE_INST_FREE; 708 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 709 Vals.push_back(VE.getValueID(I.getOperand(0))); 710 break; 711 712 case Instruction::Alloca: 713 Code = bitc::FUNC_CODE_INST_ALLOCA; 714 Vals.push_back(VE.getTypeID(I.getType())); 715 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 716 Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1); 717 break; 718 719 case Instruction::Load: 720 Code = bitc::FUNC_CODE_INST_LOAD; 721 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 722 Vals.push_back(VE.getValueID(I.getOperand(0))); // ptr. 723 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 724 Vals.push_back(cast<LoadInst>(I).isVolatile()); 725 break; 726 case Instruction::Store: 727 Code = bitc::FUNC_CODE_INST_STORE; 728 Vals.push_back(VE.getTypeID(I.getOperand(1)->getType())); // Pointer 729 Vals.push_back(VE.getValueID(I.getOperand(0))); // val. 730 Vals.push_back(VE.getValueID(I.getOperand(1))); // ptr. 731 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 732 Vals.push_back(cast<StoreInst>(I).isVolatile()); 733 break; 734 case Instruction::Call: { 735 Code = bitc::FUNC_CODE_INST_CALL; 736 Vals.push_back((cast<CallInst>(I).getCallingConv() << 1) | 737 cast<CallInst>(I).isTailCall()); 738 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 739 Vals.push_back(VE.getValueID(I.getOperand(0))); // callee 740 741 // Emit value #'s for the fixed parameters. 742 const PointerType *PTy = cast<PointerType>(I.getOperand(0)->getType()); 743 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 744 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 745 Vals.push_back(VE.getValueID(I.getOperand(i+1))); // fixed param. 746 747 // Emit type/value pairs for varargs params. 748 if (FTy->isVarArg()) { 749 unsigned NumVarargs = I.getNumOperands()-1-FTy->getNumParams(); 750 for (unsigned i = I.getNumOperands()-NumVarargs, e = I.getNumOperands(); 751 i != e; ++i) { 752 Vals.push_back(VE.getTypeID(I.getOperand(i)->getType())); 753 Vals.push_back(VE.getValueID(I.getOperand(i))); 754 } 755 } 756 break; 757 } 758 case Instruction::VAArg: 759 Code = bitc::FUNC_CODE_INST_VAARG; 760 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 761 Vals.push_back(VE.getValueID(I.getOperand(0))); // valist. 762 Vals.push_back(VE.getTypeID(I.getType())); // restype. 763 break; 764 } 765 766 Stream.EmitRecord(Code, Vals, AbbrevToUse); 767 Vals.clear(); 768 } 769 770 // Emit names for globals/functions etc. 771 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 772 const ValueEnumerator &VE, 773 BitstreamWriter &Stream) { 774 if (VST.empty()) return; 775 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 776 777 // FIXME: Set up the abbrev, we know how many values there are! 778 // FIXME: We know if the type names can use 7-bit ascii. 779 SmallVector<unsigned, 64> NameVals; 780 781 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 782 SI != SE; ++SI) { 783 784 const ValueName &Name = *SI; 785 786 // Figure out the encoding to use for the name. 787 bool is7Bit = true; 788 bool isChar6 = true; 789 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 790 C != E; ++C) { 791 if (isChar6) 792 isChar6 = BitCodeAbbrevOp::isChar6(*C); 793 if ((unsigned char)*C & 128) { 794 is7Bit = false; 795 break; // don't bother scanning the rest. 796 } 797 } 798 799 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 800 801 // VST_ENTRY: [valueid, namechar x N] 802 // VST_BBENTRY: [bbid, namechar x N] 803 unsigned Code; 804 if (isa<BasicBlock>(SI->getValue())) { 805 Code = bitc::VST_CODE_BBENTRY; 806 if (isChar6) 807 AbbrevToUse = VST_BBENTRY_6_ABBREV; 808 } else { 809 Code = bitc::VST_CODE_ENTRY; 810 if (isChar6) 811 AbbrevToUse = VST_ENTRY_6_ABBREV; 812 else if (is7Bit) 813 AbbrevToUse = VST_ENTRY_7_ABBREV; 814 } 815 816 NameVals.push_back(VE.getValueID(SI->getValue())); 817 for (const char *P = Name.getKeyData(), 818 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 819 NameVals.push_back((unsigned char)*P); 820 821 // Emit the finished record. 822 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 823 NameVals.clear(); 824 } 825 Stream.ExitBlock(); 826 } 827 828 /// WriteFunction - Emit a function body to the module stream. 829 static void WriteFunction(const Function &F, ValueEnumerator &VE, 830 BitstreamWriter &Stream) { 831 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 3); 832 VE.incorporateFunction(F); 833 834 SmallVector<unsigned, 64> Vals; 835 836 // Emit the number of basic blocks, so the reader can create them ahead of 837 // time. 838 Vals.push_back(VE.getBasicBlocks().size()); 839 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 840 Vals.clear(); 841 842 // FIXME: Function attributes? 843 844 // If there are function-local constants, emit them now. 845 unsigned CstStart, CstEnd; 846 VE.getFunctionConstantRange(CstStart, CstEnd); 847 WriteConstants(CstStart, CstEnd, VE, Stream, false); 848 849 // Finally, emit all the instructions, in order. 850 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 851 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 852 WriteInstruction(*I, VE, Stream, Vals); 853 854 // Emit names for all the instructions etc. 855 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 856 857 VE.purgeFunction(); 858 Stream.ExitBlock(); 859 } 860 861 /// WriteTypeSymbolTable - Emit a block for the specified type symtab. 862 static void WriteTypeSymbolTable(const TypeSymbolTable &TST, 863 const ValueEnumerator &VE, 864 BitstreamWriter &Stream) { 865 if (TST.empty()) return; 866 867 Stream.EnterSubblock(bitc::TYPE_SYMTAB_BLOCK_ID, 3); 868 869 // 7-bit fixed width VST_CODE_ENTRY strings. 870 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 871 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 873 Log2_32_Ceil(VE.getTypes().size()+1))); 874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 876 unsigned V7Abbrev = Stream.EmitAbbrev(Abbv); 877 878 SmallVector<unsigned, 64> NameVals; 879 880 for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end(); 881 TI != TE; ++TI) { 882 // TST_ENTRY: [typeid, namechar x N] 883 NameVals.push_back(VE.getTypeID(TI->second)); 884 885 const std::string &Str = TI->first; 886 bool is7Bit = true; 887 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 888 NameVals.push_back((unsigned char)Str[i]); 889 if (Str[i] & 128) 890 is7Bit = false; 891 } 892 893 // Emit the finished record. 894 Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0); 895 NameVals.clear(); 896 } 897 898 Stream.ExitBlock(); 899 } 900 901 // Emit blockinfo, which defines the standard abbreviations etc. 902 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 903 // We only want to emit block info records for blocks that have multiple 904 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. Other 905 // blocks can defined their abbrevs inline. 906 Stream.EnterBlockInfoBlock(2); 907 908 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 909 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 910 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 911 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 912 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 913 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 914 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 915 Abbv) != VST_ENTRY_8_ABBREV) 916 assert(0 && "Unexpected abbrev ordering!"); 917 } 918 919 { // 7-bit fixed width VST_ENTRY strings. 920 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 921 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 925 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 926 Abbv) != VST_ENTRY_7_ABBREV) 927 assert(0 && "Unexpected abbrev ordering!"); 928 } 929 { // 6-bit char6 VST_ENTRY strings. 930 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 931 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 935 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 936 Abbv) != VST_ENTRY_6_ABBREV) 937 assert(0 && "Unexpected abbrev ordering!"); 938 } 939 { // 6-bit char6 VST_BBENTRY strings. 940 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 941 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 945 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 946 Abbv) != VST_BBENTRY_6_ABBREV) 947 assert(0 && "Unexpected abbrev ordering!"); 948 } 949 950 { // SETTYPE abbrev for CONSTANTS_BLOCK. 951 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 952 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 954 Log2_32_Ceil(VE.getTypes().size()+1))); 955 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 956 Abbv) != CONSTANTS_SETTYPE_ABBREV) 957 assert(0 && "Unexpected abbrev ordering!"); 958 } 959 960 { // INTEGER abbrev for CONSTANTS_BLOCK. 961 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 962 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 964 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 965 Abbv) != CONSTANTS_INTEGER_ABBREV) 966 assert(0 && "Unexpected abbrev ordering!"); 967 } 968 969 { // CE_CAST abbrev for CONSTANTS_BLOCK. 970 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 971 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 974 Log2_32_Ceil(VE.getTypes().size()+1))); 975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 976 977 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 978 Abbv) != CONSTANTS_CE_CAST_Abbrev) 979 assert(0 && "Unexpected abbrev ordering!"); 980 } 981 { // NULL abbrev for CONSTANTS_BLOCK. 982 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 983 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 984 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 985 Abbv) != CONSTANTS_NULL_Abbrev) 986 assert(0 && "Unexpected abbrev ordering!"); 987 } 988 989 Stream.ExitBlock(); 990 } 991 992 993 /// WriteModule - Emit the specified module to the bitstream. 994 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 995 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 996 997 // Emit the version number if it is non-zero. 998 if (CurVersion) { 999 SmallVector<unsigned, 1> Vals; 1000 Vals.push_back(CurVersion); 1001 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1002 } 1003 1004 // Analyze the module, enumerating globals, functions, etc. 1005 ValueEnumerator VE(M); 1006 1007 // Emit blockinfo, which defines the standard abbreviations etc. 1008 WriteBlockInfo(VE, Stream); 1009 1010 // Emit information about parameter attributes. 1011 WriteParamAttrTable(VE, Stream); 1012 1013 // Emit information describing all of the types in the module. 1014 WriteTypeTable(VE, Stream); 1015 1016 // Emit top-level description of module, including target triple, inline asm, 1017 // descriptors for global variables, and function prototype info. 1018 WriteModuleInfo(M, VE, Stream); 1019 1020 // Emit constants. 1021 WriteModuleConstants(VE, Stream); 1022 1023 // If we have any aggregate values in the value table, purge them - these can 1024 // only be used to initialize global variables. Doing so makes the value 1025 // namespace smaller for code in functions. 1026 int NumNonAggregates = VE.PurgeAggregateValues(); 1027 if (NumNonAggregates != -1) { 1028 SmallVector<unsigned, 1> Vals; 1029 Vals.push_back(NumNonAggregates); 1030 Stream.EmitRecord(bitc::MODULE_CODE_PURGEVALS, Vals); 1031 } 1032 1033 // Emit function bodies. 1034 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) 1035 if (!I->isDeclaration()) 1036 WriteFunction(*I, VE, Stream); 1037 1038 // Emit the type symbol table information. 1039 WriteTypeSymbolTable(M->getTypeSymbolTable(), VE, Stream); 1040 1041 // Emit names for globals/functions etc. 1042 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1043 1044 Stream.ExitBlock(); 1045 } 1046 1047 1048 /// WriteBitcodeToFile - Write the specified module to the specified output 1049 /// stream. 1050 void llvm::WriteBitcodeToFile(const Module *M, std::ostream &Out) { 1051 std::vector<unsigned char> Buffer; 1052 BitstreamWriter Stream(Buffer); 1053 1054 Buffer.reserve(256*1024); 1055 1056 // Emit the file header. 1057 Stream.Emit((unsigned)'B', 8); 1058 Stream.Emit((unsigned)'C', 8); 1059 Stream.Emit(0x0, 4); 1060 Stream.Emit(0xC, 4); 1061 Stream.Emit(0xE, 4); 1062 Stream.Emit(0xD, 4); 1063 1064 // Emit the module. 1065 WriteModule(M, Stream); 1066 1067 // Write the generated bitstream to "Out". 1068 Out.write((char*)&Buffer.front(), Buffer.size()); 1069 } 1070